Sample records for polynucleotide phosphorylase function

  1. Novel Aspects of Polynucleotide Phosphorylase Function in Streptomyces

    PubMed Central

    Jones, George H.

    2018-01-01

    Polynucleotide phosphorylase (PNPase) is a 3′–5′-exoribnuclease that is found in most bacteria and in some eukaryotic organelles. The enzyme plays a key role in RNA decay in these systems. PNPase structure and function have been studied extensively in Escherichia coli, but there are several important aspects of PNPase function in Streptomyces that differ from what is observed in E. coli and other bacterial genera. This review highlights several of those differences: (1) the organization and expression of the PNPase gene in Streptomyces; (2) the possible function of PNPase as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (3) the function of PNPase as both an exoribonuclease and as an RNA 3′-polyribonucleotide polymerase in Streptomyces; (4) the function of (p)ppGpp as a PNPase effector in Streptomyces. The review concludes with a consideration of a number of unanswered questions regarding the function of Streptomyces PNPase, which can be examined experimentally. PMID:29562650

  2. E.coli polynucleotide phosphorylase expression is autoregulated through an RNase III-dependent mechanism.

    PubMed Central

    Robert-Le Meur, M; Portier, C

    1992-01-01

    It has been previously shown that the pnp messenger RNAs are cleaved by RNase III at the 5' end and that these cleavages induce a rapid decay of these messengers. A translational fusion between pnp and lacZ was introduced into the chromosome of a delta lac strain to study the expression of pnp. In the presence of increased cellular concentrations of polynucleotide phosphorylase, the level of the hybrid beta-galactosidase is repressed, whereas the synthesis rate of the corresponding message is not significantly affected. In the absence of pnp, the level of the hybrid protein increases strongly. Thus, polynucleotide phosphorylase is post-transcriptionally autocontrolled. However, autocontrol is totally abolished in strains where the RNase III site on the pnp message has been deleted or in strains devoid of RNase III. These results suggest that polynucleotide phosphorylase requires RNase III cleavages to autoregulate the translation of its message. Other mutations in the ribosome binding site region support the hypothesis that this 3' to 5' processive enzyme could recognize a specific repressor binding site at the 5' end of pnp mRNA. Implications of these results on the mechanism of regulation and on messenger degradation are discussed. Images PMID:1628624

  3. E.coli polynucleotide phosphorylase expression is autoregulated through an RNase III-dependent mechanism.

    PubMed

    Robert-Le Meur, M; Portier, C

    1992-07-01

    It has been previously shown that the pnp messenger RNAs are cleaved by RNase III at the 5' end and that these cleavages induce a rapid decay of these messengers. A translational fusion between pnp and lacZ was introduced into the chromosome of a delta lac strain to study the expression of pnp. In the presence of increased cellular concentrations of polynucleotide phosphorylase, the level of the hybrid beta-galactosidase is repressed, whereas the synthesis rate of the corresponding message is not significantly affected. In the absence of pnp, the level of the hybrid protein increases strongly. Thus, polynucleotide phosphorylase is post-transcriptionally autocontrolled. However, autocontrol is totally abolished in strains where the RNase III site on the pnp message has been deleted or in strains devoid of RNase III. These results suggest that polynucleotide phosphorylase requires RNase III cleavages to autoregulate the translation of its message. Other mutations in the ribosome binding site region support the hypothesis that this 3' to 5' processive enzyme could recognize a specific repressor binding site at the 5' end of pnp mRNA. Implications of these results on the mechanism of regulation and on messenger degradation are discussed.

  4. Mutational analysis of polynucleotide phosphorylase from Escherichia coli.

    PubMed

    Jarrige, Anne; Bréchemier-Baey, Dominique; Mathy, Nathalie; Duché, Ophélie; Portier, Claude

    2002-08-16

    Polynucleotide phosphorylase (PNPase), a homotrimeric exoribonuclease present in bacteria, is involved in mRNA degradation. In Escherichia coli, expression of this enzyme is autocontrolled at the translational level. We introduced about 30 mutations in the pnp gene by site-directed mutagenesis, most of them in phylogenetically conserved residues, and determined their effects on the three catalytic activities of PNPase, phosphorolysis, polymerisation and phosphate exchange, as well as on the efficiency of translational repression. The data are presented and discussed in the light of the crystallographic structure of PNPase from Streptomyces antibioticus. The results show that both PNPase activity and the presence of the KH and S1 RNA-binding domains are required for autocontrol. Deletions of these RNA-binding domains do not abolish any of the three catalytic activities, indicating that they are contained in a domain independent of the catalytic centre. Moreover, the catalytic centre was located around the tungsten-binding site identified by crystallography. Some mutations affect the three catalytic activities differently, an observation consistent with the presence of different subsites.

  5. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    PubMed Central

    Haddad, Nabila; Tresse, Odile; Rivoal, Katell; Chevret, Didier; Nonglaton, Quentin; Burns, Christopher M.; Prévost, Hervé; Cappelier, Jean M.

    2012-01-01

    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability. PMID:22919622

  6. Increased Expression of Escherichia coli Polynucleotide Phosphorylase at Low Temperatures Is Linked to a Decrease in the Efficiency of Autocontrol

    PubMed Central

    Mathy, N.; Jarrige, A.-C.; Robert-Le Meur, M.; Portier, C.

    2001-01-01

    Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18°C, the amount of PNPase is twice that found in cells grown at 30°C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level. PMID:11395447

  7. Increased expression of Escherichia coli polynucleotide phosphorylase at low temperatures is linked to a decrease in the efficiency of autocontrol.

    PubMed

    Mathy, N; Jarrige, A C; Robert-Le Meur, M; Portier, C

    2001-07-01

    Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18 degrees C, the amount of PNPase is twice that found in cells grown at 30 degrees C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level.

  8. Identification of Genes Potentially Regulated by Human Polynucleotide Phosphorylase (hPNPaseold-35) Using Melanoma as a Model

    PubMed Central

    Sokhi, Upneet K.; Bacolod, Manny D.; Dasgupta, Santanu; Emdad, Luni; Das, Swadesh K.; Dumur, Catherine I.; Miles, Michael F.; Sarkar, Devanand; Fisher, Paul B.

    2013-01-01

    Human Polynucleotide Phosphorylase (hPNPaseold-35 or PNPT1) is an evolutionarily conserved 3′→5′ exoribonuclease implicated in the regulation of numerous physiological processes including maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation. From an RNase perspective, little is known about the RNA or miRNA species it targets for degradation or whose expression it regulates; except for c-myc and miR-221. To further elucidate the functional implications of hPNPaseold-35 in cellular physiology, we knocked-down and overexpressed hPNPaseold-35 in human melanoma cells and performed gene expression analyses to identify differentially expressed transcripts. Ingenuity Pathway Analysis indicated that knockdown of hPNPaseold-35 resulted in significant gene expression changes associated with mitochondrial dysfunction and cholesterol biosynthesis; whereas overexpression of hPNPaseold-35 caused global changes in cell-cycle related functions. Additionally, comparative gene expression analyses between our hPNPaseold-35 knockdown and overexpression datasets allowed us to identify 77 potential “direct” and 61 potential “indirect” targets of hPNPaseold-35 which formed correlated networks enriched for cell-cycle and wound healing functional association, respectively. These results provide a comprehensive database of genes responsive to hPNPaseold-35 expression levels; along with the identification new potential candidate genes offering fresh insight into cellular pathways regulated by PNPT1 and which may be used in the future for possible therapeutic intervention in mitochondrial- or inflammation-associated disease phenotypes. PMID:24143183

  9. Polynucleotide phosphorlyase (PNPase) is required for Salmonella enterica serovar Typhimurium colonization in swine

    USDA-ARS?s Scientific Manuscript database

    The pnp gene encodes polynucleotide phosphorylase, an exoribonuclease involved in RNA degradation. A mutation in the pnp gene was previously identified by our group in a signature-tagged mutagenesis screen designed to search for Salmonella enterica serovar Typhimurium genes required for survival in...

  10. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes.

    PubMed

    Bandyra, Katarzyna J; Sinha, Dhriti; Syrjanen, Johanna; Luisi, Ben F; De Lay, Nicholas R

    2016-03-01

    In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3'-to-5' exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3' ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action. © 2016 Bandyra et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes

    PubMed Central

    Bandyra, Katarzyna J.; Sinha, Dhriti; Syrjanen, Johanna; Luisi, Ben F.; De Lay, Nicholas R.

    2016-01-01

    In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3′ ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action. PMID:26759452

  12. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets

    PubMed Central

    2016-01-01

    ABSTRACT Gene regulation by base pairing between small noncoding RNAs (sRNAs) and their mRNA targets is an important mechanism that allows bacteria to maintain homeostasis and respond to dynamic environments. In Gram-negative bacteria, sRNA pairing and regulation are mediated by several RNA-binding proteins, including the sRNA chaperone Hfq and polynucleotide phosphorylase (PNPase). PNPase and its homolog RNase PH together represent the two 3′ to 5′ phosphorolytic exoribonucleases found in Escherichia coli; however, the role of RNase PH in sRNA regulation has not yet been explored and reported. Here, we have examined in detail how PNPase and RNase PH interact to support sRNA stability, activity, and base pairing in exponential and stationary growth conditions. Our results indicate that these proteins facilitate the stability and regulatory function of the sRNAs RyhB, CyaR, and MicA during exponential growth. PNPase further appears to contribute to pairing between RyhB and its mRNA targets. During stationary growth, each sRNA responded differently to the absence or presence of PNPase and RNase PH. Finally, our results suggest that PNPase and RNase PH stabilize only Hfq-bound sRNAs. Taken together, these results confirm and extend previous findings that PNPase participates in sRNA regulation and reveal that RNase PH serves a similar, albeit more limited, role as well. These proteins may, therefore, act to protect sRNAs from spurious degradation while also facilitating regulatory pairing with their targets. IMPORTANCE In many bacteria, Hfq-dependent base-pairing sRNAs facilitate rapid changes in gene expression that are critical for maintaining homeostasis and responding to stress and environmental changes. While a role for Hfq in this process was identified more than 2 decades ago, the identity and function of the other proteins required for Hfq-dependent regulation by sRNAs have not been resolved. Here, we demonstrate that PNPase and RNase PH, the two

  13. Processing of the Escherichia coli leuX tRNA transcript, encoding tRNA(Leu5), requires either the 3'-->5' exoribonuclease polynucleotide phosphorylase or RNase P to remove the Rho-independent transcription terminator.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2010-01-01

    Here we report a unique processing pathway in Escherichia coli for tRNA(Leu5) in which the exoribonuclease polynucleotide phosphorylase (PNPase) removes the Rho-independent transcription terminator from the leuX transcript without requiring the RhlB RNA helicase. Our data demonstrate for the first time that PNPase can efficiently degrade an RNA substrate containing secondary structures in vivo. Furthermore, RNase P, an endoribonuclease that normally generates the mature 5'-ends of tRNAs, removes the leuX terminator inefficiently independent of PNPase activity. RNase P cleaves 4-7 nt downstream of the CCA determinant generating a substrate for RNase II, which removes an additional 3-4 nt. Subsequently, RNase T completes the 3' maturation process by removing the remaining 1-3 nt downstream of the CCA determinant. RNase E, G and Z are not involved in terminator removal. These results provide further evidence that the E. coli tRNA processing machinery is far more diverse than previously envisioned.

  14. PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader

    PubMed Central

    Jarrige, Anne-Charlotte; Mathy, Nathalie; Portier, Claude

    2001-01-01

    Polynucleotide phosphorylase synthesis is autocontrolled at a post-transcriptional level in an RNase III-dependent mechanism. RNase III cleaves a long stem–loop in the pnp leader, which triggers pnp mRNA instability, resulting in a decrease in the synthesis of polynucleotide phosphorylase. The staggered cleavage by RNase III removes the upper part of the stem–loop structure, creating a duplex with a short 3′ extension. Mutations or high temperatures, which destabilize the cleaved stem–loop, decrease expression of pnp, while mutations that stabilize the stem increase expression. We propose that the dangling 3′ end of the duplex created by RNase III constitutes a target for polynucleotide phosphorylase, which binds to and degrades the upstream half of this duplex, hence inducing pnp mRNA instability. Consistent with this interpretation, a pnp mRNA starting at the downstream RNase III processing site exhibits a very low level of expression, regardless of the presence of polynucleotide phosphorylase. Moreover, using an in vitro synthesized pnp leader transcript, it is shown that polynucleotide phosphorylase is able to digest the duplex formed after RNase III cleavage. PMID:11726520

  15. Method for creating polynucleotide and polypeptide sequences

    NASA Technical Reports Server (NTRS)

    Arnold, Frances (Inventor); Volkov, Alexander (Inventor); Shao, Zhixin (Inventor)

    2003-01-01

    The invention provides methods for evolving a polynucleotide toward acquisition of a desired property. Such methods entail incubating a population of parental polynucleotide variants under conditions to generate annealed polynucleotides comprising heteroduplexes. The heteroduplexes are then exposed to a cellular DNA repair system to convert the heteroduplexes to parental polynucleotide variants or recombined polynucleotide variants. The resulting polynucleotides are then screened or selected for the desired property.

  16. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.

    PubMed

    Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo

    2012-02-01

    In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Cellobiohydrolase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  19. Coupled isothermal polynucleotide amplification and translation system

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1998-01-01

    A cell-free system for polynucleotide amplification and translation is disclosed. Also disclosed are methods for using the system and a composition which allows the various components of the system to function under a common set of reaction conditions.

  20. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum

    PubMed Central

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki

    2016-01-01

    ABSTRACT Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum, SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3′-to-5′ exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3′ maturation of 4.5S RNA in C. glutamicum. The mature form of 4.5S RNA was inefficiently formed in ΔrneG Δpnp mutant cells, suggesting the existence of an alternative pathway for the 3′ maturation of 4.5S RNA. Primer extension analysis also revealed that the 5′ mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δpnp, ΔrneG, and ΔybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum, which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3′ maturation of the SRP RNA (4

  1. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum.

    PubMed

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki; Inui, Masayuki

    2017-03-01

    Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum , SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3'-to-5' exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3' maturation of 4.5S RNA in C. glutamicum The mature form of 4.5S RNA was inefficiently formed in Δ rneG Δ pnp mutant cells, suggesting the existence of an alternative pathway for the 3' maturation of 4.5S RNA. Primer extension analysis also revealed that the 5' mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δ pnp , Δ rneG , and Δ ybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum , which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3' maturation of the SRP RNA (4.5S RNA) in

  2. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  3. Polynucleotides encoding polypeptides having beta-glucosidase activity

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  4. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  5. Theoretic Study on Dispersion Mechanism of Boron Nitride Nanotubes by Polynucleotides

    PubMed Central

    Liang, Lijun; Hu, Wei; Zhang, Zhisen; Shen, Jia-Wei

    2016-01-01

    Due to the unique electrical and mechanical properties of boron nitride nanotubes (BNNT), BNNT has been a promising material for many potential applications, especially in biomedical field. Understanding the dispersion of BNNT in aqueous solution by biomolecules is essential for its use in biomedical applications. In this study, BNNT wrapped by polynucleotides in aqueous solution was investigated by molecular dynamics (MD) simulations. Our results demonstrated that the BNNT wrapped by polynucleotides could greatly hinder the aggregation of BNNTs and improve the dispersion of BNNTs in aqueous solution. Dispersion of BNNTs with the assistance of polynucleotides is greatly affected by the wrapping manner of polynucleotides on BNNT, which mainly depends on two factors: the type of polynucleotides and the radius of BNNT. The interaction between polynucleotides and BNNT(9, 9) is larger than that between polynucleotides and BNNT(5, 5), which leads to the fact that dispersion of BNNT(9, 9) is better than that of BNNT(5, 5) with the assistance of polynucleotides in aqueous solution. Our study revealed the molecular-level dispersion mechanism of BNNT with the assistance of polynucleotides in aqueous solution. It shades a light on the understanding of dispersion of single wall nanotubes by biomolecules. PMID:28004832

  6. Isolated Polynucleotides and Methods of Promoting a Morphology in a Fungus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasure, Linda L; Dai, Ziyu

    2008-10-21

    The invention includes isolated polynucleotide molecules that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention includes a method of enhancing a bioprocess utilizing a fungus. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to a promoter. The polynucleotide sequence is expressed to promote a first morphology. The first morphology of the transformed fungus enhances a bioprocess relative to the bioprocess utilizing a second morphology.

  7. Recombination of polynucleotide sequences using random or defined primers

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin H; Giver, Lorraine J.

    2000-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  8. Recombination of polynucleotide sequences using random or defined primers

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin; Giver, Lorraine J.

    2001-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  9. Polypeptides having catalase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    Provided are isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Duan, Junxin; Tang, Lan

    2015-09-22

    The present invention provides isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cell comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having cellobiohydrolase activitiy and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Duan, Junxin

    2015-12-15

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-07-14

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Beta-glucosidase variants and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Harris, Paul; Osborn, David

    The present invention relates to beta-glucosidase variants, e.g. beta-glucosidase variants of a parent Family GH3A beta-glucosidase from Aspergillus fumigatus. The present invention also relates to polynucleotides encoding the beta-glucosidase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the beta-glucosidase variants.

  15. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate.

    PubMed

    Van de Werve, G; Hers, H G

    1979-01-15

    1. A dose-dependent activation of phosphorylase and consumption of ATP was observed in isolated hepatocytes incubated in the presence of fructose; histone kinase and phosphorylase kinase activities were unchanged at doses of this sugar that were fully effective on phosphorylase. The activation of phosphorylase by fructose was also observed in cells incubated in a Ca2+-free medium as well as in the livers of rats in vivo. 2. In a liver high-speed supernatant, fructose, tagatose and sorbose stimulated the activity of phosphorylase kinase; this effect was dependent on the presence of K+ ions, which are required for the activity of fructokinase; it was accompanied by the transformation of ATP into ADP. In the presence of hexokinase, glucose also stimulated phosphorylase kinase, both in an Na+ or a K+ medium. 3. The activities of partially purified muscle or liver phosphorylase kinase were unchanged in the presence of fructose. 4. Some properties of liver phosphorylase kinase are described, including a high molecular weight and an inhibition at ATP/Mg ratios above 0.5, as well as an effect of ATP concentration on the hysteretic behaviour of this enzyme. 5. The effect of fructose on the activation of phosphorylase is discussed in relation to the comsumption of ATP.

  16. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez de Leon, Alfredo; Rey, Michael

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2012-09-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2010-12-14

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Lopez de Leon, Alfredo [Davis, CA; Rey, Micheal [Davis, CA; Ding, Hanshu [Davis, CA; Vlasenko, Elena [Davis, CA

    2012-02-21

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  4. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-06-28

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2016-05-31

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-02-10

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-02-23

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Ding, Hanshu

    2013-04-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Hanshu, Ding

    2012-10-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-11-20

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-01-27

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-21

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-03-10

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2017-05-02

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-03-31

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Brown, Kimberly [Elk Grove, CA; Harris, Paul [Carnation, WA; Lopez De Leon, Alfredo [Davis, CA; Merino, Sandra [West Sacremento, CA

    2007-05-22

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  17. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Harris, Paul; Tang, Lan; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Harris, Paul; Wu, Wenping

    2012-10-02

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2013-06-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    2016-12-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-14

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-07-14

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. The fuzzy polynucleotide space: basic properties.

    PubMed

    Torres, Angela; Nieto, Juan J

    2003-03-22

    Any triplet codon may be regarded as a 12-dimensional fuzzy code. Sufficient information about a particular sequence may not be available in certain situations. The investigator will be confronted with imprecise sequences, yet want to make comparisons of sequences. Fuzzy polynucleotides can be compared by using geometrical interpretation of fuzzy sets as points in a hypercube. We introduce the space of fuzzy polynucleotides and a means of measuring dissimilitudes between them. We establish mathematical principles to measure dissimilarities between fuzzy polynucleotides and present several examples in this metric space. We calculate the frequencies of the nucleotides at the three base sites of a codon in the coding sequences of Escherichia coli K-12 and Mycobacterium tuberculosis H37Rv, and consider them as points in that fuzzy space. We compute the distance between the genomes of E.coli and M.tuberculosis.

  5. Caffeine inhibition of glycogen phosphorylase from Mytilus galloprovincialis mantle tissue.

    PubMed

    San Juan Serrano, F; Sánchez López, J L; García Martín, L O

    1995-09-01

    A different caffeine inhibition of both phosphorylated and unphosphorylated forms of glycogen phosphorylase from Mytilus mantle has been demonstrated. Caffeine increases the allosteric constant of phosphorylase b 30-fold, acting as an allosteric inhibitor (nH = 2) of mixed type with respect to inorganic phosphate (Pi) and AMP, and of single competitive type with respect to glycogen. The Mytilus phosphorylated form is also caffeine inhibited through competitive inhibition in relation to Pi and glycogen. In this case, the inhibitor does not modify the allosteric constant (near 2), neither does it display allosteric effects (nH = 1). The results demonstrate the notable modification of the nucleotide site promoted by the phosphorylation process and the existence of a functional inhibitory nucleoside site in Mytilus phosphorylase.

  6. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having beta-glucosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Zhang, Yu

    Provided are isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Shaghasi, Tarana

    2016-11-01

    The present invention provides hybrid polypeptides having cellobiohydrolase activity. The present invention also provides polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Shaghasi, Tarana

    The present invention relates to hybrid polypeptides having cellobiohydrolase activity. The present invention also relates to polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  11. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having xylanase activity and polynucleotides encoding the same

    DOEpatents

    Spodsberg, Nikolaj [Bagsvaed, DK

    2014-01-07

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The inventino also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lan; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo [Davis, CA; Ding, Hanshu [Davis, CA; Brown, Kimberly [Elk Grove, CA

    2011-10-25

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-11-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan [Beijing, CN; Liu, Ye [Beijing, CN; Duan, Junxin [Beijing, CN; Zhang, Yu [Beijing, CN; Jorgensen, Christian Isak [Bagsvaerd, DK; Kramer, Randall [Lincoln, CA

    2012-04-03

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin [Beijing, CN; Liu, Ye [Beijing, CN; Tang, Lan [Beijing, CN; Wu, Wenping [Beijing, CN; Quinlan, Jason [Albany, CA; Kramer, Randall [Lincoln, CA

    2012-03-27

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2016-11-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2014-09-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2014-10-21

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2007-07-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  6. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2011-06-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-04-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin; Tang, Lan; Liu, Ye; Wu, Wenping; Quinlan, Jason; Kramer, Randall

    2013-06-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj; Shaghasi, Tarana

    The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.

  13. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj; Shagasi, Tarana

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  14. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringer, Mary Ann; McBrayer, Brett

    2016-11-29

    The present invention relates to isolated polypeptides having cellobiohydrolase activity, catalytic domains, and cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains, and cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, or cellulose binding domains.

  15. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj; Shagasi, Tarana

    2015-06-30

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  16. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc

    2014-01-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase, or beta-glucosidase activity and isolated polynucleotides encoding polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Agouti polynucleotide compositions and methods of use

    DOEpatents

    Woychik, Richard P.; Bultman, Scott J.; Michaud, Edward J.

    2003-02-04

    Disclosed are methods and compositions comprising novel agouti polypeptides and the polynucleotides which encode them. Also disclosed are DNA segments encoding these proteins derived from human and murine cell lines, and the use of these polynucleotides and polypeptides in a variety of diagnostic and therapeutic applications. Methods, compositions, kits, and devices are also provided for identifying compounds which are inhibitors of agouti activity, and for altering fatty acid synthetase activity and intracellular calcium levels in transformed cells.

  18. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-10-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Glycal Formation in Crystals of Uridine Phosphorylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Debamita; O’Leary, Sen E.; Rajashankar, Kanagalaghatta

    2010-06-22

    Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2{prime}-deoxyuridine to 2{prime}-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2{prime}-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate, and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to actmore » as the base required for glycal formation via deprotonation at C2{prime}. Crystals of bovine uridine phosphorylase treated with 2{prime}-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously unencountered mechanistic motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds.« less

  20. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2013-11-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    DOEpatents

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-12-24

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  4. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Matt; Wogulis, Mark

    The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  5. [Antisense polynucleotides and prospects for their use in fighting viruses].

    PubMed

    Tikhonenko, T I

    1989-01-01

    Natural or synthetic anti-sense (as) polynucleotides complementary to distinct functional regions of mRNA (asRNA or asDNA) are able to inhibit the expression of any target gene. If certain viral mRNAs important for virus replication are targeted the inhibition of viral infection by asRNA or asDNA takes place. Inhibitory effects of complementary polynucleotides on gene activity in eukaryotic cells is due to the disturbance of translation of corresponding mRNAs as well as to the impairment of their splicing or transportation from the nuclei to cytoplasm. In prokaryotic cells, obviously, only the first factor is operating. The recombinant genes programming anti-viral asRNA can confer the resistance to the infection by other virus to the transformed cells. The resistance to viral infection observed in transgenic animals, expressing asRNA genes, may be considered as a new unnatural form of informational immunity.

  6. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamermore » with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.« less

  7. Effect of polynucleotides on the dimerization of glycine. [abiological protein synthesis in primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1981-01-01

    Results from experiments to determine the effect of polynucleotides on abiological formation of peptide bonds are reported. The reaction between glycine molecules in an aqueous phase in the presence of a condensing agent was chosen as a model, with polyphosphates being selected as the condensing agent for biologically relevant peptide formation. Four types of polynucleotides were used: polygluanic acid (G), polyuridic acid (U), polyadenylic acid (A), and polycytidylic acid (C); the effects of small anions, acetate, chloride, and phosphate, were also studied. Procedures are given, including concentrations, pH, and incubation time, and the type of amino acid analyzer. The diglycine yields were, in order of most to least: G, C, A, U, and are diagrammed as a function of time; rate of formation followed the same order of magnitude as the final yields. Anion presence displayed no discernible effect. The results are taken to indicate that polynucleotides do have an effect on the formation of peptide bonds, an effect significant in the understanding of chemical evolution.

  8. Restriction/modification polypeptides, polynucleotides, and methods

    DOEpatents

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  9. Reduction of endogenous nucleic acid in a single-cell protein.

    PubMed Central

    Yang, H H; Thayer, D W; Yang, S P

    1979-01-01

    The reduction of nucleic acid by an endogenous polynucleotide phosphorylase and ribonuclease in cells of Brevibacterium JM98A (ATCC 29895) was studied. A simple process was developed for the activation of the endogenous RNA-degrading enzyme(s). RNA degradation was activated by the presence of Pi with 14.2 mumol of ribonucleoside 5'-monophosphate per g of cell mass accumulating extracellularly. The optimum pH for degradation of RNA was 10.5 and the optimum temperature was 55 to 60 degrees C. Enzymatic activity was inhibited by the presence of Ca2+, Zn2+, or Mg2+. Although some of the RNA-degrading enzymatic activity was associated with the ribosomal fraction, most was soluble. Both polynucleotide phosphorylase and ribonuclease activities were identified. PMID:39504

  10. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.

    PubMed

    Bruder, Lena M; Dörkes, Marcel; Fuchs, Bernhard M; Ludwig, Wolfgang; Liebl, Wolfgang

    2016-10-01

    The gut microbiome represents a key contributor to human physiology, metabolism, immune function, and nutrition. Elucidating the composition and genetics of the gut microbiota under various conditions is essential to understand how microbes function individually and as a community. Metagenomic analyses are increasingly used to study intestinal microbiota. However, for certain scientific questions it is sufficient to examine taxon-specific submetagenomes, covering selected bacterial genera in a targeted manner. Here we established a new variant of fluorescence in situ hybridization (FISH) combined with fluorescence-activated cell sorting (FACS), providing access to the genomes of specific taxa belonging to the complex community of the intestinal microbiota. In contrast to standard oligonucleotide probes, the RNA polynucleotide probe used here, which targets domain III of the 23S rRNA gene, extends the resolution power in environmental samples by increasing signal intensity. Furthermore, cells hybridized with the polynucleotide probe are not subjected to harsh pretreatments, and their genetic information remains intact. The protocol described here was tested on genus-specifically labeled cells in various samples, including complex fecal samples from different laboratory mouse types that harbor diverse intestinal microbiota. Specifically, as an example for the protocol described here, RNA polynucleotide probes could be used to label Enterococcus cells for subsequent sorting by flow cytometry. To detect and quantify enterococci in fecal samples prior to enrichment, taxon-specific PCR and qPCR detection systems have been developed. The accessibility of the genomes from taxon-specifically sorted cells for subsequent molecular analyses was demonstrated by amplification of functional genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library.

    PubMed

    Macdonald, Spencer S; Patel, Ankoor; Larmour, Veronica L C; Morgan-Lang, Connor; Hallam, Steven J; Mark, Brian L; Withers, Stephen G

    2018-03-02

    Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N -acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Synthesis of glycogen from fructose in the presence of elevated levels of glycogen phosphorylase a in rat hepatocytes.

    PubMed

    Ciudad, C J; Massagué, J; Salavert, A; Guinovart, J J

    1980-03-20

    Incubation of hepatocytes with glucose promoted the increase in the glycogen synthase (-glucose 6-phosphate/+glucose 6-phosphate) activity ratio, the decrease in the levels of phosphorylase a and a marked increase in the intracellular glycogen level. Incubation with fructose alone promoted the simultaneous activation of glycogen synthase and increase in the levels of phosphorylase a. Strikingly, glycogen deposition occurred in spite of the elevated levels of phosphorylase a. When glucose and fructose were added to the media the activation of glycogen synthase was always higher than when the hexoses were added separately. On the other hand the effects on glycogen phosphorylase were a function of the relative concentrations of both sugars. Inactivation of glycogen phosphorylase occurred when the fructose to glucose ratio was low while activation took place when the ratio was high. The simultaneous presence of glucose and fructose resulted, in all cases, in an enhancement in the deposition of glycogen. The effects described were not limited to fructose as D-glyceraldehyde, dihydroxyacetone, L-sorbose, D-tagatose and sorbitol, compounds metabolically related to fructose, provoked the same behaviour.

  13. An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP.

    PubMed

    Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-11-11

    Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Polypeptides having beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    PubMed

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-02

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.

  16. Purification and Properties of Mesophyll and Bundle Sheath Cell α-Glucan Phosphorylases from Zea mays L. 1

    PubMed Central

    Mateyka, Christian; Schnarrenberger, Claus

    1988-01-01

    Two major α-glucan phosphorylases (I and II) from leaves of the C4 plant corn (Zea mays L.) were previously shown to be compartmented in mesophyll and bundle sheath cells, respectively (C Mateyka, C Schnarrenberger 1984 Plant Sci Lett 36: 119-123). The two enzymes were separated by chromatography on DEAE-cellulose and purified to homogeneity by affinity chromatography on immobilized starch, according to published procedures, as developed for the cytosol and chloroplast phosphorylase from the C3 plant spinach. The two α-glucan phosphorylases have their pH optimum at pH 7. The specificity for polyglucans was similar for soluble starch and amylopectin, however, differed for glycogen (Km = 16 micrograms per milliliter for the mesophyll cell and 250 micrograms per milliliter for the bundle sheath cell phosphorylase). Maltose, maltotriose, and maltotetraose were not cleaved by either phosphorylase. If maltopentaose was used as substrate, the rate was about twice as high with the bundle sheath cell phosphorylase, than with the mesophyll cell phosphorylase. The phosphorylase I showed a molecular mass of 174 kilodaltons and the phosphorylase II of 195 kilodaltons for the native enzyme and of 87 and of 53 kilodaltons for the SDS-treated proteins, respectively. Specific antisera raised against mesophyll cell phosphorylase from corn leaves and against chloroplast phosphorylase from spinach leaves implied high similarity for the cytosol phosphorylase of the C3 plant spinach with mesophyll cell phosphorylase of the C4 plant corn and of chloroplast phosphorylase of spinach with the bundle sheath cell phosphorylase of corn. Images Fig. 2 Fig. 7 PMID:16665923

  17. [Purine and pyrimidine nucleoside phosphorylases - remarkable enzymes still not fully understood].

    PubMed

    Bzowska, Agnieszka

    2015-01-01

    Purine and pyrimidine nucleoside phosphorylases catalyze the reversible phosphorolytic cleavage of the glycosidic bond of purine and pyrimidine nucleosides, and are key enzymes of the nucleoside salvage pathway. This metabolic route is the less costly alternative to the de novo synthesis of nucleosides and nucleotides, supplying cells with these important building blocks. Interest in nucleoside phosphorylases is not only due to their important role in metabolism of nucleosides and nucleotides, but also due to the potential medical use of the enzymes (all phosphorylases in activating prodrugs - nucleoside and nucleic base analogs, high-molecular mass purine nucleoside phosphorylases in gene therapy of some solid tumors) and their inhibitors (as selective immunosuppressive, anticancer and antiparasitic agents, and preventing inactivation of other nucleoside drugs). Phosphorylases are also convenient tools for efficient enzymatic synthesis of otherwise inaccessible nucleoside analogues. In this paper the contribution of Professor David Shugar and some of his colleagues and coworkers in studies of these remarkable enzymes carried out over nearly 40 years is discussed on the background of global research in this field.

  18. Cyclin Polynucleotides, Polypeptides And Uses Thereof.

    DOEpatents

    Lowe, Keith S.; Tao, Yumin; Gordon-Kamm, William J.; Gregory, Carolyn A.; Hoerster, George J.; McElver, John A.

    2003-02-11

    The invention provides isolated polynucleotides and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content and/or composition of plants.

  19. The N-terminus of glycogen phosphorylase b is not required for activation by adenosine 5'-monophosphate.

    PubMed

    Bigley, Andrew N; Reinhart, Gregory D

    2010-06-15

    The, so far unsuccessful, search for selective effective inhibitors of glycogen phosphorylase for the treatment of type II diabetes has made phosphorylase an active target of research for the past 20 years. Many crystallographic structures of phosphorylase are currently available to aid in this research. However, those structures have been interpreted, at least in part, on the basis of work conducted with a proteolytically derived form of phosphorylase that lacked the N-terminus (phosphorylase b'). It has been reported that phosphorylase b' shows no allostery, neither homotropic nor heterotropic. The original report on phosphorylase b' examined the allosteric characteristics over very narrow ranges of effector and substrate concentrations and reported the presence of proteolytic cleavages in addition to the removal of the N-terminus. We have applied molecular biological techniques to generate a truncate lacking the N-terminus with known primary structure, and we have established conditions for fully quantifying the allosteric effect of AMP on glycogen phosphorylase b. We report here for the first time the full thermodynamic effect of AMP on phosphorylase b. Our findings with a truncate lacking the N-terminus show that the effect of AMP binding does not depend on the N-terminus.

  20. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

    NASA Astrophysics Data System (ADS)

    Prokofev, I. I.; Lashkov, A. A.; Gabdulkhakov, A. G.; Balaev, V. V.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-11-01

    In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2'-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation

  1. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-04-29

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Nicotinamide riboside phosphorylase from beef liver: purification and characterization.

    PubMed

    Imai, T; Anderson, B M

    1987-04-01

    Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.

  4. The α-Glucan Phosphorylase MalP of Corynebacterium glutamicum Is Subject to Transcriptional Regulation and Competitive Inhibition by ADP-Glucose

    PubMed Central

    Clermont, Lina; Macha, Arthur; Müller, Laura M.; Derya, Sami M.; von Zaluskowski, Philipp; Eck, Alexander; Eikmanns, Bernhard J.

    2015-01-01

    ABSTRACT α-Glucan phosphorylases contribute to degradation of glycogen and maltodextrins formed in the course of maltose metabolism in bacteria. Accordingly, bacterial α-glucan phosphorylases are classified as either glycogen or maltodextrin phosphorylase, GlgP or MalP, respectively. GlgP and MalP enzymes follow the same catalytic mechanism, and thus their substrate spectra overlap; however, they differ in their regulation: GlgP genes are constitutively expressed and the enzymes are controlled on the activity level, whereas expression of MalP genes are transcriptionally controlled in response to the carbon source used for cultivation. We characterize here the modes of control of the α-glucan phosphorylase MalP of the Gram-positive Corynebacterium glutamicum. In accordance to the proposed function of the malP gene product as MalP, we found transcription of malP to be regulated in response to the carbon source. Moreover, malP transcription is shown to depend on the growth phase and to occur independently of the cell glycogen content. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. Since the latter is considered a typical feature of GlgPs, we propose that C. glutamicum MalP acts as both maltodextrin and glycogen phosphorylase and, based on these findings, we question the current system for classification of bacterial α-glucan phosphorylases. IMPORTANCE Bacterial α-glucan phosphorylases have been classified conferring to their purpose as either glycogen or maltodextrin phosphorylases. We found transcription of malP in C. glutamicum to be regulated in response to the carbon source, which is recognized as typical for maltodextrin phosphorylases. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. The latter is considered a typical feature of GlgPs. These findings

  5. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofev, I. I.; Lashkov, A. A., E-mail: alashkov83@gmail.com; Gabdulkhakov, A. G.

    In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data,more » supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2′-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation.« less

  6. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  7. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  8. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    DOEpatents

    Oda, Michael N [Benicia, CA; Forte, Trudy M [Berkeley, CA

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  9. Polynucleotide: adenosine glycosidase activity of saporin-L1: effect on DNA, RNA and poly(A).

    PubMed Central

    Barbieri, L; Valbonesi, P; Gorini, P; Pession, A; Stirpe, F

    1996-01-01

    The ribosome-inactivating proteins (RIPs) are a family of plant enzymes for which a unique activity has been determined: rRNA N-glycosidase, which removes adenine at a specific universally conserved position (A4324 in the case of rat ribosomes). Here we report that saporin-L1, a RIP from the leaves of Saponaria officinalis, recognizes other substrates, including RNAs from different sources, DNA and poly(A). Saporin-L1 depurinated DNA extensively and released adenine from all adenine-containing polynucleotides tested. Adenine was the only base released from DNA or artificial polynucleotides. The characteristics of the reactions catalysed by saporin-L1 have been determined: optimal pH and temperature, ionic requirements, and the kinetic parameters Km and kcat. The reaction proceeded without cofactors, at low ionic strength, in the absence of Mg2+ and K+. Saporin-L1 had no activity towards various adenine-containing non-polynucleotide compounds (cytokinins, cofactors, nucleotides). This plant protein may now be classified as a polynucleotide: adenosine glycosidase. PMID:8912688

  10. Methods of using viral replicase polynucleotides and polypeptides

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Bailey, Matthew A.; Gregory, Carolyn A.; Hoerster, George J.; Larkins, Brian A.; Dilkes, Brian R.; Burnett, Ronald; Woo, Young Min

    2007-12-18

    The invention provides novel methods of using viral replicase polypeptides and polynucleotides. Included are methods for increasing transformation frequencies, increasing crop yield, providing a positive growth advantage, modulating cell division, transiently modulating cell division, and for providing a means of positive selection.

  11. Transition state analysis of Trypanosoma cruzi uridine phosphorylase-catalyzed arsenolysis of uridine

    PubMed Central

    Silva, Rafael G.; Vetticatt, Mathew J.; Merino, Emilio F.; Cassera, Maria B.; Schramm, Vern L.

