These are representative sample records from related to your search topic.
For comprehensive and current results, perform a real-time search at

The role of fillers and sodium metabisulfite on drug release from aged polyox tablets.  


Polyethylene oxides (PEOs) are extensively used to control the release rate of drugs from matrices. Unfortunately, polyox polymers are prone to oxidation under high temperature and relative humidity. The aim of this study was to investigate the effect of sodium metabisulfite as an antioxidant to overcome the drug release changes from polyox matrices (PEO 301 and 303) when stored at 40?°C. The effect of different types of fillers (lactose, mannitol and dicalcium phosphate dihydrate) on stability of diltiazem HCl release profiles was also investigated. Generally, the presence of sodium metabisulfite stabilized the release of drug from PEO matrices stored at 40?°C for 8 weeks. Whilst the absence of metabisulfite caused an increase in drug release from polyox matrices when stored at 40?°C. The results indicate that all three concentrations (0.25, 0.5 and 1% w/w) of sodium metabisulfite were able to overcome structural changes of polyox samples hence stabilizing the drug release. The results also showed that the incorporation of fillers in polyox matrices reduced the sensitivity of drug release when stored at elevated temperature. This indicates that when these excipients were used there was no need to incorporate additional antioxidant. DSC results showed that there was no difference in the melting points of fresh polyox samples and aged polyox samples containing sodium metabisulfite, whereas the melting point of aged polyox samples without sodium metabisulfite were lower than fresh polyox samples. This indicates that the presence of metabisulfite is essential to stabilize polyox samples. PMID:23962147

Shojaee, Saeed; Nokhodchi, Ali; Cumming, Iain



Paroxetine hydrochloride controlled release POLYOX matrix tablets: screening of formulation variables using Plackett-Burman screening design.  


The aim of the present study was to screen the effects of the formulation variables - POLYOX molecular weight (X1), the ratio of POLYOX/Avicel PH102 (X2) and the amount of POLYOX and Avicel PH102 (X3), hardness (X4), HPMCP amount (X5), Eudragit L100 amount (X6), and citric acid amount (X7) - on the paroxetine hydrochloride release from POLYOX matrix tablet using the Plackett-Burman screening design. Paroxetine hydrochloride matrix tablets were prepared according to a 7-factor-12-run statistical model and subjected to a 8-h dissolution study in Tris buffer at pH 7.5. The regression results showed that POLYOX molecular weight (X1) and POLYOX/Avicel PH102 ratio (X2) had significantly influence on the drug release mechanism and drug release rate as main effects. Hardness (X4) had an insignificant effect on the drug release mechanism but a significant effect on the drug release rate. On the other hand, HPMCP, Eudragit L100 and citric acid had an insignificant effect on the both responses. The information obtained by screening design study can be expected to be useful for further formulation studies. PMID:18409056

Jin, Shun-Ji; Yoo, Yeon-Hee; Kim, Min-Soo; Kim, Jeong-Soo; Park, Jeong-Sook; Hwang, Sung-Joo



Design and Evaluation of Polyox and Pluronic Controlled Gastroretentive Delivery of Troxipide  

PubMed Central

Objective. Objective of the present work was to develop site-specific gastroretentive drug delivery of Troxipide using polymers Pluronic F127 and Polyox 205?WSR. Troxipide is a novel gastroprotective agent with antiulcer, anti-inflammatory, and mucus secreting properties with elimination half-life of 7.4?hrs. Troxipide inhibits H. pylori-derived urease. It is mainly absorbed from stomach. Methods. 32 factorial design was applied to study the effect of independent variable. Effects of concentration of polymer on dependant variables as swelling index, hardness, and % drug release were studied. Pluronic F127 and Polyox 205?WSR were used as rate controlled polymer. Sodium bicarbonate and citric acid were used as effervescent-generating agent. Results. From the factorial batches, it was observed that formulation F5 (19% Pluronic F127 and 80% Polyox 205?WSR) showed optimum controlled drug release (98.60%?±?1.82) for 10?hrs with ability to float >12?hrs. Optimized formulation characterized by FTIR and DSC studies confirmed no chemical interactions between drug and polymer. Gastroretention for 6?hrs for optimized formulations was confirmed by in vivo X-ray placebo study. Conclusion. Results demonstrated feasibility of Troxipide in the development of gastroretentive site-specific drug delivery. PMID:25505995

Jagdale, Swati C.; Kamble, Shraddha B.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.



