Science.gov

Sample records for polyox wsr-fra polyox

  1. The role of fillers and sodium metabisulfite on drug release from aged polyox tablets.

    PubMed

    Shojaee, Saeed; Nokhodchi, Ali; Cumming, Iain

    2014-11-01

    Polyethylene oxides (PEOs) are extensively used to control the release rate of drugs from matrices. Unfortunately, polyox polymers are prone to oxidation under high temperature and relative humidity. The aim of this study was to investigate the effect of sodium metabisulfite as an antioxidant to overcome the drug release changes from polyox matrices (PEO 301 and 303) when stored at 40?C. The effect of different types of fillers (lactose, mannitol and dicalcium phosphate dihydrate) on stability of diltiazem HCl release profiles was also investigated. Generally, the presence of sodium metabisulfite stabilized the release of drug from PEO matrices stored at 40?C for 8 weeks. Whilst the absence of metabisulfite caused an increase in drug release from polyox matrices when stored at 40?C. The results indicate that all three concentrations (0.25, 0.5 and 1% w/w) of sodium metabisulfite were able to overcome structural changes of polyox samples hence stabilizing the drug release. The results also showed that the incorporation of fillers in polyox matrices reduced the sensitivity of drug release when stored at elevated temperature. This indicates that when these excipients were used there was no need to incorporate additional antioxidant. DSC results showed that there was no difference in the melting points of fresh polyox samples and aged polyox samples containing sodium metabisulfite, whereas the melting point of aged polyox samples without sodium metabisulfite were lower than fresh polyox samples. This indicates that the presence of metabisulfite is essential to stabilize polyox samples. PMID:23962147

  2. Design and evaluation of polyox and pluronic controlled gastroretentive delivery of troxipide.

    PubMed

    Jagdale, Swati C; Kamble, Shraddha B; Kuchekar, Bhanudas S; Chabukswar, Aniruddha R

    2014-01-01

    Objective. Objective of the present work was to develop site-specific gastroretentive drug delivery of Troxipide using polymers Pluronic F127 and Polyox 205 WSR. Troxipide is a novel gastroprotective agent with antiulcer, anti-inflammatory, and mucus secreting properties with elimination half-life of 7.4 hrs. Troxipide inhibits H. pylori-derived urease. It is mainly absorbed from stomach. Methods. 3(2) factorial design was applied to study the effect of independent variable. Effects of concentration of polymer on dependant variables as swelling index, hardness, and % drug release were studied. Pluronic F127 and Polyox 205 WSR were used as rate controlled polymer. Sodium bicarbonate and citric acid were used as effervescent-generating agent. Results. From the factorial batches, it was observed that formulation F5 (19% Pluronic F127 and 80% Polyox 205 WSR) showed optimum controlled drug release (98.60% ± 1.82) for 10 hrs with ability to float >12 hrs. Optimized formulation characterized by FTIR and DSC studies confirmed no chemical interactions between drug and polymer. Gastroretention for 6 hrs for optimized formulations was confirmed by in vivo X-ray placebo study. Conclusion. Results demonstrated feasibility of Troxipide in the development of gastroretentive site-specific drug delivery. PMID:25505995

  3. Design and Evaluation of Polyox and Pluronic Controlled Gastroretentive Delivery of Troxipide

    PubMed Central

    Jagdale, Swati C.; Kamble, Shraddha B.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.

    2014-01-01

    Objective. Objective of the present work was to develop site-specific gastroretentive drug delivery of Troxipide using polymers Pluronic F127 and Polyox 205 WSR. Troxipide is a novel gastroprotective agent with antiulcer, anti-inflammatory, and mucus secreting properties with elimination half-life of 7.4 hrs. Troxipide inhibits H. pylori-derived urease. It is mainly absorbed from stomach. Methods. 32 factorial design was applied to study the effect of independent variable. Effects of concentration of polymer on dependant variables as swelling index, hardness, and % drug release were studied. Pluronic F127 and Polyox 205 WSR were used as rate controlled polymer. Sodium bicarbonate and citric acid were used as effervescent-generating agent. Results. From the factorial batches, it was observed that formulation F5 (19% Pluronic F127 and 80% Polyox 205 WSR) showed optimum controlled drug release (98.60% ± 1.82) for 10 hrs with ability to float >12 hrs. Optimized formulation characterized by FTIR and DSC studies confirmed no chemical interactions between drug and polymer. Gastroretention for 6 hrs for optimized formulations was confirmed by in vivo X-ray placebo study. Conclusion. Results demonstrated feasibility of Troxipide in the development of gastroretentive site-specific drug delivery. PMID:25505995

  4. Application of Design of Experiment for Polyox and Xanthan Gum Coated Floating Pulsatile Delivery of Sumatriptan Succinate in Migraine Treatment

    PubMed Central

    Jagdale, Swati C.; Pawar, Chandrakala R.

