Science.gov

Sample records for polyphasic bacterial community

  1. Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach.

    PubMed

    Escalante, Adelfo; Giles-Gómez, Martha; Hernández, Georgina; Córdova-Aguilar, María Soledad; López-Munguía, Agustín; Gosset, Guillermo; Bolívar, Francisco

    2008-05-31

    In this study, the characterization of the bacterial community present during the fermentation of pulque, a traditional Mexican alcoholic beverage from maguey (Agave), was determined for the first time by a polyphasic approach in which both culture and non-culture dependent methods were utilized. The work included the isolation of lactic acid bacteria (LAB), aerobic mesophiles, and 16S rDNA clone libraries from total DNA extracted from the maguey sap (aguamiel) used as substrate, after inoculation with a sample of previously produced pulque and followed by 6-h fermentation. Microbiological diversity results were correlated with fermentation process parameters such as sucrose, glucose, fructose and fermentation product concentrations. In addition, medium rheological behavior analysis and scanning electron microscopy in aguamiel and during pulque fermentation were also performed. Our results showed that both culture and non-culture dependent approaches allowed the detection of several new and previously reported species within the alpha-, gamma-Proteobacteria and Firmicutes. Bacteria diversity in aguamiel was composed by the heterofermentative Leuconostoc citreum, L. mesenteroides, L. kimchi, the gamma-Proteobacteria Erwinia rhapontici, Enterobacter spp. and Acinetobacter radioresistens. Inoculation with previously fermented pulque incorporated to the system microbiota, homofermentative lactobacilli related to Lactobacillus acidophilus, several alpha-Proteobacteria such as Zymomonas mobilis and Acetobacter malorum, other gamma-Proteobacteria and an important amount of yeasts, creating a starting metabolic diversity composed by homofermentative and heterofermentative LAB, acetic and ethanol producing microorganisms. At the end of the fermentation process, the bacterial diversity was mainly composed by the homofermentative Lactobacillus acidophilus, the heterofermentative L. mesenteroides, Lactococcus lactis subsp. lactis and the alpha-Proteobacteria A. malorum. After

  2. Polyphasic taxonomy, a consensus approach to bacterial systematics.

    PubMed Central

    Vandamme, P; Pot, B; Gillis, M; de Vos, P; Kersters, K; Swings, J

    1996-01-01

    Over the last 25 years, a much broader range of taxonomic studies of bacteria has gradually replaced the former reliance upon morphological, physiological, and biochemical characterization. This polyphasic taxonomy takes into account all available phenotypic and genotypic data and integrates them in a consensus type of classification, framed in a general phylogeny derived from 16S rRNA sequence analysis. In some cases, the consensus classification is a compromise containing a minimum of contradictions. It is thought that the more parameters that will become available in the future, the more polyphasic classification will gain stability. In this review, the practice of polyphasic taxonomy is discussed for four groups of bacteria chosen for their relevance, complexity, or both: the genera Xanthomonas and Campylobacter, the lactic acid bacteria, and the family Comamonadaceae. An evaluation of our present insights, the conclusions derived from it, and the perspectives of polyphasic taxonomy are discussed, emphasizing the keystone role of the species. Taxonomists did not succeed in standardizing species delimitation by using percent DNA hybridization values. Together with the absence of another "gold standard" for species definition, this has an enormous repercussion on bacterial taxonomy. This problem is faced in polyphasic taxonomy, which does not depend on a theory, a hypothesis, or a set of rules, presenting a pragmatic approach to a consensus type of taxonomy, integrating all available data maximally. In the future, polyphasic taxonomy will have to cope with (i) enormous amounts of data, (ii) large numbers of strains, and (iii) data fusion (data aggregation), which will demand efficient and centralized data storage. In the future, taxonomic studies will require collaborative efforts by specialized laboratories even more than now is the case. Whether these future developments will guarantee a more stable consensus classification remains an open question. PMID

  3. Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater.

    PubMed

    Benedek, Tibor; Táncsics, András; Szabó, István; Farkas, Milán; Szoboszlay, Sándor; Fábián, Krisztina; Maróti, Gergely; Kriszt, Balázs

    2016-05-01

    Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of β-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems. PMID:26825521

  4. Bacterial Communities: Interactions to Scale.

    PubMed

    Stubbendieck, Reed M; Vargas-Bautista, Carol; Straight, Paul D

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  5. Bacterial Communities: Interactions to Scale

    PubMed Central

    Stubbendieck, Reed M.; Vargas-Bautista, Carol; Straight, Paul D.

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  6. Spatial distribution of marine airborne bacterial communities.

    PubMed

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-06-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters - temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  7. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  8. Antibiotics promote aggregation within aquatic bacterial communities

    PubMed Central

    Corno, Gianluca; Coci, Manuela; Giardina, Marco; Plechuk, Sonia; Campanile, Floriana; Stefani, Stefania

    2014-01-01

    The release of antibiotics (AB) into the environment poses several threats for human health due to potential development of AB-resistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance) in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5–6 fold. These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of the effects of

  9. Antibiotics promote aggregation within aquatic bacterial communities.

    PubMed

    Corno, Gianluca; Coci, Manuela; Giardina, Marco; Plechuk, Sonia; Campanile, Floriana; Stefani, Stefania

    2014-01-01

    The release of antibiotics (AB) into the environment poses several threats for human health due to potential development of AB-resistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance) in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold. These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of the effects of AB

  10. Bacterial communities associated with the lichen symbiosis.

    PubMed

    Bates, Scott T; Cropsey, Garrett W G; Caporaso, J Gregory; Knight, Rob; Fierer, Noah

    2011-02-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses. PMID:21169444

  11. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  12. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  13. Bacterial Biofilms as Complex Communities

    NASA Astrophysics Data System (ADS)

    Vlamakis, Hera

    2010-03-01

    Many microbial populations form surface-associated multicellular communities known as biofilms. These multicellular communities are encased in a self-produced extracellular matrix composed of polysaccharides and proteins. Division of labor is a key feature of these communities and different cells serve distinct functions. We have found that in biofilms of the bacterium Bacillus subtilis, different cell types including matrix-producing and sporulating cells coexist and localize to distinct regions within the structured community. We were interested in understanding how these different cell types arise. Using fluorescence reporters under the control of promoters that are specific for distinct cell types we were able to follow the dynamics of differentiation throughout biofilm development. We found that a series of extracellular signals leads to differentiation of distinct cell types during biofilm formation. In addition, we found that extracellular matrix functions as a differentiation signal for timely sporulation within a biofilm and mutants unable to produce matrix were delayed in sporulation. Our results indicate that within a biofilm, cell-cell signaling is directional in that one cell type produces a signal that is sensed by another distinct cell type. Furthermore, once differentiated, cells become resistant to the action of other signaling molecules making it possible to maintain distinct cell populations over prolonged periods.

  14. Bacterial community analysis of Indonesian hot springs.

    PubMed

    Baker, G C; Gaffar, S; Cowan, D A; Suharto, A R

    2001-06-12

    We report the first attempts to describe thermophilic bacterial communities in Indonesia's thermal springs using molecular phylogenetic analyses. 16S rRNA genes from laboratory cultures and DNA directly amplified from three hot springs in West Java were sequenced. The 22 sequences obtained were assignable to the taxa Proteobacteria, Bacillus and Flavobacterium, including a number of clades not normally associated with thermophily. PMID:11410357

  15. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles.

    PubMed

    Antony-Babu, Sanjay; Deveau, Aurélie; Van Nostrand, Joy D; Zhou, Jizhong; Le Tacon, François; Robin, Christophe; Frey-Klett, Pascale; Uroz, Stéphane

    2014-09-01

    Although truffles are cultivated since decades, their life cycle and the conditions stimulating ascocarp formation still remain mysterious. A role for bacteria in the development of several truffle species has been suggested but few is known regarding the natural bacterial communities of Périgord Black truffle. Thus, the aim of this study was to decipher the structure and the functional potential of the bacterial communities associated to the Black truffle in the course of its life cycle and along truffle maturation. A polyphasic approach combining 454-pyrosequencing of 16S rRNA gene, TTGE, in situ hybridization and functional GeoChip 3.0 revealed that Black truffle ascocarps provide a habitat to complex bacterial communities that are clearly differentiated from those of the surrounding soil and the ectomycorrhizosphere. The composition of these communities is dynamic and evolves during the maturation of the ascocarps with an enrichment of specific taxa and a differentiation of the gleba and peridium-associated bacterial communities. Genes related to nitrogen and sulphur cycling were enriched in the ascocarps. Together, these data paint a new picture of the interactions existing between truffle and bacteria and of the potential role of these bacteria in truffle maturation. PMID:24118660

  16. Bacterial Community Diversity Harboured by Interacting Species.

    PubMed

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  17. Bacterial Community Diversity Harboured by Interacting Species

    PubMed Central

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  18. Bacterial communities in petroleum oil in stockpiles.

    PubMed

    Yoshida, Nobuyuki; Yagi, Kazuhiro; Sato, Daisuke; Watanabe, Noriko; Kuroishi, Takeshi; Nishimoto, Kana; Yanagida, Akira; Katsuragi, Tohoru; Kanagawa, Takahiro; Kurane, Ryuichiro; Tani, Yoshiki

    2005-02-01

    Bacterial communities in crude-oil samples from Japanese oil stockpiles were investigated by 16S rRNA gene cloning, followed by denaturing gradient gel electrophoresis (DGGE) analysis. 16S rRNA genes were successfully amplified by PCR after isooctane treatment from three kinds of crude-oil sample collected at four oil stockpiles in Japan. DGGE profiles showed that bacteria related to Ochrobactrum anthropi, Burkholderia cepacia, Stenotrophomonas maltophilia, Propionibacterium acnes, and Brevundimonas diminuta were frequently detected in most crude-oil samples. The bacterial communities differed in the sampling time and layer. Among the predominant bacteria detected in the crude oil, only three species were found for bacteria isolated on agar plates and were related to Burkholderia, Stenotrophomonas, and Propionibacterium, while Ochrobactrum sp. could not be isolated although this species seemed to be the most abundant bacterium in crude oil from the DGGE profiles. Using an archaea-specific primer set, methanogens were found in crude-oil sludge but not in crude-oil samples, indicating that methanogens might be involved in sludge formation in oil stockpiles. PMID:16233771

  19. Bacterial community development in experimental gingivitis.

    PubMed

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  20. Atmospheric cloud water contains a diverse bacterial community

    SciTech Connect

    Kourtev, P. S.; Hill, Kimberly A.; Shepson, Paul B.; Konopka, Allan

    2011-06-15

    Atmospheric cloud water contains an active microbial community which can impact climate, human health and ecosystem processes in terrestrial and aquatic systems. Most studies on the composition of microbial communities in clouds have been performed with orographic clouds that are typically in direct contact with the ground. We collected water samples from cumulus clouds above the upper U.S. Midwest. The cloud water was analyzed for the diversity of bacterial phylotypes by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene amplicons. DGGE analyses of bacterial communities detected 17e21 bands per sample. Sequencing confirmed the presence of a diverse bacterial community; sequences from seven bacterial phyla were retrieved. Cloud water bacterial communities appeared to be dominated by members of the cyanobacteria, proteobacteria, actinobacteria and firmicutes.

  1. Age, sun and substrate: triggers of bacterial communities in lichens.

    PubMed

    Cardinale, Massimiliano; Steinová, Jana; Rabensteiner, Johannes; Berg, Gabriele; Grube, Martin

    2012-02-01

    Bacterial communities colonize the surfaces of lichens in a biofilm-like manner. The overall structure of the bacterial communities harboured by the lichens shows similarities, in particular the dominance of not yet cultured Alphaproteobacteria. Parameters causing variation in abundance, composition and spatial organization of the lichen-associated bacterial communities are so far poorly understood. As a first step, we used a microscopic approach to test the significance of both lichen-intrinsic and extrinsic environmental factors on the bacterial communities associated with 11 lichen samples, belonging to six species. Some of these species have thalli with a distinct age gradient. A statistically significant effect can be attributed to the age of the thallus parts, which is an intrinsic factor: growing parts of the lichens host bacterial communities that significantly differ from those of the ageing portions of the thalli. The substrate type (rock, tree, understory) and (at a lower extent) the exposition to the sun also affected the bacterial communities. Interestingly, the abundance of bacterial cells in the lichens was also influenced by the same structure-triggering factors. No effect on the composition with main bacterial groups was attributed to different lichen species, differentiated thallus parts or thallus growth type. Our results are important for the experimental designs in lichen-bacterial ecology. PMID:23757225

  2. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  3. Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia

    PubMed Central

    Tchioffo, Majoline T.; Boissière, Anne; Abate, Luc; Nsango, Sandrine E.; Bayibéki, Albert N.; Awono-Ambéné, Parfait H.; Christen, Richard; Gimonneau, Geoffrey; Morlais, Isabelle

    2016-01-01

    The Anopheles midgut hosts diverse bacterial communities and represents a complex ecosystem. Several evidences indicate that mosquito midgut microbiota interferes with malaria parasite transmission. However, the bacterial composition of salivary glands and ovaries, two other biologically important tissues, has not been described so far. In this study, we investigated the dynamics of the bacterial communities in the mosquito tissues from emerging mosquitoes until 8 days after a blood meal containing Plasmodium falciparum gametocytes and described the temporal colonization of the mosquito epithelia. Bacterial communities were identified in the midgut, ovaries, and salivary glands of individual mosquitoes using pyrosequencing of the 16S rRNA gene. We found that the mosquito epithelia share a core microbiota, but some bacteria taxa were more associated with one or another tissue at a particular time point. The bacterial composition in the tissues of emerging mosquitoes varied according to the breeding site, indicating that some bacteria are acquired from the environment. Our results revealed temporal variations in the bacterial community structure, possibly as a result of the mosquito physiological changes. The abundance of Serratia significantly correlated with P. falciparum infection both in the midgut and salivary glands of malaria challenged mosquitoes, which suggests that interactions occur between microbes and parasites. These bacteria may represent promising targets for vector control strategies. Overall, this study points out the importance of characterizing bacterial communities in malaria mosquito vectors. PMID:26779155

  4. Determinants of bacterial communities in Canadian agroforestry systems.

    PubMed

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. PMID:26184386

  5. Environmental and anthropogenic controls over bacterial communities in wetland soils

    PubMed Central

    Hartman, Wyatt H.; Richardson, Curtis J.; Vilgalys, Rytas; Bruland, Gregory L.

    2008-01-01

    Soil bacteria regulate wetland biogeochemical processes, yet little is known about controls over their distribution and abundance. Bacteria in North Carolina swamps and bogs differ greatly from Florida Everglades fens, where communities studied were unexpectedly similar along a nutrient enrichment gradient. Bacterial composition and diversity corresponded strongly with soil pH, land use, and restoration status, but less to nutrient concentrations, and not with wetland type or soil carbon. Surprisingly, wetland restoration decreased bacterial diversity, a response opposite to that in terrestrial ecosystems. Community level patterns were underlain by responses of a few taxa, especially the Acidobacteria and Proteobacteria, suggesting promise for bacterial indicators of restoration and trophic status. PMID:19004771

  6. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments.

    PubMed

    Barbato, Marta; Mapelli, Francesca; Magagnini, Mirko; Chouaia, Bessem; Armeni, Monica; Marasco, Ramona; Crotti, Elena; Daffonchio, Daniele; Borin, Sara

    2016-03-15

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments. PMID:26849913

  7. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  8. Metamorphosis of a Butterfly-Associated Bacterial Community

    PubMed Central

    Hammer, Tobin J.; McMillan, W. Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies. PMID:24466308

  9. Bacterial Community Affects Toxin Production by Gymnodinium catenatum

    PubMed Central

    Albinsson, Maria E.; Negri, Andrew P.; Blackburn, Susan I.; Bolch, Christopher J. S.

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134–197 fmol STX cell−1) was similar to the parent cultures (169–206 fmol STX cell−1), however cultures grown with single bacterial types contained less toxin (134–146 fmol STX cell−1) than offspring or parent cultures grown with more complex mixed bacterial communities (152–176 fmol STX cell−1). Specific toxin production rate (fmol STX day−1) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell−1 day−1) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter

  10. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. PMID:26574105

  11. Bacterial Networks in Cells and Communities.

    PubMed

    Sourjik, Victor; Vorholt, Julia A

    2015-11-20

    Research on the bacterial regulatory networks is currently experiencing a true revival, driven by advances in methodology and by emergence of novel concepts. The biannual conference Bacterial Networks (BacNet15) held in May 2015, in Sant Feliu de Guíxols, Spain, covered progress in the studies of regulatory networks that control bacterial physiology, cell biology, stress responses, metabolism, collective behavior and evolution. It demonstrated how interdisciplinary approaches that combine molecular biology and biochemistry with the latest microscopy developments, whole cell (-omics) approaches and mathematical modeling can help understand design principles relevant in microbiology. It further showed how current biotechnology and medical microbiology could profit from our knowledge of and ability to engineer regulatory networks of bacteria. PMID:26506266

  12. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica)

    PubMed Central

    Garcias-Bonet, Neus; Arrieta, Jesus M.; de Santana, Charles N.; Duarte, Carlos M.; Marbà, Núria

    2012-01-01

    Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes, and leaves) by Denaturing Gradient Gel Electrophoresis (DGGE). A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units) were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ, and δ subclasses) and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types. PMID:23049528

  13. Opposing phylogenetic diversity gradients of plant and soil bacterial communities.

    PubMed

    Goberna, Marta; Navarro-Cano, Jose A; Verdú, Miguel

    2016-02-24

    Plants and soil microbes show parallel patterns of species-level diversity. Diverse plant communities release a wider range of organics that are consumed by more microbial species. We speculated, however, that diversity metrics accounting for the evolutionary distance across community members would reveal opposing patterns between plant and soil bacterial phylogenetic diversity. Plant phylogenetic diversity enhances plant productivity and thus expectedly soil fertility. This, in turn, might reduce bacterial phylogenetic diversity by favouring one (or a few) competitive bacterial clade. We collected topsoils in 15 semi-arid plant patches and adjacent low-cover areas configuring a plant phylodiversity gradient, pyrosequenced the 16S rRNA gene to identify bacterial taxa and analysed soil fertility parameters. Structural equation modelling showed positive effects of both plant richness and phylogenetic diversity on soil fertility. Fertility increased bacterial richness but reduced bacterial phylogenetic diversity. This might be attributed to the competitive dominance of a lineage based on its high relative fitness. This suggests biotic interactions as determinants of the soil bacterial community assembly, while emphasizing the need to use phylogeny-informed metrics to tease apart the processes underlying the patterns of diversity. PMID:26888037

  14. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  15. Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons

    PubMed Central

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; Zhou, Jizhong

    2015-01-01

    ABSTRACT It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. PMID:26242625

  16. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome

    PubMed Central

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  17. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome.