Application of Design of Experiment for Polyox and Xanthan Gum Coated Floating Pulsatile Delivery of Sumatriptan Succinate in Migraine Treatment  

PubMed Central

Migraine follows circadian rhythm in which headache is more painful at the awakening time. This needs administration of dosage form at night time to release drug after lag period when pain gets worse. Sumatriptan succinate is a drug of choice for migraine. Sumatriptan succinate has bitter taste, low oral bioavailability, and shorter half-life. Present work deals with application of design of experiment for polyox and xanthan gum in development of press coated floating pulsatile tablet. Floating pulsatile concept was applied to increase gastric residence of the dosage form. Burst release was achieved through immediate release tablet using crospovidone as superdisintegrant (10%). Pulse lag time was achieved using swellable polymer polyox WSR 205 and xanthan gum. 32 experimental design was applied. Optimized formulation was evaluated for physical characteristics and in-vitro and in-vivo study. From results, it can be concluded that optimized batch F8 containing polyox WSR205 (72.72%) and xanthan gum (27.27%) of total weight of polymer has shown floating lag time of 55 ± 2?sec, drug content of 100.35 ± 0.4%, hardness of 6 ± 0.1?Kg/cm2, and 98.69 ± 2% drug release in pulse manner with lag time of 7 ± 0.1?h. Optimized batch showed prolong gastric residence which was confirmed by in-vivo X-ray study. PMID:25530963

Jagdale, Swati C.; Pawar, Chandrakala R.



Lift and Drag Measurements on a Hydrofoil in Dilute Polyox Solutions  

Microsoft Academic Search

THE use of hydrofoils for a wide variety of purposes such as propeller blades on boats, as sailboat keels, ship rudders, submarine and torpedo fins, lifting surfaces of hydrofoil boats, and shroud ring stabilizers for missiles, has prompted efforts to increase the lift-to-drag ratio by various means. The favourable drag reducing effect of polymers, particularly for flows in pipes1, suggests

Turgut Sarpkaya




Microsoft Academic Search

The radioinduced grafting of acrylonitrile onto polyethylene oxide in ; both in situ and postirradiation cases was investigated. It was found that ; gamma -irradiation of polyethylene oxide (POLYOX) swollen with acrylonitrile both ; in the presence and in the absence of benzene resulted in insoluble products ; which could not be fractionated. Based on infrared analysis, solubility ; characteristics,

M. A. Golub; R. L. Walrath



Optimization Studies on Compression Coated Floating-Pulsatile Drug Delivery of Bisoprolol  

PubMed Central

The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 32 full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55?mg) for Polyox WSR205 and level +1 (65?mg) for Polyox WSR N12K showed lag time of 4?h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4?h in indicating the optimization of the dosage form. PMID:24367788

Jagdale, Swati C.; Bari, Nilesh A.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.



Formulation and in vitro evaluation of floating tablets of hydroxypropyl methylcellulose and polyethylene oxide using ranitidine hydrochloride as a model drug  

PubMed Central

The present study was carried out with an objective of preparation and in vitro evaluation of floating tablets of hydroxypropyl methyl cellulose (HPMC) and polyethylene oxide (PEO) using ranitidine hydrochloride as a model drug. The floating tablets were based on effervescent approach using sodium bicarbonate a gas generating agent. The tablets were prepared by dry granulation method. The effect of polymers concentration and viscosity grades of HPMC on drug release profile was evaluated. The effect of sodium bicarbonate and stearic acid on drug release profile and floating properties were also investigated. The result of in vitro dissolution study showed that the drug release profile could be sustained by increasing the concentration of HPMC K15MCR and Polyox WSR303. The formulation containing HPMC K15MCR and Polyox WSR303 at the concentration of 13.88% showed 91.2% drug release at the end of 24 hours. Changing the viscosity grade of HPMC from K15MCR to K100MCR had no significant effect on drug release profile. Sodium bicarbonate and stearic acid in combination showed no significant effect on drug release profile. The formulations containing sodium bicarbonate 20 mg per tablet showed desired buoyancy (floating lag time of about 2 minutes and total floating time of >24 hours). The present study shows that polymers like HPMC K15MCR and Polyox WSR303 in combination with sodium bicarbonate as a gas generating agent can be used to develop sustained release floating tablets of ranitidine hydrochloride. PMID:23493037

Gharti, KP; Thapa, P; Budhathoki, U; Bhargava, A



Design of a novel bilayered gastric mucoadhesive system for localized and unidirectional release of lamotrigine  

PubMed Central

Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength. PMID:24109205

Mohana Raghava Srivalli, K.; Lakshmi, P.K.; Balasubramaniam, J.