    2014-01-01

    Migraine follows circadian rhythm in which headache is more painful at the awakening time. This needs administration of dosage form at night time to release drug after lag period when pain gets worse. Sumatriptan succinate is a drug of choice for migraine. Sumatriptan succinate has bitter taste, low oral bioavailability, and shorter half-life. Present work deals with application of design of experiment for polyox and xanthan gum in development of press coated floating pulsatile tablet. Floating pulsatile concept was applied to increase gastric residence of the dosage form. Burst release was achieved through immediate release tablet using crospovidone as superdisintegrant (10%). Pulse lag time was achieved using swellable polymer polyox WSR 205 and xanthan gum. 32 experimental design was applied. Optimized formulation was evaluated for physical characteristics and in-vitro and in-vivo study. From results, it can be concluded that optimized batch F8 containing polyox WSR205 (72.72%) and xanthan gum (27.27%) of total weight of polymer has shown floating lag time of 55 ± 2 sec, drug content of 100.35 ± 0.4%, hardness of 6 ± 0.1 Kg/cm2, and 98.69 ± 2% drug release in pulse manner with lag time of 7 ± 0.1 h. Optimized batch showed prolong gastric residence which was confirmed by in-vivo X-ray study. PMID:25530963

  5. Application of design of experiment for polyox and xanthan gum coated floating pulsatile delivery of sumatriptan succinate in migraine treatment.

    PubMed

    Jagdale, Swati C; Pawar, Chandrakala R

    2014-01-01

    Migraine follows circadian rhythm in which headache is more painful at the awakening time. This needs administration of dosage form at night time to release drug after lag period when pain gets worse. Sumatriptan succinate is a drug of choice for migraine. Sumatriptan succinate has bitter taste, low oral bioavailability, and shorter half-life. Present work deals with application of design of experiment for polyox and xanthan gum in development of press coated floating pulsatile tablet. Floating pulsatile concept was applied to increase gastric residence of the dosage form. Burst release was achieved through immediate release tablet using crospovidone as superdisintegrant (10%). Pulse lag time was achieved using swellable polymer polyox WSR 205 and xanthan gum. 3(2) experimental design was applied. Optimized formulation was evaluated for physical characteristics and in-vitro and in-vivo study. From results, it can be concluded that optimized batch F8 containing polyox WSR205 (72.72%) and xanthan gum (27.27%) of total weight of polymer has shown floating lag time of 55 ± 2 sec, drug content of 100.35 ± 0.4%, hardness of 6 ± 0.1 Kg/cm(2), and 98.69 ± 2% drug release in pulse manner with lag time of 7 ± 0.1 h. Optimized batch showed prolong gastric residence which was confirmed by in-vivo X-ray study. PMID:25530963

  6. An Investigation on the Effect of Polyethylene Oxide Concentration and Particle Size in Modulating Theophylline Release from Tablet Matrices.

    PubMed

    Shojaee, Saeed; Emami, Parastou; Mahmood, Ahmad; Rowaiye, Yemisi; Dukulay, Alusine; Kaialy, Waseem; Cumming, Iain; Nokhodchi, Ali