    PubMed

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  18. Evidence for successional development in Antarctic hypolithic bacterial communities

    PubMed Central

    Makhalanyane, Thulani P; Valverde, Angel; Birkeland, Nils-Kåre; Cary, Stephen C; Marla Tuffin, I; Cowan, Don A

    2013-01-01

    Hypoliths (cryptic microbial assemblages that develop on the undersides of translucent rocks) are significant contributors to regional C and N budgets in both hot and cold deserts. Previous studies in the Dry Valleys of Eastern Antarctica have reported three morphologically distinct hypolithic community types: cyanobacteria dominated (type I), fungus dominated (type II) and moss dominated (type III). Here we present terminal-restriction fragment length polymorphism analyses to elucidate the bacterial community structure in hypolithons and the surrounding soils. We show clear and robust distinction in bacterial composition between bulk surface soils and hypolithons. Moreover, the bacterial assemblages were similar in types II and III hypolithons and clearly distinct from those found in type I. Through 16S rRNA gene 454 pyrosequencing, we show that Proteobacteria dominated all three types of hypolithic communities. As expected, Cyanobacteria were more abundant in type I hypolithons, whereas Actinobacteria were relatively more abundant in types II and III hypolithons, and were the dominant group in soils. Using a probabilistic dissimilarity metric and random sampling, we demonstrate that deterministic processes are more important in shaping the structure of the bacterial community found in types II and III hypolithons. Most notably, the data presented in this study suggest that hypolithic bacterial communities establish via a successional model, with the type I hypolithons acting as the basal development state. PMID:23765099

  19. Evidence for successional development in Antarctic hypolithic bacterial communities.

    PubMed

    Makhalanyane, Thulani P; Valverde, Angel; Birkeland, Nils-Kåre; Cary, Stephen C; Tuffin, I Marla; Cowan, Don A

    2013-11-01

    Hypoliths (cryptic microbial assemblages that develop on the undersides of translucent rocks) are significant contributors to regional C and N budgets in both hot and cold deserts. Previous studies in the Dry Valleys of Eastern Antarctica have reported three morphologically distinct hypolithic community types: cyanobacteria dominated (type I), fungus dominated (type II) and moss dominated (type III). Here we present terminal-restriction fragment length polymorphism analyses to elucidate the bacterial community structure in hypolithons and the surrounding soils. We show clear and robust distinction in bacterial composition between bulk surface soils and hypolithons. Moreover, the bacterial assemblages were similar in types II and III hypolithons and clearly distinct from those found in type I. Through 16S rRNA gene 454 pyrosequencing, we show that Proteobacteria dominated all three types of hypolithic communities. As expected, Cyanobacteria were more abundant in type I hypolithons, whereas Actinobacteria were relatively more abundant in types II and III hypolithons, and were the dominant group in soils. Using a probabilistic dissimilarity metric and random sampling, we demonstrate that deterministic processes are more important in shaping the structure of the bacterial community found in types II and III hypolithons. Most notably, the data presented in this study suggest that hypolithic bacterial communities establish via a successional model, with the type I hypolithons acting as the basal development state. PMID:23765099

  20. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    SciTech Connect

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; Zhou, Jizhong; Firestone, Mary

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal

  1. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    DOE PAGESBeta

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; et al

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative tomore » background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal succession that was consistent and repeatable

  2. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. PMID:27267720

  3. Topographic diversity of fungal and bacterial communities in human skin.

    PubMed

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2013-06-20

    Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis. PMID:23698366

  4. 3D printing of microscopic bacterial communities

    PubMed Central

    Connell, Jodi L.; Ritschdorff, Eric T.; Whiteley, Marvin; Shear, Jason B.

    2013-01-01

    Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell–cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to β-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa. PMID:24101503

  5. Architectural Design Drives the Biogeography of Indoor Bacterial Communities

    PubMed Central

    O’Connor, Timothy K.; Mhuireach, Gwynne; Northcutt, Dale; Kline, Jeff; Moriyama, Maxwell; Brown, G. Z.; Bohannan, Brendan J. M.; Green, Jessica L.

    2014-01-01

    Background Architectural design has the potential to influence the microbiology of the built environment, with implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains poorly understood. In this study we combined microbiological data with information on the function, form, and organization of spaces from a classroom and office building to understand how design choices influence the biogeography of the built environment microbiome. Results Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure. Conclusions Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both indirectly through the effects of architectural design on microbial community structure, and more directly through the effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our buildings in a way that will select for an indoor microbiome that promotes our

  6. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions. PMID:26691594

  7. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. PMID:26992100

  8. Soil bacterial communities associated with natural and commercial Cyclopia spp.

    PubMed

    Postma, Anneke; Slabbert, Etienne; Postma, Ferdinand; Jacobs, Karin

    2016-03-01

    The commercially important plants in the genus Cyclopia spp. are indigenous to the Cape Floristic Region of South Africa and are used to manufacture an herbal tea known as honeybush tea. Growing in the low nutrient fynbos soils, these plants are highly dependent on symbiotic interactions with soil microorganisms for nutrient acquisition. The aim of this study was to investigate the soil bacterial communities associated with two commercially important Cyclopia species, namely C. subternata and C. longifolia. Specific interest was the differences between rhizosphere and bulk soil collected from natural sites and commercially grown plants. Samples were collected on two occasions to include a dry summer and wet winter season. Results showed that the dominant bacterial taxa associated with these plants included Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria. Commercial and natural as well as rhizosphere and bulk soil samples were highly similar in bacterial diversity and species richness. Significant differences were detected in bacterial community structures and co-occurrence patterns between the wet and dry seasons. The results of this study improved our knowledge on what effect commercial Cyclopia plantations and seasonal changes can have on soil bacterial communities within the endemic fynbos biome. PMID:26850159

  9. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  10. Panamanian frog species host unique skin bacterial communities.

    PubMed

    Belden, Lisa K; Hughey, Myra C; Rebollar, Eria A; Umile, Thomas P; Loftus, Stephen C; Burzynski, Elizabeth A; Minbiole, Kevin P C; House, Leanna L; Jensen, Roderick V; Becker, Matthew H; Walke, Jenifer B; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  11. Sediment Bacterial Communities Reflect the History of a Sea Basin

    PubMed Central

    Lyra, Christina; Sinkko, Hanna; Rantanen, Matias; Paulin, Lars; Kotilainen, Aarno

    2013-01-01

    How entire microbial communities are structured across stratified sediments from the historical standpoint is unknown. The Baltic Sea is an ideal research object for historical reconstruction, since it has experienced many fresh- and brackish water periods and is depleted of dissolved oxygen, which increases the sediment's preservation potential. We investigated the bacterial communities, chemical elements (e.g. Cr, Pb Na, P, Sr and U) and sediment composition in a stratified sediment core dated by radiocarbon and spanning 8000 years of Baltic Sea history, using up-to-date multivariate statistics. The communities were analysed by 16S rRNA gene terminal restriction fragment length polymorphism. The communities of the deep Early Litorina and surface Late Litorina Sea laminae were separated from the communities of the middle Litorina Sea laminae, which were associated with elevated concentrations of U and Sr trace elements, palaeo-oxygen and palaeosalinity proxies. Thus, the Litorina Sea laminae were characterized by past oxygen deficiency and salinity increase. The communities of the laminae, bioturbated and homogeneous sediments were differentiated, based on the same historical sea phases, with correct classifications of 90%. Palaeosalinity was one of the major parameters that separated the bacterial communities of the stratified sediments. A discontinuous spatial structure with a surprising increase in community heterogeneity was detected in Litorina Sea sediments from 388 to 422 cm deep, which suggests that a salinity maximum occurred in the central Gulf of Finland app. 6200–6600 years ago. The community heterogeneity decreased from the surface down to 306 cm, which reflected downcore mineralization. The plateau of the decrease was in the app. 2000-year-old sediment layers. Bacterial community data may be used as an additional tool in ocean-drilling projects, in which it is important to detect mineralization plateaus both to determine historically comparable

  12. Ion channels enable electrical communication within bacterial communities

    PubMed Central

    Prindle, Arthur; Liu, Jintao; Asally, Munehiro; Ly, San; Garcia-Ojalvo, Jordi; Süel, Gürol M.

    2016-01-01

    The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signaling. However, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighboring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signaling in cellular communities. PMID:26503040

  13. Different bacterial communities in ectomycorrhizae and surrounding soil

    PubMed Central

    Vik, Unni; Logares, Ramiro; Blaalid, Rakel; Halvorsen, Rune; Carlsen, Tor; Bakke, Ingrid; Kolstø, Anne-Brit; Økstad, Ole Andreas; Kauserud, Håvard

    2013-01-01

    Several eukaryotic symbioses have shown to host a rich diversity of prokaryotes that interact with their hosts. Here, we study bacterial communities associated with ectomycorrhizal root systems of Bistorta vivipara compared to bacterial communities in bulk soil using pyrosequencing of 16S rRNA amplicons. A high richness of Operational Taxonomic Units (OTUs) was found in plant roots (3,571 OTUs) and surrounding soil (3,476 OTUs). The community composition differed markedly between these two environments. Actinobacteria, Armatimonadetes, Chloroflexi and OTUs unclassified at phylum level were significantly more abundant in plant roots than in soil. A large proportion of the OTUs, especially those in plant roots, presented low similarity to Sanger 16S rRNA reference sequences, suggesting novel bacterial diversity in ectomycorrhizae. Furthermore, the bacterial communities of the plant roots were spatially structured up to a distance of 60 cm, which may be explained by bacteria using fungal hyphae as a transport vector. The analyzed ectomycorrhizae presents a distinct microbiome, which likely influence the functioning of the plant-fungus symbiosis. PMID:24326907

  14. Marine bacterial communities are resistant to elevated carbon dioxide levels.

    PubMed

    Oliver, Anna E; Newbold, Lindsay K; Whiteley, Andrew S; van der Gast, Christopher J

    2014-12-01

    It is well established that the release of anthropogenic-derived CO2 into the atmosphere will be mainly absorbed by the oceans, with a concomitant drop in pH, a process termed ocean acidification. As such, there is considerable interest in how changes in increased CO2 and lower pH will affect marine biota, such as bacteria, which play central roles in oceanic biogeochemical processes. Set within an ecological framework, we investigated the direct effects of elevated CO2, contrasted with ambient conditions on the resistance and resilience of marine bacterial communities in a replicated temporal seawater mesocosm experiment. The results of the study strongly indicate that marine bacterial communities are highly resistant to the elevated CO2 and lower pH conditions imposed, as demonstrated from measures of turnover using taxa–time relationships and distance–decay relationships. In addition, no significant differences in community abundance, structure or composition were observed. Our results suggest that there are no direct effects on marine bacterial communities and that the bacterial fraction of microbial plankton holds enough flexibility and evolutionary capacity to withstand predicted future changes from elevated CO2 and subsequent ocean acidification. PMID:25756110

  15. Fungal and bacterial community structure downwind of a cattle feedyard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils provide a complex microhabitat for harboring a diverse group of microorganisms. The interaction of soil type, crop type, agroecosystem, and land management practices may all influence agricultural bacterial communities. In a previous study, we documented the long-term environmental impacts of ...

  16. Bacterial community diversity in municipal waste landfill sites.

    PubMed

    Song, Liyan; Wang, Yangqing; Tang, Wei; Lei, Yu

    2015-09-01

    Little is known about the bacterial diversity of landfills and how environmental factors impact the diversity. In this study, PCR-based 454 pyrosequencing was used to investigate the bacterial communities of ten landfill leachate samples from five landfill sites in China. A total of 137 K useable sequences from the V3-V6 regions of the 16S rRNA gene were retrieved from 205 K reads. These sequences revealed the presence of a large number of operational taxonomic units (OTUs) in the landfills (709-1599 OTUs per sample). The most predominant bacterial representatives in the landfills investigated, regardless of geographic area, included Gammaproteobacteria, Firmicutes, and Bacteroidetes. The phyla Fusobacteria and Tenericutes were also found for the first time to be predominant in the landfills. The phylum Fusobacteria predominated (51.5 and 48.8%) in two semi-arid landfills, and the phylum Tenericutes dominated (30.6%) at one humid, subtropical landfill. Further, a large number of Pseudomonas was detected in most samples, comprising the dominant group and accounting for 40.9 to 92.4% of the total abundance. Principal component analysis (PCA) and cluster analysis based on OTU abundance showed that the abundant taxa separated the bacterial community. Canonical correlation analysis (CCA) suggested that precipitation and landfilling age significantly impact on the bacterial community structure. The bacterial community function (e.g., cellulolytic bacteria, sulfate-reducing bacteria (SRB), sulfate-oxidizing bacteria, and xenobiotic organic compound (XOC)-degrading bacteria) was also diverse, but the pattern is unclear. PMID:25981996

  17. Bacterial Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site- and Species-Specificity of Common Bacterial Associates

    PubMed Central

    Kvennefors, E. Charlotte E.; Sampayo, Eugenia; Ridgway, Tyrone; Barnes, Andrew C.; Hoegh-Guldberg, Ove

    2010-01-01

    Background Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. Methodology/Principal Findings Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. Conclusions/Significance This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates

  18. Distinct bacterial communities dominate tropical and temperate zone leaf litter.

    PubMed

    Kim, Mincheol; Kim, Woo-Sung; Tripathi, Binu M; Adams, Jonathan

    2014-05-01

    Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic "plant beneficial" lineages. The differences from the temperate zone in the bacterial

  19. Natural bacterial communities serve as quantitative geochemical biosensors

    DOE PAGESBeta

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; et al

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less

  20. Diversity of Bacterial Communities in Container Habitats of Mosquitoes

    PubMed Central

    Ponnusamy, Loganathan; Xu, Ning; Stav, Gil; Wesson, Dawn M.; Schal, Coby

    2010-01-01

    We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including tires (n=12), cemetery urns (n=23), and miscellaneous containers that included two tree holes (n=19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units, OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys of microbial communities associated with mosquito habitats can provide significant insight into community organization and dynamics of bacterial species. PMID:18373113

  1. Natural bacterial communities serve as quantitative geochemical biosensors

    SciTech Connect

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Techtmann, Steve M.; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.; Hazen, Terry C.

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.

  2. Suppression of Bacterial Blight by a Bacterial Community Isolated from the Guttation Fluids of Anthuriums†

    PubMed Central

    Fukui, R.; Fukui, H.; Alvarez, A. M.

    1999-01-01

    Growth and survival of Xanthomonas campestris pv. dieffenbachiae in guttation fluids (xylem sap exuded from leaf margins) of anthuriums were suppressed by several bacterial strains indigenous to leaves of various anthurium cultivars. Inhibition of growth was not observed in filter-sterilized guttation fluids and was restored to original levels only by reintroducing specific mixtures of bacteria into filter-sterilized guttation fluids. The inhibitory effect was related to the species in the bacterial community rather than to the total numbers of bacteria in the guttation fluids. One very effective bacterial community consisted of five species isolated from inhibitory guttation fluids of two susceptible anthurium cultivars. The individual strains in this community had no effect on the pathogen, but the mixture was inhibitory to X. campestris pv. dieffenbachiae in guttation fluids. The populations of the individual strains remained near the initial inoculum levels for at least 14 days. The effect of the five inhibitory strains on reducing disease in susceptible anthurium plants was tested by using a bioluminescent strain of X. campestris pv. dieffenbachiae to monitor the progression of disease in leaves nondestructively. Invasion of the pathogen through hydathodes at leaf margins was reduced by applying the strain mixture to the leaves. When the strain mixture was applied directly to wounds created on the leaf margins, the pathogen failed to invade through the wounds. This bacterial community has potential for biological control of anthurium blight. PMID:10049858

  3. Comparison of Bacterial Communities in Sands and Water at Beaches with Bacterial Water Quality Violations

    PubMed Central

    Halliday, Elizabeth; McLellan, Sandra L.; Amaral-Zettler, Linda A.; Sogin, Mitchell L.; Gast, Rebecca J.

    2014-01-01

    Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality. PMID:24599478

  4. Bacterial communities in the fruit bodies of ground basidiomycetes

    NASA Astrophysics Data System (ADS)

    Zagryadskaya, Yu. A.; Lysak, L. V.; Chernov, I. Yu.

    2015-06-01

    Fruit bodies of basidiomycetes at different stages of decomposition serve as specific habitats in forest biocenoses for bacteria and differ significantly with respect to the total bacterial population and abundance of particular bacterial genera. A significant increase in the total bacterial population estimated by the direct microscopic method with acridine orange staining and in the population of saprotrophic bacteria (inoculation of glucose peptone yeast agar) in fruit bodies of basidiomycetes Armillaria mellea and Coprinus comatus was recorded at the final stage of their decomposition in comparison with the initial stage. Gramnegative bacteria predominated in the tissues of fruit bodies at all the stages of decomposition and were represented at the final stage by the Aeromonas, Vibrio, and Pseudomonas genera (for fruit bodies of A. mellea) the Pseudomonas genus (for fruit bodies of C. comatus). The potential influence of bacterial communities in the fruit bodies of soil basidiomycetes on the formation of bacterial communities in the upper soil horizons in forest biocenoses is discussed. The loci connected with the development and decomposition of fruit bodies of basidiomycetes on the soil surface are promising for targeted search of Gram-negative bacteria, the important objects of biotechnology.

  5. The active bacterial community in a pristine confined aquifer

    NASA Astrophysics Data System (ADS)

    Flynn, Theodore M.; Sanford, Robert A.; Santo Domingo, Jorge W.; Ashbolt, Nicholas J.; Levine, Audrey D.; Bethke, Craig M.

    2012-09-01

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells, we trapped the microbes that attached to aquifer sediment and used molecular techniques to examine the bacterial populations. We used multivariate statistics to compare the composition of bacterial communities among the wells with respect to the chemistry of the groundwater. We found groundwater at each well was considerably richer in ferrous iron than sulfide, indicating iron-reducing bacteria should, by established criteria, dominate the sulfate reducers. Our results show, however, that areas where groundwater contains more than a negligible amount of sulfate (>0.03 mM), populations related to sulfate reducers of the generaDesulfobacter and Desulfobulbus were of nearly equal abundance with putative iron reducers related to Geobacter, Geothrix, and Desulfuromonas. Whereas sulfate is a key discriminant of bacterial community structure, we observed no statistical relationship between the distribution of bacterial populations in this aquifer and the concentration of either ferrous iron or dissolved sulfide. These results call into question the validity of using the relative concentration of these two ions to predict the nature of bacterial activity in an aquifer. Sulfate reducers and iron reducers do not appear to be segregated into discrete zones in the aquifer, as would be predicted by the theory of competitive exclusion. Instead, we find the two groups coexist in the subsurface in what we suggest is a mutualistic relationship.

  6. Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves

    PubMed Central

    Reisberg, Eva E.; Hildebrandt, Ulrich; Riederer, Markus; Hentschel, Ute

    2013-01-01

    The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria. PMID:24223831

  7. Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden

    PubMed Central

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379

  8. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  9. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    PubMed Central

    James, Pamela M.; Jospin, Guillaume; Lang, Jenna M.