    2011-01-01

    Uridine phosphorylase catalyzes the reversible phosphorolysis of uridine and 2′-deoxyuridine to generate uracil and (2-deoxy)ribose 1-phosphate, an important step in the pyrimidine salvage pathway. The coding sequence annotated as a putative nucleoside phosphorylase in the Trypanosoma cruzi genome was overexpressed in Escherichia coli, purified to homogeneity, and shown to be a homodimeric uridine phosphorylase, with similar specificity for uridine and 2′-deoxyuridine, and undetectable activity towards thymidine and purine nucleosides. Competitive kinetic isotope effects (KIEs) were measured and corrected for a forward commitment factor using arsenate as the nucleophile. The intrinsic KIEs are: 1′-14C = 1.103, 1,3-15N2 = 1.034, 3-15N = 1.004, 1-15N = 1.030, 1′-3H = 1.132, 2′-2H = 1.086 and 5′-3H2 = 1.041 for this reaction. Density functional theory was employed to quantitatively interpret the KIEs in terms of transition state structure and geometry. Matching of experimental KIEs to proposed transition state structures suggests an almost synchronous, SN2-like transition state model, in which the ribosyl moiety possesses significant bond order to both nucleophile and leaving group. Natural bond orbital analysis allowed a comparison of the charge distribution pattern between the ground state and the transition state model. PMID:21599004

  12. Secure and effective gene delivery system of plasmid DNA coated by polynucleotide.

    PubMed

    Kodama, Yukinobu; Ohkubo, Chikako; Kurosaki, Tomoaki; Egashira, Kanoko; Sato, Kayoko; Fumoto, Shintaro; Nishida, Koyo; Higuchi, Norihide; Kitahara, Takashi; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.

  13. Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples

    PubMed Central

    Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel

    2017-01-01

    Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837

  14. Expression and function of methylthioadenosine phosphorylase in chronic liver disease.

    PubMed

    Czech, Barbara; Dettmer, Katja; Valletta, Daniela; Saugspier, Michael; Koch, Andreas; Stevens, Axel P; Thasler, Wolfgang E; Müller, Martina; Oefner, Peter J; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2013-01-01

    To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease. MTAP expression was analyzed by qRT-PCR, Western blot and immunohistochemical analysis. Levels of MTA were determined by liquid chromatography-tandem mass spectrometry. MTAP was downregulated in hepatocytes in murine fibrosis models and in patients with chronic liver disease, leading to a concomitant increase in MTA levels. In contrast, activated hepatic stellate cells (HSCs) showed strong MTAP expression in cirrhotic livers. However, also MTA levels in activated HSCs were significantly higher than in hepatocytes, and there was a significant correlation between MTA levels and collagen expression in diseased human liver tissue indicating that activated HSCs significantly contribute to elevated MTA in diseased livers. MTAP suppression by siRNA resulted in increased MTA levels, NFκB activation and apoptosis resistance, while overexpression of MTAP caused the opposite effects in HSCs. The anti-apoptotic effect of low MTAP expression and high MTA levels, respectively, was mediated by induced expression of survivin, while inhibition of survivin abolished the anti-apoptotic effect of MTA on HSCs. Treatment with a DNA demethylating agent induced MTAP and reduced survivin expression, while oxidative stress reduced MTAP levels but enhanced survivin expression in HSCs. MTAP mediated regulation of MTA links polyamine metabolism with NFκB activation and apoptosis in HSCs. MTAP and MTAP modulating mechanisms appear as promising prognostic markers and therapeutic targets for hepatic fibrosis.

  15. Expression and Function of Methylthioadenosine Phosphorylase in Chronic Liver Disease

    PubMed Central

    Czech, Barbara; Dettmer, Katja; Valletta, Daniela; Saugspier, Michael; Koch, Andreas; Stevens, Axel P.; Thasler, Wolfgang E.; Müller, Martina; Oefner, Peter J.; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2013-01-01

    To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease. Design MTAP expression was analyzed by qRT-PCR, Western blot and immunohistochemical analysis. Levels of MTA were determined by liquid chromatography-tandem mass spectrometry. Results MTAP was downregulated in hepatocytes in murine fibrosis models and in patients with chronic liver disease, leading to a concomitant increase in MTA levels. In contrast, activated hepatic stellate cells (HSCs) showed strong MTAP expression in cirrhotic livers. However, also MTA levels in activated HSCs were significantly higher than in hepatocytes, and there was a significant correlation between MTA levels and collagen expression in diseased human liver tissue indicating that activated HSCs significantly contribute to elevated MTA in diseased livers. MTAP suppression by siRNA resulted in increased MTA levels, NFκB activation and apoptosis resistance, while overexpression of MTAP caused the opposite effects in HSCs. The anti-apoptotic effect of low MTAP expression and high MTA levels, respectively, was mediated by induced expression of survivin, while inhibition of survivin abolished the anti-apoptotic effect of MTA on HSCs. Treatment with a DNA demethylating agent induced MTAP and reduced survivin expression, while oxidative stress reduced MTAP levels but enhanced survivin expression in HSCs. Conclusion MTAP mediated regulation of MTA links polyamine metabolism with NFκB activation and apoptosis in HSCs. MTAP and MTAP modulating mechanisms appear as promising prognostic markers and therapeutic targets for hepatic fibrosis. PMID:24324622

  16. Metabolism of the reserve polysaccharide of Streptococcus mitior (mitis): is there a second alpha-1,4-glucan phosphorylase?

    PubMed Central

    Pulkownik, A; Walker, G J

    1976-01-01

    The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells. PMID:6434

  17. Altered Plasticity of Glycogen Phosphorylase in Forebrain Gliosomes Obtained from Insulinoma Patients.

    PubMed

    Tao, Zhen; Cheng, Ming; Hu, Huaiqiang; Wang, Shucai; Su, Jing; Lv, Wei; Guo, Hongwei; Tang, Jigang; Cao, Bingzhen

    2015-09-01

    We investigated a control model of hypoglycemia-exposed brain tissues from a small series of patients with insulinoma, immediately dissect them, and perform a differential cold centrifugation to obtain gliosomes and examine alterations of glycogenolytic mechanisms. The BB as well as MM isoforms of glycogen phosphorylase enzymatic protein expression remained unaltered between insulinoma and control subjects within the gliosomes. However, the glycogen phosphorylase remained in a form that was potentially activated several folds on placing the gliosomes in a glucose-free medium. This was examined by its increased interaction with protein kinase A. Inhibitors of glycogen phosphorylase was used as controls. Furthermore, we demonstrated that glucose-depleted medium enhanced production of both ATP and lactate by the gliosomes. It is possible that a portion of glucose obtained from glycogen breakdown was circuited through glycolytic pathways to generate ATP. It has been reported earlier that ATP within gliosomes plays a major role in glutamate uptake, thus potentially preventing seizure during active bouts of hypoglycemia. Lactate shuttle from astrocytes is a potential mechanism to balance neuronal bioenergetics during events of hypoglycemia. Newer approaches to pharmacologically modulate glycogen phosphorylase may prove to be rational approach for neuroprotective therapy in this common clinical syndrome of hypoglycemia.

  18. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  19. A Novel GDP-d-glucose Phosphorylase Involved in Quality Control of the Nucleoside Diphosphate Sugar Pool in Caenorhabditis elegans and Mammals*

    PubMed Central

    Adler, Lital N.; Gomez, Tara A.; Clarke, Steven G.; Linster, Carole L.

    2011-01-01

    The plant VTC2 gene encodes GDP-l-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-d-glucose to GDP and d-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-d-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-d-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-d-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-d-glucose in the C10F3.4 mutant worms, suggesting that the GDP-d-glucose phosphorylase may function to remove GDP-d-glucose formed by GDP-d-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological d-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals. PMID:21507950

  20. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals.

    PubMed

    Adler, Lital N; Gomez, Tara A; Clarke, Steven G; Linster, Carole L

    2011-06-17

    The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-D-glucose to GDP and D-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-D-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-D-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-D-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-D-glucose in the C10F3.4 mutant worms, suggesting that the GDP-D-glucose phosphorylase may function to remove GDP-D-glucose formed by GDP-D-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological D-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals.

  1. Modification of kinetic parameters of glycogen phosphorylase from mantle tissue of Mytilus galloprovincialis by a phosphorylation mechanism.

    PubMed

    San Juan Serrano, F; Fernández González, M; Sánchez López, J L; García Martín, L O

    1995-09-01

    Initial rate and affinity studies on mantle Mytilus phosphorylase a were carried out in order to find possible differences in its kinetic properties with respect to phosphorylase b. Phosphorylase a was not stimulated for any AMP concentrations. Michaelis constants (Km) are 0.05 mg/ml glycogen, 1.15 mM inorganic phosphate and 1.50 mM glucose-1-phosphate. The Kms for the substrates, in the direction of glycogen breakdown, are enhanced by non-saturating concentrations of cosubstrate, without reducing the apparent maximum velocity. First order and hyperbolic kinetics and values of the allosteric constant smaller than 2 were observed. These results suggest a catalytic mechanism different to that shown for mantle Mytilus phosphorylase b.

  2. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: tostars@mail.ru; Abramchik, Yu. A., E-mail: ugama@yandex.ru; Zhukhlistova, N. E., E-mail: inna@ns.crys.ras.ru

    2016-03-15

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment ofmore » the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB-ID: 4RJ2).« less

  3. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaev, V. V.; Lashkov, A. A., E-mail: alashkov83@gmail.com; Gabdoulkhakov, A. G.

    2015-03-15

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis (YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability (R{sub work} =more » 16.2, R{sub free} = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.« less

  4. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M.

    2015-03-01

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis ( YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability ( R work = 16.2, R free = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  5. The activity of thymidine phosphorylase obtained from human uterine leiomyomas and studied in the presence of pyrimidine derivatives.

    PubMed

    Miszczak-Zaborska, E; Woźniak, K

    1997-01-01

    Partially purified samples of thymidine phosphorylase were obtained from four preparations of human uterine leiomyomas and uteri using the method of Yoshimura et al. (1990), Biochim. Biophys. Acta 1034, 107-113. Among the studied twelve pyrimidine derivatives, 5-bromouracil, 5-nitrouracil, 5-fluorouracil, 6-aminouracil, 4, 6-dihydroxy-5-nitropyrimidine are competitive inhibitors, while allyloxymethylthymine is an uncompetitive inhibitor of thymidine phosphorylase activity, 6-benzyl-2-thiouracil inhibits the activity of the enzyme in a mixed way. The most potent inhibitor of the thymidine phosphorylase activity is 5-bromouracil and uracil the weakest one. Stronger inhibition of these compounds on the activity of thymidine phosphorylase was found in uterine leiomyomas than in uteri.

  6. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morant, Marc

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Activator anion binding site in pyridoxal phosphorylase b: the binding of phosphite, phosphate, and fluorophosphate in the crystal.

    PubMed Central

    Oikonomakos, N. G.; Zographos, S. E.; Tsitsanou, K. E.; Johnson, L. N.; Acharya, K. R.

    1996-01-01

    It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis. PMID:8976550

  8. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.

    2007-10-01

    S. typhimurium uridine phosphorylase has been isolated and crystallized in the presence of ligand. Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding themore » catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.« less

  9. Discovery of the glycogen phosphorylase-modulating activity of a resveratrol glucoside by using a virtual screening protocol optimized for solvation effects.

    PubMed

    Mavrokefalos, Nikolaos; Myrianthopoulos, Vassilios; Chajistamatiou, Aikaterini S; Chrysina, Evangelia D; Mikros, Emmanuel

    2015-04-01

    The identification of natural products that can modulate blood glucose levels is of great interest as it can possibly facilitate the utilization of mild interventions such as herbal medicine or functional foods in the treatment of chronic diseases like diabetes. One of the established drug targets for antihyperglycemic therapy is glycogen phosphorylase. To evaluate the glycogen phosphorylase inhibitory properties of an in-house compound collection consisting to a large extent of natural products, a stepwise virtual and experimental screening protocol was devised and implemented. The fact that the active site of glycogen phosphorylase is highly hydrated emphasized that a methodological aspect needed to be efficiently addressed prior to an in silico evaluation of the compound collection. The effect of water molecules on docking calculations was regarded as a key parameter in terms of virtual screening protocol optimization. Statistical analysis of 125 structures of glycogen phosphorylase and solvent mapping focusing on the active site hydration motif in combination with a retrospective screening revealed the importance of a set of 29 crystallographic water molecules for achieving high enrichment as to the discrimination between active compounds and inactive decoys. The scaling of Van der Waals radii of system atoms had an additional effect on screening performance. Having optimized the in silico protocol, a prospective evaluation of the in-house compound collection derived a set of 18 top-ranked natural products that were subsequently evaluated in vitro for their activity as glycogen phosphorylase inhibitors. Two phenolic glucosides with glycogen phosphorylase-modulating activity were identified, whereas the most potent compound affording mid-micromolar inhibition was a glucosidic derivative of resveratrol, a stilbene well-known for its wide range of biological activities. Results show the possible phytotherapeutic and nutraceutical potential of products common in

  10. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    PubMed Central

    Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006

  11. FR258900, a novel glycogen phosphorylase inhibitor isolated from Fungus No. 138354. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Furukawa, Shigetada; Tsurumi, Yasuhisa; Murakami, Kana; Nakanishi, Tomoko; Ohsumi, Keisuke; Hashimoto, Michizane; Nishikawa, Motoaki; Takase, Shigehiro; Nakayama, Osamu; Hino, Motohiro

    2005-08-01

    FR258900 is a novel glycogen synthesis activator produced by Fungus No. 138354. This compound was isolated from the culture broth by solvent extraction and reverse-phase column chromatography. FR258900 stimulated glycogen synthesis and glycogen synthase activity in primary rat hepatocytes. FR258900 exhibited a potent inhibitory effect on the activity of liver glycogen phosphorylase, suggesting that this compound may activate hepatic glycogen synthesis via glycogen phosphorylase inhibition. Thus, this glycogen phosphorylase inhibitor may be useful in the treatment of postprandial hyperglycemia in type 2 diabetes.

  12. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.

    PubMed

    Dowdle, John; Ishikawa, Takahiro; Gatzek, Stephan; Rolinski, Susanne; Smirnoff, Nicholas

    2007-11-01

    Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.

  13. The Glucoamylase Inhibitor Acarbose Is a Direct Activator of Phosphorylase Kinase

    PubMed Central

    Nadeau, Owen W.; Liu, Weiya; Boulatnikov, Igor G.; Sage, Jessica M.; Peters, Jennifer L.; Carlson, Gerald M.

    2011-01-01

    Phosphorylase kinase (PhK), an (αβγδ)4 complex, stimulates energy production from glycogen in the cascade activation of glycogenolysis. Its large homologous α and β subunits regulate the activity of the catalytic γ subunit and account for 81% of PhK’s mass. Both subunits are thought to be multi-domain structures, and recent predictions based on their sequences suggest the presence of potentially functional glucoamylase (GH15)-like domains near their amino-termini. We present the first experimental evidence for such a domain in PhK, by demonstrating that the glucoamylase inhibitor acarbose binds PhK, perturbs its structure, and stimulates its kinase activity. PMID:20604537

  14. Chromatin Structure and Breast Cancer Radiosensitivity

    DTIC Science & Technology

    2006-10-01

    for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem. 278:24542-24551 (2003). 5...regulatory proteins on human telomeres. Methods in Molecular Biology. 241: 329-339. 9. Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, and...break response network in meiosis . DNA Repair 3:1149-1164. 12. Shahrabani-Gargir L, Pandita TK and Werner H (2004) Ataxia-telangiectasia

  15. Pnp gene modification for improved xylose utilization in Zymomonas

    DOEpatents

    Caimi, Perry G G; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2014-12-16

    The endogenous pnp gene encoding polynucleotide phosphorylase in the Zymomonas genome was identified as a target for modification to provide improved xylose utilizing cells for ethanol production. The cells are in addition genetically modified to have increased expression of ribose-5-phosphate isomerase (RPI) activity, as compared to cells without this genetic modification, and are not limited in xylose isomerase activity in the absence of the pnp modification.

  16. Characterization of the functional interactions of plastidial starch phosphorylase and starch branching enzymes from rice endosperm during reserve starch biosynthesis.

    PubMed

    Nakamura, Yasunori; Ono, Masami; Sawada, Takayuki; Crofts, Naoko; Fujita, Naoko; Steup, Martin

    2017-11-01

    Functional interactions of plastidial phosphorylase (Pho1) and starch branching enzymes (BEs) from the developing rice endosperm are the focus of this study. In the presence of both Pho1 and BE, the same branched primer molecule is elongated and further branched almost simultaneously even at very low glucan concentrations present in the purified enzyme preparations. By contrast, in the absence of any BE, glucans are not, to any significant extent, elongated by Pho1. Based on our in vitro data, in the developing rice endosperm, Pho1 appears to be weakly associated with any of the BE isozymes. By using fluorophore-labeled malto-oligosaccharides, we identified maltose as the smallest possible primer for elongation by Pho1. Linear dextrins act as carbohydrate substrates for BEs. By functionally interacting with a BE, Pho1 performs two essential functions during the initiation of starch biosynthesis in the rice endosperm: First, it elongates maltodextrins up to a degree of polymerization of at least 60. Second, by closely interacting with BEs, Pho1 is able to elongate branched glucans efficiently and thereby synthesizes branched carbohydrates essential for the initiation of amylopectin biosynthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    PubMed Central

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  18. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  19. Three-dimensional structure of thymidine phosphorylase from E. coli in complex with 3'-azido-2'-fluoro-2',3'-dideoxyuridine

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Fateev, I. V.; Zhukhlistova, N. E.; Murav'eva, T. I.; Kuranova, I. P.; Esipov, R. S.

    2013-11-01

    The three-dimensional structures of thymidine phosphorylase from E. coli containing the bound sulfate ion in the phosphate-binding site and of the complex of thymidine phosphorylase with sulfate in the phosphate-binding site and the inhibitor 3'-azido-2'-fluoro-2',3'-dideoxyuridine (N3F-ddU) in the nucleoside-binding site were determined at 1.55 and 1.50 Å resolution, respectively. The amino-acid residues involved in the ligand binding and the hydrogen-bond network in the active site occupied by a large number of bound water molecules are described. A comparison of the structure of thymidine phosphorylase in complex with N3F-ddU with the structure of pyrimidine nucleoside phosphorylase from St. Aureus in complex with the natural substrate thymidine (PDB_ID: 3H5Q) shows that the substrate and the inhibitor in the nucleoside-binding pocket have different orientations. It is suggested that the position of N3F-ddU can be influenced by the presence of the azido group, which prefers a hydrophobic environment. In both structures, the active sites of the subunits are in the open conformation.

  20. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    PubMed Central

    Kadokawa, Jun-ichi

    2013-01-01

    This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization. PMID:24970172

  1. Enzymatic Characterization of AMP Phosphorylase and Ribose-1,5-Bisphosphate Isomerase Functioning in an Archaeal AMP Metabolic Pathway

    PubMed Central

    Aono, Riku; Sato, Takaaki; Yano, Ayumu; Yoshida, Shosuke; Nishitani, Yuichi; Miki, Kunio; Imanaka, Tadayuki

    2012-01-01

    AMP phosphorylase (AMPpase), ribose-1,5-bisphosphate (R15P) isomerase, and type III ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to constitute a novel pathway involved in AMP metabolism in the Archaea. Here we performed a biochemical examination of AMPpase and R15P isomerase from Thermococcus kodakarensis. R15P isomerase was specific for the α-anomer of R15P and did not recognize other sugar compounds. We observed that activity was extremely low with the substrate R15P alone but was dramatically activated in the presence of AMP. Using AMP-activated R15P isomerase, we reevaluated the substrate specificity of AMPpase. AMPpase exhibited phosphorylase activity toward CMP and UMP in addition to AMP. The [S]-v plot (plot of velocity versus substrate concentration) of the enzyme toward AMP was sigmoidal, with an increase in activity observed at concentrations higher than approximately 3 mM. The behavior of the two enzymes toward AMP indicates that the pathway is intrinsically designed to prevent excess degradation of intracellular AMP. We further examined the formation of 3-phosphoglycerate from AMP, CMP, and UMP in T. kodakarensis cell extracts. 3-Phosphoglycerate generation was observed from AMP alone, and from CMP or UMP in the presence of dAMP, which also activates R15P isomerase. 3-Phosphoglycerate was not formed when 2-carboxyarabinitol 1,5-bisphosphate, a Rubisco inhibitor, was added. The results strongly suggest that these enzymes are actually involved in the conversion of nucleoside monophosphates to 3-phosphoglycerate in T. kodakarensis. PMID:23065974

  2. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.

    2010-01-15

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO{sub 4}, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO{sub 4} (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 A resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-bindingmore » site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.« less

  3. Functional and Structural Characterization of Purine Nucleoside Phosphorylase from Kluyveromyces lactis and Its Potential Applications in Reducing Purine Content in Food

    PubMed Central

    Mahor, Durga; Priyanka, Anu; Prasad, Gandham S; Thakur, Krishan Gopal

    2016-01-01

    Consumption of foods and beverages with high purine content increases the risk of hyperuricemia, which causes gout and can lead to cardiovascular, renal, and other metabolic disorders. As patients often find dietary restrictions challenging, enzymatically lowering purine content in popular foods and beverages offers a safe and attractive strategy to control hyperuricemia. Here, we report structurally and functionally characterized purine nucleoside phosphorylase (PNP) from Kluyveromyces lactis (KlacPNP), a key enzyme involved in the purine degradation pathway. We report a 1.97 Å resolution crystal structure of homotrimeric KlacPNP with an intrinsically bound hypoxanthine in the active site. KlacPNP belongs to the nucleoside phosphorylase-I (NP-I) family, and it specifically utilizes 6-oxopurine substrates in the following order: inosine > guanosine > xanthosine, but is inactive towards adenosine. To engineer enzymes with broad substrate specificity, we created two point variants, KlacPNPN256D and KlacPNPN256E, by replacing the catalytically active Asn256 with Asp and Glu, respectively, based on structural and comparative sequence analysis. KlacPNPN256D not only displayed broad substrate specificity by utilizing both 6-oxopurines and 6-aminopurines in the order adenosine > inosine > xanthosine > guanosine, but also displayed reversal of substrate specificity. In contrast, KlacPNPN256E was highly specific to inosine and could not utilize other tested substrates. Beer consumption is associated with increased risk of developing gout, owing to its high purine content. Here, we demonstrate that KlacPNP and KlacPNPN256D could be used to catalyze a key reaction involved in lowering beer purine content. Biochemical properties of these enzymes such as activity across a wide pH range, optimum activity at about 25°C, and stability for months at about 8°C, make them suitable candidates for food and beverage industries. Since KlacPNPN256D has broad substrate specificity, a

  4. Enzymatic synthesis of polymers containing nicotinamide mononucleotide

    NASA Technical Reports Server (NTRS)

    Liu, Rihe

    1995-01-01

    Nicotinamide mononucleoside 5'-diphosphate in its reduced form is an excellent substrate for polynucleotide phosphorylase from Micrococcus luteus both in de novo polymerization reactions and in primer extension reactions. The oxidized form of the diphosphate is a much less efficient substrate; it can be used to extend primers but does not oligomerize in the absence of a primer. The cyanide adduct of the oxidized substrate, like the reduced substrate, polymerizes efficiently. Loss of cyanide yields high molecular weight polymers of the oxidized form. Terminal transferase from calf thymus accepts nicotinamide mononucleoside 5'-triphosphate as a substrate and efficiently adds one residue to the 3'-end of an oligodeoxynucleotide. T4 polynucleotide kinase accepts oligomers of nicotinamide mononucleotide as substrates. However, RNA polymerases do not incorporate nicotinamide mononucleoside 5'-triphosphate into products on any of the templates that we used.

  5. Enzymatic Synthesis of Polymers Containing Nicotinamide Mononucleotide

    NASA Technical Reports Server (NTRS)

    Liu, Rihe; Orgel, Leslie E.

    1995-01-01

    Nicotinamide mononucleoside 5'-diphosphate in its reduced form is an excellent substrate for polynucleotide phosphorylase from Micrococcus luteus both in de novo polymerization reactions and in primer extension reactions. The oxidized form of the diphosphate is a much less efficient substrate; it can be used to extend primers but does not oligomerize in the absence of a primer. The cyanide adduct of the oxidized substrate, like the reduced substrate, polymerizes efficiently. Loss of cyanide yields high molecular weight polymers of the oxidized form. Terminal transferase from calf thymus accepts nicotinamide mononucleoside 5'-triphosphate as a substrate and efficiently adds one residue to the 3'-end of an oligodeoxynucleotide. T4 polynucleotide kinase accepts oligomers of nicotinamide mononucleotide as substrates. However, RNA polymerases do not incorporate nicotinamide mononucleoside 5'-triphosphate into products on any of the templates that we used.

  6. Characterization of individual polynucleotide molecules using a membrane channel

    NASA Technical Reports Server (NTRS)

    Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W.

    1996-01-01

    We show that an electric field can drive single-stranded RNA and DNA molecules through a 2.6-nm diameter ion channel in a lipid bilayer membrane. Because the channel diameter can accommodate only a single strand of RNA or DNA, each polymer traverses the membrane as an extended chain that partially blocks the channel. The passage of each molecule is detected as a transient decrease of ionic current whose duration is proportional to polymer length. Channel blockades can therefore be used to measure polynucleotide length. With further improvements, the method could in principle provide direct, high-speed detection of the sequence of bases in single molecules of DNA or RNA.

  7. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  8. Mechanism of RNA 2′,3′-cyclic phosphate end healing by T4 polynucleotide kinase–phosphatase

    PubMed Central

    Das, Ushati; Shuman, Stewart

    2013-01-01

    T4 polynucleotide kinase–phosphatase (Pnkp) exemplifies a family of enzymes with 5′-kinase and 3′-phosphatase activities that function in nucleic acid repair. The polynucleotide 3′-phosphatase reaction is executed by the Pnkp C-terminal domain, which belongs to the DxDxT acylphosphatase superfamily. The 3′-phosphatase reaction entails formation and hydrolysis of a covalent enzyme-(Asp165)-phosphate intermediate, driven by general acid–base catalyst Asp167. We report that Pnkp also has RNA 2′-phosphatase activity that requires Asp165 and Asp167. The physiological substrate for Pnkp phosphatase is an RNA 2′,3′-cyclic phosphate end (RNA > p), but the pathway of cyclic phosphate removal and its enzymic requirements are undefined. Here we find that Pnkp reactivity with RNA > p requires Asp165, but not Asp167. Whereas wild-type Pnkp transforms RNA > p to RNAOH, mutant D167N converts RNA > p to RNA 3′-phosphate, which it sequesters in the phosphatase active site. In support of the intermediacy of an RNA phosphomonoester, the reaction of mutant S211A with RNA > p results in transient accumulation of RNAp en route to RNAOH. Our results suggest that healing of 2′,3′-cyclic phosphate ends is a four-step processive reaction: RNA > p + Pnkp → RNA-(3′-phosphoaspartyl)-Pnkp → RNA3′p + Pnkp → RNAOH + phosphoaspartyl-Pnkp → Pi + Pnkp. PMID:23118482

  9. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramchik, Yu. A., E-mail: inna@ns.crys.ras.ru; Timofeev, V. I., E-mail: espiov@ibch.ru; Zhukhlistova, N. E., E-mail: tostars@mail.ru

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamermore » is the biological active form of E. coli. purine nucleoside phosphorylase.« less

  10. Visualizing polynucleotide polymerase machines at work

    PubMed Central

    Steitz, Thomas A

    2006-01-01

    The structures of T7 RNA polymerase (T7 RNAP) captured in the initiation and elongation phases of transcription, that of φ29 DNA polymerase bound to a primer protein and those of the multisubunit RNAPs bound to initiating factors provide insights into how these proteins can initiate RNA synthesis and synthesize 6–10 nucleotides while remaining bound to the site of initiation. Structural insight into the translocation of the product transcript and the separation of the downstream duplex DNA is provided by the structures of the four states of nucleotide incorporation. Single molecule and biochemical studies show a distribution of primer terminus positions that is altered by the binding of NTP and PPi ligands. This article reviews the insights that imaging the structure of polynucleotide polymerases at different steps of the polymerization reaction has provided on the mechanisms of the polymerization reaction. Movies are shown that allow the direct visualization of the conformational changes that the polymerases undergo during the different steps of polymerization. PMID:16900098

  11. Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans.

    PubMed

    Nihira, Takanori; Suzuki, Erika; Kitaoka, Motomitsu; Nishimoto, Mamoru; Ohtsubo, Ken'ichi; Nakai, Hiroyuki

    2013-09-20

    A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-D-mannosyl-N-acetyl-D-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-D-mannosyl-N-acetyl-D-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-D-mannose 1-phosphate and N-acetyl-D-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the D-mannose residue of β-1,4-D-mannosyl-N-acetyl-D-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase as the systematic name and β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase as the short name for BT1033.

  12. Glycogen phosphorylase BB in myocardial infarction.

    PubMed

    Dobric, Milan; Ostojic, Miodrag; Giga, Vojislav; Djordjevic-Dikic, Ana; Stepanovic, Jelena; Radovanovic, Nebojsa; Beleslin, Branko

    2015-01-01

    Early experimental and clinical reports on glycogen phosphorylase BB (GPBB) kinetics following myocardial ischemic injury suggested that it could be a useful diagnostic marker for early detection of acute myocardial infarction (AMI). After more than two decades of investigation, there is now overwhelming body of evidence that do not support the use of GPBB measurement in diagnosis of acute AMI in patients presenting with acute chest pain. Currently, GPBB cannot be recommended as a diagnostic marker of AMI either as a stand-alone test or as an addition to (high-sensitive) troponin testing. It should be noted that these considerations apply to the early diagnosis of AMI, not to the prognostic stratification, which is also suggested but it warrants further investigation. The aim of this review is to summarize available evidence of GPBB measurement in early diagnosis of myocardial infarction. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Activation of Phosphorylase Kinase by Physiological Temperature.

    PubMed

    Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M

    2015-12-29

    In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.

  14. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    PubMed

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  15. Structural Determinants of the 5′-Methylthioinosine Specificity of Plasmodium Purine Nucleoside Phosphorylase

    PubMed Central

    Donaldson, Teraya M.; Ting, Li-Min; Zhan, Chenyang; Shi, Wuxian; Zheng, Renjian; Almo, Steven C.; Kim, Kami

    2014-01-01

    Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5′-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5′-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5′-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5′-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket. PMID:24416224

  16. Characterization of Runella slithyformis HD-Pnk, a bifunctional DNA/RNA end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase domain.

    PubMed

    Munir, Annum; Shuman, Stewart

    2016-11-28

    5' and 3' end healing are key steps in nucleic acid break repair in which 5' -OH ends are phosphorylated by a polynucleotide kinase and 3' -PO 4 or 2',3' -cyclic-PO 4 ends are hydrolyzed by a phosphoesterase to generate the 5' -PO 4 and 3' -OH termini required for sealing by classic polynucleotide ligases. End healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5' -OH polynucleotides (9-mers or longer) in the presence of magnesium and any NTP donor. HD-Pnk dephosphorylates RNA 2',3' -cyclic phosphate, RNA 3' -phosphate, RNA 2' -phosphate, and DNA 3' -phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper or cobalt. HD-Pnkp homologs are present in genera from eleven bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. The present study provides insights to the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnkp as the exemplar of a novel clade of dual 5' and 3' end-healing enzymes that phosphorylate 5' -OH termini and dephosphorylate 2',3' -cyclic-PO 4 , 3' -PO 4 , and 2' -PO 4 ends. The distinctive feature of HD-Pnk is its domain composition: a fusion of an N-terminal HD phosphohydrolase module to a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, domain order, and similar polypeptide size are distributed widely among genera from eleven bacterial phyla. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Inactivation of phosphorylase b by potassium ferrate. Identification of a tyrosine residue involved in the binding of adenosine 5'-monophosphate.

    PubMed

    Lee, Y M; Benisek, W F

    1978-08-10

    The site of reaction of potassium ferrate (K2FeO4) with rabbit muscle phosphorylase b has been further characterized in an extension of previously published studies (Lee, Y. M., and Benisek, W. F. (1976) J. Biol, Chem. 251, 1553-1560) reporting inactivation of the enzyme by this reagent. The tryptic peptide composed of residues 70 to 80 of the enzyme's polypeptide chain was shown to contain a tyrosine residue which is chemically modified by ferrate and which is protected by 5'-AMP. The sequence of this peptide obtained from both untreated and ferrate-treated phosphorylase b was determined, and the results showed that tyrosine-75 was the residue with which ferrate reacts.

  18. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    PubMed Central

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  19. Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2′,3′-Phosphoesterase HD Domain and a C-Terminal 5′-OH Polynucleotide Kinase Domain

    PubMed Central

    Munir, Annum

    2016-01-01

    ABSTRACT 5′- and 3′-end-healing reactions are key steps in nucleic acid break repair in which 5′-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3′-PO4 or 2′,3′-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5′-PO4 and 3′-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2′,3′-phosphoesterase HD domain and a C-terminal 5′-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5′-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2′,3′-cyclic phosphate, RNA 3′-phosphate, RNA 2′-phosphate, and DNA 3′-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5′- and 3′-end-healing enzymes that phosphorylate 5′-OH termini and dephosphorylate 2′,3′-cyclic-PO4, 3′-PO4, and 2′-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla. PMID:27895092

  20. Reaction of phosphorylase-a with α-D-glucose 1-phosphate and maltodextrin acceptors to give products with degree of polymerization 6-89.

    PubMed

    Kazłowski, Bartosz; Ko, Yuan-Tih

    2014-06-15

    A series of linear glucan saccharides (GS) with defined quantity and degree of polymerization (DP) were synthesized from α-d-glucose 1-phosphate (α-d-Glc 1-P) by phosphorylase-a. The GS product fractions with average DP 11, 22, 38, 52, 60, 70, and 79 were measured by HPSEC-ELSD system. Then the same seven fractions were resolved into individual peaks with DP: 6-14, 10-32, 27-55, 37-67, 44-75, 49-83 and 53-89 by HPAEC-PAD system. Results showed that measurement of α-d-Glc 1-P amount consuming during GS synthesis by both systems enable calculation of reaction yield. The reaction yield for the 24h biosynthesis of the GS product was 25.3% (measured by HPSEC-ELSD) or 29.1% (measured by HPAEC-PAD). The HPSEC-ELSD and HPAEC-PAD systems were also successfully used for phosphorylase-a activity measurement in order to perform its kinetic characterization. This study established feasible systems for preparation of various sizes of the GS with defined DP and quantity as well as characterization of phosphorylase-a kinetics. Copyright © 2014. Published by Elsevier Ltd.

  1. Three-dimensional structures of unligated uridine phosphorylase from Yersinia pseudotuberculosis at 1.4 Å resolution and its complex with an antibacterial drug

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Gabdulkhakov, A. G.; Dontsova, M. V.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2015-07-01

    Uridine phosphorylases play an essential role in the cellular metabolism of some antibacterial agents. Acute infectious diseases (bubonic plague, yersiniosis, pseudotuberculosis, etc., caused by bacteria of the genus Yersinia) are treated using both sulfanilamide medicines and antibiotics, including trimethoprim. The action of an antibiotic on a bacterial cell is determined primarily by the character of its interactions with cellular components, including those which are not targets (for example, with pyrimidine phosphorylases). This type of interaction should be taken into account in designing drugs. The three-dimensional structure of uridine phosphorylase from the bacterium Yersinia pseudotuberculosis ( YptUPh) with the free active site was determined for the first time by X-ray crystallography and refined at 1.40 Å resolution (DPI = 0.062 Å; ID PDB: 4OF4). The structure of the complex of YptUPh with the bacteriostatic drug trimethoprim was studied by molecular docking and molecular dynamics methods. The trimethoprim molecule was shown to be buffered by the enzyme YptUPh, resulting in a decrease in the efficiency of the treatment of infectious diseases caused by bacteria of the genus Yersinia with trimethoprim.

  2. Synthesis of (benzimidazol-2-yl)aniline derivatives as glycogen phosphorylase inhibitors.

    PubMed

    Galal, Shadia A; Khattab, Muhammad; Andreadaki, Fotini; Chrysina, Evangelia D; Praly, Jean-Pierre; Ragab, Fatma A F; El Diwani, Hoda I

    2016-11-01

    A series of (benzimidazol-2-yl)-aniline (1) derivatives has been synthesized and evaluated as glycogen phosphorylase (GP) inhibitors. Kinetics studies revealed that compounds displaying a lateral heterocyclic residue with several heteroatoms (series 3 and 5) exhibited modest inhibitory properties with IC 50 values in the 400-600μM range. Arylsulfonyl derivatives 7 (Ar: phenyl) and 9 (Ar: o-nitrophenyl) of 1 exhibited the highest activity (series 2) among the studied compounds (IC 50 324μM and 357μM, respectively) with stronger effect than the p-tolyl analogue 8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference.

    PubMed

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-03-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer.

  4. Glycogen Phosphorylase in Acanthamoeba spp.: Determining the Role of the Enzyme during the Encystment Process Using RNA Interference▿

    PubMed Central

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-01-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer. PMID:18223117

  5. Thymidine Phosphorylase is Angiogenic and Promotes Tumor Growth

    NASA Astrophysics Data System (ADS)

    Moghaddam, Amir; Zhang, Hua-Tang; Fan, Tai-Ping D.; Hu, De-En; Lees, Vivien C.; Turley, Helen; Fox, Stephen B.; Gatter, Kevin C.; Harris, Adrian L.; Bicknell, Roy

    1995-02-01

    Platelet-derived endothelial cell growth factor was previously identified as the sole angiogenic activity present in platelets; it is now known to be thymidine phosphorylase (TP). The effect of TP on [methyl-^3H]thymidine uptake does not arise from de novo DNA synthesis and the molecule is not a growth factor. Despite this, TP is strongly angiogenic in a rat sponge and freeze-injured skin graft model. Neutralizing antibodies and site-directed mutagenesis confirmed that the enzyme activity of TP is a condition for its angiogenic activity. The level of TP was found to be elevated in human breast tumors compared to normal breast tissue (P < 0.001). Overexpression of TP in MCF-7 breast carcinoma cells had no effect on growth in vitro but markedly enhanced tumor growth in vivo. These data and the correlation of expression in tumors with malignancy identify TP as a target for antitumor strategies.

  6. Virus replication as a phenotypic version of polynucleotide evolution.

    PubMed

    Antoneli, Fernando; Bosco, Francisco; Castro, Diogo; Janini, Luiz Mario

    2013-04-01

    In this paper, we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius et al. (Bull. Math. Biol. 46:239-262, 1985), in their study of polynucleotide evolution. By taking into account beneficial effects, we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model, which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull et al. (J. Virol. 18:2930-2939, 2007), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium", and transient. Finally, based on these quantitative results, we are able to draw some qualitative conclusions.

  7. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkov, A. A., E-mail: alashkov83@gmail.com; Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-15

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search formore » and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).« less

  8. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-01

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis ( YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to α/β proteins, and its topology is a three-layer α/β/α sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% β strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium ( StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli ( EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  9. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.

    PubMed

    Ye, Yuxin; Saburi, Wataru; Odaka, Rei; Kato, Koji; Sakurai, Naofumi; Komoda, Keisuke; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide; Yao, Min

    2016-03-01

    In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. © 2016 Federation of European Biochemical Societies.

  10. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  11. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b.

    PubMed

    Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2015-07-08

    We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. The origin and early evolution of nucleic acid polymerases

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Cappello, R.; Valverde, V.; Llaca, V.; Oro, J.

