Science.gov

Sample records for polymers theory manufacturing

  1. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  2. Additive manufacturing of polymer-derived ceramics

    NASA Astrophysics Data System (ADS)

    Eckel, Zak C.; Zhou, Chaoyin; Martin, John H.; Jacobsen, Alan J.; Carter, William B.; Schaedler, Tobias A.

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  3. Additive manufacturing of polymer-derived ceramics.

    PubMed

    Eckel, Zak C; Zhou, Chaoyin; Martin, John H; Jacobsen, Alan J; Carter, William B; Schaedler, Tobias A

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging. PMID:26721993

  4. Polymer parametrized field theory

    SciTech Connect

    Laddha, Alok; Varadarajan, Madhavan

    2008-08-15

    Free scalar field theory on 2-dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using loop quantum gravity (LQG) type 'polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation-annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the 'triangulation'-dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non-Fock nature of the representation ensures that the group of conformal isometries as well as that of the gauge transformations generated by the constraints are represented in an anomaly free manner. Semiclassical states can be analyzed at the gauge invariant level. It is shown that 'physical weaves' necessarily underlie such states and that such states display semiclassicality with respect to, at most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in LQG.

  5. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  6. Molecular Theories of Polymer Nanocomposites

    SciTech Connect

    Hall, Lisa M; Jayaraman, Arthi; Schweizer, Kenneth S

    2010-01-01

    Significant progress towards the development of microscopic predictive theories of the equilibrium structure, polymer-mediated interactions, and phase behavior of polymer nanocomposites has been made recently based on liquid state integral equation, density functional, and self-consistent mean field approaches. The basics of these three theoretical frameworks are summarized, and selected highlights of their recent applications discussed for spherical, nonspherical, and polymer-grafted nanoparticles dissolved in athermal and adsorbing concentrated solutions and homopolymer melts. The role of nanoparticle size, volume fraction, and interfacial cohesive interactions is emphasized, especially with regards to their influence on filler dispersion and spatial ordering via entropic depletion attraction, polymer adsorption-mediated steric stabilization, and local bridging of nanoparticles. Some of the many remaining theoretical challenges and open fundamental questions are summarized.

  7. Solid electrolyte material manufacturable by polymer processing methods

    DOEpatents

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  8. Evaluation of advanced polymers for additive manufacturing

    SciTech Connect

    Rios, Orlando; Morrison, Crystal

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  9. Additive Manufacturing of Ultem Polymers and Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.

  10. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Friedrich, Klaus; Almajid, Abdulhakim A.

    2013-04-01

    Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.

  11. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  12. Polymer multimode waveguide optical and electronic PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Selviah, David R.

    2009-02-01

    The paper describes the research in the Â#1.3 million IeMRC Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Flagship Project in which 8 companies and 3 universities carry out collaborative research and which was formed and is technically led by the author. The consortium's research is aimed at investigating a range of fabrication techniques, some established and some novel, for fabricating polymer multimode waveguides from several polymers, some formulations of which are being developed within the project. The challenge is to develop low cost waveguide manufacturing techniques compatible with commercial PCB manufacturing and to reduce their alignment cost. The project aims to take the first steps in making this hybrid optical waveguide and electrical copper track printed circuit board disruptive technology widely available by establishing and incorporating waveguide design rules into commercial PCB layout software and transferring the technology for fabricating such boards to a commercial PCB manufacturer. To focus the research the project is designing an optical waveguide backplane to tight realistic constraints, using commercial layout software with the new optical design rules, for a demonstrator into which 4 daughter cards are plugged, each carrying an aggregate of 80 Gb/s data so that each waveguide carries 10 Gb/s.

  13. On causality in polymer scalar field theory

    NASA Astrophysics Data System (ADS)

    García-Chung, Angel A.; Morales-Técotl, Hugo A.

    2011-10-01

    The properties of spacetime corresponding to a proposed quantum gravity theory might modify the high energy behavior of quantum fields. Motivated by loop quantum gravity, recently, Hossain et al [1] have considered a polymer field algebra that replaces the standard canonical one in order to calculate the propagator of a real scalar field in flat spacetime. This propagator features Lorentz violations. Motivated by the relation between Lorentz invariance and causality in standard Quantum Field Theory, in this work we investigate the causality behavior of the polymer scalar field.

  14. Electrooptic polymer voltage sensor and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan (Inventor); Perry, Joseph W. (Inventor)

    1993-01-01

    An optical voltage sensor utilizing an electrooptic polymer is disclosed for application to electric power distribution systems. The sensor, which can be manufactured at low cost in accordance with a disclosed method, measures voltages across a greater range than prior art sensors. The electrooptic polymer, which replaces the optical crystal used in prior art sensors, is sandwiched directly between two high voltage electrodes. Voltage is measured by fiber optical means, and no voltage division is required. The sample of electrooptic polymer is fabricated in a special mold and later mounted in a sensor housing. Alternatively, mold and sensor housing may be identical. The sensor housing is made out of a machinable polymeric material and is equipped with two opposing optical windows. The optical windows are mounted in the bottom of machined holes in the wall of the mold. These holes provide for mounting of the polarizing optical components and for mounting of the fiber optic connectors. One connecting fiber is equipped with a light emitting diode as a light source. Another connecting fiber is equipped with a photodiode as a detector.

  15. Theory and Simulations of Tapered Diblock Polymers

    NASA Astrophysics Data System (ADS)

    Hall, Lisa M.; Seo, Youngmi; Brown, Jonathan R.

    We study tapered block polymers, AB diblock polymers with a gradient region inserted between the pure A and B blocks such that composition smoothly transitions from A to B (or B to A in the case of inverse tapers). Phase diagrams were created using self consistent field theory (SCFT), and coarse-grained molecular dynamics (MD) simulations were used to study polymer conformations and diffusion, including diffusion of monomer-sized penetrants preferentially dissolved in one of the phases. As has been observed experimentally, we find that tapering makes the A and B blocks more miscible, decreasing domain spacing and shifting the order to disorder transition to lower temperatures. We predict a widening of the bicontinuous double gyroid region of the phase diagram for moderate length normal tapers versus diblocks, suggesting taper length can be used as a control parameter to obtain network phases even at high molecular weight, as may be desirable in transport applications. Additionally, in some inverse tapered systems, SCFT predicts phases not present in the standard AB diblock phase diagram, and MD simulations show how the chains fold back and forth across the interface. In these inverse tapered polymers, as segregation strength is increased, the competing effects of folding and stretching produces lamellae that have domain spacing nearly independent of temperature. We also find that diffusion of penetrants in normal tapers is significantly faster than that in inverse tapers, which is likely related to their unusual conformations. This material is based upon work supported by DOE Grant SC0014209.

  16. Low-Cost Manufacturing of High- Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    1998-01-01

    Major goals of NASA and the Integrated High Performance Turbine Engine Technology (IHPTET) initiative include improvements in the affordability of propulsion systems, significant increases in the thrust/weight ratio, and increases in the temperature capability of components of gas turbine engines. Members of NASA Lewis Research Center's HITEMP project worked cooperatively with Allison Advanced Development Corporation to develop a manufacturing method to produce low-cost components for gas turbine engines. Affordability for these polymer composites is defined by the savings in acquisition and life-cycle costs associated with engine weight reduction. To lower engine component costs, the Lewis/Allison team focused on chopped graphite fiber/polyimide resin composites. The high-temperature polyimide resin chosen, PMR-II-50, was developed at NASA Lewis.

  17. Bottlebrush Block Polymers: Quantitative Theory and Experiments.

    PubMed

    Dalsin, Samuel J; Rions-Maehren, Thomas G; Beam, Marissa D; Bates, Frank S; Hillmyer, Marc A; Matsen, Mark W

    2015-12-22

    The self-assembly of bottlebrush block polymers into a lamellar phase was investigated using a combination of experiment and self-consistent field theory (SCFT). Nine diblock bottlebrush polymers were synthesized with atactic polypropylene side chains (block A) and polystyrene side chains (block B) attached to poly(norbornene) backbones of various contour lengths, L, and the resulting lamellar structures were analyzed using small-angle X-ray scattering. The scaling of the lamellar period, d0 ∼ L(γ), exhibited an increasing exponent from γ ≈ 0.3 at small L to γ ≈ 0.9 at large L. The small exponents occurred for starlike molecules where the size of the side chains is comparable to L, while the larger exponents occurred for the more brushlike molecules where the side chains extend radially outward from the backbone. The bottlebrushes were then modeled using flexible side chains of types A and B attached to a semiflexible backbone with an adjustable persistence length, ξb. The resulting SCFT predictions for d0 showed remarkable quantitative agreement with the experimental data, where ξb was similar to the radius of the bottlebrushes. The theory was then used to examine the joint-distribution functions for the position and orientation of different segments along the backbone. This revealed a bilayer arrangement of the bottlebrushes in the lamellar phase, with a high degree of backbone orientation at the A/B interfaces that almost completely vanished near the center of the domains. This finding clearly refutes the prevailing interpretation that the large scaling exponent γ is a result of highly extended backbone conformations. PMID:26544636

  18. Sustainable design and manufacturing of multifunctional polymer nanocomposite coatings: A multiscale systems approach

    NASA Astrophysics Data System (ADS)

    Xiao, Jie

    Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and

  19. de Gennes's theory of polymer drag reduction revisited

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hyun; Akhavan, Rayhaneh

    2010-11-01

    The original theory of polymer drag reduction proposed by de Gennes [1] and its re-interpretation for wall-bounded flows proposed by Sreenivasan & White [2] give predictions which are orders of magnitude off from both DNS results and available experimental data. A revised version of this theory is developed, in which the effect of the mean shear on polymer stretching is included, and the polymer is assumed to affect the dynamics of a turbulent scale when a small fraction, on the order of ˜3%, of the turbulence kinetic energy at that scale is redirected into the elastic energy of polymer. The revised theory gives predictions in quantitative agreement with DNS and experimental results for a number of polymer drag reduction features, including the criteria for onset of drag reduction, saturation of drag reduction, MDR, and the range of turbulent scales affected by the polymer. A complete theory of polymer drag reduction is proposed to show how this minimal exchange of energy between the polymer and turbulence can lead to the dramatic drag reductions observed with polymers.[4pt] [1] de Gennes, Physica 140A, p.9 (1986).[0pt] [2] Sreenivasan & White, J. Fluid Mech. 409, p.149 (2000)

  20. Hamiltonian constraint in polymer parametrized field theory

    SciTech Connect

    Laddha, Alok; Varadarajan, Madhavan

    2011-01-15

    Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.

  1. Solid Rocket Fuel Constitutive Theory and Polymer Cure

    NASA Technical Reports Server (NTRS)

    Ream, Robert

    2006-01-01

    Solid Rocket Fuel is a complex composite material for which no general constitutive theory, based on first principles, has been developed. One of the principles such a relation would depend on is the morphology of the binder. A theory of polymer curing is required to determine this morphology. During work on such a theory an algorithm was developed for counting the number of ways a polymer chain could assemble. The methods used to develop and check this algorithm led to an analytic solution to the problem. This solution is used in a probability distribution function which characterizes the morphology of the polymer.

  2. Model-predictive control of polymer composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Voorakaranam, Srikanth

    Quality control is crucial for reducing costs and enabling a more widespread use of fiber-resin composites. This research focuses on development of model-based control strategies for controlling product quality in continuous processes for manufacturing polymer composites with injected pultrusion as a prototype. The control objective is to maximize production rates, meeting quality criteria such as eliminating voids, achieving desired degree of cure and preventing backflow of resin from the die entrance. A 2-D mathematical model of IP developed by Kommu is extended to incorporate die dynamics. Exercising the model over a range of operating conditions, the requirements for a control system are formulated. Simultaneous requirements of optimization and control are met by using a cascade strategy consisting of supervisory and regulatory layers. The supervisory layer consists of an optimizer in conjunction with a steady-state cure model and an injection pressure model. The cure model is linear in important process variables. The injection pressure model is also linear in pullspeed. A linear program generates setpoints for pullspeed, injection pressure and temperatures in the three zones of the die which are implemented by the regulatory layer using multiple PID controllers. This formulation operates the process optimally. A major problem in feedback control of the IP process is the inability to measure quality variables on-line. An inferential control strategy is proposed to tackle this. It is then extended so that it can be implemented in a model predictive control formulation. This novel strategy called model predictive inferential control is general enough to accommodate multiple secondary measurements as well as nonlinear estimators and controllers. Collinearity among multiple measurements is addressed through principal component regression. The estimator uses frequent secondary measurements to estimate the effect of the disturbances on the primary variable which are

  3. New Molecular Theory for Dense, Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Freed, Karl

    2015-03-01

    The development of a molecular theory for dense polymer systems ranks among the most challenging problems in the statistical mechanics of complex matter. These difficulties become compounded when considering the influence of molecular details on thermodynamic properties of thin polymer films, properties deviating from those of the bulk phases. A new theory of dense polymer films is developed as a significant generalization of methods used to devise the lattice cluster theory, an extension of Flory-Huggins theory that include details of monomer structure and short range correlations (neglected in FH theory) and that has successfully been applied to a wide range of polymer systems. The new theory incorporates the essential ``transport'' constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and implemented in self-consistent theories of polymer adsorption at interfaces. The theory is illustrated by presenting examples of the computed density and chain end profiles for free standing films as a function of bulk density, chain length, temperature, and chain semi-flexibility.

  4. Hydrodynamic theories for mixtures of polymers and rodlike liquid crystalline polymers.

    PubMed

    Forest, M Gregory; Wang, Qi

    2005-10-01

    We develop a hydrodynamic theory for flows of incompressible blends of flexible polymers and rodlike nematic polymers (RNPs) or rodlike nematic liquid crystal polymers (RNLCPs) extending the thermodynamical theory of Muratov and E [J. Chem. Phys. 116, 4723 (2002)] for phase separation kinetics of the blend. We model the flexible polymer molecules in the polymer matrix as Rouse chains and assume the translational diffusion of the molecules is predominantly through the volume fraction of the flexible polymer and the molecules of rodlike nematic liquid crystal polymers. We then (i) derive the translational flux for the rodlike nematic liquid crystal polymers to ensure the incompressibility constraint; (ii) derive the elastic stress tensor, accounting for the contribution from both the rodlike nematic polymer and the flexible polymer matrix, as well as the extra elastic body force due to the nonlocal intermolecular potential for long range molecular interaction; (iii) show that the theory obeys positive entropy production and thereby satisfies the second law of thermodynamics. By applying the gradient expansion technique on the number density function of RNLCPs, we present an approximate, weakly nonlocal theory in differential form in which the intermolecular potential is given by gradients of the number density function of the RNLCP and the volume fraction of the flexible polymer. In the approximate theory, the elastic stress is augmented by an extra stress tensor due to the spatial convection of the macroscopic material point and long range interaction, whose divergence yields the analogous extra elastic body force with respect to the nonlocal intermolecular potential. Finally, we compare the model in steady simple shear with the Doi theory for bulk monodomains of rodlike nematic polymers. PMID:16383413

  5. Innovative hybrid optics: combining the thermal stability of glass with low manufacturing cost of polymers

    NASA Astrophysics Data System (ADS)

    Doushkina, Valentina

    2010-08-01

    Innovative hybrid glass-polymer optical solutions on a component, module, or system level offer thermal stability of glass with low manufacturing cost of polymers reducing component weight, enhancing the safety and appeal of the products. Narrow choice of polymer materials is compensated by utilizing sophisticated optical surfaces such as refractive, reflective, and diffractive substrates with spherical, aspherical, cylindrical, and freeform prescriptions. Current advancements in polymer technology and injection molding capabilities placed polymer optics in the heart of many high tech devices and applications including Automotive Industry, Defense & Aerospace; Medical/Bio Science; Projection Displays, Sensors, Information Technology, Commercial and Industrial. This paper is about integration of polymer and glass optics for enhanced optical performance with reduced number of components, thermal stability, and low manufacturing cost. The listed advantages are not achievable when polymers or glass optics are used as stand-alone. The author demonstrates that integration of polymer and glass on component or optical system level on one hand offers high resolution and diffraction limited image quality, similar to the glass optics with stable refractive index and stable thermal performance when design is athermalized within the temperature range. On the other hand, the integrated hybrid solution significantly reduces cost, weight, and complexity, just like the polymer optics. The author will describe the design and analyzes process of combining glass and polymer optics for variety of challenging applications such as fast optics with low F/#, wide field of view lenses or systems, free form optics, etc.

  6. Polymer networks and gels: Simulation and theory

    NASA Astrophysics Data System (ADS)

    Kenkare, Nirupama Ramamurthy

    1998-12-01

    The purpose of this research is to understand the molecular origins of the dynamic and swelling properties of polymer networks and gels. Our approach has been to apply computer simulations techniques to off-lattice, near-perfect, trifunctional and tetrafunctional network models. The networks are constructed by endlinking freely-jointed, tangent-hard-sphere chains. Equilibrium discontinuous molecular dynamics techniques are employed to simulate the relaxation of large networks of chain lengths ranging from N = 20 to N = 150 at a packing fraction of 0.43. The simulation trajectories are used to calculate the radius of gyration and end-to-end distance of the network chains, the static structure factor of the crosslinks, the mean-squared displacement of the crosslinks and chain inner segments, the intermediate scattering function of the chains and the elastic modulus of the network. The structure and properties of the networks are shown to depend heavily on the manner in which the network is initially constructed. The dynamics of the network crosslinks and chain inner segments are similar to those of melt chains at short times and show evidence of spatial localization at long times. The results from the elastic moduli and long-time crosslink and chain displacement calculations indicate that entanglement constraints act in conjunction with crosslink constraints to reduce crosslink and chain mobility. The presence of entanglements appears to cause the magnitude of the elastic modulus to be larger than the affine/phantom model predictions. The pressure-volume behavior and the chain configurational properties of deformed networks are investigated over a range of packing fractions. The variation of network pressure with density is found to be similar to that of uncrosslinked chain systems of the same chain length, except at low densities where the network pressures become negative due to elastic effects. We derive a simple, mean-field network equation of state in which the

  7. Manufacturing polymer thin films in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Vera, Ivan

    1987-01-01

    This project represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of two polymer thin films will be contained in NASA's Payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medicine, energy, and pharmaceuticals and in general fluid separation processes, such as reverse osmosis, ultrafiltration, and electrodialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the structure of these membranes.

  8. Tridimensional ionic polymer metal composites: optimization of the manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Bonomo, C.; Bottino, M.; Brunetto, P.; Di Pasquale, G.; Fortuna, L.; Graziani, S.; Pollicino, A.

    2010-05-01

    Ionic polymer metal composites (IPMCs) belong to electroactive polymers (EAPs) and have been suggested for various applications due to their light weight and to the fact that they react mechanically when stimulated by an electrical signal and vice versa. Thick IPMCs (3D-IPMCs) have been fabricated by hot pressing several Nafion® 117 films. Additional post-processes (more cycles of Pt electroless plating and dispersing agents) have been applied to improve the 3D-IPMC performance. The electromechanical response of 3D-IPMCs has been examined by applying electrical signals and measuring the displacement and blocking force produced.

  9. Investigating accidents involving aircraft manufactured from polymer composite materials

    NASA Astrophysics Data System (ADS)

    Dunn, Leigh

    This study looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. As the use of composite materials in aircraft construction increases, the understanding of how macroscopic failure characteristics of composite materials may aid the field investigator is becoming of increasing importance.. The first phase of this research project was to explore how investigation practitioners conduct wreckage examinations. Four accident investigation case studies were examined. The analysis of the case studies provided a framework of the wreckage examination process. Subsequently, a literature survey was conducted to establish the current level of knowledge on the visual and macroscopic interpretation of polymer composite failures. Relevant literature was identified and a compendium of visual and macroscopic characteristics was created. Two full-scale polymer composite wing structures were loaded statically, in an upward bending direction, until each wing structure fractured and separated. The wing structures were subsequently examined for the existence of failure characteristics. The examination revealed that whilst characteristics were present, the fragmentation of the structure destroyed valuable evidence. A hypothetical accident scenario utilising the fractured wing structures was developed, which UK government accident investigators subsequently investigated. This provided refinement to the investigative framework and suggested further guidance on the interpretation of polymer composite failures by accident investigators..

  10. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGESBeta

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  11. Highly oriented carbon fiber–polymer composites via additive manufacturing

    SciTech Connect

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; Duty, Chad E.; Love, Lonnie J.; Naskar, Amit K.; Blue, Craig A.; Ozcan, Soydan

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.

  12. Polymeric compositions and their method of manufacture. [forming filled polymer systems using cryogenics

    NASA Technical Reports Server (NTRS)

    Moser, B. G.; Landel, R. F. (Inventor)

    1972-01-01

    Filled polymer compositions are made by dissolving the polymer binder in a suitable sublimable solvent, mixing the filler material with the polymer and its solvent, freezing the resultant mixture, and subliming the frozen solvent from the mixture from which it is then removed. The remaining composition is suitable for conventional processing such as compression molding or extruding. A particular feature of the method of manufacture is pouring the mixed solution slowly in a continuous stream into a cryogenic bath wherein frozen particles of the mixture result. The frozen individual particles are then subjected to the sublimation.

  13. Lattice cluster theory for dense, thin polymer films

    NASA Astrophysics Data System (ADS)

    Freed, Karl F.

    2015-04-01

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L - 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential "transport" constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.

  14. Lattice cluster theory for dense, thin polymer films

    SciTech Connect

    Freed, Karl F.

    2015-04-07

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L − 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential “transport” constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.

  15. Fluid Structure Interaction Analysis in Manufacturing Metal/Polymer Macro-Composites

    SciTech Connect

    Baesso, R.; Lucchetta, G.

    2007-05-17

    Polymer Injection Forming (PIF) is a new manufacturing technology for sheet metal-polymer macro-composites, which results from the combination of injection moulding and sheet metal forming. This process consists on forming the sheet metal according to the boundary of the mould cavity by means of the injected polymer. After cooling, the polymer bonds permanently to the metal resulting in a sheet metal-polymer macro-composite product. Comparing this process to traditional ones (where the polymeric and metal parts are joined together after separate forming) the main advantages are both reduction of production costs and increase of part quality. This paper presents a multi-physics numerical simulation of the process performed in the Ansys/CFX environment.