    2014-01-01

    Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila. PMID:25101226

  10. Defined spatial structure stabilizes a synthetic multispecies bacterial community

    PubMed Central

    Kim, Hyun Jung; Boedicker, James Q.; Choi, Jang Wook; Ismagilov, Rustem F.

    2008-01-01

    This paper shows that for microbial communities, “fences make good neighbors.” Communities of soil microorganisms perform critical functions: controlling climate, enhancing crop production, and remediation of environmental contamination. Microbial communities in the oral cavity and the gut are of high biomedical interest. Understanding and harnessing the function of these communities is difficult: artificial microbial communities in the laboratory become unstable because of “winner-takes-all” competition among species. We constructed a community of three different species of wild-type soil bacteria with syntrophic interactions using a microfluidic device to control spatial structure and chemical communication. We found that defined microscale spatial structure is both necessary and sufficient for the stable coexistence of interacting bacterial species in the synthetic community. A mathematical model describes how spatial structure can balance the competition and positive interactions within the community, even when the rates of production and consumption of nutrients by species are mismatched, by exploiting nonlinearities of these processes. These findings provide experimental and modeling evidence for a class of communities that require microscale spatial structure for stability, and these results predict that controlling spatial structure may enable harnessing the function of natural and synthetic multispecies communities in the laboratory. PMID:19011107

  11. Foliar bacterial communities of trembling aspen in a common garden.

    PubMed

    Mason, Charles J; Pfammatter, Jesse A; Holeski, Liza M; Raffa, Kenneth F

    2015-02-01

    Microbial associations with plants are widely distributed and are structured by a number of biotic and physical factors. Among biotic factors, the host plant genotype may be integral to these plant-microbe interactions. Trees in the genus Populus have become models for studies in scaling effects of host plant genetics and in plant-microbe interactions. Using 454 pyrosequencing of the 16S rRNA gene, we assessed the foliar bacterial community of 7 genotypes of mature trembling aspen trees (Populus tremuloides Michx.) grown in a common garden. Trees were selected based on prior analyses showing clonal variation in their concentration of chemicals conferring resistance against insect herbivores. At broad taxonomic designations, the bacterial community of trembling aspen was similar across all plant genotypes. At a finer taxonomic scale, the foliage of these trees varied in their community composition, but there was no distinct pattern to colonization or abundance related to plant genotype. The most abundant operational taxonomic units (OTUs) were classified as Ralstonia, Bradyrhizobium, Pseudomonas, and Brucella. These OTUs varied across the common garden, but there was no significant effect of host plant genotype or spatial position on the abundance of these members. Our results suggest that aspen genotype is less important in the structuring of its foliar bacterial communities than are other, poorly understood processes. PMID:25602743

  12. Molecular Survey of Bacterial Communities Associated with Bacterial Chondronecrosis with Osteomyelitis (BCO) in Broilers

    PubMed Central

    Jiang, Tieshan; Mandal, Rabindra K.; Wideman, Robert F.; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  13. Molecular survey of bacterial communities associated with bacterial chondronecrosis with osteomyelitis (BCO) in broilers.

    PubMed

    Jiang, Tieshan; Mandal, Rabindra K; Wideman, Robert F; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  14. Bacterial diversity and community composition from seasurface to subseafloor

    PubMed Central

    Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven

    2016-01-01

    We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment. PMID:26430855

  15. Bacterial diversity and community composition from seasurface to subseafloor.

    PubMed

    Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven

    2016-04-01

    We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4-v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450,104 pyrotags representing 29,814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment. PMID:26430855

  16. Low-voltage polyphasic circuits

    NASA Astrophysics Data System (ADS)

    Baird, William H.; Jaynes, Michael L.

    2010-05-01

    Experimentation with polyphasic voltages is greatly simplified when microcontrollers are used to generate multiple square waves with fixed phase offsets. Each square wave is sent through a simple second-order Sallen-Key filter to produce an approximately sinusoidal voltage signal. The microcontroller allows the reproduction of split-phase and three-phase voltage relationships, mirroring those commonly distributed on the North American power grid, at safe voltage levels.

  17. Assessing the diversity of bacterial communities associated with plants

    PubMed Central

    Andreote, Fernando Dini; Azevedo, João Lúcio; Araújo, Welington Luiz

    2009-01-01

    Plant–bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants. PMID:24031382

  18. Response of soil bacterial community to metal nanoparticles in biosolids.

    PubMed

    Shah, Vishal; Jones, Jamilee; Dickman, Jenifer; Greenman, Steven

    2014-06-15

    The increasing use of engineered nanoparticles (NPs) in industrial and household applications will very likely lead to the increased release of such materials into the public sewer systems. During the wastewater treatment process, some fraction of NPs would always be concentrated in the biosolids. When biosolids is applied on the agricultural land, NPs are introduced into the soil matrix. In the current study we investigate the influence of five different metal nanoparticles present in biosolids on soil microbial community as a function of time. Results indicate that ZnO and Zero Valent Cu NPs were not toxic to soil bacterial community. Biosolids mixed with Ag NPs and TiO2 (both anatase and rutile phase) in contrast changed the bacterial richness and composition in wavering pattern as a function of time. Based on the observations made in the study, we suggest caution when interpreting the toxicity of NPs based on single time point study. PMID:24801897

  19. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  20. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    SciTech Connect

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.; Wong, J.; DeSantis, T.Z.; Brodie, E.L.; Hazen, T.C.; Holden, P.A.; Andersen, G.L.

    2010-03-01

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.

  1. Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators

    PubMed Central

    Wu, Cindy H.; Sercu, Bram; Van De Werfhorst, Laurie C.; Wong, Jakk; DeSantis, Todd Z.; Brodie, Eoin L.; Hazen, Terry C.; Holden, Patricia A.; Andersen, Gary L.

    2010-01-01

    Background Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. Conclusions/Significance This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health. PMID:20585654

  2. Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors

    PubMed Central

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Techtmann, Steve M.; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.

    2015-01-01

    ABSTRACT Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. PMID:25968645

  3. Changes in the bacterial community structure in stored wormbed leachate.

    PubMed

    Romero-Tepal, Elda M; Contreras-Blancas, Eduardo; Navarro-Noya, Yendi E; Ruíz-Valdiviezo, Víctor M; Luna-Guido, Marco; Gutiérrez-Miceli, Federico A; Dendooven, Luc

    2014-01-01

    Organic wastes, such as cow manure, are often composted with earthworms (vermicomposting) while excess water is drained and collected. This wormbed leachate is nutrient-rich and it has been extensively used to fertilize plants. However, it is derived partially from a not yet finished compost process and could exhibit phytotoxicity or contain potentially hazardous microorganisms. The bacterial community in wormbed leachate derived from vermicomposting of cow manure was studied by pyrosequencing the 16S rRNA gene. The fresh wormbed leachate was rich in Mollicutes, particularly the genus Acholeplasma which contain phytopathogen species. The abundance of the Mollicutes decreased when the leachate was stored, while that of the Rhizobiales and the genus Pseudomonas increased. The bacterial communities changed rapidly in the leachate during storage. The changes in ammonium, nitrate and inorganic carbon content of the wormbed leachate when stored were correlated to changes in the bacterial community structure. It was found that storage of the wormbed leachate might be required before it can be applied to crops as large proportions of potentially plant pathogens were found in the fresh leachate. PMID:24577291

  4. Diversity of Human Vaginal Bacterial Communities and Associations with Clinically Defined Bacterial Vaginosis▿ †

    PubMed Central

    Oakley, Brian B.; Fiedler, Tina L.; Marrazzo, Jeanne M.; Fredricks, David N.

    2008-01-01

    Bacterial vaginosis (BV) is a common syndrome associated with numerous adverse health outcomes in women. Despite its medical importance, the etiology and microbial ecology of BV remain poorly understood. We used broad-range PCR to census the community structure of the healthy and BV-affected vaginal microbial ecosystems and synthesized current publicly available bacterial 16S rRNA gene sequence data from this environment. The community of vaginal bacteria detected in subjects with BV was much more taxon rich and diverse than in subjects without BV. At a 97% sequence similarity cutoff, the number of operational taxonomic units (OTUs) per patient in 28 subjects with BV was nearly three times greater than in 13 subjects without BV: 14.8 ± 0.7 versus 5.2 ± 0.75 (mean ± standard error). OTU-based analyses revealed previously hidden diversity for many vaginal bacteria that are currently poorly represented in GenBank. Our sequencing efforts yielded many novel phylotypes (123 of our sequences represented 38 OTUs not previously found in the vaginal ecosystem), including several novel BV-associated OTUs, such as those belonging to the Prevotella species complex, which remain severely underrepresented in the current NCBI database. Community composition was highly variable among subjects at a fine taxonomic scale, but at the phylum level, Actinobacteria and Bacteroidetes were strongly associated with BV. Our data describe a previously unrecognized extent of bacterial diversity in the vaginal ecosystem. The human vagina hosts many bacteria that are only distantly related to known species, and subjects with BV harbor particularly taxon-rich and diverse bacterial communities. PMID:18487399

  5. Bacterial Communities in Acidic and Circumneutral Streams †

    PubMed Central

    Palumbo, Anthony V.; Bogle, Mary Anna; Turner, Ralph R.; Elwood, Jerry W.; Mulholland, Patrick J.

    1987-01-01

    The relationship between pH and the abundance and activity of bacteria in streams was examined as part of a study of the effect of acidification on stream communities. Of the bacterial communities examined, the epilithic community appeared to be the most significantly affected by acidification. Microbial biomass, as quantified by measuring the ATP level, on rock surfaces was significantly correlated with pH. Also, bacterial production by the epilithic bacteria, indicated by incorporation of tritiated thymidine into DNA, was always higher at high-pH sites than at low-pH sites of the same stream order and elevation. Bacterioplankton concentrations varied between 0.53 × 105 and 9.42 × 105 cells · ml−1 in the first- to fourth-order streams examined. The bacterioplankton concentration in one sample from a spring was 0.17 × 105 cells · ml−1. Bacterioplankton concentrations were not correlated with pH but were significantly correlated with seston concentrations. The correlation with seston is a result of increases in particle-associated bacteria at high seston concentrations. The proportion of bacterioplankton attached to particles varied from 0 to 70%. Bacterial numbers and production in the sediments were significantly correlated with the organic content of the sediment rather than with the pH of the overlying water. Thus, reduced abundance and activity of bacteria as a result of acidification could be detected only for the relatively active community on rock surfaces; this community was exposed to the low pH because of the unbuffered nature of its environment. PMID:16347283

  6. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider

    PubMed Central

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947

  7. Bacterial Endophytic Communities in the Grapevine Depend on Pest Management

    PubMed Central

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars. PMID:25387008

  8. Glyphosate effects on soil rhizosphere-associated bacterial communities.

    PubMed

    Newman, Molli M; Hoilett, Nigel; Lorenz, Nicola; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-02-01

    Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago, there is now concern for non-target effects on soil microbial communities that has potential to negatively affect soil functions, plant health, and crop productivity. Although extensive research has been done on short-term response to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objective was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from rhizoboxes following 4 growth periods, and bacterial community composition was compared between glyphosate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abundance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in response to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere. Our results also highlight the need for applying culture-independent approaches in studying the effects of pesticides on the soil and rhizosphere microbial community. PMID:26580738

  9. Bacterial endophytic communities in the grapevine depend on pest management.

    PubMed

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars. PMID:25387008

  10. Deodorants and antiperspirants affect the axillary bacterial community.

    PubMed

    Callewaert, Chris; Hutapea, Prawira; Van de Wiele, Tom; Boon, Nico

    2014-10-01

    The use of underarm cosmetics is common practice in the Western society to obtain better body odor and/or to prevent excessive sweating. A survey indicated that 95 % of the young adult Belgians generally use an underarm deodorant or antiperspirant. The effect of deodorants and antiperspirants on the axillary bacterial community was examined on nine healthy subjects, who were restrained from using deodorant/antiperspirant for 1 month. Denaturing gradient gel electrophoresis was used to investigate the individual microbial dynamics. The microbial profiles were unique for every person. A stable bacterial community was seen when underarm cosmetics were applied on a daily basis and when no underarm cosmetics were applied. A distinct community difference was seen when the habits were changed from daily use to no use of deodorant/antiperspirant and vice versa. The richness was higher when deodorants and antiperspirants were applied. Especially when antiperspirants were applied, the microbiome showed an increase in diversity. Antiperspirant usage led toward an increase of Actinobacteria, which is an unfavorable situation with respect to body odor development. These initial results show that axillary cosmetics modify the microbial community and can stimulate odor-producing bacteria. PMID:25077920

  11. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues

    PubMed Central

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E.

    2016-01-01

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health. PMID:27524305

  12. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  13. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  14. Bacterial community structure in aquifers corresponds to stratigraphy

    NASA Astrophysics Data System (ADS)

    Beyer, Andrea; Möller, Silke; Neumann, Stefan; Burow, Katja; Gutmann, Falko; Lindner, Julia; Müsse, Steffen; Kothe, Erika; Büchel, Georg

    2014-05-01

    So far, groundwater microbiology with respect to different host rocks has not been well described in the literature. However, factors influencing the communities would be of interest to provide a tool for mapping groundwater paths. The Thuringian Basin (Germany) studied here, contains formations of the Permian (Zechstein) and also Triassic period of Buntsandstein, Muschelkalk and Keuper, all of which can be found to crop out at the surface in different regions. We analyzed the bacterial community of nine natural springs and sixteen groundwater wells of the respective rock formations as well as core material from the Zechstein salts. For that we sampled in a mine 3 differnet salt rock samples (carnallitite, halite and sylvinitite). To validate the different approaches, similar rock formations were compared and a consistent microbial community for Buntsandstein could be verified. Similary, for Zechstein, the presence of halophiles was seen with cultivation, isolation directly from the rock material and also in groundwater with DNA-dependent approaches. A higher overlap between sandstone- and limestone-derived communities was visible as if compared to the salt formations. Principal component analysis confirmed formation specific patterns for Muschelkalk, Buntsandstein and Zechstein for the bacterial taxa present, with some overlaps. Bacilli and Gammaproteobacteria were the major groups, with the genera Pseudomonas, Marinomonas, Bacillus, Marinobacter and Pseudoalteromonas representing the communities. The bacteria are well adapted to their respective environment with survival strategies including a wide range of salinity which makes them suitable as tracers for fluid movement below the ground. The results indicate the usefulness and robustness of the approach taken here to investigate aquifer community structures in dependence of the stratigraphy of the groundwater reservoir.

  15. Stability and change in estuarine biofilm bacterial community diversity.

    PubMed

    Moss, Joseph A; Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2006-09-01

    Biofouling communities contribute significantly to aquatic ecosystem productivity and biogeochemical cycling. Our knowledge of the distribution, composition, and activities of these microbially dominated communities is limited compared to other components of estuarine ecosystems. This study investigated the temporal stability and change of the dominant phylogenetic groups of the domain Bacteria in estuarine biofilm communities. Glass slides were deployed monthly over 1 year for 7-day incubations during peak tidal periods in East Sabine Bay, Fla. Community profiling was achieved by using 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes in combination with ribotyping, cloning, and sequencing to evaluate diversity and to identify dominant microorganisms. Bacterial community profiles from biofilms grown near the benthos showed distinct periods of constancy within winter and summer sampling periods. Similar periods of stability were also seen in T-RFLP patterns from floating biofilms. Alternating dominance of phylogenetic groups between seasons appeared to be associated with seasonal changes in temperature, nutrient availability, and light. The community structure appeared to be stable during these periods despite changes in salinity and in dissolved oxygen. PMID:16957182

  16. Community dynamics of cellulose-adapted thermophilic bacterial consortia.

    PubMed

    Eichorst, Stephanie A; Varanasi, Patanjali; Stavila, Vatalie; Zemla, Marcin; Auer, Manfred; Singh, Seema; Simmons, Blake A; Singer, Steven W

    2013-09-01

    Enzymatic hydrolysis of cellulose is a key process in the global carbon cycle and the industrial conversion of biomass to biofuels. In natural environments, cellulose hydrolysis is predominately performed by microbial communities. However, detailed understanding of bacterial cellulose hydrolysis is primarily confined to a few model isolates. Developing models for cellulose hydrolysis by mixed microbial consortia will complement these isolate studies and may reveal new mechanisms for cellulose deconstruction. Microbial communities were adapted to microcrystalline cellulose under aerobic, thermophilic conditions using green waste compost as the inoculum to study cellulose hydrolysis in a microbial consortium. This adaptation selected for three dominant taxa--the Firmicutes, Bacteroidetes and Thermus. A high-resolution profile of community development during the enrichment demonstrated a community transition from Firmicutes to a novel Bacteroidetes population that clusters in the Chitinophagaceae family. A representative strain of this population, strain NYFB, was successfully isolated, and sequencing of a nearly full-length 16S rRNA gene demonstrated that it was only 86% identical compared with other validated strains in the phylum Bacteroidetes. Strain NYFB grew well on soluble polysaccharide substrates, but grew poorly on insoluble polysaccharide substrates. Similar communities were observed in companion thermophilic enrichments on insoluble wheat arabinoxylan, a hemicellulosic substrate, suggesting a common model for deconstruction of plant polysaccharides. Combining observations of community dynamics and the physiology of strain NYFB, a cooperative successional model for polysaccharide hydrolysis by the Firmicutes and Bacteroidetes in the thermophilic cellulolytic consortia is proposed. PMID:23763762

  17. Bacterial Community Structure Response to Petroleum Concentration in Groundwater

    NASA Astrophysics Data System (ADS)

    Kitts, C. L.; Wrighton, K. C.; Phillips, W. A.; Cano, R. J.; Lundegard, P. D.