    1992-01-01

    The hypothesis that vestiges of the ancestral RNA-dependent RNA polymerase involved in the replication of RNA genomes of Archean cells are present in the eubacterial RNA-polymerase beta-prime subunit and its homologues is discussed. It is shown that, in the DNA-dependent RNA polymerases from three cellular lineages, a very conserved sequence of eight amino acids, also found in a small RNA-binding site previously described for the E. coli polynucleotide phosphorylase and the S1 ribosomal protein, is present. The optimal conditions for the replicase activity of the avian-myeloblastosis-virus reverse transcriptase are presented. The evolutionary significance of the in vitro modifications of substrate and template specificities of RNA polymerases and reverse transcriptases is discussed.

  13. Structures of yeast Apa2 reveal catalytic insights into a canonical AP₄A phosphorylase of the histidine triad superfamily.

    PubMed

    Hou, Wen-Tao; Li, Wen-Zhe; Chen, Yuxing; Jiang, Yong-Liang; Zhou, Cong-Zhao

    2013-08-09

    The homeostasis of intracellular diadenosine 5',5″'-P(1),P(4)-tetraphosphate (Ap4A) in the yeast Saccharomyces cerevisiae is maintained by two 60% sequence-identical paralogs of Ap4A phosphorylases (Apa1 and Apa2). Enzymatic assays show that, compared to Apa1, Apa2 has a relatively higher phosphorylase activity towards Ap3A (5',5″'-P(1),P(3)-tetraphosphate), Ap4A, and Ap5A (5',5″'-P(1),P(5)-tetraphosphate), and Ap4A is the favorable substrate for both enzymes. To decipher the catalytic insights, we determined the crystal structures of Apa2 in the apo-, AMP-, and Ap4A-complexed forms at 2.30, 2.80, and 2.70Å resolution, respectively. Apa2 is an α/β protein with a core domain of a twisted eight-stranded antiparallel β-sheet flanked by several α-helices, similar to the galactose-1-phosphate uridylyltransferase (GalT) members of the histidine triad (HIT) superfamily. However, a unique auxiliary domain enables an individual Apa2 monomer to possess an intact substrate-binding cleft, which is distinct from previously reported dimeric GalT proteins. This cleft is perfectly complementary to the favorable substrate Ap4A, the AMP and ATP moieties of which are perpendicular to each other, leaving the α-phosphate group exposed at the sharp turn against the catalytic residue His161. Structural comparisons combined with site-directed mutagenesis and activity assays enable us to define the key residues for catalysis. Furthermore, multiple-sequence alignment reveals that Apa2 and homologs represent canonical Ap4A phosphorylases, which could be grouped as a unique branch in the GalT family. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Discovery of a Kojibiose Phosphorylase in Escherichia coli K-12.

    PubMed

    Mukherjee, Keya; Narindoshvili, Tamari; Raushel, Frank M

    2018-05-15

    The substrate profiles for three uncharacterized enzymes (YcjM, YcjT, and YcjU) that are expressed from a cluster of 12 genes ( ycjM-W and ompG) of unknown function in Escherichia coli K-12 were determined. Through a comprehensive bioinformatic and steady-state kinetic analysis, the catalytic function of YcjT was determined to be kojibiose phosphorylase. In the presence of saturating phosphate and kojibiose (α-(1,2)-d-glucose-d-glucose), this enzyme catalyzes the formation of d-glucose and β-d-glucose-1-phosphate ( k cat = 1.1 s -1 , K m = 1.05 mM, and k cat / K m = 1.12 × 10 3 M -1 s -1 ). Additionally, it was also shown that in the presence of β-d-glucose-1-phosphate, YcjT can catalyze the formation of other disaccharides using 1,5-anhydro-d-glucitol, l-sorbose, d-sorbitol, or l-iditol as a substitute for d-glucose. Kojibiose is a component of cell wall lipoteichoic acids in Gram-positive bacteria and is of interest as a potential low-calorie sweetener and prebiotic. YcjU was determined to be a β-phosphoglucomutase that catalyzes the isomerization of β-d-glucose-1-phosphate ( k cat = 21 s -1 , K m = 18 μM, and k cat / K m = 1.1 × 10 6 M -1 s -1 ) to d-glucose-6-phosphate. YcjU was also shown to exhibit catalytic activity with β-d-allose-1-phosphate, β-d-mannose-1-phosphate, and β-d-galactose-1-phosphate. YcjM catalyzes the phosphorolysis of α-(1,2)-d-glucose-d-glycerate with a k cat = 2.1 s -1 , K m = 69 μM, and k cat / K m = 3.1 × 10 4 M -1 s -1 .

  15. Molecular dynamics and binding selectivity of nucleotides and polynucleotide substrates with EIF2C2/Ago2 PAZ domain.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2018-02-01

    RNA interference (RNAi) constitutes a major target in drug discovery. Recently, we reported that the Argonaute protein 2 (Ago2) PAZ domain selectively binds with all ribonucleotides except adenine and poorly recognizes deoxyribonucleotides. The binding properties of the PAZ domain with polynucleotides and the molecular mechanisms of substrates' selectivity remains unclear. In this study, the binding potencies of polynucleotides and the associated conformational and dynamic changes in PAZ domain are investigated. Coinciding with nucleotides' binding profile with the PAZ domain, polyuridylate (PolyU) and polycytidylate (PolyC) were potent binders. However, K dPolyU and K dPolyC were 15.8 and 9.3μM, respectively. In contrast, polyadenylate (PolyA) binding was not detectable. Molecular dynamics (MD) simulation revealed the highest change in root mean square deviation (RMSD) with ApoPAZ or PAZ domain bound with experimentally approved, low affinity substrates, whereas stronger binding substrates such as UMP or PolyU showed minimal RMSD changes. The loop between α3 and β5 in the β-hairpin subdomain showed the most responsive change in RMSD, being highly movable in the ApoPAZ and PAZ-AMP complex. Favorable substrate recognition was associate with moderate change in secondary structure content. In conclusion, the PAZ domain retains differential substrate selectivity associated with corresponding dynamic and structural changes upon binding. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals.

    PubMed

    Hawkins, Clare L; Davies, Michael J

    2002-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is a key bactericidal agent, but can also damage host tissue. As there is a strong link between chronic inflammation and some cancers, we have investigated HOCl damage to DNA, RNA, and polynucleotides. Reaction of HOCl with these materials is shown to yield multiple semistable chloramines (RNHCl/RR'NCl), which are the major initial products, and account for 50-95% of the added HOCl. These chloramines decay by thermal and metal-ion catalyzed processes, to give nucleoside-derived, nitrogen-centered, radicals. The latter have been characterized by EPR spin trapping. The propensity for radical formation with polynucleotides is cytidine > adenosine = guanosine > uridine = thymidine. The rates of decay, and yield of radicals formed, are dependent on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA gives rise to single- and double-strand breaks via chloramine-mediated reactions. Preformed nucleoside chloramines also induce plasmid cleavage, though this only occurs to a significant extent with unstable thymidine- and uridine-derived chloramines, where radical formation is rapid. Overall the data rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence

  17. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Active Site Conformational Dynamics in Human Uridine Phosphorylase 1

    PubMed Central

    Roosild, Tarmo P.; Castronovo, Samantha

    2010-01-01

    Uridine phosphorylase (UPP) is a central enzyme in the pyrimidine salvage pathway, catalyzing the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate. Human UPP activity has been a focus of cancer research due to its role in activating fluoropyrimidine nucleoside chemotherapeutic agents such as 5-fluorouracil (5-FU) and capecitabine. Additionally, specific molecular inhibitors of this enzyme have been found to raise endogenous uridine concentrations, which can produce a cytoprotective effect on normal tissues exposed to these drugs. Here we report the structure of hUPP1 bound to 5-FU at 2.3 Å resolution. Analysis of this structure reveals new insights as to the conformational motions the enzyme undergoes in the course of substrate binding and catalysis. The dimeric enzyme is capable of a large hinge motion between its two domains, facilitating ligand exchange and explaining observed cooperativity between the two active sites in binding phosphate-bearing substrates. Further, a loop toward the back end of the uracil binding pocket is shown to flexibly adjust to the varying chemistry of different compounds through an “induced-fit” association mechanism that was not observed in earlier hUPP1 structures. The details surrounding these dynamic aspects of hUPP1 structure and function provide unexplored avenues to develop novel inhibitors of this protein with improved specificity and increased affinity. Given the recent emergence of new roles for uridine as a neuron protective compound in ischemia and degenerative diseases, such as Alzheimer's and Parkinson's, inhibitors of hUPP1 with greater efficacy, which are able to boost cellular uridine levels without adverse side-effects, may have a wide range of therapeutic applications. PMID:20856879

  19. Compositions and methods involving methyladenosine phosphorylase in the diagnosis and treatment of proliferative disorders

    DOEpatents

    Olopade, Olufunmilayo I.

    2007-03-20

    Disclosed are novel nucleic acid and peptide compositions comprising methylthioadenosine phosphorylase (MTAP) and methods of use for MTAP amino acid sequences and DNA segments comprising MTAP in the diagnosis of human cancers and development of MTAP-specific antibodies. Also disclosed are methods for the diagnosis and treatment of tumors and other proliferative cell disorders, and identification of tumor suppressor genes and gene products from the human 9p21-p22 chromosome region. Such methods are useful in the diagnosis of multiple tumor types such as bladder cancer, lung cancer, breast cancer, pancreatic cancer, brain tumors, lymphomas, gliomas, melanomas, and leukemias.

  20. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    PubMed Central

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  1. Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction.

    PubMed

    Ozawa, Eijiro

    2011-01-01

    It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10(-7)-10(-4) M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3',5'-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction.

  2. GLYCOGEN PHOSPHORYLASE ISOENZYME BB PLASMA CONCENTRATION IS ELEVATED IN PREGNANCY AND PRETERM PREECLAMPSIA

    PubMed Central

    Lee, JoonHo; Romero, Roberto; Dong, Zhong; Lee, Deug-Chan; Dong, Yi; Mittal, Pooja; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Kim, Chong Jai

    2012-01-01

    Glycogen phosphorylase is a key enzyme in glycogenolysis. Released with myocardial ischemia, blood concentration of glycogen phosphorylase isoenzyme BB (GPBB) is a marker of acute coronary syndromes. Pregnancy imposes metabolic stress, and preeclampsia is associated with cardiac complications. However, plasma GPBB concentration during pregnancy is unknown. This study was conducted to determine maternal plasma GPBB concentration in normal pregnancy and in preeclampsia. Plasma samples from six groups (n=396) were studied: non-pregnant women and pregnant women with normal term delivery, term preeclampsia, term small-for-gestational-age neonates, preterm preeclampsia, and preterm small-for-gestational-age neonates. GPBB concentration was measured with a specific immunoassay. Placental tissues (n=45) obtained from pregnant women with preterm and term preeclampsia, spontaneous preterm delivery, and normal term cases were analyzed for potential GPBB expression by immunoblotting. Median plasma GPBB concentration was higher in pregnant women than in non-pregnant women (38.7 ng/ml versus 9.2 ng/mL, P<0.001), which remained significant after adjusting for age, race, and parity. Maternal plasma GPBB concentrations did not change throughout gestation. Preterm but not term preeclampsia cases had higher median plasma GPBB concentration than gestational-age-matched normal pregnancy cases (72.6 ng/ml versus 26.0 ng/ml, P=0.001). Small-for-gestational-age neonates did not affect plasma GPBB concentration. GPBB was detected in the placenta and was less abundant in preterm preeclampsia than in preterm delivery cases (P<0.01). There is physiologic elevation of plasma GPBB concentration during pregnancy; an increase in maternal plasma GPBB is a novel phenotype of preterm preeclampsia. It is strongly suggested that these changes are attributed to GPBB of placental origin. PMID:22215716

  3. Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme. I. Isolation and characterization. [Spinacia oleracea L. ; Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Steup, M.

    1990-11-01

    From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction withmore » the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by {sup 14}C-labeling experiments in which the glucosyl transfer from ({sup 14}C)glucose 1-phosphate to the polysaccharide preparation was monitored.« less

  4. Molecular dynamics studies of a hexameric purine nucleoside phosphorylase.

    PubMed

    Zanchi, Fernando Berton; Caceres, Rafael Andrade; Stabeli, Rodrigo Guerino; de Azevedo, Walter Filgueira

    2010-03-01

    Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1) is an enzyme that catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is involved in purine-salvage pathway and has been proposed as a promising target for design and development of antimalarial and antibacterial drugs. Recent elucidation of the three-dimensional structure of PNP by X-ray protein crystallography left open the possibility of structure-based virtual screening initiatives in combination with molecular dynamics simulations focused on identification of potential new antimalarial drugs. Most of the previously published molecular dynamics simulations of PNP were carried out on human PNP, a trimeric PNP. The present article describes for the first time molecular dynamics simulations of hexameric PNP from Plasmodium falciparum (PfPNP). Two systems were simulated in the present work, PfPNP in ligand free form, and in complex with immucillin and sulfate. Based on the dynamical behavior of both systems the main results related to structural stability and protein-drug interactions are discussed.

  5. Preclinical toxicity evaluation of erythrocyte-encapsulated thymidine phosphorylase in BALB/c mice and beagle dogs: an enzyme-replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy.

    PubMed

    Levene, Michelle; Coleman, David G; Kilpatrick, Hugh C; Fairbanks, Lynette D; Gangadharan, Babunilayam; Gasson, Charlotte; Bax, Bridget E

    2013-01-01

    Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is currently under development as an enzyme replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an autosomal recessive disorder caused by a deficiency of thymidine phosphorylase. The rationale for the development of EE-TP is based on the pathologically elevated metabolites (thymidine and deoxyuridine) being able to freely diffuse across the erythrocyte membrane where the encapsulated enzyme catalyses their metabolism to the normal products. The systemic toxic potential of EE-TP was assessed when administered intermittently by iv bolus injection to BALB/c mice and Beagle dogs for 4 weeks. The studies consisted of one control group receiving sham-loaded erythrocytes twice weekly and two treated groups, one dosed once every 2 weeks and the other dosed twice per week. The administration of EE-TP to BALB/c mice resulted in thrombi/emboli in the lungs and spleen enlargement. These findings were also seen in the control group, and there was no relationship to the number of doses administered. In the dog, transient clinical signs were associated with EE-TP administration, suggestive of an immune-based reaction. Specific antithymidine phosphorylase antibodies were detected in two dogs and in a greater proportion of mice treated once every 2 weeks. Nonspecific antibodies were detected in all EE-TP-treated animals. In conclusion, these studies do not reveal serious toxicities that would preclude a clinical trial of EE-TP in patients with MNGIE, but caution should be taken for infusion-related reactions that may be related to the production of nonspecific antibodies or a cell-based immune response.

  6. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design

    PubMed Central

    Omari, Kamel EL; Bronckaers, Annelies; Liekens, Sandra; Pérez-Pérez, Maria-Jésus; Balzarini, Jan; Stammers, David K.

    2006-01-01

    HTP (human thymidine phosphorylase), also known as PD-ECGF (platelet-derived endothelial cell growth factor) or gliostatin, has an important role in nucleoside metabolism. HTP is implicated in angiogenesis and apoptosis and therefore is a prime target for drug design, including antitumour therapies. An HTP structure in a closed conformation complexed with an inhibitor has previously been solved. Earlier kinetic studies revealed an ordered release of thymine followed by ribose phosphate and product inhibition by both ligands. We have determined the structure of HTP from crystals grown in the presence of thymidine, which, surprisingly, resulted in bound thymine with HTP in a closed dead-end com-plex. Thus thymine appears to be able to reassociate with HTP after its initial ordered release before ribose phosphate and induces the closed conformation, hence explaining the mechanism of non-competitive product inhibition. In the active site in one of the four HTP molecules within the crystal asymmetric unit, additional electron density is present. This density has not been previously seen in any pyrimidine nucleoside phosphorylase and it defines a subsite that may be exploitable in drug design. Finally, because our crystals did not require proteolysed HTP to grow, the structure reveals a loop (residues 406–415), disordered in the previous HTP structure. This loop extends across the active-site cleft and appears to stabilize the dimer interface and the closed conformation by hydrogen-bonding. The present study will assist in the design of HTP inhibitors that could lead to drugs for anti-angiogenesis as well as for the potentiation of other nucleoside drugs. PMID:16803458

  7. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes.

    PubMed

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K

    2015-01-01

    Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen. © 2014 Wiley Periodicals, Inc.

  8. Methylthioadenosine phosphorylase compositions and methods of use in the diagnosis and treatment of proliferative disorders

    DOEpatents

    Olopade, Olufunmilayo I.

    2005-03-22

    Disclosed are novel nucleic acid and peptide compositions comprising methythlioadenosine phosphorylase (MTAP) and methods of use for MTAP amino acid sequences and DNA segments comprising MTAP in the diagnosis of human cancers and development of MTAP-specific antibodies. Also disclosed are methods for the diagnosis and treatment of tumors and other proliferative cell disorders, and idenification tumor suppressor genes and gene products from the human 9p21-p22 chromosome region. Such methods are useful in the diagnosis of multiple tumor types such as bladder cancer, lung cancer, breast cancer, pancreatic cancer, brain tumors, lymphomas, gliomas, melanomas, and leukemias.

  9. A thermal after-effect of UV irradiation of muscle glycogen phosphorylase b

    PubMed Central

    Eronina, Tatiana B.; Chebotareva, Natalia A.; Kleymenov, Sergey Yu.; Shubin, Vladimir V.; Kurganov, Boris I.

    2017-01-01

    Different test systems are used to characterize the anti-aggregation efficiency of molecular chaperone proteins and of low-molecular-weight chemical chaperones. Test systems based on aggregation of UV-irradiated protein are of special interest because they allow studying the protective action of different agents at physiological temperatures. The kinetics of UV-irradiated glycogen phosphorylase b (UV-Phb) from rabbit skeletal muscle was studied at 37°C using dynamic light scattering in a wide range of protein concentrations. It has been shown that the order of aggregation with respect to the protein is equal to unity. A conclusion has been made that the rate-limiting stage of the overall process of aggregation is heat-induced structural reorganization of a UV-Phb molecule, which contains concealed damage. PMID:29216272

  10. The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.

    PubMed Central

    Olson, W K

    1975-01-01

    Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529

  11. Inhibitors of the Diadenosine Tetraphosphate Phosphorylase Rv2613c of Mycobacterium tuberculosis.

    PubMed

    Götz, Kathrin H; Hacker, Stephan M; Mayer, Daniel; Dürig, Jan-Niklas; Stenger, Steffen; Marx, Andreas

    2017-10-20

    The intracellular concentration of diadenosine tetraphospate (Ap 4 A) increases upon exposure to stress conditions. Despite being discovered over 50 years ago, the cellular functions of Ap 4 A are still enigmatic. If and how the varied Ap 4 A is a signal and involved in the signaling pathways leading to an appropriate cellular response remain to be discovered. Because the turnover of Ap 4 A by Ap 4 A cleaving enzymes is rapid, small molecule inhibitors for these enzymes would provide tools for the more detailed study of the role of Ap 4 A. Here, we describe the development of a high-throughput screening assay based on a fluorogenic Ap 4 A substrate for the identification and optimization of small molecule inhibitors for Ap 4 A cleaving enzymes. As proof-of-concept we screened a library of over 42 000 compounds toward their inhibitory activity against the Ap 4 A phosphorylase (Rv2613c) of Mycobacterium tuberculosis (Mtb). A sulfanylacrylonitril derivative with an IC 50 of 260 ± 50 nM in vitro was identified. Multiple derivatives were synthesized to further optimize their properties with respect to their in vitro IC 50 values and their cytotoxicity against human cells (HeLa). In addition, we selected two hits to study their antimycobacterial activity against virulent Mtb to show that they might be candidates for further development of antimycobacterial agents against multidrug-resistant Mtb.

  12. Roles of Ala-149 in the catalytic activity of diadenosine tetraphosphate phosphorylase from Mycobacterium tuberculosis H37Rv.

    PubMed

    Mori, Shigetarou; Kim, Hyun; Rimbara, Emiko; Arakawa, Yoshichika; Shibayama, Keigo

    2015-01-01

    Diadenosine 5',5'''-P(1),P(4)-tetraphosphate (Ap4A) phosphorylase from Mycobacterium tuberculosis H37Rv (MtAPA) belongs to the histidine triad motif (HIT) superfamily, but is the only member with an alanine residue at position 149 (Ala-149). Enzymatic analysis revealed that the Ala-149 deletion mutant displayed substrate specificity for diadenosine 5',5'''-P(1),P(5)-pentaphosphate and was inactive on Ap4A and other substrates that are utilized by the wild-type enzyme.

  13. Structural characterization of purine nucleoside phosphorylase from human pathogen Helicobacter pylori.

    PubMed

    Štefanić, Zoran; Mikleušević, Goran; Luić, Marija; Bzowska, Agnieszka; Leščić Ašler, Ivana

    2017-08-01

    Microaerophilic bacterium Helicobacer pylori is a well known human pathogen involved in the development of many diseases. Due to the evergrowing infection rate and increase of H. pylori antibiotic resistence, it is of utmost importance to find a new way to attack and eradicate H. pylori. The purine metabolism in H. pylori is solely dependant on the salvage pathway and one of the key enzymes in this pathway is purine nucleoside phosphorylase (PNP). In this timely context, we report here the basic biochemical and structural characterization of recombinant PNP from the H. pylori clinical isolate expressed in Escherichia coli. Structure of H. pylori PNP is typical for high molecular mass PNPs. However, its activity towards adenosine is very low, thus resembling more that of low molecular mass PNPs. Understanding the molecular mechanism of this key enzyme may lead to the development of new drug strategies and help in the eradication of H. pylori. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction

    PubMed Central

    OZAWA, Eijiro

    2011-01-01

    It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10−7–10−4 M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3′,5′-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction. PMID:21986313

  15. Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune.

    PubMed Central

    Eis, C; Watkins, M; Prohaska, T; Nidetzky, B

    2001-01-01

    Initial-velocity measurements for the phospholysis and synthesis of alpha,alpha-trehalose catalysed by trehalose phosphorylase from Schizophyllum commune and product and dead-end inhibitor studies show that this enzyme has an ordered Bi Bi kinetic mechanism, in which phosphate binds before alpha,alpha-trehalose, and alpha-D-glucose is released before alpha-D-glucose 1-phosphate. The free-energy profile for the enzymic reaction at physiological reactant concentrations displays its largest barriers for steps involved in reverse glucosyl transfer to D-glucose, and reveals the direction of phospholysis to be favoured thermodynamically. The pH dependence of kinetic parameters for all substrates and the dissociation constant of D-glucal, a competitive dead-end inhibitor against D-glucose (K(i)=0.3 mM at pH 6.6 and 30 degrees C), were determined. Maximum velocities and catalytic efficiencies for the forward and reverse reactions decrease at high and low pH, giving apparent pK values of 7.2--7.8 and 5.5--6.0 for two groups whose correct protonation state is required for catalysis. The pH dependences of k(cat)/K are interpreted in terms of monoanionic phosphate and alpha-D-glucose 1-phosphate being the substrates, and of the pK value seen at high pH corresponding to the phosphate group in solution or bound to the enzyme. The K(i) value for the inhibitor decreases outside the optimum pH range for catalysis, indicating that binding of D-glucal is tighter with incorrectly ionized forms of the complex between the enzyme and alpha-D-glucose 1-phosphate. Each molecule of trehalose phosphorylase contains one Mg(2+) that is non-dissociable in the presence of metal chelators. Measurements of the (26)Mg(2+)/(24)Mg(2+) ratio in the solvent and on the enzyme by using inductively coupled plasma MS show that exchange of metal ion between protein and solution does not occur at measurable rates. Tryptic peptide mass mapping reveals close structural similarity between trehalose

  16. Transition State Analysis of Thymidine Hydrolysis by Human Thymidine Phosphorylase*

    PubMed Central

    Schwartz, Phillip A.; Vetticatt, Mathew; Schramm, Vern L.

    2010-01-01

    Human thymidine phosphorylase (hTP) is responsible for thymidine (dT) homeostasis and its action promotes angiogenesis. In the absence of phosphate, hTP catalyzes a slow hydrolytic depyrimidination of dT yielding thymine and 2-deoxyribose (dRib). Its transition state was characterized using multiple kinetic isotope effect (KIE) measurements. Isotopically enriched thymidines were synthesized enzymatically from glucose or (deoxy)ribose and intrinsic KIEs were used to interpret the transition state structure. KIEs from [1′-14C]-, [1-15N]-, [1′-3H]-, [2′R-3H]-, [2′S-3H]-, [4′-3H]-, [5′-3H]dTs provided values of 1.033 ± 0.002, 1.004 ± 0.002, 1.325 ± 0.003, 1.101 ± 0.004, 1.087 ± 0.005, 1.040 ± 0.003, and 1.033 ± 0.003, respectively. Transition state analysis revealed a stepwise mechanism with a 2-deoxyribocation formed early and a higher energetic barrier for nucleophilic attack of a water molecule on the high energy intermediate. An equilibrium exists between the deoxyribocation and reactants prior to the irreversible nucleophilic attack by water. The results establish activation of the thymine leaving group without requirement for phosphate. A transition state constrained to match the intrinsic KIEs was found using density functional theory. An active site histidine (His116) is implicated as the catalytic base for activation of the water nucleophile at the rate-limiting transition state. The distance between the water nucleophile and the anomeric carbon (rC-O) is predicted to be 2.3 Å at the transition state. The transition state model predicts that deoxyribose adopts a mild 3′-endo confirmation during nucleophilic capture. These results differ from the concerted bimolecular mechanism reported for the arsenolytic reaction PMID:20804144

  17. Condensation of activated diguanylates on a Poly/C/ template. [prebiotic polynucleotide replication mechanism

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Bridson, P. K.; Orgel, L. E.

    1981-01-01

    The metal-ion catalysis of the oligomerization of activated diguanylate isomers on a polycytidylic acid template is studied in an investigation of possible early prebiotic polynucleotide replication mechanisms. The 5'-imidazolides of diguanylates linked 2' to 5' or 3' to 5' were reacted with polyC in a 1-methylimidazole or a 2,6-lutidine buffer in the presence of a Zn(+2) or a Pb(+2) catalyst, and reaction products were determined by paper chromatography, paper electrophoresis and liquid chromatography. In the lutidine buffer, the presence of both the Zn(+2) catalyst and the polyC template is found to result in the production of 3'-5' linked oligomers with up to 10 diguanylate units, and from diguanylates in the presence of the monomer. In the reactions conducted in the 1-methylimidazole buffer, the addition of Pb(+2) is found to lead to less marked increases in oligomerization in the presence of template, with approximately equal proportions of 2'-5' and 3'-5' oligomers formed from the 2'-5' substrate and mainly 3'-5' bonds from the 3'-5' linked dimer.

  18. DNA end-processing enzyme polynucleotide kinase as a potential target in the treatment of cancer.

    PubMed

    Allinson, Sarah L

    2010-06-01

    Pharmacological inhibition of DNA-repair pathways as an approach for the potentiation of chemo- and radio-therapeutic cancer treatments has attracted increasing levels of interest in recent years. Inhibitors of several enzymes involved in the repair of DNA strand breaks are currently at various stages of the drug development process. Polynucleotide kinase (PNK), a bifunctional DNA-repair enzyme that possesses both 3'-phosphatase and 5'-kinase activities, plays an important role in the repair of both single strand and double strand breaks and as a result, RNAi-mediated knockdown of PNK sensitizes cells to a range of DNA-damaging agents. Recently, a small molecule inhibitor of PNK has been developed that is able to sensitize cells to ionizing radiation and the topoisomerase I poison, camptothecin. Although still in the early stages of development, PNK inhibition represents a promising means of enhancing the efficacy of existing cancer treatments.

  19. Fluorescence and computational studies of thymidine phosphorylase affinity toward lipidated 5-FU derivatives

    NASA Astrophysics Data System (ADS)

    Lettieri, R.; D'Abramo, M.; Stella, L.; La Bella, A.; Leonelli, F.; Giansanti, L.; Venanzi, M.; Gatto, E.

    2018-04-01

    Thymidine phosphorylase (TP) is an enzyme that is up-regulated in a wide variety of solid tumors, including breast and colorectal cancers. It is involved in tumor growth and metastasis, for this reason it is one of the key enzyme to be inhibited, in an attempt to prevent tumor proliferation. However, it also plays an active role in cancer treatment, through its contribution in the conversion of the anti-cancer drug 5-fluorouracil (5-FU) to an irreversible inhibitor of thymidylate synthase (TS), responsible of the inhibition of the DNA synthesis. In this work, the intrinsic TP fluorescence has been investigated for the first time and exploited to study TP binding affinity for the unsubstituted 5-FU and for two 5-FU derivatives, designed to expose this molecule on liposomal membranes. These molecules were obtained by functionalizing the nitrogen atom with a chain consisting of six (1) or seven (2) units of glycol, linked to an alkyl moiety of 12 carbon atoms. Derivatives (1) and (2) exhibited an affinity for TP in the micromolar range, 10 times higher than the parent compound, irrespective of the length of the polyoxyethylenic spacer. This high affinity was maintained also when the compounds were anchored in liposomal membranes. Experimental results were supported by molecular dynamics simulations and docking calculations, supporting a feasible application of the designed supramolecular lipid structure in selective targeting of TP, to be potentially used as a drug delivery system or sensor device.

  20. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    NASA Astrophysics Data System (ADS)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  1. Wanderings in Biochemistry

    PubMed Central

    Lengyel, Peter

    2014-01-01

    My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins. PMID:24867946

  2. Linear and circular dichroism characterization of thionine binding mode with DNA polynucleotides

    NASA Astrophysics Data System (ADS)

    Tuite, Eimer Mary; Nordén, Bengt

    2018-01-01

    The binding mode of thionine (3,7-diamino-5-phenothiazinium) with alternating and non-alternating DNA polynucleotides at low binding ratios was conclusively determined using linear and circular dichroism spectroscopies. The binding to [poly(dG-dC)]2 and poly(dG)·poly(dC) was purely intercalative and was insensitive to ionic strength. Intercalative binding to [poly(dA-dT)]2 is observed at low ionic strength, but a shift of some dye to an non-intercalative mode is observed as the background salt concentration increases. With poly(dA)·poly(dT), intercalative binding is unfavourable, although some dye molecules may intercalate at low ionic strength, and groove binding is strongly promoted with increasing concentration of background salt. However, stacking with bases is observed with single-stranded poly(dA) and with triplex poly(dT)*poly(dA)·poly(dT) which suggests that the unusual structure of poly(dA)·poly(dT) precludes intercalation. Thionine behaves similarly to the related dye methylene blue, and small differences may be attributed either to the ability of thionine to form H-bonds that stabilize intercalation or to its improved stacking interactions in the basepair pocket on steric grounds.

  3. Effects of thymidine phosphorylase on tumor aggressiveness and 5-fluorouracil sensitivity in cholangiocarcinoma

    PubMed Central

    Thanasai, Jongkonnee; Limpaiboon, Temduang; Jearanaikoon, Patcharee; Sripa, Banchob; Pairojkul, Chawalit; Tantimavanich, Srisurang; Miwa, Masanao

    2010-01-01

    AIM: To evaluate the role of thymidine phosphorylase (TP) in cholangiocarcinoma using small interfering RNA (siRNA). METHODS: A human cholangiocarcinoma-derived cell line KKU-M139, which has a naturally high level of endogenous TP, had TP expression transiently knocked down using siRNA. Cell growth, migration, in vitro angiogenesis, apoptosis, and cytotoxicity were assayed in TP knockdown and wild-type cell lines. RESULTS: TP mRNA and protein expression were decreased by 87.1% ± 0.49% and 72.5% ± 3.2%, respectively, compared with control cells. Inhibition of TP significantly decreased migration of KKU-M139, and suppressed migration and tube formation of human umbilical vein endothelial cells. siRNA also reduced the ability of TP to resist hypoxia-induced apoptosis, while suppression of TP reduced the sensitivity of KKU-M139 to 5-fluorouracil. CONCLUSION: Inhibition of TP may be beneficial in decreasing angiogenesis-dependent growth and migration of cholangiocarcinoma but may diminish the response to 5-fluorouracil chemotherapy. PMID:20355241

  4. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma

    PubMed Central

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W.; Novane, Nora; Shah, Jatin J.; Davis, Richard E.; Hou, Jian; Gagel, Robert F.; Yang, Jing

    2016-01-01

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP upregulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP upregulated the methylation of IRF8, thereby enhanced expression of NFATc1, leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2DDR. Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K/Akt signaling, and increased DNMT3A expression, resulting in hypermethylation of RUNX2, osterix, and IRF8. This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. As TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. PMID:27559096

  5. tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli.

    PubMed Central

    McEntee, K; Weinstock, G M

    1981-01-01

    The requirements for polynucleotide-dependent hydrolysis of ATP and for proteolytic cleavage of phage lambda repressor have been examined for both the wild-type (recA+ protein) and the tif-1 mutant form [tif(recA) protein] of the recA gene product. The recA+ and tif(recA) proteins catalyze both reactions in the presence of long single-stranded DNAs or certain deoxyhomopolymers. However, short oligonucleotides [(dT)12, (dA)14] stimulate neither the protease nor the ATPase activities of the recA+ protein. In contrast, these short oligonucleotides activate tif(recA) protein to cleave lambda repressor without stimulating its ATPase activity. Moreover, both the ATPase and protease activities of the tif(recA) protein are stimulated by poly(rU) and poly(rC) whereas the recA+ protein does not respond to these ribopolymers. We have purified the recA protein from a strain in which the tif mutation is intragenically suppressed. This mutant protein (recA629) is inactive in the presence of (dT)12, (dA)14, poly(rU), and poly(rC) for lambda repressor cleavage and ATP hydrolysis. These results argue that the tif-1 mutation (or mutations) alters the DNA binding site of the recA protein. We suggest that in vivo the tif(recA) protein is activated for cleaving repressors of SOS genes by complex formation with short single-stranded regions or gaps that normally occur near the growing fork of replicating chromosomes and are too short for activating the recA+ enzyme. This mechanism can account for the expression of SOS functions in the absence of DNA damage in tif mutant strains. Images PMID:7031642

  6. Sensitive Detection of Polynucleotide Kinase Activity by Paper-Based Fluorescence Assay with λ Exonuclease Assistance.

    PubMed

    Zhang, Hua; Zhao, Zhen; Lei, Zhen; Wang, Zhenxin

    2016-12-06

    The phosphorylation of nucleic acid with 5'-OH termini catalyzed by polynucleotide kinase (PNK) involves several significant cellular events. Here a paper-based fluorescence assay with λ exonuclease assistance was reported for facile detection of PNK activity through monitoring the change of fluorescence intensity on paper surface. Cy5-labeled ssDNA was first immobilized on the surface of aldehyde group modified paper, and BHQ-labeled ssDNA was then employed to quench the fluorescence of the immobilized Cy5-labeled ssDNA with the help of an adaptor ssDNA. When PNK and λ exonuclease cleavage reaction were introduced, the fluorescence quenching effect on the paper surface was blocked because of the digestion of phosphorylated dsDNA by the coupled enzymes. By using this paper-based assay, PNK activity both in pure reaction buffer and in practical biosample have been successfully measured. Highly sensitive detection of PNK activity down to 0.0001 U mL -1 and lysate of about 50 cells is achieved. The inhibition of PNK activity has also been investigated and a satisfactory result is obtained.

  7. The activity of thymidine phosphorylase in the uterine myomas and the myometrium in perimenopausal women.

    PubMed

    Miszczak-Zaborska, E; Greger, J; Wozniak, K; Kowalska-Koprek, U; Pajszczyk-Kieszkiewicz, T

    1997-01-01

    The activity of thymidine phosphorylase (dThdPase) in the myometrium and uterine myomas has been investigated in perimenopausal women. Differences in the activity of dThdPase have been found depending on the myoma type, menopause stage and the phase of the menstrual cycle in which the surgery was performed. The enzyme in the cytoplasmatic soluble fraction obtained at 50,000 x g was the most active in cellular leiomyomas of the follicular phase, the least in adenomyomas of the luteal phase of the menstrual cycle, whereas its activity in myometrium was always unchanged. Greater differences can be observed in the activity of dThdPase after a partial purification of the enzyme from myomas. It seems that the increase in dThdPase activity may point to its correlation with transient, premalignant tumor which may later transform into malignant forms.

  8. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun-Ki; Himmel, Michael E.; Bomble, Yannick J.

    Members of the genusCaldicellulosiruptorhave the ability to deconstruct and grow on lignocellulosic biomass without conventional pretreatment. A genetically tractable species,Caldicellulosiruptor bescii, was recently engineered to produce ethanol directly from switchgrass.C. besciicontains more than 50 glycosyl hydrolases and a suite of extracellular enzymes for biomass deconstruction, most prominently CelA, a multidomain cellulase that uses a novel mechanism to deconstruct plant biomass. Accumulation of cellobiose, a product of CelA during growth on biomass, inhibits cellulase activity. Here, we show that heterologous expression of a cellobiose phosphorylase from Thermotoga maritimaimproves the phosphorolytic pathway inC. besciiand results in synergistic activity with endogenous enzymes, includingmore » CelA, to increase cellulolytic activity and growth on crystalline cellulose. CelA is the only known cellulase to function well on highly crystalline cellulose and it uses a mechanism distinct from those of other cellulases, including fungal cellulases. Also unlike fungal cellulases, it functions at high temperature and, in fact, outperforms commercial cellulase cocktails. Factors that inhibit CelA during biomass deconstruction are significantly different than those that impact the performance of fungal cellulases and commercial mixtures. Here, this work contributes to understanding of cellulase inhibition and enzyme function and will suggest a rational approach to engineering optimal activity.« less

  9. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity

    DOE PAGES

    Kim, Sun-Ki; Himmel, Michael E.; Bomble, Yannick J.; ...

    2017-11-03

    Members of the genusCaldicellulosiruptorhave the ability to deconstruct and grow on lignocellulosic biomass without conventional pretreatment. A genetically tractable species,Caldicellulosiruptor bescii, was recently engineered to produce ethanol directly from switchgrass.C. besciicontains more than 50 glycosyl hydrolases and a suite of extracellular enzymes for biomass deconstruction, most prominently CelA, a multidomain cellulase that uses a novel mechanism to deconstruct plant biomass. Accumulation of cellobiose, a product of CelA during growth on biomass, inhibits cellulase activity. Here, we show that heterologous expression of a cellobiose phosphorylase from Thermotoga maritimaimproves the phosphorolytic pathway inC. besciiand results in synergistic activity with endogenous enzymes, includingmore » CelA, to increase cellulolytic activity and growth on crystalline cellulose. CelA is the only known cellulase to function well on highly crystalline cellulose and it uses a mechanism distinct from those of other cellulases, including fungal cellulases. Also unlike fungal cellulases, it functions at high temperature and, in fact, outperforms commercial cellulase cocktails. Factors that inhibit CelA during biomass deconstruction are significantly different than those that impact the performance of fungal cellulases and commercial mixtures. Here, this work contributes to understanding of cellulase inhibition and enzyme function and will suggest a rational approach to engineering optimal activity.« less

  10. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua

    2018-07-01

    The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most Nsbnd H and Csbnd H bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study.