Decay of swirl in turbulent two phase flow  

E-print Network

water-soluble linear polymers known as poly- ethylene oxides. Union Carbide Chemicals Company manufactures a wide range of polymers having different average molecular weights, and these polymers are available under the trade name "Polyox" water... soluble resins (16). Since a supply of Union 21 Carbide USR 301 polymer was available it was an obvious choice for the tests conducted. This polymer has a molecular weight of 3. 4 X 10 , and its chemical formula is 6 ? 0 ? [CH ? CH ? 0] ? CH ? CH ? 0...

Neeley, Patrick Foster



The Influence of Sodium Carboxymethylcellulose on Drug Release from Polyethylene Oxide Extended Release Matrices  

Microsoft Academic Search

Anionic polymer sodium carboxymethylcellulose (CELLOGEN® HP-HS and\\/or HP-12HS) was investigated for its ability to influence\\u000a the release of three model drugs propranolol hydrochloride, theophylline and ibuprofen from polyethylene oxide (POLYOX™ WSR\\u000a 1105 and\\/or Coagulant) hydrophilic matrices. For anionic ibuprofen and non-ionic theophylline, no unusual\\/unexpected release\\u000a profiles were obtained from tablets containing a mixture of two polymers. However, for cationic propranolol

Dasha Palmer; Marina Levina; Ali Nokhodchi; Dennis Douroumis; Tom Farrell; Ali Rajabi-Siahboomi


Development and optimization of press coated floating pulsatile drug delivery of sumatriptan succinate.  


Floating pulsatile is combined approach designed according to circadian rhythm to deliver the drug at right time, in right quantity and at right site as per pathophysiological need of disease with prolong gastric residence and lag phase followed by burst release. As the migraine follows circadian rhythm in which headache is more painful at the awakening time, the dosage form should be given during night time to release drug when pain get worsen. Present work deals with formulation and optimization of floating pulsatile tablet of sumatriptan succinate. Core tablet containing crospovidone as superdisintegrant (10%) showed burst release. Lag time was maintained using swellable polymer as polyoxN12K and xanthum gum. 3(2) experimental design was carried out. Developed formulations were evaluated for physical characteristics, in vitro and in vivo study. Optimized batch F2 with concentration of polyox N12K (73.43%) and xanthum gum (26.56%) of total polymer weight showed floating lag time 15±2 sec, drug content 99.58±0.2 %, hardness 6±0.2 Kg/cm(2) and drug release 99.54±2% with pulsatile manner followed lag period of 7±0.1h. In vivo x-ray study confirms prolong gastric residence of system. Programmable pulsatile release has been achieved by formulation F2 which meet demand of chronotherapeutic objective of migraine. PMID:24893996

Jagdale, Swati C; Pawar, Chandrakala R



Systematic screening of compressed ODT excipients: cellulosic versus non-cellulosic.  


The successful development of compressed ODTs utilises low compression forces to create a porous structure whereby excipients are added to enhance wicking/swelling action or provide strength to the fragile tablet framework. In this work, a systematic investigation comparing materials from two different categories was employed to understand their functionality in binary mixture tablets of the most commonly used diluent mannitol. Cellulose based excipients such as HPC (SSL-SFP), L-HPC (NBD-022) and MCC (Avicel PH-102) were compared with non-cellulosic materials such as PEO (POLYOX WSR N-10) and Crospovidone (XL-10). Pure excipient properties were studied using Heckel Plot, compressibility profile, SEM and XRPD, whereas the prepared binary mixture compacts were studied for hardness, disintegration time and friability. Results from our investigation provide insight into differences encountered in product performance of ODT upon inclusion of additional materials. For example, non-cellulosic excipients Polyox and Crospovidone showed higher plasticity (Py values 588 and 450MPa) in pure form but not in binary mixtures of mannitol. Cellulosic excipients, nonetheless, offer faster disintegration (<30 sec) specifically L-HPC and MCC tablets. Disintegration time for tablets with fully substituted-HPC was prolonged (200-500 sec) upon increasing concentration between 1-10% due to gelation/ matrix formation. It can be concluded that despite the reasonably good plasticity of both cellulosic and noncellulosic excipients in pure form, the mechanical strength in binary mixtures is negatively impacted by the fragmentation/ fracture effect of mannitol. PMID:24655059