    2004-12-01

    This study characterized the bacterial community present in groundwater samples from the Guadalupe Dunes Restoration Project on the central California coast. The purpose of the study was to determine the changes in bacterial community structure and function in response to variations in the concentration of dissolved phase total petroleum hydrocarbons (TPH) in groundwater plumes at the site. For the purpose of this study groundwater samples were collected at varying distance from TPH source zones in 10 different plumes. All samples were analyzed for ammonia, phosphate, TPH, methane, oxygen, carbon dioxide, nitrate, sulfate, and dissolved iron levels. Chemical analysis revealed that the groundwater chemistry varied between plumes and on a well-to-well basis within a plume. Principle component analyses (PCA) demonstrated that TPH degradation related parameters explained 28% of the variation in the groundwater chemistry. In addition to the physical and chemical analyses, four liters of each groundwater sample were filtered and bacterial DNA was isolated to determine the relationship between groundwater chemistry and bacterial community structure and function. Specific Polymerase Chain Reaction (PCR) primers were used to characterize populations of Eubacteria, and Archaea, as well as function genes for sulfate reducing, methanotrophic, and methanogenic bacteria. Terminal Restriction Fragment (TRF) Length Polymorphisms (or T-RFLP) were used to analyze community structure. Eubacterial and Archaeal groundwater communities were separated into distinct clusters which did not clearly reflect changes in groundwater chemical parameters unless individual plumes were analyzed separately. However, specific Eubacterial and Archaeal TRF peaks did correspond to known petroleum degrading organisms and methanogenic bacteria, respectively. Only one sample produced a positive result for the sulfite reductase gene (dsrAB), indicating that sulfate reduction may not be a dominant process at

  18. Sediment bacterial communities associated with anaerobic biodegradation of bisphenol A.

    PubMed

    Yang, Yuyin; Wang, Zhao; He, Tao; Dai, Yu; Xie, Shuguang

    2015-07-01

    Bisphenol A (BPA) is one of the endocrine-disrupting chemicals that are ubiquitous in aquatic environments. Biodegradation is a major way to clean up the BPA pollution in sediments. However, information on the effective BPA biodegradation in anaerobic sediments is still lacking. The present study investigated the biodegradation potential of BPA in river sediment under nitrate- or sulfate-reducing conditions. After 120-day incubation, a high removal of BPA (93 or 89%) was found in sediment microcosms (amended with 50 mg kg(-1) BPA) under these two anaerobic conditions. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Actinobacteria were the major bacterial groups in BPA-degrading sediments. The shift in bacterial community structure could occur with BPA biodegradation. PMID:25501890

  19. Bacterial Communities Vary between Sinuses in Chronic Rhinosinusitis Patients

    PubMed Central

    Joss, Tom V.; Burke, Catherine M.; Hudson, Bernard J.; Darling, Aaron E.; Forer, Martin; Alber, Dagmar G.; Charles, Ian G.; Stow, Nicholas W.

    2016-01-01

    Chronic rhinosinusitis (CRS) is a common and potentially debilitating disease characterized by inflammation of the sinus mucosa for longer than 12 weeks. Bacterial colonization of the sinuses and its role in the pathogenesis of this disease is an ongoing area of research. Recent advances in culture-independent molecular techniques for bacterial identification have the potential to provide a more accurate and complete assessment of the sinus microbiome, however there is little concordance in results between studies, possibly due to differences in the sampling location and techniques. This study aimed to determine whether the microbial communities from one sinus could be considered representative of all sinuses, and examine differences between two commonly used methods for sample collection, swabs, and tissue biopsies. High-throughput DNA sequencing of the bacterial 16S rRNA gene was applied to both swab and tissue samples from multiple sinuses of 19 patients undergoing surgery for treatment of CRS. Results from swabs and tissue biopsies showed a high degree of similarity, indicating that swabbing is sufficient to recover the microbial community from the sinuses. Microbial communities from different sinuses within individual patients differed to varying degrees, demonstrating that it is possible for distinct microbiomes to exist simultaneously in different sinuses of the same patient. The sequencing results correlated well with culture-based pathogen identification conducted in parallel, although the culturing missed many species detected by sequencing. This finding has implications for future research into the sinus microbiome, which should take this heterogeneity into account by sampling patients from more than one sinus. PMID:26834708

  20. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands.

    PubMed

    Jones, Ryan T; Bressan, Alberto; Greenwell, April M; Fierer, Noah

    2011-12-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants. PMID:21965398

  1. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes. PMID:26603858

  2. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river.

    PubMed

    Wang, Yongming; Liu, Lemian; Chen, Huihuang; Yang, Jun

    2015-11-01

    The spatiotemporal distribution of microbial diversity, community composition, and their major drivers are fundamental issues in microbial ecology. In this study, the planktonic bacterial and microeukaryotic communities of the Jiulong River were investigated across both wet and dry seasons by using denaturing gradient gel electrophoresis (DGGE). We found evidence of temporal change between wet and dry seasons and distinct spatial patterns of bacterial and microeukaryotic communities. Both bacterial and microeukaryotic communities were strongly correlated with temperature, NH4-N, PO4-P, and chlorophyll a, and these environmental factors were significant but incomplete predictors of microbial community composition. Local environmental factors combined with spatial and temporal factors strongly controlled both bacterial and microeukaryotic communities in complex ways, whereas the direct influence of spatial and temporal factors appeared to be relatively small. Path analysis revealed that the microeukaryotic community played key roles in shaping bacterial community composition, perhaps through grazing effects and multiple interactions. Both Betaproteobacteria and Actinobacteria were the most dominant and diverse taxa in bacterial communities, while the microeukaryotic communities were dominated by Ciliophora (zooplankton) and Chlorophyta (phytoplankton). Our results demonstrated that both bacterial and microeukaryotic communities along the Jiulong River displayed a distinct spatiotemporal pattern; however, microeukaryotic communities exhibited a stronger distance-decay relationship than bacterial communities and their spatial patterns were mostly driven by local environmental variables rather than season or spatial processes of the river. Therefore, we have provided baseline data to support further research on river microbial food webs and integrating different microbial groups into river models. PMID:26156239

  3. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    PubMed

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change. PMID:27459784

  4. Distribution of bacterial communities across plateau freshwater lake and upslope soils.

    PubMed

    Chen, Yihui; Dai, Yu; Wang, Yilin; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-05-01

    Microorganisms are involved in a variety of biogeochemical processes in natural environments. The differences between bacterial communities in freshwaters and upslope soils remain unclear. The present study investigated the bacterial distribution in a plateau freshwater lake, Erhai Lake (southwestern China), and its upslope soils. Illumina MiSeq sequencing illustrated high bacterial diversity in lake sediments and soils. Sediment and soil bacterial communities were mainly composed of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and Planctomycetes. However, a distinctive difference in bacterial community structure was found between soil and sediment ecosystems. Water content, nitrogen and pH affected the distribution of the bacterial community across Erhai Lake and its upslope soils. Moreover, the soil bacterial community might also be shaped by plant types. This work could provide some new insights into plateau aquatic and terrestrial microbial ecology. PMID:27155410

  5. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa)

    PubMed Central

    Tiodjio, Rosine E.; Sakatoku, Akihiro; Nakamura, Akihiro; Tanaka, Daisuke; Fantong, Wilson Y.; Tchakam, Kamtchueng B.; Tanyileke, Gregory; Ohba, Takeshi; Hell, Victor J.; Kusakabe, Minoru; Nakamura, Shogo; Ueda, Akira

    2014-01-01

    The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos. PMID:25141868

  6. Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils.

    PubMed

    Oline, David K

    2006-11-01

    I present the results of a culture-independent survey of soil bacterial communities from serpentine soils and adjacent nonserpentine comparator soils using a variety of newly developed phylogenetically based statistical tools. The study design included site-based replication of the serpentine-to-nonserpentine community comparison over a regional scale ( approximately 100 km) in Northern California and Southern Oregon by producing 16S rRNA clone libraries from pairs of samples taken on either side of the serepentine-nonserpentine edaphic boundary at three geographical sites. At the division level, the serpentine and nonserpentine communities were similar to each other and to previous data from forest soils. Comparisons of both richness and Shannon diversity produced no significant differences between any of the libraries, but the vast majority of phylogenetically based tests were significant, even with only 50 sequences per library. These results suggest that most samples were distinct, consisting of a collection of lineages generally not found in other samples. The pattern of results showed that serpentine communities tended to be more similar to each other than they were to nonserpentine communities, and these differences were at a lower taxonomic scale. Comparisons of two nonserpentine communities generally showed differences, and some results suggest that the geographical site may control community composition as well. These results show the power of phylogenetic tests to discern differences between 16S rRNA libraries compared to tests that discard DNA data to bin sequences into operational taxonomic units, and they stress the importance of replication at larger scales for inferences regarding microbial biogeography. PMID:16950906

  7. Phylogenetic Comparisons of Bacterial Communities from Serpentine and Nonserpentine Soils▿

    PubMed Central

    Oline, David K.

    2006-01-01

    I present the results of a culture-independent survey of soil bacterial communities from serpentine soils and adjacent nonserpentine comparator soils using a variety of newly developed phylogenetically based statistical tools. The study design included site-based replication of the serpentine-to-nonserpentine community comparison over a regional scale (∼100 km) in Northern California and Southern Oregon by producing 16S rRNA clone libraries from pairs of samples taken on either side of the serepentine-nonserpentine edaphic boundary at three geographical sites. At the division level, the serpentine and nonserpentine communities were similar to each other and to previous data from forest soils. Comparisons of both richness and Shannon diversity produced no significant differences between any of the libraries, but the vast majority of phylogenetically based tests were significant, even with only 50 sequences per library. These results suggest that most samples were distinct, consisting of a collection of lineages generally not found in other samples. The pattern of results showed that serpentine communities tended to be more similar to each other than they were to nonserpentine communities, and these differences were at a lower taxonomic scale. Comparisons of two nonserpentine communities generally showed differences, and some results suggest that the geographical site may control community composition as well. These results show the power of phylogenetic tests to discern differences between 16S rRNA libraries compared to tests that discard DNA data to bin sequences into operational taxonomic units, and they stress the importance of replication at larger scales for inferences regarding microbial biogeography. PMID:16950906

  8. A comparison of the benthic bacterial communities within and surrounding Dreissena clusters in lakes.

    PubMed

    Lohner, Rachel N; Sigler, Von; Mayer, Christine M; Balogh, Csilla

    2007-10-01

    The impact of Dreissena (Dreissena polymorpha and D. bugensis) on the benthic bacterial community in lakes is largely unknown. Therefore, we quantified differences in the structure and activity of bacterial communities living in sediments (1) associated with Dreissena clusters, and (2) unassociated with established clusters (lake bottom sediments). Dreissena clusters and sediments were collected from locations in Lake Erie, Lake Ontario, and several inland lakes. Denaturing gradient gel electrophoresis (DGGE) analysis of the benthic bacterial community showed that the bacterial populations selected for by Dreissena represent a subset of the bottom communities and are geographically distinct. Community-level physiological profiling (CLPP) showed that overall bacterial activity and metabolic diversity were enhanced by the presence of clusters in all samples, with the exception of those harvested from the two Lake Erie sites. Therefore, Dreissena appears to affect both structure and metabolic function of the benthic bacterial community and may have yet unexplored ecosystem and food web consequences. PMID:17308984

  9. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities.

    PubMed

    Germerodt, Sebastian; Bohl, Katrin; Lück, Anja; Pande, Samay; Schröter, Anja; Kaleta, Christoph; Schuster, Stefan; Kost, Christian

    2016-06-01

    Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio) and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability), we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters' periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations. PMID:27314840

  10. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities

    PubMed Central

    Germerodt, Sebastian; Bohl, Katrin; Pande, Samay; Schröter, Anja; Kaleta, Christoph; Kost, Christian

    2016-01-01

    Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio) and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability), we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters’ periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations. PMID:27314840

  11. The structure and functions of bacterial communities in an agrocenosis

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.; Manucharova, N. A.; Balabko, P. N.

    2016-01-01

    The most significant factor responsible for the specific taxonomic composition of the bacterial communities in the agrocenosis studied was found to be a part or organ of plants (leaves, flowers, roots, fruits). A stage of plant ontogeny also determines changes of taxa. In the course of the plant growth, eccrisotrophic bacteria are replaced by hydrolytic ones that belong to the group of cellulose-decomposing bacteria. Representatives of the proteobacteria genera that are difficult to identify by phenotypic methods were determined using molecular-biological methods. They were revealed only on oat leaves in the moist period. As the vetch-oat mixture was fertilized with BIOUD-1 (foliar application) in the phyllosphere of both oats and vetch, on all the plant organs, representatives of the Rhodococcus genus as dominants were isolated. This fact was related to the capability of bacteria to decompose the complex aromatic compounds that are ingredients of the fertilizers applied. Another positive effect for plants of the bacterial communities forming in agrocenoses is the presence of bacteria that are antagonists of phytopathogenic bacteria. Thus, in agrocenoses, some interrelationships promoting the growth and reproduction of plants are formed in crop plants and bacteria.

  12. Understanding the bacterial communities of hard cheese with blowing defect.

    PubMed

    Bassi, Daniela; Puglisi, Edoardo; Cocconcelli, Pier Sandro

    2015-12-01

    The environment of hard cheese encourages bacterial synergies and competitions along the ripening process, which might lead in defects such as clostridial blowing. In this study, Denaturing Gradient Gel Electrophoresis (DGGE), a quantitative Clostridium tyrobutyricum PCR and next-generation Illumina-based sequencing of 16S rRNA gene were applied to study 83 Grana Padano spoiled samples. The aim was to investigate the community of clostridia involved in spoilage, the ecological relationships with the other members of the cheese microbiota, and the effect of lysozyme. Three main genera were dominant in the analysed cheeses, Lactobacillus, Streptococcus and Clostridium, and the assignment at the species level was of 94.3% of 4,477,326 high quality sequences. C. tyrobutyricum and C. butyricum were the most prevalent clostridia. Hierarchical clustering based on the abundance of bacterial genera, revealed three main clusters: one characterized by the highest proportion of Clostridium, a second where Lactobacillus was predominant and the last, dominated by Streptococcus thermophilus. Ecological relationships among species were found: cheeses characterized by an high abundance of S. thermophilus and L. rhamnosus were spoiled by C. tyrobutyricum while, when L. delbrueckii was the most abundant Lactobacillus, C. butyricum was the dominant spoiling species. Lysozyme also shaped the bacterial community, reducing C. tyrobutyricum in favour of C. butyricum. Moreover, this preservative increased the proportion of L. delbrueckii and obligate heterofermentative lactobacilli and lowered L. helveticus and non-starter species, such as L. rhamnosus and L. casei. PMID:26338123

  13. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2016-01-01

    The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem-also called "microbiome"-is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  14. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  15. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    PubMed Central

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  16. Associations between bacterial communities of house dust and infant gut

    SciTech Connect

    Konya, T.; Koster, B.; Maughan, H.; Escobar, M.; Azad, M.B.; Guttman, D.S.; Sears, M.R.; Becker, A.B.; Brook, J.R.; Takaro, T.K.; Kozyrskyj, A.L.; Scott, J.A.

    2014-05-01

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust–stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership.

  17. Temporal variability in detritus resource maintains diversity of bacterial communities

    NASA Astrophysics Data System (ADS)

    Hiltunen, Teppo; Laakso, Jouni; Kaitala, Veijo; Suomalainen, Lotta-Riina; Pekkonen, Minna

    2008-05-01

    Competition theory generally predicts that diversity is maintained by temporal environmental fluctuations. One of the many suggested mechanisms for maintaining diversity in fluctuating environments is the gleaner-opportunist trade-off, whereby gleaner species have low threshold resource levels and low maximum growth rates in high resource concentration while opportunist species show opposite characteristics. We measured the growth rates of eight heterotrophic aquatic bacteria under different concentrations of chemically complex plant detritus resource. The growth rates revealed gleaner-opportunist trade-offs. The role of environmental variability in maintaining diversity was tested in a 28-day experiment with three different resource fluctuation regimes imposed on two four-species bacterial communities in microcosms. We recorded population densities with serial dilution plating and total biomass as turbidity. Changes in resource availability were measured from filter-sterilised medium by re-introducing the consumer species and recording short-term growth rates. The type of environmental variation had no effect on resource availability, which declined slowly during the experiment and differed in level between the communities. However, the slowly fluctuating environment had the highest Shannon diversity index, biomass, and coefficient of variation of biomass in both communities. We did not find a clear link between the gleaner-opportunist trade-off and diversity in fluctuating environments. Nevertheless, our results do not exclude this explanation and support the general view that temporal environmental variation maintains species diversity also in communities feeding chemically complex resource.

  18. Microbial communities of urban stormwater sediments: the phylogenetic structure of bacterial communities varies with porosity.

    PubMed

    Badin, Anne-Laure; Mustafa, Tarfa; Bertrand, Cédric; Monier, Armelle; Delolme, Cécile; Geremia, Roberto A; Bedell, Jean-Philippe

    2012-08-01

    This study focuses on the distribution of bacterial and fungal communities within the microstructure of a multi-contaminated sedimentary layer resulting from urban stormwater infiltration. Fractionation was performed on the basis of differential porosity and aggregate grain size, resulting in five fractions: leachable fitting macroporosity, < 10, 10-160, 160-1000 μm fitting aggregates, > 1000 μm. Amounts of both bacterial and fungal biomasses are greater in the < 10 μm and leachable fractions. The aggregates contain numerous bacteria but very low amounts of fungal biomass. Single-strand conformational polymorphism molecular profiles highlighted the differences between bacterial and fungal communities of the leachable fraction and those of the aggregates. Random Sanger sequencing of ssu clones revealed that these differences were mainly because of the presence of Epsilonproteobacteria and Firmicutes in the leachable fractions, while the aggregates contained more Cyanobacteria. The Cyanobacteria phylotypes in the aggregates were dominated by the sequences related to Microcoleus vaginatus while the leachable fractions presented the sequences of chloroplastic origin. Therefore, more than 50% of the phylotypes observed were related to Proteobacteria while 40% were related to Cyanobacteria and Bacteroidetes. Preferential distribution of clades in almost all the phyla or classes detected was observed. This study provides insight into the identities of dominant members of the bacterial communities of urban sediments. Microcoleus vaginatus appeared to predominate in pioneer soils. PMID:22404135

  19. Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites.

    PubMed

    Kenarova, Anelia; Radeva, Galina; Traykov, Ivan; Boteva, Silvena

    2014-02-01

    Bacterial activity and physiological diversity were characterized in mining and milling impacted soils collected from three abandoned uranium mine sites, Senokos, Buhovo and Sliven, using bacterial dehydrogenase activity and Biolog (EcoPlate) tests. The elemental composition of soils revealed high levels of uranium and heavy metals (sum of technogenic coefficients of contamination; TCC(sum) pollution as follows: Sliven (uranium - 374 mg/kg; TCC(sum) - 23.40) >Buhovo (uranium - 139.20mg/kg; TCC(sum) - 3.93) >Senokos (uranium - 23.01 mg/kg; TCC(sum) - 0.86). The physiological profiles of the bacterial community level were site specific, and indicated intensive utilization of polyols, carbohydrates and carboxylic acids in low and medium polluted environments, and i-erithrytol and 2-hydroxy-benzoic acid in the highly polluted environment of Sliven waste pile. Enzymes which take part in the biodegradation of recalcitrant substances were more resistant to pollution than these from the pathways of the easily degradable carbon sources. The Shannon index indicated that the physiological diversity of bacteria was site specific but not in line with the levels of pollution. A general tendency of increasing the importance of the number of utilizable substrates to bacterial physiological diversity was observed at less polluted sites, whereas in highly polluted sites the evenness of substrate utilization rate was more significant. Dehydrogenase activity was highest in Senokos upper soil layer and positively correlated (p<0.01) with the soil organic matter content. The bacterial activity (EcoPlate) and physiological diversity (Shannon index) correlated significantly and negatively with As, Cu, Zn, Pb and U, and Co, Cr, Ni and Mn, respectively. We concluded that the observed site specific shifts in bacterial communities were complex due to both the environmental peculiarities and the bacterial tolerance to the relevant level of pollution, rather than a strong indication of uranium

  20. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    PubMed Central

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  1. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs

    PubMed Central

    Headd, Brendan; Engel, Annette S.