  11. Relative mRNA expression of prostate-derived E-twenty-six factor and E-twenty-six variant 4 transcription factors, and of uridine phosphorylase-1 and thymidine phosphorylase enzymes, in benign and malignant prostatic tissue

    PubMed Central

    CAVAZZOLA, LUCIANE ROSTIROLA; CARVALHAL, GUSTAVO FRANCO; DEVES, CANDIDA; RENCK, DAIANA; ALMEIDA, RICARDO; SANTOS, DIóGENES SANTIAGO

    2015-01-01

    Prostate cancer is the most frequent urological tumor, and the second most common cancer diagnosed in men. Incidence and mortality are variable and appear to depend on behavioral factors and genetic predisposition. The prostate-derived E-twenty-six factor (PDEF) and E-twenty-six variant 4 (ETV4) transcription factors, and the thymidine phosphorylase (TP) and uridine phosphorylase-1 (UP-1) enzymes, are reported to be components of the pathways leading to tumorigenesis and/or metastasis in a number of tumors. The present study aimed to analyze the mRNA expression levels of these proteins in prostatic cancerous and benign tissue, and their association with clinical and pathological variables. Using quantitative reverse transcription polymerase chain reaction, the mRNA expression levels of PDEF, ETV4, TP and UP-1 were studied in 52 tissue samples (31 of benign prostatic hyperplasia and 21 of prostate adenocarcinomas) obtained from patients treated by transurethral resection of the prostate or by radical prostatectomy. Relative expression was assessed using the ∆-CT method. Data was analyzed using Spearman's tests for correlation. P<0.05 was considered to indicate a statistically significant difference. The results revealed that PDEF, ETV4, UP-1 and TP were expressed in 85.7, 90.5, 95.2 and 100% of the prostate cancer samples, and in 90.3, 96.8, 90.3 and 96.8% of the benign samples, respectively. PDEF and ETV4 exhibited a significantly higher relative expression level in the tumor samples compared with their benign counterparts. The relative expression of TP and UP-1 did not differ significantly between benign and cancerous prostate tissues. The relative expression of TP was moderately and significantly correlated with the expression of ETV4 in the benign tissues. The relative expression of UP-1 was significantly lower in T3 compared with T1 and T2 cancers. These findings indicate that PDEF, ETV4, TP and UP-1 are typically expressed in benign and malignant prostatic

  12. A paradoxical increase of a metabolite upon increased expression of its catabolic enzyme: the case of diadenosine tetraphosphate (Ap4A) and Ap4A phosphorylase I in Saccharomyces cerevisiae.

    PubMed Central

    Avila, D M; Robinson, A K; Kaushal, V; Barnes, L D

    1991-01-01

    The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product. PMID:1660456

  13. A paradoxical increase of a metabolite upon increased expression of its catabolic enzyme: the case of diadenosine tetraphosphate (Ap4A) and Ap4A phosphorylase I in Saccharomyces cerevisiae.

    PubMed

    Avila, D M; Robinson, A K; Kaushal, V; Barnes, L D

    1991-12-01

    The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product.

  14. Human SUV3 helicase regulates growth rate of the HeLa cells and can localize in the nucleoli.

    PubMed

    Szewczyk, Maciej; Fedoryszak-Kuśka, Natalia; Tkaczuk, Katarzyna; Dobrucki, Jurek; Waligórska, Agnieszka; Stępień, Piotr P

    2017-01-01

    The human SUV3 helicase (SUV3, hSUV3, SUPV3L1) is a DNA/RNA unwinding enzyme belonging to the class of DexH-box helicases. It localizes predominantly in the mitochondria, where it forms an RNA-degrading complex called mitochondrial degradosome with exonuclease PNP (polynucleotide phosphorylase). Association of this complex with the polyA polymerase can modulate mitochondrial polyA tails. Silencing of the SUV3 gene was shown to inhibit the cell cycle and to induce apoptosis in human cell lines. However, since small amounts of the SUV3 helicase were found in the cell nuclei, it was not clear whether the observed phenotypes of SUV3 depletion were of mitochondrial or nuclear origin. In order to answer this question we have designed gene constructs able to inhibit the SUV3 activity exclusively in the cell nuclei. The results indicate that the observed growth rate impairment upon SUV3 depletion is due to its nuclear function(s). Unexpectedly, overexpression of the nuclear-targeted wild-type copies of the SUV3 gene resulted in a higher growth rate. In addition, we demonstrate that the SUV3 helicase can be found in the HeLa cell nucleoli, but it is not detectable in the DNA-repair foci. Our results indicate that the nucleolar-associated human SUV3 protein is an important factor in regulation of the cell cycle.

  15. Increased sensitivity to thiopurines in methylthioadenosine phosphorylase-deleted cancers

    PubMed Central

    Coulthard, Sally A.; Redfern, Christopher P.F.; Vikingsson, Svante; Appell, Malin Lindqvist; Skoglund, Karin; Falk, Ingrid Jakobsen; Hall, Andrew G.; Taylor, Gordon A.; Hogarth, Linda A.

    2011-01-01

    The thiopurines, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are used in the treatment of leukaemia. Incorporation of deoxythioguanosine nucleotides (dGs) into the DNA of thiopurine-treated cells causes cell death but there is also evidence that thiopurine metabolites, particularly the 6-MP metabolite methylthioinosine monophosphate (MeTIMP), inhibit de novo purine synthesis (DNPS). The toxicity of DNPS inhibitors is influenced by methylthioadenosine phosphorylase (MTAP), a gene frequently deleted in cancers. Since the growth of MTAP-deleted tumour cells is dependent on DNPS or hypoxanthine salvage, we would predict such cells to show differential sensitivity to 6-MP and 6-TG. To test this hypothesis, sensitivity to 6-MP and 6-TG was compared in relation to MTAP status using cytotoxicity assays in two MTAP-deficient cell lines transfected to express MTAP: the T-cell acute lymphoblastic leukaemic cell line, Jurkat, transfected with MTAP cDNA under the control of a tetracycline-inducible promoter, and a lung cancer cell line (A549-MTAP−ve) transfected to express MTAP constitutively (A549-MTAP+ve). Sensitivity to 6-MP or methyl mercaptopurine riboside, which is converted intra-cellularly to MeTIMP, was markedly higher in both cell lines under MTAP−ve conditions. Measurement of thiopurine metabolites support the hypothesis that DNPS inhibition is a major cause of cell death with 6-MP, whereas dGs incorporation is the main cause of cytotoxicity with 6-TG. These data suggest that thiopurines, particularly 6-MP, may be more effective in patients with deleted MTAP. PMID:21282358

  16. Analysis by mutagenesis of the ATP binding site of the gamma subunit of skeletal muscle phosphorylase kinase expressed using a baculovirus system.

    PubMed

    Lee, J H; Maeda, S; Angelos, K L; Kamita, S G; Ramachandran, C; Walsh, D A

    1992-11-03

    Active gamma subunit of skeletal muscle phosphorylase kinase has been obtained by expression of the rat soleus cDNA in a baculovirus system. The protein exhibited the expected pH 6.8/8.2 activity ratio of 0.6, and its activity was insensitive to Ca2+ addition, indicating that it was free gamma subunit and not a gamma subunit-calmodulin complex. It was stimulated approximately 2-fold by Ca(2+)-calmodulin addition, demonstrating that it had retained high-affinity calmodulin binding. By site-directed mutagenesis, we have examined the role of six of the amino acids that constitute the consensus ATP binding site of the protein kinase, which in the gamma subunit is represented by the sequence 26Gly.Arg.Gly.Val.Ser.Ser.Val.Val33. Changes were evaluated by the kinetic determination of the dissociation constants of gamma-ATP, gamma-ADP, gamma-AMP.PCP, and gamma-phosphorylase and the maximum catalytic activity. The mutants Ser26-gamma, Ser29-gamma, Phe30-gamma, and Gly31-gamma each exhibited an essentially identical dissociation constant for gamma subunit phosphorylase, indicating that these mutations had not caused a global alteration in the protein structure but were limited to changes in the nucleotide binding site domain. Substitution of either Val33 (by Gly) or Gly28 (by Ser), two of the most conserved residues in all protein kinases, resulted in enzyme with marginally detectable activity. In noted contrast, the Ser26 mutant, which substituted the first glycine of the consensus glycine trio motif, and which is also very highly conserved, retained at least 25% of the enzymatic activity. The Gly31 substitution, which restored a glycine to a position characteristic for most protein kinases, had little overall effect upon the maximum rate of catalysis. Restoration of Ser30 to the more typical phenylalanine, which is present in most protein kinases, had minimal effect on catalysis. These data provide the first direct evaluation of the roles that different residues play

  17. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning.

    PubMed

    Decherchi, Sergio; Berteotti, Anna; Bottegoni, Giovanni; Rocchia, Walter; Cavalli, Andrea

    2015-01-27

    The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as kon and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.

  18. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  19. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides.

    PubMed

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua

    2018-07-05

    The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most NH and CH bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Wanderings in biochemistry.

    PubMed

    Lengyel, Peter

    2014-07-11

    My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Inhibition of homologous phosphorolytic ribonucleases by citrate may represent an evolutionarily conserved communicative link between RNA degradation and central metabolism

    PubMed Central

    Stone, Carlanne M.; Butt, Louise E.; Bufton, Joshua C.; Lourenco, Daniel C.; Gowers, Darren M.; Pickford, Andrew R.; Cox, Paul A.

    2017-01-01

    Abstract Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution. PMID:28334892

  2. Characterization of the biochemical properties of Campylobacter jejuni RNase III

    PubMed Central

    Haddad, Nabila; Saramago, Margarida; Matos, Rute G.; Prévost, Hervé; Arraiano, Cecília M.

    2013-01-01

    Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved. PMID:24073828

  3. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    PubMed

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  4. Purification and Properties of Bacteriophage T4-Induced RNA Ligase*

    PubMed Central

    Silber, Robert; Malathi, V. G.; Hurwitz, Jerard

    1972-01-01

    An enzyme, purified 300-fold from Escherichia coli infected with bacteriophage T4, catalyzes the conversion of 5′-termini of polyribonucleotides to internal phosphodiester bonds. The reaction requires ATP and Mg++. For every 5′-32P terminus rendered resistant to alkaline phosphatase, an equal amount of AMP and PPi are formed. Various polyribonucleotides are substrates in the reaction; to date, the best substrate is [5′-32P]polyriboadenylate. With the latter substrate, no evidence of intermolecular reaction was obtained. However, the 5′-32P termini of poly(A) rendered resistant to alkaline phosphatase are also resistant to attack by RNase II, polynucleotide phosphorylase, and low concentrations of venom phosphodiesterase. Since the product formed with poly(A) lacks 3′-hydroxyl ends, as measured with these exonucleases, the enzyme appears to convert linear molecules of polyriboadenylate to a circular form by the intramolecular covalent linkage of the 5′-phosphate end to the 3′-hydroxyl terminus. Images PMID:4342972

  5. Production of RNA by a polymerase protein encapsulated within phospholipid vesicles

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Breaker, R. R.; Joyce, G. F.; Deamer, D. W.

    1994-01-01

    Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.

  6. Inactivation of phosphorylase b by potassium ferrate, a new reactive analogue of the phosphate group.

    PubMed

    Lee, Y M; Benisek, W F

    1976-03-25

    Rabbit muscle phosphorylase b reacts with the phosphate-like reagent potassium ferrate, K2FeO4, a potent oxidizing agent. The reaction results in inactivation of the enzyme and abolition of the ability of the enzyme to bind 5'-AMP. Activating and nonactivating nucleotides which bind at the 5'-AMP binding site such as 5'-AMP, 2'-AMP, 3'-AMP, and 5'-IMP substantially protect the enzyme from inactivation by ferrate. One to two residues of tyrosine and approximately 1 residue of cysteine are modified by ferrate under the conditions employed. Tyrosine is protected by 5-AMP, whereas cysteine is not. The tyrosine modification is suggested as the inactivating chemical reaction. The location of the inactivating reaction is suggested to be in or near the 5'-AMP binding site. The structural and chemical properties of ferrate ion are discussed and compared to those of phosphate. Ferrate ion may be a reagent useful for phosphate group binding site-directed modification of proteins.

  7. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.

    PubMed

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W; Novane, Nora; Shah, Jatin J; Davis, Richard E; Hou, Jian; Gagel, Robert F; Yang, Jing

    2016-08-24

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP up-regulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP up-regulated the methylation of IRF8 and thereby enhanced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1 protein), leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2-deoxy-d-ribose (2DDR). Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K (phosphoinositide 3-kinase)/Akt signaling, and increased DNMT3A (DNA methyltransferase 3A) expression, resulting in hypermethylation of RUNX2, osterix, and IRF8 This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. Because TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. Copyright © 2016, American Association for the Advancement of Science.

  8. The structure of brain glycogen phosphorylase-from allosteric regulation mechanisms to clinical perspectives.

    PubMed

    Mathieu, Cécile; Dupret, Jean-Marie; Rodrigues Lima, Fernando

    2017-02-01

    Glycogen phosphorylase (GP) is the key enzyme that regulates glycogen mobilization in cells. GP is a complex allosteric enzyme that comprises a family of three isozymes: muscle GP (mGP), liver GP (lGP), and brain GP (bGP). Although the three isozymes display high similarity and catalyze the same reaction, they differ in their sensitivity to the allosteric activator adenosine monophosphate (AMP). Moreover, inactivating mutations in mGP and lGP have been known to be associated with glycogen storage diseases (McArdle and Hers disease, respectively). The determination, decades ago, of the structure of mGP and lGP have allowed to better understand the allosteric regulation of these two isoforms and the development of specific inhibitors. Despite its important role in brain glycogen metabolism, the structure of the brain GP had remained elusive. Here, we provide an overview of the human brain GP structure and its relationship with the two other members of this key family of the metabolic enzymes. We also summarize how this structure provides valuable information to understand the regulation of bGP and to design specific ligands of potential pharmacological interest. © 2016 Federation of European Biochemical Societies.

  9. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.

    PubMed

    Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-04-12

    Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity.

  10. Pyrimidine homoribonucleosides: synthesis, solution conformation, and some biological properties.

    PubMed

    Lassota, P; Kuśmierek, J T; Stolarski, R; Shugar, D

    1987-05-01

    Conversion of uridine and cytidine to their 5'-O-tosyl derivatives, followed by cyanation with tetraethylammonium cyanide, reduction and deamination, led to isolation of the hitherto unknown homouridine (1-(5'-deoxy-beta-D-allofuranosyl)uracil) and homocytidine (1-(5'-deoxy-beta-D-allofuranosyl)cytosine), analogues of uridine and cytidine in which the exocyclic 5'-CH2OH chain is extended by one carbon to CH2CH2OH. Homocytidine was also phosphorylated to its 6'-phosphate and 6'-pyrophosphate analogues. In addition, it was converted, via its 2,2'-anhydro derivative, to arahomocytidine, an analogue of the chemotherapeutically active araC. The structures of all the foregoing were established by various criteria, including 1H and 13C NMR spectroscopy, both of which were also applied to analyses of the solution conformations of the various compounds, particularly as regards the conformations of the exocyclic chains. The behaviour of the homo analogues was examined in several enzymatic systems. Homocytidine was a feeble substrate, without inhibitory properties, of E. coli cytidine deaminase. Homocytidine was an excellent substrate for wheat shoot nucleoside phosphotransferase; while homouridine was a good substrate for E. coli uridine phosphorylase. Although homoCMP was neither a substrate, nor an inhibitor, of snake venom 5'-nucleotidase, homoCDP was a potent inhibitor of this enzyme (Ki approximately 6 microM). HomoCDP was not a substrate for M. luteus polynucleotide phosphorylase. None of the compounds exhibited significant activity vs herpes simplex virus type 1, or cytotoxic activity in several mammalian cell lines.

  11. Isolation, crystallization in the macrogravitation field, preliminary X-ray investigation of uridine phosphorylase from Escherichia coli K-12.

    PubMed

    Mikhailov, A M; Smirnova, E A; Tsuprun, V L; Tagunova, I V; Vainshtein, B K; Linkova, E V; Komissarov, A A; Siprashvili, Z Z; Mironov, A S

    1992-03-01

    Uridine phosphorylase (UPH) from Escherichia coli K-12 has been purified to near homogeneity from a strain harbouring the udp gene, encoding UPH, on a multicopy plasmid. UPH was purified to electrophoretic homogeneity with the specific activity 230 units/mg with a recovery of 80%, yielding 120 mg of enzyme from 3g cells. Crystals of enzyme suitable for X-ray diffraction analysis were obtained in a preparative ultracentrifuge. The packing of the molecules in the crystals may be described by the space group P2(1)2(1)2(1) with the unit cell constants a = 90.4; b = 128.8; c = 136.8 A. There is one molecule per asymmetric unit, Vm = 2.4. These crystals diffract to at least 2.5-2.7 A resolution. The hexameric structure of UPH was directly demonstrated by electron microscopy study and image processing.

  12. Toxoplasma gondii Requires Glycogen Phosphorylase for Balancing Amylopectin Storage and for Efficient Production of Brain Cysts.

    PubMed

    Sugi, Tatsuki; Tu, Vincent; Ma, Yanfen; Tomita, Tadakimi; Weiss, Louis M

    2017-08-29

    In immunocompromised hosts, latent infection with Toxoplasma gondii can reactivate from tissue cysts, leading to encephalitis. A characteristic of T. gondii bradyzoites in tissue cysts is the presence of amylopectin granules. The regulatory mechanisms and role of amylopectin accumulation in this organism are not fully understood. The T. gondii genome encodes a putative glycogen phosphorylase (TgGP), and mutants were constructed to manipulate the activity of TgGP and to evaluate the function of TgGP in amylopectin storage. Both a stop codon mutant (Pru/TgGP S25stop [expressing a Ser-to-stop codon change at position 25 in TgGP]) and a phosphorylation null mutant (Pru/TgGP S25A [expressing a Ser-to-Ala change at position 25 in TgGp]) mutated at Ser25 displayed amylopectin accumulation, while the phosphorylation-mimetic mutant (Pru/TgGP S25E [expressing a Ser-to-Glu change at position 25 in TgGp]) had minimal amylopectin accumulation under both tachyzoite and bradyzoite growth conditions. The expression of active TgGP S25S or TgGP S25E restored amylopectin catabolism in Pru/TgGP S25A To understand the relation between GP and calcium-dependent protein kinase 2 (CDPK2), which was recently reported to regulate amylopectin consumption, we knocked out CDPK2 in these mutants. Pru Δcdpk2 /TgGP S25E had minimal amylopectin accumulation, whereas the Δcdpk2 phenotype in the other GP mutants and parental lines displayed amylopectin accumulation. Both the inactive S25A and hyperactive S25E mutant produced brain cysts in infected mice, but the numbers of cysts produced were significantly less than the number produced by the S25S wild-type GP parasite. Complementation that restored amylopectin regulation restored brain cyst production to the control levels seen in infected mice. These data suggest that T. gondii requires tight regulation of amylopectin expression for efficient production of cysts and persistent infections and that GP phosphorylation is a regulatory mechanism

  13. Fluorescent sensor for mercury

    DOEpatents

    Wang, Zidong [Urbana, IL; Lee, Jung Heon [Evanston, IL; Lu, Yi [Champaign, IL

    2011-11-22

    The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

  14. A novel representation of the conformational structure of transfer RNAs. Correlation of the folding patterns of the polynucleotide chain with the base sequence and the nucleotide backbone torsions.

    PubMed Central

    Srinivasan, A R; Yathindra, N

    1977-01-01

    A novel description of the conformational characteristics of all the individual nucleotides and the phosphodiesters in tRNAs is presented in the form of a circular plot. This representation furnishes information of the base sequence with the folding patterns of the polynucleotide chain as one traverses along the circumference and with the individual nucleotide and phosphodiester linkage torsions along the radii. The circular plot obtained for yeast tRNAPhe strikingly distinguishes the helical and the loop regions. The variation of the different nucleotide torsions along the entire chain length and their effect on the secondary helical and tertiary loop regions become readily apparent. PMID:339206

  15. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification.

    PubMed

    Li, Xia; Xu, Xiaowen; Song, Juan; Xue, Qingwang; Li, Chenzhong; Jiang, Wei

    2017-05-15

    T4 polynucleotide kinase (PNK) plays critical roles in regulating DNA phosphorylation modes during the repair of DNA lesions. The aberrant activity of T4 PNK has been proven to be associated with a variety of human pathologies. Sensitive detection of T4 PNK activity is critical to both clinical diagnosis and therapeutics. Herein, a background-eliminated fluorescence assay for sensitive detection of T4 PNK activity has been developed by multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification (HRCA). First, the streptavidin-magnetic nanobeads (MBs) were functionalized with the biotin modified hairpin probe (HP) with 3'-phosphoryl, forming multifunctional magnetic probes (HP-MBs). Then, in the presence of T4 PNK, the 3'-phosphoryl of HP-MBs was hydrolyzed to 3'-hydroxyl, thus serving as primers to initiate the polymerization extension and nicking endonuclease cleavage reaction. Next, the primers released from above "polymerization-nicking" cycles were separated out to trigger the subsequently HRCA process, producing plenty of dsDNA. Finally, the intercalating dye SYBR Green I (SG) was inserted into the dsDNA, generating enhanced fluorescence signals. In our design, the HP-MBs here serve together as the T4 PNK, DNA polymerase, and endonuclease recognition probe, and thus avoid the demands of utilizing multiple probes design. Moreover, it performed primary "polymerization-nicking" amplification and mediate secondary HRCA. In addition to, performing the separation function, the binding of HP-MBs and SG could be avoided while a low background was acquired. This method showed excellent sensitivity with a detection limit of 0.0436 mU/mL, and accomplished exceptional characterization T4 PNK activity in cell extracts, offering a powerful tool for biomedical research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast formore » AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.« less

  17. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options

    PubMed Central

    Yadak, Rana; Sillevis Smitt, Peter; van Gisbergen, Marike W.; van Til, Niek P.; de Coo, Irenaeus F. M.

    2017-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease. PMID:28261062

  18. Production and application of a rare disaccharide using sucrose phosphorylase from Leuconostoc mesenteroides.

    PubMed

    Morimoto, Kenji; Yoshihara, Akihide; Furumoto, Toshio; Takata, Goro

    2015-06-01

    Sucrose phosphorylase (SPase) from Leuconostoc mesenteroides exhibited activity towards eight ketohexoses, which behaved as D-glucosyl acceptors, and α-D-glucose-1-phosphate (G1P), which behaved as a donor. All eight of these ketohexoses were subsequently transformed into the corresponding d-glucosyl-ketohexoses. Of the eight ketohexoses evaluated in the current study, d-allulose behaved as the best substrate for SPase, and the resulting d-glucosyl-d-alluloside product was found to be a non-reducing sugar with a specific optical rotation of [α]D(20) + 74.36°. D-Glucosyl-D-alluloside was identified as α-D-glucopyranosyl-(1→2)-β-D-allulofuranoside by NMR analysis. D-Glucosyl-D-alluloside exhibited an inhibitory activity towards an invertase from yeast with a Km value of 50 mM, where it behaved as a competitive inhibitor with a Ki value of 9.2 mM. D-Glucosyl-D-alluloside was also successfully produced from sucrose using SPase and D-tagatose 3-epimerase. This process also allowed for the production of G1P from sucrose and d-allulose from D-fructose, which suggested that this method could be used to prepare d-glucosyl-d-alluloside without the need for expensive reagents such as G1P and d-allulose. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. A homogeneous nucleic acid hybridization assay based on strand displacement.

    PubMed Central

    Vary, C P

    1987-01-01

    A homogeneous nucleic acid hybridization assay which is conducted in solution and requires no separation steps is described. The assay is based on the concept of strand displacement. In the strand displacement assay, an RNA "signal strand" is hybridized within a larger DNA strand termed the "probe strand", which is, in turn, complementary to the target nucleic acid of interest. Hybridization of the target nucleic acid with the probe strand ultimately results in displacement of the RNA signal strand. Strand displacement, therefore, causes conversion of the RNA from double to single-stranded form. The single-strand specificity of polynucleotide phosphorylase (EC 2.7.7.8) allows discrimination between double-helical and single-stranded forms of the RNA signal strand. As displacement proceeds, free RNA signal strands are preferentially phosphorolyzed to component nucleoside diphosphates, including adenosine diphosphate. The latter nucleotide is converted to ATP by pyruvate kinase(EC 2.7.1.40). Luciferase catalyzed bioluminescence is employed to measure the ATP generated as a result of strand displacement. Images PMID:3309890

  20. The RNase R from Campylobacter jejuni Has Unique Features and Is Involved in the First Steps of Infection*

    PubMed Central

    Haddad, Nabila; Matos, Rute G.; Pinto, Teresa; Rannou, Pauline; Cappelier, Jean-Michel; Prévost, Hervé; Arraiano, Cecília M.

    2014-01-01

    Bacterial pathogens must adapt/respond rapidly to changing environmental conditions. Ribonucleases (RNases) can be crucial factors contributing to the fast adaptation of RNA levels to different environmental demands. It has been demonstrated that the exoribonuclease polynucleotide phosphorylase (PNPase) facilitates survival of Campylobacter jejuni in low temperatures and favors swimming, chick colonization, and cell adhesion/invasion. However, little is known about the mechanism of action of other ribonucleases in this microorganism. Members of the RNB family of enzymes have been shown to be involved in virulence of several pathogens. We have searched C. jejuni genome for homologues and found one candidate that displayed properties more similar to RNase R (Cj-RNR). We show here that Cj-RNR is important for the first steps of infection, the adhesion and invasion of C. jejuni to eukaryotic cells. Moreover, Cj-RNR proved to be active in a wide range of conditions. The results obtained lead us to conclude that Cj-RNR has an important role in the biology of this foodborne pathogen. PMID:25100732

  1. Characterization of the 2′,3′ cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage λ phosphatase

    PubMed Central

    Keppetipola, Niroshika; Shuman, Stewart

    2007-01-01

    Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire. PMID:17986465

  2. Study of the hydrolysis and ionization constants of Schiff base from pyridoxal 5'-phosphate and n-hexylamine in partially aqueous solvents. An application to phosphorylase b.

    PubMed Central

    Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F

    1986-01-01

    Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764

  3. Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom

    PubMed Central

    2013-01-01

    Background Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling. Results We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses. Conclusion In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously

  4. Use of alternative alkali chlorides in RT and PCR of polynucleotides containing G quadruplex structures.

    PubMed

    Ramos-Alemán, Fabiola; González-Jasso, Eva; Pless, Reynaldo C

    2018-02-15

    Several alkali chlorides were compared for their use in reverse transcription (RT) and PCR of different types of nucleic acid templates. On a test region of biological DNA incapable of forming G quadruplex (G4) structures, Taq DNA polymerase showed similar PCR performance with 50 mM KCl, CsCl, LiCl, and NaCl. In contrast, on a synthetic model polydeoxyribonucleotide prone to G4 formation, good PCR amplification was obtained with 50 mM CsCl, but little or none with LiCl or KCl. Similarly, in RT of a G4-prone model polyribonucleotide, MMLV reverse transcriptase produced a good yield with 50 mM CsCl, mediocre yields with LiCl or without added alkali chloride, and a poor yield with 50 mM KCl. The full RT-PCR assay starting from the G4-prone polyribonucleotide, showed good results with CsCl in both stages, poor results with LiCl, and no product formation with KCl. The model polynucleotides showed fast G quadruplex formation under PCR or RT conditions with 50 mM KCl, but not with CsCl or LiCl. The results argue for the use of CsCl instead of KCl for RT and PCR of G4-prone sequences. No advantage was observed when using the 7-deaza type nucleotide analog c 7 dGTP in PCR amplification of the G4-prone polydeoxyribonucleotide. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Nanomolar Inhibitors of Glycogen Phosphorylase Based on β-d-Glucosaminyl Heterocycles: A Combined Synthetic, Enzyme Kinetic, and Protein Crystallography Study.

    PubMed

    Bokor, Éva; Kyriakis, Efthimios; Solovou, Theodora G A; Koppány, Csenge; Kantsadi, Anastassia L; Szabó, Katalin E; Szakács, Andrea; Stravodimos, George A; Docsa, Tibor; Skamnaki, Vassiliki T; Zographos, Spyros E; Gergely, Pál; Leonidas, Demetres D; Somsák, László

    2017-11-22

    Aryl substituted 1-(β-d-glucosaminyl)-1,2,3-triazoles as well as C-β-d-glucosaminyl 1,2,4-triazoles and imidazoles were synthesized and tested as inhibitors against muscle and liver isoforms of glycogen phosphorylase (GP). While the N-β-d-glucosaminyl 1,2,3-triazoles showed weak or no inhibition, the C-β-d-glucosaminyl derivatives had potent activity, and the best inhibitor was the 2-(β-d-glucosaminyl)-4(5)-(2-naphthyl)-imidazole with a K i value of 143 nM against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb inhibitor complexes revealed structural features of the strong binding and offered an explanation for the differences in inhibitory potency between glucosyl and glucosaminyl derivatives and also for the differences between imidazole and 1,2,4-triazole analogues.

  6. Pyrococcus furiosus strains and methods of using same

    DOEpatents

    Lipscomb, Gina L; Farkas, Joel Andrew; Adams, Michael W. W.; Westpheling, Janet

    2015-01-06

    Provided herein are methods for transforming a Pyrococcus furiosus with a polynucleotide. In one embodiment, the method includes contacting a P. furiosus with a polynucleotide under conditions suitable for uptake of the polynucleotide by the P. furiosus, and identifying transformants at a frequency of, for instance, at least 10.sup.3 transformants per microgram DNA. Also provided are isolated Pyrococcus furiosus having the characteristics of Pyrococcus furiosus COM1, and plasmids that include an origin of replication that functions in a Pyrococcus furiosus. The plasmid is stable in a recipient P. furiosus without selection for more than 100 generations and is structurally unchanged after replication in P. furiosus for more than 100 generations.

  7. Synthesis of substituted 2-(β-D-glucopyranosyl)-benzimidazoles and their evaluation as inhibitors of glycogen phosphorylase.

    PubMed

    Bokor, Éva; Szilágyi, Enikő; Docsa, Tibor; Gergely, Pál; Somsák, László

    2013-11-15

    Microwave assisted condensation of O-perbenzoylated C-(β-d-glucopyranosyl)formic acid with 1,2-diaminobenzenes in the presence of triphenylphosphite gave the corresponding O-protected 2-(β-d-glucopyranosyl)-benzimidazoles in moderate yields. O-Perbenzoylated C-(β-d-glucopyranosyl)formamide and -thioformamide were transformed into the corresponding ethyl C-(β-d-glucopyranosyl)formimidate and -thioformimidate, respectively, by Et3O·BF4. Treatment of the formimidate with 1,2-diaminobenzenes afforded O-protected 2-(β-d-glucopyranosyl)-benzimidazoles in good to excellent yields. Similar reaction of the thioformimidate gave these compounds in lower yields. The O-benzoyl protecting groups were removed by the Zemplén protocol. These test compounds were assayed against rabbit muscle glycogen phosphorylase (GP) b, the prototype of liver GP, the rate limiting enzyme of glycogen degradation. The best inhibitors were 2-(β-d-glucopyranosyl)-4-methyl-benzimidazole (Ki=2.8μM) and 2-(β-d-glucopyranosyl)-naphtho[2,3-d]imidazole (Ki=2.1μM) exhibiting a ∼3-4 times stronger binding than the unsubstituted parent compound. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    DOEpatents

    Lu, Yi [Champaign, IL; Liu, Juewen [Albuquerque, NM

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  9. Polypeptide having or assisting in carbohydrate material degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2016-02-16

    The invention relates to a polypeptide which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  10. Polypeptide having beta-glucosidase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well asmore » the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.« less

  11. Polypeptide having swollenin activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elizabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica D; Damveld, Robbertus Antonius

    2015-11-04

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  12. Carbohydrate degrading polypeptide and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide having carbohydrate material degrading activity which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 4, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional protein and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  13. Polypeptide having beta-glucosidase activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel; Damveld, Robbertus Antonius

    2015-09-01

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  14. Polypeptide having cellobiohydrolase activity and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-09-15

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  15. Polypeptide having acetyl xylan esterase activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  16. Polypeptide having carbohydrate degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica Diana; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  17. Nerve-dependent factors regulating transcript levels of glycogen phosphorylase in skeletal muscle.

    PubMed

    Matthews, C C; Carlsen, R C; Froman, B; Tait, R; Gorin, F

    1998-06-01

    1. Muscle glycogen phosphorylase (MGP), the rate-limiting enzyme for glycogen metabolism in skeletal muscle, is neurally regulated. Steady-state transcript levels of the skeletal muscle isozyme of MGP decrease significantly following muscle denervation and after prolonged muscle inactivity with an intact motor nerve. These data suggest that muscle activity has an important influence on MGP gene expression. The evidence to this point, however, does not preclude the possibility that MGP is also regulated by motor neuron-derived trophic factors. This study attempts to distinguish between regulation provided by nerve-evoked muscle contractile activity and that provided by the delivery of neurotrophic factors. 2. Steady-state MGP transcript levels were determined in rat tibialis anterior (TA) muscles following controlled interventions aimed at separating the contributions of contractile activity from axonally transported trophic factors. The innervated TA was rendered inactive by daily epineural injections of tetrodotoxin (TTX) into the sciatic nerve. Sustained inhibition of axonal transport was accomplished by applying one of three different concentrations of the antimicrotubule agent, vinblastine (VIN), to the proximal sciatic nerve for 1 hr. The axonal transport of acetylcholinesterase (AChE) was assessed 7, 14, and 28 days after the single application of VIN. 3. MGP transcript levels normalized to total RNA were reduced by 67% in rat TA, 7 days after nerve section. Daily injection of 2 microg TTX into the sciatic nerve for 7 days eliminated muscle contractile activity and reduced MGP transcript levels by 60%. 4. A single, 1-hr application of 0.10% (w/v) VIN to the sciatic nerve reduced axonal transport but did not alter MGP transcript levels in the associated TA, 7 days after treatment. Application of 0.10% VIN to the sciatic nerve also did not affect IA sensory or motor nerve conduction velocities or TA contractile function. 5. Treatment of the sciatic nerve with 0

  18. Effects of aging and calorie restriction on rat skeletal muscle glycogen synthase and glycogen phosphorylase

    PubMed Central

    Montori-Grau, Marta; Minor, Robin; Lerin, Carles; Allard, Joanne; Garcia-Martinez, Celia; de Cabo, Rafael; Gómez-Foix, Anna M.

    2016-01-01

    Calorie restriction’s (CR) effects on age-associated changes in glycogen-metabolizing enzymes were studied in rat soleus (SOL) and tibialis anterior (TA) muscles. Old (24 months) compared to young (6 months) rats maintained ad libitum on a standard diet had reduced glycogen synthase (GS) activity, lower muscle GS protein levels, increased phosphorylation of GS at site 3a with less activation in SOL. Age-associated impairments in GS protein and activation-phosphorylation were also shown in TA. There was an age-associated reduction in glycogen phosphorylase (GP) activity level in SOL, while brain/muscle isoforms (B/M) of GP protein levels were higher. GP activity and protein levels were preserved, but GP was inactivated in TA with age. Glycogen content was unchanged in both muscles. CR did not alter GS or GP activity/protein levels in young rats. CR hindered age-related decreases in GS activity/protein, unrelated to GS mRNA levels, and GS inactivation-phosphorylation; not on GP. In older rats, CR enhanced glycogen accumulation in SOL. Short-term fasting did not recapitulate CR effects in old rats. Thus, the predominant age-associated impairments on skeletal muscle GS and GP activities occur in the oxidative SOL muscle of rats, and CR can attenuate the loss of GS activity/activation and stimulate glycogen accumulation. PMID:19341787

  19. Binding Mode and Selectivity of a Scorpiand-Like Polyamine Ligand to Single- and Double-Stranded DNA and RNA: Metal- and pH-Driven Modulation.

    PubMed

    Inclán, Mario; Guijarro, Lluis; Pont, Isabel; Frías, Juan C; Rotger, Carmen; Orvay, Francisca; Costa, Antoni; García-España, Enrique; Albelda, M Teresa

    2017-11-13

    The interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA-polyU, poly(dAT) 2 , and poly(dGC) 2 has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shifts. However, the fluorescence studies reveal that both polyA-polyU and poly(dAT) 2 induce a twofold increase in the fluorescence, whereas interaction of poly(dGC) 2 with the ligand L induces a quenching of the fluorescence. Cu 2+ modulates the interaction with the double-stranded polynucleotides due to the conformation changes that its coordination induces in compound L. In general, the spectroscopic studies show that intercalation seems to be blocked by the formation of the metal complex. All these features suggest the possibility of using compound L as a sequence-selective fluorescence probe. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structures of bacterial polynucleotide kinase in a Michaelis complex with GTP•Mg2+ and 5'-OH oligonucleotide and a product complex with GDP•Mg2+ and 5'-PO4 oligonucleotide reveal a mechanism of general acid-base catalysis and the determinants of phosphoacceptor recognition.

    PubMed

    Das, Ushati; Wang, Li Kai; Smith, Paul; Jacewicz, Agata; Shuman, Stewart

    2014-01-01

    Clostridium thermocellum polynucleotide kinase (CthPnk), the 5' end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from an NTP donor to a 5'-OH polynucleotide acceptor. Here we report the crystal structures of CthPnk-D38N in a Michaelis complex with GTP•Mg(2+) and a 5'-OH oligonucleotide and a product complex with GDP•Mg(2+) and a 5'-PO4 oligonucleotide. The O5' nucleophile is situated 3.0 Å from the GTP γ phosphorus in the Michaelis complex, where it is coordinated by Asn38 and is apical to the bridging β phosphate oxygen of the GDP leaving group. In the product complex, the transferred phosphate has undergone stereochemical inversion and Asn38 coordinates the 5'-bridging phosphate oxygen of the oligonucleotide. The D38N enzyme is poised for catalysis, but cannot execute because it lacks Asp38-hereby implicated as the essential general base catalyst that abstracts a proton from the 5'-OH during the kinase reaction. Asp38 serves as a general acid catalyst during the 'reverse kinase' reaction by donating a proton to the O5' leaving group of the 5'-PO4 strand. The acceptor strand binding mode of CthPnk is distinct from that of bacteriophage T4 Pnk.

  1. Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.

    PubMed

    Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D

    1997-01-15

    Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.

  2. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhancedmore » expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.« less

  3. A homogeneous, high-throughput-compatible, fluorescence intensity-based assay for UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with nanomolar product detection.

    PubMed

    Shapiro, Adam B; Livchak, Stephania; Gao, Ning; Whiteaker, James; Thresher, Jason; Jahić, Haris; Huang, Jian; Gu, Rong-Fang

    2012-03-01

    A novel assay for the NADPH-dependent bacterial enzyme UDP-N-acetylenolpyruvylglucosamine reductase (MurB) is described that has nanomolar sensitivity for product formation and is suitable for high-throughput applications. MurB catalyzes an essential cytoplasmic step in the synthesis of peptidoglycan for the bacterial cell wall, reduction of UDP-N-acetylenolpyruvylglucosamine to UDP-N-acetylmuramic acid (UNAM). Interruption of this biosynthetic pathway leads to cell death, making MurB an attractive target for antibacterial drug discovery. In the new assay, the UNAM product of the MurB reaction is ligated to L-alanine by the next enzyme in the peptidoglycan biosynthesis pathway, MurC, resulting in hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP). The ADP is detected with nanomolar sensitivity by converting it to oligomeric RNA with polynucleotide phosphorylase and detecting the oligomeric RNA with a fluorescent dye. The product sensitivity of the new assay is 1000-fold greater than that of the standard assay that follows the absorbance decrease resulting from the conversion of NADPH to NADP(+). This sensitivity allows inhibitor screening to be performed at the low substrate concentrations needed to make the assay sensitive to competitive inhibition of MurB.