  16. Theory of colloid depletion stabilization by unattached and adsorbed polymers.

    PubMed

    Semenov, A N; Shvets, A A

    2015-12-01

    The polymer-induced forces between colloidal particles in a semidilute or concentrated polymer solution are considered theoretically. This study is focussed on the case of partially adsorbing colloidal surfaces involving some attractive centers able to trap polymer segments. In the presence of free polymers the particles are covered by self-assembled fluffy layers whose structure is elucidated. It is shown that the free-polymer-induced interaction between the particles is repulsive at distances exceeding the polymer correlation length, and that this depletion repulsion can be strongly enhanced due to the presence of fluffy layers. This enhanced depletion stabilization mechanism (which works in tandem with a more short-range steric repulsion of fluffy layers) can serve on its own to stabilize colloidal dispersions. More generally, we identify three main polymer-induced interaction mechanisms: depletion repulsion, depletion attraction, and steric repulsion. Their competition is analyzed both numerically and analytically based on an asymptotically rigorous mean-field theory. It is shown that colloid stabilization can be achieved by simply increasing the molecular weight of polymer additives, or by changing their concentration. PMID:26400677

  17. Model based control of polymer composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Potaraju, Sairam

    2000-10-01

    The objective of this research is to develop tools that help process engineers design, analyze and control polymeric composite manufacturing processes to achieve higher productivity and cost reduction. Current techniques for process design and control of composite manufacturing suffer from the paucity of good process models that can accurately represent these non-linear systems. Existing models developed by researchers in the past are designed to be process and operation specific, hence generating new simulation models is time consuming and requires significant effort. To address this issue, an Object Oriented Design (OOD) approach is used to develop a component-based model building framework. Process models for two commonly used industrial processes (Injected Pultrusion and Autoclave Curing) are developed using this framework to demonstrate the flexibility. Steady state and dynamic validation of this simulator is performed using a bench scale injected pultrusion process. This simulator could not be implemented online for control due to computational constraints. Models that are fast enough for online implementation, with nearly the same degree of accuracy are developed using a two-tier scheme. First, lower dimensional models that captures essential resin flow, heat transfer and cure kinetics important from a process monitoring and control standpoint are formulated. The second step is to reduce these low dimensional models to Reduced Order Models (ROM) suited for online model based estimation, control and optimization. Model reduction is carried out using Proper Orthogonal Decomposition (POD) technique in conjunction with a Galerkin formulation procedure. Subsequently, a nonlinear model-based estimation and inferential control scheme based on the ROM is implemented. In particular, this research work contributes in the following general areas: (1) Design and implementation of versatile frameworks for modeling and simulation of manufacturing processes using object

  18. Terahertz imaging and tomography as efficient instruments for testing polymer additive manufacturing objects.

    PubMed

    Perraud, J B; Obaton, A F; Bou-Sleiman, J; Recur, B; Balacey, H; Darracq, F; Guillet, J P; Mounaix, P

    2016-05-01

    Additive manufacturing (AM) technology is not only used to make 3D objects but also for rapid prototyping. In industry and laboratories, quality controls for these objects are necessary though difficult to implement compared to classical methods of fabrication because the layer-by-layer printing allows for very complex object manufacturing that is unachievable with standard tools. Furthermore, AM can induce unknown or unexpected defects. Consequently, we demonstrate terahertz (THz) imaging as an innovative method for 2D inspection of polymer materials. Moreover, THz tomography may be considered as an alternative to x-ray tomography and cheaper 3D imaging for routine control. This paper proposes an experimental study of 3D polymer objects obtained by additive manufacturing techniques. This approach allows us to characterize defects and to control dimensions by volumetric measurements on 3D data reconstructed by tomography. PMID:27140357

  19. Manufacturing of embedded multimode waveguides by reactive lamination of cyclic olefin polymer and polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Kelb, Christian; Rother, Raimund; Schuler, Anne-Katrin; Hinkelmann, Moritz; Rahlves, Maik; Prucker, Oswald; Müller, Claas; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard

    2016-03-01

    We demonstrate the manufacturing of embedded multimode optical waveguides through linking of polymethylmethacrylate (PMMA) foils and cyclic olefin polymer (COP) filaments based on a lamination process. Since the two polymeric materials cannot be fused together through interdiffusion of polymer chains, we utilize a reactive lamination agent based on PMMA copolymers containing photoreactive 2-acryloyloxyanthraquinone units, which allows the creation of monolithic PMMA-COP substrates through C-H insertion reactions across the interface between the two materials. We elucidate the lamination process and evaluate the chemical link between filament and foils by carrying out extraction tests with a custom-built tensile testing machine. We also show attenuation measurements of the manufactured waveguides for different manufacturing parameters. The lamination process is in particular suited for large-scale and low-cost fabrication of board-level devices with optical waveguides or other micro-optical structures, e.g., optofluidic devices.

  20. Theory of polymer-dispersed cholesteric liquid crystals

    SciTech Connect

    Matsuyama, Akihiko

    2013-11-07

    A mean field theory is presented to describe cholesteric phases in mixtures of a polymer and a cholesteric liquid crystal. Taking into account an anisotropic coupling between a polymer and a liquid crystal, we examine the helical pitch, twist elastic constant, and phase separations. Analytical expressions of the helical pitch of a cholesteric phase and the twist elastic constant are derived as a function of the orientational order parameters of a polymer and a liquid crystal and two intermolecular interaction parameters. We also find isotropic-cholesteric, cholesteric-cholesteric phase separations, and polymer-induced cholesteric phase on the temperature-concentration plane. We demonstrate that an anisotropic coupling between a polymer and a liquid crystal can stabilize a cholesteric phase in the mixtures. Our theory can also apply to mixtures of a nematic liquid crystal and a chiral dopant. We discuss the helical twisting power, which depends on temperature, concentration, and orientational order parameters. It is shown that our theory can qualitatively explain experimental observations.

  1. Flow induced migration in polymer melts - Theory and simulation

    NASA Astrophysics Data System (ADS)

    Dorgan, John Robert; Rorrer, Nicholas Andrew

    2015-04-01

    Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibit similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.

  2. Renormalized field theory of collapsing directed randomly branched polymers.

    PubMed

    Janssen, Hans-Karl; Wevelsiep, Frank; Stenull, Olaf

    2009-10-01

    We present a dynamical field theory for directed randomly branched polymers and in particular their collapse transition. We develop a phenomenological model in the form of a stochastic response functional that allows us to address several interesting problems such as the scaling behavior of the swollen phase and the collapse transition. For the swollen phase, we find that by choosing model parameters appropriately, our stochastic functional reduces to the one describing the relaxation dynamics near the Yang-Lee singularity edge. This corroborates that the scaling behavior of swollen branched polymers is governed by the Yang-Lee universality class as has been known for a long time. The main focus of our paper lies on the collapse transition of directed branched polymers. We show to arbitrary order in renormalized perturbation theory with epsilon expansion that this transition belongs to the same universality class as directed percolation. PMID:19905335

  3. Flow induced migration in polymer melts – Theory and simulation

    SciTech Connect

    Dorgan, John Robert Rorrer, Nicholas Andrew

    2015-04-28

    Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibit similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.

  4. Lattice cluster theory for polymer melts with specific interactions

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Freed, Karl F.

    2014-07-01

    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

  5. Lattice cluster theory for polymer melts with specific interactions

    SciTech Connect

    Xu, Wen-Sheng; Freed, Karl F.

    2014-07-28

    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

  6. Innovative Manufacturing of Carbon Nanotube-Loaded Fibrillar Polymer Composites

    NASA Astrophysics Data System (ADS)

    Lin, R. J. T.; Bhattacharyya, D.; Fakirov, S.

    The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.

  7. Additive Manufacturing and Characterization of Ultem Polymers and Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides - Ultem 9085 and experimental Ultem 1000 mixed with 10 percent chopped carbon fiber. A property comparison between FDM-printed and injection-molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31 percent. Coupons of Ultem 9085 and experimental Ultem 1000 composites were tested at room temperature and 400 degrees Fahrenheit to evaluate their corresponding mechanical properties.

  8. Generalized van der Waals density functional theory for nonuniform polymers

    SciTech Connect

    Patra, Chandra N.; Yethiraj, Arun

    2000-01-15

    A density functional theory is presented for the effect of attractions on the structure of polymers at surfaces. The theory treats the ideal gas functional exactly, and uses a weighted density approximation for the hard chain contribution to the excess free energy functional. The attractive interactions are treated using a van der Waals approximation. The theory is in good agreement with computer simulations for the density profiles at surfaces for a wide range of densities and temperatures, except for low polymer densities at low temperatures where it overestimates the depletion of chains from the surface. This deficiency is attributed to the neglect of liquid state correlations in the van der Waals term of the free energy functional. (c) 2000 American Institute of Physics.

  9. Solvation of polymers as mutual association. I. General theory

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2013-04-01

    A Flory-Huggins (FH) type lattice theory of self-assembly is generalized to describe the equilibrium solvation of long polymer chains B by small solvent molecules A. Solvation is modeled as a thermally reversible mutual association between the polymer and a relatively low molar mass solvent. The FH Helmholtz free energy F is derived for a mixture composed of the A and B species and the various possible mutual association complexes AiB, and F is then used to generate expressions for basic thermodynamic properties of solvated polymer solutions, including the size distribution of the solvated clusters, the fraction of solvent molecules contained in solvated states (an order parameter for solvation), the specific heat (which exhibits a maximum at the solvation transition), the second and the third osmotic virial coefficients, and the boundaries for phase stability of the mixture. Special attention is devoted to the analysis of the "entropic" contribution χs to the FH interaction parameter χ of polymer solutions, both with and without associative interactions. The entropic χs parameter arises from correlations associated with polymer chain connectivity and disparities in molecular structure between the components of the mixture. Our analysis provides the first explanation of the longstanding enigma of why χs for polymer solutions significantly exceeds χs for binary polymer blends. Our calculations also reveal that χs becomes temperature dependent when interactions are strong, in sharp contrast to models currently being used for fitting thermodynamic data of associating polymer-solvent mixtures, where χs is simply assumed to be an adjustable constant based on experience with solutions of homopolymers in nonassociating solvents.

  10. Manufacturing polymer/carbon nanotube composite using a novel direct process.

    PubMed

    Tran, C-D; Lucas, S; Phillips, D G; Randeniya, L K; Baughman, R H; Tran-Cong, T

    2011-04-01

    A direct process for manufacturing polymer carbon nanotube (CNT)-based composite yarns is reported. The new approach is based on a modified dry spinning method of CNT yarn and gives a high alignment of the CNT bundle structure in yarns. The aligned CNT structure was combined with a polymer resin and, after being stressed through the spinning process, the resin was cured and polymerized, with the CNT structure acting as reinforcement in the composite. Thus the present method obviates the need for special and complex treatments to align and disperse CNTs in a polymer matrix. The new process allows us to produce a polymer/CNT composite with properties that may satisfy various engineering specifications. The structure of the yarn was investigated using scanning electron microscopy coupled with a focused-ion-beam system. The tensile behavior was characterized using a dynamic mechanical analyzer. Fourier transform infrared spectrometry was also used to chemically analyze the presence of polymer on the composites. The process allows development of polymer/CNT-based composites with different mechanical properties suitable for a range of applications by using various resins. PMID:21346301

  11. Manufacturing polymer/carbon nanotube composite using a novel direct process

    NASA Astrophysics Data System (ADS)

    Tran, C.-D.; Lucas, S.; Phillips, D. G.; Randeniya, L. K.; Baughman, R. H.; Tran-Cong, T.

    2011-04-01

    A direct process for manufacturing polymer carbon nanotube (CNT)-based composite yarns is reported. The new approach is based on a modified dry spinning method of CNT yarn and gives a high alignment of the CNT bundle structure in yarns. The aligned CNT structure was combined with a polymer resin and, after being stressed through the spinning process, the resin was cured and polymerized, with the CNT structure acting as reinforcement in the composite. Thus the present method obviates the need for special and complex treatments to align and disperse CNTs in a polymer matrix. The new process allows us to produce a polymer/CNT composite with properties that may satisfy various engineering specifications. The structure of the yarn was investigated using scanning electron microscopy coupled with a focused-ion-beam system. The tensile behavior was characterized using a dynamic mechanical analyzer. Fourier transform infrared spectrometry was also used to chemically analyze the presence of polymer on the composites. The process allows development of polymer/CNT-based composites with different mechanical properties suitable for a range of applications by using various resins.

  12. Theories of surface-driven segregation in polymer fluids

    NASA Astrophysics Data System (ADS)

    Wong, Ka Yiu

    1998-10-01

    Three polymer interfacial systems-thin films of diblock copolymer melts, polymer blends near surfaces, and surface segregation of athermal polymer blends-are studied by density functional theory. We analyze the weak-segregation, thermodynamic predictions of a simple mean-field model of diblock copolymer melts sandwiched between surfaces that interact weakly with melts. These films may not exhibit a phase transition although the segregation that develops within them resembles ordering in the bulk. When transitions occur, they result from a competition between surface and bulk effects and have no bulk analogue. Thin films confined by identical surfaces or surfaces having equal-in-magnitude but opposite affinities for the monomers may exhibit first- and second-order transitions when the melt-surface interactions are small. Second-order transitions do not occur in films with large surface affinities. The instabilities that lead to the second-order transitions in films disappear with increases in the film thickness. We also investigate the long-wavelength features of near- surface composition profiles of monomers in a binary, symmetric blend with an external field gradient expansion. The gradient expansion includes information about correlations of polymer chains with the surface. Relative to simpler theories of polymer-surface adsorption, our theory predicts a small increase of the interfacial width. We illustrate a derivation of a surface-boundary condition on the composition profile directly from the monomer-surface Hamiltonian. This boundary condition, when combined with our density functional analysis, leads to first-order wetting transitions. Finally, our work on surface segregation of athermal blends is presented. We study the effect on surface segregation due to disparity in molecular weights, stiffness of polymer chains, and sizes of the monomers. Our results suggest that disparity in molecular weights do not lead to a profound surface segregation. In the study

  13. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; Patterson, Clark; Santelle, Tom; Mehl, Jeremy

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  14. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Tarbutton, Joshua A.

    2014-09-01

    This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called ‘electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step.

  15. Studies in process modeling, design, monitoring, and control, with applications to polymer composites manufacturing

    NASA Astrophysics Data System (ADS)

    Srinivasagupta, Deepak

    2002-01-01

    High material and manufacturing costs have hindered the introduction of advanced polymer composite materials into mainstream civilian applications such as automotive. Even though high-fidelity models for several polymer composite manufacturing processes have become available over the past several years and offer significant benefits in manufacturing cost reduction, concerns about their inflexibility and maintenance has adversely affected their widespread usage. This research seeks to advance process modeling and design in polymer composites manufacturing to address these concerns. Other more general issues in measurement validation and distributed control are also addressed. Using a rigorous 3-D model of the injected pultrusion (IP) process validated recently, an algorithm was developed for process and equipment design with integrated economic, operability and environmental considerations. The optimum design promised enhanced throughput as well as reduction in the time and expenses of the current purely experimental approaches. Scale-up issues in IP were analyzed, and refinements to overcome some drawbacks in the model were suggested. The process model was then extended to simulate the co-injection resin transfer molding (CIRTM) process used for manufacture of foam-core sandwich composites. A 1-D isothermal model for real-time control was also developed. Process optimization using these models and experimental parametric studies increased the debond fracture toughness of sandwiches by 78% over current technology. To ensure the availability of validated measurements from process instrumentation, a novel in-situ sensor modeling approach to sensor validation was proposed. Both active and passive, time and frequency domain techniques were developed, and experimentally verified using temperature and flow sensors. A model-based dynamic estimator to predict the true measurement online was also validated. The effect of network communication delay on stability and control

  16. An overview on the effect of manufacturing on the shock response of polymers

    NASA Astrophysics Data System (ADS)

    Kister, Guillaume; Wood, David; Appleby-Thomas, Gareth; Roberts, Andrew; Leighs, James; Goff, Michael; Hameed, Amer

    2013-06-01

    Polymers are widely employed in areas as diverse as consumer goods and explosives (matrix materials). The consequent commercial interest has led to a continual drive to improve material properties - e.g. via either manufacturing techniques or more fundamental improvements in the understanding of the underlying chemistry. It has been shown previously that chemical compositions can affect the shock profile of the polymer Poly-Methyl Methacrylate (PMMA). To this end the composition will change over time as new formulations are brought to market, for example due to the inclusion of additives that will increase the lifetime of the product. Significantly such changes may not affect the material properties at lower strain rates. At the higher strain rates these subtle difference can lead to larger discrepancies in the shock profiles. In this study comparisons of PMMA have been made between newly sourced and ``legacy'' material studied previously in the literature.

  17. Microscopic theory for dynamics in entangled polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Yamamoto, Umi

    New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that

  18. Feasibility study of custom manufacturing methods of ionic polymer-metal composite sensors

    NASA Astrophysics Data System (ADS)

    Nelson, Shelby E.

    The ability to create an ion exchange membrane with any shape or thickness through custom manufacturing techniques is highly desirable in ionic polymer-metal composite (IPMC) research. This is caused by the poor selection and limited availability of certain thicknesses of commercial ion exchange membranes. The objective of this study is to determine the feasibility of manufacturing custom ion exchange membranes for IPMC sensors. The manufacturing methods used in this study are extrusion, injection molding, and hot pressing. A commercial membrane from Golden Energy Fuel Cells (GEFC) is used as a comparison. After the membranes are fabricated, certain properties of the membranes are tested throughout each processing stage to determine if they are suitable to be developed into IPMCs. The three processing stages are pre-activation, activation (hydrated and dehydrated), and IPMC. It was observed that the stiffness of the membranes increased from pre-activation to activation and decreased from activation to IPMC. A more flexible membrane in an IPMC allows for larger cation displacement within the membrane. The extruded and injection molded membranes showed the most potential with having the lowest stiffness of all the samples; however, they were not able to be made into IPMCs due to repeated membrane failures in the primary plating process. Gas accumulated between the layers that formed in the membranes due to the extrusion and injection molding cooling process during manufacturing. The hot pressed membrane was the only custom manufactured membrane to be fully processed into an IPMC. The hot pressed and GEFC IPMC sensors were operated at 1 Hz, 5 Hz, and 10 Hz frequencies with the GEFC IPMC producing the strongest output voltage signal. While the extruded and injection molded membranes showed potential to become IPMCs with their high water uptake percentage, high ion exchange capacity, and low stiffness, more development is needed within the manufacturing process to make

  19. Theory of exciton transfer and diffusion in conjugated polymers

    SciTech Connect

    Barford, William; Tozer, Oliver Robert

    2014-10-28

    We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for the exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ∼10 nm are in good agreement with experiment. The spectral

  20. Surfactant self-assembly in oppositely charged polymer networks. Theory.

    PubMed

    Hansson, Per

    2009-10-01

    The interaction of ionic surfactants with polyion networks of opposite charge in an aqueous environment is analyzed theoretically by applying a recent theory of surfactant ion-polyion complex salts (J. Colloid. Int. Sci. 2009, 332, 183). The theory takes into account attractive and repulsive polyion-mediated interactions between the micelles, the deformation of the polymer network, the mixing of micelles, polyion chains, and simple ions with water, and the hydrophobic free energy at the micelle surface. The theory is used to calculate binding isotherms, swelling isotherms, surfactant aggregation numbers, compositions of complexes,and phase structure under various conditions. Factors controlling the gel volume transition and conditions for core/shell phase coexistence are investigated in detail, as well as the influence of salt. In particular, the interplay between electrostatic and elastic interactions is highlighted. Results from theory are compared with experimental data reported in the literature. The agreement is found to be semiquantitative or qualitative. The theory explains both the discrete volume transition observed in systems where the surfactant is in excess over the polyion and the core/shell phase coexistence in systems where the polyion is in excess. PMID:19728696

  1. Theory of optical transitions in conjugated polymers. II. Real systems

    NASA Astrophysics Data System (ADS)

    Marcus, Max; Tozer, Oliver Robert; Barford, William

    2014-10-01

    The theory of optical transitions developed in Barford and Marcus ["Theory of optical transitions in conjugated polymers. I. Ideal systems," J. Chem. Phys. 141, 164101 (2014)] for linear, ordered polymer chains is extended in this paper to model conformationally disordered systems. Our key result is that in the Born-Oppenheimer regime the emission intensities are proportional to S(1)/⟨IPR⟩, where S(1) is the Huang-Rhys parameter for a monomer. ⟨IPR⟩ is the average inverse participation ratio for the emitting species, i.e., local exciton ground states (LEGSs). Since the spatial coherence of LEGSs determines the spatial extent of chromophores, the significance of this result is that it directly relates experimental observables to chromophore sizes (where ⟨IPR⟩ is half the mean chromophore size in monomer units). This result is independent of the chromophore shape, because of the Born-Oppenheimer factorization of the many body wavefunction. We verify this prediction by density matrix renormalization group (DMRG) calculations of the Frenkel-Holstein model in the adiabatic limit for both linear, disordered chains and for coiled, ordered chains. We also model optical spectra for poly(p-phenylene) and poly(p-phenylene-vinylene) oligomers and polymers. For oligomers, we solve the fully quantized Frenkel-Holstein model via the DMRG method. For polymers, we use the much simpler method of solving the one-particle Frenkel model and employ the Born-Oppenheimer expressions relating the effective Franck-Condon factor of a chromophore to its inverse participation ratio. We show that increased disorder decreases chromophore sizes and increases the inhomogeneous broadening, but has a non-monotonic effect on transition energies. We also show that as planarizing the polymer chain increases the exciton band width, it causes the chromophore sizes to increase, the transition energies to decrease, and the broadening to decrease. Finally, we show that the absorption spectra are

  2. Communication: Theory of melt-memory in polymer crystallization

    NASA Astrophysics Data System (ADS)

    Muthukumar, M.

    2016-07-01

    Details of crystallization processes of a polymer at the crystallization temperature Tc from its melt kept initially at the melt temperature Tm depend profoundly on the nature of the initial melt state and often are accompanied by memory effects. This phenomenon is in contrast to small molecular systems where the supercooling (Tm0-Tc), with Tm0 being the equilibrium melting temperature, and not (Tm - Tc), determines the nature of crystallization. In addressing this five-decade old puzzle of melt-memory in polymer crystallization, we present a theory to describe melt-memory effects, by invoking an intermediate inhomogeneous melt state in the pathway between the melt and crystalline states. Using newly introduced dissolution temperature T10 for the inhomogeneous melt state and the transition temperature Tt0 for the transition between the inhomogeneous melt and crystalline states, analytical formulas are derived for the nucleation rate as a function of the melt temperature. The theory is general to address different kinds of melt-memory effects depending on whether Tm is higher or lower than Tm0. The derived results are in qualitative agreement with known experimental data, while making predictions for further experiments on melt-memory.

  3. Communication: Theory of melt-memory in polymer crystallization.

    PubMed

    Muthukumar, M

    2016-07-21

    Details of crystallization processes of a polymer at the crystallization temperature Tc from its melt kept initially at the melt temperature Tm depend profoundly on the nature of the initial melt state and often are accompanied by memory effects. This phenomenon is in contrast to small molecular systems where the supercooling (Tm (0)-Tc), with Tm (0) being the equilibrium melting temperature, and not (Tm - Tc), determines the nature of crystallization. In addressing this five-decade old puzzle of melt-memory in polymer crystallization, we present a theory to describe melt-memory effects, by invoking an intermediate inhomogeneous melt state in the pathway between the melt and crystalline states. Using newly introduced dissolution temperature T1 (0) for the inhomogeneous melt state and the transition temperature Tt (0) for the transition between the inhomogeneous melt and crystalline states, analytical formulas are derived for the nucleation rate as a function of the melt temperature. The theory is general to address different kinds of melt-memory effects depending on whether Tm is higher or lower than Tm (0). The derived results are in qualitative agreement with known experimental data, while making predictions for further experiments on melt-memory. PMID:27448866

  4. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Namiko; Manohara, Harish; Platzman, Ellen

    2016-02-01

    Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (˜18 nm thick) were deposited on CNTs (˜38 nm diameter and ˜50 μm length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of ˜50-100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of ˜75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are ˜103 times smaller than other existing work (˜105 G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT-polymer nanocomposites, through controlled micro-structure and scalable manufacturing.

  5. Mesoscale 3D manufacturing: varying focusing conditions for efficient direct laser writing of polymers

    NASA Astrophysics Data System (ADS)

    Jonušauskas, Linas; Malinauskas, Mangirdas

    2014-05-01

    In this paper, we report a novel approach for efficient fabrication of mesoscale polymer 3D microstructures. It is implemented by direct laser writing varying exposure beam focusing conditions. By carefully optimizing the fabrication parameters (laser intensity, scanning velocity/exposure time, changing objective lens) complex 3D geometries of the microstructures can be obtained rapidly. Additionally, we demonstrate this without the use of the photoinitiator as photosensitizer doped in the pre-polymer material (SZ2080). At femtosecond pulsed irradiation ~TW/cm² intensities the localized free radical polymerization is achieved via avalanche induced bond braking. Such microstructures have unique biocompatibility and optical transparency as well as optical damage threshold value. By creating the bulk part of the structure using low-NA (0.45) objective and subsequently fabricating the fine features using oil immersion high-NA (1.4) objective the manufacturing time is reduced dramatically (30x is demonstrated). Using this two objective method a prototype of functional microdevice was produced: 80 and 85 µm diameter microfluidic tubes with the fine filter consisting of 4 µm period grating structure that has 400 nm wide threads, which corresponds to a feature precision aspect ratio of ~200. Therefore, such method has great potential as a polymer fabrication tool for mesoscale optical, photonic and biomedical applications as well as highly integrated 3D µ-systems. Furthermore, the proposed approach is not limited to lithography and can be implemented in a more general type of laser writing, such as inscription within transparent materials or substractive manufacturing by ablation.