    2015-12-01

    Polyethylene oxide has been researched extensively as an alternative polymer to hydroxypropyl methylcellulose (HPMC) in controlled drug delivery due to its desirable swelling properties and its availability in a number of different viscosity grades. Previous studies on HPMC have pointed out the importance of particle size on drug release, but as of yet, no studies have investigated the effect of particle size of polyethylene oxide (polyox) on drug release. The present study explored the relationship between polymer level and particle size to sustain the drug release. Tablets produced contained theophylline as their active ingredient and consisted of different polyethylene oxide particle size fractions (20-45, 45-90, 90-180 and 180-425 μm). It was shown that matrices containing smaller particle sizes of polyox produced harder tablets than when larger polyox particles were used. The release studies showed that matrices consisting of large polyox particles showed a faster release rate than matrices made from smaller particles. Molecular weight (MW) of the polymer was a key determining step in attaining sustained release, with the high MW of polyox resulting in a delayed release profile. The results showed that the effect of particle size on drug release was more detrimental when a low concentration of polyox was used. This indicates that care must be taken when low levels of polyox with different particle size fractions are used. More robust formulations could be obtained when the concentration of polyox is high. Differential scanning calorimetry (DSC) traces showed that particle size had no major effect on the thermal behaviour of polyox particles. PMID:25771738

  7. An experimental study of non-Newtonian polymer rheology effects on oil recovery and injectivity

    SciTech Connect

    Gleasure, R.W.; Phillips, C.R. )

    1990-11-01

    Pseudoplastic non-Newtonian polymer solutions were examined for their enhanced oil recovery performance. Detailed results are reported for xanthan gum (XAN), Kelzan XCD, and a viscoelastic polyethylene oxide (PEO), Polyox OF-50. Increases in the power-law coefficient resulted in improved displacement efficiency. Effects were also observed in the injectivity-index parameter results.

  8. Optimization Studies on Compression Coated Floating-Pulsatile Drug Delivery of Bisoprolol

    PubMed Central

    Jagdale, Swati C.; Bari, Nilesh A.; Kuchekar, Bhanudas S.; Chabukswar, Aniruddha R.

    2013-01-01

    The purpose of the present work was to design and optimize compression coated floating pulsatile drug delivery systems of bisoprolol. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The prepared system consisted of two parts: a core tablet containing the active ingredient and an erodible outer shell with gas generating agent. The rapid release core tablet (RRCT) was prepared by using superdisintegrants with active ingredient. Press coating of optimized RRCT was done by polymer. A 32 full factorial design was used for optimization. The amount of Polyox WSR205 and Polyox WSR N12K was selected as independent variables. Lag period, drug release, and swelling index were selected as dependent variables. Floating pulsatile release formulation (FPRT) F13 at level 0 (55 mg) for Polyox WSR205 and level +1 (65 mg) for Polyox WSR N12K showed lag time of 4 h with >90% drug release. The data were statistically analyzed using ANOVA, and P < 0.05 was statistically significant. Release kinetics of the optimized formulation best fitted the zero order model. In vivo study confirms burst effect at 4 h in indicating the optimization of the dosage form. PMID:24367788

  9. Formulation development, optimization, and evaluation of sustained release tablet of valacyclovir hydrochloride by combined approach of floating and swelling for better gastric retention.

    PubMed

    Upadhyay, Pratik; Nayak, Kunal; Patel, Kaushika; Patel, Jaymin; Shah, Shreeraj; Deshpande, Jayant

    2014-12-01

    The present study is intended to enhance gastric retention of sustained release tablet of valacyclovir hydrochloride by combined approach of floating and swelling. The tablets are prepared by direct compression method. Polyethylene oxide (Polyox WSR 303) is selected as the swelling matrix agent. Sodium starch glycolate (SSG) is used as swelling enhancer, and sodium bicarbonate is used as an effervescent agent for floating. A 3(2) full factorial design is applied to systematically optimize the formulation. The concentration of Polyox WSR 303 (X 1) and concentration of SSG (X 2) are selected as independent variables. The percentage drug release at 12 h, floating lag time, and maximum percentage swelling are selected as dependent variables. Formulations are evaluated for hardness, friability, floating lag time, total floating time, percentage swelling, in vitro drug release, and in vivo floating study. The results indicated that X 1 and X 2 significantly affected the drug release properties, floating lag times, and maximum percentage swelling. Release rate decreases as the concentration of Polyox increased. Regression analysis and numerical optimization are performed to identify the best formulation. Formulation F5 prepared with Polyox WSR 303 (15 %) and SSG (10 %) is found to be the best formulation. F5 followed zero-order release mechanism. Swelling and floating gastroretentive tablets of valacyclovir HCl are successfully formulated with controlled delivery to stomach with an aim of increasing the mean residence time in the upper part of GIT where the drug has its absorption window. PMID:25787207

  10. Screening and degradation tests of linear-polymer additives for district heating applications

    SciTech Connect

    Choi, U.S.; Cho, Y.I.; Kasza, K.E.