  4. Direct observation of processive exoribonuclease motion using optical tweezers.

    PubMed

    Fazal, Furqan M; Koslover, Daniel J; Luisi, Ben F; Block, Steven M

    2015-12-08

    Bacterial RNases catalyze the turnover of RNA and are essential for gene expression and quality surveillance of transcripts. In Escherichia coli, the exoribonucleases RNase R and polynucleotide phosphorylase (PNPase) play critical roles in degrading RNA. Here, we developed an optical-trapping assay to monitor the translocation of individual enzymes along RNA-based substrates. Single-molecule records of motion reveal RNase R to be highly processive: one molecule can unwind over 500 bp of a structured substrate. However, enzyme progress is interrupted by pausing and stalling events that can slow degradation in a sequence-dependent fashion. We found that the distance traveled by PNPase through structured RNA is dependent on the A+U content of the substrate and that removal of its KH and S1 RNA-binding domains can reduce enzyme processivity without affecting the velocity. By a periodogram analysis of single-molecule records, we establish that PNPase takes discrete steps of six or seven nucleotides. These findings, in combination with previous structural and biochemical data, support an asymmetric inchworm mechanism for PNPase motion. The assay developed here for RNase R and PNPase is well suited to studies of other exonucleases and helicases.

  5. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    PubMed

    Lubin, Martin; Lubin, Adam

    2009-05-29

    The gene for methylthioadenosine phosphorylase (MTAP) lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA), to adenine and 5-methylthioribose-1-phosphate (MTR-1-P), which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP), 6-methylpurine (MeP), or 2-fluoroadenine (F-Ade), are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT), to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked. We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF) are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU) and 6-thioguanine (6-TG) may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP). The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index. We describe a

  6. Biosensors based on directed assembly of particles

    DOEpatents

    Lu, Yi [Champaign, IL; Liu, Juewen [Urbana, IL

    2009-02-03

    A sensor system for detecting an effector or cofactor comprises (a) a nucleic acid enzyme; (b) a substrate for the nucleic acid enzyme, comprising a first polynucleotide; (c) a first set of particles comprising a second polynucleotide at least partially complementary to the substrate, where the polynucleotide is attached to the particles at its 3' terminus; and (d) a second set of particles comprising a third polynucleotide at least partially complementary to the substrate, where the polynucleotide is attached to the particles at its 5' terminus.

  7. Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome.

    PubMed

    Matilainen, Sanna; Carroll, Christopher J; Richter, Uwe; Euro, Liliya; Pohjanpelto, Max; Paetau, Anders; Isohanni, Pirjo; Suomalainen, Anu

    2017-09-01

    Leigh syndrome is a severe infantile encephalopathy with an exceptionally variable genetic background. We studied the exome of a child manifesting with Leigh syndrome at one month of age and progressing to death by the age of 2.4 years, and identified novel compound heterozygous variants in PNPT1, encoding the polynucleotide phosphorylase (PNPase). Expression of the wild type PNPT1 in the subject's myoblasts functionally complemented the defects, and the pathogenicity was further supported by structural predictions and protein and RNA analyses. PNPase is a key enzyme in mitochondrial RNA metabolism, with suggested roles in mitochondrial RNA import and degradation. The variants were predicted to locate in the PNPase active site and disturb the RNA processing activity of the enzyme. The PNPase trimer formation was not affected, but specific RNA processing intermediates derived from mitochondrial transcripts of the ND6 subunit of Complex I, as well as small mRNA fragments, accumulated in the subject's myoblasts. Mitochondrial RNA processing mediated by the degradosome consisting of hSUV3 and PNPase is poorly characterized, and controversy on the role and location of PNPase within human mitochondria exists. Our evidence indicates that PNPase activity is essential for the correct maturation of the ND6 transcripts, and likely for the efficient removal of degradation intermediates. Loss of its activity will result in combined respiratory chain deficiency, and a classic respiratory chain-deficiency-associated disease, Leigh syndrome, indicating an essential role for the enzyme for normal function of the mitochondrial respiratory chain. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Uridine protects cortical neurons from glucose deprivation-induced death: possible role of uridine phosphorylase.

    PubMed

    Choi, Ji Woong; Shin, Chan Young; Choi, Min Sik; Yoon, Seo Young; Ryu, Jong Hoon; Lee, Jae-Chul; Kim, Won-Ki; El Kouni, Mahmoud H; Ko, Kwang Ho

    2008-06-01

    We previously reported that uridine blocked glucose deprivation-induced death of immunostimulated astrocytes by preserving ATP levels. Uridine phosphorylase (UPase), an enzyme catalyzing the reversible phosphorylation of uridine, was involved in this effect. Here, we tried to expand our previous findings by investigating the uridine effect on the brain and neurons using in vivo and in vitro ischemic injury models. Orally administrated uridine (50-200 mg/kg) reduced middle cerebral artery occlusion (1.5 h)/reperfusion (22 h)-induced infarct in mouse brain. Additionally, in the rat brain subjected to the same ischemic condition, UPase mRNA and protein levels were up-regulated. Next, we employed glucose deprivation-induced hypoglycemia in mixed cortical cultures of neurons and astrocytes as an in vitro model. Cells were deprived of glucose and, two hours later, supplemented with 20 mM glucose. Under this condition, a significant ATP loss followed by death was observed in neurons but not in astrocytes, which were blocked by treatment with uridine in a concentration-dependent manner. Inhibition of cellular uptake of uridine by S-(4-nitrobenzyl)-6-thioinosine blocked the uridine effect. Similar to our in vivo data, UPase expression was up-regulated by glucose deprivation in mRNA as well as protein levels. Additionally, 5-(phenylthio)acyclouridine, a specific inhibitor of UPase, prevented the uridine effect. Finally, the uridine effect was shown only in the presence of astrocytes. Taken together, the present study provides the first evidence that uridine protects neurons against ischemic insult-induced neuronal death, possibly through the action of UPase.

  9. Distribution of glycogen phosphorylase and cytochrome oxidase in the central nervous system of the turtle Trachemys dorbigni.

    PubMed

    Partata, W A; Krepsky, A M; Xavier, L L; Marques, M; Achaval, M

    1999-10-01

    Glycogen phosphorylase (GP) and cytochrome oxidase (CO) activities were mapped histochemically in the brain of the turtle Trachemys dorbigni. In the telencephalon, both activities occurred in the olfactory bulb, in all cortical areas, in the dorsal ventricular ridge, striatum, primordium hippocampi and olfactory tubercle. In the diencephalon, they were identified in some areas of the hypothalamus, and in rotundus and geniculate nuclei. Both reactions were detected in the oculomotor, trochlear, mesencephalic trigeminal nuclei, the nucleus of the posterior commissure, torus semicircularis, substantia nigra and ruber and isthmic nuclei of the mesencephalon. In all layers of the optic tectum GP activity was found, but CO only labelled the stratum griseum centrale. In the medulla oblonga both enzymes appear in the reticular, raphe and vestibular nuclei, locus coeruleus and nuclei of cranial nerves. In the cerebellum, the granular and molecular layers, and the deep cerebellar nuclei were positive for both enzymes. The Purkinje cells were only reactive for CO. In the spinal cord, motor and commissural neurones exhibited a positive reaction for the two enzymes. However, CO also occurred in the marginal nucleus and in the lateral funiculus. These results may be useful as a basis for subsequent studies on turtle brain metabolism.

  10. PredictProtein—an open resource for online prediction of protein structural and functional features

    PubMed Central

    Yachdav, Guy; Kloppmann, Edda; Kajan, Laszlo; Hecht, Maximilian; Goldberg, Tatyana; Hamp, Tobias; Hönigschmid, Peter; Schafferhans, Andrea; Roos, Manfred; Bernhofer, Michael; Richter, Lothar; Ashkenazy, Haim; Punta, Marco; Schlessinger, Avner; Bromberg, Yana; Schneider, Reinhard; Vriend, Gerrit; Sander, Chris; Ben-Tal, Nir; Rost, Burkhard

    2014-01-01

    PredictProtein is a meta-service for sequence analysis that has been predicting structural and functional features of proteins since 1992. Queried with a protein sequence it returns: multiple sequence alignments, predicted aspects of structure (secondary structure, solvent accessibility, transmembrane helices (TMSEG) and strands, coiled-coil regions, disulfide bonds and disordered regions) and function. The service incorporates analysis methods for the identification of functional regions (ConSurf), homology-based inference of Gene Ontology terms (metastudent), comprehensive subcellular localization prediction (LocTree3), protein–protein binding sites (ISIS2), protein–polynucleotide binding sites (SomeNA) and predictions of the effect of point mutations (non-synonymous SNPs) on protein function (SNAP2). Our goal has always been to develop a system optimized to meet the demands of experimentalists not highly experienced in bioinformatics. To this end, the PredictProtein results are presented as both text and a series of intuitive, interactive and visually appealing figures. The web server and sources are available at http://ppopen.rostlab.org. PMID:24799431

  11. Evaluation of designed ligands by a multiple screening method: Application to glycogen phosphorylase inhibitors constructed with a variety of approaches

    NASA Astrophysics Data System (ADS)

    So, Sung-Sau; Karplus, Martin

    2001-07-01

    Glycogen phosphorylase (GP) is an important enzyme that regulates blood glucose level and a key therapeutic target for the treatment of type II diabetes. In this study, a number of potential GP inhibitors are designed with a variety of computational approaches. They include the applications of MCSS, LUDI and CoMFA to identify additional fragments that can be attached to existing lead molecules; the use of 2D and 3D similarity-based QSAR models (HQSAR and SMGNN) and of the LUDI program to identify novel molecules that may bind to the glucose binding site. The designed ligands are evaluated by a multiple screening method, which is a combination of commercial and in-house ligand-receptor binding affinity prediction programs used in a previous study (So and Karplus, J. Comp.-Aid. Mol. Des., 13 (1999), 243-258). Each method is used at an appropriate point in the screening, as determined by both the accuracy of the calculations and the computational cost. A comparison of the strengths and weaknesses of the ligand design approaches is made.

  12. Synthesis of a new family of acyclic nucleoside phosphonates, analogues of TPases transition states.

    PubMed

    Dayde, Bénédicte; Benzaria, Samira; Pierra, Claire; Gosselin, Gilles; Surleraux, Dominique; Volle, Jean-Noël; Pirat, Jean-Luc; Virieux, David

    2012-05-07

    A 6-step procedure was developed for the synthesis of a new family of acyclic nucleoside phosphonates (ANPs), "PHEEPA" [(2-pyrimidinyl-2-(2-hydroxyethoxy)ethyl)phosphonic acids] in overall yields ranging from 4.5% to 32%. These compounds, which possess on one side a hydroxy function and on the other side a phosphonate group, can be considered either as potential antiviral agents or as transition state analogues of nucleoside phosphorylases such as thymidine phosphorylase.

  13. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase

    PubMed Central

    Harijan, Rajesh K.; Zoi, Ioanna; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.

    2017-01-01

    Heavy-enzyme isotope effects (15N-, 13C-, and 2H-labeled protein) explore mass-dependent vibrational modes linked to catalysis. Transition path-sampling (TPS) calculations have predicted femtosecond dynamic coupling at the catalytic site of human purine nucleoside phosphorylase (PNP). Coupling is observed in heavy PNPs, where slowed barrier crossing caused a normal heavy-enzyme isotope effect (kchem light/kchem heavy > 1.0). We used TPS to design mutant F159Y PNP, predicted to improve barrier crossing for heavy F159Y PNP, an attempt to generate a rare inverse heavy-enzyme isotope effect (kchem light/kchem heavy < 1.0). Steady-state kinetic comparison of light and heavy native PNPs to light and heavy F159Y PNPs revealed similar kinetic properties. Pre–steady-state chemistry was slowed 32-fold in F159Y PNP. Pre–steady-state chemistry compared heavy and light native and F159Y PNPs and found a normal heavy-enzyme isotope effect of 1.31 for native PNP and an inverse effect of 0.75 for F159Y PNP. Increased isotopic mass in F159Y PNP causes more efficient transition state formation. Independent validation of the inverse isotope effect for heavy F159Y PNP came from commitment to catalysis experiments. Most heavy enzymes demonstrate normal heavy-enzyme isotope effects, and F159Y PNP is a rare example of an inverse effect. Crystal structures and TPS dynamics of native and F159Y PNPs explore the catalytic-site geometry associated with these catalytic changes. Experimental validation of TPS predictions for barrier crossing establishes the connection of rapid protein dynamics and vibrational coupling to enzymatic transition state passage. PMID:28584087

  14. Enzymes Involved in Post-transcriptional RNA Metabolism in Gram-negative bacteria

    PubMed Central

    Mohanty, Bijoy K.

    2018-01-01

    Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this chapter we discuss the various enzymes that control transcription, translation and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5′ and 3′ termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript, are matured to individual 16S, 23S and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and non-translated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase as well as proteins that regulate the catalytic activity of particular ribonucleases. Under certain stress conditions an additional group of specialized endonucleases facilitate the cell’s ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I participate in multiple RNA processing and decay pathways. PMID:29676246

  15. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  16. A Study on the Interaction of Rhodamine B with Methylthioadenosine Phosphorylase Protein Sourced from an Antarctic Soil Metagenomic Library

    PubMed Central

    Bujacz, Anna; Wierzbicka-Woś, Anna; Kur, Józef

    2013-01-01

    The presented study examines the phenomenon of the fluorescence under UV light excitation (312 nm) of E. coli cells expressing a novel metagenomic-derived putative methylthioadenosine phosphorylase gene, called rsfp, grown on LB agar supplemented with a fluorescent dye rhodamine B. For this purpose, an rsfp gene was cloned and expressed in an LMG194 E. coli strain using an arabinose promoter. The resulting RSFP protein was purified and its UV-VIS absorbance spectrum and emission spectrum were assayed. Simultaneously, the same spectroscopic studies were carried out for rhodamine B in the absence or presence of RSFP protein or native E. coli proteins, respectively. The results of the spectroscopic studies suggested that the fluorescence of E. coli cells expressing rsfp gene under UV illumination is due to the interaction of rhodamine B molecules with the RSFP protein. Finally, this interaction was proved by a crystallographic study and then by site-directed mutagenesis of rsfp gene sequence. The crystal structures of RSFP apo form (1.98 Å) and complex RSFP/RB (1.90 Å) show a trimer of RSFP molecules located on the crystallographic six fold screw axis. The RSFP complex with rhodamine B revealed the binding site for RB, in the pocket located on the interface between symmetry related monomers. PMID:23383268

  17. A PNPase Dependent CRISPR System in Listeria

    PubMed Central

    Sesto, Nina; Touchon, Marie; Andrade, José Marques; Kondo, Jiro; Rocha, Eduardo P. C.; Arraiano, Cecilia Maria; Archambaud, Cristel; Westhof, Éric; Romby, Pascale; Cossart, Pascale

    2014-01-01

    The human bacterial pathogen Listeria monocytogenes is emerging as a model organism to study RNA-mediated regulation in pathogenic bacteria. A class of non-coding RNAs called CRISPRs (clustered regularly interspaced short palindromic repeats) has been described to confer bacterial resistance against invading bacteriophages and conjugative plasmids. CRISPR function relies on the activity of CRISPR associated (cas) genes that encode a large family of proteins with nuclease or helicase activities and DNA and RNA binding domains. Here, we characterized a CRISPR element (RliB) that is expressed and processed in the L. monocytogenes strain EGD-e, which is completely devoid of cas genes. Structural probing revealed that RliB has an unexpected secondary structure comprising basepair interactions between the repeats and the adjacent spacers in place of canonical hairpins formed by the palindromic repeats. Moreover, in contrast to other CRISPR-Cas systems identified in Listeria, RliB-CRISPR is ubiquitously present among Listeria genomes at the same genomic locus and is never associated with the cas genes. We showed that RliB-CRISPR is a substrate for the endogenously encoded polynucleotide phosphorylase (PNPase) enzyme. The spacers of the different Listeria RliB-CRISPRs share many sequences with temperate and virulent phages. Furthermore, we show that a cas-less RliB-CRISPR lowers the acquisition frequency of a plasmid carrying the matching protospacer, provided that trans encoded cas genes of a second CRISPR-Cas system are present in the genome. Importantly, we show that PNPase is required for RliB-CRISPR mediated DNA interference. Altogether, our data reveal a yet undescribed CRISPR system whose both processing and activity depend on PNPase, highlighting a new and unexpected function for PNPase in “CRISPRology”. PMID:24415952

  18. In vitro selection of functional nucleic acids

    NASA Technical Reports Server (NTRS)

    Wilson, D. S.; Szostak, J. W.

    1999-01-01

    In vitro selection allows rare functional RNA or DNA molecules to be isolated from pools of over 10(15) different sequences. This approach has been used to identify RNA and DNA ligands for numerous small molecules, and recent three-dimensional structure solutions have revealed the basis for ligand recognition in several cases. By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified. Selection experiments have also been carried out to identify ribozymes that catalyze a variety of chemical transformations, including RNA cleavage, ligation, and synthesis, as well as alkylation and acyl-transfer reactions and N-glycosidic and peptide bond formation. The existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis. New in vitro protein selection techniques should allow for a direct comparison of the frequency of ligand binding and catalytic structures in pools of random sequence polynucleotides versus polypeptides.

  19. Methods, compounds and systems for detecting a microorganism in a sample

    DOEpatents

    Colston, Jr, Bill W.; Fitch, J. Patrick; Gardner, Shea N.; Williams, Peter L.; Wagner, Mark C.

    2016-09-06

    Methods to identify a set of probe polynucleotides suitable for detecting a set of targets and in particular methods for identification of primers suitable for detection of target microorganisms related polynucleotides, set of polynucleotides and compositions, and related methods and systems for detection and/or identification of microorganisms in a sample.

  20. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from Basella rubra L. and bougainvillea spectabilis Willd.

    PubMed

    Bolognesi, A; Polito, L; Olivieri, F; Valbonesi, P; Barbieri, L; Battelli, M G; Carusi, M V; Benvenuto, E; Del Vecchio Blanco, F; Di Maro, A; Parente, A; Di Loreto, M; Stirpe, F

    1997-12-01

    New single-chain (type 1) ribosome-inactivating proteins (RIPs) were isolated from the seeds of Basella rubra L. (two proteins) and from the leaves of Bougainvillea spectabilis Willd. (one protein). These RIPs inhibit protein synthesis both in a cell-free system, with an IC50 (concentration causing 50% inhibition) in the 10(-10) M range, and by various cell lines, with IC50S in the 10(-8)-10(-6) M range. All three RIPs released adenine not only from rat liver ribosomes but also from Escherichia coli rRNA, polyadenylic acid, herring sperm DNA, and artichoke mottled crinkle virus (AMCV) genomic RNA, thus being polynucleotide:adenosine glycosidases. The proteins from Basella rubra had toxicity to mice similar to that of most type 1 RIPs (Barbieri et al., 1993, Biochim Biophys Acta 1154: 237-282) with an LD50 (concentration that is 50% lethal) < or = 8 mg.kg-1 body weight, whilst the RIP from Bougainvillea spectabilis had an LD50 > 32 mg.kg-1. The N-terminal sequence of the two RIPs from Basella rubra had 80-93% identity, whereas it differed from the sequence of the RIP from Bougainvillea spectabilis. When tested with antibodies against various RIPs, the RIPs from Basella gave some cross-reactivity with sera against dianthin 32, and weak cross-reactivity with momordin I and momorcochin-S, whilst the RIP from Bougainvillea did not cross-react with any antiserum tested. An RIP from Basella rubra and one from Bougainvillea spectabilis were tested for antiviral activity, and both inhibited infection of Nicotiana benthamiana by AMCV.

  2. Dual activity of certain HIT-proteins: A. thaliana Hint4 and C. elegans DcpS act on adenosine 5'-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP).

    PubMed

    Guranowski, Andrzej; Wojdyła, Anna Maria; Zimny, Jarosław; Wypijewska, Anna; Kowalska, Joanna; Jemielity, Jacek; Davis, Richard E; Bieganowski, Paweł

    2010-01-04

    Histidine triad (HIT)-family proteins interact with different mono- and dinucleotides and catalyze their hydrolysis. During a study of the substrate specificity of seven HIT-family proteins, we have shown that each can act as a sulfohydrolase, catalyzing the liberation of AMP from adenosine 5'-phosphosulfate (APS or SO(4)-pA). However, in the presence of orthophosphate, Arabidopsis thaliana Hint4 and Caenorhabditis elegans DcpS also behaved as APS phosphorylases, forming ADP. Low pH promoted the phosphorolytic and high pH the hydrolytic activities. These proteins, and in particular Hint4, also catalyzed hydrolysis or phosphorolysis of some other adenylyl-derivatives but at lower rates than those for APS cleavage. A mechanism for these activities is proposed and the possible role of some HIT-proteins in APS metabolism is discussed.

  3. Metabolites of Purine Nucleoside Phosphorylase (NP) in Serum Have the Potential to Delineate Pancreatic Adenocarcinoma

    PubMed Central

    Thompson, Christopher; Vasu, Vihas T.; Fermin, Damian; Choi, Hyungwon; Creighton, Chad J.; Gayatri, Sitaram; Lan, Ling; Putluri, Nagireddy; Thangjam, Gagan Singh; Kaur, Punit; Shabahang, Mohsen; Giri, Judith G.; Nesvizhskii, Alexey I.; Asea, Alexander A. A.; Cashikar, Anil G.; Rao, Arundhati; McLoughlin, James; Sreekumar, Arun

    2011-01-01

    Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC. PMID:21448452

  4. Metabolites of purine nucleoside phosphorylase (NP) in serum have the potential to delineate pancreatic adenocarcinoma.

    PubMed

    Vareed, Shaiju K; Bhat, Vadiraja B; Thompson, Christopher; Vasu, Vihas T; Fermin, Damian; Choi, Hyungwon; Creighton, Chad J; Gayatri, Sitaram; Lan, Ling; Putluri, Nagireddy; Thangjam, Gagan Singh; Kaur, Punit; Shabahang, Mohsen; Giri, Judith G; Nesvizhskii, Alexey I; Asea, Alexander A A; Cashikar, Anil G; Rao, Arundhati; McLoughlin, James; Sreekumar, Arun

    2011-03-23

    Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC.

  5. Bis[(1S)-1 4-azanediyl-1-(9-deazaadenin-9-yl)-1 4-dideoxy-5-methylsulfanyl-D-ribitol] tetrakis(hydrochloride) monohydrate: structure DFT energy and ligand docking results of a potent methylthioadenosine phosphorylase inhibitor found in different

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G Gainsford; G Evans; K Johnston

    2011-12-31

    The title compound, abbreviated as 5'ThiomethylImmA, is a potent inhibitor of methylthioadenosine phosphorylase [Singh et al. (2004). Biochemistry, 43, 9-18]. The synchrotron study reported here shows that the hydrochloride salt crystallizes with two independent, nearly superimposable, dications as a monohydrate with formula 2C{sub 12}H{sub 19}N{sub 5}O{sub 2}S{sup 2+}{center_dot}4Cl{sup -}{center_dot}H{sub 2}O. Hydrogen bonding utilizing the H atoms of the dication is found to favor certain molecular conformations in the salt, which are significantly different from those found as bound in the enzyme. Ligand docking studies starting from either of these dications or related neutral structures successfully place the conformationally revised structuresmore » in the enzyme active site but only under particular hydrogen-bonding and molecular flexibility criteria. Density functional theory calculations verify the energy similarity of the indendent cations and confirm the significant energy cost of the required conformation change to the enzyme bound form. The results suggest the using crystallographically determined free ligand coordinates as starting parameters for modelling may have serious limitations.« less

  6. Design and Synthesis of Potent “Sulfur-free” Transition State Analogue Inhibitors of 5′-Methylthioadenosine Nucleosidase and 5′-Methylthioadenosine Phosphorylase

    PubMed Central

    Longshaw, Alistair I.; Adanitsch, Florian; Gutierrez, Jemy A.; Evans, Gary B.; Tyler, Peter C.; Schramm, Vern L.

    2013-01-01

    5′-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a dual substrate bacterial enzyme involved in S-adenosylmethionine (SAM)-related quorum sensing pathways that regulates virulence in many bacterial species. MTANs from many bacteria are directly involved in the quorum sensing mechanism by regulating the synthesis of autoinducer molecules that are used by bacterial communities to communicate. In humans, 5′-methylthioadenosine phosphorylase (MTAP) is involved in polyamine biosynthesis as well as in purine and SAM salvage pathways and thus has been identified as an anticancer target. Previously we have described the synthesis and biological activity of several aza-C-nucleoside mimics with a sulfur atom at the 5′ position that are potent E. coli MTAN and human MTAP inhibitors. Because of the possibility that the sulfur may affect bioavailability we were interested in synthesizing “sulfur-free” analogues. Herein we describe the preparation of a series of “sulfur-free” transition state analogues inhibitors, of E. coli MTAN and human MTAP that have low nano- to pico-molar dissociation constants and are potentially novel bacterial anti-infective and anti-cancer drug candidates. PMID:20718423

  7. On the role of calcium ions in the regulation of glycogenolysis in mouse brain cortical slices.

    PubMed

    Ververken, D; Van Veldhoven, P; Proost, C; Carton, H; De Wulf, H

    1982-05-01

    Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; alpha-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 microM noradrenaline is mediated by beta-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 mM K+ or 100 microM veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A half-maximal activation of phosphorylase occurs at about 12 mM K+. Addition of EGTA or LaCl3 reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.

  8. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  9. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  10. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  11. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  12. Cellulases, nucleic acids encoding them and methods for making and using them

    DOEpatents

    Blum, David; Gemsch Cuenca, Joslin; Dycaico, Mark

    2013-04-23

    This invention relates to molecular and cellular biology and biochemistry. In one aspect, the invention provides polypeptides having cellulase activity, e.g., endoglucanase, cellobiohydrolase, mannanase and/or .beta.-glucosidase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides cellulase activity, e.g., endoglucanase, cellobiohydrolase, mannanase and/or .beta.-glucosidase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts.

  13. ECB deacylase mutants

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Zhao, Huimin; Giver, Lorraine J.

    2002-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  14. The chemical basis for the origin of the genetic code and the process of protein synthesis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The principles upon which the process of protein synthesis and the genetic code were established are elucidated. Extensive work on nuclear magnetic resonance studies of both monomermonomer and monoamino acid polynucleotide interactions is included. A new method of general utility for studying any amino acid interacting with any polynucleotide was developed. This system involves the use of methyl esters of amino acids interacting with polynucleotides.

  15. Helicobacter pylori purine nucleoside phosphorylase shows new distribution patterns of open and closed active site conformations and unusual biochemical features.

    PubMed

    Narczyk, Marta; Bertoša, Branimir; Papa, Lucija; Vuković, Vedran; Leščić Ašler, Ivana; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Luić, Marija; Štefanić, Zoran

    2018-04-01

    Even with decades of research, purine nucleoside phosphorylases (PNPs) are enzymes whose mechanism is yet to be fully understood. This is especially true in the case of hexameric PNPs, and is probably, in part, due to their complex oligomeric nature and a whole spectrum of active site conformations related to interactions with different ligands. Here we report an extensive structural characterization of the apo forms of hexameric PNP from Helicobacter pylori (HpPNP), as well as its complexes with phosphate (P i ) and an inhibitor, formycin A (FA), together with kinetic, binding, docking and molecular dynamics studies. X-ray structures show previously unseen distributions of open and closed active sites. Microscale thermophoresis results indicate that a two-site model describes P i binding, while a three-site model is needed to characterize FA binding, irrespective of P i presence. The latter may be related to the newly found nonstandard mode of FA binding. The ternary complex of the enzyme with P i and FA shows, however, that P i binding stabilizes the standard mode of FA binding. Surprisingly, HpPNP has low affinity towards the natural substrate adenosine. Molecular dynamics simulations show that P i moves out of most active sites, in accordance with its weak binding. Conformational changes between nonstandard and standard binding modes of nucleoside are observed during the simulations. Altogether, these findings show some unique features of HpPNP and provide new insights into the functioning of the active sites, with implications for understanding the complex mechanism of catalysis of this enzyme. The atomic coordinates and structure factors have been deposited in the Protein Data Bank: with accession codes 6F52 (HpPNPapo_1), 6F5A (HpPNPapo_2), 6F5I (HpPNPapo_3), 5LU0 (HpPNP_PO4), 6F4W (HpPNP_FA) and 6F4X (HpPNP_PO4_FA). Purine nucleoside orthophosphate ribosyl transferase, EC2.4.2.1, UniProtID: P56463. © 2018 Federation of European Biochemical Societies.

  16. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters.

    PubMed

    Li, Juan; Liang, Dong; Li, Mingjun; Ma, Fengwang

    2013-09-01

    Ascorbic acid (AsA) plays an essential role in plants by protecting cells against oxidative damage. GDP-L-galactose phosphorylase (GGP) is the first committed gene for AsA synthesis. Our research examined AsA levels, regulation of GGP gene expression, and how these are related to abiotic stresses in two species of Actinidia (kiwifruit). When leaves were subjected to continuous darkness or light, ABA or MeJA, heat, or a hypoxic environment, we found some correlation between the relative levels of GGP mRNA and AsA concentrations. In transformed tobacco plants, activity of the GGP promoter was induced by all of these treatments. However, the degree of inducibility in the two kiwifruit species differed among the GGP promoter deletions. We deduced that the G-box motif, a light-responsive element, may have an important function in regulating GGP transcripts under various light conditions in both A. deliciosa and A. eriantha. Other elements such as ABRE, the CGTCA motif, and HSE might also control the promoter activities of GGP in kiwifruit. Altogether, these data suggest that GGP expression in the two kiwifruit species is regulated by light or abiotic stress via the relative cis-elements in their promoters. Furthermore, GGP has a critical role in modulating AsA concentrations in kiwifruit species under abiotic stresses.

  17. Metabolism of Exogenous Purine Bases and Nucleosides by Salmonella typhimurium

    PubMed Central

    Hoffmeyer, J.; Neuhard, J.

    1971-01-01

    Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate. PMID:4928005

  18. On the phosphorylase activity of GH3 enzymes: A β-N-acetylglucosaminidase from Herbaspirillum seropedicae SmR1 and a glucosidase from Saccharopolyspora erythraea.

    PubMed

    Ducatti, Diogo R B; Carroll, Madison A; Jakeman, David L

    2016-11-29

    A phosphorolytic activity has been reported for beta-N-acetylglucosaminidases from glycoside hydrolase family 3 (GH3) giving an interesting explanation for an unusual histidine as catalytic acid/base residue and suggesting that members from this family may be phosphorylases [J. Biol. Chem. 2015, 290, 4887]. Here, we describe the characterization of Hsero1941, a GH3 beta-N-acetylglucosaminidase from the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1. The enzyme has significantly higher activity against pNP-beta-D-GlcNAcp (K m  = 0.24 mM, k cat  = 1.2 s -1 , k cat /K m  = 5.0 mM -1 s -1 ) than pNP-beta-D-Glcp (K m  = 33 mM, k cat  = 3.3 × 10 -3 s -1 , k cat /K m  = 9 × 10 -4  mM -1 s -1 ). The presence of phosphate failed to significantly modify the kinetic parameters of the reaction. The enzyme showed a broad aglycone site specificity, being able to hydrolyze sugar phosphates beta-D-GlcNAc 1P and beta-D-Glc 1P, albeit at a fraction of the rate of hydrolysis of aryl glycosides. GH3 beta-glucosidase EryBI, that does not have a histidine as the general acid/base residue, also hydrolyzed beta-D-Glc 1P, at comparable rates to Hsero1941. These data indicate that Hsero1941 functions primarily as a hydrolase and that phosphorolytic activity is likely adventitious. The prevalence of histidine as a general acid/base residue is not predictive, nor correlative, with GH3 beta-N-acetylglucosaminidases having phosphorolytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Methods for transforming and expression screening of filamentous fungal cells with a DNA library

    DOEpatents

    Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie

    2015-06-02

    The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.

  20. An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification.

    PubMed

    Cui, Lin; Li, Yueying; Lu, Mengfei; Tang, Bo; Zhang, Chun-Yang

    2018-01-15

    Polynucleotide kinase (PNK) plays an essential role in cellular nucleic acid metabolism and the cellular response to DNA damage. However, conventional methods for PNK assay suffer from low sensitivity and involve multiple steps. Herein, we develop a simply electrochemical method for sensitive detection of PNK activity on the basis of Au nanoparticle (AuNP)-mediated lambda exonuclease cleavage-induced signal amplification. We use [Ru(NH 3 ) 6 ] 3+ as the electrochemically active indicator and design two DNA strands (i.e., strand 1 and strand 2) to sense PNK. The assembly of strand 2 on the AuNP surface leads to the formation of AuNP-strand 2 conjugates which can be subsequently immobilized on the gold electrode through the hybridization of strand 1 with strand 2 for the generation of a high electrochemical signal. The presence of PNK induces the phosphorylation of the strand 2-strand 1 hybrid and the subsequent cleavage of double-stranded DNA (dsDNA) by lambda exonuclease, resulting in the release of AuNP-strand 2 conjugates and [Ru(NH 3 ) 6 ] 3+ from the gold electrode surface and consequently the decrease of electrochemical signal. The PNK activity can be simply monitored by the measurement of [Ru(NH 3 ) 6 ] 3+ peak current signal. This assay is very sensitive with a detection limit of as low as 7.762 × 10 -4 UmL -1 and exhibits a large dynamic range from 0.001 to 10UmL -1 . Moreover, this method can be used to screen the PNK inhibitors, and it shows excellent performance in real sample analysis, thus holding great potential for further applications in biological researches and clinic diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  2. Persistent 3'-phosphate termini and increased cytotoxicity of radiomimetic DNA double-strand breaks in cells lacking polynucleotide kinase/phosphatase despite presence of an alternative 3'-phosphatase.

    PubMed

    Chalasani, Sri Lakshmi; Kawale, Ajinkya S; Akopiants, Konstantin; Yu, Yaping; Fanta, Mesfin; Weinfeld, Michael; Povirk, Lawrence F

    2018-05-25

    Polynucleotide kinase/phosphatase (PNKP) has been implicated in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). To assess the consequences of PNKP deficiency for NHEJ of 3'-phosphate-ended DSBs, PNKP-deficient derivatives of HCT116 and of HeLa cells were generated using CRISPR/CAS9. For both cell lines, PNKP deficiency conferred sensitivity to ionizing radiation as well as to neocarzinostatin (NCS), which specifically induces DSBs bearing protruding 3'-phosphate termini. Moreover, NCS-induced DSBs, detected as 53BP1 foci, were more persistent in PNKP -/- HCT116 cells compared to their wild-type (WT) counterparts. Surprisingly, PNKP-deficient whole-cell and nuclear extracts were biochemically competent in removing both protruding and recessed 3'-phosphates from synthetic DSB substrates, albeit much less efficiently than WT extracts, suggesting an alternative 3'-phosphatase. Measurements by ligation-mediated PCR showed that PNKP-deficient HeLa cells contained significantly more 3'-phosphate-terminated and fewer 3'-hydroxyl-terminated DSBs than parental cells 5-15 min after NCS treatment, but this difference disappeared by 1 h. These results suggest that, despite presence of an alternative 3'-phosphatase, loss of PNKP significantly sensitizes cells to 3'-phosphate-terminated DSBs, due to a 3'-dephosphorylation defect. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.

    PubMed

    Taguchi, Yodai; Saburi, Wataru; Imai, Ryozo; Mori, Haruhide

    2017-08-01

    Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.

  4. Glycogen Phosphorylase and Glycogen Synthase: Gene Cloning and Expression Analysis Reveal Their Role in Trehalose Metabolism in the Brown Planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae)

    PubMed Central

    Zhang, Lu; Wang, Huijuan; Chen, Jianyi; Shen, Qida; Wang, Shigui; Xu, Hongxing

    2017-01-01

    RNA interference has been used to study insects’ gene function and regulation. Glycogen synthase (GS) and glycogen phosphorylase (GP) are two key enzymes in carbohydrates’ conversion in insects. Glycogen content and GP and GS gene expression in several tissues and developmental stages of the Brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) were analyzed in the present study, using quantitative reverse-transcription polymerase chain reaction to determine their response to double-stranded trehalases (dsTREs), trehalose-6-phosphate synthases (dsTPSs), and validamycin injection. The highest expression of both genes was detected in the wing bud, followed by leg and head tissues, and different expression patterns were shown across the developmental stages analyzed. Glycogen content significantly decreased 48 and 72 h after dsTPSs injection and 48 h after dsTREs injection. GP expression increased 48 h after dsTREs and dsTPSs injection and significantly decreased 72 h after dsTPSs, dsTRE1-1, and dsTRE1-2 injection. GS expression significantly decreased 48 h after dsTPS2 and dsTRE2 injection and 72 h after dsTRE1-1 and dsTRE1-2 injection. GP and GS expression and glycogen content significantly decreased 48 h after validamycin injection. The GP activity significantly decreased 48 h after validamycin injection, while GS activities of dsTPS1 and dsTRE2 injection groups were significantly higher than that of double-stranded GFP (dsGFP) 48 h after injection, respectively. Thus, glycogen is synthesized, released, and degraded across several insect tissues according to the need to maintain stable trehalose levels. PMID:28365765

  5. Purine nucleoside phosphorylase and the enzymatic antioxidant defense system in breast milk from women with different levels of arsenic exposure.

    PubMed

    Gaxiola-Robles, Ramón; Labrada-Martagón, Vanessa; Bitzer-Quintero, Oscar Kurt; Zenteno-Savín, Tania; Méndez-Rodríguez, Lía Celina

    2015-05-01

    Purine nucleoside phosphorylase (PNP) is an ubiquitous enzyme which plays an important role in arsenic (As) detoxification. As is a toxic metalloid present in air, soil and water; is abundant in the environment and is readily transferred along the trophic chain, being found even in human breast milk. Milk is the main nutrient source for the growth and development of neonates. Information on breast milk synthesis and its potential defense mechanism against As toxicity is scarce. In this study, PNP and antioxidant enzymes activities, as well as glutathione (GSH) and total arsenic (TAs) concentrations, were quantified in breast milk samples. PNP, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) activities and GSH concentration were determined spectrophotometrically; TAs concentration ([TAs]) was measured by atomic absorption spectrometry. Data suggest an increase in PNP activity (median = 0.034 U mg protein-1) in the presence of TAs (median = 1.16 g L(-1)). To explain the possible association of PNP activity in breast milk with the activity of the antioxidant enzymes as well as with GSH and TAs concentrations, generalized linear models were built. In the adjusted model, GPx and GR activities showed a statistically significant (p<0.01) association with PNP activity. These results may suggest that PNP activity increases in the presence of TAs as part of the detoxification mechanism in breast milk. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. Glycogen phosphorylase isoenzyme BB plasma kinetics is not related to myocardial ischemia induced by exercise stress echo test.