  6. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration

    NASA Technical Reports Server (NTRS)

    Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve

  7. Theory of optical transitions in conjugated polymers. I. Ideal systems

    NASA Astrophysics Data System (ADS)

    Barford, William; Marcus, Max

    2014-10-01

    We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑n|Ψn|4)-1, where Ψn is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F0v(N) = S(N)vexp ( - S(N))/v! for the vth vibronic manifold. We show that the 0 - 0 and 0 - 1 optical intensities are proportional to F00(N) and F01(N), respectively, and thus the ratio of the 0 - 1 to 0 - 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the lowest exciton state. When this happens there is mixing of the

  8. Application of TRIZ Theory in Patternless Casting Manufacturing Technique

    NASA Astrophysics Data System (ADS)

    Yang, Weidong; Gan, Dequan; Jiang, Ping; Tian, Yumei

    The ultimate goal of Patternless Casting Manufacturing (referred to as PCM) is how to obtain the casts by casting the sand mold directly. In the previous PCM, the resin content of sand mold is much higher than that required by traditional resin sand, so the casts obtained are difficult to be sound and qualified products, which limits the application of this technique greatly. In this paper, the TRIZ algorithm is introduced to the innovation process in PCM systematically.

  9. Collapse transition of randomly branched polymers: renormalized field theory.

    PubMed

    Janssen, Hans-Karl; Stenull, Olaf

    2011-05-01

    We present a minimal dynamical model for randomly branched isotropic polymers, and we study this model in the framework of renormalized field theory. For the swollen phase, we show that our model provides a route to understand the well-established dimensional-reduction results from a different angle. For the collapse θ transition, we uncover a hidden Becchi-Rouet-Stora supersymmetry, signaling the sole relevance of tree configurations. We correct the long-standing one-loop results for the critical exponents, and we push these results on to two-loop order. For the collapse θ' transition, we find a runaway of the renormalization group flow, which lends credence to the possibility that this transition is a fluctuation-induced first-order transition. Our dynamical model allows us to calculate for the first time the fractal dimension of the shortest path on randomly branched polymers in the swollen phase as well as at the collapse transition and related fractal dimensions. PMID:21728509

  10. Analytic liquid-state theory of the interactions between colloids mediated by reversibly adsorbed polymers.

    PubMed

    Chervanyov, A I

    2014-12-28

    We develop an analytic liquid-state theory of the effective interactions induced by reversibly adsorbing polymers, acting between colloids immersed in a polymer melt. This theory is based on the polymer reference interaction site model that has no restrictions with respect to the density of the polymer system and colloid-to-polymer size ratio. By making use of the developed theory, we calculate the potential of the polymer mediated interactions as a function of the colloid radius, strength and range of the adsorption potential, and the polymer density. In addition, we investigate the behavior of the second virial coefficient as a function of the polymer density in both the colloid and nano-particle limits. We found out that the presence of the adsorption interactions significantly changes the polymer mediated forces relative to the case of the pure entropic depletion interactions, showing most pronounced difference in the case of large polymer densities and small colloid-to-polymer size ratios. The significance of the above differences is determined by the relation between the range of the adsorption potential and polymer correlation length. PMID:25554175

  11. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  12. Damage initiation, progression and failure of polymer matrix composites due to manufacturing induced defects

    NASA Astrophysics Data System (ADS)

    Chowdhury, Khairul Alam

    In polymer matrix composites (PMCs) manufacturing processes can induce defects, e.g., voids, fiber misalignment, irregular fiber distribution in the cross-section and broken fibers. The effects of such defects can be beneficial or deleterious depending on whether they cause failure suppression or enhancement by localized deformation processes e.g., crazing, shear yielding and fiber-matrix debonding. In this study, a computational approach is formulated and implemented to develop solutions for general boundary-value problems for PMC microstructures that accounts for micromechanics-based constitutive relations including fine scale mechanisms of material failure. The defects considered are voids, and the microstructure is explicitly represented by a distribution of fibers and voids embedded in a polymer matrix. Fiber is modeled as a linearly elastic material while the polymer matrix is modeled as an elastic-viscoplastic material. Two distinct models for the matrix behavior are implemented: (i) Drucker-Prager type Bodner model that accounts for rate and pressure-sensitivity, and (ii) improved macromolecular constitutive model that also accounts for temperature dependence, small-strain softening and large-strain hardening. Damage is simulated by the Gearing-Anand craze model as a reference model and by a new micromechanical craze model, developed to account for craze initiation, growth and breakdown. Critical dilatational energy density criterion is utilized to predict fiber-matrix debonding through cavitation induced matrix cracking. An extensive parametric study is conducted in which the roles of void shape, size and distribution relative to fiber in determining damage initiation and evolution are investigated under imposed temperature and strain rate conditions. Results show there are significant effects of voids on microstructural damage as well as on the overall deformational and failure response of composites.

  13. Theory of optical transitions in conjugated polymers. I. Ideal systems

    SciTech Connect

    Barford, William; Marcus, Max

    2014-10-28

    We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑{sub n}|Ψ{sub n}|{sup 4}){sup −1}, where Ψ{sub n} is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F{sub 0v}(N) = S(N){sup v}exp ( − S(N))/v! for the vth vibronic manifold. We show that the 0 − 0 and 0 − 1 optical intensities are proportional to F{sub 00}(N) and F{sub 01}(N), respectively, and thus the ratio of the 0 − 1 to 0 − 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the

  14. Polymer brushes in cylindrical pores: Simulation versus scaling theory

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. I.; Milchev, A.; Binder, K.

    2006-07-01

    The structure of flexible polymers endgrafted in cylindrical pores of diameter D is studied as a function of chain length N and grafting density σ, assuming good solvent conditions. A phenomenological scaling theory, describing the variation of the linear dimensions of the chains with σ, is developed and tested by molecular dynamics simulations of a bead-spring model. Different regimes are identified, depending on the ratio of D to the size of a free polymer N3/5. For D >N3/5 a crossover occurs for σ =σ*=N-6/5 from the "mushroom" behavior (Rgx=Rgy=Rgz=N3/5) to the behavior of a flat brush (Rgz=σ1/3N,Rgx=Rgy=σ-1/12N1/2), until at σ**=(D /N)3 a crossover to a compressed state of the brush, [Rgz=D,Rgx=Rgy=(N3D /4σ)1/8theories is given. In particular, it is shown that for large D the brush height is an increasing function of D-1.

  15. LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.

    SciTech Connect

    Holbery, Jim; Houston, Dan

    2006-11-01

    In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybrid glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.

  16. Manufacturing of ionic polymer-metal composites (IPMCs) that can actuate into complex curves

    NASA Astrophysics Data System (ADS)

    Stoimenov, Boyko L.; Rossiter, Jonathan M.; Mukai, Toshiharu

    2007-04-01

    Ionic polymer-metal composites (IPMC) are soft actuators with potential applications in the fields of medicine and biologically inspired robotics. Typically, an IPMC bends with approximately constant curvature when voltage is applied to it. More complex shapes were achieved in the past by pre-shaping the actuator or by segmentation and separate actuation of each segment. There are many applications for which fully independent control of each segment of the IPMC is not required and the use of external wiring is objectionable. In this paper we propose two key elements needed to create an IPMC, which can actuate into a complex curve. The first is a connection between adjacent segments, which enables opposite curvature. This can be achieved by reversing the polarity applied on each side of the IPMC, for example by a through-hole connection. The second key element is a variable curvature segment. The segment is designed to bend with any fraction of its full bending ability under given electrical input by changing the overlap of opposite charge electrodes. We demonstrated the usefulness of these key elements in two devices. One is a bi-stable buckled IPMC beam, also used as a building block in a linear actuator device. The other one is an IPMC, actuating into an S-shaped curve with gradually increasing curvature near the ends. The proposed method of manufacturing holds promise for a wide range of new applications of IPMCs, including applications in which IPMCs are used for sensing.

  17. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.

    PubMed

    Chen, Fei; Hochleitner, Gernot; Woodfield, Tim; Groll, Juergen; Dalton, Paul D; Amsden, Brian G

    2016-01-11

    Melt electrospinning writing (MEW) is an emerging additive manufacturing technique that enables the design and fabrication of micrometer-thin fibrous scaffolds made of biocompatible and biodegradable polymers. By using a computer-aided deposition process, a unique control over pore size and interconnectivity of the resulting scaffolds is achieved, features highly interesting for tissue engineering applications. However, MEW has been mainly used to process low melting point thermoplastics such as poly(ε-caprolactone). Since this polymer exhibits creep and a reduction in modulus upon hydration, we manufactured scaffolds of poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) (poly(LLA-ε-CL-AC)), a photo-cross-linkable and biodegradable polymer, for the first time. We show that the stiffness of the scaffolds increases significantly (up to ∼10-fold) after cross-linking by UV irradiation at room temperature, compared with un-cross-linked microfiber scaffolds. The preservation of stiffness and high average fiber modulus (370 ± 166 MPa) within the cross-linked hydrated scaffolds upon repetitive loading (10% strain at 1 Hz up to 200,000 cycles) suggests that the prepared scaffolds may be of potential interest for soft connective tissue engineering applications. Moreover, the approach can be readily adapted through manipulation of polymer properties and scaffold geometry to prepare structures with mechanical properties suitable for other tissue engineering applications. PMID:26620885

  18. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    NASA Astrophysics Data System (ADS)

    Winslow, R.; Wu, C. H.; Wang, Z.; Kim, B.; Keif, M.; Evans, J.; Wright, P.

    2013-12-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H2O, while an electrolyte produced in ambient conditions contained 12400 ppm of H2O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm2, while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm2. Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage.

  19. Relaxation times in deformed polymer glasses: A comparison between molecular simulations and two theories

    NASA Astrophysics Data System (ADS)

    Rottler, Jörg

    2016-08-01

    Relaxation times in polymer glasses are computed with molecular dynamics simulations of a coarse-grained polymer model during creep and constant strain rate deformation. The dynamics is governed by a competition between physical aging that increases relaxation times and applied load or strain rate which accelerates dynamics. We compare the simulation results quantitatively to two recently developed theories of polymer deformation, which treat aging and rejuvenation in an additive manner. Through stress release and strain rate reversal simulations, we then show that the quantity governing mechanical rejuvenation is the rate of irreversible work performed on the polymer.

  20. Polymer Nanocomposites: Insights from Theory and Molecular Simulations

    NASA Astrophysics Data System (ADS)

    Pani, Rakhee

    Advantages of polymer nanocomposites have attracted great industrial attention due to their multifunctionality and innovative technological properties. Addition of small amount of nanoparticle (nanospheres, nanotubes, nanorods, nanoplatelets, or sheets) to polymer matrix cause dramatic improvement in structural and functional properties, which is difficult to attain from those of individual components. The interaction between polymer and nanoparticle create bulk materials dominated by solid state physics at the nanoscale. Furthermore, morphology of nanocomposites depends on structural arrangements of nanoparticles. Thus, for achievement of optimized functionality like electrical, optical, mechanical and thermal properties control over the dispersion of the nanoparticle is essential. However, properties of polymer nanocomposites depend on morphology control and nature of interfacial interactions. In order to control the morphology it is necessary to understand how the processing conditions, shape and size of nanoparticle influence the structure of composite. Molecular simulations can help us to predict the parameters that control the structural changes and we could design polymer nanocomposite entailing their end-use. In this work, we addressed the following research questions: (1) the dependence of nanoparticle ligand corona structure on solvent quality and (2) the role of interfacial energy and interactions on the dispersion of molecules and nanoparticles. Specifically, this research assessed the effect of solvent interactions on the structure of nanoparticles on the example of redox core encapsulating dendrimer and ligand functionalized gold nanoparticles, role of chemical interaction on solubility of glucose in ionic liquids, diffusion of fullerene nanoparticles in polymer matrix and influence of solubility parameters on the compatibility of gold nanoparticles with diblock copolymers. Computational methods allow quantifying the structure and flexibility of the

  1. Stretching of a polymer chain anchored to a surface: the massive field theory approach

    NASA Astrophysics Data System (ADS)

    Usatenko, Zoryana

    2014-09-01

    Taking into account the well-known correspondence between the field theoretical φ4 O(n)-vector model in the limit n → 0 and the behaviour of long-flexible polymer chains, the investigation of stretching of an ideal and a real polymer chain with excluded volume interactions in a good solvent anchored to repulsive and inert surfaces is performed. The calculations of the average stretching force which arises when the free end of a polymer chain moves away from a repulsive or inert surface are performed up to one-loop order of the massive field theory approach in fixed space dimensions d = 3. The analysis of the obtained results indicates that the average stretching force for a real polymer chain anchored to a repulsive surface demonstrates different behaviour for the cases \\tilde{z}\\ll1 and \\tilde{z}\\gg1 , where \\tilde{z}=z^\\prime/Rz . Besides, the results obtained in the framework of the massive field theory approach are in good agreement with previous theoretical results for an ideal polymer chain and results of a density functional theory approach for the region of small applied forces when deformation of a polymer chain in the direction of the applied force is not bigger than the linear extension of a polymer chain in this direction. The better agreement between these two methods is observed in the case where the number of monomers increases and the polymer chain becomes longer.

  2. Lattice density functional for colloid-polymer mixtures: comparison of two fundamental measure theories.

    PubMed

    Cuesta, José A; Lafuente, Luis; Schmidt, Matthias

    2005-09-01

    We consider a binary mixture of colloid and polymer particles with positions on a simple cubic lattice. Colloids exclude both colloids and polymers from nearest neighbor sites. Polymers are treated as effective particles that are mutually noninteracting, but exclude colloids from neighboring sites; this is a discrete version of the (continuum) Asakura-Oosawa-Vrij model. Two alternative density functionals are proposed and compared in detail. The first is based on multioccupancy in the zero-dimensional limit of the bare model, analogous to the corresponding continuum theory that reproduces the bulk fluid free energy of free volume theory. The second is based on mapping the polymers onto a multicomponent mixture of polymer clusters that are shown to behave as hard cores; the corresponding property of the extended model in strong confinement permits direct treatment with lattice fundamental measure theory. Both theories predict the same topology for the phase diagram with a continuous fluid-fcc freezing transition at low polymer fugacity and, upon crossing a tricritical point, a first-order freezing transition for high polymer fugacities with rapidly broadening density jump. PMID:16241433

  3. Validity of the scaling functional approach for polymer interfaces as a variational theory

    NASA Astrophysics Data System (ADS)

    Manghi, Manoel; Aubouy, Miguel

    2003-10-01

    We discuss the soundness of the scaling functional (SF) approach proposed by Aubouy Guiselin and Raphaël [Macromolecules 29, 7261 (1996)] to describe polymeric interfaces. In particular, we demonstrate that this approach is a variational theory. We emphasize the role of SF theory as an important link between ground-state theories suitable to describe adsorbed layers, and “classical” theories for polymer brushes.

  4. Nanoporous thin-film membranes from block-polymers : using self-consistent field theory calculations to guide polymer synthesis.

    SciTech Connect

    Cordaro, Joseph Gabriel

    2010-12-01

    The controlled self-assembly of polymer thin-films into ordered domains has attracted significant academic and industrial interest. Most work has focused on controlling domain size and morphology through modification of the polymer block-lengths, n, and the Flory-Huggins interaction parameter, {chi}. Models, such as Self-Consistent Field Theory (SCFT), have been successful in describing the experimentally observed morphology of phase-separated polymers. We have developed a computational method which uses SCFT calculations as a predictive tool in order to guide our polymer synthesis. Armed with this capability, we have the ability to select {chi} and then search for an ideal value of n such that a desired morphology is the most thermodynamically favorable. This approach enables us to synthesize new block-polymers with the exactly segment lengths that will undergo self-assembly to the desired morphology. As proof-of-principle we have used our model to predict the gyroidal domain for various block lengths using a fixed {chi} value. To validate our computational model, we have synthesized a series of block-copolymers in which only the total molecular length changes. All of these materials have a predicted thermodynamically favorable gyroidal morphology based on the results of our SCFT calculations. Thin-films of these polymers are cast and annealed in order to equilibrate the structure. Final characterization of the polymer thin-film morphology has been performed. The accuracy of our calculations compared to experimental results is discussed. Extension of this predictive ability to tri-block polymer systems and the implications to making functionalizable nanoporous membranes will be discussed.

  5. Rheology of cross-linked polymers and polymer foams: Theory and experimental results

    NASA Astrophysics Data System (ADS)

    Herman, John N.

    Typical polymers have a time-dependent response to loading which results in stress relaxation or creep. Models using springs/dashpots or Volterra integrals are capable of predicting the material response, but place little or no emphasis on the reasoning behind the response. This research proposes a microscopic reasoning behind polymer chain movement, while developing a model to predict the creep and stress relaxation of a polymer foam. Based on the theorized slip/stick of polymer chains as they slide past each other, this model successfully predicts the behavior of a PMI polymer foam under tensile loads. This model lends insights into polymer microscopic behavior, which may be used for the development of future polymer materials. When possible, industry standard test methods are used to obtain tensile creep and stress relaxation results from rectangular specimens of Rohacell 31 IG foam. A common set of material parameters is fitted to the data, validating the micromechanic reasoning to polymer chain movement. To gain insight into observed test result variability, an investigation of the elastic modulus and material density relationship is performed using nominal foam densities of 31 kg/m3, 51 kg/m3,, 71 kg/m3. Additional testing and modeling is performed to validate the model under load/partial-unload/ hold, load/unload/recovery, and load/instantaneous-unload test cycles. The model successfully captures the observed material nuances during these more complex loading cycles.

  6. Communication: The simplified generalized entropy theory of glass-formation in polymer melts

    SciTech Connect

    Freed, Karl F.

    2015-08-07

    While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.

  7. Communication: The simplified generalized entropy theory of glass-formation in polymer melts

    NASA Astrophysics Data System (ADS)

    Freed, Karl F.

    2015-08-01

    While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ˜100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.

  8. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  9. Self-consistent field theory of polymer-ionic molecule complexation.

    PubMed

    Nakamura, Issei; Shi, An-Chang

    2010-05-21

    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained. PMID:20499947

  10. Origins of the Failure of Classical Nucleation Theory for Nanocellular Polymer Foams

    NASA Astrophysics Data System (ADS)

    Thompson, Russell; Kim, Yeongyoon

    2011-03-01

    The behavior of nanocellular polymer foams, in which nanometer-sized bubbles of fluid are dispersed in a polymer matrix, is dominated by its internal surfaces. In particular, nucleation of a nanocellular foam can involve fundamentally different physics from microcellular or regular foams due to properties of the surfaces. Nucleation rates for nano-bubbles in polymer have been calculated using both classical nucleation theory and self-consistent field theory. An identical model is used for both calculations showing that classical nucleation theory predictions are off by many orders of magnitude. The cause of the failure of classical nucleation theory can be traced primarily to its representation of a bubble surface as an infinite planar interface. For nanoscopic bubbles, the curvature of the bubble surface is comparable to the size of the polymer molecules. Polymers on the outside of a curved bubble surface can explore more conformations than can polymers next to a flat interface. This results in a lower free energy for the curved interface system with respect to a flat interface system, which gives a significantly smaller barrier energy to nucleation and thus a much higher nucleation rate. Funding: NSERC Strategic Projects Grant, NSERC Discovery Grant.

  11. Tomonaga-Luttinger liquid theory for metallic fullurene polymers

    NASA Astrophysics Data System (ADS)

    Yoshioka, Hideo; Shima, Hiroyuki; Noda, Yusuke; Ono, Shota; Ohno, Kaoru

    2016-04-01

    We investigate the low energy behavior of local density of states in metallic C60 polymers theoretically. The multichannel bosonization method is applied to electronic band structures evaluated from first-principles calculation, by which the effects of electronic correlation and nanoscale corrugation in the atomic configuration are fully taken into account. We obtain a closed-form expression for the power-law anomalies in the local density of states, which successfully describes the experimental observation on the C60 polymers in a quantitative manner. An important implication from the closed-form solution is the existence of an experimentally unobserved crossover at nearly a hundred milli-electron volts, beyond which the power-law exponent of the C60 polymers should change significantly.

  12. Analytical theory of polymer-network-mediated interaction between colloidal particles

    PubMed Central

    Di Michele, Lorenzo; Zaccone, Alessio; Eiser, Erika

    2012-01-01

    Nanostructured materials based on colloidal particles embedded in a polymer network are used in a variety of applications ranging from nanocomposite rubbers to organic-inorganic hybrid solar cells. Further, polymer-network-mediated colloidal interactions are highly relevant to biological studies whereby polymer hydrogels are commonly employed to probe the mechanical response of living cells, which can determine their biological function in physiological environments. The performance of nanomaterials crucially relies upon the spatial organization of the colloidal particles within the polymer network that depends, in turn, on the effective interactions between the particles in the medium. Existing models based on nonlocal equilibrium thermodynamics fail to clarify the nature of these interactions, precluding the way toward the rational design of polymer-composite materials. In this article, we present a predictive analytical theory of these interactions based on a coarse-grained model for polymer networks. We apply the theory to the case of colloids partially embedded in cross-linked polymer substrates and clarify the origin of attractive interactions recently observed experimentally. Monte Carlo simulation results that quantitatively confirm the theoretical predictions are also presented. PMID:22679289

  13. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    SciTech Connect

    Suo, Tongchuan; Whitmore, Mark D.

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  14. A time dependent theory of crazing behavior in polymers

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Hsiao, C. C.

    1982-01-01

    The development of crazing is not only a function of stress, but also a function of time. Under a simple state of tension, a craze opening displacement is closely associated with the viscoelastic behavior of the original bulk polymer medium in which individual crazes initiate and develop. Within each craze region, molecular orientation takes place when conditions permit, and a new phase of rearranged molecules governs its local behavior. Based upon a time-dependent viscoelastic two-dimensional model, using a computer program the craze opening displacement field has been calculated, time-dependent craze length was also computed by taking into consideration the molecular orientation mechanism and large deformations in the craze region. Examples are given for simple viscoelastic media with simplified stress distributions. It is interesting to find out that the occurrence of crazing may be interpreted in terms of the stability or instability of the constitutive behavior of the bulk polymer.

  15. Time dependent mechanical modeling for polymers based on network theory

    NASA Astrophysics Data System (ADS)

    Billon, Noëlle

    2016-05-01

    Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physicl meaning.

  16. Recent advances with generalized entropy theory of glass-formation in polymers

    NASA Astrophysics Data System (ADS)

    Freed, Karl

    The generalized entropy theory (GET) of glass-formation in polymers is a combination of the lattice cluster theory (LCT) for the configurational entropy density with the Adam-Gibbs (AG) theory for the structural relaxation time. A greatly simplified form of the GET (whose expression for the free energy is roughly double that of Flory-Huggins theory) accurately reproduces the four characteristic temperatures of glass-formation (the onset, crossover, glass transition, and Kauzmann temperatures) of the full GET to within 4K for a series of models of polymers composed of semi-flexible chains having the structure of poly(n-alpha olefins). The theory is now simple enough to be used in courses in polymer physics. Although the successes of the GET provide a strong validation of the final form of the AG theory provided the configurational entropy is used, the physical basis of the AG theory has remained an enigma. Hence, we have developed a new, more general, statistical mechanical derivation of AG theory that explains the previously perplexing observations that the string-like elementary excitations have the mass and temperature dependence of systems undergoing equilibrium self-assembly. This work is supported by the (U.S.) Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE- SC0008631.

  17. Statistical Mechanical Theory of Penetrant Diffusion in Polymer Melts and Glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth

    We generalize our force-level, self-consistent nonlinear Langevin equation theory of activated diffusion of a dilute spherical penetrant in hard sphere fluids to predict the long-time diffusivity of molecular penetrants in supercooled polymer liquids and non-aging glasses. Chemical complexity is treated using an a priori mapping to a temperature-dependent hard sphere mixture model where polymers are disconnected into effective spheres based on the Kuhn length as the relevant coarse graining scale. A key parameter for mobility is the penetrant to polymer segment diameter ratio, R. Our calculations agree well with experimental measurements for a wide range of temperatures, penetrant sizes (from gas molecules with R ~0.3 to aromatic molecules with R ~1) and diverse amorphous polymers, over 10 decades variation of penetrant diffusivity. Structural parameter transferability is good. We have also formulated a theory at finite penetrant loading for the coupled penetrant-polymer dynamics in chemically (nearly) matched mixtures (e.g., toluene-polystyrene) which captures well the increase of penetrant diffusivity and decrease of polymer matrix vitrification temperature with increasing loading.