Al-Khattawi, Ali; Iyire, Affiong; Dennison, Tom; Dahmash, Eman; Bailey, Clifford J; Smith, Julian; Rue, Peter; Mohammed, Afzal R



Formulation Optimization of Hot Melt Extruded Abuse Deterrent Pellet Dosage Form Utilizing Design of Experiments (DOE)  

PubMed Central

The objective of the present study was to develop techniques for an abuse-deterrent (AD) platform utilizing hot melt extrusion (HME) process. Formulation optimization was accomplished by utilizing Box-Behnken design of experiments to determine the effect of the three formulation factors: PolyOx™ WSR301, Benecel™ K15M, and Carbopol 71G; each of which was studied at three levels on TR attributes of the produced melt extruded pellets. A response surface methodology was utilized to identify the optimized formulation. Lidocaine Hydrochloride was used as a model drug, and suitable formulation ingredients were employed as carrier matrices and processing aids. All of the formulations were evaluated for the TR attributes such as particle size post-milling, gelling, percentage of drug extraction in water and alcohol. All of the DOE formulations demonstrated sufficient hardness and elasticity, and could not be reduced into fine particles (<150µm), which is a desirable feature to prevent snorting. In addition, all of the formulations exhibited good gelling tendency in water with minimal extraction of drug in the aqueous medium. Moreover, Benecel™ K15M in combination with PolyOx™ WSR301 could be utilized to produce pellets with TR potential. HME has been demonstrated to be a viable technique with a potential to develop novel abuse-deterrent formulations. PMID:24433429

Maddineni, Sindhuri; Battu, Sunil Kumar; Morott, Joe; Majumdar, Soumyajit; Repka, Michael A.



Influence of processing parameters and formulation factors on the bioadhesive, temperature stability and drug release properties of hot-melt extruded films containing miconazole.  


This study investigated the processing parameters and formulation factors on the bioadhesive properties, temperature stability properties, and drug release properties of miconazole in PolyOx® and Klucel® matrix systems produced by Hot-melt Extrusion (HME) technology. Miconazole incorporated into these matrix systems were found to be stable for 8 months by X-ray diffraction (XRD). The addition of miconazole increased area under the curve (AUC) at contact time intervals of 30 and 60 sec, while the bioadhesion decreased with an increase in processing temperatures. The release profiles suggest that a sustained release of miconazole was observed from all of the tested HME film formulations for approximately 10 h. The release from the optimal HME film extruded at 205°C was found to be significantly different than that extruded at 190°C. Therefore, this matrix system may address the present shortcomings of currently available therapy for oral and pharyngeal candidiasis. PMID:24550099

Chen, Meiwan; Lu, Jiannan; Deng, Weibin; Singh, Abhilasha; Mohammed, Noorullah Naqvi; Repka, Michael A; Wu, Chuanbin



A novel bi-layer ascending release osmotic pump tablet: in vitro investigation and in vivo investigation in pharmacokinetic study and IVIVC evaluation.  


This study was aimed to develop an ascending release push-pull osmotic pump (APOP) system with a novel mechanism and an easy manufacture process. Theoretical analysis showed that the key to obtain the non-zero order drug release was to break the balance between the drug suspension release rate in the drug layer and the swelling rate of the core, and an ascending drug release rate was achieved when the former was slower than the latter. A polymer (Polyox WSR N-12K) was introduced as a suspension agent in drug layer to slow down the hydration rate of drug layer. Influence of the composition of drug layer (PEO category, total amount, drug loading and fraction of NaCl), push layer (NaCl amount), and also the level of coating weight gain on the drug release profiles was investigated. Observation of hydration state was estimated by taking photos, and also was confirmed by the theories. Paliperidone was delivered successfully by APOP at an ascending release rate up to 20 h in vitro. The in vivo plasma concentration of paliperidone in beagle dogs increased gradually up to 19 h. The APOP with an easy manufacture process was a promising strategy to deliver drug at an ascending rate. PMID:24095815

Xu, Heming; Li, Zhao; Pan, Hao; Zhang, Zhihong; Liu, Dandan; Tian, Baocheng; Ma, Shilin; Song, Shilong; Pan, Weisan



Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing.  