    1987-12-01

    In closed-loop district heating and cooling (DHC) systems, the addition of a friction-reducing additive to the working fluid conveying energy between the energy sources and end users would allow increased load-handling capability (in an existing system) or the use of much smaller pipes and/or pumps (in a new system). As the first step in identifying friction-reducing additives that have a reasonable lifetime at DHC tempratures, two high-molecular-weight linear-polymer additives have been tested at two different temperatures (25.0/sup 0/C and 87.8/sup 0/C). The additives are Polyox WSR-301 and Separan AP-273 at 200 wppm in deionized water. Results of capillary tube screening tests with fresh solutions show that both polymers can give more than 60% friction reduction. However, Separan is effective at high temperatures, whereas Polyox undergoes thermal degradation. Degradation tests in a closed recirculatory flow system show that (1) friction reduction is always accompanied by heat transfer reduction regardless of the hours of shear, (2) Polyox cannot be uwsed in recirculatory systems because it is very sensitive to mechanical degradation, and (3) although Separan does degrade under high flow shear conditions, it does not degrade completely; it achieves a plateau value of friction reduction even under conditnuous shear. This is an important discovery and implies that Separan is still a good candidate for closed-loop DH systems. 36 refs., 12 figs., 1 tab.

  11. Polymer drag reduction in large diameter coal log pipeline

    SciTech Connect

    Wu, Gangwei; Miles, J.; Xu, Jihuai

    1998-04-01

    A hydraulic capsule pipeline (HCP) drag reduction study is being conducted using a 210 mm inner diameter, 131 m long steel pipe loop located at the Research Park of the University of Missouri-Columbia (UMC). Polyox (trade name for polyethylene oxide) was tested alone and in combination with fiber for the first time for drag reduction investigations in such a large diameter HCP flow. A novel design of vacuum-aided Polyox dissolution and injection system was also tested for the first time in this pipeline. The injected polymer concentration present was determined on the basis of average concentration over the entire pipeline loop. Subsequently, more detailed data reduction will be presented based upon local polymer concentration in the test section determined by a dispersion model, which is being developed and will be calibrated to the experimental system using a fluorescent dye additive for experimental measurement. In addition, abrasion-resistant resin logs with cement additives for density control were employed to simulate coal logs. Results of this study not only answered some basic questions about drag reduction in HCP flow, it is also beneficial and important to HCP commercial applications.

  12. Polymer drag reduction in large diameter coal log pipeline

    SciTech Connect

    Wu, G.; Xu, J. Miles, J.

    1998-07-01

    A hydraulic capsule pipeline (HCP) drag reduction study is being conducted using a 210 mm inner diameter, 131 m long steel pipe loop located at the Research Park of the University of Missouri-Columbia (UMC). Polyox (trade name for polyethylene oxide) was tested alone and in combination with fiber for the first time for drag reduction investigations in such a large diameter HCP flow. A novel design of vacuum-aided Polyox dissolution and injection system was also tested for the first time in this pipeline. The injected polymer concentration present was determined on the basis of average concentration over the entire pipeline loop. Subsequently, more detailed data reduction will be presented based upon local polymer concentration in the test section determined by a dispersion model, which is being developed and will be calibrated to the experimental system using a fluorescent dye additive for experimental measurement. In addition, abrasion-resistant resin logs with cement additives for density control were employed to simulate coal logs. Results of this study not only answered some basic questions about drag reduction in HCP flow, it is also beneficial and important to HCP commercial applications.

  13. Particle-laden tubeless siphon

    NASA Astrophysics Data System (ADS)

    Joseph, Daniel; Wang, Jing

    2003-11-01

    A tubeless siphon was created by sucking a 1% aqueous Polyox(Polyox is a registered trademark of Union Carbide.) solution laden with particles from a beaker into a cylinder by a moving piston. The piston speed and particle concentration were varied. At very high rates of withdrawal, all the fluid could be removed before the siphon broke. In this case, the beaker was completely cleaned without a trace of liquid. The addition of small concentrations of small, nearly neutrally buoyant particles greatly enhanced the pulling power of the liquid, reducing the threshold speed of withdrawal at which the beaker was completely cleaned. At speeds of withdrawal smaller than the threshold not all of the fluid-particle mixture is pulled out of the beaker. The amount pulled out first increases, then decreases as the particle concentration is increased. We present an argument, based on viscoelastic potential flow, that the enhancement of the effective extensional stress is due to the reversal of the sign of the normal stresses at stagnation points on the particles.