  18. Rate constitutive theories for ordered thermoviscoelastic fluids: polymers

    NASA Astrophysics Data System (ADS)

    Surana, K. S.; Nunez, D.; Reddy, J. N.; Romkes, A.

    2014-03-01

    This paper presents development of rate constitutive theories for compressible as well as in incompressible ordered thermoviscoelastic fluids, i.e., polymeric fluids in Eulerian description. The polymeric fluids in this paper are considered as ordered thermoviscoelastic fluids in which the stress rate of a desired order, i.e., the convected time derivative of a desired order ` m' of the chosen deviatoric Cauchy stress tensor, and the heat vector are functions of density, temperature, temperature gradient, convected time derivatives of the chosen strain tensor up to any desired order ` n' and the convected time derivative of up to orders ` m-1' of the chosen deviatoric Cauchy stress tensor. The development of the constitutive theories is presented in contravariant and covariant bases, as well as using Jaumann rates. The polymeric fluids described by these constitutive theories will be referred to as ordered thermoviscoelastic fluids due to the fact that the constitutive theories are dependent on the orders ` m' and ` n' of the convected time derivatives of the deviatoric Cauchy stress and conjugate strain tensors. The highest orders of the convected time derivative of the deviatoric Cauchy stress and strain tensors define the orders of the polymeric fluid. The admissibility requirement necessitates that the constitutive theories for the stress tensor and heat vector satisfy conservation laws, hence, in addition to conservation of mass, balance of momenta, and conservation of energy, the second law of thermodynamics, i.e., Clausius-Duhem inequality must also be satisfied by the constitutive theories or be used in their derivations. If we decompose the total Cauchy stress tensor into equilibrium and deviatoric components, then Clausius-Duhem inequality and Helmholtz free-energy density can be used to determine the equilibrium stress in terms of thermodynamic pressure for compressible fluids and in terms of mechanical pressure for incompressible fluids, but the second

  19. Rate constitutive theories for ordered thermoviscoelastic fluids: polymers

    NASA Astrophysics Data System (ADS)

    Surana, K. S.; Nunez, D.; Reddy, J. N.; Romkes, A.

    2013-03-01

    This paper presents development of rate constitutive theories for compressible as well as in incompressible ordered thermoviscoelastic fluids, i.e., polymeric fluids in Eulerian description. The polymeric fluids in this paper are considered as ordered thermoviscoelastic fluids in which the stress rate of a desired order, i.e., the convected time derivative of a desired order `m' of the chosen deviatoric Cauchy stress tensor, and the heat vector are functions of density, temperature, temperature gradient, convected time derivatives of the chosen strain tensor up to any desired order `n' and the convected time derivative of up to orders `m-1' of the chosen deviatoric Cauchy stress tensor. The development of the constitutive theories is presented in contravariant and covariant bases, as well as using Jaumann rates. The polymeric fluids described by these constitutive theories will be referred to as ordered thermoviscoelastic fluids due to the fact that the constitutive theories are dependent on the orders `m' and `n' of the convected time derivatives of the deviatoric Cauchy stress and conjugate strain tensors. The highest orders of the convected time derivative of the deviatoric Cauchy stress and strain tensors define the orders of the polymeric fluid. The admissibility requirement necessitates that the constitutive theories for the stress tensor and heat vector satisfy conservation laws, hence, in addition to conservation of mass, balance of momenta, and conservation of energy, the second law of thermodynamics, i.e., Clausius-Duhem inequality must also be satisfied by the constitutive theories or be used in their derivations. If we decompose the total Cauchy stress tensor into equilibrium and deviatoric components, then Clausius-Duhem inequality and Helmholtz free-energy density can be used to determine the equilibrium stress in terms of thermodynamic pressure for compressible fluids and in terms of mechanical pressure for incompressible fluids, but the second law

  20. Theory of chromatography of partially cyclic polymers: Tadpole-type and manacle-type macromolecules.

    PubMed

    Vakhrushev, Andrey V; Gorbunov, Alexei A

    2016-02-12

    A theory of chromatography is developed for partially cyclic polymers of tadpole- and manacle-shaped topological structures. We present exact equations for the distribution coefficient K at different adsorption interactions; simpler approximate formulae are also derived, relevant to the conditions of size-exclusion, adsorption, and critical chromatography. Theoretical chromatograms of heterogeneous partially cyclic polymers are simulated, and conditions for good separation by topology are predicted. According to the theory, an effective SEC-radius of tadpoles and manacles is mostly determined by the molar mass M, and by the linear-cyclic composition. In the interactive chromatography, the effect of molecular topology on the retention becomes significant. At the critical interaction point, partial dependences K(Mlin) and K(Mring) are qualitatively different: while being almost independent of Mlin, K increases with Mring. This behavior could be realized in critical chromatography-for separation of partially cyclic polymers by the number and molar mass of cyclic elements. PMID:26803439

  1. Fluids density functional theory studies of supramolecular polymers at a hard surface

    NASA Astrophysics Data System (ADS)

    McGarrity, E. S.; Thijssen, J. M.; Besseling, N. A. M.

    2010-08-01

    We have applied a fluids density functional theory based on that of Yu and Wu [J. Chem. Phys. 116, 7094 (2002)] to treat reversible supramolecular polymers near a hard surface. This approach combines a hard-sphere fluids density functional theory with the first-order thermodynamic perturbation theory of Wertheim. The supramolecular polymers are represented in the theory by hard-spheres with two associating sites. We explore the effects of the bonding scheme, monomer concentration, and association energy upon the equilibrium chain sizes and the depletion lengths. This study is performed on simple systems containing two-site monomers and binary mixtures of two-site monomers combined with end stopper monomers which have only a single association site. Our model has correct behavior in the dilute and overlap regimes and the bulk results can be easily connected to simpler random-flight models. We find that there is a nonmonotonic behavior of the depletion length of the polymers as a function of concentration and that this depletion length can be controlled through the concentration of end stoppers. These results are applicable to the study of colloidal dispersions in supramolecular polymer solutions.

  2. Dynamic bottleneck elimination in mattress manufacturing line using theory of constraints.

    PubMed

    Gundogar, Emin; Sari, Murat; Kokcam, Abdullah H

    2016-01-01

    There is a tough competition in the furniture sector like other sectors. Along with the varying product range, production system should also be renewed on a regular basis and the production costs should be kept under control. In this study, spring mattress manufacturing line of a furniture manufacturing company is analyzed. The company wants to increase its production output with new investments. The objective is to find the bottlenecks in production line in order to balance the semi-finished material flow. These bottlenecks are investigated and several different scenarios are tested to improve the current manufacturing system. The problem with a main theme based on the elimination of the bottleneck is solved using Goldratt and Cox's theory of constraints with a simulation based heuristic method. Near optimal alternatives are determined by system models built in Arena 13.5 simulation software. Results show that approximately 46 % capacity enhancements with 2 buffer stocks have increased average production by 88.8 %. PMID:27547651

  3. Binary Mutual Diffusion Coefficients of Polymer/Solvent Systems Using Compressible Regular Solutions Theory and Free Volume Theory

    NASA Astrophysics Data System (ADS)

    Farajnezhad, Arsalan; Asef Afshar, Orang; Asgarpour Khansary, Milad; Shirazian, Saeed

    2016-07-01

    The free volume theory has found practical application for prediction of diffusional behavior of polymer/solvent systems. In this paper, reviewing free volume theory, binary mutual diffusion coefficients in some polymer/solvent systems have been systematically presented through chemical thermodynamic modeling in terms of both activity coefficients and fugacity coefficients models. Here chemical thermodynamic model of compressible regular solution (CRS) was used for evaluation of diffusion coefficients calculations as the pure component properties would be required only. Four binary polymeric solutions of cyclohexane/polyisobutylene, n-pentane/polyisobutylene, toluene/polyisobutylene and chloroform/polyisobutylene were considered. The agreement between calculated data and the experimentally collected data was desirable and no considerable error propagation in approximating mutual diffusion coefficients has been observed.

  4. Crystal structures and properties of nylon polymers from theory

    SciTech Connect

    Dasgupta, S.; Goddard, W.A. III; Hammond, W.B.

    1996-12-11

    A complete force field (MSXX) for simulation of all nylon polymers is derived from ab initio quantum calculations. Special emphasis is given to the accuracy of the hydrogen bond potential for the amide unit and the torsional potential between the peptide and alkane fragments. The MSXX force field was used to predict the structures, moduli, and detailed geometries of all nine nylons for which there are experimental crystal data plus one other. For nylon-(2n) with 2n = 6, the {alpha} crystal structure (with all-trans CH{sub 2} chains nearly coplanar with the hydrogen bonding plane) is more stable, while for 2n > 6, {gamma} (with the alkane plane twisted by 70{degree}) is more stable. This change results from the increased importance of methylene packing interactions over H bonds for larger 2n. We find the highest Young`s modulus for nylon-7. 51 refs., 6 figs., 7 tabs.

  5. Macroscopic Surface Structures for Polymer-metal Hybrid Joints Manufactured by Laser Based Thermal Joining

    NASA Astrophysics Data System (ADS)

    Schricker, Klaus; Stambke, Martin; Bergmann, Jean Pierre; Bräutigam, Kevin; Henckell, Philipp

    The increasing application of hybrid structures in component design and fabrication allows to constantly enhance the realization of lightweight potentials. Laser-based joining of metals to polymers can obtaina local bonding with high load bearing capability. During the process, the polymer gets molten by the energy input of the laser beam and penetrates into the structure of the metal surface by means of a defined joining pressure. Macroscopic structures on the metal surface, produced by cutting or laser processing, are possible surface treatmentsfor achieving thepolymer-metal joints. The optimal geometry and other key parameters for the macroscopic surface structures are only partially known at present, e.g. a rising structure density causes a higher load capacity. Based on grooves and drilled holes, as referencegeometries, the depth (0.1-0.9 mm), width (0.3-1.1 mm), alignment angle, diameter (1.0mm- 1.5mm), structure density and penetration depth of the molten polymer were correlated to the separation force. The results allow an essential insight into the main effects ofmacroscopic structures on the mechanical joint properties and the material performance of the polymer during the process.

  6. Highly Aligned Carbon Fiber in Polymer Composite Structures via Additive Manufacturing

    DOE PAGESBeta

    Tekinalp, Halil L; Kunc, Vlastimil; Velez-Garcia, Gregorio M; Duty, Chad E; Love, Lonnie J; Naskar, Amit K; Blue, Craig A; Ozcan, Soydan

    2014-01-01

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. This phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  7. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOEpatents

    Skotheim, Terje

    1984-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  8. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOEpatents

    Skotheim, T.

    A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  9. Analytic models of regularly branched polymer brushes using the self-consistent mean field theory

    NASA Astrophysics Data System (ADS)

    LeSher, Daniel

    2015-10-01

    Polymer brushes consist of multiple monomers connected together with one of the polymer chain's ends attached to a surface. Polymer brushes have shown great promise for a wide variety of applications including drug delivery dendrimer systems and as tunable brushes that can change their shape and physical properties in response to changes in their environment. Regularly branched polymer brushes which are structured as a function of their chemical indices are investigated here using the self-consistent mean field theory for electrically neutral polymers. The brushes were described using weighting functions, f(n), were n was the fewest number of monomers from a specified location to a free end. Brushes with weighting functions of the form f(n)=nb, f(n)=ebn, as well as f(n)=dan when d 2 and alpha > 2 were found to match the parabolic free chain end profile expected, while it was determined that polymer brushes described using f(n)=n b must be very small in order to remain in equilibrium. However, brushes described by f(n)=2G(N-n) N and f(n)2n were found to be unstable for real, positive values of the potential of the system.

  10. Research in manufacturing of micro-structured injection molded polymer parts

    NASA Astrophysics Data System (ADS)

    Lucyshyn, Thomas; Struklec, Tobias; Burgsteiner, Martin; Graninger, Georg; Holzer, Clemens

    2015-12-01

    An overview of current research results is given for the topic of injection molding of micro-structured polymer parts regarding filling behavior and demolding process of micro-structures as well as the production of micro-structures on curved surfaces. In order to better understand how micro-structures are formed during the filling stage of injection molding, a study was performed on a test part with micro-channels placed parallely and perpendicularly to flow direction. Short shots with a highly fluent Polypropylene grade were injection molded with the melt front stopping in the structure fields. The melt and mold temperature, the injection rate as well as the use of a variotherm heating system were varied in a systematic Design of Experiments. The shape of the flow front was investigated with the optical measurement system Alicona InfiniteFocus. The data gained was analyzed with Matlab scripts and provided the needed distance to completely fill the structures as a reference value. The next topic covers the demolding step, which is a crucial process step in injection molding of micro-structured parts as the successfully replicated structures often get destroyed in the following demolding step. In order to evaluate the influence of the four aspects polymer, mold surface (coatings), structure (geometry and placement) and process settings on the demolding behavior, an injection mold with integrated measurement system was built, which makes it possible to measure the demolding force respectively a demolding energy under process conditions. These values can be used to quantitatively compare the impact of the above mentioned influencing factors on demolding. Finally, a concept to produce micro-structures on curved surfaces with injection molding is shown: A flat metal premaster structure is used to produce an elastomeric polymer (dimethylsiloxane) master in a casting process. This master is fixed in a conventional injection mold and a thermoplastic polymer is replicated

  11. Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors

    SciTech Connect

    Dale K. Kotter; Steven D. Novack

    2010-02-01

    DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV

  12. Transition state theory approach to polymer escape from a one dimensional potential well

    NASA Astrophysics Data System (ADS)

    Mökkönen, Harri; Ikonen, Timo; Ala-Nissila, Tapio; Jónsson, Hannes

    2015-06-01

    The rate of escape of an ideal bead-spring polymer in a symmetric double-well potential is calculated using transition state theory (TST) and the results compared with direct dynamical simulations. The minimum energy path of the transitions becomes flat and the dynamics diffusive for long polymers making the Kramers-Langer estimate poor. However, TST with dynamical corrections based on short time trajectories started at the transition state gives rate constant estimates that agree within a factor of two with the molecular dynamics simulations over a wide range of bead coupling constants and polymer lengths. The computational effort required by the TST approach does not depend on the escape rate and is much smaller than that required by molecular dynamics simulations.

  13. An overview on the effect of manufacturing on the shock response of polymers

    NASA Astrophysics Data System (ADS)

    Kister, G.; Wood, D. C.; Appleby-Thomas, G. J.; Leighs, J. A.; Goff, M.; Barnes, N. R.; Hazell, P. J.

    2014-05-01

    Scatter and non-linearity of the Hugoniot in the Us-up plane has been seen in a number of polymers including poly(methyl methacrylate) (PMMA), the polymer considered here. In this study the plate impact technique has been used to investigate the shock response of PMMA between particle velocities of 0.13 and 0.77 mm μs-1. From this data no scatter was seen between our data and the experimental data of Barker and Hollenbach, and Carter and Marsh. Also a linear Hugoniot in the Us-up plane was found, with the equation Us = 2.99 + 0.92up. The non-linearity observed by Barker and Hollenbach was not present in this data, probably due to the non-linearity occur at particle velocities of below 0.13 mm μs-1, within their experimental data. Gruneisen gamma has also been briefly considered using a shock reverberation experiment but more work is needed before a value can be ascertained.

  14. Architecture-Induced Size Asymmetry and Effective Interactions of Ring Polymers: Simulation and Theory

    PubMed Central

    2013-01-01

    We investigate, by means of Monte Carlo simulations, the role of ring architecture and topology on the relative sizes of two interacting polymers as a function of the distance between their centers-of-mass. As a general rule, polymers swell as they approach each other, irrespectively of their topologies. For each mutual separation, two identical linear polymers adopt the same average size. However, unknotted rings at close separations adopt different sizes, with the small one being “nested” within the large one over long time intervals, exchanging their roles in the course of the simulation. For two rings of different architectures and identical polymerization degree, the knotted one is always smaller, penetrating the unknotted one. On the basis of these observations, we propose a phenomenological theory for the effective interactions between rings, modeling them as unequal-sized penetrable spheres. This simple approximation provides a good description of the simulation results. In particular, it rationalizes the non-Gaussian shape and the short-distance plateau observed in the effective potential between unknotted ring polymers and pairs of unequal-sized unknotted/knotted ones. Our results demonstrate the crucial role of the architecture on both the effective interactions and the molecular size for strongly interpenetrating polymers. PMID:24347686

  15. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  16. An investigation of the structure-property relationships in ionic polymer polymer composites (IP2Cs) manufactured by polymerization in situ of PEDOT/PSS on Nafion®117

    NASA Astrophysics Data System (ADS)

    Di Pasquale, G.; Graziani, S.; Messina, F. G.; Pollicino, A.; Puglisi, R.; Umana, E.

    2014-03-01

    Ionic polymer polymer composites (IP2Cs) are all-organic electroactive polymers (EAPs) that show sensing and actuation capabilities when a deformation or a voltage is applied, respectively. They are fabricated starting from an ionic polymer coated on both sides with a conducting polymer as electrode element. In this work, poly(3,4-ethylendioxytiophene)-poly-(styrenesulfonate) (PEDOT/PSS) has been polymerized directly on Nafion®117 membrane and devices have been manufactured varying the polymerization time. Water and ethylene glycol (EG) have been used as solvents. The obtained IP2Cs have been characterized using thermal and mechanical analyses and electromechanically tested. The results have shown that in IP2Cs manufactured by polymerization in situ the PEDOT/PSS layer adheres very strongly on the Nafion®117 film, improving the possibility of rehydrating the devices after use. Moreover, taking into account that the different polymerization times influence the uniformity of the surface of the organic electrode and, consequently, both device stiffness and electrode conductivity, the structure-property relationships of the obtained devices have been investigated. The influence of the different solvents inside the devices has also been studied when IP2Cs have been used as actuators or sensors. Reported results show that it is possible to modulate the performances of IP2Cs by varying some manufacture parameters and the solvent.

  17. Proposed sets of critical exponents for randomly branched polymers, using a known string theory model

    NASA Astrophysics Data System (ADS)

    March, N. H.; Moreno, A. J.

    2016-06-01

    The critical exponent ν for randomly branched polymers with dimensionality d equal to 3, is known exactly as 1/2. Here, we invoke an already available string theory model to predict the remaining static critical exponents. Utilizing results of Hsu et al. (Comput Phys Commun. 2005;169:114-116), results are added for d = 8. Experiment plus simulation would now be important to confirm, or if necessary to refine, the proposed values.

  18. Kinetic theory of a confined polymer driven by an external force and pressure-driven flow

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Usta, O. Berk; Kekre, Rahul; Ladd, Anthony J. C.

    2007-11-01

    Kinetic theory is used to investigate the mechanisms causing cross-stream migration of confined polymers and polyelectrolytes under the influence of external forces and flow fields. Numerical simulations and experiments have demonstrated that confined polymers migrate towards the center of the channel in response to both external forces and uniaxial flows. Yet, migration towards the walls has been observed with combinations of external force and flow. In this paper, the kinetic theory for an elastic dumbbell developed by Ma and Graham [Phys. Fluids 17, 083103 (2005)] has been extended to account for the effects of an external force. Further modifications account for counterion screening within a Debye-Hückel approximation. This enables qualitative comparison with experimental results [Zheng and Yeung, Anal. Chem. 75, 3675 (2003)] on DNA migration under combined electric and pressure-driven flow fields. The comparison supports the contention [Long et al., Phys. Rev. Lett. 76, 3858 (1996)] that the hydrodynamic interactions in polyelectrolytes decay algebraically, as 1/r3, rather than exponentially. The theory qualitatively reproduces results of both simulations and experiments for the migration of neutral polymers and polyelectrolytes. Concentration profiles similar to those found in numerical simulations are observed, but the Peclet numbers differ by factors of 2-3.

  19. Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential.

    PubMed

    Wang, Qi; E, Weinan; Liu, Chun; Zhang, Pingwen

    2002-05-01

    The Doi kinetic theory for flows of homogeneous, rodlike liquid crystalline polymers (LCPs) is extended to model flows of nonhomogeneous, rodlike LCPs through a nonlocal (long-range) intermolecular potential. The theory features (i) a nonlocal, anisotropic, effective intermolecular potential in an integral form that is consistent with the chemical potential, (ii) short-range elasticity as well as long-range isotropic and anisotropic elasticity, (iii) a closed-form stress expression accounting for the nonlocal molecular interaction, and (iv) an extra elastic body force exclusively associated with the integral form of the intermolecular potential. With the effective intermolecular potential, the theory is proven to be well posed in that it warrants a positive entropy production and thereby the second law of thermodynamics. Approximate theories are obtained by gradient expansions of the number density function in the free energy density. PMID:12059561

  20. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  1. Fuzzy Set Theory Applied to Measurement Data for Exposure Control in Beryllium Part Manufacturing.

    SciTech Connect

    Parkinson, W. J. ,; Abeln, S. P.; Creek, K. L.; Mortensen, F. N.; Wantuck, P. J.; Ross, Timothy J.; Jamshidi, Mohammad

    2002-01-01

    Fuzzy set theory has been applied to some exposure control problems encountered in the machining and the manufacturing of beryllium parts at Los Alamos National Laboratory. A portion of that work is presented here. The major driving force for using fuzzy techniques in this case rather than classical statistical process control is that beryllium exposure is very task dependent and this manufacturing plant is quite atypical. It is feared that standard techniques produce too many false alarms. Our beryllium plant produces parts on a daily basis, but every day is different. Some days many parts are produced and some days only a few. Some times the parts are large and sometimes the parts are small. Some machining cuts are rough and some are fine. These factors and others make it hard to define a typical day. The problem of concern, for this study, is the worker beryllium exposure. Even though the plant is new and very modern and the exposure levels are expected to be well below the required levels, the Department of Energy (DOE), who is our major customer, has demanded that the levels for this plant be well below required levels. The control charts used to monitor this process are expected to answer two questions: (1) Is the process out of Control? Do we need to instigate special controls such as requiring workers to use respirators? (2) Are new, previously untested, controls making a difference? The standard Schewart type control charts, based on consistent plant operating conditions do not adequately answer this question. The approach described here is based upon a fuzzy modification to the Schewart Xbar-R chart. This approach is expected to yield better results than work based upon the classical probabilistic control chart.

  2. Valorisation of waste ilmenite mud in the manufacture of sulphur polymer cement.

    PubMed

    Contreras, Manuel; Gázquez, Manuel Jesús; García-Díaz, Irene; Alguacil, Francisco J; López, Félix A; Bolívar, Juan Pedro

    2013-10-15

    This paper reports the preparation of sulphur polymer cements (SPCs) incorporating waste ilmenite mud for use in concrete construction works. The ilmenite mud raw material and the mud-containing SPCs (IMC-SPCs) were characterised physico-chemically and radiologically. The optimal IMC-SPC mixture had a sulphur/mud ratio (w/w) of 1.05 (mud dose 20 wt%); this cement showed the greatest compressive strength (64 MPa) and the lowest water absorption coefficient (0.4 g cm(-2) at 28 days). Since ilmenite mud is enriched in natural radionuclides, such as radium isotopes (2.0·10(3) Bq kg(-1)(228)Ra and 5.0·10(2) Bq kg(-1)(226)Ra), the IMC-SPCs were subjected to leaching experiments, which showed their environmental impact to be negligible. The activity concentration indices for the different radionuclides in the IMC-SPCs containing 10% and 20% ilmenite mud met the demands of international standards for materials used in the construction of non-residential buildings. PMID:23845955

  3. Molecular theory of strain hardening of a polymer gel: Application to gelatin

    NASA Astrophysics Data System (ADS)

    Groot, Robert D.; Bot, Arjen; Agterof, Wim G. M.