    PubMed

    Dobric, Milan; Giga, Vojislav; Beleslin, Branko; Ignjatovic, Svetlana; Paunovic, Ivana; Stepanovic, Jelena; Djordjevic-Dikic, Ana; Kostic, Jelena; Nedeljkovic, Ivana; Nedeljkovic, Milan; Tesic, Milorad; Dajak, Marijana; Ostojic, Miodrag

    2013-10-01

    Glycogen phosphorylase BB (GPBB) is released from cardiac cells during myocyte damage. Previous studies have shown contradictory results regarding the relation of enzyme release and reversible myocardial ischemia. The aim of this study was to determine the plasma kinetics of GPBB as a response to the exercise stress echocardiographic test (ESET), and to define the relationship between myocardial ischemia and enzyme plasma concentrations. We studied 46 consecutive patients undergoing ESET, with recent coronary angiography. In all patients, a submaximal stress echo test according to Bruce protocol was performed. Concentration of GPBB was measured in peripheral blood that was sampled 5 min before and 10, 30 and 60 min after ESET. There was significant increase of GPBB concentration after the test (p=0.021). Significant increase was detected 30 min (34.9% increase, p=0.021) and 60 min (34.5% increase, p=0.016) after ESET. There was no significant effect of myocardial ischemia on GPBB concentrations (p=0.126), and no significant interaction between sampling intervals and myocardial ischemia, suggesting a similar release profile of GPBB in ischemic and non-ischemic conditions (p=0.558). Patients in whom ESET was terminated later (stages 4 or 5 of standard Bruce protocol; n=13) had higher GPBB concentrations than patients who terminated ESET earlier (stages 1, 2 or 3; n=33) (p=0.049). Baseline GPBB concentration was not correlated to any of the patients' demographic, clinical and hemodynamic characteristics. GPBB plasma concentration increases after ESET, and it is not related to inducible myocardial ischemia. However, it seems that GPBB release during ESET might be related to exercise load/duration.

  7. Recognition of Artificial Nucleobases by E. coli Purine Nucleoside Phosphorylase versus its Ser90Ala Mutant in the Synthesis of Base-Modified Nucleosides.

    PubMed

    Fateev, Ilja V; Kharitonova, Maria I; Antonov, Konstantin V; Konstantinova, Irina D; Stepanenko, Vasily N; Esipov, Roman S; Seela, Frank; Temburnikar, Kartik W; Seley-Radtke, Katherine L; Stepchenko, Vladimir A; Sokolov, Yuri A; Miroshnikov, Anatoly I; Mikhailopulo, Igor A

    2015-09-14

    A wide range of natural purine analogues was used as probe to assess the mechanism of recognition by the wild-type (WT) E. coli purine nucleoside phosphorylase (PNP) versus its Ser90Ala mutant. The results were analyzed from viewpoint of the role of the Ser90 residue and the structural features of the bases. It was found that the Ser90 residue of the PNP 1) plays an important role in the binding and activation of 8-aza-7-deazapurines in the synthesis of their nucleosides, 2) participates in the binding of α-D-pentofuranose-1-phosphates at the catalytic site of the PNP, and 3) catalyzes the dephosphorylation of intermediary formed 2-deoxy-α-D-ribofuranose-1-phosphate in the trans-2-deoxyribosylation reaction. 5-Aza-7-deazaguanine manifested excellent substrate activity for both enzymes, 8-amino-7-thiaguanine and 2-aminobenzothiazole showed no substrate activity for both enzymes. On the contrary, the 2-amino derivatives of benzimidazole and benzoxazole are substrates and are converted into the N1- and unusual N2-glycosides, respectively. 9-Deaza-5-iodoxanthine showed moderate inhibitory activity of the WT E. coli PNP, whereas 9-deazaxanthine and its 2'-deoxyriboside are weak inhibitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. On the mechanism of hepatic glycogenolysis induced by anoxia or cyanide.

    PubMed

    Bollen, M; de Ruysscher, D; Stalmans, W

    1983-09-30

    Addition of glucagon to isolated hepatocytes increased glycogenolysis and phosphorylase a in a proportional manner. KCN caused slightly more glycogenolysis at considerably lower levels of phosphorylase a; the discrepancy was most pronounced after pretreatment of the hepatocytes with EGTA. When incubated with tagatose, the hepatocytes accumulated tagatose 1-phosphate, a presumed inhibitor of phosphorylase a. In these conditions the glucagon-induced glycogenolysis was blocked, but the glycogen loss caused by KCN or anoxia was not affected. Cyanide and anoxia may allow phosphorylase b and a to become equally active, or they may trigger a non-phosphorolytic glycogenolysis.

  9. Glycogen Phosphorylase and Glycogen Synthase: Gene Cloning and Expression Analysis Reveal Their Role in Trehalose Metabolism in the Brown Planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae).

    PubMed

    Zhang, Lu; Wang, Huijuan; Chen, Jianyi; Shen, Qida; Wang, Shigui; Xu, Hongxing; Tang, Bin

    2017-01-01

    RNA interference has been used to study insects' gene function and regulation. Glycogen synthase (GS) and glycogen phosphorylase (GP) are two key enzymes in carbohydrates' conversion in insects. Glycogen content and GP and GS gene expression in several tissues and developmental stages of the Brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) were analyzed in the present study, using quantitative reverse-transcription polymerase chain reaction to determine their response to double-stranded trehalases (dsTREs), trehalose-6-phosphate synthases (dsTPSs), and validamycin injection. The highest expression of both genes was detected in the wing bud, followed by leg and head tissues, and different expression patterns were shown across the developmental stages analyzed. Glycogen content significantly decreased 48 and 72 h after dsTPSs injection and 48 h after dsTREs injection. GP expression increased 48 h after dsTREs and dsTPSs injection and significantly decreased 72 h after dsTPSs, dsTRE1-1, and dsTRE1-2 injection. GS expression significantly decreased 48 h after dsTPS2 and dsTRE2 injection and 72 h after dsTRE1-1 and dsTRE1-2 injection. GP and GS expression and glycogen content significantly decreased 48 h after validamycin injection. The GP activity significantly decreased 48 h after validamycin injection, while GS activities of dsTPS1 and dsTRE2 injection groups were significantly higher than that of double-stranded GFP (dsGFP) 48 h after injection, respectively. Thus, glycogen is synthesized, released, and degraded across several insect tissues according to the need to maintain stable trehalose levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  10. Novozymes, Inc.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Methods for using polypeptides having cellobiohydrolase activity

    DOEpatents

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Synthetic, enzyme kinetic, and protein crystallographic studies of C-β-d-glucopyranosyl pyrroles and imidazoles reveal and explain low nanomolar inhibition of human liver glycogen phosphorylase.

    PubMed

    Kantsadi, Anastassia L; Bokor, Éva; Kun, Sándor; Stravodimos, George A; Chatzileontiadou, Demetra S M; Leonidas, Demetres D; Juhász-Tóth, Éva; Szakács, Andrea; Batta, Gyula; Docsa, Tibor; Gergely, Pál; Somsák, László

    2016-11-10

    C-β-d-Glucopyranosyl pyrrole derivatives were prepared in the reactions of pyrrole, 2-, and 3-aryl-pyrroles with O-peracetylated β-d-glucopyranosyl trichloroacetimidate, while 2-(β-d-glucopyranosyl) indole was obtained by a cross coupling of O-perbenzylated β-d-glucopyranosyl acetylene with N-tosyl-2-iodoaniline followed by spontaneous ring closure. An improved synthesis of O-perbenzoylated 2-(β-d-glucopyranosyl) imidazoles was achieved by reacting C-glucopyranosyl formimidates with α-aminoketones. The deprotected compounds were assayed with isoforms of glycogen phosphorylase (GP) to show no activity of the pyrroles against rabbit muscle GPb. The imidazoles proved to be the best known glucose derived inhibitors of not only the muscle enzymes (both a and b) but also of the pharmacologically relevant human liver GPa (Ki = 156 and 26 nM for the 4(5)-phenyl and -(2-naphthyl) derivatives, respectively). An X-ray crystallographic study of the rmGPb-imidazole complexes revealed structural features of the strong binding, and also allowed to explain the absence of inhibition for the pyrrole derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase.

    PubMed

    Bulley, Sean; Wright, Michele; Rommens, Caius; Yan, Hua; Rassam, Maysoon; Lin-Wang, Kui; Andre, Christelle; Brewster, Di; Karunairetnam, Sakuntala; Allan, Andrew C; Laing, William A

    2012-05-01

    Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  14. Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme.

    PubMed

    Wang, Miaomiao; Wu, Jing; Wu, Dan

    2018-02-15

    Kojibiose as a prebiotic and inhibitor of α-glucosidase exhibits potential for a wide range of applications in the food and medicine fields; however, large-scale separation and extraction of kojibiose from nature is difficult. Sucrose phosphorylase (SPase) can be used for the production of kojibiose, and currently, SPase is only heterologously expressed in E. coli, making it unsuitable for use in the food industry. However, Bacillus subtilis is generally considered to be a safe organism potentially useful for SPase expression. Here, for the first time, we heterologously expressed Bifidobacterium adolescentis SPase in a food-grade B. subtilis strain. The results showed that SPase was efficiently secreted into the extracellular medium in the absence of a signal peptide. After culturing the recombinant strain in a 3-L bioreactor, crude SPase yield and activity reached 7.5 g/L and 5.3 U/mL, respectively, the highest levels reported to date. The optimal reaction conditions for kojibiose synthesis catalyzed by recombinant SPase were as follows: 0.5 M sucrose, 0.5 M glucose, 0.02 U enzyme /mg all_substrates , pH 7.0, 50 °C, and 30 h. Furthermore, the substrate-conversion rate reached 40.01%, with kojibiose accounting for 104.45 g/L and selectivity for kojibiose production at 97%. Here, we successfully expressed SPase in B. subtilis in the absence of a signal peptide and demonstrated its secretion into the extracellular medium. Our results indicated high levels of recombinant enzyme expression, with a substrate-conversion rate of 40.01%. These results provide a basis for large-scale preparation of kojibiose by the recombinant SPase.

  15. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification.

    PubMed

    Cheng, Rui; Tao, Mangjuan; Shi, Zhilu; Zhang, Xiafei; Jin, Yan; Li, Baoxin

    2015-11-15

    Several fluorescence signal amplification strategies have been developed for sensitive detection of T4 polynucleotide kinase (T4 PNK) activity, but they need fluorescence dye labeled DNA probe. We have addressed the limitation and report here a label-free strategy for sensitive detection of PNK activity by coupling DNA strand displacement reaction with enzymatic-aided amplification. A hairpin oligonucleotide (hpDNA) with blunt ends was used as the substrate for T4 PNK phosphorylation. In the presence of T4 PNK, the stem of hpDNA was phosphorylated and further degraded by lambda exonuclease (λ exo) from 5' to 3' direction to release a single-stranded DNA as a trigger of DNA strand displacement reaction (SDR). The trigger DNA can continuously displace DNA P2 from P1/P2 hybrid with the help of specific cleavage of nicking endonuclease (Nt.BbvCI). Then, DNA P2 can form G-quadruplex in the presence of potassium ions and quadruplex-selective fluorphore, N-methyl mesoporphyrin IX (NMM), resulting in a significant increase in fluorescence intensity of NMM. Thus, the accumulative release of DNA P2 led to fluorescence signal amplification for determining T4 PNK activity with a detection limit of 6.6×10(-4) U/mL, which is superior or comparative with established approaches. By ingeniously utilizing T4 PNK-triggered DNA SDR, T4 PNK activity can be specifically and facilely studied in homogeneous solution containing complex matrix without any external fluorescence labeling. Moreover, the influence of different inhibitors on the T4 PNK activity revealed that it also can be explored to screen T4 PNK inhibitors. Therefore, this label-free amplification strategy presents a facile and cost-effective approach for nucleic acid phosphorylation related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2017-09-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2010-06-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  1. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2002-01-29

    The present invention provides an isolated polynucleotide encoding a c-Jun peptide consisting of about amino acid residues 33 to 79 as set fort in SEQ ID NO: 10 or conservative variations thereof. The invention also provides a method for producing a peptide of SEQ ID NO:1 comprising (a) culturing a host cell containing a polynucleotide encoding a c-Jun peptide consisting of about amino acid residues 33 to 79 as set forth in SEQ ID NO: 10 under conditions which allow expression of the polynucleotide; and (b) obtaining the peptide of SEQ ID NO:1.

  4. Comparative analysis of three-dimensional structures of homodimers of uridine phosphorylase from Salmonella typhimurium in the unligated state and in a complex with potassium ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkov, A. A.; Zhukhlistova, N. E.; Gabdulkhakov, A. G.

    2009-03-15

    The spatial organization of the homodimer of unligated uridine phosphorylase from Salmonella typhimurium (St UPh) was determined with high accuracy. The structure was refined at 1.80 A resolution to R{sub work} = 16.1% and R{sub free} = 20.0%. The rms deviations for the bond lengths, bond angles, and chiral angles are 0.006 A, 1.042{sup o}, and 0.071{sup o}, respectively. The coordinate error estimated by the Luzzati plot is 0.166 A. The coordinate error based on the maximum likelihood is 0.199 A. A comparative analysis of the spatial organization of the homodimer in two independently refined structures and the structure ofmore » the homodimer St UPh in the complex with a K{sup +} ion was performed. The substrate-binding sites in the homodimers StUPhs in the unligated state were found to act asynchronously. In the presence of a potassium ion, the three-dimensional structures of the subunits in the homodimer are virtually identical, which is apparently of importance for the synchronous action of both substrate-binding sites. The atomic coordinates of the refined structure of the homodimer and structure factors have been deposited in the Protein Data Bank (PDB ID code 3DPS).« less

  5. Thymidine phosphorylase and hypoxia-inducible factor 1-α expression in clinical stage II/III rectal cancer: association with response to neoadjuvant chemoradiation therapy and prognosis.

    PubMed

    Lin, Shuhan; Lai, Hao; Qin, Yuzhou; Chen, Jiansi; Lin, Yuan

    2015-01-01

    The aim of this study was to determine whether pretreatment status of thymidine phosphorylase (TP), and hypoxia-inducible factor alpha (HIF-1α) could predict pathologic response to neoadjuvant chemoradiation therapy with oxaliplatin and capecitabine (XELOXART) and outcomes for clinical stage II/III rectal cancer patients. A total of 180 patients diagnosed with clinical stage II/III rectal cancer received XELOXART. The status of TP, and HIF-1α were determined in pretreatment biopsies by immunohistochemistry (IHC). Tumor response was assessed in resected regimens using the tumor regression grade system and TNM staging system. 5-year disease free survival (DFS) and 5-year overall survival (OS) were evaluated with the Kaplan-Meier method and were compared by the log-rank test. Over expression of TP and low expression of HIF-1α were associated with pathologic response to XELOXART and better outcomes (DFS and OS) in clinical stage II/III rectal cancer patients (P < 0.05). Our result suggested that pretreatment status of TP and HIF-1α were found to predict pathologic response and outcomes in clinical stage II/III rectal cancer received XELOXART. Additional well-designed, large sample, multicenter, prospective studies are needed to confirm the result of this study.

  6. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies

    NASA Astrophysics Data System (ADS)

    Patil, Avinash J.; Li, Mei; Mann, Stephen

    2013-07-01

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  7. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies.

    PubMed

    Patil, Avinash J; Li, Mei; Mann, Stephen

    2013-08-21

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of "inorganic molecular wrapping" of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as "armour-plated" enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  8. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    PubMed

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.

  9. SNPs in Genes Functional in Starch-Sugar Interconversion Associate with Natural Variation of Tuber Starch and Sugar Content of Potato (Solanum tuberosum L.)

    PubMed Central

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-01-01

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. PMID:25081979

  10. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

    PubMed

    Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg

    2016-03-01

    Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  12. Structure and Location of the Regulatory β Subunits in the (αβγδ)4 Phosphorylase Kinase Complex* ♦

    PubMed Central

    Nadeau, Owen W.; Lane, Laura A.; Xu, Dong; Sage, Jessica; Priddy, Timothy S.; Artigues, Antonio; Villar, Maria T.; Yang, Qing; Robinson, Carol V.; Zhang, Yang; Carlson, Gerald M.

    2012-01-01

    Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)4 complex that regulates glycogenolysis in skeletal muscle. Activity of the catalytic γ subunit is regulated by allosteric activators targeting the regulatory α, β, and δ subunits. Three-dimensional EM reconstructions of PhK show it to be two large (αβγδ)2 lobes joined with D2 symmetry through interconnecting bridges. The subunit composition of these bridges was unknown, although indirect evidence suggested the β subunits may be involved in their formation. We have used biochemical, biophysical, and computational approaches to not only address the quaternary structure of the β subunits within the PhK complex, i.e. whether they compose the bridges, but also their secondary and tertiary structures. The secondary structure of β was determined to be predominantly helical by comparing the CD spectrum of an αγδ subcomplex with that of the native (αβγδ)4 complex. An atomic model displaying tertiary structure for the entire β subunit was constructed using chemical cross-linking, MS, threading, and ab initio approaches. Nearly all this model is covered by two templates corresponding to glycosyl hydrolase 15 family members and the A subunit of protein phosphatase 2A. Regarding the quaternary structure of the β subunits, they were directly determined to compose the four interconnecting bridges in the (αβγδ)4 kinase core, because a β4 subcomplex was observed through both chemical cross-linking and top-down MS of PhK. The predicted model of the β subunit was docked within the bridges of a cryoelectron microscopic density envelope of PhK utilizing known surface features of the subunit. PMID:22969083

  13. Diagnosis of immunodeficiency caused by a purine nucleoside phosphorylase defect by using tandem mass spectrometry on dried blood spots.

    PubMed

    la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Malvagia, Sabrina; Funghini, Silvia; Moriondo, Maria; Valleriani, Claudia; Lippi, Francesca; Ombrone, Daniela; Della Bona, Maria Luisa; Speckmann, Carsten; Borte, Stephan; Brodszki, Nicholas; Gennery, Andrew R; Weinacht, Katja; Celmeli, Fatih; Pagel, Julia; de Martino, Maurizio; Guerrini, Renzo; Wittkowski, Helmut; Santisteban, Ines; Bali, Pawan; Ikinciogullari, Aydan; Hershfield, Michael; Notarangelo, Luigi D; Resti, Massimo; Azzari, Chiara

    2014-07-01

    Purine nucleoside phosphorylase (PNP) deficiency is a rare form of autosomal recessive combined primary immunodeficiency caused by a enzyme defect leading to the accumulation of inosine, 2'-deoxy-inosine (dIno), guanosine, and 2'-deoxy-guanosine (dGuo) in all cells, especially lymphocytes. Treatments are available and curative for PNP deficiency, but their efficacy depends on the early approach. PNP-combined immunodeficiency complies with the criteria for inclusion in a newborn screening program. This study evaluate whether mass spectrometry can identify metabolite abnormalities in dried blood spots (DBSs) from affected patients, with the final goal of individuating the disease at birth during routine newborn screening. DBS samples from 9 patients with genetically confirmed PNP-combined immunodeficiency, 10,000 DBS samples from healthy newborns, and 240 DBSs from healthy donors of different age ranges were examined. Inosine, dIno, guanosine, and dGuo were tested by using tandem mass spectrometry (TMS). T-cell receptor excision circle (TREC) and kappa-deleting recombination excision circle (KREC) levels were evaluated by using quantitative RT-PCR only for the 2 patients (patients 8 and 9) whose neonatal DBSs were available. Mean levels of guanosine, inosine, dGuo, and dIno were 4.4, 133.3, 3.6, and 3.8 μmol/L, respectively, in affected patients. No indeterminate or false-positive results were found. In patient 8 TREC levels were borderline and KREC levels were abnormal; in patient 9 TRECs were undetectable, whereas KREC levels were normal. TMS is a valid method for diagnosis of PNP deficiency on DBSs of affected patients at a negligible cost. TMS identifies newborns with PNP deficiency, whereas TREC or KREC measurement alone can fail. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  14. Nicotinamide Riboside and Nicotinic Acid Riboside Salvage in Fungi and Mammals

    PubMed Central

    Belenky, Peter; Christensen, Kathryn C.; Gazzaniga, Francesca; Pletnev, Alexandre A.; Brenner, Charles

    2009-01-01

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification. PMID:19001417

  15. ROLE OF THE SARCOPLASMIC RETICULUM IN GLYCOGEN METABOLISM

    PubMed Central

    Wanson, Jean-Claude; Drochmans, Pierre

    1972-01-01

    Sarcoplasmic vesicles and β-glycogen particles 30–40 mµ in diameter were isolated from perfused rabbit skeletal muscle by the differential precipitation-centrifugation method. This microsomal fraction was subjected to zonal centrifugation on buffered sucrose gradients, in a B XIV Anderson type rotor, for 15 hr at 45,000 rpm in order to separate the two cytoplasmic organelles. Zonal profiles of absorbance at 280 mµ, proteins, glycogen, and enzymatic activities (phosphorylase b kinase, phosphorylase b, and glycogen synthetase) were performed. Whereas the entire synthetase activity was found combined with the glycogen particles, 39% of phosphorylase and 53% of phosphorylase b kinase activities, present in the microsomal fraction, were recovered in the purified vesicular fraction (d = 1.175). This latter fraction consists of vesicles, derived from the sarcoplasmic reticulum, and of small particles 10–20 mµ in diameter attached to the outer surface of the membranes. These particles disappear after α-amylase treatment. Incubation of the sarcovesicular fraction with 14C-labeled glucose-1-phosphate confirms the localization of a polysaccharide synthesis at the level of the membranes. "Flash activation" of phosphorylase b, i.e. Ca "activation" of phosphorylase kinase followed by a conversion of phosphorylase b into a, was demonstrated in the purified sarcovesicular fraction. Moreover, the active enzymatic sites were detected on the membranes by electron microscopy. The presence of binding sites between the membranes of the sarcoplasmic vesicles and a glycogen-enzyme complex suggests that this association plays a role in the glycogenolysis during muscle contraction. PMID:5040859

  16. Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by anaerobic glycolysis

    PubMed Central

    Scopes, Robert K.

    1973-01-01

    A mixture of purified muscle glycolytic enzymes was reconstituted and the mixture shown to behave in a fashion analogous to that occurring in vivo. Glycolysis leads to ATP production in muscle and results in the phosphorylation of creatine. The extent of this phosphorylation by anaerobic glycolysis was shown to depend to a small extent on the relative proportions of available Pi and creatine initially, but more importantly on the first step in glycolysis, in this case the enzyme phosphorylase. With less than 0.1% of the phosphorylase in the a form, only about one-third of the creatine was phosphorylated in 30min, whereas with 4% or more of phosphorylase a, 90% of the creatine was phosphorylated within this time. Inclusion of an adenosine triphosphatase decreased the steady-state concentration of phosphocreatine in the system. Calculations of the theoretical concentrations of ADP and AMP showed that phosphorylase b was almost inactive even in the presence of 9μm-AMP, because of ATP inhibition. With phosphorylase a present, glycolysis was able to continue at least until the calculated concentration of MgADP− was only 7μm, and AMP in the sub-μmolar range. The relation of these values to measured concentrations of nucleotides and to phosphorylase a percentages in intact muscle is discussed. PMID:4269207

  17. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    DOEpatents

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  18. Isolated Fungal Promoters and Gene Transcription Terminators and Methods of Protein and Chemical Production in a Fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  19. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  20. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L; Magnuson, Jon K

    2014-05-27

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  1. The role of pH on the thermodynamics and kinetics of muscle biochemistry: an in vivo study by (31)P-MRS in patients with myo-phosphorylase deficiency.

    PubMed

    Malucelli, E; Iotti, S; Manners, D N; Testa, C; Martinuzzi, A; Barbiroli, B; Lodi, R

    2011-09-01

    In this study we assessed ΔG'(ATP) hydrolysis, cytosolic [ADP], and the rate of phosphocreatine recovery using Phosphorus Magnetic Resonance Spectroscopy in the calf muscle of a group of patients affected by glycogen myo-phosphorylase deficiency (McArdle disease). The goal was to ascertain whether and to what extent the deficit of the glycogenolytic pathway would affect the muscle energy balance. A typical feature of this pathology is the lack of intracellular acidosis. Therefore we posed the question of whether, in the absence of pH decrease, the rate of phosphocreatine recovery depends on the amount of phosphocreatine consumed during exercise. Results showed that at the end of exercise both [ADP] and ΔG'(ATP) of patients were significantly higher than those of matched control groups reaching comparable levels of phosphocreatine concentration. Furthermore, in these patients we found that the rate of phosphocreatine recovery is not influenced by the amount of phosphocreatine consumed during exercise. These outcomes provide experimental evidence that: i) the intracellular acidification occurring in exercising skeletal muscle is a protective factor for the energy consumption; and ii) the influence of pH on the phosphocreatine recovery rate is at least in part related to the kinetic mechanisms of mitochondrial creatine kinase enzyme. 2011 Elsevier B.V. All rights reserved.

  2. The origin of biological macromolecules on the earth. The hypothesis of inorganic template

    NASA Technical Reports Server (NTRS)

    Lu, T. S.

    1977-01-01

    Studies about the origin of life are reviewed. The nonrandom organization of organelles is discussed from a structural and functional point of view. After postulating that the origin of biomacromolecules was not a random event, the paper develops the hypothesis that polypeptides and polynucleotides were formed on an inorganic template. Only information-containing structures can pass natural selection and develop through evolution.

  3. Enhancement of mitomycin C-induced cytotoxicity by curcumin results from down-regulation of MKK1/2-ERK1/2-mediated thymidine phosphorylase expression.

    PubMed

    Weng, Shao-Hsing; Tsai, Min-Shao; Chiu, Yu-Fan; Kuo, Ya-Hsun; Chen, Huang-Jen; Lin, Yun-Wei

    2012-03-01

    Curcumin (diferuloylmethane), a phenolic compound obtained from the rhizome of Curcuma longa, has been found to inhibit cell proliferation in various human cancer cell lines, including non-small cell lung cancer (NSCLC). Thymidine phosphorylase (TP) is considered an attractive therapeutic target, because increased TP expression can suppress cancer cell death induced by DNA-damaging agents. Mitomycin C (MMC), a chemotherapeutic agent used to treat NSCLC, inhibits tumour growth through DNA cross-linking and breaking. Whether MMC can affect TP expression in NSCLC is unknown. Therefore, in this study, we suggested that curcumin enhances the effects of MMC-mediated cytotoxicity by decreasing TP expression and ERK1/2 activation. Exposure of human NSCLC cell lines H1975 and H1650 to curcumin decreased MMC-elicited phosphorylated MKK1/2-ERK1/2 protein levels. Moreover, curcumin significantly decreased MMC-induced TP protein levels by increasing TP mRNA and protein instability. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased TP protein levels and cell viability in curcumin- and MMC-co-treated cells. In contrast, U0126, a MKK1/2 inhibitor, augmented the cytotoxic effect and the down-regulation of TP by curcumin and MMC. Specific inhibition of TP by siRNA significantly enhanced MMC-induced cell death and cell growth inhibition. Our results suggest that suppression of TP expression or administration of curcumin along with MMC may be a novel lung cancer therapeutic modality in the future. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  4. Glycogen phosphorylase as a target for type 2 diabetes: synthetic, biochemical, structural and computational evaluation of novel N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors.

    PubMed

    Kantsadi, Anastassia L; Parmenopoulou, Vanessa; Bakalov, Dimitar N; Snelgrove, Laura; Stravodimos, George A; Chatzileontiadou, Demetra S M; Manta, Stella; Panagiotopoulou, Angeliki; Hayes, Joseph M; Komiotis, Dimitri; Leonidas, Demetres D

    2015-01-01

    Glycogen phosphorylase (GP), a validated target for the development of anti-hyperglycaemic agents, has been targeted for the design of novel glycopyranosylamine inhibitors. Exploiting the two most potent inhibitors from our previous study of N-acyl-β-D-glucopyranosylamines (Parmenopoulou et al., Bioorg. Med. Chem. 2014, 22, 4810), we have extended the linking group to -NHCONHCO- between the glucose moiety and the aliphatic/aromatic substituent in the GP catalytic site β-cavity. The N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors were synthesized and their efficiency assessed by biochemical methods, revealing inhibition constant values of 4.95 µM and 2.53 µM. Crystal structures of GP in complex with these inhibitors were determined and analyzed, providing data for further structure based design efforts. A novel Linear Response - Molecular Mechanics Coulomb Surface Area (LR-MM-CBSA) method has been developed which relates predicted and experimental binding free energies for a training set of N-acyl-N´-(β-D-glucopyranosyl) urea ligands with a correlation coefficient R(2) of 0.89 and leave-one-out cross-validation (LOO-cv) Q(2) statistic of 0.79. The method has significant applications to direct future lead optimization studies, where ligand entropy loss on binding is revealed as a key factor to be considered. ADMET property predictions revealed that apart from potential permeability issues, the synthesized N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors have drug-like potential without any toxicity warnings.

  5. Hydrogenase polypeptide and methods of use

    DOEpatents

    Adams, Michael W.W.; Hopkins, Robert C.; Jenney, JR, Francis E.; Sun, Junsong

    2016-02-02

    Provided herein are polypeptides having hydrogenase activity. The polypeptide may be multimeric, and may have hydrogenase activity of at least 0.05 micromoles H.sub.2 produced min.sup.-1 mg protein.sup.-1. Also provided herein are polynucleotides encoding the polypeptides, genetically modified microbes that include polynucleotides encoding one or more subunits of the multimeric polypeptide, and methods for making and using the polypeptides.

  6. Coprecipitation of thermal lysine-rich proteinoids with polyribonucleotides

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Yuki, A.; Fox, S. W.

    1979-01-01

    An experimental study was conducted to determine whether the precipitation of thermal proteinoids with homopolynucleotides can serve as a tool for studying the specificities between proteins and polynucleotides. Attention is given to exploring the best means of quantitation of the precipitate and the effect of varying the lysine content and the amount of Mg(2+) on the results. The formation of microparticles was monitored both by turbidity and by the mass of precipitate formed. Only under certain conditions was the turbidity a reliable indication of the amount of precipitate. Increasing concentration of Mg(2+) tended to displace proteinoid from the complex with polynucleotide. The results indicate that the interaction of thermal proteinoids with polynucleotides appears to be a suitable tool for studying specificities of interactions between proteins and nucleic acids.

  7. Nanogrid rolling circle DNA sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, George M.; Porreca, Gregory J.; Shendure, Jay

    The present invention relates to methods for sequencing a polynucleotide immobilized on an array having a plurality of specific regions each having a defined diameter size, including synthesizing a concatemer of a polynucleotide by rolling circle amplification, wherein the concatemer has a cross-sectional diameter greater than the diameter of a specific region, immobilizing the concatemer to the specific region to make an immobilized concatemer, and sequencing the immobilized concatemer.

  8. Constructs and methods for genome editing and genetic engineering of fungi and protists

    DOEpatents

    Hittinger, Christopher Todd; Alexander, William Gerald

    2018-01-30

    Provided herein are constructs for genome editing or genetic engineering in fungi or protists, methods of using the constructs and media for use in selecting cells. The construct include a polynucleotide encoding a thymidine kinase operably connected to a promoter, suitably a constitutive promoter; a polynucleotide encoding an endonuclease operably connected to an inducible promoter; and a recognition site for the endonuclease. The constructs may also include selectable markers for use in selecting recombinations.

  9. Agouti polypeptide compositions

    DOEpatents

    Woychik, Richard P.; Bultman, Scott J.; Michaud, Edward J.

    2001-10-30

    Disclosed are methods and compositions comprising novel agouti polypeptides and the polynucleotides which encode them. Also disclosed are DNA segments encoding these proteins derived from human and murine cell lines, and the use of these polynucleotides and polypeptides in a variety of diagnostic and therapeutic applications. Methods, compositions, kits, and devices are also provided for identifying compounds which are inhibitors of agouti activity, and for altering fatty acid synthetase activity and intracellular calcium levels in transformed cells.

  10. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  11. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  12. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  13. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  14. [The enzymes of carbohydrates metabolism from Cysttidicola farionis (Cystidicolidae)].

    PubMed

    Zółtowska, K; Lopieńska, E; Rokicki, J; Dmitryjuk, M

    2001-01-01

    The content of glycogen, glucose and trehalose was measured in larvae and adults of Cystidicola farionis, the parasite isolated from the swim bladder of Osmerus eperlanus from Vistula Lagoon. Activity of glycogen phosphorylase, alpha-amylase, glucoamylase, maltase, trehalase, and trehalose phosphorylase were measured. The highest activity was recorded for alpha-amylase 10.07 +/- 0.97 mu/mg and 7.47 +/- 0.24 mu/mg, next maltase 1.34 +/- 0.63 micromol/mg and 2.06 +/- 1.65 micronol/mg respectively for larvae and adults. The activity of glucoamylase was nearly the same for adults and larvae (about 0.20 micromol/mg). The trehalase activity was higher at adults (0.49 +/- 0.42 micromol/mg) than at larvae (0.18 +/- 0.12 micromol/mg). The activity of glycogen phosphorylase was much higher at larvae (3.58 +/- 1.49 micromol/mg) than at adults parasite (0.10 +/- 0.02 micromol/mg). The trehalose phosphorylase was present in both stages of parasite, but its activity was low. The content of glycogen and glucose was two-times higher in the adults' body than in larvae.

  15. A high-throughput and rapid computational method for screening of RNA post-transcriptional modifications that can be recognized by target proteins.

    PubMed

    Orr, Asuka A; Gonzalez-Rivera, Juan C; Wilson, Mark; Bhikha, P Reena; Wang, Daiqi; Contreras, Lydia M; Tamamis, Phanourios

    2018-02-01

    There are over 150 currently known, highly diverse chemically modified RNAs, which are dynamic, reversible, and can modulate RNA-protein interactions. Yet, little is known about the wealth of such interactions. This can be attributed to the lack of tools that allow the rapid study of all the potential RNA modifications that might mediate RNA-protein interactions. As a promising step toward this direction, here we present a computational protocol for the characterization of interactions between proteins and RNA containing post-transcriptional modifications. Given an RNA-protein complex structure, potential RNA modified ribonucleoside positions, and molecular mechanics parameters for capturing energetics of RNA modifications, our protocol operates in two stages. In the first stage, a decision-making tool, comprising short simulations and interaction energy calculations, performs a fast and efficient search in a high-throughput fashion, through a list of different types of RNA modifications categorized into trees according to their structural and physicochemical properties, and selects a subset of RNA modifications prone to interact with the target protein. In the second stage, RNA modifications that are selected as recognized by the protein are examined in-detail using all-atom simulations and free energy calculations. We implement and experimentally validate this protocol in a test case involving the study of RNA modifications in complex with Escherichia coli (E. coli) protein Polynucleotide Phosphorylase (PNPase), depicting the favorable interaction between 8-oxo-7,8-dihydroguanosine (8-oxoG) RNA modification and PNPase. Further advancement of the protocol can broaden our understanding of protein interactions with all known RNA modifications in several systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids.

    PubMed

    Angelovici, Ruthie; Batushansky, Albert; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Gore, Michael A; Fait, Aaron; DellaPenna, Dean

    2017-01-01

    Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed's nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. A multidisciplinary study of 3-(β-d-glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors.

    PubMed

    Kun, Sándor; Begum, Jaida; Kyriakis, Efthimios; Stamati, Evgenia C V; Barkas, Thomas A; Szennyes, Eszter; Bokor, Éva; Szabó, Katalin E; Stravodimos, George A; Sipos, Ádám; Docsa, Tibor; Gergely, Pál; Moffatt, Colin; Patraskaki, Myrto S; Kokolaki, Maria C; Gkerdi, Alkistis; Skamnaki, Vassiliki T; Leonidas, Demetres D; Somsák, László; Hayes, Joseph M

    2018-03-10

    3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles have been revealed as an effective scaffold for the development of potent glycogen phosphorylase (GP) inhibitors but with the potency very sensitive to the nature of the alkyl/aryl 5-substituent (Kun et al., Eur. J. Med. Chem. 2014, 76, 567). For a training set of these ligands, quantum mechanics-polarized ligand docking (QM-PLD) demonstrated good potential to identify larger differences in potencies (predictive index PI = 0.82) and potent inhibitors with K i 's < 10 μM (AU-ROC = 0.86). Accordingly, in silico screening of 2335 new analogues exploiting the ZINC docking database was performed and nine predicted candidates selected for synthesis. The compounds were prepared in O-perbenzoylated forms by either ring transformation of 5-β-d-glucopyranosyl tetrazole by N-benzyl-arenecarboximidoyl chlorides, ring closure of C-(β-d-glucopyranosyl)formamidrazone with aroyl chlorides, or that of N-(β-d-glucopyranosylcarbonyl)arenethiocarboxamides by hydrazine, followed by deprotections. Kinetics experiments against rabbit muscle GPb (rmGPb) and human liver GPa (hlGPa) revealed five compounds as potent low μM inhibitors with three of these on the submicromolar range for rmGPa. X-ray crystallographic analysis sourced the potency to a combination of favorable interactions from the 1,2,4-triazole and suitable aryl substituents in the GP catalytic site. The compounds also revealed promising calculated pharmacokinetic profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Switchgrass ubiquitin promoter (PVUBI2) and uses thereof

    DOEpatents

    Stewart, C. Neal; Mann, David George James

    2013-12-10

    The subject application provides polynucleotides, compositions thereof and methods for regulating gene expression in a plant. Polynucleotides disclosed herein comprise novel sequences for a promoter isolated from Panicum virgatum (switchgrass) that initiates transcription of an operably linked nucleotide sequence. Thus, various embodiments of the invention comprise the nucleotide sequence of SEQ ID NO: 2 or fragments thereof comprising nucleotides 1 to 692 of SEQ ID NO: 2 that are capable of driving the expression of an operably linked nucleic acid sequence.

  19. Allelic Variation in Paralogs of GDP-l-Galactose Phosphorylase Is a Major Determinant of Vitamin C Concentrations in Apple Fruit1[C][W][OA

    PubMed Central

    Mellidou, Ifigeneia; Chagné, David; Laing, William A.; Keulemans, Johan; Davey, Mark W.

    2012-01-01

    To identify the genetic factors underlying the regulation of fruit vitamin C (l-ascorbic acid [AsA]) concentrations, quantitative trait loci (QTL) studies were carried out in an F1 progeny derived from a cross between the apple (Malus × domestica) cultivars Telamon and Braeburn over three years. QTL were identified for AsA, glutathione, total antioxidant activity in both flesh and skin tissues, and various quality traits, including flesh browning. Four regions on chromosomes 10, 11, 16, and 17 contained stable fruit AsA-QTL clusters. Mapping of AsA metabolic genes identified colocations between orthologs of GDP-l-galactose phosphorylase (GGP), dehydroascorbate reductase (DHAR), and nucleobase-ascorbate transporter within these QTL clusters. Of particular interest are the three paralogs of MdGGP, which all colocated within AsA-QTL clusters. Allelic variants of MdGGP1 and MdGGP3 derived from the cultivar Braeburn parent were also consistently associated with higher fruit total AsA concentrations both within the mapping population (up to 10-fold) and across a range of commercial apple germplasm (up to 6-fold). Striking differences in the expression of the cv Braeburn MdGGP1 allele between fruit from high- and low-AsA genotypes clearly indicate a key role for MdGGP1 in the regulation of fruit AsA concentrations, and this MdGGP allele-specific single-nucleotide polymorphism marker represents an excellent candidate for directed breeding for enhanced fruit AsA concentrations. Interestingly, colocations were also found between MdDHAR3-3 and a stable QTL for browning in the cv Telamon parent, highlighting links between the redox status of the AsA pool and susceptibility to flesh browning. PMID:23001142

  20. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature

    PubMed Central

    Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin

    2012-01-01

    Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-14C]glucose 1-phosphate, [U-14C]sucrose, [U-14C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-14C]sucrose plus unlabelled equimolar glucose 1-phosphate. 14C-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 14C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-14C]glucose 1-phosphate or adenosine-[U-14C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro 14C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells. PMID

  1. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature.