    2014-01-01

    Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change. PMID

  2. Impact of oil on bacterial community structure in bioturbated sediments.

    PubMed

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria

  3. Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition

    NASA Astrophysics Data System (ADS)

    Attermeyer, K.; Hornick, T.; Kayler, Z. E.; Bahr, A.; Zwirnmann, E.; Grossart, H.-P.; Premke, K.

    2014-03-01

    Dissolved organic carbon (DOC) concentrations - mainly of terrestrial origin - are increasing worldwide in inland waters. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (phytoplankton lysate). We then determined bacterial C consumption, activities, and community composition together with the C flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and low- and high-molecular-weight substance fractions (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. Both DOC sources (allochthonous and autochthonous DOC) were metabolized at a high bacterial growth efficiency (BGE) around 50%. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption of up to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substance (HS) fraction and an increase in bacterial biomass. Changes in DOC concentration and consumption in mixed treatments did not affect bacterial community composition (BCC), but BCC differed in single vs. mixed incubations. Our study highlights that DOC quantity affects bacterial C consumption but not BCC in nutrient-rich aquatic systems. BCC shifted when a mixture of allochthonous and autochthonous C was provided simultaneously to the bacterial community. Our results indicate that chemical quality rather than source of DOC per se (allochthonous vs. autochthonous) determines bacterial DOC turnover.

  4. Assessing the Unseen Bacterial Diversity in Microbial Communities

    PubMed Central

    Caro-Quintero, Alejandro; Ochman, Howard

    2015-01-01

    For both historical and technical reasons, 16S ribosomal RNA has been the most common molecular marker used to analyze the contents of microbial communities. However, its slow rate of evolution hinders the resolution of closely related bacteria—individual 16S-phylotypes, particularly when clustered at 97% sequence identity, conceal vast amounts of species- and strain-level variation. Protein-coding genes, which evolve more quickly, are useful for differentiating among more recently diverged lineages, but their application is complicated by difficulties in designing low-redundancy primers that amplify homologous regions from distantly related taxa. Given the now-common practice of multiplexing hundreds of samples, adopting new genes usually entails the synthesis of large sets of barcoded primers. To circumvent problems associated with use of protein-coding genes to survey microbial communities, we develop an approach—termed phyloTAGs—that offers an automatic solution for primer design and can be easily adapted to target different taxonomic groups and/or different protein-coding regions. We applied this method to analyze diversity within the gorilla gut microbiome and recovered hundreds of strains that went undetected after deep-sequencing of 16S rDNA amplicons. PhyloTAGs provides a powerful way to recover the fine-level diversity within microbial communities and to study stability and dynamics of bacterial populations. PMID:26615218

  5. Assessing the Unseen Bacterial Diversity in Microbial Communities.

    PubMed

    Caro-Quintero, Alejandro; Ochman, Howard

    2015-12-01

    For both historical and technical reasons, 16S ribosomal RNA has been the most common molecular marker used to analyze the contents of microbial communities. However, its slow rate of evolution hinders the resolution of closely related bacteria--individual 16S-phylotypes, particularly when clustered at 97% sequence identity, conceal vast amounts of species- and strain-level variation. Protein-coding genes, which evolve more quickly, are useful for differentiating among more recently diverged lineages, but their application is complicated by difficulties in designing low-redundancy primers that amplify homologous regions from distantly related taxa. Given the now-common practice of multiplexing hundreds of samples, adopting new genes usually entails the synthesis of large sets of barcoded primers. To circumvent problems associated with use of protein-coding genes to survey microbial communities, we develop an approach--termed phyloTAGs--that offers an automatic solution for primer design and can be easily adapted to target different taxonomic groups and/or different protein-coding regions. We applied this method to analyze diversity within the gorilla gut microbiome and recovered hundreds of strains that went undetected after deep-sequencing of 16S rDNA amplicons. PhyloTAGs provides a powerful way to recover the fine-level diversity within microbial communities and to study stability and dynamics of bacterial populations. PMID:26615218

  6. Initial community and environment determine the response of bacterial communities to dispersant and oil contamination.

    PubMed

    Ortmann, Alice C; Lu, YueHan

    2015-01-15

    Bioremediation of seawater by natural bacterial communities is one potential response to coastal oil spills, but the success of the approach may vary, depending on geographical location, oil composition and the timing of spill. The short term response of coastal bacteria to dispersant, oil and dispersed oil was characterized using 16S rRNA gene tags in two mesocosm experiments conducted two months apart. Despite differences in the amount of oil-derived alkanes across the treatments and experiments, increases in the contributions of hydrocarbon degrading taxa and decreases in common estuarine bacteria were observed in response to dispersant and/or oil. Between the two experiments, the direction and rates of changes in particulate alkane concentrations differed, as did the magnitude of the bacterial response to oil and/or dispersant. Together, our data underscore large variability in bacterial responses to hydrocarbon pollutants, implying that bioremediation success varies with starting biological and environmental conditions. PMID:25487088

  7. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    EPA Science Inventory

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  8. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia.

    PubMed

    Khoo, Jing-Jing; Chen, Fezshin; Kho, Kai Ling; Ahmad Shanizza, Azzy Iyzati; Lim, Fang-Shiang; Tan, Kim-Kee; Chang, Li-Yen; AbuBakar, Sazaly

    2016-07-01

    Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation. PMID:27132518

  9. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland.

    PubMed

    Qu, Tong-Bao; Du, Wei-Chao; Yuan, Xia; Yang, Zhi-Ming; Liu, Dong-Bo; Wang, De-Li; Yu, Li-Jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha-1; and heavy grazing, 6 sheep·ha-1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  10. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland

    PubMed Central

    Qu, Tong-bao; Du, Wei-chao; Yuan, Xia; Yang, Zhi-ming; Liu, Dong-bo; Wang, De-li; Yu, Li-jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha−1; and heavy grazing, 6 sheep·ha−1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  11. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities.

    PubMed

    Schabereiter-Gurtner, Claudia; Saiz-Jimenez, Cesareo; Piñar, Guadalupe; Lubitz, Werner; Rölleke, Sabine

    2002-05-21

    Since it has been reported that microorganisms can affect painting pigments, Paleolithic painting microbiology deserves attention. The present study is the first report on the bacterial colonization of the valuable Paleolithic paintings in the famous Altamira cave (Spain). One sample taken from a painting area in the Polychromes Hall was analyzed culture-independently. This was the first time microbiologists were allowed to take sample material directly from Altamira paintings. Identification methods included PCR amplification of 16S rRNA genes (16S rDNA) and community fingerprinting by denaturing gradient gel electrophoresis (DGGE). The applied approach gave insight into a great bacterial taxonomic diversity, and allowed the detection of unexpected and unknown bacteria with potential effects on the conservation of the painting. Regarding the number of 29 visible DGGE bands in the community fingerprint, the numbers of analyzed clones described about 72% of the phylogenetic diversity present in the sample. Thirty-eight percent of the sequences analyzed were phylogenetically most closely related to cultivated bacteria, while the majority (62%) were most closely related to environmental 16S rDNA clones. Bacteria identified in Altamira were related with sequence similarities between 84.8 and 99.4% to members of the cosmopolitan Proteobacteria (52.3%), to members of the Acidobacterium division (23.8%), Cytophaga/Flexibacter/Bacteroides phylum (9.5%), green non-sulfur bacteria (4.8%), Planctomycetales (4.8%) and Actinobacteria (4.8%). The high number of clones most closely related to environmental 16S rDNA clones showed the broad spectrum of unknown and yet to be cultivated bacteria in Altamira cave. PMID:12052543

  12. The energy–diversity relationship of complex bacterial communities in Arctic deep-sea sediments

    PubMed Central

    Bienhold, Christina; Boetius, Antje; Ramette, Alban

    2012-01-01

    The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning. PMID:22071347

  13. Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil?

    PubMed Central

    Canfora, Loredana; Bacci, Giovanni; Pinzari, Flavia; Lo Papa, Giuseppe; Dazzi, Carmelo; Benedetti, Anna

    2014-01-01

    In this study, the evaluation of soil characteristics was coupled with a pyrosequencing analysis of the V2-V3 16S rRNA gene region in order to investigate the bacterial community structure and diversity in the A horizon of a natural saline soil located in Sicily (Italy). The main aim of the research was to assess the organisation and diversity of microbial taxa using a spatial scale that revealed physical and chemical heterogeneity of the habitat under investigation. The results provided information on the type of distribution of different bacterial groups as a function of spatial gradients of soil salinity and pH. The analysis of bacterial 16S rRNA showed differences in bacterial composition and diversity due to a variable salt concentration in the soil. The bacterial community showed a statistically significant spatial variability. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient. It emerged therefore that a patchy saline soil can not contain just a single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters. Sequences have been deposited to the SRA database and can be accessed on ID Project PRJNA241061. PMID:25188357

  14. Bacterial communities in Arctic first-year drift ice during the winter/spring transition.

    PubMed

    Eronen-Rasimus, Eeva; Piiparinen, Jonna; Karkman, Antti; Lyra, Christina; Gerland, Sebastian; Kaartokallio, Hermanni

    2016-08-01

    Horizontal and vertical variability of first-year drift-ice bacterial communities was investigated along a North-South transect in the Fram Strait during the winter/spring transition. Two different developmental stages were captured along the transect based on the prevailing environmental conditions and the differences in bacterial community composition. The differences in the bacterial communities were likely driven by the changes in sea-ice algal biomass (2.6-5.6 fold differences in chl-a concentrations). Copiotrophic genera common in late spring/summer sea ice, such as Polaribacter, Octadecabacter and Glaciecola, dominated the bacterial communities, supporting the conclusion that the increase in the sea-ice algal biomass was possibly reflected in the sea-ice bacterial communities. Of the dominating bacterial genera, Polaribacter seemed to benefit the most from the increase in algal biomass, since they covered approximately 39% of the total community at the southernmost stations with higher (>6 μg l(-1) ) chl-a concentrations and only 9% at the northernmost station with lower chl-a concentrations (<6 μg l(-1) ). The sea-ice bacterial communities also varied between the ice horizons at all three stations and thus we recommend that for future studies multiple ice horizons be sampled to cover the variability in sea-ice bacterial communities in spring. PMID:27264318

  15. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    PubMed

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  16. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health

    PubMed Central

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity–invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  17. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.

    PubMed

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  18. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata.

    PubMed

    Shore-Maggio, Amanda; Runyon, Christina M; Ushijima, Blake; Aeby, Greta S; Callahan, Sean M

    2015-10-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods. PMID:26253663

  19. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata

    PubMed Central

    Shore-Maggio, Amanda; Runyon, Christina M.; Ushijima, Blake; Aeby, Greta S.

    2015-01-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods. PMID:26253663

  20. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments.

    PubMed

    Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A

    2010-12-01

    Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing

  1. Changes in intestinal bacterial communities are closely associated with shrimp disease severity.

    PubMed

    Xiong, Jinbo; Wang, Kai; Wu, Jinfeng; Qiuqian, Linglin; Yang, Kunjie; Qian, Yunxia; Zhang, Demin

    2015-08-01

    Increasing evidence has revealed a close association between intestinal bacterial communities and human health. However, given that host phylogeny shapes the composition of intestinal microbiota, it is unclear whether changes in intestinal microbiota structure in relation to shrimp health status. In this study, we collected shrimp and seawater samples from ponds with healthy and diseased shrimps to understand variations in bacterial communities among habitats (water and intestine) and/or health status. The bacterial communities were clustered according to the original habitat and health status. Habitat and health status constrained 14.6 and 7.7 % of the variation in bacterial communities, respectively. Changes in shrimp intestinal bacterial communities occurred in parallel with changes in disease severity, reflecting the transition from a healthy to a diseased state. This pattern was further evidenced by 38 bacterial families that were significantly different in abundance between healthy and diseased shrimps; moderate changes were observed in shrimps with sub-optimal health. In addition, within a given bacterial family, the patterns of enrichment or decrease were consistent with the known functions of those bacteria. Furthermore, the identified 119 indicator taxa exhibited a discriminative pattern similar to the variation in the community as a whole. Overall, this study suggests that changes in intestinal bacterial communities are closely associated with the severity of shrimp disease and that indicator taxa can be used to evaluate shrimp health status. PMID:25947250

  2. Amazonian dark Earth and plant species from the Amazon region contribute to shape rhizosphere bacterial communities.

    PubMed

    Barbosa Lima, Amanda; Cannavan, Fabiana Souza; Navarrete, Acacio Aparecido; Teixeira, Wenceslau Geraldes; Kuramae, Eiko Eurya; Tsai, Siu Mui

    2015-05-01

    Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata). Bacterial community structure was evaluated using terminal restriction fragment length polymorphism (T-RFLP) and bacterial community composition by V4 16S rRNA gene region pyrosequencing. T-RFLP analysis showed effect of soil types and plant species on rhizosphere bacterial community structure. Differential abundance of bacterial phyla, such as Acidobacteria, Actinobacteria, Verrucomicrobia, and Firmicutes, revealed that soil type contributes to shape the bacterial communities. Furthermore, bacterial phyla such as Firmicutes and Nitrospira were mostly influenced by plant species. Plant roots influenced several soil chemical properties, especially when plants were grown in ADE. These results showed that differences observed in rhizosphere bacterial community structure and composition can be influenced by plant species and soil fertility due to variation in soil attributes. PMID:25103911

  3. Metagenomic analysis of bacterial communities on Dokdo Island.

    PubMed

    Kim, Ye-Eun; Yoon, Hyeokjun; Kim, Miae; Nam, Yoon-Jong; Kim, Hyun; Seo, Yeonggyo; Lee, Gyeong-Min; Ja Kim, Young; Kong, Won-Sik; Kim, Jong-Guk; Seu, Young-Bae

    2014-01-01

    Dokdo, located east of the mainland of South Korea, is a volcanic island designated as a natural monument of South Korea due to its ecological value. Dokdo is divided into Dongdo and Seodo, islands with geological differences. The soil bacterial communities on Dokdo (Dongdo and Seodo) were analyzed using the pyrosequencing method. There were 1,693 and 1,408 operational taxonomic units (OTU) from Dongdo and Seodo, respectively. The statistical analyses (rarefaction curves as well as Chao1, Shannon, and Simpson indices) showed that bacterial diversity was slightly higher in Dongdo than Seodo. From results of a BLASTN search against the EzTaxon-e database, the validated reads (obtained after sequence preprocessing) were almost all classified at the phylum level. From the phylum level down to the species level, the number of classified reads considerably decreased due to the absence of information concerning unculturable or unidentified bacteria to date. Among the 36 phyla identified, three phyla (Proteobacteria, Actinobacteria and Acidobacteria) accounted for around 74.64%. The taxonomic composition was similar at the higher ranks (family and above) between Dongdo and Seodo, but a little different at the genus level. There were also various differences in the relative abundance of taxonomic ranks between Dongdo and Seodo. In particular, the proportion of the genus Acidobacterium (of the phylum Acidobacteria) was about six times higher in Seodo than Dongdo. In addition, the percentage of the genus Mycobacterium (of the phylum Actinobacteria) was nearly three times higher in Seodo than Dongdo, and the proportion of the genus Gaiella was about 3.7 times higher in Dongdo than Seodo. Overall, through the metagenomic analysis, the number of species identified in Dongdo and Seodo was 1,239 and 1,055, respectively. This information on the numerous culturable and unculturable bacteria is expected to help in the screening of new species in Dokdo. PMID:24859864

  4. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas.

    PubMed

    Vences, Miguel; Lyra, Mariana L; Kueneman, Jordan G; Bletz, Molly C; Archer, Holly M; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J; Tebbe, Christoph C; Haddad, Célio F B; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin. PMID:26924012

  5. Spatial and temporal variability of bacterial communities within a combined sewer system.

    PubMed

    Jensen, Henriette Stokbro; Sekar, Raju; Shepherd, Will J; Osborn, Andrew M; Tait, Simon; Biggs, Catherine A

    2016-08-01

    This study describes the temporal and spatial variability of bacterial communities within a combined sewer system in England. Sampling was conducted over 9 months in a sewer system with intensive monitoring of hydraulic conditions. The bacterial communities were characterized by 16S rRNA gene-targeted terminal restriction fragment length polymorphism analysis. These data were related to the hydraulic data as well as the sample type, location, and time. Temporal and spatial variation was observed between and within wastewater communities and biofilm communities. The bacterial communities in biofilm were distinctly different from the communities in wastewater and exhibited greater spatial variation, while the wastewater communities exhibited variability between different months of sampling. This study highlights the variation of bacterial communities between biofilm and wastewater, and has shown both spatial and temporal variations in bacterial communities in combined sewers. The temporal variation is of interest for in-sewer processes, for example, sewer odor generation, as field measurements for these processes are often carried out over short durations and may therefore not capture the influence of this temporal variation of the bacterial communities. PMID:27063341

  6. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice.

    PubMed

    Howe, Adina; Ringus, Daina L; Williams, Ryan J; Choo, Zi-Ning; Greenwald, Stephanie M; Owens, Sarah M; Coleman, Maureen L; Meyer, Folker; Chang, Eugene B

    2016-05-01

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showed significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. The contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health. PMID:26473721

  7. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

    NASA Astrophysics Data System (ADS)

    Vences, Miguel; Lyra, Mariana L.; Kueneman, Jordan G.; Bletz, Molly C.; Archer, Holly M.; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J.; Tebbe, Christoph C.; Haddad, Célio F. B.; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.

  8. Assessment of Bacterial Community Assembly Patterns and Processes in Pig Manure Slurry

    PubMed Central

    Kumari, Priyanka; Choi, Hong L.; Sudiarto, Sartika I. A.

    2015-01-01

    The bacterial community assembly patterns and processes are poorly understood in pig manure slurry. We collected pig manure slurry samples during the winter and summer seasons from eight commercial pig farms in South Korea. The V3 region of 16S rRNA genes was PCR amplified and sequenced using paired-end Illumina technology for in-depth characterization of bacterial community. Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, and Tenericutes were the predominant bacterial phyla present in slurry samples. Bacterial taxonomic community composition was not influenced by the season; however, phylogenetic community composition was affected by seasonal variations. The community composition and diversity patterns were strongly influenced by pH. The bacterial diversity indices showed a unimodal relationship with pH. Phylogenetic signals were detected over only short phylogenetic distances, revealing that closely related bacterial operational taxonomic units (OTUs) tend to co-occur in the same environment; hence, they are ecologically similar. Across all samples, a niche-based process, through strong environmental filtering imposed by pH, primarily governed bacterial community assembly; however, in samples close to the neutral pH range, the role of environmental filtering was decreased due to neutral community assembly. In summary, pH emerged as the major physico-chemical variable in pig manure slurry that regulates the relative importance of niche-based and neutral processes in shaping the community assembly of bacteria. PMID:26422375

  9. Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum.