    1996-06-01

    The elasticity of gelatin gels at large deformation has been measured for various experimental conditions. The general pattern is that stress increases with strain in a nonlinear way up to the point where the gel fails. To interpret this nonlinear stress increase, we studied a number of molecular models by Monte Carlo simulation and by mean-field methods. The effect of finite polymer length is studied via the FENE model (finite extensible nonlinear polymer connections) and via the exact statistics of Kramers' model (chains of freely rotating stiff rods) for a small number of elements per chain. To investigate the effect of fractal connections, the end-point distribution that comes forward from scaling theory has been generalized to arbitrary fractal dimension. Finally we studied a heterogeneous network model: connections formed by rods and coils. We also discuss the consequence of microphase separation. Combining experiment and theory we conclude the following: (i) The elastically active network connections in gelatin are most certainly not Gaussian. (ii) Strain hardening in gelatin can be attributed to either: (a) finite polymer length (the chain length between connection points should be some 2.5 times the persistence length), or (b) a fractal structure of the polymer strands (the fractal dimension should be roughly df=1.3-1.5), or (c) the presence of both stiff rods and flexible coils (the length of the rods should be 1.4-4.4 times the radius of gyration of the coils). (iii) Models b and c describe the experimental data significantly better than model a. From a single parameter (the fractal dimension) the fractal model correctly describes (1) the nonlinearity of the stress-strain curve, (2) the scaling of Young's modulus with polymer concentration, (3) the scaling of neutron scattering intensity with wave number, and (4) it predicts the scaling exponent of the linear dynamic modulus with frequency in the glassy transition zone (no experimental data available

  4. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  5. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair.

    PubMed

    Pateman, Christopher J; Harding, Adam J; Glen, Adam; Taylor, Caroline S; Christmas, Claire R; Robinson, Peter P; Rimmer, Steve; Boissonade, Fiona M; Claeyssens, Frederik; Haycock, John W

    2015-05-01

    The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (μSL) setup that incorporated a 405 nm laser source to produce 3D constructs with ∼ 50 μm resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter × 5 mm length with a wall thickness of 250 μm were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies. PMID:25725557

  6. An alternative derivation of ring-polymer molecular dynamics transition-state theory

    NASA Astrophysics Data System (ADS)

    Hele, Timothy J. H.; Althorpe, Stuart C.

    2016-05-01

    In a previous article [T. J. H. Hele and S. C. Althorpe, J. Chem. Phys. 138, 084108 (2013)], we showed that the t → 0+ limit of ring-polymer molecular dynamics (RPMD) rate-theory is also the t → 0+ limit of a new type of quantum flux-side time-correlation function, in which the dividing surfaces are invariant to imaginary-time translation; in other words, that RPMD transition-state theory (RMPD-TST) is a t → 0+ quantum transition-state theory (QTST). Recently, Jang and Voth [J. Chem. Phys. 144, 084110 (2016)] rederived this quantum t → 0+ limit and claimed that it gives instead the centroid-density approximation. Here we show that the t → 0+ limit derived by Jang and Voth is in fact RPMD-TST.

  7. Fluid-fluid coexistence in an athermal colloid-polymer mixture: thermodynamic perturbation theory and continuum molecular-dynamics simulation

    NASA Astrophysics Data System (ADS)

    Jover, Julio; Galindo, Amparo; Jackson, George; Müller, Erich A.; Haslam, Andrew J.

    2015-09-01

    Using both theory and continuum simulation, we examine a system comprising a mixture of polymer chains formed from 100 hard-sphere (HS) segments and HS colloids with a diameter which is 20 times that of the polymer segments. According to Wertheim's first-order thermodynamic perturbation theory (TPT1) this athermal system is expected to phase separate into a colloid-rich and a polymer-rich phase. Using a previously developed continuous pseudo-HS potential [J. F. Jover, A. J. Haslam, A. Galindo, G. Jackson, and E. A. Muller, J. Chem. Phys. 137, 144505 (2012)], we simulate the system at a phase point indicated by the theory to be well within the two-phase binodal region. Molecular-dynamics simulations are performed from starting configurations corresponding to completely phase-separated and completely pre-mixed colloids and polymers. Clear evidence is seen of the stabilisation of two coexisting fluid phases in both cases. An analysis of the interfacial tension of the phase-separated regions is made; ultra-low tensions are observed in line with previous values determined with square-gradient theory and experiment for colloid-polymer systems. Further simulations are carried out to examine the nature of these coexisting phases, taking as input the densities and compositions calculated using TPT1 (and corresponding to the peaks in the probability distribution of the density profiles obtained in the simulations). The polymer chains are seen to be fully penetrable by other polymers. By contrast, from the point of view of the colloids, the polymers behave (on average) as almost-impenetrable spheres. It is demonstrated that, while the average interaction between the polymer molecules in the polymer-rich phase is (as expected) soft-repulsive in nature, the corresponding interaction in the colloid-rich phase is of an entirely different form, characterised by a region of effective intermolecular attraction.

  8. Mortality of a cohort of workers in the styrene-butadiene polymer manufacturing industry (1943-1982)

    SciTech Connect

    Matanoski, G.M.; Santos-Burgoa, C.; Schwartz, L. )

    1990-06-01

    A cohort of 12,110 male workers employed 1 or more years in eight styrene-butadiene polymer (SBR) manufacturing plants in the United States and Canada has been followed for mortality over a 40-year period, 1943 to 1982. The all-cause mortality of these workers was low (standardized mortality ratio (SMR) = 0.81) compared to that of the general population. However, some specific sites of cancers had SMRs that exceeded 1.00. These sites were then examined by major work divisions. The sites of interest included leukemia and non-Hodgkin's lymphoma in whites. The SMRs for cancers of the digestive tract were higher than expected, especially esophageal cancer in whites and stomach cancer in blacks. The SMR for arteriosclerotic heart disease in black workers was significantly higher than would be expected based on general population rates. Employees were assigned to a work area based on job longest held. The SMRs for specific diseases differed by work area. Production workers showed increased SMRs for hematologic neoplasms and maintenance workers, for digestive cancers. A significant excess SMR for arteriosclerotic heart disease occurred only in black maintenance workers, although excess mortality from this disease occurred in blacks regardless of where they worked the longest. A significant excess SMR for rheumatic heart disease was associated with work in the combined, all-other work areas. For many causes of death, there were significant deficits in the SMRs.

  9. Mortality of a cohort of workers in the styrene-butadiene polymer manufacturing industry (1943-1982).

    PubMed Central

    Matanoski, G M; Santos-Burgoa, C; Schwartz, L

    1990-01-01

    A cohort of 12,110 male workers employed 1 or more years in eight styrene-butadiene polymer (SBR) manufacturing plants in the United States and Canada has been followed for mortality over a 40-year period, 1943 to 1982. The all-cause mortality of these workers was low [standardized mortality ratio (SMR) = 0.81] compared to that of the general population. However, some specific sites of cancers had SMRs that exceeded 1.00. These sites were then examined by major work divisions. The sites of interest included leukemia and non-Hodgkin's lymphoma in whites. The SMRs for cancers of the digestive tract were higher than expected, especially esophageal cancer in whites and stomach cancer in blacks. The SMR for arteriosclerotic heart disease in black workers was significantly higher than would be expected based on general population rates. Employees were assigned to a work area based on job longest held. The SMRs for specific diseases differed by work area. Production workers showed increased SMRs for hematologic neoplasms and maintenance workers, for digestive cancers. A significant excess SMR for arteriosclerotic heart disease occurred only in black maintenance workers, although excess mortality from this disease occurred in blacks regardless of where they worked the longest. A significant excess SMR for rheumatic heart disease was associated with work in the combined, all-other work areas. For many causes of death, there were significant deficits in the SMRs. PMID:2401250

  10. Examining the aggregation behavior of polymer grafted nanoparticles using molecular simulation and theory

    NASA Astrophysics Data System (ADS)

    Haley, Jessica D.; Iacovella, Christopher R.; Cummings, Peter T.; McCabe, Clare

    2015-08-01

    Grafting polymers to nanoparticles is one approach used to control and enhance the structure and properties of nanomaterials. However, predicting the aggregation behavior of tethered nanoparticles (TNPs) is a somewhat trial and error process as a result of the large number of possible polymer tethers, nanoparticles, and solvent species that can be studied. With the main goal of understanding how to control the dispersion and aggregation of TNP systems, molecular simulations and the hetero-statistical associating fluid theory for potentials of variable range have been used to calculate the fluid phase equilibrium of TNPs in both vacuum and in simple solvents under a wide range of conditions. The role of graft length, graft density, and solvent interactions is examined and trends established. Additionally, the fluid distribution ratio (k value) is used to study the solubility of TNPs in industrially relevant solvents including carbon dioxide, nitrogen, propane, and ethylene.

  11. Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Srivastava, Deepak

    2003-01-01

    A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using Fokker-Planck equation and direct molecular dynamics (MD) simulations. The mean transport or translocation time tau is found to depend on the chemical potential energy, entropy and diffusion coefficient. A power law dependence tau approx. N(sup 2)is found where N is number of monomers in a molecule. For 10(exp 5)-unit long polyethylene molecules, tau is estimated to be approx. 1micro-s. The diffusion coefficient of long polymer molecules inside CNTs, like that of short ones, are found to be few orders of magnitude larger than in ordinary silicate based zeolite systems.

  12. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z-machine

    NASA Astrophysics Data System (ADS)

    Cochrane, K. R.; Ao, T.; Hamel, S.; Lemke, R. W.; Schoff, M. E.; Blue, B. E.; Herrmann, M. C.; Mattsson, T. R.

    2015-06-01

    Glow discharge polymer (GDP) is used extensively in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design and analysis of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based molecular dynamics simulations, to gain knowledge of the behavior of GDP - for example regarding the role of chemical dissociation during shock compression, we find that the dissociation regime along the Hugoniot extends from 50 GPa to 250 GPa. The shock pressures calculated from DFT are compared to experimental data taken on magnetically launched flyer plate impact experiments at Sandia's Z-machine. Large GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000

  13. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z-machine

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, K. R.; Ao, T.; Lemke, R. W.; Flicker, D. G.; Schoff, M. E.; Blue, B. E.; Hamel, S.; Herrmann, M. C.

    2015-11-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - including the effect of changes in chemical composition. The shock pressures calculated from DFT are compared experimental data taken on magnetically launched flyer plate impact experiments on at Sandia's Z-machine. Large GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  14. A multi-species exchange model for fully fluctuating polymer field theory simulations

    SciTech Connect

    Düchs, Dominik; Delaney, Kris T.; Fredrickson, Glenn H.

    2014-11-07

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.

  15. Incorporating the effect of orientation hardening in an effective temperature nonequilibrium theory for glassy polymers

    NASA Astrophysics Data System (ADS)

    Guo, Jingkai; Xiao, Rui; Nguyen, Thao

    Amorphous polymers exhibit a wide range of time and temperature dependent behavior. Recently, Xiao and Nguyen developed an effective temperature theory that can capture a wide variety of nonequilibrium behaviors at moderate strains. At large strains, the stress response of glassy polymers is dominated by strain hardening as a result of chain alignment. The goal of this study was to extend the effective temperature theory to large deformation and make it capable of modeling strain hardening from deformation-induced molecular alignment. We compared two approaches. In the spirit of internal state variable thermodynamics theory, we introduced a series of stretch-like internal state variables to characterize the molecular resistance to plastic flow associated with each inelastic mechanism. The dependence of free energy on the internal state variables naturally gives rise to a deformation dependent back stress. The flow rule and the evolution of effective temperatures were derived in a thermodynamically consistent manner. In the second approach, we introduced a steady-state limit in the evolution of the effective temperature characterizing the nonequilibrium structure of the material. Both approaches can well capture the experimentally measured phenomena of orientation hardening, including the development of deformation-induced anisotropy in the yield strength and hardening modulus, the Bauschinger effect, and differences in the hardening moduli in tension and compression of pre-oriented specimens.

  16. Application of graph theory to the statistical thermodynamics of lattice polymers. I. Elements of theory and test for dimers

    NASA Astrophysics Data System (ADS)

    Brazhnik, Olga D.; Freed, Karl F.

    1996-07-01

    The lattice cluster theory (LCT) is extended to enable inclusion of longer range correlation contributions to the partition function of lattice model polymers in the athermal limit. A diagrammatic technique represents the expansion of the partition function in powers of the inverse lattice coordination number. Graph theory is applied to sort, classify, and evaluate the numerous diagrams appearing in higher orders. New general theorems are proven that provide a significant reduction in the computational labor required to evaluate the contributions from higher order correlations. The new algorithm efficiently generates the correction to the Flory mean field approximation from as many as eight sterically interacting bonds. While the new results contain the essential ingredients for treating a system of flexible chains with arbitrary lengths and concentrations, the complexity of our new algorithm motivates us to test the theory here for the simplest case of a system of lattice dimers by comparison to the dimer packing entropies from the work of Gaunt. This comparison demonstrates that the eight bond LCT is exact through order φ5 for dimers in one through three dimensions, where φ is the volume fraction of dimers. A subsequent work will use the contracted diagrams, derived and tested here, to treat the packing entropy for a system of flexible N-mers at a volume fraction of φ on hypercubic lattices.

  17. Rotational isomeric state theory applied to the stiffness prediction of an anion polymer electrolyte membrane

    SciTech Connect

    Gao, Fei; Weiland, L.M.; Kitchin, J.R.

    2008-05-01

    While the acidic polymer electrolyte membrane (PEM) Nafion® has garnered considerable attention, the active response of basic PEMs offers another realm of potential applications. For instance, the basic PEM Selemion® is currently being considered in the development of a CO2 separation prototype device to be employed in coal power plant flue gas. The mechanical integrity of this material and subsequent effects in active response in this harsh environment will become important in prototype development. A multiscale modeling approach based on rotational isomeric state theory in combination with a Monte Carlo methodology may be employed to study mechanical integrity. The approach has the potential to be adapted to address property change of any PEM in the presence of foreign species (reinforcing or poisoning), as well as temperature and hydration variations. The conformational characteristics of the Selemion® polymer chain and the cluster morphology in the polymer matrix are considered in the prediction of the stiffness of Selemion® in specific states.

  18. Strong-coupling electrostatic theory of polymer counterions close to planar charges

    NASA Astrophysics Data System (ADS)

    Dutta, Sandipan; Jho, Y. S.

    2016-01-01

    Strong-coupling phenomena, such as like-charge macroion attraction, opposite-charged macroion repulsion, charge renormalization, and charge inversion, are known to be mediated by multivalent counterions. Most theories treat the counterions as point charges and describe the system by a single coupling parameter that measures the strength of the Coulomb interactions. In many biological systems, the counterions are highly charged and have finite sizes and can be well-described by polyelectrolytes. The shapes and orientations of these polymer counterions play a major role in the thermodynamics of these systems. In this work we apply a field-theoretic description in the strong-coupling regime to the polymer counterions in the presence of a fixed charge distribution. We work out the special cases of rodlike polymer counterions confined by one, and two charged walls, respectively. The effects of the geometry of the rodlike counterions and the excluded volume of the walls on the density, pressure, and free energy of the rodlike counterions are discussed.

  19. A polymer microgel at a liquid-liquid interface: theory vs. computer simulations.

    PubMed

    Rumyantsev, Artem M; Gumerov, Rustam A; Potemkin, Igor I

    2016-08-10

    We propose a mean-field theory and dissipative particle dynamics (DPD) simulations of swelling and collapse of a polymer microgel adsorbed at the interface of two immiscible liquids (A and B). The microgel reveals surface activity and lowers A-B interfacial tension. Attempting to occupy as large an interfacial area as possible, the microgel undergoes anisotropic deformation and adopts a flattened shape. Spreading over the interface is restricted by polymer subchain elasticity. The equilibrium shape of the microgel at the interface depends on its size. Small microgels are shown to be more oblate than the larger microgels. Increasing microgel cross-link density results in stronger reduction of the surface tension and weaker flattening. As the degree of immiscibility of A and B liquids increases, the microgel volume changes in a non-monotonous fashion: the microgel contraction at moderate immiscibility of A and B liquids is followed by its swelling at high incompatibility of the liquids. The segregation regime of the liquids within and outside the microgel is different. Being segregated outside the microgel, the liquids can be fully (homogeneously) mixed or weakly segregated within it. The density profiles of the liquids and the polymer were plotted under different conditions. The theoretical and the DPD simulation results are in good agreement. We hope that our findings will be useful for the design of stimuli responsive emulsions, which are stabilized by the microgel particles, as well as for their practical applications, for instance, in biocatalysis. PMID:27460037

  20. Contact line of adsorbed colloid-polymer droplets in theory and experiment.

    PubMed

    Koning, Jesper; Hennequin, Yves; Bonn, Daniel; Indekeu, Joseph O

    2016-05-01

    The contact line between the colloid-rich bulk liquid and an adsorbed thin film in colloid-polymer mixtures (CPM) is studied by means of an interface displacement model. The interface displacement profiles are compared to laser scanning confocal microscopy (LSCM) images. The mixtures consist of poly(methylmetacrylate) (PMMA) colloids and polystyrene (PS) polymers with polymer-to-colloid size ratio q = 1.18. Based on the experimental parameters, the theoretical model predicts a contact angle for colloid-rich liquid droplets adsorbed on glass of θ∞ = 59°, assuming a contact line with infinite radius, R = ∞. When a contact-line curvature correction and a correction for the protein-limit character of the CPM are taken into account, a modest shift is obtained. The refined theory predicts θ≈ 56°. The contact angle determined visually from the LSCM images is θ≈ 30°. The model predicts a three-phase contact-line tension of τ = -1.2 × 10(-12) N (uncorrected) and τ = -2.3 × 10(-13) N (with protein-limit correction), which is physically sound both in sign and magnitude. The line tension influences the contact angle to a small extent due to the contact line curvature. The predicted width of the transition zone between the thin film and the droplet is about 2 μm. The effect of gravity is noticeable as a deformation near the middle of the droplet. PMID:27029605

  1. Optimized cluster theory of polymer blends: General formulation and application to isotopic polyethylene mixtures

    NASA Astrophysics Data System (ADS)

    Melenkevitz, J.; Curro, J. G.

    1997-01-01

    A theory for the thermodynamic properties of binary polymer blends was developed and applied to predict the compositional dependence of the effective chi parameter χS in model isotopic polyethylene mixtures. The theory is a generalization of the optimized cluster theory for single component molecular fluids. Starting from exact cluster expansions for the Helmholtz free energy and pair-correlation functions in a molecular mixture developed by Chandler et al., a series of transformations was performed to yield approximate expressions for these quantities. The resulting theory was demonstrated to be equivalent to a set of diagrammatically proper integral equations. For model isotopic polyethylene blends, we calculated the various partial structure factors in the mixture and used them to predict the compositional dependence of χS. The calculated values of χS were found to be in reasonable agreement with recent neutron-scattering measurements but the theory underestimates the compositional dependence relative to the experiment. Deviations from random mixing that extend well beyond monomeric length scales were predicted in this blend system.

  2. A theory for species migration in a finitely strained solid with application to polymer network swelling

    NASA Astrophysics Data System (ADS)

    Duda, Fernando P.; Souza, Angela C.; Fried, Eliot

    2010-04-01

    We present a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic or mechanical process due to the deformation of the solid and a microscopic or chemical process due to the migration of a chemical species through the solid. The principle of virtual power is invoked to deduce the basic balances of the theory, namely the mechanical force balance and the transport balance for the chemical species. In combination with thermodynamically consistent constitutive relations, these balances generate the basic equations of the theory. Keeping in mind applications involving the swelling of polymer networks by liquids, a specialization of the theory is presented and applied to study the influences of mechanical and chemical interactions on equilibrium states and diffusive dynamical processes. It is shown that the possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular volume of the liquid molecule. As for diffusion, it is shown that the theory is able to describe the pressure-induced diffusion in swollen membranes.

  3. Two- and three-dimensional nonlocal density functional theory for inhomogeneous fluids. 2. Solvated polymers as a benchmark problem

    SciTech Connect

    Frink, L.J.D.; Salinger, A.G.

    2000-04-10

    In a previous companion paper, the authors presented the details of the algorithms for performing nonlocal density functional theory calculations in complex two- and three-dimensional geometries. The authors discussed scaling and parallelization, but did not discuss other issues of performance. In this paper, they detail the precision of the methods with respect to changes in the mesh spacing. This is a complex issue because given a Cartesian mesh, changes in mesh spacing will result in changes in surface geometry. The authors discuss these issues using a series of rigid solvated polymer models including square rod polymers, cylindrical polymers, and bead-chain polymers. In comparing the results of the various models, it becomes clear that surface curvature or roughness plays an important role in determining the strength of structural solvation forces between interacting solvated polymers. The results in this paper serve as benchmarks for future applications of these algorithms to complex fluid systems.

  4. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-01

    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems.

  5. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory.

    PubMed

    Xu, Wen-Sheng; Freed, Karl F

    2015-07-14

    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems. PMID:26178121

  6. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory

    SciTech Connect

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-14

    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems.

  7. Theory of polymer translocation through a flickering nanopore under an alternating driving force

    NASA Astrophysics Data System (ADS)

    Sarabadani, Jalal; Ikonen, Timo; Ala-Nissila, Tapio

    2015-08-01

    We develop a theory for polymer translocation driven by a time-dependent force through an oscillating nanopore. To this end, we extend the iso-flux tension propagation theory [Sarabadani et al., J. Chem. Phys. 141, 214907 (2014)] for such a setup. We assume that the external driving force in the pore has a component oscillating in time, and the flickering pore is similarly described by an oscillating term in the pore friction. In addition to numerically solving the model, we derive analytical approximations that are in good agreement with the numerical simulations. Our results show that by controlling either the force or pore oscillations, the translocation process can be either sped up or slowed down depending on the frequency of the oscillations and the characteristic time scale of the process. We also show that while in the low and high frequency limits, the translocation time τ follows the established scaling relation with respect to chain length N0, in the intermediate frequency regime small periodic, fluctuations can have drastic effects on the dynamical scaling. The results can be easily generalized for non-periodic oscillations and elucidate the role of time dependent forces and pore oscillations in driven polymer translocation.

  8. Excluded volume effects in compressed polymer brushes: A density functional theory

    SciTech Connect

    Chen, Cangyi; Tang, Ping E-mail: fengqiu@fudan.edu.cn; Qiu, Feng E-mail: fengqiu@fudan.edu.cn; Shi, An-Chang

    2015-03-28

    A classical density functional theory (DFT) is applied to investigate the behavior of compressed polymer brushes composed of hard-sphere chains. The excluded volume interactions among the chain segments are explicitly treated. Two compression systems are used to study the behavior of brush-wall and brush-brush interactions. For the brush-brush systems, an obvious interpenetration zone has been observed. The extent of the interpenetration depends strongly on the grafting density. Furthermore, the repulsive force between the brush and wall or between the two brushes has been obtained as a function of the compression distance. Compared to the prediction of the analytic self-consistent field theory, such force increases more rapidly in the brush-wall compression with high polymer grafting densities or at higher compressions. In the brush-brush compression system, the interpenetration between the two compressed brushes creates a “softer” interaction. The influence of hard-sphere solvents on the behavior of compressed brushes is also discussed.

  9. Theory of Aging, Rejuvenation, and the Nonequilibrium Steady State in Deformed Polymer Glasses

    SciTech Connect

    Chen, Kang

    2010-01-01

    The nonlinear Langevin equation theory of segmental relaxation, elasticity, and mechanical response of polymer glasses is extended to describe the coupled effects of physical aging, mechanical rejuvenation, and thermal history. The key structural variable is the amplitude of density fluctuations, and segmental dynamics proceeds via stress-modified activated barrier hopping on a dynamic free-energy profile. Mechanically generated disorder rejuvenation is quantified by a dissipative work argument and increases the amplitude of density fluctuations, thereby speeding up relaxation beyond that induced by the landscape tilting mechanism. The theory makes testable predictions for the time evolution and nonequilibrium steady state of the alpha relaxation time, density fluctuation amplitude, elastic modulus, and other properties. Model calculations reveal a rich dependence of these quantities on preaging time, applied stress, and temperature that reflects the highly nonlinear competition between physical aging and mechanical disordering. Thermal history is erased in the long-time limit, although the nonequilibrium steady state is not the literal fully rejuvenated freshly quenched glass. The present work provides the conceptual foundation for a quantitative treatment of the nonlinear mechanical response of polymer glasses under a variety of deformation protocols.

  10. Thermodynamic scaling of dynamics in polymer melts: Predictions from the generalized entropy theory

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Freed, Karl F.

    2013-06-01

    Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ργ/T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ˜50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain

  11. Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.

    PubMed

    Xu, Wen-Sheng; Freed, Karl F

    2013-06-21

    Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ρ(γ)∕T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ~50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain

  12. Integral equation theory of the structure and thermodynamics of polymer blends

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth S.; Curro, John G.