    PubMed

    Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin

    2012-05-01

    Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional

  2. Carbon Tetrachloride Increases Intracellular Calcium in Rat Liver and Hepatocyte Cultures

    DTIC Science & Technology

    1986-05-12

    to Phenyl- ephrine Figure 21 . Quin2-loaded Hepatocyte& Exposed to Carbon Tetrachloride or Phenylephrine Figure 22. Quin2-loaded Hepatocyte...HEPATOTOXIN Carbon tetrachloride (CC14 ) is an historically important hepato- toxin that has been investigated since before the turn of the century ...through phosphory- lation by phosphorylase kinase. Phosphorylase kinase can be st ~mulated by increased intracellular Ca++ via calmodulin, or by

  3. Method for analyzing microbial communities

    DOEpatents

    Zhou, Jizhong [Oak Ridge, TN; Wu, Liyou [Oak Ridge, TN

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  4. Transport of adenine, hypoxanthine and uracil into Escherichia coli.

    PubMed Central

    Burton, K

    1977-01-01

    Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases. PMID:413544

  5. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    DOEpatents

    Gray, Kevin A; Zhao, Lishan; Cayouette, Michelle H

    2015-11-04

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  6. Celluloytic enzymes, nucleic acids encoding them and methods for making and using them

    DOEpatents

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2015-09-08

    The invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  7. Behavior of adsorbed Poly-A onto sodium montmorillonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia, E-mail: negron@nucleares.unam.mx

    2015-07-23

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  9. Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer

    DOEpatents

    Kwok, Pui-Yan; Chen, Xiangning

    1999-01-01

    A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.

  10. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schoonneveld-Bergmans, Margot Elisabeth Francoise

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  11. Diagnostic accuracy of heart fatty acid binding protein (H-FABP) and glycogen phosphorylase isoenzyme BB (GPBB) in diagnosis of acute myocardial infarction in patients with acute coronary syndrome.

    PubMed

    Cubranic, Zlatko; Madzar, Zeljko; Matijevic, Sanja; Dvornik, Stefica; Fisic, Elizabeta; Tomulic, Vjekoslav; Kunisek, Juraj; Laskarin, Gordana; Kardum, Igor; Zaputovic, Luka

    2012-01-01

    This study aimed to assess whether heart fatty acid-binding protein (H-FABP) and glycogen phosphorylase isoenzyme BB (GPBB) could be used for the accurate diagnosis of acute myocardial infarction (AMI) in acute coronary syndrome (ACS) patients. The study included 108 ACS patients admitted to a coronary unit within 3 h after chest pain onset. AMI was distinguished from unstable angina (UA) using a classical cardiac troponin I (cTnI) assay. H-FABP and GPBB were measured by ELISA on admission (0 h) and at 3, 6, 12, and 24 h after admission; their accuracy to diagnose AMI was assessed using statistical methods. From 92 patients with ACS; 71 had AMI. H-FABP and GPBB had higher peak value after 3 h from admission than cTnI (P = 0.001). Both markers normalized at 24 h. The area under the receiver operating characteristic curves was significantly greater for both markers in AMI patients than in UA patients at all time points tested, including admission (P < 0.001). At admission, the H-FABP (37%) and GPBB (40%) sensitivities were relatively low. They increased at 3 and 6 h after admission for both markers and decreased again after 24 h. It was 40% for H-FABP and approximately 2-times lower for GPBB (P < 0.01). In AMI patients, both biomarkers had similar specificities, positive- and negative-predictive values, positive and negative likelihood ratios, and risk ratios for AIM. H-FABP and GPBB can contribute to early AMI diagnosis and can distinguish AMI from UA.

  12. Starch Degradation in the Cotyledons of Germinating Lentils

    PubMed Central

    Tárrago, Jorge Fernández; Nicolás, Gregorio

    1976-01-01

    Starch, total amylolytic and phosphorylase activities were determined in lentil cotyledons during the first days of germination. Several independent criteria show that the amylolytic activity is due mainly to an amylase of the α type. Starch is degraded slowly in the first days; during this time, α- and β-amylase activity are very low, while phosphorylase increases and reach a peak on the 3rd day. On the 4th day, there is a more rapid depletion of starch which coincides with an increase in α-amylase activity. By polyacrylamide gel electrophoresis of the crude starch-degrading enzyme, five bands were obtained: one phosphorylase, three α-amylases, and one β-amylase. Based on their heat lability or heat stability, two sets of α-amylase seem to exist in lentil cotyledons. Images PMID:16659730

  13. Glycolytic potential and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (<5.8) or high (>5.9) 24h pH determined in M. longissimus dorsi.

    PubMed

    Apaoblaza, A; Galaz, A; Strobel, P; Ramírez-Reveco, A; Jeréz-Timaure, N; Gallo, C

    2015-03-01

    Muscle glycogen concentration (MGC) and lactate (LA), activity of glycogen debranching enzyme (GDE), glycogen phosphorylase (GP) and adenosine monophosphate kinase (AMPK) were determined at 0.5h (T0) and 24h (T24) post-mortem in Longissimus dorsi samples from 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24h postmortem. MGC, LA and glycolytic potential were higher (P<0.05) in normal pH carcasses. GDE activity was similar (P>0.05) in both pH categories. GP activity increased between T0 and T24 only in normal pH carcasses. AMPK activity was four times higher in normal pH v/s high pH carcasses, without changing its activity over time. Results reinforce the idea that differences in postmortem glycogenolytic/glycolytic flow in L. dorsi of steers showing normal v/s high muscle pH at 24h, could be explained not only by the higher initial MGC in normal pH carcasses, but also by a high and sustained activity of AMPK and an increased GP activity at 24h postmortem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Self-assembled bionanostructures: proteins following the lead of DNA nanostructures

    PubMed Central

    2014-01-01

    Natural polymers are able to self-assemble into versatile nanostructures based on the information encoded into their primary structure. The structural richness of biopolymer-based nanostructures depends on the information content of building blocks and the available biological machinery to assemble and decode polymers with a defined sequence. Natural polypeptides comprise 20 amino acids with very different properties in comparison to only 4 structurally similar nucleotides, building elements of nucleic acids. Nevertheless the ease of synthesizing polynucleotides with selected sequence and the ability to encode the nanostructural assembly based on the two specific nucleotide pairs underlay the development of techniques to self-assemble almost any selected three-dimensional nanostructure from polynucleotides. Despite more complex design rules, peptides were successfully used to assemble symmetric nanostructures, such as fibrils and spheres. While earlier designed protein-based nanostructures used linked natural oligomerizing domains, recent design of new oligomerizing interaction surfaces and introduction of the platform for topologically designed protein fold may enable polypeptide-based design to follow the track of DNA nanostructures. The advantages of protein-based nanostructures, such as the functional versatility and cost effective and sustainable production methods provide strong incentive for further development in this direction. PMID:24491139

  15. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response.

    PubMed

    Shah, Ashish K; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel

    2018-01-01

    The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.

  16. Development and validation of a 2nd tier test for identification of purine nucleoside phosphorylase deficiency patients during expanded newborn screening by liquid chromatography-tandem mass spectrometry.

    PubMed

    la Marca, Giancarlo; Giocaliere, Elisa; Malvagia, Sabrina; Villanelli, Fabio; Funghini, Silvia; Ombrone, Daniela; Della Bona, Maria; Forni, Giulia; Canessa, Clementina; Ricci, Silvia; Romano, Francesca; Guerrini, Renzo; Resti, Massimo; Azzari, Chiara

    2016-04-01

    Purine nucleoside phosphorylase (PNP) deficiency has been recently introduced in the newborn screening program in Tuscany. In order to improve the PNP screening efficiency, we developed a 2nd tier test to quantify PNP primary markers deoxyguanosine (dGuo) and deoxyinosine (dIno). Dried blood spots (DBS) samples were extracted with 200 μL of methanol and 100 μL of water (by two steps). Internal standards were added at a final concentration of 10 μmol/L. After extraction, samples were analysed by LC-MS/MS. The chromatographic run was performed in gradient mode by using a Synergi Fusion column. The assay was linear over a concentration range of 0.05-50 μmol/L (R2>0.999) for dGuo and 0.5-50 μmol/L (R2>0.998) for dIno. Intra- and interassay imprecision (mean CVs) for dIno and dGuo ranged from 2.9% to 12%. Limit of quantitaion (LOQ) were found to be 0.05 μmol/L and 0.5 μmol/L for dGuo and dIno, respectively. The reference ranges, obtained by measuring dGuo and dIno concentrations on DBS, were close to zero for both biomarkers. Moreover, DBS samples from seven patients with confirmed PNP were retrospectively evaluated and correctly identified. The LC-MS/MS method can reliably measure dIno and dGuo in DBS for the diagnosis of PNP. Validation data confirm the present method is characterised by good reproducibility, accuracy and imprecision for the quantitation of dIno and dGuo. The assay also appears suitable for use in monitoring treatment of PNP patients.

  17. INJURY TO THE ENERGY METABOLISM IN PLANTS EXPOSED TO GAMMA RAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metlitskii, L.V.; Sal'kova, E.G.

    1961-11-11

    To establish whether radiation-induced damage in plants causes primarily a weakening of the oxidation processes or interference with the mechanism of storing energy in a form accessible for biochemical processes, the effect of radiation on the metabolism was examined. Previous tests indicated that irradiation of tubers results in an interference between the respiration and phosphorylase actions, as is the case with animals, microorganisms and certain plants. The problem was studied by exposing garlic bulbs to total gamma -ray doses of 500 and 10,000 r. It was found that the type of tissue had a great effect on the rate ofmore » oxidation of organic acids. The phosphorylase activity is generally reduced by radiation; at 500 r phosphorus is not absorbed but is precipitated in the medium. Complete stoppage of the phosphorylase action by 500 r is due to the fact that garlic does not germinate; this action is depressed to a greater extent by radiation than oxidative processes. It is concluded that one of the chief effects of radiation is interference between oxidation and phosphorylase processes in the tissue because the energy obtained by respiration cannot be utilized completely by the plant cells. (TTT)« less

  18. [Effect of bemythyl on carbohydrate metabolism in cirrhotic rat liver].

    PubMed

    Kudriavtseva, M V; Bezborodkina, N N; Okovityĭ, S V; Nilova, V K; Ivanikova, N V; Kudriavtsev, B N

    2002-01-01

    Effect of actoprotector bemitil (2-ethylthiobenzimidazole hydrobromide) on glycogen content and activities of glycogen synthase, glycogen phosphorylase, and glucose-6-phosphatase was studied in cirrhotically altered rat liver. The contents of glycogen and its fraction were determined a cytofluorimetrically (Kudryavtseva et al., 1974). In cirrhosis, the total glycogen content in hepatocytes increases by nearly 3 times, while the amount of a stable fraction of glycogen rises by 7.5 times. Glucose-6-phosphatase activity fell to the level of 25% compare to the norm. Activities of glycogen synthase and glycogen phosphorylase in the cirrhotic liver did not differ from the norm. In cirrhotically altered liver, bemitil produced a decrease in the total glycogen content due to a decrease in glycogen synthase activity in an increase in glucose-6-phosphatase and glycogen phosphorylase activities. The above results suggest a favorable effect of bemitil on cirrhotic liver.

  19. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    PubMed

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evidence for the Location of the Allosteric Activation Switch in the Multisubunit Phosphorylase Kinase Complex from Mass Spectrometric Identification of Chemically Crosslinked Peptides*

    PubMed Central

    Nadeau, Owen W.; Anderson, David W.; Yang, Qing; Artigues, Antonio; Paschall, Justin E.; Wyckoff, Gerald J.; McClintock, Jennifer L.; Carlson, Gerald M.

    2007-01-01

    Phosphorylase kinase (PhK), an (αβγδ)4 complex, regulates glycogenolysis. Its activity, catalyzed by the γ subunit, is tightly controlled by phosphorylation and activators acting through allosteric sites on its regulatory α, β and δ subunits. Activation of the catalytic γ subunit in the PhK complex by phosphorylation is known to be predominantly mediated by the regulatory β subunit, which undergoes a conformational change that is structurally linked with the γ subunit and that is characterized by the ability to form β-β dimers using a short chemical crosslinker. To determine potential regions of interaction of the β and γ subunits, we have used chemical crosslinking and 2-hybrid screening. The β and γ subunits were chemically crosslinked to each other in phosphorylated PhK, and crosslinked peptides were identified in digests of the kinase by Fourier transform mass spectrometry in combination with a search engine developed ‘in house’ that generates a hypothetical list of crosslinked peptides. Such a conjugate between β and γ was identified, verified by MS/MS and shown to correspond to crosslinking between K303 in the C-terminal regulatory domain of γ (γCRD) and R18 in the N-terminal regulatory region of β (β1-31), which contains the phosphorylatable serines 11 and 26. A synthetic peptide corresponding to residues 1-22 of β inhibited the crosslinking between β and γ in the complex, and was itself crosslinked to K303 of γ. Through the use of 2-hybrid screening, the β1-31 region was also shown to control β subunit self-interactions, which were favored by truncation of this region or by mutation of the phosphorylatable serines 11 and 26, thus providing structural evidence for a phosphorylation-dependent subunit communication network in the PhK complex involving at least these two regulatory regions of the β and γ subunits. The sum of our results considered together with previous findings implicates the γCRD as being an allosteric

  1. Glycogen function in adult central and peripheral nerves.

    PubMed

    Evans, Richard D; Brown, Angus M; Ransom, Bruce R

    2013-08-01

    We studied the roles of glycogen in axonal pathways of the central nervous system (CNS) and peripheral nervous system (PNS). By using electrophysiological recordings, in combination with biochemical glycogen assay, it was possible to determine whether glycogen was crucial to axon function under different conditions. Glycogen was present both in mouse optic nerve (MON) and in mouse sciatic nerve (MSN). Aglycemia caused loss of the compound action potential (CAP) in both pathways after a latency of 15 min (MON) and 120 min for myelinated axons (A fibers) in the MSN. With the exception of unmyelinated axons (C fibers) in the MSN, CAP decline began when usable glycogen was exhausted. Glycogen was located in astrocytes in the MON and in myelinating Schwann cells in the MSN; it was absent from the Schwann cells surrounding unmyelinated C fibers. In MON, astrocytic glycogen is metabolized to lactate and "shuttled" to axons to support metabolism. The ability of lactate to support A fiber conduction in the absence of glucose suggests a common pathway in both the CNS and the PNS. Lactate is released from MON and MSN in substantial quantities. That lactate levels fall in MSN in the presence of diaminobenzidine, which inhibits glycogen phosphorylase, strongly suggests that glycogen metabolism contributes to lactate release under resting conditions. Glycogen is a "backup" energy substrate in both the CNS and the PNS and, beyond sustaining excitability during glucose deprivation, has the capacity to subsidize the axonal energy demands during times of intense activity in the presence of glucose. Copyright © 2013 Wiley Periodicals, Inc.

  2. Effects of the 2-ethylthiobenzimidazole hydrobromide (bemithyl) on carbohydrate metabolism in cirrhotic rat liver.

    PubMed

    Kudryavtseva, Margarita V; Bezborodkina, Natalia N; Okovity, Sergey V; Kudryavtsey, Boris N

    2003-03-01

    The effect of the actoprotector bemithyl (2-ethylthiobenzimidazole hydrobromide) on the content of glycogen and activities of glycogen synthase, glycogen phosphorylase, and glucose-6-phosphatase was studied in the cirrhotic rat liver. The content of glycogen and its fraction was determined by a cytofluorimetric method (Kudryavtseva et al. 1974). It has been shown that in cirrhosis the content of total glycogen in hepatocytes increases about 3 times and the content of its stable fraction increases 7.5 times. The activity of glucose-6-phosphatase fell to a level as low as 25% of normal. Activities of glycogen synthase and glycogen phosphorylase in the cirrhotic liver did not differ from normal. In the cirrhotic liver, bemithyl produced a decrease of the total glycogen content which was associated with a decrease of the glycogen synthase activity and an increase of the glucose-6-phosphatase and glycogen phosphorylase activities. Thus, the results of our studies indicate a favorable effect of bemithyl on the cirrhotic liver.

  3. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  4. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Cancer.gov

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  5. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    PubMed Central

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explain observed abnormalities of phosphorylase activation and sarcoplasmic reticulum function. PMID:6271806

  6. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    DOEpatents

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  7. Polynucleotides encoding anti-sulfotyrosine antibodies

    DOEpatents

    Bertozzi, Carolyn R [Berkeley, CA; Kehoe, John [Saint Davids, PA; Bradbury, Andrew M [Santa Fe, NM

    2011-01-11

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  8. EFFECTS OF X IRRADIATION ON ENZYME SYNTHESIS DURING LIVER REGENERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D.K.

    1962-05-01

    Twenty-four different enzymes or enzyme systems were assayed in regenerating rat liver from control and irradiated animals at various times after partial hepatectomy. X irradiation, either of the whole liver region or of an exteriorized liver lobule, interfered with the accumulation of only three of these enzymes: deoxycytidylate deaminase, thymidine phosphorylase, and NAD pyrophosphorylase. Irradiation did not affect the synthesis of related enzymes such as adenosine and guanine deaminases, and inosine and uridine phosphorylases. The effects of irradiation on enzyme synthesis in regenerating liver would appear to be highly selective. (auth)

  9. Enzymatic transformation of nonfood biomass to starch

    PubMed Central

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  10. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    PubMed Central

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  11. Human Endothelial Cell Response to Gram-Negative Lipopolysaccharide Assessed with cDNA Microarrays

    DTIC Science & Technology

    2001-11-01

    structurally and functionally similar to LO, may also possess chemotac- tic ability and other unknown functions in inflamma- tion. Spermidine/ spermine N1...2.0 1.1 0.7 0.8 H16591 Vascular cell adhesion molecule 1 VCAM-1 1.0 1.1 2.1 1.4 1.0 1.1 AA011215 Spermidine/ spermine N1-acetyltransferase SAT 0.8 1.0...1.1 N80129 Metallothionein 1L MT1L 4.8 1.0 1.0 1.7 1.2 1.1 AA430382 Nucleoside phosphorylase NP 1.1 1.4 1.8 1.3 1.0 AA676458 Lysyl oxidase -like 2 LOXL2

  12. Glycogen synthase activation by sugars in isolated hepatocytes.

    PubMed

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  13. Characterization of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) as an inhibitor of brain glycogen shunt activity.

    PubMed

    Walls, Anne B; Sickmann, Helle M; Brown, Angus; Bouman, Stephan D; Ransom, Bruce; Schousboe, Arne; Waagepetersen, Helle S

    2008-05-01

    The pharmacological properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), a potent inhibitor of glycogen phosphorylase and synthase activity in liver preparations, were characterized in different brain tissue preparations as a prerequisite for using it as a tool to investigate brain glycogen metabolism. Its inhibitory effect on glycogen phosphorylase was studied in homogenates of brain tissue and astrocytes and IC50-values close to 400 nM were found. However, the concentration of DAB needed for inhibition of glycogen shunt activity, i.e. glucose metabolism via glycogen, in intact astrocytes was almost three orders of magnitude higher. Additionally, such complete inhibition required a pre-incubation period, a finding possibly reflecting a limited permeability of the astrocytic membrane. DAB did not affect the accumulation of 2-deoxyglucose-6-phosphate indicating that the transport of DAB is not mediated by the glucose transporter. DAB had no effect on enzymes involving glucose-6-phosphate, i.e. glucose-6-phosphate dehydrogenase, phosphoglucoisomerase and hexokinase. Furthermore, DAB was evaluated in a functional preparation of the isolated mouse optic nerve, in which its presence severely reduced the ability to sustain evoked compound action potentials in the absence of glucose, a condition in which glycogen serves as an important energy substrate. Based on the experimental findings, DAB can be used to evaluate glycogen shunt activity and its functional importance in intact brain tissue and cells at a concentration of 300-1000 muM and a pre-incubation period of 1 h.

  14. Origin of noncoding DNA sequences: molecular fossils of genome evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naora, H.; Miyahara, K.; Curnow, R.N.

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. The authors propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approx. 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approx. 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stopmore » codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. They attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.« less

  15. Effects of salicylic acid on post-ischaemic ventricular function and purine efflux in isolated mouse hearts.

    PubMed

    Farthing, Don; Gehr, Lynne; Karnes, H Thomas; Sica, Domenic; Gehr, Todd; Larus, Terri; Farthing, Christine; Xi, Lei

    2007-01-01

    Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5-2.5 mM), anti-inflammatory (0.5-5.0 mM) or antiplatelet (0.18-0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0-10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575+/-3319 vs. 1437+/-348 ng ml(-1) min(-1), mean+/-SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo

  16. Complete Cellulase System in the Marine Bacterium Saccharophagus degradans Strain 2-40T

    PubMed Central

    Taylor, Larry E.; Henrissat, Bernard; Coutinho, Pedro M.; Ekborg, Nathan A.; Hutcheson, Steven W.; Weiner, Ronald M.

    2006-01-01

    Saccharophagus degradans strain 2-40 is a representative of an emerging group of marine complex polysaccharide (CP)-degrading bacteria. It is unique in its metabolic versatility, being able to degrade at least 10 distinct CPs from diverse algal, plant and invertebrate sources. The S. degradans genome has been sequenced to completion, and more than 180 open reading frames have been identified that encode carbohydrases. Over half of these are likely to act on plant cell wall polymers. In fact, there appears to be a full array of enzymes that degrade and metabolize plant cell walls. Genomic and proteomic analyses reveal 13 cellulose depolymerases complemented by seven accessory enzymes, including two cellodextrinases, three cellobiases, a cellodextrin phosphorylase, and a cellobiose phosphorylase. Most of these enzymes exhibit modular architecture, and some contain novel combinations of catalytic and/or substrate binding modules. This is exemplified by endoglucanase Cel5A, which has three internal family 6 carbohydrate binding modules (CBM6) and two catalytic modules from family five of glycosyl hydrolases (GH5) and by Cel6A, a nonreducing-end cellobiohydrolase from family GH6 with tandem CBM2s. This is the first report of a complete and functional cellulase system in a marine bacterium with a sequenced genome. PMID:16707677

  17. Pentose phosphates in nucleoside interconversion and catabolism.

    PubMed

    Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L

    2006-03-01

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.

  18. Enzymatic Regulation of Glycogenolysis in a Subarctic Population of the Wood Frog: Implications for Extreme Freeze Tolerance

    PubMed Central

    do Amaral, M. Clara F.; Lee, Richard E.; Costanzo, Jon P.

    2013-01-01

    The wood frog, Rana sylvatica, from Interior Alaska survives freezing at –16°C, a temperature 10–13°C below that tolerated by its southern conspecifics. We investigated the hepatic freezing response in this northern phenotype to determine if its profound freeze tolerance is associated with an enhanced glucosic cryoprotectant system. Alaskan frogs had a larger liver glycogen reserve that was mobilized faster during early freezing as compared to conspecifics from a cool-temperate region (southern Ohio, USA). In Alaskan frogs the rapid glucose production in the first hours of freezing was associated with a 7-fold increase in glycogen phosphorylase activity above unfrozen frog levels, and the activity of this enzyme was higher than that of frozen Ohioan frogs. Freezing of Ohioan frogs induced a more modest (4-fold) increase in glycogen phosphorylase activity above unfrozen frog values. Relative to the Ohioan frogs, Alaskan frogs maintained a higher total protein kinase A activity throughout an experimental freezing/thawing time course, and this may have potentiated glycogenolysis during early freezing. We found populational variation in the activity and protein level of protein kinase A which suggested that the Alaskan population had a more efficient form of this enzyme. Alaskan frogs modulated their glycogenolytic response by decreasing the activity of glycogen phosphorylase after cryoprotectant mobilization was well under way, thereby conserving their hepatic glycogen reserve. Ohioan frogs, however, sustained high glycogen phosphorylase activity until early thawing and consumed nearly all their liver glycogen. These unique hepatic responses of Alaskan R. sylvatica likely contribute to this phenotype’s exceptional freeze tolerance, which is necessary for their survival in a subarctic climate. PMID:24236105

  19. Glycogen catabolism enzymes and protein fractions in the third and fourth larval stages of Anisakis simplex.

    PubMed

    Łopieńska-Biernat, E; Zółtowska, K; Rokicki, J

    2008-03-01

    Extracts of Anisakis simplex third (L3) and fourth (L4) larval stages were assayed for protein content and activity and properties of alpha-amylase, glucoamylase and glycogen phosphorylase. Protein content in L4 was twice that in L3. SDS-PAGE applied to both larval stages revealed 22 protein fractions in each, including five stage-specific fractions in each larval stage. The L3 extracts contained three amylase isoenzymes: alpha 1, alpha 2 and alpha 3; their molecular weights were 64, 29 and 21 kDa, respectively. Only one amylase isoenzyme (64 kDa) was found in the L4 extracts. Glycogen in L3 was found to be broken down mostly by hydrolysis because of low glycogen phosphorylase activity. The alpha-amylase activity in L4 was higher than that in L3 by half and the glycogen phosphorylase activity was ten times higher. In addition, the same enzymes isolated from L3 and L4 were found to differ in their properties. These differences could be manifestations of metabolic adaptations of A. simplex larvae to host switch from fish (L3) to mammals (L4), i.e. adaptations to a new habitat.

  20. Label-free probing of genes by time-domain terahertz sensing.

    PubMed

    Haring Bolivar, P; Brucherseifer, M; Nagel, M; Kurz, H; Bosserhoff, A; Büttner, R

    2002-11-07

    A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a freespace analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.

  1. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation

    PubMed Central

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-01-01

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge. PMID:25063821

  2. Pyrimidine Biosynthesis Is Not an Essential Function for Trypanosoma brucei Bloodstream Forms

    PubMed Central

    Munday, Jane C.; Donachie, Anne; Morrison, Liam J.; de Koning, Harry P.

    2013-01-01

    Background African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite. Methodology/Principal Findings Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line. Conclusions/Significance Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal. PMID:23505454

  3. Finding numbers in the brain.

    PubMed

    Gallistel, C R

    2017-02-19

    After listing functional constraints on what numbers in the brain must do, I sketch the two's complement fixed-point representation of numbers because it has stood the test of time and because it illustrates the non-obvious ways in which an effective coding scheme may operate. I briefly consider its neurobiological implementation. It is easier to imagine its implementation at the cell-intrinsic molecular level, with thermodynamically stable, volumetrically minimal polynucleotides encoding the remembered numbers, than at the circuit level, with plastic synapses encoding them.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).

  4. A phase III, randomized, double-blind, matched-pairs, active-controlled clinical trial and preclinical animal study to compare the durability, efficacy and safety between polynucleotide filler and hyaluronic acid filler in the correction of crow's feet: a new concept of regenerative filler.

    PubMed

    Pak, Chang Sik; Lee, Jongho; Lee, Hobin; Jeong, Jaehoon; Kim, Eun-Hee; Jeong, Jinwook; Choi, Hyeyeon; Kim, Byunghwi; Oh, Sujin; Kim, Iksoo; Heo, Chan Yeong

    2014-11-01

    The Rejuran® is a new filler product made from purified polynucleotides. Here we present data from an animal study and a clinical trial to examine the durability, efficacy and safety of the Rejuran® on crow's feet. For the animal study, 25 mice were divided into three groups: Group 1 received phosphate buffered saline (PBS); Group 2 were treated with Yvoire®; and Group 3 were treated with Rejuran®. The durability and efficacy of each treatment were assessed by microscopy and staining. In the clinical trial, 72 patients were randomized to receive Rejuran® treatment for crow's feet on one side and Yvoire-Hydro® on the contralateral side, at a ratio of 1:1. Repeated treatments were performed every two weeks for a total of three times, over a total of 12 weeks' observation. All injections and observations of efficacy and safety were performed by the same two investigators. In the animal study, the Rejuran® group showed similar durability and inflammatory response to the Yvoire® group. Upon efficacy assessment, the Rejuran® group showed the greatest elasticity and collagen composition, and a significant difference in skin surface roughness and wrinkle depth. In the clinical trial, the primary and secondary objective efficacy outcome measure showed no statistical significance between the two groups, and in safety outcomes there were no unexpected adverse effects. Our data suggest that the Rejuran®, as a new regenerative filler, can be useful to reduce wrinkles, by showing evidence for its efficacy and safety.

  5. Natural resistance to HIV infection: The Vif-APOBEC interaction.

    PubMed

    Malim, Michael H

    2006-11-01

    Members of the APOBEC family of cellular polynucleotide cytidine deaminases (e.g., APOBEC3G) are potent inhibitors of HIV infection. Wild type viral infections are largely spared from APOBEC function through the action of the viral Vif protein. In Vif's absence, inhibitory APOBEC proteins are encapsidated by budding virus particles leading to excessive cytidine (C) to uridine (U) hypermutation of negative sense reverse transcripts in newly infected cells. This registers as guanosine (G) to adenosine (A) mutations in plus stranded cDNA. Because the functions of Vif and APOBEC proteins oppose each other, it is likely that fluctuations in the Vif/APOBEC balance can influence the natural history of HIV infection. Experimental support for this notion would further justify and stimulate drug discovery initiatives in this area.

  6. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation–contraction coupling supramolecular complex

    PubMed Central

    Lopez, Rubén J.; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C.; Bentzinger, C. Florian; Romanino, Klaas; Hall, Michael N.; Rüegg, Markus A.; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2016-01-01

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]–ryanodine and 3[H]–PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation–contraction (E–C) coupling is affected by mTORC1 signalling. PMID:25431931

  7. Polynucleotides encoding TRF1 binding proteins

    DOEpatents

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  8. Deoxynucleoside stress exacerbates the phenotype of a mouse model of mitochondrial neurogastrointestinal encephalopathy

    PubMed Central

    Garcia-Diaz, Beatriz; Garone, Caterina; Barca, Emanuele; Mojahed, Hamed; Gutierrez, Purification; Pizzorno, Giuseppe; Tanji, Kurenai; Arias-Mendoza, Fernando; Quinzii, Caterina M.

    2014-01-01

    Balanced pools of deoxyribonucleoside triphosphate precursors are required for DNA replication, and alterations of this balance are relevant to human mitochondrial diseases including mitochondrial neurogastrointestinal encephalopathy. In this disease, autosomal recessive TYMP mutations cause severe reductions of thymidine phosphorylase activity; marked elevations of the pyrimidine nucleosides thymidine and deoxyuridine in plasma and tissues, and somatic multiple deletions, depletion and site-specific point mutations of mitochondrial DNA. Thymidine phosphorylase and uridine phosphorylase double knockout mice recapitulated several features of these patients including thymidine phosphorylase activity deficiency, elevated thymidine and deoxyuridine in tissues, mitochondrial DNA depletion, respiratory chain defects and white matter changes. However, in contrast to patients with this disease, mutant mice showed mitochondrial alterations only in the brain. To test the hypothesis that elevated levels of nucleotides cause unbalanced deoxyribonucleoside triphosphate pools and, in turn, pathogenic mitochondrial DNA instability, we have stressed double knockout mice with exogenous thymidine and deoxyuridine, and assessed clinical, neuroradiological, histological, molecular, and biochemical consequences. Mutant mice treated with exogenous thymidine and deoxyuridine showed reduced survival, body weight, and muscle strength, relative to untreated animals. Moreover, in treated mutants, leukoencephalopathy, a hallmark of the disease, was enhanced and the small intestine showed a reduction of smooth muscle cells and increased fibrosis. Levels of mitochondrial DNA were depleted not only in the brain but also in the small intestine, and deoxyribonucleoside triphosphate imbalance was observed in the brain. The relative proportion, rather than the absolute amount of deoxyribonucleoside triphosphate, was critical for mitochondrial DNA maintenance. Thus, our results demonstrate that

  9. Mode of action of dopamine in inducing hyperglycemia in the fresh water edible crab, Oziothelphusa senex senex.

    PubMed

    Swetha, Ch; Sainath, S B; Reddy, P Sreenivasula

    2014-11-01

    The objective of this study was to investigate the mode of action of dopamine in regulating hemolymph sugar level in the fresh water edible crab, Oziothelphusa senex senex. Injection of dopamine produced hyperglycemia in a dose-dependent manner in intact crabs but not in eyestalkless crabs. Administration of dopamine resulted in a significant decrease in total carbohydrates and glycogen levels with a significant increase in glycogen phosphorylase activity levels in hepatopancreas and muscle of intact crabs, indicating dopamine-induced glycogenolysis resulting in hyperglycemia. Bilateral eyestalk ablation resulted in significant increase in the total carbohydrates and glycogen levels with a significant decrease in the activity levels of phosphorylase in the hepatopancreas and muscle of the crabs. Eyestalk ablation resulted in significant decrease in hemolymph hyperglycemic hormone levels. The levels of hyperglycemic hormone in the hemolymph of dopamine injected crabs were significantly higher than in control crabs. However, no significant changes in the levels of hemolymph hyperglycemic hormone and sugar and tissue carbohydrate and phosphorylase activity were observed in dopamine injected eyestalk ablated crabs when compared with eyestalk ablated crabs. These results support an earlier hypothesis in crustaceans that dopamine acts as a neurotransmitter and induces hyperglycemia by triggering the release of hyperglycemic hormone in the crab, O. senex senex. © 2014 Wiley Periodicals, Inc.

  10. Utilization of 2,6-diaminopurine by Salmonella typhimurium.

    PubMed Central

    Garber, B B; Gots, J S

    1980-01-01

    The pathway for the utilization of 2,6-diaminopurine (DAP) as an exogenous purine source in Salmonella typhimurium was examined. In strains able to use DAP as a purine source, mutant derivatives lacking either purine nucleoside phosphorylase or adenosine deaminase activity lost the ability to do so. The implied pathway of DAP utilization was via its conversion to DAP ribonucleoside by purine nucleoside phosphorylase, followed by deamination to guanosine by adenosine deaminase. Guanosine can then enter the established purine salvage pathways. In the course of defining this pathway, purine auxotrophs able to utilize DAP as sole purine source were isolated and partially characterized. These mutants fell into several classes, including (i) strains that only required an exogenous source of guanine nucleotides (e.g., guaA and guaB strains); (ii) strains that had a purF genetic lesion (i.e., were defective in alpha-5-phosphoribosyl 1-pyrophosphate amidotransferase activity); and (iii) strains that had constitutive levels of purine nucleoside phosphorylase. Selection among purine auxotrophs blocked in the de novo synthesis of inosine 5'-monophosphate, for efficient growth on DAP as sole source of purine nucleotides, readily yielded mutants which were defective in the regulation of their deoxyribonucleoside-catabolizing enzymes (e.g., deoR mutants). PMID:6782081

  11. Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle.

    PubMed Central

    Hespel, P; Richter, E A

    1992-01-01

    The influence of differences in glycogen concentration on glycogen breakdown and on phosphorylase activity was investigated in perfused contracting rat skeletal muscle. The rats were preconditioned by a combination of swimming exercise and diet (carbohydrate-free or carbohydrate-rich) in order to obtain four sub-groups of rats with varying resting muscle glycogen concentrations (range 10-60 mumol/g wet wt.). Pre-contraction muscle glycogen concentration was closely positively correlated with glycogen breakdown over 15 min of intermittent short tetanic contractions (r = 0.75; P less than 0.001; n = 56) at the same tension development and oxygen uptake. Additional studies in supercompensated and glycogen-depleted hindquarters during electrical stimulation for 20 s or 2 min revealed that the difference in glycogenolytic rate was found at the beginning rather than at the end of the contraction period. Phosphorylase alpha activity was approximately twice as high (P less than 0.001) in supercompensated muscles as in glycogen-depleted muscles after 20 s as well as after 2 min of contractions. It is concluded that glycogen concentration is an important determinant of phosphorylase activity in contracting skeletal muscle, and probably via this mechanism a regulator of glycogenolytic rate during muscle contraction. PMID:1622395

  12. Problem-Solving Test: Catalytic Activities of a Human Nuclear Enzyme

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    Terms to be familiar with before you start to solve the test: ion exchange chromatography, polynucleotides, oligonucleotides, radioactive labeling, template, primer, DNA polymerase, reverse transcriptase, helicase, nucleoside triphosphates, nucleoside diphosphates, nucleoside monophosphates, nucleosides, 5'-end and 3'-end, bacteriophage,…

  13. A QM-MD simulation approach to the analysis of FRET processes in (bio)molecular systems. A case study: complexes of E. coli purine nucleoside phosphorylase and its mutants with formycin A.

    PubMed

    Sobieraj, M; Krzyśko, K A; Jarmuła, A; Kalinowski, M W; Lesyng, B; Prokopowicz, M; Cieśla, J; Gojdź, A; Kierdaszuk, B

    2015-04-01

    Predicting FRET pathways in proteins using computer simulation techniques is very important for reliable interpretation of experimental data. A novel and relatively simple methodology has been developed and applied to purine nucleoside phosphorylase (PNP) complexed with a fluorescent ligand - formycin A (FA). FRET occurs between an excited Tyr residue (D*) and FA (A). This study aims to interpret experimental data that, among others, suggests the absence of FRET for the PNPF159A mutant in complex with FA, based on novel theoretical methodology. MD simulations for the protein molecule containing D*, and complexed with A, are carried out. Interactions of D* with its molecular environment are accounted by including changes of the ESP charges in S1, compared to S0, and computed at the SCF-CI level. FRET probability W F depends on the inverse six-power of the D*-A distance, R da . The orientational factor 0 < k(2) < 4 between D* and A is computed and included in the analysis. Finally W F is time-averaged over the MD trajectories resulting in its mean value. The red-shift of the tyrosinate anion emission and thus lack of spectral overlap integral and thermal energy dissipation are the reasons for the FRET absence in the studied mutants at pH 7 and above. The presence of the tyrosinate anion results in a competitive energy dissipation channel and red-shifted emission, thus in consequence in the absence of FRET. These studies also indicate an important role of the phenyl ring of Phe159 for FRET in the wild-type PNP, which does not exist in the Ala159 mutant, and for the effective association of PNP with FA. In a more general context, our observations point out very interesting and biologically important properties of the tyrosine residue in its excited state, which may undergo spontaneous deprotonation in the biomolecular systems, resulting further in unexpected physical and/or biological phenomena. Until now, this observation has not been widely discussed in the

  14. Derivatized versions of ligase enzymes for constructing DNA sequences

    DOEpatents

    Mariella, Jr., Raymond P.; Christian, Allen T [Tracy, CA; Tucker, James D [Novi, MN; Dzenitis, John M [Livermore, CA; Papavasiliou, Alexandros P [Oakland, CA

    2006-08-15

    A method of making very long, double-stranded synthetic poly-nucleotides. A multiplicity of short oligonucleotides is provided. The short oligonucleotides are sequentially hybridized to each other. Enzymatic ligation of the oligonucleotides provides a contiguous piece of PCR-ready DNA of predetermined sequence.

  15. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  16. Mitomycin C binding to poly[d(G-m5C)].