Wafers combining weight ratios of Polyox with carrageenan (75/25) or sodium alginate (50/50) containing streptomycin and diclofenac were prepared to improve chronic wound healing. Gels were freeze-dried using a lyophilisation cycle incorporating an annealing step. Wafers were characterised for morphology, mechanical and in vitro functional (swelling, adhesion, drug release in the presence of simulated wound fluid) characteristics. Both blank (BLK) and drug-loaded (DL) wafers were soft, flexible, elegant in appearance and non-brittle in nature. Annealing helped to improve porous nature of wafers but was affected by the addition of drugs. Mechanical characterisation demonstrated that the wafers were strong enough to withstand normal stresses but also flexible to prevent damage to newly formed skin tissue. Differences in swelling, adhesion and drug release characteristics could be attributed to differences in pore size and sodium sulphate formed because of the salt forms of the two drugs. BLK wafers showed relatively higher swelling and adhesion than DL wafers with the latter showing controlled release of streptomycin and diclofenac. The optimised dressing has the potential to reduce bacterial infection and can also help to reduce swelling and pain associated with injury due to the anti-inflammatory action of diclofenac and help to achieve more rapid wound healing. PMID:24700434

Pawar, Harshavardhan V; Boateng, Joshua S; Ayensu, Isaac; Tetteh, John



Correlation between drug dissolution and polymer hydration: a study using texture analysis.  


Texture analysis is a new approach in pharmaceutical research and development; this study evaluated the correlation between drug dissolution and polymer hydration from a modified release matrix tablet of pseudoephedrine hydrochloride using a texture analyzer. A series of matrix tablets of pseudoephedrine was designed and prepared. Modified drug release was achieved by combined use of matrix excipients Polyox WSR301 (PEO) and Compritol 888ATO (GB). Dissolution profiles of the tablets were assessed using USP Method II. Polymer swelling behaviors during dissolution were measured using a texture analyzer. Increase in proportion of PEO and GB in the formulation reduced drug dissolution within the first 90 min. However, drug release was complete in 6h due to high aqueous solubility of pseudoephedrine. Linear correlations were observed among drug dissolution, polymer content and parameters of texture analysis including hydrogel thickness and AUC(TA) for formulations that contained hydrophilic PEO. The study demonstrated a unique application of a texture analyzer in characterization of modified release matrix tablets. PMID:17548178

Li, Hongtao; Gu, Xiaochen



Dimensional changes, gel layer evolution and drug release studies in hydrophilic matrices loaded with drugs of different solubility.  


The objective of this investigation was to explore the effects of drug solubility on the evolution of matrix dimensions and gel layer's during drug release and investigate the relationship between these effects and the mechanism and the rate of drug release. Two hydrophilic swellable polymers Polyox (POL) and cross-linked Carbopol (CARB) were employed as carriers. Caffeine (CAF) and theophylline (THE), two drugs having similar chemical structure but different aqueous solubility, were used as model drugs. Both drug and polymer characteristics were found to influence the dimensional changes of matrices and the development of the gel layer formed around the glassy core. The dimensional expansion in CAF matrices was always more pronounced than the THE matrices. Also the CARB matrices demonstrated greater maximum expansion and lower drug release than the POL matrices, due to a smaller degree of erosion of CARB. The dimensions of CARB/CAF matrices, unlike all the other matrices studied, exhibited a biphasic increase at early times, which was attributed to the cross-linked structure of CARB and the high solubility of CAF. With both polymers, a thinner gel layer was developed in the matrices containing the less soluble THE compared to the CAF matrices. The thickness of the gel layer increased continuously with time in the CAF matrices whereas it increased initially and after reaching a maximum started to decrease in THE matrices. All formulations except those of CARB/THE exhibited burst release, which depended on drug and polymer characteristics. The gel layer thickness and erosion rate appeared to determine the rate of drug release from the CARB and POL formulations. The results clearly indicate that for these matrices gel thickness and fluctuation of gel thickness affect the release rate/h of drug proportionally. Analysis of the release kinetics indicated that CAF was released mainly through diffusion whereas, THE was released mainly through matrix erosion. PMID:17408891

Efentakis, Manuel; Pagoni, Ioulia; Vlachou, Marilena; Avgoustakis, Konstantinos



Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac.  