    1989-10-01

    Our recently developed RISM integral equation theory of the structure and thermodynamics of homopolymer melts is generalized to polymer mixtures. The mean spherical approximation (MSA) closure to the generalized Ornstein-Zernike equations is employed, in conjunction with the neglect of explicit chain end effects and the assumption of ideality of intramolecular structure. The theory is developed in detail for binary blends, and the random phase approximation (RPA) form for concentration fluctuation scattering is rigorously obtained by enforcing incompressibility. A microscopic, wave vector-dependent expression for the effective chi parameter measured in small angle neutron scattering (SANS) experiments is derived in terms of the species-dependent direct correlation functions of the blend. The effective chi parameter is found to depend, in general, on thermodynamic state, intermolecular forces, intramolecular structure, degree of polymerization, and global architecture. The relationship between the mean field Flory-Huggins expression for the free energy of mixing and our RISM-MSA theory is determined, along with general analytical connections between the chi parameter and intermolecular pair correlations in the liquid. Detailed numerical applications to athermal and isotopic chain polymer blend models are presented for both the chi parameter and the structure. For athermal blends a negative, concentration-dependent chi parameter is found which decreases with density, structural asymmetry, and increases with molecular weight. For isotopic blends, the effective (positive) chi parameter is found to be strongly renormalized downward from its mean field enthalpic value by long range fluctuations in monomer concentration induced by polymeric connectivity and excluded volume. Both the renormalization and composition dependence of the chi parameter increase with chain length and proximity to the spinodal instability. The critical temperature is found to be proportional to

  13. Entropy Theory of Polymer Glass-Formation in Variable Spatial Dimension

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Sheng; Douglas, Jack; Freed, Karl

    The importance of packing frustration is broadly appreciated to be an important aspect of glass-formation. Recently, great interest has focused on using spatial dimensionality () as a theoretical tool for exploring this and other aspects of glass-forming liquids. We explore glass-formation in variable based on the generalized entropy theory, a synthesis of the Adam-Gibbs model with direct computation of the configurational entropy of polymer fluids using an established analytical statistical thermodynamic model. We find that structural relaxation in the fluid state asymptotically becomes Arrhenius in the limit and that the fluid transforms upon sufficient cooling above a critical dimension near into a dense amorphous state with a finite positive residual configurational entropy. The GET also predicts the variation with of measures of fragility and of the characteristic temperatures of glass-formation demarking the onset , middle , and end , of the broad glass transition. Direct computations of the isothermal compressibility and thermal expansion coefficient, which are physical measures of packing frustration, demonstrate that these fluid properties strongly correlate with the fragility of glass-formation. Back to three dimensions, we deduce apparently universal relationships between , a measure of the breadth of the glass-formation and both the isothermal compressibility and thermal expansion coefficient of polymer melts at .

  14. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory.

    PubMed

    Mondal, Jagannath; Halverson, Duncan; Li, Isaac T S; Stirnemann, Guillaume; Walker, Gilbert C; Berne, Bruce J

    2015-07-28

    It is currently the consensus belief that protective osmolytes such as trimethylamine N-oxide (TMAO) favor protein folding by being excluded from the vicinity of a protein, whereas denaturing osmolytes such as urea lead to protein unfolding by strongly binding to the surface. Despite there being consensus on how TMAO and urea affect proteins as a whole, very little is known as to their effects on the individual mechanisms responsible for protein structure formation, especially hydrophobic association. In the present study, we use single-molecule atomic force microscopy and molecular dynamics simulations to investigate the effects of TMAO and urea on the unfolding of the hydrophobic homopolymer polystyrene. Incorporated with interfacial energy measurements, our results show that TMAO and urea act on polystyrene as a protectant and a denaturant, respectively, while complying with Tanford-Wyman preferential binding theory. We provide a molecular explanation suggesting that TMAO molecules have a greater thermodynamic binding affinity with the collapsed conformation of polystyrene than with the extended conformation, while the reverse is true for urea molecules. Results presented here from both experiment and simulation are in line with earlier predictions on a model Lennard-Jones polymer while also demonstrating the distinction in the mechanism of osmolyte action between protein and hydrophobic polymer. This marks, to our knowledge, the first experimental observation of TMAO-induced hydrophobic collapse in a ternary aqueous system. PMID:26170324

  15. Iso-flux tension propagation theory of driven polymer translocation: The role of initial configurations

    NASA Astrophysics Data System (ADS)

    Sarabadani, Jalal; Ikonen, Timo; Ala-Nissila, Tapio

    2014-12-01

    We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molecular dynamics (MD) simulations. Using the tension propagation theory within the constant flux approximation we derive an explicit equation of motion for the tension front. From this we derive a scaling relation for the average translocation time τ, which captures the asymptotic result τ ∝ N_0^{1+ν }, where N0 is the chain length and ν is the Flory exponent. In addition, we derive the leading correction-to-scaling term to τ and show that all terms of order N_0^{2ν } exactly cancel out, leaving only a finite-chain length correction term due to the effective pore friction, which is linearly proportional to N0. We use the model to numerically include fluctuations in the initial configuration of the polymer chain in addition to thermal noise. We show that when the cis side fluctuations are properly accounted for, the model not only reproduces previously known results but also considerably improves the estimates of the monomer waiting time distribution and the time evolution of the translocation coordinate s(t), showing excellent agreement with MD simulations.

  16. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory

    PubMed Central

    Mondal, Jagannath; Halverson, Duncan; Li, Isaac T. S.; Stirnemann, Guillaume; Walker, Gilbert C.; Berne, Bruce J.

    2015-01-01

    It is currently the consensus belief that protective osmolytes such as trimethylamine N-oxide (TMAO) favor protein folding by being excluded from the vicinity of a protein, whereas denaturing osmolytes such as urea lead to protein unfolding by strongly binding to the surface. Despite there being consensus on how TMAO and urea affect proteins as a whole, very little is known as to their effects on the individual mechanisms responsible for protein structure formation, especially hydrophobic association. In the present study, we use single-molecule atomic force microscopy and molecular dynamics simulations to investigate the effects of TMAO and urea on the unfolding of the hydrophobic homopolymer polystyrene. Incorporated with interfacial energy measurements, our results show that TMAO and urea act on polystyrene as a protectant and a denaturant, respectively, while complying with Tanford–Wyman preferential binding theory. We provide a molecular explanation suggesting that TMAO molecules have a greater thermodynamic binding affinity with the collapsed conformation of polystyrene than with the extended conformation, while the reverse is true for urea molecules. Results presented here from both experiment and simulation are in line with earlier predictions on a model Lennard–Jones polymer while also demonstrating the distinction in the mechanism of osmolyte action between protein and hydrophobic polymer. This marks, to our knowledge, the first experimental observation of TMAO-induced hydrophobic collapse in a ternary aqueous system. PMID:26170324

  17. Microscopic Theory for Entangled Polymer Dynamics in Rod-Sphere Nanocomposites

    NASA Astrophysics Data System (ADS)

    Yamamoto, Umi; Schweizer, Kenneth

    2014-03-01

    We have developed a self-consistent microscopic theory for the long-time dynamics of needles in an array of static spherical fillers. The approach exactly enforces the dynamical two-body rod topological uncrossability and sphere impenetrability constraints, leading to a generalized concept of entanglements that includes the filler excluded volume effect. How the diffusion anisotropy (transverse versus longitudinal motion) depends on the filler-needle aspect ratio, polymer concentration, and filler volume fraction is established. Due to the steric blocking of the longitudinal reptative motion by obstacles, a literal localization transition is predicted that is generically controlled by the ratio of filler diameter to the pure polymer tube diameter or needle length. For a window of filler sizes and loadings, the needle is predicted to diffuse via a ``renormalized'' reptation dynamics where the tube is compressed and the longitudinal motion is retarded in a manner that depends on all system variables. At high filler volume fractions the needle diffusivity is strongly suppressed, and localization ultimately occurs in the unentangled needle regime. Generalization of the approach to treat mobile fillers, flexible chains, and nonrandom microstructure is also possible.

  18. Method of manufacturing a polymer-consolidated cadmium electrode for an alkaline storage cell, and an electrode obtained by the method

    SciTech Connect

    Brezillon, J.L.; Dauchier, J.M.

    1987-09-01

    A method is described of manufacturing a polymer-consolidated cadmium electrode for an alkaline storage cell, the method comprising the steps of: mixing the following ingredients in water: a gelling agent; cadmium and cadmium oxide in powder form constituting the active material; and a copolymer of carboxylated styrene-butadiene at a concenration lying in the range 0.5% to 3% by weight of active materials; coating the resulting paste one a metal current collector; drying the coated current collector; and subjecting the resulting assembly to a temperature lying in the range 120/sup 0/C to 150/sup 0/C for a period of a few minutes in order to cause the polymer to cross-link.

  19. Immersion energy and polymer-mediated depletion interactions between nanocolloids as studied by analytic self-consistent field theory

    NASA Astrophysics Data System (ADS)

    Chervanyov, A. I.; Heinrich, G.

    2012-08-01

    By applying the Edwards self-consistent field theory, we calculate the polymer density and free energy excesses caused by the presence of nanocolloids in the excluded volume polymer system. Using the obtained results, we have calculated the depletion potential U as a function of the separation between colloids, colloid radius, polymer volume fraction, and polymer gyration radius. Upon analyzing the obtained results against the known exact asymptotic small-separation limit and scaling relations, we propose an approximate expression for U that builds upon our exact result. This expression is shown to give excellent agreement with Monte Carlo simulations. Reliability of the derived analytical expression for the depletion potential and its relation to the previous theoretical and simulation work are thoroughly discussed.

  20. Wall-fluid and liquid-gas interfaces of model colloid-polymer mixtures by simulation and theory.

    PubMed

    Fortini, Andrea; Dijkstra, Marjolein; Schmidt, Matthias; Wessels, Paul P F

    2005-05-01

    We perform a study of the interfacial properties of a model suspension of hard sphere colloids with diameter sigma(c) and nonadsorbing ideal polymer coils with diameter sigma(p) . For the mixture in contact with a planar hard wall, we obtain from simulations the wall-fluid interfacial free energy, gamma(wf) , for size ratios q =sigma(p)/sigma(c) =0.6 and 1, using thermodynamic integration, and study the (excess) adsorption of colloids, Gamma(c) , and of polymers, Gamma(p) , at the hard wall. The interfacial tension of the free liquid-gas interface, gamma(lg) , is obtained following three different routes in simulations: (i) from studying the system size dependence of the interfacial width according to the predictions of capillary wave theory, (ii) from the probability distribution of the colloid density at coexistence in the grand canonical ensemble, and (iii) for state points where the colloidal liquid wets the wall completely, from Young's equation relating gamma(lg) to the difference of wall-liquid and wall-gas interfacial tensions, gamma(wl)-gamma(wg) . In addition, we calculate gamma(wf) ,Gamma(c) , and Gamma(p) using density functional theory and a scaled particle theory based on free volume theory. Good agreement is found between the simulation results and those from density functional theory, while the results from scaled particle theory quantitatively deviate but reproduce some essential features. Simulation results for gamma(lg) obtained from the three different routes are all in good agreement. Density functional theory predicts gamma(lg) with good accuracy for high polymer reservoir packing fractions, but yields deviations from the simulation results close to the critical point. PMID:16089531

  1. Pacific Northwest National Laboratory collaboration with Moltech Corporation to manufacture lithium polymer batteries (C/PNL/061). Final project report

    SciTech Connect

    Affinito, J.D.

    1996-08-01

    It was shown that all 7 of the layers of Moltech`s Li polymer battery are compatible with simultaneous, in-line, vacuum deposition onto a flexible plastic substrate via PNNL`s PML and LML technology. All the materials, including Li, could be deposited in a single pass without melting the substrate. Two problems were encountered and are discussed.

  2. Supporting capacity sharing in the cloud manufacturing environment based on game theory and fuzzy logic

    NASA Astrophysics Data System (ADS)

    Argoneto, Pierluigi; Renna, Paolo

    2016-02-01

    This paper proposes a Framework for Capacity Sharing in Cloud Manufacturing (FCSCM) able to support the capacity sharing issue among independent firms. The success of geographical distributed plants depends strongly on the use of opportune tools to integrate their resources and demand forecast in order to gather a specific production objective. The framework proposed is based on two different tools: a cooperative game algorithm, based on the Gale-Shapley model, and a fuzzy engine. The capacity allocation policy takes into account the utility functions of the involved firms. It is shown how the capacity allocation policy proposed induces all firms to report truthfully their information about their requirements. A discrete event simulation environment has been developed to test the proposed FCSCM. The numerical results show the drastic reduction of unsatisfied capacity obtained by the model of cooperation implemented in this work.

  3. The role of intramolecular barriers on the glass transition of polymers: Computer simulations versus mode coupling theory.

    PubMed

    Bernabei, Marco; Moreno, Angel J; Colmenero, Juan

    2009-11-28

    We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT lambda-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large lambda-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature. PMID:19947689

  4. The viability and limitations of percolation theory in modeling the electrical behavior of carbon nanotube-polymer composites

    NASA Astrophysics Data System (ADS)

    Xu, S.; Rezvanian, O.; Peters, K.; Zikry, M. A.

    2013-04-01

    A new modeling method has been proposed to investigate how the electrical conductivity of carbon nanotube (CNT) reinforced polymer composites are affected by tunneling distance, volume fraction, and tube aspect ratios. A search algorithm and an electrical junction identification method was developed with a percolation approach to determine conductive paths for three-dimensional (3D) carbon nanotube arrangements and to account for electron tunneling effects. The predicted results are used to understand the limitations of percolation theory and experimental measurements and observations, and why percolation theory breaks down for specific CNT arrangements.

  5. Analysis of surface segregation in polymer mixtures: A combination of mean field and statistical associated fluid theories

    NASA Astrophysics Data System (ADS)

    Krawczyk, Jaroslaw; Croce, Salvatore; Chakrabarti, Buddhapriya; Tasche, Jos

    The surface segregation in polymer mixtures remains a challenging problem for both academic exploration as well as industrial applications. Despite its ubiquity and several theoretical attempts a good agreement between computed and experimentally observed profiles has not yet been achieved. A simple theoretical model proposed in this context by Schmidt and Binder combines Flory-Huggins free energy of mixing with the square gradient theory of wetting of a wall by fluid. While the theory gives us a qualitative understanding of the surface induced segregation and the surface enrichment it lacks the quantitative comparison with the experiment. The statistical associating fluid theory (SAFT) allows us to calculate accurate free energy for a real polymeric materials. In an earlier work we had shown that increasing the bulk modulus of a polymer matrix through which small molecules migrate to the free surface causes reduction in the surface migrant fraction using Schmidt-Binder and self-consistent field theories. In this work we validate this idea by combining mean field theories and SAFT to identify parameter ranges where such an effect should be observable. Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.

  6. Modeling of hydro-thermo-mechanical behavior of Nafion NRE212 for Polymer Electrolyte Membrane Fuel Cells using the Finite Viscoplasticity Theory Based on Overstress for Polymers (FVBOP)

    NASA Astrophysics Data System (ADS)

    Colak, Ozgen U.; Acar, Alperen

    2013-08-01

    The primary aim of this work is to present the modifications made to the Finite Viscoplasticity Theory Based on Overstress for Polymers (FVBOP). This is a unified state variable theory and the proposed changes are designed to account for humidity and temperature effects relevant to the modeling of the hydrothermal deformation behavior of ionomer membranes used in Polymer Electrolyte Membrane Fuel Cells (PEMFC). Towards that end, the flow function, which is responsible for conferring rate dependency in FVBOP, is modified. A secondary objective of this work was to investigate the feasibility of using the storage modulus obtained by Dynamic Mechanical Analysis (DMA) in place of the elasticity modulus obtained from conventional tensile/compressive tests, and find the correlation between the storage modulus and the elasticity modulus. The numerical simulations were juxtaposed against data from tensile monotonic loading and unloading experiments on perfluorosulfonic acid (PFSA) membrane Nafion NRE212 samples which are used extensively as a membrane material in PEMFC. The deformation behavior was modeled at four different temperatures (298, 323, 338, and 353 K—all values below the glass transition temperature of Nafion) and at three water content levels (3, 7 and 8 % swelling). The effects of strain rate, temperature, and hydration were captured well with the modified FVBOP model.

  7. Application of high performance computing to automotive design and manufacturing: Composite materials modeling task technical manual for constitutive models for glass fiber-polymer matrix composites

    SciTech Connect

    Simunovic, S; Zacharia, T

    1997-11-01

    This report provides a theoretical background for three constitutive models for a continuous strand mat (CSM) glass fiber-thermoset polymer matrix composite. The models were developed during fiscal years 1994 through 1997 as a part of the Cooperative Research and Development Agreement, "Application of High-Performance Computing to Automotive Design and Manufacturing." The full derivation of constitutive relations in the framework of the continuum program DYNA3D and have been used for the simulation and impact analysis of CSM composite tubes. The analysis of simulation and experimental results show that the model based on strain tensor split yields the most accurate results of the three implemented models. The parameters used in the models and their derivation from the physical tests are documented.

  8. A statistical theory of cosolvent-induced coil-globule transitions in dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Kiselev, M. G.

    2014-07-01

    We present a statistical model of a dilute polymer solution in good solvent in the presence of low-molecular weight cosolvent. We investigate the conformational changes of the polymer induced by a change of the cosolvent concentration and the type of interaction between the cosolvent and the polymer. We describe the polymer in solution by the Edwards model, where the partition function of the polymer chain with a fixed radius of gyration is described in the framework of the mean-field approximation. The contributions of polymer-cosolvent and the cosolvent-cosolvent interactions in the total free energy are treated also within the mean-field approximation. For convenience we separate the system volume on two parts: the volume occupied by the polymer chain expressed through its gyration volume and the bulk solution. Considering the equilibrium between the two subvolumes we obtain the total free energy of the solution as a function of radius of gyration and the cosolvent concentration within gyration volume. After minimization of the total free energy with respect to its arguments we obtain a system of coupled equations with respect to the radius of gyration of the polymer chain and the cosolvent concentration within the gyration volume. Varying the interaction strength between polymer and cosolvent we show that the polymer collapse occurs in two cases—either when the interaction between polymer and cosolvent is repulsive or when the interaction is attractive. The reported effects could be relevant for different disciplines where conformational transitions of macromolecules in the presence of a cosolvent are of interest, in particular in biology, chemistry, and material science.

  9. Smart polymers as surface modifiers for bioanalytical devices and biomaterials: theory and practice

    NASA Astrophysics Data System (ADS)

    Ivanov, A. E.; Zubov, V. P.

    2016-06-01

    Smart, or responsive polymers can reversibly change their state of aggregation, thus switching from water-soluble to insoluble state, in response to minor changes in temperature, pH or solvent composition. Grafting of these polymers to solid surfaces imparts the surfaces with controllable wettability and adsorption behaviour. The review summarizes the theoretical models and the results of physical measurements of the conformational transitions in grafted polymer chains and polymer brushes. Primary attention is paid to the grafting density and the length and spatial arrangement of grafted chains, the role of polystyrene, organosilane or alkanethiol sublayers and their effects on adsorption of proteins and adhesion of cells. The key applications of grafted smart polymers such as cell culture and tissue engineering, cell and protein separation, biosensing and targeted drug delivery are surveyed. The bibliography includes 174 references.

  10. Complex microstructures of ABC triblock copolymer thin films directed by polymer brushes based on self-consistent field theory.

    PubMed

    Jiang, Zhibin; Xu, Chang; Qiu, Yu Dong; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2014-01-01

    The morphology and the phase diagram of ABC triblock copolymer thin film directed by polymer brushes are investigated by the self-consistent field theory in three dimensions. The polymer brushes coated on the substrate can be used as a good soft template to tailor the morphology of the block copolymer thin films compared with those on the hard substrates. The polymer brush is identical with the middle block B. By continuously changing the composition of the block copolymer, the phase diagrams are constructed for three cases with the fixed film thickness and the brush density: identical interaction parameters, frustrated and non-frustrated cases. Some ordered complex morphologies are observed: parallel lamellar phase with hexagonally packed pores at surfaces (LAM3 (ll) -HFs), perpendicular lamellar phase with cylinders at the interface (LAM(⊥)-CI), and perpendicular hexagonally packed cylinders phase with rings at the interface (C2 (⊥)-RI). A desired direction (perpendicular or parallel to the coated surfaces) of lamellar phases or cylindrical phases can be obtained by varying the composition and the interactions between different blocks. The phase diagram of ABC triblock copolymer thin film wetted between the polymer brush-coated surfaces is very useful in designing the directed pattern of ABC triblock copolymer thin film. PMID:25114650

  11. Modeling helical polymer brushes using self-consistent field theory (SCFT)

    NASA Astrophysics Data System (ADS)

    Mahalik, Jyoti; Sumpter, Bobby; Kumar, Rajeev

    We investigate structure of helical polymer brushes in terms of segment density distribution and local helical ordering using SCFT. A flexible chain model with vector potential was used to model liquid crystalline-like ordering in the brushes. The effects of surface grafting density, polymer molecular weight and the solvent quality on the brush structure were investigated. For densely grafted polymer brushes or the brushes made up of high molecular weight polymers, immersed in good quality solvent, stronger orientational ordering was found near the edge of the brushes (i.e., far from the grafting surface). Furthermore, an increase in the orientational ordering near the grafted end was found with decrease in solvent quality or decrease in molecular weight and decrease in surface grafting density. Computer Science and Mathematics Division, Oak Ridge National Laboratory.

  12. Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates: Final technical report, July 5, 1995--December 31, 1999

    SciTech Connect

    Jeffrey, F.

    2000-03-28

    Iowa Thin Film Technologies is completing a three-phase program that has increased throughput and decreased costs in nearly all aspects of its thin-film photovoltaic manufacturing process. The overall manufacturing costs have been reduced by 61 percent through implementation of the improvements developed under this program. Development of the ability to use a 1-mil substrate, rather than the standard 2-mil substrate, results in a 50 percent cost-saving for this material. Process development on a single-pass amorphous silicon deposition system has resulted in a 37 percent throughput improvement. A wide range of process and machine improvements have been implemented on the transparent conducting oxide deposition system. These include detailed parameter optimization of deposition temperatures, process gas flows, carrier gas flows, and web speeds. An overall process throughput improvement of 275 percent was achieved based on this work. The new alignment technique was developed for the laser scriber and printer systems, which improved registration accuracy from 100 microns to 10 microns. The new technique also reduced alignment time for these registration systems significantly. This resulted in a throughput increase of 75 percent on the scriber and 600 percent on the printer. Automated techniques were designed and implemented for the module assembly processes. These include automated busbar attachment, roll-based lamination, and automated die cutting of finished modules. These processes were previously done by hand labor. Throughput improvements ranged from 200 percent to 1200 percent, relative to hand labor rates. A wide range of potential encapsulation materials were evaluated for suitability in a roll lamination process and for cost-effectiveness. A combination material was found that has a cost that is only 10 percent of the standard EVA/Tefzel cost and is suitable for medium-lifetime applications. The 20-year lifetime applications still require the more expensive

  13. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost. PMID:26851913

  14. Application of the integral equation theory of polymers: Distribution function, chemical potential, and mean expansion coefficient

    NASA Astrophysics Data System (ADS)

    Gan, Hin Hark; Eu, Byung Chan

    1993-09-01

    A recursive integral equation for the intramolecular correlation function of an isolated linear polymer of N bonds is derived from the integral equations presented in the preceding paper. The derivation basically involves limiting the density of the polymer to zero so that polymers do not interact with each other, and thus taking into account the intramolecular part only. The integral equation still has the form of a generalized Percus-Yevick integral equation. The intramolecular correlation function of a polymer of N bonds is recursively generated by means of it from those of polymers of 2, 3,..., (N-1) bonds. The end-to-end distance distribution functions are computed by using the integral equation for various chain lengths, temperatures, and bond lengths in the case of a repulsive soft-sphere potential. Numerical solutions of the recursive integral equation yield universal exponents for the mean square end-to-end distance in two and three dimensions with values which are close to the Flory results: 0.77 and 0.64 vs Flory's values 0.75 and 0.6 for two and three dimensions, respectively. The intramolecular correlation functions computed can be fitted with displaced Gaussian forms. The N dependence of the internal chemical potential is found to saturate after some value of N depending on the ratio of the bond length to the bead radius.