  14. Development and optimization of press coated floating pulsatile drug delivery of sumatriptan succinate.

    PubMed

    Jagdale, Swati C; Pawar, Chandrakala R

    2014-01-01

    Floating pulsatile is combined approach designed according to circadian rhythm to deliver the drug at right time, in right quantity and at right site as per pathophysiological need of disease with prolong gastric residence and lag phase followed by burst release. As the migraine follows circadian rhythm in which headache is more painful at the awakening time, the dosage form should be given during night time to release drug when pain get worsen. Present work deals with formulation and optimization of floating pulsatile tablet of sumatriptan succinate. Core tablet containing crospovidone as superdisintegrant (10%) showed burst release. Lag time was maintained using swellable polymer as polyoxN12K and xanthum gum. 3(2) experimental design was carried out. Developed formulations were evaluated for physical characteristics, in vitro and in vivo study. Optimized batch F2 with concentration of polyox N12K (73.43%) and xanthum gum (26.56%) of total polymer weight showed floating lag time 15±2 sec, drug content 99.58±0.2 %, hardness 6±0.2 Kg/cm(2) and drug release 99.54±2% with pulsatile manner followed lag period of 7±0.1h. In vivo x-ray study confirms prolong gastric residence of system. Programmable pulsatile release has been achieved by formulation F2 which meet demand of chronotherapeutic objective of migraine. PMID:24893996

  15. Investigating the cubosomal ability for transnasal brain targeting: In vitro optimization, ex vivo permeation and in vivo biodistribution.

    PubMed

    Abdelrahman, Fatma Elzahraa; Elsayed, Ibrahim; Gad, Mary Kamal; Badr, Ahmed; Mohamed, Magdi Ibrahim

    2015-07-25

    The aim of this study was to enhance the risperidone delivery to the brain through the transnasal route via optimization of cubosomal gel. Cubosomes were prepared using glycerol mono-oleate (GMO), Pluronic F127 (PF127) and Tween 80 (T80). The prepared formulae were characterized by testing their particle size, polydispersity index, zeta potential, entrapment efficiency, in vitro drug release and transmission electron microscopy. Central composite design was planned for the formulae optimization and the selected formula (containing PF127 with concentration 15 mg/g GMO and T80 with concentration of 20mg/L) was re-prepared in presence of gelling polymer (gellan gum or polyox). The optimal cubosomal gel (containing 0.4% w/v polyox) had been subjected to ex-vivo permeation, histopathological evaluation and in vivo biodistribution studies. It showed significantly higher transnasal permeation and better distribution to the brain, when compared to the used control (drug solution and/or suspension). Finally, the cubosomal gel could be considered as a promising carrier for brain targeting of CNS acting drugs through the transnasal route. PMID:26026251

  16. Design of a novel bilayered gastric mucoadhesive system for localized and unidirectional release of lamotrigine

    PubMed Central

    Mohana Raghava Srivalli, K.; Lakshmi, P.K.; Balasubramaniam, J.

    2012-01-01

    Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength. PMID:24109205

  17. Coal log pipeline pilot plant study

    SciTech Connect

    Liu, H.; Lenau, C.W.; Burkett, W.

    2000-07-01

    After 8 years of extensive R and D in the new technology of coal log pipeline (CLP), a pilot plant is being built to demonstrate and test a complete CLP system for coal transportation. The system consists of a coal log fabrication plant, a 3,000-ft-length, 6-inch-diameter underground pipeline loop to transport 5.4-inch diameter coal logs, a log injection/ejection system, a pump bypass, a reservoir that serves as both the intake and the outlet of the CLP systems, an instrumentation system that includes pressure transducers, coal log sensors, and flowmeters, and an automatic control system that includes PLCs and a central computer. The pilot plant is to be completed in May of Year 2000. Upon completion of construction, the pilot plant will be used for running various types of coal, testing the degradation rate of drag reduction in CLP using Polyox (polyethylene oxide), testing the reliability of a special coal log sensor invented at the University of Missouri, testing the reliability and the efficiency of the pump-bypass system for pumping coal log trains through the pipe, and testing various hardware components and software for operating the pilot plant. Data collected from the tests will be used for designing future commercial systems of CLP. The pilot plant experiments are to be completed in two years. Then, the technology of CLP will be ready for commercial use.