Streptomycin (STP) and diclofenac (DLF) loaded film dressings were prepared by blending Polyox(®) (POL) with four hydrophilic polymers [hydroxypropylmethylcellulose (HPMC), carrageenan (CAR), sodium alginate (SA) or chitosan (CS)] using glycerol (GLY) as plasticiser. The films were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, texture analysis (tensile and swelling characteristics) and in vitro dissolution profiles using Franz diffusion cell. SEM showed homogeneous morphology for both blank (BLK) and drug loaded (DL) films. Films prepared by blending of POL with the other polymers showed a reduction in the crystallisation of POL in descending order of SA>CS>HPMC>CAR respectively. DSC and XRD showed no crystalline peaks of STP and DLF suggesting molecular dispersion of both drugs as well as possible drug interaction with negatively charged sulphate ions present in CAR. The DL films did not show any IR bands of both drugs, confirming the DSC and XRD results. POL-CAR-BLK films showed higher tensile strength (12.32±1.40 MPa) than the POL-CAR-DL films (9.52±1.12 MPa). DL films plasticised with 25%w/w GLY revealed soft and tough (tensile strength 1.02±0.28 MPa, % elongation 1031.33±16.23) formulations. The swelling capacities of POL-CAR-BLK and POL-CAR-DL films were (733.17±25.78%) and (646.39±40.39%), increasing to (1072.71±80.30%) and (1051±86.68%) for POL-CAR-BLK-25% GLY and POL-CAR-DL-25% GLY respectively. POL-CAR-DL films showed significantly (n=3, p<0.0318) lower cumulative release of STP and DLF (52.11±1.34, 55.26±2.25) compared to POL-CAR-DL-25% GLY films (60.07±1.56, 63.39±1.92) respectively. PMID:23006557

Pawar, H V; Tetteh, J; Boateng, J S



Formulation and evaluation of micro hydrogel of Moxifloxacin hydrochloride.  


The field of ocular drug delivery is one of the interesting and challenging endeavors facing the pharmaceutical scientist. Novel approaches for ophthalmic drug delivery need to be established to increase the ocular bioavailability by overcoming the inherent drawbacks of conventional dosage forms. In situ hydrogels are instilled as drops into the eye and undergoes a sol-to-gel transition in the cul-de-sac, improved ocular bioavailability by increasing the duration of contact with corneal tissue, thereby reducing the frequency of administration. The purpose of the present work was to develop an ophthalmic drug delivery system using three different gelling agents with different mechanisms for in situ gelation of Moxifloxacin hydrochloride, a fluoroquinolone antibiotic. polyox (a pH-sensitive gelling agent), sodium alginate (an ion-sensitive gelling agent), and poloxamer (a temperature-sensitive gelling agent) were employed for the formation of in situ hydrogel along with HPMC K4M as viscofying agent, which increases the residence time of the drug in the ocular cavity. The promising formulations MF(4), MF(5), and MF(9) were evaluated for pH, drug content, in vitro gelation, in vitro drug release, in vivo drug release, ocular irritation, and stability. Percent drug content of 98.2, 98.76, and 99.43%; viscosity of 15.724 × 100, 16.108 × 100, and 15.213 × 100 cP at 20 rpm, cumulative percent release of 75.364, 74.081, and 71.752%, and C (max) of 1,164.16, 1,187.09, and 1,220.58 ng/ml was observed for formulation MF(4), MF(5), and MF(9), respectively. The developed formulations were therapeutically efficacious, stable, and non-irritant and provided sustained release of the drug over 8 h. PMID:22015966

Nanjwade, Basavaraj K; Deshmukh, Rucha V; Gaikwad, Kishori R; Parikh, Kemy A; Manvi, F V