  15. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.

    PubMed

    Kramschuster, Adam; Turng, Lih-Sheng

    2010-02-01

    In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed. PMID:19957359

  16. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2015-06-01

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation , and second osmotic virial coefficient B 2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.

  17. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent.

    PubMed

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2015-06-01

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation 〈Nsolv〉, and second osmotic virial coefficient B2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods. PMID:26049523

  18. Roll to Roll Electric Field "Z" Alignment of Nanoparticles from Polymer Solutions for Manufacturing Multifunctional Capacitor Films.

    PubMed

    Guo, Yuanhao; Batra, Saurabh; Chen, Yuwei; Wang, Enmin; Cakmak, Miko

    2016-07-20

    A roll to roll continuous processing method is developed for vertical alignment ("Z" alignment) of barium titanate (BaTiO3) nanoparticle columns in polystyrene (PS)/toluene solutions. This is accomplished by applying an electric field to a two-layer solution film cast on a carrier: one is the top sacrificial layer contacting the electrode and the second is the polymer solution dispersed with BaTiO3 particles. Flexible Teflon coated mesh is utilized as the top electrode that allows the evaporation of solvent through the openings. The kinetics of particle alignment and chain buckling is studied by the custom-built instrument measuring the real time optical light transmission during electric field application and drying steps. The nanoparticles dispersed in the composite bottom layer form chains due to dipole-dipole interaction under an applied electric field. In relatively weak electric fields, the particle chain axis tilts away from electric field direction due to bending caused by the shrinkage of the film during drying. The use of strong electric fields leads to maintenance of alignment of particle chains parallel to the electric field direction overcoming the compression effect. At the end of the process, the surface features of the top porous electrodes are imprinted at the top of the top sacrificial layer. By removing this layer a smooth surface film is obtained. The nanocomposite films with "Z" direction alignment of BaTiO3 particles show substantially increased dielectric permittivity in the thickness direction for enhancing the performance of capacitors. PMID:27322765

  19. Macro- and micro-nutrient release characteristics of three polymer-coated fertilizers: Theory and measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of several published studies we have an incomplete understanding of the ion release mechanisms and characteristics of primary polymer-coated fertilizer (PCF) technologies. Here we extend current conceptual models describing release mechanisms and describe the critical effects of substrate m...

  20. Unified force-level theory of multiscale transient localization and emergent elasticity in polymer solutions and melts

    NASA Astrophysics Data System (ADS)

    Dell, Zachary E.; Schweizer, Kenneth S.

    A unified, microscopic, theoretical understanding of polymer dynamics in concentrated liquids from segmental to macromolecular scales remains an open problem. We have formulated a statistical mechanical theory for this problem that explicitly accounts for intra- and inter-molecular forces at the Kuhn segment level. The theory is self-consistently closed at the level of a matrix of dynamical second moments of a tagged chain. Two distinct regimes of isotropic transient localization are predicted. In semidilute solutions, weak localization is predicted on a mesoscopic length scale between segment and chain scales which is a power law function of the invariant packing length. This is consistent with the breakdown of Rouse dynamics and the emergence of entanglements. The chain structural correlations in the dynamically arrested state are also computed. In dense melts, strong localization is predicted on a scale much smaller than the segment size which is weakly dependent on chain connectivity and signals the onset of glassy dynamics. Predictions of the dynamic plateau shear modulus are consistent with the known features of emergent rubbery and glassy elasticity. Generalizations to treat the effects of chemical crosslinking and physical bond formation in polymer gels are possible.

  1. Ring-polymer instanton theory of electron transfer in the nonadiabatic limit

    SciTech Connect

    Richardson, Jeremy O.

    2015-10-07

    We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approximation. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimization of the action. In this form, comparison with Wolynes’ quantum instanton method [P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach is the steepest-descent limit of this method. We discuss advantages and disadvantages of both methods and give examples of where the new approach is more accurate.

  2. Self-consistent field theory of tethered polymers: One dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions

    SciTech Connect

    Suo, Tongchuan Whitmore, Mark D.

    2014-11-28

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a “mushroom” regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ{sup 1/3} scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ{sup 1/3}. In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ{sup 1/3}. We also compare the results for two different solvents with each other, and with earlier Θ solvent results.

  3. Self-consistent field theory of tethered polymers: One dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions

    NASA Astrophysics Data System (ADS)

    Suo, Tongchuan; Whitmore, Mark D.

    2014-11-01

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ1/3 scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ1/3. In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ1/3. We also compare the results for two different solvents with each other, and with earlier Θ solvent results.

  4. Phenomenological theory of the dynamics of polymer melts. I. Analytic treatment of self-diffusion

    NASA Astrophysics Data System (ADS)

    Skolnick, Jeffrey; Yaris, Robert; Kolinski, Andrzej

    1988-01-01

    In the context of dynamic Monte Carlo (MC) simulations on dense collections of polymer chains confined to a cubic lattice, the nature of the dynamic entanglements giving rise to the degree of polymerization n, dependence of the self-diffusion constant D˜n-2 is examined. Consistent with our previous simulation results, which failed to find evidence for reptation as the dominant mechanism of polymer melt motion [J. Chem. Phys. 86, 1567, 7164, 7174 (1987)], long-lived dynamic entanglement contacts between pairs of segments belonging to different chains are extremely rare and are mobile with respect to the laboratory fixed frame. It is suggested that dynamic entanglements involve the dragging of one chain by another through the melt for times on the order of the terminal relaxation time of the end-to-end vector. Employing the physical description provided by the MC simulation, the general expression of Hess [Macromolecules 19, 1395 (1986)] for the friction constant increment experienced by a polymer due to the other polymers forms the basis of a phenomenological derivation of D˜n-2 for monodisperse melts that does not require the existence of reptation. Rather, such behavior is dependent on the relatively benign assumptions that the long distance global motions of the chains are uncorrelated, that the dynamic contacts can be truncated at the pair level, and that the propagator describing the evolution between dynamic contacts contains a free Rouse chain component. The mean distance between dynamic entanglements is predicted to depend inversely on concentration, in agreement with experiment. Moreover, as the free Rouse component is frozen out, for chains greater than an entanglement length ne, a molecular weight independent glass transition is predicted. Extension to bidisperse melts predicts that the probe diffusion coefficient Dp depends on the matrix degree of polymerization, nm, as n-1m. Finally, comparison is made between the theoretical expressions and MC

  5. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry

    PubMed Central

    Reiner, Joseph E.; Kasianowicz, John J.; Nablo, Brian J.; Robertson, Joseph W. F.

    2010-01-01

    Nanometer-scale pores have demonstrated potential for the electrical detection, quantification, and characterization of molecules for biomedical applications and the chemical analysis of polymers. Despite extensive research in the nanopore sensing field, there is a paucity of theoretical models that incorporate the interactions between chemicals (i.e., solute, solvent, analyte, and nanopore). Here, we develop a model that simultaneously describes both the current blockade depth and residence times caused by individual poly(ethylene glycol) (PEG) molecules in a single α-hemolysin ion channel. Modeling polymer-cation binding leads to a description of two significant effects: a reduction in the mobile cation concentration inside the pore and an increase in the affinity between the polymer and the pore. The model was used to estimate the free energy of formation for K+-PEG inside the nanopore (≈-49.7 meV) and the free energy of PEG partitioning into the nanopore (≈0.76 meV per ethylene glycol monomer). The results suggest that rational, physical models for the analysis of analyte-nanopore interactions will develop the full potential of nanopore-based sensing for chemical and biological applications. PMID:20566890

  6. Solvation effects for polymers at an interface: a hybrid self-consistent field-density functional theory approach.

    PubMed

    Bryk, Paweł; MacDowell, Luis G

    2011-11-28

    Using polyatomic density functional theory of Kierlik and Rosinberg, we show that Wertheim's thermodynamic perturbation theory (TPT) incorporates solvation effects in a systematic, although simplified form. We derive two approximate solvation potentials, which require the knowledge of the correlation function in the reference unbonded fluid only. The theoretical predictions are tested against many-chain Monte Carlo simulations for moderate chain lengths. The predictions of the end-to-end distance in the bulk are in a reasonable agreement with simulations for the TPT(M-1) approximation, while the simpler TPT2_e approximation leads to the solvation potential that is shorter ranged and considerably less accurate. The resulting conformations are used in the subsequent self-consistent field theory calculations of hard-sphere polymers at a hard wall. While the incorporation of the solvation effects has little impact on the density profiles, the predictions of the components of the end-to-end distance vector as a function of the distance to the wall are much improved. PMID:22128953

  7. Simulations on the number of entanglements of a polymer network using knot theory.

    PubMed

    Michalke, W; Lang, M; Kreitmeier, S; Göritz, D

    2001-07-01

    Polymer networks, created on the computer using the Bond-Fluctuation-Algorithm, offer the possibility to count the number of entanglements. We generated networks consisting of 5000 chains that were cross linked at their end groups via tetra-functional cross linkers. The analysis of the topology was performed by computing the Homfly polynomial of the entanglements offering a much more precise determination of the knot and entanglement type than the Gaussian linking number. It also allows us to determine the influence of Brunnian links. Results concerning the connection between the chain length and the number of entanglements are shown. PMID:11461310

  8. Hierarchies in eukaryotic genome organization: Insights from polymer theory and simulations

    PubMed Central

    2011-01-01

    Eukaryotic genomes possess an elaborate and dynamic higher-order structure within the limiting confines of the cell nucleus. Knowledge of the physical principles and the molecular machinery that govern the 3D organization of this structure and its regulation are key to understanding the relationship between genome structure and function. Elegant microscopy and chromosome conformation capture techniques supported by analysis based on polymer models are important steps in this direction. Here, we review results from these efforts and provide some additional insights that elucidate the relationship between structure and function at different hierarchical levels of genome organization. PMID:21595865

  9. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  10. Computational conformational antimicrobial analysis developing mechanomolecular theory for polymer biomaterials in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Petersen, Richard C.

    2014-03-01

    Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding pico/nanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpolar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether triclosan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydrophobic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions.

  11. Theory of microphase separation on side-chain liquid-crystalline polymers with flexible spacers.

    PubMed

    Hernández-Jiménez, M; Westfahl, H

    2007-05-01

    We model a melt of monodisperse side-chain liquid-crystalline polymers as a melt of comb copolymers in which the side groups are rod-coil diblock copolymers. We consider both excluded-volume and Maier-Saupe interactions. The first acts among any pair of segments while the latter acts only between rods. Using a free-energy functional calculated from this microscopic model, we study the spinodal stability of the isotropic phase against density and orientational fluctuations. The phase diagram obtained in this way predicts nematic and smectic instabilities as well as the existence of microphases or phases with modulated wave vector but without nematic ordering. Such microphases are the result of the competition between the incompatibility among the blocks and the connectivity constraints imposed by the spacer and the backbone. Also the effects of the polymerization degree and structural conformation of the monomeric units on the phase behavior of the side-chain liquid-crystalline polymers are studied. PMID:17541501

  12. Computational conformational antimicrobial analysis developing mechanomolecular theory for polymer biomaterials in materials science and engineering

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding pico/nanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpolar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether triclosan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydrophobic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions. PMID:25598972

  13. Theory of non-Condon emission from the interchain exciton in conjugated polymer aggregates

    NASA Astrophysics Data System (ADS)

    Bittner, Eric R.; Karabunarliev, Stoyan; Herz, Laura M.

    2007-05-01

    The authors present here a simple analysis that explains the apparent strengthening of electron phonon interaction upon aggregation in conjugated polymer materials. The overall scheme is that of an intermolecular Herzberg-Teller effect whereby sidebands of a forbidden transition are activated by oppositely phased vibrations. The authors show that upon aggregation, the 0-0 emission becomes symmetry forbidden and the apparent redshift and remaining vibronic structure are due to sideband (0-1,0-2, etc.) emission. At higher temperatures, the 0-0 peak is due to thermal population in a higher lying even-parity vibronic state rather than direct emission from the odd-paritied lowest intermolecular vibronic state.

  14. A statistical theory of coil-to-globule-to-coil transition of a polymer chain in a mixture of good solvents

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kalikin, N. N.; Kiselev, M. G.

    2016-05-01

    We present an off-lattice statistical model of a single polymer chain in mixed-solvent media. Taking into account the polymer conformational entropy, renormalization of solvent composition near the polymer backbone, the universal intermolecular excluded-volume and van der Waals interactions within the self-consistent field theory, the reentrant coil-to-globule-to-coil transition (co-nonsolvency) has been described in this paper. For convenience we split the system volume in two parts: the volume occupied by the polymer chain and the volume of bulk solution. Considering the equilibrium between two sub-volumes, the polymer solvation free energy as a function of radius of gyration and co-solvent mole fraction within internal polymer volume has been obtained. Minimizing the free energy of solvation with respect to its arguments, we show two qulitatively different regimes of co-nonsolvency. Namely, at sufficiently high temperature the reentrant coil-to-globule-to-coil transition proceeds smoothly. On the contrary, when the temperature drops below a certain threshold value a coil-globule transition occurs in the regime of first-order phase transition, i.e., discontinuous changes of the radius of gyration and the local co-solvent mole fraction near the polymer backbone. We show that, when the collapse of the polymer chain takes place, the entropy and enthalpy contributions to the solvation free energy of the globule strongly grow. From the first principles of statistical thermodynamics we confirm earlier speculations based on the MD simulations results that the co-nonsolvency is the essentially enthalpic-entropic effect and is caused by enthalpy-entropy compensation. We show that the temperature dependences of the solution heat capacity change due to the solvation of the polymer chain are in qualitative agreement with the differential scanning calorimetry data for PNIPAM in aqueous methanol.

  15. Theory of Polymer Entrapped Enzyme Ultramicroelectrodes: Application to Glucose and Adenosine Triphosphate Detection

    PubMed Central

    Kottke, Peter A.; Kranz, Christine; Kwon, Yong Koo; Masson, Jean-Francois; Mizaikoff, Boris; Fedorov, Andrei G.

    2010-01-01

    We validate, by comparison with experimental data, a theoretical description of the amperometric response of microbiosensors formed via enzyme entrapment. The utility of the theory is further illustrated with two relevant examples supported by experiments: (1) quantitative detection of glucose and (2) quantitative detection of adenosine triphosphate (ATP). PMID:20445817

  16. A theory of electrophoresis of emulsion drops in aqueous two-phase polymer systems

    NASA Technical Reports Server (NTRS)

    Levine, S.

    1982-01-01

    An electrophoresis study has been carried out in an emulsion formed from an electrically neutral aqueous mixture of dextran and polyethylene glycol equilibrated at sufficient concentrations in the presence of electrolytes. Electrophoresis of a drop of one phase suspended in the other is observed, and the direction of the drop's motion is reversed when the disperse phase and the continuous phase are interchanged. In the presence of sulfate, phosphate, or citrate ions, an electrostatic potential difference of the order of a few mV exists between the two phases. The potential implied by the direction of the electrophoretic motion is opposite to the Donnan potential observed between the two phases. The mobility of an emulsion drop increases with the drop radius and depends on ion concentration. These results are explained in terms of a model postulating an electric dipole layer associated with a mixture of oriented polymer molecules at the surface of a drop, with a potential difference between the interiors of the two phases resulting from the unequal ion distribution.

  17. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  18. Plasma-aided manufacturing

    NASA Astrophysics Data System (ADS)

    Shohet, J. L.

    1993-12-01

    Plasma-aided manufacturing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. Plasma-aided manufacturing has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both the high-technology and the more traditional industries in the United States.

  19. Implementation of Higher Order Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kim, Heung Soo; Zhu, Linfa; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A procedure has been developed to investigate the nonlinear response of composite plates under large strain and high strain rate loading. A recently developed strain dependent micromechanics model is extended to account for the shear effects during impact. Four different assumptions of shear deformation effects are investigated to improve the development strain rate dependent micromechanics model. A method to determine through the thickness strain and transverse Poisson's ratio is developed. The revised micromechanics model is implemented into higher order laminate theory. Parametric studies are conducted to investigate transverse shear effects during impact.

  20. Co-non-solvency: Mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents

    SciTech Connect

    Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt; Marques, Carlos M.

    2015-03-21

    Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.

  1. Theory of polymer-nanopore interactions refined using molecular dynamics simulations.

    PubMed

    Balijepalli, Arvind; Robertson, Joseph W F; Reiner, Joseph E; Kasianowicz, John J; Pastor, Richard W

    2013-05-01

    Molecular dynamics simulations were used to refine a theoretical model that describes the interaction of single polyethylene glycol (PEG) molecules with α-hemolysin (αHL) nanopores. The simulations support the underlying assumptions of the model, that PEG decreases the pore conductance by binding cations (which reduces the number of mobile ions in the pore) and by volume exclusion, and provide bounds for fits to new experimental data. Estimation of cation binding indicates that four monomers coordinate a single K(+) in a crown-ether-like structure, with, on average, 1.5 cations bound to a PEG 29-mer at a bulk electrolyte concentration of 4 M KCl. Additionally, PEG is more cylindrical and has a larger cross-section area in the pore than in solution, although its volume is similar. Two key experimental quantities of PEG are described by the model: the ratio of single channel current in the presence of PEG to that in the polymer's absence (blockade depth) and the mean residence time of PEG in the pore. The refined theoretical model is simultaneously fit to the experimentally determined current blockade depth and the mean residence times for PEGs with 15 to 45 monomers, at applied transmembrane potentials of -40 to -80 mV and for three electrolyte concentrations. The model estimates the free energy of the PEG-cation complexes to be -5.3 kBT. Finally the entropic penalty of confining PEG to the pore is found to be inversely proportional to the electrolyte concentration. PMID:23590258

  2. Analytical theory of finite-size effects in mechanical desorption of a polymer chain.

    PubMed

    Skvortsov, A M; Klushin, L I; Fleer, G J; Leermakers, F A M

    2010-02-14

    We discuss a unique system that allows exact analytical investigation of first- and second-order transitions with finite-size effects: mechanical desorption of an ideal lattice polymer chain grafted with one end to a solid substrate with a pulling force applied to the other end. We exploit the analogy with a continuum model and use accurate mapping between the parameters in continuum and lattice descriptions, which leads to a fully analytical partition function as a function of chain length, temperature (or adsorption strength), and pulling force. The adsorption-desorption phase diagram, which gives the critical force as a function of temperature, is nonmonotonic and gives rise to re-entrance. We analyze the chain length dependence of several chain properties (bound fraction, chain extension, and heat capacity) for different cross sections of the phase diagram. Close to the transition a single parameter (the product of the chain length N and the deviation from the transition point) describes all thermodynamic properties. We discuss finite-size effects at the second-order transition (adsorption without force) and at the first-order transition (mechanical desorption). The first-order transition has some unusual features: The heat capacity in the transition region increases anomalously with temperature as a power law, metastable states are completely absent, and instead of a bimodal distribution there is a flat region that becomes more pronounced with increasing chain length. The reason for this anomaly is the absence of an excess surface energy for the boundary between adsorbed and stretched coexisting phases (this boundary is one segment only): The two states strongly fluctuate in the transition point. The relation between mechanical desorption and mechanical unzipping of DNA is discussed. PMID:20151736

  3. Advances in the generalized entropy theory of glass-formation in polymer melts.

    PubMed

    Dudowicz, Jacek; Douglas, Jack F; Freed, Karl F

    2014-12-21

    The generalized entropy theory (GET) of polymeric glass-forming liquids is reformulated into a computationally simpler and more natural formalism than the original version of this theory. The new theoretical framework greatly facilitates establishing essential trends in the dependence of the segmental relaxation time τ, fragility, characteristic temperatures of glass-formation, etc., on the combined influences of monomer molecular structure, chain rigidity, and cohesive interaction strength. Special attention is placed on the estimating the parameters of the phenomenological Vogel-Fulcher-Tammann relations for describing segmental relaxation in diverse liquids in the low temperature range of glass-formation, Tg > T > Tc (or Tg < T < Tg + 100 K), where Tg and Tc are, respectively, the glass transition temperature and the crossover temperature separating the high and low temperature regimes of glass-formation. Finally, we discuss how the molecular energetic interaction parameters of the GET can be estimated from experimental data. Illustrative calculations are performed for the stiffness factor σ and the cohesive energy density u as a first step in this direction. PMID:25527959

  4. Advances in the generalized entropy theory of glass-formation in polymer melts

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2014-12-01

    The generalized entropy theory (GET) of polymeric glass-forming liquids is reformulated into a computationally simpler and more natural formalism than the original version of this theory. The new theoretical framework greatly facilitates establishing essential trends in the dependence of the segmental relaxation time τ, fragility, characteristic temperatures of glass-formation, etc., on the combined influences of monomer molecular structure, chain rigidity, and cohesive interaction strength. Special attention is placed on the estimating the parameters of the phenomenological Vogel-Fulcher-Tammann relations for describing segmental relaxation in diverse liquids in the low temperature range of glass-formation, Tg > T > Tc (or Tg < T < Tg + 100 K), where Tg and Tc are, respectively, the glass transition temperature and the crossover temperature separating the high and low temperature regimes of glass-formation. Finally, we discuss how the molecular energetic interaction parameters of the GET can be estimated from experimental data. Illustrative calculations are performed for the stiffness factor σ and the cohesive energy density u as a first step in this direction.

  5. Statistical Continuum Theory for the Effective Conductivity of Fiber Filled Polymer Composites: Effect of Orientation Distribution and Aspect Ratio

    SciTech Connect

    Mikdam, Amed; Makradi, A.; Ahzi, Said; Garmestani, Hamid; Li, Dongsheng; Remond, Y.

    2010-03-01

    Effective conductivity of polymer composites, filled with conducting fibers such as carbon nanotubes, is studied using statistical continuum theory. The fiber orientation distribution in the matrix plays a very important role on their effective properties. To take into account their orientation, shape and distribution, two-point and three-point probability distribution functions are used. The effect of fibers orientation is illustrated by comparing the effective conductivity of microstructures with oriented and non-oriented fibers. The randomly oriented fibers result in an isotropic effective conductivity. The increased fiber orientation distribution can lead to higher anisotropy in conductivity. The effect of fiber’s aspect ratio on the effective conductivity is studied by comparing microstructures with varying degrees of fiber orientation distribution. Results show that the increase in anisotropy leads to higher conductivity in the maximum fiber orientation distribution direction and lower conductivity in the transverse direction. These results are in agreement with various models from the literature that show the increase of the aspect ratio of fibers improves the electrical and thermal conductivity.

  6. Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: electronic and mechanical properties.

    PubMed

    Ahangari, Morteza Ghorbanzadeh; Fereidoon, Abdolhosein; Ganji, Masoud Darvish

    2013-08-01

    We performed first principles calculations based on density functional theory (DFT) to investigate the effect of epoxy monomer content on the electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs). Our calculation results reveal that interfacial interaction increases with increasing numbers of epoxy monomers on the surface of SWCNTs. Furthermore, density of states (DOS) results showed no orbital hybridization between the epoxy monomers and nanotubes. Mulliken charge analysis shows that the epoxy polymer carries a positive charge that is directly proportional to the number of monomers. The Young's modulus of the nanotubes was also studied as a function of monomer content. It was found that, with increasing number of monomers on the nanotubes, the Young's modulus first decreases and then approaches a constant value. The results of a SWCNT pullout simulation suggest that the interfacial shear stress of the epoxy/SWCNT complex is approximately 68 MPa. These results agreed well with experimental results, thus proving that the simulation methods used in this study are viable. PMID:23609226

  7. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory

    NASA Astrophysics Data System (ADS)

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-11-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells.