    PubMed

    Uroz, S; Courty, P E; Pierrat, J C; Peter, M; Buée, M; Turpault, M P; Garbaye, J; Frey-Klett, P

    2013-08-01

    An ectomycorrhiza is a multitrophic association between a tree root, an ectomycorrhizal fungus, free-living fungi and the associated bacterial communities. Enzymatic activities of ectomycorrhizal root tips are therefore result of the contribution from different partners of the symbiotic organ. However, the functional potential of the fungus-associated bacterial communities remains unknown. In this study, a collection of 80 bacterial strains randomly selected and isolated from a soil-ectomycorrhiza continuum (oak-Scleroderma citrinum ectomycorrhizas, the ectomycorrhizosphere and the surrounding bulk soil) were characterized. All the bacterial isolates were identified by partial 16S rRNA gene sequences as members of the genera Burkholderia, Collimonas, Dyella, Mesorhizobium, Pseudomonas, Rhizobium and Sphingomonas. The bacterial strains were then assayed for β-xylosidase, β-glucosidase, N-acetyl-hexosaminidase, β-glucuronidase, cellobiohydrolase, phosphomonoesterase, leucine-aminopeptidase and laccase activities, chitin solubilization and auxin production. Using these bioassays, we demonstrated significant differences in the functional distribution of the bacterial communities living in the different compartments of the soil-ectomycorrhiza continuum. The surrounding bulk soil was significantly enriched in bacterial isolates capable of hydrolysing cellobiose and N-acetylglucosamine. In contrast, the ectomycorrhizosphere appeared significantly enriched in bacterial isolates capable of hydrolysing glucopyranoside and chitin. Notably, chitinase and laccase activities were found only in bacterial isolates belonging to the Collimonas and Pseudomonas genera. Overall, the results suggest that the ectomycorrhizal fungi favour specific bacterial communities with contrasting functional characteristics from the surrounding soil. PMID:23455431

  10. Partitioning of Bacterial Communities between Seawater and Healthy, Black Band Diseased, and Dead Coral Surfaces

    PubMed Central

    Frias-Lopez, Jorge; Zerkle, Aubrey L.; Bonheyo, George T.; Fouke, Bruce W.

    2002-01-01

    Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue. PMID:11976091

  11. Bacterial Communities in Polluted Seabed Sediments: A Molecular Biology Assay in Leghorn Harbor

    PubMed Central

    Verni, Franco; Petroni, Giulio

    2013-01-01

    Seabed sediments of commercial ports are often characterized by high pollution levels. Differences in number and distribution of bacteria in such areas can be related to distribution of pollutants in the port and to sediment conditions. In this study, the bacterial communities of five sites from Leghorn Harbor seabed were characterized, and the main bacterial groups were identified. T-RFLP was used for all samples; two 16S rRNA libraries and in silico digestion of clones were used to identify fingerprint profiles. Library data, phylogenetic analysis, and T-RFLP coupled with in silico digestion of the obtained sequences evidenced the dominance of Proteobacteria and the high percentage of Bacteroidetes in all sites. The approach highlighted similar bacterial communities between samples coming from the five sites, suggesting a modest differentiation among bacterial communities of different harbor seabed sediments and hence the capacity of bacterial communities to adapt to different levels and types of pollution. PMID:24227997

  12. Pyrosequencing-based analysis of the bacterial community in Korean traditional seafood, ojingeo jeotgal.

    PubMed

    Jung, Jaejoon; Choi, Sungjong; Jeon, Che Ok; Park, Woojun

    2013-10-28

    Jeotgal fermentation is dependent upon a diverse microbial community, although a detailed understanding of its microbial composition is limited to a relatively small number of jeotgal. Pyrosequencing-based bacterial community analysis was performed in fermented squid, ojingeo jeotgal. Leuconostoc was identified as the predominant bacterial genus, with Bacillus and Staphylococcus also accounting for a large proportion of the bacterial community. Phylogenetic analysis with 16S rRNA genes of Leuconostoc type species indicated that L. citreum- and L. holzapfelii-like strains could be the major Leuconostoc strains in jeotgal. High concentrations of NaCl were thought to be an important factor determining the makeup of the bacterial community in the fermented squid; however, a genomic survey with osmotic stress-related genes suggests the existence of more complex factors selecting the dominant bacterial species in fermented squid. PMID:23851268

  13. Pyrosequencing based profiling of the bacterial community in the Chilika Lake, the largest lagoon of India

    PubMed Central

    Pramanik, Arnab; Basak, Pijush; Banerjee, Satabdi; Sengupta, Sanghamitra; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2015-01-01

    Brackish water lake is the most extraordinary reservoir for bacterial community with an adaptability of tolerance to saline stress. In the present study, metagenomic approach was implemented utilising 454-pyrosequencing platform to gain deeper insights into the bacterial diversity profile of the soil sediment of Chilika Lake, Odisha, India. Metagenome contained 68,150 sequences with 31,896,430 bp and 56.79% G + C content. Metagenome sequences data are now available at NCBI under the Sequence Read Archive (SRA) database with accession no. SRX753382. Bacterial community metagenome sequences were analysed by MG-RAST server representing the presence of 16,212 species belonging to 45 different phyla. The dominating phyla were Proteobacteria, Chloroflexi, Firmicutes, Acidobacteria, Actinobacteria, Bacteroidetes and Planctomycetes. The analysis of bacterial community datasets obtained from two different saline soil sediments revealed significant differences in bacterial community composition and diversity value providing better understanding of the ecosystem dynamics of Chilika Lake. PMID:26484193

  14. The green alga Dicytosphaeria ocellata and its organic extracts alter natural bacterial biofilm communities.

    PubMed

    Sneed, Jennifer M; Pohnert, Georg

    2011-04-01

    Surfaces immersed in the marine environment are under intense fouling pressure by a number of invertebrates and algae. The regulation of this fouling can often be attributed to the bacterial biofilm that quickly develops on the surface of any available substratum in the ocean. The bacterial community composition on the surface of the green alga Dictyosphaeria ocellata was investigated and compared to those found on two other green algae, Batophora oerstedii and Cladophoropsis macromeres, and on a reference surface from three sites along the Florida Keys. Although the bacterial community composition of D. ocellata was not consistent across the sites, it was significantly different from the other algae and the reference surface at two of the three sites tested. Methanol extracts of D. ocellata significantly affected the abundance of bacteria and composition of the bacterial community on Phytagel™ plates when compared to solvent controls, suggesting that the alga regulates the bacterial community by producing active metabolites. PMID:21512919

  15. Diversity of bacterial community during spring phytoplankton blooms in the central Yellow Sea.

    PubMed

    Liu, Min; Dong, Yi; Zhang, Wuchang; Sun, Jun; Zhou, Feng; Ren, Jingling; Bao, Shixiang; Xiao, Tian

    2013-05-01

    Bacterial community diversity and the effects of environmental factors on bacterial community composition during 2 spring phytoplankton blooms in the central Yellow Sea were investigated by using denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analysis. The Shannon-Weaver indices (H') of bacterial diversity from samples at station B23 were higher than those at station B20. Cluster analysis based on DGGE band patterns indicated temporal variations of bacterial community at the 2 bloom stations but a vertical distribution pattern only at station B20. The predominant bacterial groups were affiliated with Alphaproteobacteria, Gammaproteobacteria, Cytophaga-Flavobacterium-Bacteroides, Deltaproteobacteria, and Actinobacteria. The effects of environmental factors on bacterial community were analyzed by canonical correspondence analysis. Bacterial community structures were significantly affected by silicate at station B20 and by Paralia sulcata and Heterocapsa spp. at station B23. From the results, phytoplankton species composition had a significant effect on bacterial community structure during phytoplankton blooms in the central Yellow Sea. PMID:23647345

  16. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations

    PubMed Central

    McKenzie, Valerie J; Bowers, Robert M; Fierer, Noah; Knight, Rob; Lauber, Christian L

    2012-01-01

    Although all plant and animal species harbor microbial symbionts, we know surprisingly little about the specificity of microbial communities to their hosts. Few studies have compared the microbiomes of different species of animals, and fewer still have examined animals in the wild. We sampled four pond habitats in Colorado, USA, where multiple amphibian species were present. In total, 32 amphibian individuals were sampled from three different species including northern leopard frogs (Lithobates pipiens), western chorus frogs (Pseudacris triseriata) and tiger salamanders (Ambystoma tigrinum). We compared the diversity and composition of the bacterial communities on the skin of the collected individuals via barcoded pyrosequencing of the 16S rRNA gene. Dominant bacterial phyla included Acidobacteria, Actinobacteria, Bacteriodetes, Cyanobacteria, Firmicutes and Proteobacteria. In total, we found members of 18 bacterial phyla, comparable to the taxonomic diversity typically found on human skin. Levels of bacterial diversity varied strongly across species: L. pipiens had the highest diversity; A. tigrinum the lowest. Host species was a highly significant predictor of bacterial community similarity, and co-habitation within the same pond was not significant, highlighting that the skin-associated bacterial communities do not simply reflect those bacterial communities found in their surrounding environments. Innate species differences thus appear to regulate the structure of skin bacterial communities on amphibians. In light of recent discoveries that some bacteria on amphibian skin have antifungal activity, our finding suggests that host-specific bacteria may have a role in the species-specific resistance to fungal pathogens. PMID:21955991

  17. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    PubMed Central

    Schmitt, Susanne; Tsai, Peter; Bell, James; Fromont, Jane; Ilan, Micha; Lindquist, Niels; Perez, Thierry; Rodrigo, Allen; Schupp, Peter J; Vacelet, Jean; Webster, Nicole; Hentschel, Ute; Taylor, Michael W

    2012-01-01

    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations. PMID:21993395

  18. Quantum dot conjugates for SEM of bacterial communities

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Mielke, Randall; Clarke, Samuel

    2009-05-01

    Biologically compatible quantum dot (QD) nanoparticles are hybrid inorganic-organic materials with increasing popularity as fluorescent probes for studying biological specimens. QDs have several advantageous optical features compared to fluorescent dyes and they are electron-dense, allowing for correlated fluorescence and electron microscopic imaging. Despite these features, widespread use of QDs as biological probes has generally been limited by the complex chemistry required for their synthesis and the conjugation. In this work, we show that easily prepared quantum dot (QD) probes provide excellent contrast for fluorescent confocal and environmental scanning electron microscopy (ESEM) analysis of pure microbial cultures and microbial communities. Two conjugation strategies were employed in order to specifically target the QDs to bacterial cell surfaces. The first was biotinylation of the bacteria followed by labeling with commercially available QDs incorporating the high-affinity partner for biotin (QD-streptavidin). Second, we designed a novel QD probe for Gram negative bacteria: QD-polymyxin B (PMB), which binds to lipopolysaccharide (LPS) in the Gram negative cell wall. Pure cultures of Gram positive and Gram negative strains were used to illustrate that QDs impart electron density and irradiation stability to the cells, and so no other preparation apart from QD labeling is required. The techniques were then extended to a set of recently characterized microbial communities of perennial cold springs in the Canadian High Arctic, which live in close association with unusual sulfur crystals. Using correlated confocal and and ESEM, we were able to image these organisms in living samples and illustrate their relationship to the minerals.

  19. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices.

    PubMed

    Wu, Tiehang; Chellemi, Dan O; Graham, Jim H; Martin, Kendall J; Rosskopf, Erin N

    2008-02-01

    The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity

  20. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    PubMed

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-01

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system. PMID:27070460

  1. Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate.

    PubMed

    Vila-Costa, Maria; Rinta-Kanto, Johanna M; Sun, Shulei; Sharma, Shalabh; Poretsky, Rachel; Moran, Mary Ann

    2010-11-01

    Dimethylsulfoniopropionate (DMSP) is an important source of reduced sulfur and carbon for marine microbial communities, as well as the precursor of the climate-active gas dimethylsulfide (DMS). In this study, we used metatranscriptomic sequencing to analyze gene expression profiles of a bacterial assemblage from surface waters at the Bermuda Atlantic Time-series Study (BATS) station with and without a short-term enrichment of DMSP (25 nM for 30 min). An average of 303 143 reads were obtained per treatment using 454 pyrosequencing technology, of which 51% were potential protein-encoding sequences. Transcripts from Gammaproteobacteria and Bacteroidetes increased in relative abundance on DMSP addition, yet there was little change in the contribution of two bacterioplankton groups whose cultured members harbor known DMSP degradation genes, Roseobacter and SAR11. The DMSP addition led to an enrichment of transcripts supporting heterotrophic activity, and a depletion of those encoding light-related energy generation. Genes for the degradation of C3 compounds were significantly overrepresented after DMSP addition, likely reflecting the metabolism of the C3 component of DMSP. Mapping these transcripts to known biochemical pathways indicated that both acetyl-CoA and succinyl-CoA may be common entry points of this moiety into the tricarboxylic acid cycle. In a short time frame (30 min) in the extremely oligotrophic Sargasso Sea, different gene expression patterns suggest the use of DMSP by a diversity of marine bacterioplankton as both carbon and sulfur sources. PMID:20463763

  2. Using in situ bacterial communities to monitor contaminants in river sediments.

    PubMed

    Xie, Yuwei; Wang, Jizhong; Wu, Yaketon; Ren, Chen; Song, Chao; Yang, Jianghua; Yu, Hongxia; Giesy, John P; Zhang, Xiaowei

    2016-05-01

    Bacterial communities in sediments of human-impacted rivers are exposed to multiple anthropogenic contaminants and eventually lead to biodiversity lost and ecological functions disable. Nanfei River of Anhui province has been contaminated by pollutants from industrial and/or agricultural sources. This study was conducted to investigate the structure of in situ sediment bacterial communities in Nanfei River and to examine the correlation between the different taxonomic components and contaminant concentrations. The bacterial communities were dominated by Proteobacteria, Bacteroidetes and Chloroflexi. Both the profiles of environmental predictors and the composition of microbial communities differed among agriculture, industrial and confluence regions. There were significant associations between bacterial community phylogenies and the measured contaminants in the sediments. Nutrients (TN and TP) and two metals (Cd and Zn) were negatively correlated with the essential "core" of the bacterial interaction network (Betaproteobacteria and Deltaproteobacteria). Metals (Fe, Ni and Zn) and nutrients (TN and TP) had higher impact on bacterial community compositions than PAHs, OPs and PRTs according to the correlation and network analyses. Furthermore, several sensitive candidate genera were identified as potential bioindicators to monitor key contaminants by species contaminant correlation analysis. Overall, in situ bacterial communities could provide a useful tool for monitoring and assessing ecological stressors in freshwater sediments. PMID:26866572

  3. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial.

    PubMed

    Adair, Karen L; Wratten, Steve; Lear, Gavin

    2013-06-01

    Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated phosphorus, as well as shifts in the plant community, have greater long-term impacts on soil bacterial community structure than application of nitrogen fertilizers. PMID:23754721

  4. 16S rRNA survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids.

    PubMed

    Ren, Tiantian; Glatt, Dominique Ulrike; Nguyen, Tam Nhu; Allen, Emma Kaitlynn; Early, Stephen V; Sale, Michele; Winther, Birgit; Wu, Martin

    2013-02-01

    Adenoid microbiota plays an important role in the development of various infectious and non-infectious diseases of the upper airways, such as otitis media, adenotonsillitis, rhinosinusitis and adenoid hypertrophy. Studies have suggested that adenoids could act as a potential reservoir of opportunistic pathogens. However, previous bacterial surveys of adenoids were mainly culture based and therefore might only provide an incomplete and potentially biased assessment of the microbial diversity. To develop an in-depth and comprehensive understanding of the adenoid microbial communities and test the 'pathogen reservoir hypothesis', we carried out a 16S rRNA based, culture-independent survey of bacterial communities on 67 human adenoids removed by surgery. Our survey revealed highly diverse adenoid bacterial communities distinct from those of other body habitats. Despite large interpersonal variations, adenoid microbiota shared a core set of taxa and can be classified into at least five major types based on its bacterial species composition. Our results support the 'pathogen reservoir hypothesis' as we found common pathogens of otitis media to be both prevalent and abundant. Co-occurrence analyses revealed evidence consistent with the bacterial interference theory in that multiple common pathogens showed 'non-coexistence' relationships with non-pathogenic members of the commensal microflora. PMID:23113966

  5. Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.

    PubMed

    De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter

    2015-08-18

    Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment. PMID:26204244

  6. Moonmilk deposits originate from specific bacterial communities in Altamira Cave (Spain).

    PubMed

    Portillo, Maria C; Gonzalez, Juan M

    2011-01-01

    The influence of bacterial communities on the formation of carbonate deposits such as moonmilk was investigated in Altamira Cave (Spain). The study focuses on the relationship between the bacterial communities at moonmilk deposits and those forming white colonizations, which develop sporadically throughout the cave. Using molecular fingerprinting of the metabolically active bacterial communities detected through RNA analyses, the development of white colonizations and moonmilk deposits showed similar bacterial profiles. White colonizations were able to raise the pH as a result of their metabolism (reaching in situ pH values above 8.5), which was proportional to the nutrient supply. Bacterial activity was analyzed by nanorespirometry showing higher metabolic activity from bacterial colonizations than uncolonized areas. Once carbonate deposits were formed, bacterial activity decreased drastically (down to 5.7% of the white colonization activity). This study reports on a specific type of bacterial community leading to moonmilk deposit formation in a cave environment as a result of bacterial metabolism. The consequence of this process is a macroscopic phenomenon of visible carbonate depositions and accumulation in cave environments. PMID:20717660

  7. Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River

    PubMed Central

    Staley, Christopher; Gould, Trevor J.; Wang, Ping; Phillips, Jane; Cotner, James B.; Sadowsky, Michael J.

    2014-01-01

    Local and regional associations between bacterial communities and nutrient and chemical concentrations were assessed in the Upper Mississippi River in Minnesota to determine if community structure was associated with discrete types of chemical inputs associated with different land cover. Bacterial communities were characterized by Illumina sequencing of the V6 region of 16S rDNA and compared to >40 chemical and nutrient concentrations. Local bacterial community structure was shaped primarily by associations among bacterial orders. However, order abundances were correlated regionally with nutrient and chemical concentrations, and were also related to major land coverage types. Total organic carbon and total dissolved solids were among the primary abiotic factors associated with local community composition and co-varied with land cover. Escherichia coli concentration was poorly related to community composition or nutrient concentrations. Abundances of 14 bacterial orders were related to land coverage type, and seven showed significant differences in abundance (P ≤ 0.046) between forested or anthropogenically-impacted sites. This study identifies specific bacterial orders that were associated with chemicals and nutrients derived from specific land cover types and may be useful in assessing water quality. Results of this study reveal the need to investigate community dynamics at both the local and regional scales and to identify shifts in taxonomic community structure that may be useful in determining sources of pollution in the Upper Mississippi River. PMID:25339945

  8. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska

    PubMed Central

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-01-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0–10 cm to 10–20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen ( and ). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. PMID:24893754

  9. Molecular ecological analysis of planktonic bacterial communities in constructed wetlands invaded by Culex (Diptera: Culicidae) mosquitoes.