    PubMed Central

    Portugal, J; Sánchez-Baeza, F J

    1995-01-01

    Poly[d(G-m5C)] was modified by reductively activated mitomycin C, an anti-tumour drug, under buffer conditions which are known to favour either the B or the Z conformations of DNA. C.d. and 31P-n.m.r. were used to characterize the poly[d(G-m5C)]-mitomycin cross-linked complexes, as well as the effects on the equilibrium between the B and Z forms of the polynucleotide. Mitomycin C appears to inhibit the B-->Z transition, even in the presence of 3 mM MgCl2, while the Z-form of poly[d(G-m5C)] does not interact significantly with the drug under bifunctionally activating conditions; thus no reversion from the Z-form to the B-form of the polynucleotide can be observed under the salt conditions which are required for the Z-form to exist. PMID:7864808

  17. TAS-102: a novel antimetabolite for the 21st century

    PubMed Central

    Uboha, Nataliya; Hochster, Howard S

    2016-01-01

    TAS-102, a novel antimetabolite combination chemotherapy agent, consists of a rediscovered antimetabolite agent, trifluorothymidine (trifluridine) combined with the metabolic inhibitor of thymidine phosphorylase, tipiracil, in a 1:0.5 molar ratio. Mechanism of action studies suggest that this agent works by incorporation into DNA. Both preclinical and clinical studies demonstrate that this agent is noncross-resistant with 5-fluorouracil. Tipiracil may also have antiangiogenic effects through inhibition of thymidine phosphorylase. Recent randomized Phase II and III trials demonstrate clinical activity (improved progression-free survival, time to decrease in performance status, prolonged overall survival) in metastatic colorectal cancer refractory to all standard agents. Monotherapy with TAS-102 has now been approved for this indication in Japan and in the USA. PMID:26616466

  18. Analysis of genes involved in glycogen degradation in Escherichia coli.

    PubMed

    Strydom, Lindi; Jewell, Jonathan; Meier, Michael A; George, Gavin M; Pfister, Barbara; Zeeman, Samuel; Kossmann, Jens; Lloyd, James R

    2017-02-01

    Escherichia coli accumulate or degrade glycogen depending on environmental carbon supply. Glycogen phosphorylase (GlgP) and glycogen debranching enzyme (GlgX) are known to act on the glycogen polymer, while maltodextrin phosphorylase (MalP) is thought to remove maltodextrins released by GlgX. To examine the roles of these enzymes in more detail, single, double and triple mutants lacking all their activities were produced. GlgX and GlgP were shown to act directly on the glycogen polymer, while MalP most likely catabolised soluble malto-oligosaccharides. Interestingly, analysis of a triple mutant lacking all three enzymes indicates the presence of another enzyme that can release maltodextrins from glycogen. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Total-Body Irradiation Followed By Cyclosporine and Mycophenolate Mofetil in Treating Patients With Severe Combined Immunodeficiency Undergoing Donor Bone Marrow Transplant

    ClinicalTrials.gov

    2017-07-12

    Adenosine Deaminase Deficiency; Autosomal Recessive Disorder; Immune System Disorder; Purine-Nucleoside Phosphorylase Deficiency; Severe Combined Immunodeficiency; Severe Combined Immunodeficiency With Absence of T and B Cells; X-Linked Severe Combined Immunodeficiency

  20. Long-range barcode labeling-sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Zhang, Tao; Singh, Kanwar K.

    Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.

  1. Time-Delayed Two-Step Selective Laser Photodamage of Dye-Biomolecule Complexes

    NASA Astrophysics Data System (ADS)

    Andreoni, A.; Cubeddu, R.; de Silvestri, S.; Laporta, P.; Svelto, O.

    1980-08-01

    A scheme is proposed for laser-selective photodamage of biological molecules, based on time-delayed two-step photoionization of a dye molecule bound to the biomolecule. The validity of the scheme is experimentally demonstrated in the case of the dye Proflavine, bound to synthetic polynucleotides.

  2. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine,more » blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a

  3. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation.

    PubMed

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-10-15

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge. © 2014 The Authors. The Journal of Physiology © 2014

  4. Molecular replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1986-01-01

    The object of our research program is to understand how polynucleotide replication originated on the primitive Earth. This is a central issue in studies of the origins of life, since a process similar to modern DNA and RNA synthesis is likely to have formed the basis for the most primitive system of genetic information transfer. The major conclusion of studies so far is that a preformed polynucleotide template under many different experimental conditions will facilitate the synthesis of a new oligonucleotide with a sequence complementary to that of the template. It has been shown, for example, that poly(C) facilitates the synthesis of long oligo(G)s and that the short template CCGCC facilities the synthesis of its complement GGCGG. Very recently we have shown that template-directed synthesis is not limited to the standard oligonucleotide substrates. Nucleic acid-like molecules with a pyrophosphate group replacing the phosphate of the standard nucleic acid backbone are readily synthesized from deoxynucleotide 3'-5'-diphosphates on appropriate templates.

  5. A study of entropy/clarity of genetic sequences using metric spaces and fuzzy sets.

    PubMed

    Georgiou, D N; Karakasidis, T E; Nieto, Juan J; Torres, A

    2010-11-07

    The study of genetic sequences is of great importance in biology and medicine. Sequence analysis and taxonomy are two major fields of application of bioinformatics. In the present paper we extend the notion of entropy and clarity to the use of different metrics and apply them in the case of the Fuzzy Polynuclotide Space (FPS). Applications of these notions on selected polynucleotides and complete genomes both in the I(12×k) space, but also using their representation in FPS are presented. Our results show that the values of fuzzy entropy/clarity are indicative of the degree of complexity necessary for the description of the polynucleotides in the FPS, although in the latter case the interpretation is slightly different than in the case of the I(12×k) hypercube. Fuzzy entropy/clarity along with the use of appropriate metrics can contribute to sequence analysis and taxonomy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Methods for sequencing GC-rich and CCT repeat DNA templates

    DOEpatents

    Robinson, Donna L.

    2007-02-20

    The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.

  7. Problem-Based Test: An "In Vitro" Experiment to Analyze the Genetic Code

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: genetic code, translation, synthetic polynucleotide, leucine, serine, filter precipitation, radioactivity measurement, template, mRNA, tRNA, rRNA, aminoacyl-tRNA synthesis, ribosomes, degeneration of the code, wobble, initiation, and elongation of protein synthesis, initiation codon.…

  8. Genetics Home Reference: mitochondrial neurogastrointestinal encephalopathy disease

    MedlinePlus

    ... modification) is used as a building block of DNA . Thymidine phosphorylase breaks down thymidine into smaller molecules, ... molecule is damaging to a particular kind of DNA known as mitochondrial DNA or mtDNA. Mitochondria are ...

  9. Calculation of density functional theory (DFT) vibrational parameters of nucleotides for use in theoretical optical calculations: Herein applied to circular dichroism (CD) and absorption of polynucleotides

    NASA Astrophysics Data System (ADS)

    Ferber, Steven Dwight

    2005-11-01

    The Vibrational Circular Dichroism (VCD) of Nucleic Acids is a sensitive function of their conformation. DeVoe's classically derived polarizability theory allows the calculation of polymer absorption and circular dichroism spectra in any frequency range. Following the approach of Tinoco and Cech as modified by Moore and Self, calculations were done in the infrared (IR) region with theoretically derived monomer input parameters. Presented herein are calculated absorption and CD spectra for nucleic acid oligomers and polymers. These calculations improve upon earlier attempts, which utilized frequencies, intensities and normal modes from empirical analysis of the nitrogenous base of the monomers. These more complete input polarizability parameters include all contributions to specific vibrational normal modes for the entire nucleotide structure. They are derived from density functional theory (DFT) vibrational analysis on quasi-nucleotide monomers using the GAUSSIAN '98/'03 program. The normal modes are "integrated" for the first time into single virtual (DeVoe) oscillators by incorporating "fixed partial charges" in the manner of Schellman. The results include the complete set of monomer normal modes. All of these modes may be analyzed, in a manner similar to those demonstrated here (for the 1500-1800 cm-1 region). A model is utilized for the polymer/oligomer monomers which maintains the actual electrostatic charge on the adjacent protonated phosphoryl groups (hydrogen phosphate, a mono-anion). This deters the optimization from "collapsing" into a hydrogen-bonded "ball" and thereby maintains the extended (polymer-like) conformation. As well, the precise C2 "endo" conformation of the sugar ring is maintained in the DNA monomers. The analogous C3 "endo" conformation is also maintained for the RNA monomers, which are constrained by massive "anchors" at the phosphates. The complete IR absorbance spectra (0-4,000 cm-1) are calculated directly in Gaussian. Calculated VCD

  10. The origin of polynucleotide-directed protein synthesis

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1989-01-01

    If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.

  11. Discovery of a protein phosphatase activity encoded in the genome of bacteriophage lambda. Probable identity with open reading frame 221.

    PubMed

    Cohen, P T; Cohen, P

    1989-06-15

    Infection of Escherichia coli with phage lambda gt10 resulted in the appearance of a protein phosphatase with activity towards 32P-labelled casein. Activity reached a maximum near the point of cell lysis and declined thereafter. The phosphatase was stimulated 30-fold by Mn2+, while Mg2+ and Ca2+ were much less effective. Activity was unaffected by inhibitors 1 and 2, okadaic acid, calmodulin and trifluoperazine, distinguishing it from the major serine/threonine-specific protein phosphatases of eukaryotic cells. The lambda phosphatase was also capable of dephosphorylating other substrates in the presence of Mn2+, although activity towards 32P-labelled phosphorylase was 10-fold lower, and activity towards phosphorylase kinase and glycogen synthase 25 50-fold lower than with casein. No casein phosphatase activity was present in either uninfected cells, or in E. coli infected with phage lambda gt11. Since lambda gt11 lacks part of the open reading frame (orf) 221, previously shown to encode a protein with sequence similarity to protein phosphatase-1 and protein phosphatase-2A of mammalian cells [Cohen, Collins, Coulson, Berndt & da Cruz e Silva (1988) Gene 69, 131-134], the results indicate that ORF221 is the protein phosphatase detected in cells infected with lambda gt10. Comparison of the sequence of ORF221 with other mammalian protein phosphatases defines three highly conserved regions which are likely to be essential for function. The first of these is deleted in lambda gt11.

  12. Genetics Home Reference: glycogen storage disease type VI

    MedlinePlus

    ... glucose, a simple sugar that is the main energy source for most cells in the body. PYGL gene mutations prevent liver glycogen phosphorylase from breaking down glycogen ... energy, resulting in ketosis. Glycogen accumulates within liver cells, ...

  13. Membrane Asymmetry and Expression of Cell Surface Antigens of Micrococcus lysodeikticus Established by Crossed Immunoelectrophoresis

    PubMed Central

    Owen, Peter; Salton, Milton R. J.

    1977-01-01

    cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions. Images PMID:144722

  14. Membrane asymmetry and expression of cell surface antigens of Micrococcus lysodeikticus established by crossed immunoelectrophoresis.

    PubMed

    Owen, P; Salton, M R

    1977-12-01

    cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions.

  15. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    PubMed Central

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  16. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum.

    PubMed

    Cassera, María B; Hazleton, Keith Z; Riegelhaupt, Paul M; Merino, Emilio F; Luo, Minkui; Akabas, Myles H; Schramm, Vern L

    2008-11-21

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum.

  17. Biochemical changes in rat liver after 18.5 days of spaceflight (41566)

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Lin, C.Y.; Volkmann, C. M.; Klein, H. P.

    1983-01-01

    The effect of weightlessness on liver metabolism was investigated using tissue from rats flown in earth orbit for 18.5 days on the Soviet Cosmos 936 biosatellite and the changes in the activities of 28 carbohydrate and lipid enzymes were determined. The activities of two enzymes, palmitoyl-CoA desaturase and lactate dehydrogenase, increased, while the activities of five, glycogen phosphorylase, 6-phosphogluconate dehydrogenase, both acyltransferases which act on alpha-glycerolphosphate and diglycerides, and and aconitate hydratase decreased. The other enzyme activities were found to be unchanged. In addition, increased levels of liver glycogen and palmitoleate were detected which probably resulted from the lowered glycogen phosphorylase and increased palmitoyl-CoA desaturase activities, respectively, in those animals that experienced weightlessness. All of the changes observed in the rats after 18.5 days of spaceflight disappear by 25 days after the flight.

  18. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  19. A method for the 32P labeling of peptides or peptide nucleic acid oligomers

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    A novel approach to the radioactive labeling of peptides and PNA oligomers is described. It is based on the conjugation of a deoxynucleoside 3'-phosphate with the terminal amine of the substrate, followed by phosphorylation of the 5'-hydroxyl group of the nucleotide using T4 polynucleotide kinase and [gamma-32P]ATP.

  20. Protein displacements under external forces: An atomistic Langevin dynamics approach.

    PubMed

    Gnandt, David; Utz, Nadine; Blumen, Alexander; Koslowski, Thorsten

    2009-02-28

    We present a fully atomistic Langevin dynamics approach as a method to simulate biopolymers under external forces. In the harmonic regime, this approach permits the computation of the long-term dynamics using only the eigenvalues and eigenvectors of the Hessian matrix of second derivatives. We apply this scheme to identify polymorphs of model proteins by their mechanical response fingerprint, and we relate the averaged dynamics of proteins to their biological functionality, with the ion channel gramicidin A, a phosphorylase, and neuropeptide Y as examples. In an environment akin to dilute solutions, even small proteins show relaxation times up to 50 ns. Atomically resolved Langevin dynamics computations have been performed for the stretched gramicidin A ion channel.

  1. Molecular modeling and dynamics simulations of PNP from Streptococcus agalactiae.

    PubMed

    Caceres, Rafael Andrade; Saraiva Timmers, Luis Fernando; Dias, Raquel; Basso, Luiz Augusto; Santos, Diogenes Santiago; de Azevedo, Walter Filgueira

    2008-05-01

    This work describes for the first time a structural model of purine nucleoside phosphorylase from Streptococcus agalactiae (SaPNP). PNP catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is a potential target for the development of antibacterial drugs. We modeled the complexes of SaPNP with 15 different ligands in order to determine the structural basis for the specificity of these ligands against SaPNP. The application of a novel empirical scoring function to estimate the affinity of a ligand for a protein was able to identify the ligands with high affinity for PNPs. The analysis of molecular dynamics trajectory for SaPNP indicates that the functionally important motifs have a very stable structure. This new structural model together with a novel empirical scoring function opens the possibility to explorer larger library of compounds in order to identify the new inhibitors for PNPs in virtual screening projects.

  2. Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation.

    PubMed

    Wei, Yan; Qu, Mei-Hua; Wang, Xing-Sheng; Chen, Lan; Wang, Dong-Liang; Liu, Ying; Hua, Qian; He, Rong-Qiao

    2008-07-02

    Tau, an important microtubule associated protein, has been found to bind to DNA, and to be localized in the nuclei of both neurons and some non-neuronal cells. Here, using electrophoretic mobility shifting assay (EMSA) in the presence of DNA with different chain-lengths, we observed that tau protein favored binding to a 13 bp or a longer polynucleotide. The results from atomic force microscopy also showed that tau protein preferred a 13 bp polynucleotide to a 12 bp or shorter polynucleotide. In a competitive assay, a minor groove binder distamycin A was able to replace the bound tau from the DNA double helix, indicating that tau protein binds to the minor groove. Tau protein was able to protect the double-strand from digestion in the presence of DNase I that was bound to the minor groove. On the other hand, a major groove binder methyl green as a negative competitor exhibited little effect on the retardation of tau-DNA complex in EMSA. This further indicates the DNA minor groove as the binding site for tau protein. EMSA with truncated tau proteins showed that both the proline-rich domain (PRD) and the microtubule-binding domain (MTBD) contributed to the interaction with DNA; that is to say, both PRD and MTBD bound to the minor groove of DNA and bent the double-strand, as observed by electron microscopy. To investigate whether tau protein is able to prevent DNA from the impairment by hydroxyl free radical, the chemiluminescence emitted by the phen-Cu/H(2)O(2)/ascorbate was measured. The emission intensity of the luminescence was markedly decreased when tau protein was present, suggesting a significant protection of DNA from the damage in the presence of hydroxyl free radical.

  3. Problem-solving test: catalytic activities of a human nuclear enzyme.

    PubMed

    Szeberényi, József

    2011-01-01

    Terms to be familiar with before you start to solve the test: ion exchange chromatography, polynucleotides, oligonucleotides, radioactive labeling, template, primer, DNA polymerase, reverse transcriptase, helicase, nucleoside triphosphates, nucleoside diphosphates, nucleoside monophosphates, nucleosides, 5′-end and 3′-end, bacteriophage, polyacrylamide gel electrophoresis, urea, autoradiography, proofreading, telomerase, endonucleases, exonucleases, primase, topoisomerases, and excinuclease.

  4. Host cells and methods for production of isobutanol

    DOEpatents

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2017-10-17

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  5. Host cells and methods for production of isobutanol

    DOEpatents

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2016-08-23

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  6. Enantiomeric Cross-Inhibition in the Synthesis of Oligonucleotides on a Nonchiral Template

    NASA Technical Reports Server (NTRS)

    Schmidt, Jurgen G.; Nielsen, Peter E.; Orgel, Leslie E.

    1997-01-01

    Prebiotic syntheses of chiral monomers always yield racemic mixtures. Living systems, however, utilize L-amino acids and D-nucleotides in their biopolymers. The generation of optical asymmetry by selection and amplification in an autocatalytic process is, therefore, an important element in many theories of the origin of life. Replication of polynucleotides in template-directed syntheses is an obvious candidate for such an amplification step in a pre-'RNA world'. A serious objection to this suggestion is the observation that the efficiency of template-directed syntheses of RNA is limited by enantiomeric cross-inhibition. Peptide Nucleic Acids (PNAs), amide-linked, nonchiral analogues of RNA, have been 'copied' into RNA and constitute an alternative to chiral polynucleotides as an informational replicating system. Here, we use PNA as model for a hypothetical, nonchiral precursor of RNA in experiments re-examining enantiomeric cross-inhibition. We find that enantiomeric cross-inhibition is as serious in the polymerization of nucleotides on a PNA template as it is on a conventional RNA or DNA template.

  7. Effect of rapid rigor mortis processes on protein functionality in pectoralis major muscle of domestic turkeys.

    PubMed

    Pietrzak, M; Greaser, M L; Sosnicki, A A

    1997-08-01

    The pale, soft, exudative (PSE) phenomenon in turkey pectoralis major (breast) muscle was studied using a combination of biochemical, meat quality, microscopic, and gel electrophoresis techniques. Breast muscle samples were collected from turkeys characterized by slow vs fast postmortem glycolysis assessed by muscle pH at 20 min after death. The PSE group was characterized by lower muscle ATP (P < .05) and higher lactate levels (P < .05) compared with the normal group. Excess water-holding capacity and cooking yield were significantly lower (P < .05) in the PSE group than in normal turkeys. Breast muscle of the PSE group was also lighter (P < .05) than that in the normal group as determined by Minolta L* values. The SDS-PAGE, Western blotting, and immunofluorescence microscopy revealed that phosphorylase, a soluble enzyme, became tightly associated with the myofibrils in muscle from the PSE group. Also, less myosin could be solubilized from PSE vs normal myofibril samples. The results indicate that irreversible myosin insolubility due to low pH and high-temperature conditions is decisive in the development of PSE turkey breast muscle.

  8. Functional characterization of three (GH13) branching enzymes involved in cyanobacterial starch biosynthesis from Cyanobacterium sp. NBRC 102756.

    PubMed

    Suzuki, Ryuichiro; Koide, Keiichi; Hayashi, Mari; Suzuki, Tomoko; Sawada, Takayuki; Ohdan, Takashi; Takahashi, Hidekazu; Nakamura, Yasunori; Fujita, Naoko; Suzuki, Eiji

    2015-05-01

    Starch and glycogen are widespread storage polysaccharides in bacteria, plants, and animals. Recently, some cyanobacteria were found to accumulate water-insoluble α-glucan similar to amylopectin rather than glycogen, the latter of which is more commonly produced in these organisms. The amylopectin-producing species including Cyanobacterium sp. NBRC 102756 invariably have three branching enzyme (BE) homologs, BE1, BE2, and BE3, all belonging to the glycoside hydrolase family 13. Multiple BE isoforms in prokaryotes have not been previously studied. In the present work, we carried out functional characterization of these enzymes expressed in Escherichia coli. The recombinant enzymes were all active, although the specific activity of BE3 was much lower than those of BE1 and BE2. After the incubation of the enzymes with amylopectin or amylose, the reaction products were analyzed by fluorophore-assisted carbohydrate capillary electrophoresis method. BE1 and BE2 showed similar chain-length preference to BEIIb isoform of rice (Oryza sativa L.), while the catalytic specificity of BE3 was similar to that of rice BEI. These results indicate that starch-producing cyanobacteria have both type-I BE (BE3) and type-II BEs (BE1 and BE2) in terms of chain-length preferences, as is the case of plants. All BE isoforms were active against phosphorylase limit dextrin, in which outer branches had been uniformly diminished to 4 glucose residues. Based on its catalytic properties, BE3 was assumed to have a role to transfer the glucan chain bearing branch(es) to give rise to a newly growing unit, or cluster as observed in amylopectin molecule. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Enterococcus faecalis utilizes maltose by connecting two incompatible metabolic routes via a novel maltose-6’-phosphate phosphatase (MapP)

    PubMed Central

    Mokhtari, Abdelhamid; Blancato, Víctor S.; Repizo, Guillermo; Henry, Céline; Pikis, Andreas; Bourand, Alexa; de Fátima Álvarez, María; Immel, Stefan; Mechakra-Maza, Aicha; Hartke, Axel; Thompson, John; Magni, Christian; Deutscher, Josef

    2013-01-01

    Summary Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase which in B. subtilis hydrolyses maltose-6’-P into glucose and glucose-6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose-6-P into glucose-1-P and glucose-6-P. However, purified MalP phosphorolyses maltose but not maltose-6’-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose-6’-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose-1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose-6’-P restored growth on maltose. MapP catalyzes the dephosphorylation of intracellular maltose-6’-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose-1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalyzed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage. PMID:23490043

  10. The GS (genetic selection) Principle.

    PubMed

    Abel, David L

    2009-01-01

    The GS (Genetic Selection) Principle states that biological selection must occur at the nucleotide-sequencing molecular-genetic level of 3'5' phosphodiester bond formation. After-the-fact differential survival and reproduction of already-living phenotypic organisms (ordinary natural selection) does not explain polynucleotide prescription and coding. All life depends upon literal genetic algorithms. Even epigenetic and "genomic" factors such as regulation by DNA methylation, histone proteins and microRNAs are ultimately instructed by prior linear digital programming. Biological control requires selection of particular configurable switch-settings to achieve potential function. This occurs largely at the level of nucleotide selection, prior to the realization of any integrated biofunction. Each selection of a nucleotide corresponds to the setting of two formal binary logic gates. The setting of these switches only later determines folding and binding function through minimum-free-energy sinks. These sinks are determined by the primary structure of both the protein itself and the independently prescribed sequencing of chaperones. The GS Principle distinguishes selection of existing function (natural selection) from selection for potential function (formal selection at decision nodes, logic gates and configurable switch-settings).

  11. Bioanalytical Applications of Fluorenscence Quenching.

    DTIC Science & Technology

    1986-02-10

    fluorescence is observed. Thus, ’ the enzymes (in this case phosphorylase C) which can hydrolyze the lecithin , can be determined by measuring the released...encapsulated in lecithin liposomes. In this manner the fluorescence is self-quenched. When the liposomes are disrupted, the dye is released and

  12. Reducing nontemplated 3' nucleotide addition to polynucleotide transcripts

    DOEpatents

    Kao, C. Cheng

    2000-01-01

    Non-template 3' nucleotide addition to a transcript is reduced by transcribing a transcript from a template comprising an ultimate and/or penultimate 5' ribose having a C'2 substituent such as methoxy, which reduces non-template 3' nucleotide addition to the transcript. The methods are shown to be applicable to a wide variety of polymerases, including Taq, T7 RNA polymerase, etc.

  13. Expansin polynucleotides, related polypeptides and methods of use

    DOEpatents

    Cosgrove, Daniel J.; Wu, Yajun

    2006-02-21

    The present invention relates to beta expansin polypeptides, nucleotide sequences encoding the same and regulatory elements and their use in altering cell wall structure in plants. Nucleic acid constructs comprising a beta expansin sequence operably linked to a promoter, or other regulatory sequence are disclosed as well as vectors, plant cells, plants, and transformed seeds containing such constructs are provided. Methods for the use of such constructs in repressing or inducing expression of a beta expansin sequences in a plant are also provided as well as methods for harvesting transgenic expansin proteins. In addition, methods are provided for inhibiting or improving cell wall structure in plants by repression or induction of expansin sequences in plants.

  14. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, L; Shi, W; Lewandowicz, A

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potentmore » malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials.« less

  15. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  16. Europe Report, Science and Technology

    DTIC Science & Technology

    1986-11-19

    engineered organisms 9. Production , analysis & selection of hybridones 10. Animal cell cultures & scale production of cullular products 11. Vegetable... cell cultures & metabolite production 12. Genetic engineering of plants & their symbionts 13. Polynucleotide synthesis 14. Protein chemistry 15...problem of circuit production , a problem caused by the high cost of investment required for manufacturing lines of GaAs components. Thus the system

  17. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  18. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  20. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  1. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  2. Genetics Home Reference: purine nucleoside phosphorylase deficiency

    MedlinePlus

    ... 70 affected individuals have been identified. This disorder accounts for approximately 4 percent of all SCID cases. Related Information What information about a genetic condition can statistics ...

  3. Binding of Phenazinium Dye Safranin T to Polyriboadenylic Acid: Spectroscopic and Thermodynamic Study

    PubMed Central

    Roy, Snigdha; Das, Suman

    2014-01-01

    Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na+] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure. PMID:24498422

  4. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    PubMed

    Pradhan, Ankur Bikash; Haque, Lucy; Roy, Snigdha; Das, Suman

    2014-01-01

    Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  5. Disruptions in follicle cell functions in the ovaries of rhesus monkeys during summer

    PubMed Central

    VandeVoort, Catherine A.; Mtango, Namdori R.; Midic, Uros

    2015-01-01

    Oocytes isolated from female rhesus monkeys following standard ovarian stimulation protocols during the summer months displayed a reduced capacity to mature compared with stimulation during the normal breeding season. Because the gene expression profiles of oocyte-associated cumulus cells and mural granulosa cells (CCs and GCs) are indicative of altered oocyte quality and can provide insight into intrafollicular processes that may be disrupted during oogenesis, we performed array-based transcriptome comparisons of CCs and GCs from summer and normal breeding season stimulation cycles. Summer CCs and GCs both display deficiencies in expression of mRNAs related to cell proliferation, angiogenesis, and endocrine signaling, as well as reduced expression of glycogen phosphorylase. Additionally, CCs display deficiencies in expression of mRNAs related to stress response. These results provide the first insight into the specific molecular pathways and processes that are disrupted in the follicles of rhesus macaque females during the summer season. Some of the changes seen in summer GCs and CCs have been reported in humans and in other model mammalian species. This suggests that the seasonal effects seen in the rhesus monkey may help us to understand better the mechanisms that contribute to reduced oocyte quality and fertility in humans. PMID:25586978

  6. A combination of spin diffusion methods for the determination of protein-ligand complex structural ensembles.

    PubMed

    Pilger, Jens; Mazur, Adam; Monecke, Peter; Schreuder, Herman; Elshorst, Bettina; Bartoschek, Stefan; Langer, Thomas; Schiffer, Alexander; Krimm, Isabelle; Wegstroth, Melanie; Lee, Donghan; Hessler, Gerhard; Wendt, K-Ulrich; Becker, Stefan; Griesinger, Christian

    2015-05-26

    Structure-based drug design (SBDD) is a powerful and widely used approach to optimize affinity of drug candidates. With the recently introduced INPHARMA method, the binding mode of small molecules to their protein target can be characterized even if no spectroscopic information about the protein is known. Here, we show that the combination of the spin-diffusion-based NMR methods INPHARMA, trNOE, and STD results in an accurate scoring function for docking modes and therefore determination of protein-ligand complex structures. Applications are shown on the model system protein kinase A and the drug targets glycogen phosphorylase and soluble epoxide hydrolase (sEH). Multiplexing of several ligands improves the reliability of the scoring function further. The new score allows in the case of sEH detecting two binding modes of the ligand in its binding site, which was corroborated by X-ray analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Leaf carbohydrates influence transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in the facultative CAM plant, Mesembryanthemum crystallinum.

    PubMed

    Taybi, Tahar; Cushman, John C; Borland, Anne M

    2017-11-01

    Nocturnal degradation of transitory starch is a limiting factor for the optimal function of crassulacean acid metabolism and must be coordinated with phosphoenolypyruvate carboxylase (PEPC)-mediated CO 2 uptake to optimise carbon gain over the diel cycle. The aim of this study was to test the hypothesis that nocturnal carboxylation is coordinated with starch degradation in CAM via a mechanism whereby the products of these pathways regulate diel transcript abundance and enzyme activities for both processes. To test this hypothesis, a starch and CAM-deficient mutant of Mesembryanthemum crystallinum was compared with wild type plants under well-watered and saline (CAM-inducing) conditions. Exposure to salinity increased the transcript abundance of genes required for nocturnal carboxylation, starch and sucrose degradation in both wild type and mutant, but the transcript abundance of several of these genes was not sustained over the dark period in the low-carbohydrate, CAM-deficient mutant. The diel pattern of transcript abundance for PEPC mirrored that of PEPC protein, as did the transcripts, protein, and activity of chloroplastic starch phosphorylase in both wild type and mutant, suggesting robust diel coordination of these metabolic processes. Activities of several amylase isoforms were low or lacking in the mutant, whilst the activity of a cytosolic isoform of starch phosphorylase was significantly elevated, indicating contrasting modes of metabolic regulation for the hydrolytic and phosphorylytic routes of starch degradation. Externally supplied sucrose resulted in an increase in nocturnal transcript abundance of genes required for nocturnal carboxylation and starch degradation. These results demonstrate that carbohydrates impact on transcriptional and post-transcriptional regulation of nocturnal carboxylation and starch degradation in CAM. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression.

    PubMed

    Zhu, Shaozhou; Gong, Cuiyu; Ren, Lu; Li, Xingzhou; Song, Dawei; Zheng, Guojun

    2013-01-01

    The formation of inclusion bodies (IBs) in recombinant protein biotechnology has become one of the most frequent undesirable occurrences in both research and industrial applications. So far, the pET System is the most powerful system developed for the production of recombinant proteins when Escherichia coli is used as the microbial cell factory. Also, using fusion tags to facilitate detection and purification of the target protein is a commonly used tactic. However, there is still a large fraction of proteins that cannot be produced in E. coli in a soluble (and hence functional) form. Intensive research efforts have tried to address this issue, and numerous parameters have been modulated to avoid the formation of inclusion bodies. However, hardly anyone has noticed that adding fusion tags to the recombinant protein to facilitate purification is a key factor that affects the formation of inclusion bodies. To test this idea, the industrial biocatalysts uridine phosphorylase from Aeropyrum pernix K1 and (+)-γ-lactamase and (-)-γ-lactamase from Bradyrhizobium japonicum USDA 6 were expressed in E. coli by using the pET System and then examined. We found that using a histidine tag as a fusion partner for protein expression did affect the formation of inclusion bodies in these examples, suggesting that removing the fusion tag can promote the solubility of heterologous proteins. The production of soluble and highly active uridine phosphorylase, (+)-γ-lactamase, and (-)-γ-lactamase in our results shows that the traditional process needs to be reconsidered. Accordingly, a simple and efficient structure-based strategy for the production of valuable soluble recombinant proteins in E. coli is proposed.

  9. Cerebral Mitochondrial Microangiopathy Leads to Leukoencephalopathy in Mitochondrial Neurogastrointestinal Encephalopathy.

    PubMed

    Gramegna, L L; Pisano, A; Testa, C; Manners, D N; D'Angelo, R; Boschetti, E; Giancola, F; Pironi, L; Caporali, L; Capristo, M; Valentino, M L; Plazzi, G; Casali, C; Dotti, M T; Cenacchi, G; Hirano, M; Giordano, C; Parchi, P; Rinaldi, R; De Giorgio, R; Lodi, R; Carelli, V; Tonon, C

    2018-01-18

    Mitochondrial neurogastrointestinal encephalopathy is a rare disorder due to recessive mutations in the thymidine phosphorylase gene, encoding thymidine phosphorylase protein required for mitochondrial DNA replication. Clinical manifestations include gastrointestinal dysmotility and diffuse asymptomatic leukoencephalopathy. This study aimed to elucidate the mechanisms underlying brain leukoencephalopathy in patients with mitochondrial neurogastrointestinal encephalopathy by correlating multimodal neuroradiologic features to postmortem pathology. Seven patients underwent brain MR imaging, including single-voxel proton MR spectroscopy and diffusion imaging. Absolute concentrations of metabolites calculated by acquiring unsuppressed water spectra at multiple TEs, along with diffusion metrics based on the tensor model, were compared with those of healthy controls using unpaired t tests in multiple white matters regions. Brain postmortem histologic, immunohistochemical, and molecular analyses were performed in 1 patient. All patients showed bilateral and nearly symmetric cerebral white matter hyperintensities on T2-weighted images, extending to the cerebellar white matter and brain stem in 4. White matter, N -acetylaspartate, creatine, and choline concentrations were significantly reduced compared with those in controls, with a prominent increase in the radial water diffusivity component. At postmortem examination, severe fibrosis of brain vessel smooth muscle was evident, along with mitochondrial DNA replication depletion in brain and vascular smooth-muscle and endothelial cells, without neuronal loss, myelin damage, or gliosis. Prominent periependymal cytochrome C oxidase deficiency was also observed. Vascular functional and histologic alterations account for leukoencephalopathy in mitochondrial neurogastrointestinal encephalopathy. Thymidine toxicity and mitochondrial DNA replication depletion may induce microangiopathy and blood-brain-barrier dysfunction, leading to

  10. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  11. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  12. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O

    2015-06-01

    Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients

  13. Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme addition

    USDA-ARS?s Scientific Manuscript database

    A previously engineered strain of N. crassa F5'ace-1'cre-1'ndvB) with six out of seven ß-glucosidase (bgl) genes, two transcription factors (cre1 and ace-1) and cellobionate phosphorylase (ndvB) deleted was able to produce cellobiose and cellobionate directly from cellulose without the addition of e...

  14. CsrA Participates in a PNPase Autoregulatory Mechanism by Selectively Repressing Translation of pnp Transcripts That Have Been Previously Processed by RNase III and PNPase

    PubMed Central

    Park, Hongmarn; Yakhnin, Helen; Connolly, Michael; Romeo, Tony

    2015-01-01

    ABSTRACT Csr is a conserved global regulatory system that represses or activates gene expression posttranscriptionally. CsrA of Escherichia coli is a homodimeric RNA binding protein that regulates transcription elongation, translation initiation, and mRNA stability by binding to the 5′ untranslated leader or initial coding sequence of target transcripts. pnp mRNA, encoding the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase), was previously identified as a CsrA target by transcriptome sequencing (RNA-seq). Previous studies also showed that RNase III and PNPase participate in a pnp autoregulatory mechanism in which RNase III cleavage of the untranslated leader, followed by PNPase degradation of the resulting 5′ fragment, leads to pnp repression by an undefined translational repression mechanism. Here we demonstrate that CsrA binds to two sites in pnp leader RNA but only after the transcript is fully processed by RNase III and PNPase. In the absence of processing, both of the binding sites are sequestered in an RNA secondary structure, which prevents CsrA binding. The CsrA dimer bridges the upstream high-affinity site to the downstream site that overlaps the pnp Shine-Dalgarno sequence such that bound CsrA causes strong repression of pnp translation. CsrA-mediated translational repression also leads to a small increase in the pnp mRNA decay rate. Although CsrA has been shown to regulate translation and mRNA stability of numerous genes in a variety of organisms, this is the first example in which prior mRNA processing is required for CsrA-mediated regulation. IMPORTANCE CsrA protein represses translation of numerous mRNA targets, typically by binding to multiple sites in the untranslated leader region preceding the coding sequence. We found that CsrA represses translation of pnp by binding to two sites in the pnp leader transcript but only after it is processed by RNase III and PNPase. Processing by these two ribonucleases alters the m

  15. Production, fixation, and staining of cells on slides for maximum photometric sensitivity

    NASA Astrophysics Data System (ADS)

    Leif, Robert C.; Harlow, Patrick M.; Vallarino, Lidia M.

    1994-07-01

    The need to detect increasingly low levels of antigens or polynucleotides in cells requires improvements in both the preparation and the staining of samples. The combination of centrifugal cytology with the use of glyoxal as cross-linking fixative produces monolayers of cells having minimum background fluorescence. Detection can be further improved by the use of a recently developed type of luminescent tag containing a lanthanide(III) ion as the light- emitting center. These novel tags are macrocyclic complexes functionalized with an isothiocyanate group to allow covalent coupling to a biosubstrate. The Eu(III) complex possesses a set of properties -- water solubility, inertness to metal release over a wide pH range, ligand-sensitized narrow-band luminescence, large Stoke's shift, and long excited-state lifetime -- that provides ease of staining as well as maximum signal with minimum interference from background autofluorescence. Luminescence efficiency studies indicate significant solvent effects.

  16. Preconcentration and separation of analytes in microchannels

    DOEpatents

    Hatch, Anson; Singh, Anup K.; Herr, Amy E.; Throckmorton, Daniel J.

    2010-11-09

    Disclosed herein are methods and devices for preconcentrating and separating analytes such as proteins and polynucleotides in microchannels. As disclosed, at least one size-exclusion polymeric element is adjacent to processing area or an assay area in a microchannel which may be porous polymeric element. The size-exclusion polymeric element may be used to manipulate, e.g. concentrate, analytes in a sample prior to assaying in the assay area.

  17. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  18. [Effect of low-intensity 900 MHz frequency electromagnetic radiation on rat liver and blood serum enzyme activities].

    PubMed

    Nersesova, L S; Petrosian, M S; Gazariants, M G; Mkrtchian, Z S; Meliksetian, G O; Pogosian, L G; Akopian, Zh I

    2014-01-01

    The comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them. The dynamics of post-radiation changes in the activity of investigated enzyme levels following a single and short-term fractional schedules of radiation did not differ essentially.

  19. Guinea pig hepatocyte alpha 1A-adrenoceptors: characterization, signal transduction and regulation.

    PubMed

    García-Sáinz, J A; Romero-Avila, T; Olivares-Reyes, J A; Macías-Silva, M

    1992-11-02

    Activation of guinea pig hepatocyte alpha 1-adrenoceptors increases phosphatidylinositol (PI) labeling, [3H]inositol phosphate production and phosphorylase activity. These adrenergic actions were not altered by pretreatment with chlorethylclonidine but were blocked by 5-methyl urapidil and prazosin (the former being 3- to 10-fold more potent than the latter), indicating that alpha 1A-adrenoceptors were involved. When the cells were incubated in buffer without calcium and containing EGTA, the alpha 1A-adrenergic stimulation of PI labeling was diminished but not abolished and that of phosphorylase was not affected. The alpha 1A-adrenergic effects were insensitive to pertussis toxin treatment. Phorbol myristate acetate inhibited the alpha 1A-adrenergic actions, although at relatively large concentrations, and also those of other agents such as angiotensin II and NaF. Our data clearly indicate that guinea pig hepatocytes express alpha 1A-adrenoceptors whose activation stimulates phosphoinositide turnover, via a pertussis toxin-insensitive process; the alpha 1A-adrenergic effects were at least partially independent of extracellular calcium.

  20. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Dotson, William D.; Greenier, Jennifer; Ding, Hanshu

    2007-09-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated nucleic acids encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acids as well as methods for producing and using the polypeptides.