  8. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory

    PubMed Central

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-01-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells. PMID:26581407

  9. Morphology and Performance of Polymer Solar Cell Characterized by DPD Simulation and Graph Theory.

    PubMed

    Du, Chunmiao; Ji, Yujin; Xue, Junwei; Hou, Tingjun; Tang, Jianxin; Lee, Shuit-Tong; Li, Youyong

    2015-01-01

    The morphology of active layers in the bulk heterojunction (BHJ) solar cells is critical to the performance of organic photovoltaics (OPV). Currently, there is limited information for the morphology from transmission electron microscopy (TEM) techniques. Meanwhile, there are limited approaches to predict the morphology /efficiency of OPV. Here we use Dissipative Particle Dynamics (DPD) to determine 3D morphology of BHJ solar cells and show DPD to be an efficient approach to predict the 3D morphology. Based on the 3D morphology, we estimate the performance indicator of BHJ solar cells by using graph theory. Specifically, we study poly (3-hexylthiophene)/[6, 6]-phenyl-C61butyric acid methyl ester (P3HT/PCBM) BHJ solar cells. We find that, when the volume fraction of PCBM is in the region 0.4 ∼ 0.5, P3HT/PCBM will show bi-continuous morphology and optimum performance, consistent with experimental results. Further, the optimum temperature (413 K) for the morphology and performance of P3HT/PCBM is in accord with annealing results. We find that solvent additive plays a critical role in the desolvation process of P3HT/PCBM BHJ solar cell. Our approach provides a direct method to predict dynamic 3D morphology and performance indicator for BHJ solar cells. PMID:26581407

  10. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that manufacturing output in America…

  11. Polymer concrete patching manual

    NASA Astrophysics Data System (ADS)

    Fontana, J. J.; Bartholomew, J.

    1982-06-01

    The practicality of using polymer concrete to repair deteriorated portland cement concrete bridge decks and pavements was demonstrated. This manual outlines the procedures for using polymer concrete as a rapid patching material to repair deteriorated concrete. The process technology, materials, equipment, and safety provisions used in manufacturing and placing polymer concrete are discussed. Potential users are informed of the various steps necessary to insure successful field applications of the material.

  12. Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates. Annual technical progress report, July 5, 1996--December 31, 1997

    SciTech Connect

    Jeffrey, F.

    1998-08-01

    Iowa Thin Film Technologies, Inc.`s (ITF) goal is to develop the most cost effective PV manufacturing process possible. To this end the authors have chosen a roll based manufacturing process with continuous deposition and monolithic integration. Work under this program is designed to meet this goal by improving manufacturing throughput and performance of the manufactured devices. Significant progress was made during Phase 2 of this program on a number of fronts. A new single pass tandem deposition machine was brought on line which allows greatly increased and improved throughput for rolls of tandem material. The TCO deposition process was improved resulting in an increase in throughput by 20%. A new alignment method was implemented on the printing process which improves throughput six fold while improving alignment from 100 {micro}m to 10 {micro}m. A roll based lamination procedure was developed and implemented on selected products which improves throughput from 20 sq. ft./hr. to 240 sq. ft./hr. A wide range of lower cost encapsulants were evaluated. A promising material was selected initially to be introduced in 5 year lifetime type products. The sum of these improvements bring the overall cost reduction resulting from this program to 49%.

  13. A new insight into the isotropic-nematic phase transition in lyotropic solutions of semiflexible polymers: density-functional theory tested by molecular dynamics.

    PubMed

    Egorov, Sergei A; Milchev, Andrey; Virnau, Peter; Binder, Kurt

    2016-06-14

    Semiflexible polymers in solution are studied for a wide range of both contour length L and persistence length lp as a function of monomer concentration under good solvent conditions. Both density-functional theory (DFT) and molecular dynamics (MD) simulation methods are used, and a very good agreement between both techniques is observed for rather stiff polymers. Evidence for a new mechanism of order parameter fluctuations in the nematic phase is presented, namely collective deformations of bundles of wormlike chains twisted around each other, and the typical wavelengths and amplitudes of these modes are estimated. These long wavelength fluctuations cause a reduction of the order parameter in comparison with the DFT prediction. It is also found that DFT becomes unreliable for rather flexible polymers in predicting that the transition from the isotropic (I)-phase to the nematic (N)-phase still exists at very high monomer concentrations (which in reality does not occur). However, under conditions when DFT is accurate, it provides reliable predictions also for the width of the I-N two-phase coexistence region, which are difficult to obtain from MD in spite of the use of very large systems (up to 500 000 monomers) by means of graphics processing units (GPU). For short and not very stiff chains, a pre-transitional chain stretching is found in the isotropic phase near the I-N-transition, not predicted by theories. A comparison with theoretical predictions by Khokhlov-Semenov, Odijk, and Chen reveals that the scaled transition densities are not simply functions of L/lp only, as these theories predict, but depend on d/lp (where d is the chain diameter) as well. Chain properties in the nematically ordered phase are compared to those of chains confined in tubes, and the deflection length concept is tested. Eventually, some consequences for the interpretation of experiments are spelled out. PMID:27249320

  14. Functional polymers

    SciTech Connect

    Wegner, G.

    2000-01-01

    Improving the existing polymer materials and the designing of model polymers need fundamental insights into the structure and dynamics over a large range of length and time scales. Consequently, a host of quite different methods needs to be applied to gain insights into the molecular and supramolecular structures and interactions that determine the performance of these materials. Supramolecular structures derived from shape persistent (stiff) macromolecules are used as examples to demonstrate the correlation between chemical structure, order phenomena and performance in applications concerning advanced or developing technologies: organic light emitting diodes (OLEDs) and separator membranes in lithium based batteries and fuel cells. Polymers are also important as additives in the manufacture and the processing of other materials. The design of block copolymers to control the nucleation and growth of inorganic particles precipitating from aqueous solutions (mineralization) is discussed as well as the use of block copolymers to optimize the processing of ceramic pieces and objects. Finally, the modification of surfaces by polymers including aspects of biocompatibility is discussed. Some remarks concerning the importance of recent developments and advances in synthesis of macromolecular materials are also given.

  15. Ketoprofen-poly(D,L-lactic-co-glycolic acid) microspheres: influence of manufacturing parameters and type of polymer on the release characteristics.

    PubMed

    Gabor, F; Ertl, B; Wirth, M; Mallinger, R

    1999-01-01

    The effect of manufacturing parameters on the size and drug-loading of ketoprofen-containing biodegradable and biocompatible poly(DL-lactic-co-glycolic acid) (PLGA) microspheres prepared by the solvent evaporation method was investigated. For both drug-free and drug-loaded microspheres, smaller microspheres with a narrower size distribution were obtained when the stirring rate or the volume of the organic phase was increased. Incorporation of ketoprofen was found to increase with increasing volume of the organic phase and decreasing pH of the aqueous phase, but was independent of the acidity and the inherent viscosity of the PLGA used. The biphasic release profile of ketoprofen from the microspheres was dependent on the type of PLGA as well as the size and drug-loading, two parameters governed by the manufacturing process. The first burst effect was found to increase with the drug content, reduction of size of the microspheres and increasing inherent viscosity of the matrix, whereas acidity of the PLGA had no effect on the release of this acidic drug. A vigorous first burst effect was associated with reduced sustained delivery of ketoprofen, the rate of the delayed release phase being dependent on the inherent viscosity of the matrix, the size, the payload and the pH during preparation of the microspheres. Thus, by selection of the manufacturing parameters and the type of PLGA, it is possible to design a controlled drug delivery system for the prolonged release of ketoprofen, improving therapy by possible reduction of time intervals between peroral administration and reduction of local gastrointestinal side effects. PMID:9972498

  16. Polymer Functionalized Nanoparticles in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Jayaraman, Arthi

    2013-03-01

    Significant interest has grown around the ability to control spatial arrangement of nanoparticles in a polymer nanocomposite to engineer materials with target properties. Past work has shown that one could achieve controlled assembly of nanoparticles in the polymer matrix by functionalizing nanoparticle surfaces with homopolymers. This talk will focus on our recent work using Polymer Reference Interaction Site Model (PRISM) theory and Monte Carlo simulations and GPU-based molecular dynamics simulations to specifically understand how heterogeneity in the polymer functionalization in the form of a) copolymers with varying monomer chemistry and monomer sequence, and b) polydispersity in homopolymer grafts can tune effective interactions between functionalized nanoparticles, and the assembly of functionalized nanoparticles.

  17. Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates. Annual technical progress report, 5 July 1995--4 June 1996

    SciTech Connect

    Jeffrey, F

    1997-02-01

    Iowa Thin Film Technologies` goal is to develop the most cost-effective photovoltaic manufacturing process possible. During the first year, they developed the capability of sputtering a high-quality (Zn(Al)O) successfully implemented increased deposition rates for the ZnO top contact deposition; improved registration and ink-line width to reduce area loss due to interconnects; developed a new alignment process and sensor to improve the speed and accuracy of registration for the patterning processes; developed a new Silver ink composition that allows finer print lines and lower series resistance; demonstrated an 8% overall improvement in area utilization; evaluated water-based insulator inks for compatibility with their processes; investigated and tested the use of roll-based lamination as a means to reduce the cost of assembly; developed straight roll lamination capability using pressure-sensitive adhesives and thermally activated bonding; and evaluated the use of the standard EVA/Tefzel encapsulant with a roll laminator.

  18. Assumption of separability of the excluded-volume interaction in polymer physics: Flory-Huggins theory reviewed

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Somendra M.

    1986-08-01

    Rotational isomerism and the excluded-volume interaction are generally considered to be the two major factors in polymer crystallization, glass transition, etc. The calculations supporting this belief are based on the assumption that the contribution to the free energy from the excluded-volume interaction is separable from the rest of the interactions. This separability assumption is studied here by mapping a single-polymer-chain problem to a spin problem with a cluster interaction. Using a variational principle, which provides an upper bound to the free energy, it is shown that the separability assumption gives a qualitatively incorrect description of the system in the low-temperature region. The consequences of this result for general models are also discussed.

  19. Thermodynamics of polymer nematics described with a worm-like chain model: particle-based simulations and SCF theory calculations

    NASA Astrophysics Data System (ADS)

    Greco, Cristina; Yiang, Ying; Kremer, Kurt; Chen, Jeff; Daoulas, Kostas

    Polymer liquid crystals, apart from traditional applications as high strength materials, are important for new technologies, e.g. Organic Electronics. Their studies often invoke mesoscale models, parameterized to reproduce thermodynamic properties of the real material. Such top-down strategies require advanced simulation techniques, predicting accurately the thermodynamics of mesoscale models as a function of characteristic features and parameters. Here a recently developed model describing nematic polymers as worm-like chains interacting with soft directional potentials is considered. We present a special thermodynamic integration scheme delivering free energies in particle-based Monte Carlo simulations of this model, avoiding thermodynamic singularities. Conformational and structural properties, as well as Helmholtz free energies are reported as a function of interaction strength. They are compared with state-of-art SCF calculations invoking a continuum analog of the same model, demonstrating the role of liquid-packing and fluctuations.

  20. Task 1: Modeling Study of CO Effects on Polymer Electrolyte Fuel Cell Anodes Task 2: Study of Ac Impedance as Membrane/Electrode Manufacturing Diagnostic Tool

    SciTech Connect

    Thomas E. Springer

    1998-01-30

    Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of major CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the effects of

  1. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    NASA Astrophysics Data System (ADS)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  2. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  3. On the origin of Gaussian network theory in the thermo/chemo-responsive shape memory effect of amorphous polymers undergoing photo-elastic transition

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min; Leng, Jinsong

    2016-06-01

    Amorphous polymers are normally isotropic in their physical properties, however, upon stress their structural randomness is disturbed and they become anisotropic. There is a close connection between the optical anisotropy and the elastic (or mechanical) anisotropy, since both are related to the type of symmetry exhibited by the molecular structure. On the origin of Gaussian network theory, a phenomenological constitutive framework was proposed to study the photo-elastic transition and working mechanism of the thermo-/chemo-responsive shape-memory effect (SME) in amorphous shape memory polymers (SMPs). Optically refractive index was initially employed to couple the stress, strain and the anisotropy of the random link in macromolecule chain. Based on the Arrhenius law, a constitutive framework was then applied for the temperature dependence of optical (or elastic or mechanical) anisotropy according to the fictive temperature parameter. Finally, the phenomenological photo-elastic model was proposed to quantitatively identify the influential factors behind the thermo-/chemo-responsive SME in SMPs, of which the shape recovery behavior is predicted and verified by the available experimental data reported in the literature.

  4. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  5. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  6. Viscoelastic Properties of Polymer Blends

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Moacanin, J.; Soong, D.

    1982-01-01

    Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.

  7. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  8. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  9. Antioxidant Stabilisation of Polymers

    NASA Astrophysics Data System (ADS)

    Shlyapnikov, Yurii A.

    1981-06-01

    Physicochemical aspects of the stabilisation of polymers are discussed. Attention is paid mainly to the aging and stabilisation of polymers under processing conditions. Topics considered are the kinetics and mechanism of the high-temperature oxidation of polymers, critical phenomena in the inhibited oxidation of polymers, the theory of synergism and antagonism among antioxidants, the reasons for differences in efficiency of antioxidants, and certain aspects of the relation between the efficiency of antioxidants and their molecular structure. A list of 132 references is included.

  10. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  11. Coil-bridge transition in a single polymer chain as an unconventional phase transition: Theory and simulation

    NASA Astrophysics Data System (ADS)

    Klushin, Leonid I.; Skvortsov, Alexander M.; Polotsky, Alexey A.; Hsu, Hsiao-Ping; Binder, Kurt

    2014-05-01

    The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details of the first-order phase transition between the coil state at large height H ⩾ Htr and a bridge state at H ⩽ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate adsorption regime at (H/Na)tr ⩽ 0.27 where N is the number of monomer units of linear size a. An analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions is presented in this regime. The theory provides an excellent quantitative description of numerical results at all heights, 10 ⩽ H/a ⩽ 320 and all chain lengths 40 < N < 2560 without free fitting parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain in the strong adsorption regime at (H/Na)tr ⩾ 0.5 is presented. We discuss some unconventional properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved in the bridge state, and abnormal behavior in the microcanonical ensemble.

  12. Coil-bridge transition in a single polymer chain as an unconventional phase transition: theory and simulation.

    PubMed

    Klushin, Leonid I; Skvortsov, Alexander M; Polotsky, Alexey A; Hsu, Hsiao-Ping; Binder, Kurt

    2014-05-28

    The coil-bridge transition in a self-avoiding lattice chain with one end fixed at height H above the attractive planar surface is investigated by theory and Monte Carlo simulation. We focus on the details of the first-order phase transition between the coil state at large height H ⩾ Htr and a bridge state at H ⩽ Htr, where Htr corresponds to the coil-bridge transition point. The equilibrium properties of the chain were calculated using the Monte Carlo pruned-enriched Rosenbluth method in the moderate adsorption regime at (H/Na)tr ⩽ 0.27 where N is the number of monomer units of linear size a. An analytical theory of the coil-bridge transition for lattice chains with excluded volume interactions is presented in this regime. The theory provides an excellent quantitative description of numerical results at all heights, 10 ⩽ H/a ⩽ 320 and all chain lengths 40 < N < 2560 without free fitting parameters. A simple theory taking into account the effect of finite extensibility of the lattice chain in the strong adsorption regime at (H/Na)tr ⩾ 0.5 is presented. We discuss some unconventional properties of the coil-bridge transition: the absence of phase coexistence, two micro-phases involved in the bridge state, and abnormal behavior in the microcanonical ensemble. PMID:24880326

  13. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  14. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing. PMID:25898070

  15. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1992-01-01

    The preparation is reported of carbon fiber composites using advanced polymer resins. Current and ongoing research activities include: powder towpreg process; weaving, braiding and stitching dry powder prepreg; advanced tow placement; and customized ATP towpreg. The goal of these studies is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft.

  16. Local know model of entangled polymer chains. 2. Theory of probe fluctuation and diffusion coefficient of a single local knot

    SciTech Connect

    Iwata, Kazuyoshi

    1992-05-14

    The local knot (LK) theory is tested by computer simulations in parts 1 and 2. Here, theoretical problems of the simulations are mainly discussed. The probe fluctuation found in part 1 is studied theoretically, and a method for separating the Markov motion of a LK from its probe fluctuation is proposed. A detailed discussions on the mechanism of the probe fluctuation and the uncertainty principal are given. A modified expression of the diffusion coefficient of a LK is derived that cancels the interference of the probe fluctuations, and its numerical calculation is performed. A correction for short memory effects of LK motion is also done. The theoretical value of d{sub 0} thus computed is 0.0393 bond{sup 2}/u.t. (u.t. - unit time) which is comparable to its simulation value 0.0172 bond{sup 2}/u.t. obtained in part 1. Finally, it is concluded that the LK theory is proved by the results of parts 1 and 2 and, by this, a true molecular theory of entanglement has been first established. 13 refs., 7 figs., 1 tab.

  17. Density Functional Theory of Simple Polymers in a Slit Pore: 2. The Role of Compressibility and Field Type

    SciTech Connect

    CURRO,JOHN G.; HOOPER,JUSTIN B.; MCCOY,JOHN D.; PILEGGI, MORGAN T.; WEINHOLD,JEFFREY D.

    1999-10-28

    Simple tangent, hard site chains near a hard wall are modeled with a Density Functional (DF) theory that uses the direct correlation function, c(r), as its ''input''. Two aspects of this DF theory are focused upon: (1) the consequences of variations in c(r)'s detailed form; and (2) the correct way to introduce c(r) into the DF formalism. The most important aspect of c(r) is found to be its integrated value, {cflx c}(0). Indeed, it appears that, for fixed {cflx c}(0), all reasonable guesses of the detailed shape of c(r) result in surprisingly similar density distributions, {rho}(r). Of course, the more accurate the c(r), the better the {rho}(r). As long as the length scale introduced by c(r) is roughly the hard site diameter and as long as the solution remains liquid-like, the {rho}(r) is found to be in good agreement with simulation results. The c(r) is used in DF theory to calculate the medium-induced-potential, U{sub M}(r) from the density distribution, {rho}(r). The form of U{sub M}(r) can be chosen to be one of a number of different forms. It is found that the forms for U{sub M}(r), which yield the most accurate results for the wall problem, are also those which were suggested as accurate in previous, related studies.

  18. Microgravity Manufacturing Via Fused Deposition

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Griffin, M. R.

    2003-01-01

    Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

  19. Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymer-based Solar Cells. Time-Resolved Microwave Conductivity and Theory

    SciTech Connect

    Aguirre, Jordan C.; Arntsen, Christopher D.; Hernandez, Samuel; Huber, Rachel; Nardes, Alexandre M.; Halim, Merissa; Kilbride, Daniel; Rubin, Yves; Tolbert, Sarah H.; Kopidakis, Nikos; Schwartz, Benjamin J.; Neuhauser, Daniel

    2013-09-23

    The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well-connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash-photolysis time-resolved microwave conductivity (TRMC) experiments, and space-charge-limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility in conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so-called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self-assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl-C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near-spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.

  20. Polymer Thermoelectric Generators: Device Considerations

    NASA Astrophysics Data System (ADS)

    Yee, Shannon

    2014-03-01

    Recent control of the transport properties in polymers has encouraged the development of polymer thermoelectric (TE) devices. Polymer TEs are thought to be less expensive and more scalable than their inorganic counterparts. The cost of the raw material is less and polymer TEs can leverage the large areal manufacturing technique established by the plastics industry. Additionally, while the overall ZT of polymer TEs appears attractive, individual polymer properties have a very different scale than their inorganic counterparts (i.e., the thermal conductivity and electrical conductivity are approximately one and two orders of magnitude smaller, respectively). Furthermore, the majority of TE measurements on polymers have been limited to thin-films where traditional TE materials are measured in bulk. So why should it be expected that polymer TE devices resemble traditional TE devices? Given the uniqueness of polymers, different device architectures are proposed that can leverage the unique strengths of polymer films. It will be shown that by logically considering device requirements, new polymer TE devices have non-linear features that are more attractive than linear inorganic TE devices. This leads to very different device optimizations that favor polymer TEs.

  1. The Economics of Big Area Addtiive Manufacturing

    SciTech Connect

    Post, Brian; Lloyd, Peter D; Lindahl, John; Lind, Randall F; Love, Lonnie J; Kunc, Vlastimil

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  2. Microgravity Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Manufacturing capability in outer space remains one of the critical milestones to surpass to allow humans to conduct long-duration manned space exploration. The high cost-to-orbit for leaving the Earth's gravitational field continues to be the limiting factor in carrying sufficient hardware to maintain extended life support in microgravity or on other planets. Additive manufacturing techniques, or 'chipless' fabrication, like RP are being considered as the most promising technologies for achieving in situ or remote processing of hardware components, as well as for the repair of existing hardware. At least three RP technologies are currently being explored for use in microgravity and extraterrestrial fabrication.

  3. Advancing manufacturing through computational chemistry

    SciTech Connect

    Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

    1995-12-31

    The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

  4. Density functional theory investigation of opto-electronic properties of thieno[3,4-b]thiophene and benzodithiophene polymer and derivatives and their applications in solar cell.

    PubMed

    Khoshkholgh, Mehri Javan; Marsusi, Farah; Abolhassani, Mohammad Reza

    2015-02-01

    PTBs polymers with thieno[3,4-b]thiophene [TT] and benzodithiophene [BDT] units have particular properties, which demonstrate it as one of the best group of donor materials in organic solar cells. In the present work, density functional theory (DFT) is applied to investigate the optimized structure, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), band gap and dihedral angle of PTB7 at B3LYP/6-31G(d). Two different approaches are applied to carry out these investigations: Oligomer extrapolation technique and periodic boundary condition (PBC) method. The results obtained from PBC-DFT method are in fair agreement with experiments. Based on these reliable outcomes; the investigations continued to perform some derivatives of PTB7. In this study, sulfur is substituted by nitrogen, oxygen, silicon, phosphor or selenium atoms in pristine PTB7. Due to the shift of HOMO and LUMO levels, smaller band gaps are predicted to appear in some derivatives in comparison with PTB7. Maximum theoretical efficiencies, η, of the mentioned derivatives as well as local difference of dipole moments between the ground and excited states (Δμge) are computed. The results indicate that substitution of sulfur by nitrogen or oxygen in BDT unit, and silicon or phosphor in TT unit of pristine PTB7 leads to a higher η as well as Δμge. PMID:25311524

  5. Interpenetrations in polymer brushes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Amitabha; Nelson, Peter; Toral, Raúl

    1994-01-01

    We carry out Monte Carlo simulations in both lattice and off-lattice geometry, to study the configurational properties of a system of two polymer-coated plates. We compare our results with numerical and analytical self-consistent-field theories. For the short chain-lengths considered here, we find both compression and interpenetration of the polymer brushes as the plate separation is decreased, instead of the ``classical-limit'' picture of compression with no interpenetration.

  6. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  7. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1995-01-01

    Polymer infiltration investigations were directed toward development of methods by which to produce advanced composite material for automated part fabrication utilizing textile and robotic technology in the manufacture of subsonic and supersonic aircraft. Significant progress was made during the project on the preparation of carbon fiber composites using advanced polymer resins. The findings and results of the project are summarized in the attached paper entitled 'Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composite.' Also attached to this report is the second of two patent applications submitted as a result of these studies.

  8. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  9. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  10. The mechanics of manufacturing processes

    SciTech Connect

    Wright, P.; Stori, J.; King, C.

    1996-10-01

    Economic pressures, particularly related to the quality of manufactured goods and `time-to-market` are forcing designers to think not only in terms of product design but also in terms of integrated product and process design, and finally in terms of deterministic manufacturing planning and control. As a result of these three high level needs, there is now an even greater need for comprehensive simulations that predict material behavior during a manufacturing process, the stresses and/or temperatures on associated tooling, and the final-product integrity. The phrase `manufacturing processes` of course covers a broad scope; it includes semiconductor manufacturing, injection molding of polymers, metal machining and precision lapping, wood and textile production, and the final assembly of piece-parts into a consumer product. It can be seen from this partial listing that the fields of fluid mechanics, solid mechanics, dynamics and tribology can all play a role. The introduction to the paper will contain a review of manufacturing processes and describe where simulations have been successfully applied, and where simulations are still lacking. The best of the simulations are those where the models accurately fit the physical phenomena, where accurate constitutive equations are available, and where boundary conditions are realistic. Thus, the body of the paper will focus on the results from one of these more successful simulations. It has been used to predict the deflections of tooling and the most appropriate operating conditions for the manufacturing process under study. A new method for manufacturing planning is described. In this method, closed form, somewhat simplified, analytical models are used to determine manufacturing planning parameters and then the results from these simpler models are refined by the fuller simulations. A case study in machining parameter selection for peripheral finish milling operations is developed.