    PubMed

    Popko, David A; Han, Suk-Kyun; Lanoil, Brian; Walton, William E

    2006-11-01

    The succession of the planktonic bacterial community during the colonization by Culex (Diptera: Culicidae) mosquitoes of 0.1-ha treatment wetlands was studied using denaturing gradient gel electrophoresis (DGGE) methodology. Relationships between apparent bacterial diversity and ecological factors (water quality, total bacterial counts, and immature mosquito abundance) were determined during a 1-mo flooding period. Analysis of DGGE banding patterns indicated that days postflooding and temporal changes in water quality were the primary and secondary determinants, respectively, of diversity in bacterial communities. Lower levels of diversity were associated with later postflood stages and increases in ammoniacal nitrogen concentration and total bacterial counts. Diversity was therefore most similar for bacteria present on the same sampling date at wetland locations with similar flooding regimes and water quality, suggesting that wastewater input was the driving force shaping bacterial communities. Comparatively small changes in bacterial diversity were connected to natural processes as water flowed through the wetlands. Greater immature mosquito abundance coincided with less diverse communities composed of greater total numbers of bacteria. Five individual DGGE bands were directly associated with fluctuations in mosquito production, and an additional 16 bands were associated with hydrological aspects of the environment during the rise and fall of mosquito populations. A marked decline in mosquito numbers 21 d after inundation may have masked associations of bacterial communities and mosquito recruitment into the sparsely vegetated wetlands. DGGE was an effective tool for the characterization of bacteria in mosquito habitat in our study, and its potential application in mosquito ecology is discussed. PMID:17162947

  10. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities.

    PubMed

    Ainsworth, T D; Fine, M; Blackall, L L; Hoegh-Guldberg, O

    2006-04-01

    Microbial communities play important roles in the functioning of coral reef communities. However, extensive autofluorescence of coral tissues and endosymbionts limits the application of standard fluorescence in situ hybridization (FISH) techniques for the identification of the coral-associated bacterial communities. This study overcomes these limitations by combining FISH and spectral imaging. PMID:16598010

  11. Effects of Host Plant Factors on the Bacterial Communities Associated with Two Whitefly Sibling Species

    PubMed Central

    Su, Ming-Ming; Guo, Lei; Tao, Yun-Li; Zhang, You-Jun; Wan, Fang-Hao; Chu, Dong

    2016-01-01

    Background Although discrepancy in the specific traits and ecological characteristics of Bemisia tabaci between species are partially attributed to the B. tabaci-associated bacteria, the factors that affect the diversity of B. tabaci-associated bacteria are not well-understood. We used the metagenomic approach to characterize the B. tabaci-associated bacterial community because the approach is an effective tool to identify the bacteria. Methodology and Results To investigate the effects of the host plant and a virus, tomato yellow leaf curl virus (TYLCV), on the bacterial communities of B. tabaci sibling species B and Q, we analyzed the bacterial communities associated with whitefly B and Q collected from healthy cotton, healthy tomato, and TYLCV-infected tomato. The analysis used miseq-based sequencing of a variable region of the bacterial 16S rDNA gene. For the bacteria associated with B. tabaci, we found that the influence of the host plant species was greater than that of the whitefly cryptic species. With further analysis of host plants infected with the TYLCV, the virus had no significant effects on the B. tabaci-associated bacterial community. Conclusions The effects of different plant hosts and TYLCV-infection on the diversity of B. tabaci-associated bacterial communities were successfully analyzed in this study. To explain why B. tabaci sibling species with different host ranges differ in performance, the analysis of the bacterial community may be essential to the explanation. PMID:27008327

  12. Bacterial communities associated with four ctenophore genera from the German Bight (North Sea).

    PubMed

    Hao, Wenjin; Gerdts, Gunnar; Peplies, Jörg; Wichels, Antje

    2015-01-01

    Intense research has been conducted on jellyfish and ctenophores in recent years. They are increasingly recognized as key elements in the marine ecosystem that serve as critical indicators and drivers of ecosystem performance and change. However, the bacterial community associated with ctenophores is still poorly investigated. Based on automated ribosomal intergenic spacer analysis (ARISA) and 16S ribosomal RNA gene amplicon pyrosequencing, we investigated bacterial communities associated with the frequently occurring ctenophore species Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus at Helgoland Roads in the German Bight (North Sea). We observed significant differences between the associated bacterial communities of the different ctenophore species based on ARISA patterns. With respect to bacterial taxa, all ctenophore species were dominated by Proteobacteria as revealed by pyrosequencing. Mnemiopsis leidyi and P. pileus mainly harboured Gammaproteobacteria, with Marinomonas as the dominant phylotype of M. leidyi. By contrast, Pseudoalteromonas and Psychrobacter were the most abundant Gammaproteobacteria in P. pileus. Beroe sp. was mainly dominated by Alphaproteobacteria, particularly by the genus Thalassospira. For B. infundibulum, the bacterial community was composed of Alphaproteobacteria and Gammaproteobacteria in equal parts, which consisted of the genera Thalassospira and Marinomonas. In addition, the bacterial communities associated with M. leidyi display a clear variation over time that needs further investigation. Our results indicate that the bacterial communities associated with ctenophores are highly species- specific. PMID:25764531

  13. pH affects bacterial community composition in soils across the Huashan Watershed, China.

    PubMed

    Huang, Rui; Zhao, Dayong; Zeng, Jin; Shen, Feng; Cao, Xinyi; Jiang, Cuiling; Huang, Feng; Feng, Jingwei; Yu, Zhongbo; Wu, Qinglong L

    2016-09-01

    To investigate soil bacterial richness and diversity and to determine the correlations between bacterial communities and soil properties, 8 soil samples were collected from the Huashan watershed in Anhui, China. Subsequently, 454 high-throughput pyrosequencing and bioinformatics analyses were performed to examine the soil bacterial community compositions. The operational taxonomic unit richness of the bacterial community ranged from 3664 to 5899, and the diversity indices, including Chao1, Shannon-Wiener, and Faith's phylogenetic diversity ranged from 7751 to 15 204, 7.386 to 8.327, and 415.77 to 679.11, respectively. The 2 most dominant phyla in the soil samples were Actinobacteria and Proteobacteria. The richness and diversity of the bacterial community were positively correlated with soil pH. The Mantel test revealed that the soil pH was the dominant factor influencing the bacterial community. The positive modular structure of co-occurrence patterns at the genus level was discovered by network analysis. The results obtained in this study provide useful information that enhances our understanding of the effects of soil properties on the bacterial communities. PMID:27374919

  14. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.

    PubMed

    He, Tianliang; Zhang, Xiaobo

    2016-04-01

    Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans. PMID:26626941

  15. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    PubMed Central

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K.; Singh, Rakshapal; Verma, Rajesh K.; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  16. Identification and ecology of bacterial communities associated with necroses of three cactus species.

    PubMed

    Foster, J L; Fogleman, J C

    1993-01-01

    To compare the bacterial communities residing in necrotic tissues of columnar cacti of the Sonoran Desert, isolates from 39 organ pipe, 19 saguaro, and 16 senita cacti were obtained. The isolates were clustered into 28 conspecific groups on the basis of their fatty acid profiles. The distributions of the individual bacterial isolates varied among cactus species. Seven of the 28 species groups were unique to a particular cactus species, whereas 8 species groups were found in all three cacti. The effective number of bacterial species for each cactus species was positively correlated with both the chemical complexity and glucose concentration of the plant tissues. The effective number of bacterial species and bacterial distribution patterns were compared with those known for communities of cactophilic yeasts. The observed bacterial distribution patterns are most likely due to differences in the chemical compositions of the three cactus species. PMID:8439142

  17. Diversity and Abundance of the Bacterial Community of the Red Macroalga Porphyra umbilicalis: Did Bacterial Farmers Produce Macroalgae?

    PubMed Central

    Miranda, Lilibeth N.; Hutchison, Keith; Grossman, Arthur R.; Brawley, Susan H.

    2013-01-01

    Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1) to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2) determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3) to determine how the microbial community associated with a laboratory strain (P.um.1) established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1) were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5–V6 and V8; 147,880 total reads). The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7). The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria) were also abundant. Sphingobacteria (Bacteroidetes) and Flavobacteria (Bacteroidetes) had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes), was abundant. Lewinella (as 66 OTUs) was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had unexpected

  18. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    PubMed Central

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449

  19. Large scale distribution of bacterial communities in the upper Paraná River floodplain

    PubMed Central

    Chiaramonte, Josiane Barros; Roberto, Maria do Carmo; Pagioro, Thomaz Aurélio

    2014-01-01

    A bacterial community has a central role in nutrient cycle in aquatic habitats. Therefore, it is important to analyze how this community is distributed throughout different locations. Thirty-six different sites in the upper Paraná River floodplain were surveyed to determine the influence of environmental variable in bacterial community composition. The sites are classified as rivers, channels, and floodplain lakes connected or unconnected to the main river channel. The bacterial community structure was analyzed by fluorescent in situ hybridization (FISH) technique, based on frequency of the main domains Bacteria and Archaea, and subdivisions of the phylum Proteobacteria (Alpha-proteobacteria, Beta-proteobacteria, Gamma-proteobacteria) and the Cytophaga-Flavobacterium cluster. It has been demonstrated that the bacterial community differed in density and frequency of the studied groups. And these differences responded to distinct characteristics of the three main rivers of the floodplain as well as to the classification of the environments found in this floodplain. We conclude that dissimilarities in the bacterial community structure are related to environmental heterogeneity, and the limnological variables that most predicted bacterial communities in the upper Paraná River floodplain was total and ammoniacal nitrogen, orthophosphate and chlorophyll-a. PMID:25763022

  20. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau.

    PubMed

    Yuan, Yanli; Si, Guicai; Wang, Jian; Luo, Tianxiang; Zhang, Gengxin

    2014-01-01

    The Tibetan Plateau, 'the third pole', is a region that is very sensitive to climate change. A better understanding of response of soil microorganisms to climate warming is important to predict soil organic matter preservation in future scenario. We selected a typically altitudinal gradient (4400 m-5200 m a.s.l) along south-facing slope of Nyainqentanglha Mountains on central Tibetan Plateau. Bacterial communities were investigated using terminal restriction fragment length polymorphism analysis (T-RFLP) combined with sequencing methods. Acidobacteria and Proteobacteria were dominant bacteria in this alpine soil. Redundancy analysis revealed that soil bacterial communities were significantly different along the large altitudinal gradient, although the dominant environmental driving factors varied at different soil depth. Specifically, our results showed that precipitation and soil NH4 + were dominant environmental factors that influence bacterial communities at 0-5 cm depth along the altitudinal gradients, whereas pH was a major influential factor at 5-20 cm soil. In this semi-arid region, precipitation rather than temperature was a main driving force on soil bacterial communities as well as on plant communities. We speculate that an increase in temperature might not significantly change soil bacterial community structures along the large altitudinal gradient, whereas precipitation change would play a more important role in affecting soil bacterial communities. PMID:23991911

  1. Temporal dynamics of sediment bacterial communities in monospecific stands of Juncus maritimus and Spartina maritima.

    PubMed

    Cleary, D F R; Polónia, A R M; Sousa, A I; Lillebø, A I; Queiroga, H; Gomes, N C M

    2016-09-01

    In the present study, we used 16S rRNA barcoded pyrosequencing to investigate to what extent monospecific stands of different salt marsh plant species (Juncus maritimus and Spartina maritima), sampling site and temporal variation affect sediment bacterial communities. We also used a bioinformatics tool, PICRUSt, to predict metagenome gene functional content. Our results showed that bacterial community composition from monospecific stands of both plant species varied temporally, but both host plant species maintained compositionally distinct communities of bacteria. Juncus sediment was characterised by higher abundances of Alphaproteobacteria, Myxococcales, Rhodospirillales, NB1-j and Ignavibacteriales, while Spartina sediment was characterised by higher abundances of Anaerolineae, Synechococcophycidae, Desulfobacterales, SHA-20 and Rhodobacterales. The differences in composition and higher taxon abundance between the sediment bacterial communities of stands of both plant species may be expected to affect overall metabolic diversity. In line with this expectation, there were also differences in the predicted enrichment of selected metabolic pathways. In particular, bacterial communities of Juncus sediment were predicted to be enriched for pathways related to the degradation of various (xenobiotic) compounds. Bacterial communities of Spartina sediment in turn were predicted to be enriched for pathways related to the biosynthesis of various bioactive compounds. Our study highlights the differences in composition and predicted functions of sediment-associated bacterial communities from two different salt marsh plant species. Loss of salt marsh habitat may thus be expected to both adversely affect microbial diversity and ecosystem functioning and have consequences for environmental processes such as nutrient cycling and pollutant remediation. PMID:27061465

  2. Profiling of root canal bacterial communities associated with chronic apical periodontitis from Brazilian and Norwegian subjects.

    PubMed

    Siqueira, José F; Rôças, Isabela N; Debelian, Gilberto J; Carmo, Flávia L; Paiva, Simone S M; Alves, Flávio R F; Rosado, Alexandre S

    2008-12-01

    The aim of this study was to compare the bacterial community profiles of the root canal microbiota associated with chronic apical periodontitis from Brazilian and Norwegian patients using the denaturing gradient gel electrophoresis (DGGE) and the ribosomal intergenic spacer analysis (RISA) approaches. DNA extracted from root canal samples was subjected to polymerase chain reaction using primers appropriate for further DGGE or RISA analysis. The resulting banding patterns representative of the bacterial community structures in samples from the two locations were compared. DGGE and RISA fingerprints showed a great interindividual variability in the bacterial community profiles, irrespective of the geographic location of the patient. However, similarities among the bacterial community DGGE profiles revealed the existence of a geography-related pattern. PMID:19026873

  3. Description of Drinking Water Bacterial Communities Using 16S rRNA Gene Sequence Analyses

    EPA Science Inventory

    Descriptions of bacterial communities inhabiting water distribution systems (WDS) have mainly been accomplished using culture-based approaches. Due to the inherent selective nature of culture-based approaches, the majority of bacteria inhabiting WDS remain uncharacterized. The go...

  4. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    EPA Science Inventory

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  5. Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities.

    PubMed

    Arenz, Brett E; Schlatter, Dan C; Bradeen, James M; Kinkel, Linda L

    2015-10-01

    A blocking primer set based on the technique described by Vestheim and Jarman (2008) was developed to reduce amplification of non-target plant DNA when conducting metagenomic studies on bacterial endophyte communities. Bacterial amplification efficiency was increased 300-fold compared to standard PCR in an Illumina-based study of Sorghastrum nutans leaves. PMID:26159909

  6. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and structure of bacterial communities was examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profile...

  7. [Impact of biocontrol agent Bacillus subtilis on bacterial communities in tobacco rhizospheric soil].

    PubMed

    You, Cai; Zhang, Li-Meng; Ji, Si-Gui; Gao, Jia-Ming; Zhang, Cheng-Sheng; Kong, Fan-Yu

    2014-11-01

    The impact of inoculation with the biocontrol agent Bacillus subtilis on bacterial communities and bacterial diversity in rhizospheric soil of Nicotiana tabacum was assessed by constructing a 16S rRNA gene clone library and conducting amplified ribosomal DNA restriction analysis (ARDRA). The bacterial diversity was evaluated by coverage value (C), Shannon index (H), Pielou evenness index (E) and Margalef richness index (R). Phylogenetic analysis revealed that the inoculation significantly affected the composition of bacterial communities in tobacco rhizospheric soil. A total of twelve bacterial groups including Acidobacteria, Proteobacteria (including α-, β-, δ-, γ-Proteobacteria) , Planctomycetes, Firmicutes, Nitrospirae, Gemmatimonadetes, Actinobacteria, Chloroflexi and Bacteroidetes were detected to be shared by inoculated soil and control soil. The community composition and proportions of different bacteria in the communities showed significant variations between the two samples. The dominant bacteria were Acidobacteria (27.1%) and Proteobacteria (26.5%) in control soil, while in the inoculated soil Proteobacteria (38.0%) and Acidobacteria (29.6%) were dominant. B. subtilis inoculation increased the numbers of γ-Proteobacteria and α-Proteobacteria but reduced the numbers of bacterial groups such as β-Proteobacteria, Planctomycetes, Firmicutes. Diversity analysis showed that bacterial diversity was rich for both soil samples, and soil bacterial Shannon index and Margalef richness index were promoted after inoculation. PMID:25898632

  8. Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms.