  18. Correlation between drug dissolution and polymer hydration: a study using texture analysis.

    PubMed

    Li, Hongtao; Gu, Xiaochen

    2007-09-01

    Texture analysis is a new approach in pharmaceutical research and development; this study evaluated the correlation between drug dissolution and polymer hydration from a modified release matrix tablet of pseudoephedrine hydrochloride using a texture analyzer. A series of matrix tablets of pseudoephedrine was designed and prepared. Modified drug release was achieved by combined use of matrix excipients Polyox WSR301 (PEO) and Compritol 888ATO (GB). Dissolution profiles of the tablets were assessed using USP Method II. Polymer swelling behaviors during dissolution were measured using a texture analyzer. Increase in proportion of PEO and GB in the formulation reduced drug dissolution within the first 90 min. However, drug release was complete in 6h due to high aqueous solubility of pseudoephedrine. Linear correlations were observed among drug dissolution, polymer content and parameters of texture analysis including hydrogel thickness and AUC(TA) for formulations that contained hydrophilic PEO. The study demonstrated a unique application of a texture analyzer in characterization of modified release matrix tablets. PMID:17548178

  19. Swimming speed of an oscillating sheet in Newtonian and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Dasgupta, Moumita; Berhanu, Michael; Kudrolli, Arshad; Fu, Henry; Breuer, Kenneth; Powers, Thomas

    2011-03-01

    We discuss a mechanical experimental model of a flexible sheet swimming with a prescribed wave pattern - a Taylor swimmer - through a fluid. Our study is motivated by a need for a fundamental understanding of microorganism locomotion through non-Newtonian fluids. In order to simplify the problem, we suspend a tall flexible cylindrical sheet concentric within a cylindrical tank filled with the fluid. Torque free boundary conditions are imposed by supporting the flexible sheet and the tank with friction-free ball-bearings. A traveling wave is imposed on the sheet with a pair of rollers in the azimuthal direction. We first demonstrate a linear response in the swimming velocity of the sheet with respect to its phase velocity in a viscous Newtonian fluid. Further, we show that the analytical system is essentially two dimensional by varying the height of fluid in the tank. We then discuss measurements of swimming speed in Polyox-water mixtures as a function of wave speed. We demonstrate that the swimming speed in this viscoelastic fluid decrease relative to the Newtonian case as wave speed is increased. We will further discuss the dependence of swimming speed on Deborah number and other characteristics of the fluid.

  20. Swimming speed of an oscillating sheet in Newtonian and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Dasgupta, Moumita; Berhanu, Michael; Kudrolli, Arshad; Liu, Bin; Breuer, Kenneth; Powers, Thomas

    2011-11-01

    We discuss a mechanical experimental model of a flexible sheet swimming with a prescribed wave pattern through a fluid. We are motivated by a need for a fundamental understanding of microorganism locomotion through non-Newtonian fluids. To simplify the problem, we suspend a tall flexible cylindrical sheet concentric within a cylindrical tank filled with the fluid. Torque free boundary conditions are imposed by supporting the flexible sheet and the tank with friction-free ball-bearings. A traveling wave is imposed on the sheet with a pair of rollers in the azimuthal direction. We first show that the swimming speed is linear with respect to the phase velocity of the traveling wave for a viscous Newtonian fluid. Then we show that the system is essentially two dimensional as the results do not depend on the height of fluid in the tank. We measure swimming speed in Polyox-water mixtures and Sodium CMC solutions as a function of wave speed. We again demonstrate linear response in the swimming speeds, which also decrease in these viscoelastic fluids relative to the Newtonian case as wave speed increases. Decrease in swimming speed is observed with increase in viscoelasticity of the fluids. We then discuss the dependence of swimming speed on the Deborah number of the fluids.

  1. Design and development of polyethylene oxide based matrix tablets for verapamil hydrochloride.

    PubMed

    Vidyadhara, S; Sasidhar, R L C; Nagaraju, R

    2013-03-01

    In the present investigation an attempt has been made to increase therapeutic efficacy, reduced frequency of administration and improved patient compliance by developing controlled release matrix tablets of verapamil hydrochloride. Verapamil hydrochloride was formulated as oral controlled release matrix tablets by using the polyethylene oxides (Polyox WSR 303). The aim of this study was to investigate the influence of polymer level and type of fillers namely lactose (soluble filler), swellable filler (starch 1500), microcrystalline cellulose and dibasic calcium phosphate (insoluble fillers) on the release rate and mechanism of release for verapamil hydrochloride from matrix tablets prepared by direct compression process. Higher polymeric content in the matrix decreased the release rate of drug. On the other hand, replacement of lactose with anhydrous dibasic calcium phosphate and microcrystalline cellulose has significantly retarded the release rate of verapamil hydrochloride. Biopharmaceutical evaluation of satisfactory formulations were also carried out on New Zealand rabbits and parameters such as maximum plasma concentration, time to reach peak plasma concentration, area under the plasma concentration time curve(0-t) and area under first moment curve(0-t) were determined. In vivo pharmacokinetic study proves that the verapamil hydrochloride from matrix tablets showed prolonged release and were be able to sustain the therapeutic effect up to 24 h. PMID:24019567

  2. A novel bi-layer ascending release osmotic pump tablet: in vitro investigation and in vivo investigation in pharmacokinetic study and IVIVC evaluation.

    PubMed

    Xu, Heming; Li, Zhao; Pan, Hao; Zhang, Zhihong; Liu, Dandan; Tian, Baocheng; Ma, Shilin; Song, Shilong; Pan, Weisan

    2013-12-15

    This study was aimed to develop an ascending release push-pull osmotic pump (APOP) system with a novel mechanism and an easy manufacture process. Theoretical analysis showed that the key to obtain the non-zero order drug release was to break the balance between the drug suspension release rate in the drug layer and the swelling rate of the core, and an ascending drug release rate was achieved when the former was slower than the latter. A polymer (Polyox WSR N-12K) was introduced as a suspension agent in drug layer to slow down the hydration rate of drug layer. Influence of the composition of drug layer (PEO category, total amount, drug loading and fraction of NaCl), push layer (NaCl amount), and also the level of coating weight gain on the drug release profiles was investigated. Observation of hydration state was estimated by taking photos, and also was confirmed by the theories. Paliperidone was delivered successfully by APOP at an ascending release rate up to 20 h in vitro. The in vivo plasma concentration of paliperidone in beagle dogs increased gradually up to 19 h. The APOP with an easy manufacture process was a promising strategy to deliver drug at an ascending rate. PMID:24095815

  3. Preparation and in-vivo pharmacokinetic study of a novel extended release compression coated tablets of fenoterol hydrobromide.

    PubMed

    Elshafeey, Ahmed H; Sami, Elshaimaa I

    2008-01-01

    The aim of this study was to formulate extended release compression coated core tablets of fenoterol hydrobromide, a selective beta(2) adrenergic receptor agonist, in an attempt to prevent nocturnal asthma. Two hydrophilic polymers viz Kollidon SR, Polyox WSR 303 and a hydrophobic one (Precirol ATO5) were employed. Compression coated tablets were formulated by preparing a core tablet containing 7.5 mg drug and various amounts of polymer and Emcompress then compressed coated with the same polymeric materials. For comparison purpose different matrix tablets were also prepared employing the same polymers. In-vitro release studies were carried out at different pH (1.2 and 6.8). Pharmacokinetics of extended release tablets as well as commercially available immediate release tablets (Berotec) were studied after oral administration to beagle dogs using a new developed LC-MS/MS method with a lower limit of quantification of 1 ng/ml. Fenoterol release from compression coated tablets was significantly lower than matrix tablets. The mechanism of release was changed with the nature and content of polymer. The release pattern of drug from F16 containing 40 mg Kollidon SR divided in the core tablet (15 mg) and the rest in the compressed coat (25 mg) showed a typical zero order release kinetic that could extend drug release >10 h and reasonable time for 75% to be released (t(75)) (8.92 h). When compared to immediate release Berotec tablet the MRT was significantly extended from 7.03 +/- 0.76 to 10.93 +/- 1.25 h (P < 0.001) and HVD(t 50%Cmax) was also significantly extended from 2.71 +/- 0.68 to 6.81 +/- 0.67 h with expected prevention of nocturnal asthma. PMID:18770048