    PubMed

    Hunting, Ellard R; Vijver, Martina G; van der Geest, Harm G; Mulder, Christian; Kraak, Michiel H S; Breure, Anton M; Admiraal, Wim

    2015-01-01

    Decomposition of organic matter is an important ecosystem process governed in part by bacteria. The process of decomposition is expected to benefit from interspecific bacterial interactions such as resource partitioning and facilitation. However, the relative importance of resource niche breadth (metabolic diversity) and resource niche overlap (functional redundancy) on decomposition and the temporal stability of ecosystem processes received little scientific attention. Therefore, this study aims to evaluate the effect of an increase in bacterial community resemblance on both decomposition and the stability of bacterial metabolism in aquatic sediments. To this end, we performed laboratory microcosm experiments in which we examined the influence of bacterial consortia differing in number and composition of species on bacterial activity (Electron Transport System Activity, ETSA), dissolved organic carbon production and wavelet transformed measurements of redox potential (Eh). Single substrate affinities of the individual bacterial species were determined in order to calculate the metabolic diversity of the microbial community. Results presented here indicate that bacterial activity and organic matter decomposition increase with widening of the resource niche breadth, and that metabolic stability increases with increasing overlap in bacterial resource niches, hinting that resource niche overlap can promote the stability of bacterial community metabolism. PMID:25759686

  9. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    PubMed

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment. PMID:24600849

  10. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    PubMed Central

    Shen, Congcong; Ni, Yingying; Liang, Wenju; Wang, Jianjun; Chu, Haiyan

    2015-01-01

    The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD) exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon (TC), total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil TC and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient. PMID:26217308

  11. Bacterial communities and their association with the bio-drying of sewage sludge.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Yu, Jie

    2016-03-01

    Bio-drying is a technology that aims to remove water from a material using the microbial heat originating from organic matter degradation. However, the evolution of bacterial communities that are associated with the drying process has not been researched systematically. This study was performed to investigate the variations of bacterial communities and the relationships among bacterial communities, water evaporation, water generation, and organic matter degradation during the bio-drying of sewage sludge. High-throughput pyrosequencing was used to analyze the bacterial communities, while water evaporation and water generation were determined based on an in situ water vapor monitoring device. The values of water evaporation, water generation, and volatile solids degradation were 412.9 g kg(-1) sewage sludge bio-drying material (SSBM), 65.0 g kg(-1) SSBM, and 70.2 g kg(-1) SSBM, respectively. Rarefaction curves and diversity indices showed that bacterial diversity plummeted after the temperature of the bio-drying pile dramatically increased on d 2, which coincided with a remarkable increase of water evaporation on d 2. Bacterial diversity increased when the pile cooled. During the thermophilic phase, in which Acinetobacter and Bacillus were the dominant genera, the rates of water evaporation, water generation, and VS degradation peaked. These results implied that the elevated temperature reshaped the bacterial communities, which played a key role in water evaporation, and the high temperature also contributed to the effective elimination of pathogens. PMID:26724438

  12. Variations in Bacterial Community in a Temperate Lake Associated with an Agricultural Watershed.

    PubMed

    Song, Liyan; Li, Lei

    2016-08-01

    Terrestrially derived carbon and nutrients are washed into lakes, providing nutritional drivers for both microbial heterotrophy and phototrophy. Changes in the quantity and diversity of carbon and nutrients exported from watersheds in response to alterations in long-term land use have led to a need for evaluation of the linkage between watershed-exported carbon and nutrients and bacterial community structure in watershed associated lakes. To learn more about these interactions, we investigated Muskrat Lake in Michigan, which has a well-defined moderately sized watershed dominated by agriculture. We measured the water chemistry, characterized the dissolved organic carbon, and determined the structure of the bacterial communities at the inlet and center of this lake (five depths per site) over the summer and fall of 2008. The lake had temporal and rain event-based fluctuations in water chemistry, as well as temporal and rain event-dependent shifts in bacterial communities as measured by terminal restriction fragment length polymorphism. Agricultural watershed inputs were observed in the lake during and after rain events. Terminal restriction fragment length polymorphism and 454 pyrosequencing of the bacterial communities indicated that there were differences over time and that the dominant phylotypes shifted between summer and late fall. Some populations (e.g., Polynucleobacter and Mycobacterium) increased during fall, while others (e.g., Gemmatimonas) diminished. Redundancy and partitioning analyses showed that water chemistry is highly correlated with variations in the bacterial community of the lake, which explained 34 % of the variations in the bacterial community. Dissolved organic carbon had the greatest effects on variations in the Muskrat Lake bacterial community (2 %). The results of this study provide information that will enable a better understanding of the interaction between the bacterial community of lakes and changes in chemical properties as a

  13. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea).

    PubMed

    Pop Ristova, Petra; Wenzhöfer, Frank; Ramette, Alban; Felden, Janine; Boetius, Antje

    2015-06-01

    Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea. PMID:25500510

  14. Does the aboveground herbivore assemblage influence soil bacterial community composition and richness in subalpine grasslands?

    PubMed

    Hodel, Melanie; Schütz, Martin; Vandegehuchte, Martijn L; Frey, Beat; Albrecht, Matthias; Busse, Matt D; Risch, Anita C

    2014-10-01

    Grassland ecosystems support large communities of aboveground herbivores that are known to directly and indirectly affect belowground properties such as the microbial community composition, richness, or biomass. Even though multiple species of functionally different herbivores coexist in grassland ecosystems, most studies have only considered the impact of a single group, i.e., large ungulates (mostly domestic livestock) on microbial communities. Thus, we investigated how the exclusion of four groups of functionally different herbivores affects bacterial community composition, richness, and biomass in two vegetation types with different grazing histories. We progressively excluded large, medium, and small mammals as well as invertebrate herbivores using exclosures at 18 subalpine grassland sites (9 per vegetation type). We assessed the bacterial community composition using terminal restriction fragment length polymorphism (T-RFLP) at each site and exclosure type during three consecutive growing seasons (2009-2011) for rhizosphere and mineral soil separately. In addition, we determined microbial biomass carbon (MBC), root biomass, plant carbon:nitrogen ratio, soil temperature, and soil moisture. Even though several of these variables were affected by herbivore exclusion and vegetation type, against our expectations, bacterial community composition, richness, or MBC were not. Yet, bacterial communities strongly differed between the three growing seasons as well as to some extent between our study sites. Thus, our study indicates that the spatiotemporal variability in soil microclimate has much stronger effects on the soil bacterial communities than the grazing regime or the composition of the vegetation in this high-elevation ecosystem. PMID:24889285

  15. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea)

    PubMed Central

    Pop Ristova, Petra; Wenzhöfer, Frank; Ramette, Alban; Felden, Janine; Boetius, Antje

    2015-01-01

    Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea. PMID:25500510

  16. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

    PubMed Central

    Srinivasan, Sujatha; Hoffman, Noah G.; Morgan, Martin T.; Matsen, Frederick A.; Fiedler, Tina L.; Hall, Robert W.; Ross, Frederick J.; McCoy, Connor O.; Bumgarner, Roger; Marrazzo, Jeanne M.; Fredricks, David N.

    2012-01-01

    Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in

  17. Characterisation of the bacterial community structures in the intestine of Lampetra morii.

    PubMed

    Li, Yingying; Xie, Wenfang; Li, Qingwei

    2016-07-01

    The metagenomic analysis and 16S rDNA sequencing method were used to investigate the bacterial community in the intestines of Lampetra morii. The bacterial community structure in L. morii intestine was relatively simple. Eight different operational taxonomic units were observed. Chitinophagaceae_unclassified (26.5 %) and Aeromonas spp. (69.6 %) were detected as dominant members at the genus level. The non-dominant genera were as follows: Acinetobacter spp. (1.4 %), Candidatus Bacilloplasma (2.5 %), Enterobacteria spp. (1.5 %), Shewanella spp. (0.04 %), Vibrio spp. (0.09 %), and Yersinia spp. (1.8 %). The Shannon-Wiener (H) and Simpson (1-D) indexes were 0.782339 and 0.5546, respectively. The rarefaction curve representing the bacterial community richness and Shannon-Wiener curve representing the bacterial community diversity reached asymptote, which indicated that the sequence depth were sufficient to represent the majority of species richness and bacterial community diversity. The number of Aeromonas in lamprey intestine was two times higher after stimulation by lipopolysaccharide than PBS. This study provides data for understanding the bacterial community harboured in lamprey intestines and exploring potential key intestinal symbiotic bacteria essential for the L. morii immune response. PMID:27180095

  18. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    PubMed

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities. PMID:26543266

  19. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary.

    PubMed

    Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047

  20. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary

    PubMed Central

    Spietz, Rachel L.; Williams, Cheryl M.; Rocap, Gabrielle; Horner-Devine, M. Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047

  1. Can the freshwater bacterial communities shift to the "marine-like" taxa?

    PubMed

    Zhang, Lei; Gao, Guang; Tang, Xiangming; Shao, Keqiang

    2014-11-01

    A mesocosm experiment was used to study the response of a freshwater bacterial community to increasing salinity. Bacterial community composition in the control and saline groups was analyzed using polymerase chain reaction (PCR)-terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA genes, followed by clonal sequencing of eight selected samples. Cluster analysis and phylogenetic analysis revealed that the bacterial communities in pre- and post-salt addition samples were significantly different. Detailed analysis showed: (i) the existing bacterial taxa markedly declined from freshwater to hypersaline habitats, although some taxa maintain balanced growth over a small salinity range through inter-genus changes in community structures; (ii) the addition of salt induced a clear shift in the community structure toward a striking increase in the relative abundance of the latent "marine-like" genera (e.g., Alcanivorax and Roseovarius). The reasons may be that freshwater bacteria adapt to live in low salt concentrations and low osmotic pressure. They were not adapted to high concentrations of salt, and their acute response to increasing salinity resulted in significantly decreased numbers. However, as the salinity increases, rare members of the ever-present community (rare or dormant bacterial taxa in the "microbial seed bank") rise to the fore, while previous dominant members drop away. This study provides direct evidence for bacterial succession from halosensitive taxa in freshwater to halotolerant ones in response to water salinization. PMID:24687773

  2. Parallel changes in the taxonomical structure of bacterial communities exposed to a similar environmental disturbance

    PubMed Central

    Laplante, Karine; Derome, Nicolas

    2011-01-01

    Bacterial communities play a central role in ecosystems, by regulating biogeochemical fluxes. Therefore, understanding how multiple functional interactions between species face environmental perturbations is a major concern in conservation biology. Because bacteria can use several strategies, including horizontal gene transfers (HGT), to cope with rapidly changing environmental conditions, potential decoupling between function and taxonomy makes the use of a given species as a general bioindicator problematic. The present work is a first step to characterize the impact of a recent polymetallic gradient over the taxonomical networks of five lacustrine bacterial communities. Given that evolutionary convergence represents one of the best illustration of natural selection, we focused on a system composed of two pairs of impacted and clean lakes in order to test whether similar perturbation exerts a comparable impact on the taxonomical networks of independent bacterial communities. First, we showed that similar environmental stress drove parallel structural changes at the taxonomic level on two independent bacterial communities. Second, we showed that a long-term exposure to contaminant gradients drove significant taxonomic structure changes within three interconnected bacterial communities. Thus, this model lake system is relevant to characterize the strategies, namely acclimation and/or adaptation, of bacterial communities facing environmental perturbations, such as metal contamination. PMID:22393517

  3. Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development.

    PubMed

    Deveau, Aurélie; Antony-Babu, Sanjay; Le Tacon, François; Robin, Christophe; Frey-Klett, Pascale; Uroz, Stéphane

    2016-07-01

    Ectomycorrhizae create a multitrophic ecosystem formed by the association between tree roots, mycelium of the ectomycorrhizal fungus, and a complex microbiome. Despite their importance in the host tree's physiology and in the functioning of the ectomycorrhizal symbiosis, detailed studies on ectomycorrhiza-associated bacterial community composition and their temporal dynamics are rare. Our objective was to investigate the composition and dynamics of Tuber melanosporum ectomycorrhiza-associated bacterial communities from summer to winter seasons in a Corylus avellana tree plantation. We used 16S ribosomal RNA (rRNA)-based pyrosequencing to compare the bacterial community structure and the richness in T. melanosporum's ectomycorrhizae with those of the bulk soil. The T. melanosporum ectomycorrhizae harbored distinct bacterial communities from those of the bulk soil, with an enrichment in Alpha- and Gamma-proteobacteria. In contrast to the bacterial communities of truffle ascocarps that vastly varies in composition and richness during the maturation of the fruiting body and to those from the bulk soil, T. melanosporum ectomycorrhiza-associated bacterial community composition stayed rather stable from September to January. Our results fit with a recent finding from the same experimental site at the same period that a continuous supply of carbohydrates and nitrogen occurs from ectomycorrhizae to the fruiting bodies during the maturation of the ascocarps. We propose that this creates a stable niche in the ectomycorrhizosphere although the phenology of the tree changes. PMID:26781750

  4. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  5. Deterministic assembly processes govern bacterial community structure in the Fynbos, South Africa.

    PubMed

    Moroenyane, I; Chimphango, S B M; Wang, J; Kim, H-K; Adams, Jonathan Miles

    2016-08-01

    The Mediterranean Fynbos vegetation of South Africa is well known for its high levels of diversity, endemism, and the existence of very distinct plant communities on different soil types. Studies have documented the broad taxonomic classification and diversity patterns of soil microbial diversity, but none has focused on the community assembly processes. We hypothesised that bacterial phylogenetic community structure in the Fynbos is highly governed by deterministic processes. We sampled soils in four Fynbos vegetation types and examined bacterial communities using Illumina HiSeq platform with the 16S rRNA gene marker. UniFrac analysis showed that the community clustered strongly by vegetation type, suggesting a history of evolutionary specialisation in relation to habitats or plant communities. The standardised beta mean nearest taxon distance (ses. β NTD) index showed no association with vegetation type. However, the overall phylogenetic signal indicates that distantly related OTUs do tend to co-occur. Both NTI (nearest taxon index) and ses. β NTD deviated significantly from null models, indicating that deterministic processes were important in the assembly of bacterial communities. Furthermore, ses. β NTD was significantly higher than that of null expectations, indicating that co-occurrence of related bacterial lineages (over-dispersion in phylogenetic beta diversity) is determined by the differences in environmental conditions among the sites, even though the co-occurrence pattern did not correlate with any measured environmental parameter, except for a weak correlation with soil texture. We suggest that in the Fynbos, there are frequent shifts of niches by bacterial lineages, which then become constrained and evolutionary conserved in their new environments. Overall, this study sheds light on the relative roles of both deterministic and neutral processes in governing bacterial communities in the Fynbos. It seems that deterministic processes play a major

  6. Bacterial communities in the phylloplane of Prunus species.

    PubMed

    Jo, Yeonhwa; Cho, Jin Kyong; Choi, Hoseong; Chu, Hyosub; Lian, Sen; Cho, Won Kyong

    2015-04-01

    Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail. PMID:25515303

  7. Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome

    PubMed Central

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated. PMID:24146873

  8. Bacterial communities and enzyme activities of PAHs polluted soils.

    PubMed

    Andreoni, V; Cavalca, L; Rao, M A; Nocerino, G; Bernasconi, S; Dell'Amico, E; Colombo, M; Gianfreda, L

    2004-11-01

    Three soils (i.e. a Belgian soil, B-BT, a German soil, G, and an Italian agricultural soil, I-BT) with different properties and hydrocarbon-pollution history with regard to their potential to degrade phenanthrene were investigated. A chemical and microbiological evaluation of soils was done using measurements of routine chemical properties, bacterial counts and several enzyme activities. The three soils showed different levels of polycyclic aromatic hydrocarbons (PAHs), being their contamination strictly associated to their pollution history. High values of enzyme activities and culturable heterotrophic bacteria were detected in the soil with no or negligible presence of organic pollutants. Genetic diversity of soil samples and enrichment cultures was measured as bands on denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences from the soil and enrichment community DNAs. When analysed by Shannon index (H'), the highest genetic biodiversity (H'=2.87) was found in the Belgian soil B-BT with a medium-term exposition to PAHs and the poorest biodiversity (H'=0.85) in the German soil with a long-term exposition to alkanes and PAHs and where absence, or lower levels of enzyme activities were measured. For the Italian agricultural soil I-BT, containing negligible amounts of organic pollutants but the highest Cu content, a Shannon index=2.13 was found. The enrichment of four mixed cultures capable of degrading solid phenanthrene in batch liquid systems was also studied. Phenanthrene degradation rates in batch systems were culture-dependent, and simple (one-slope) and complex (two-slope) kinetic behaviours were observed. The presence of common bands of microbial species in the cultures and in the native soil DNA indicated that those strains could be potential in situ phenanthrene degraders. Consistent with this assumption are the decrease of PAH and phenanthrene contents of Belgian soil B-BT and the isolation of phenanthrene-degrading bacteria. From

  9. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  10. Airborne Bacterial Communities in Residences: Similarities and Differences with Fungi

    PubMed Central

    Adams, Rachel I.; Miletto, Marzia; Lindow, Steven E.; Taylor, John W.; Bruns, Thomas D.

    2014-01-01

    Genetic analysis of indoor air has uncovered a rich microbial presence, but rarely have both the bacterial and fungal components been examined in the same samples. Here we present a study that examined the bacterial component of passively settled microbes from both indoor and outdoor air over a discrete time period and for which the fungal component has already been reported. Dust was allowed to passively settle in five common locations around a home − living room, bedroom, bathroom, kitchen, and balcony − at different dwellings within a university-housing complex for a one-month period at two time points, once in summer and again in winter. We amplified the bacterial 16S rRNA gene in these samples and analyzed them with high-throughput sequencing. Like fungal OTU-richness, bacterial OTU-richness was higher outdoors then indoors and was invariant across different indoor room types. While fungal composition was structured largely by season and residential unit, bacterial composition varied by residential unit and room type. Bacteria from putative outdoor sources, such as Sphingomonas and Deinococcus, comprised a large percentage of the balcony samples, while human-associated taxa comprised a large percentage of the indoor samples. Abundant outdoor bacterial taxa were also observed indoors, but the reverse was not true; this is unlike fungi, in which the taxa abundant indoors were also well-represented outdoors. Moreover, there was a partial association of bacterial composition and geographic distance, such that samples separated by even a few hundred meters tended have greater compositional differences than samples closer together in space, a pattern also observed for fungi. These data show that while the outdoor source for indoor bacteria and fungi varies in both space and time, humans provide a strong and homogenizing effect on indoor bacterial bioaerosols, a pattern not observed in fungi. PMID:24603548

  11. Bacterial Communities in Malagasy Soils with Differing Levels of Disturbance Affecting Botanical Diversity

    PubMed Central

    Blasiak, Leah C.; Schmidt, Alex W.; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L.; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P.; Schmidt, Thomas M.; Hill, Russell T.

    2014-01-01

    Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas. PMID:24465484

  12. Bacterial community structure and function shift across a northern boreal forest fire chronosequence

    PubMed Central

    Sun, Hui; Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Asiegbu, Fred O.; Heinonsalo, Jussi

    2016-01-01

    Soil microbial responses to fire are likely to change over the course of forest recovery. Investigations on long-term changes in bacterial dynamics following fire are rare. We characterized the soil bacterial communities across three different times post fire in a 2 to 152-year fire chronosequence by Illumina MiSeq sequencing, coupled with a functional gene array (GeoChip). The results showed that the bacterial diversity did not differ between the recently and older burned areas, suggesting a concomitant recovery in the bacterial diversity after fire. The differences in bacterial communities over time were mainly driven by the rare operational taxonomic units (OTUs < 0.1%). Proteobacteria (39%), Acidobacteria (34%) and Actinobacteria (17%) were the most abundant phyla across all sites. Genes involved in C and N cycling pathways were present in all sites showing high redundancy in the gene profiles. However, hierarchical cluster analysis using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting potential differences in maintaining essential biogeochemical soil processes. Soil temperature, pH and water contents were the most important factors in shaping the bacterial community structures and function. This study provides functional insight on the impact of fire disturbance on soil bacterial community. PMID:27573440

  13. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Comte, J.; Lovejoy, C.; Crevecoeur, S.; Vincent, W. F.

    2015-07-01

    Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their microbial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-basin lakes that are located in distinct valleys along a North-South permafrost degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to determine co-occurrence patterns among bacterial taxa, and then analyzed these results relative to environmental variables to identify factors controlling bacterial community structure. Network analysis was applied to identify possible ecological linkages among the bacterial taxa and with abiotic and biotic variables. The results showed an overall high level of shared taxa among bacterial communities within each valley, however the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the different valleys that were statistically related to dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-occurrence networks revealed complex interdependencies within the bacterioplankton communities and showed contrasting linkages to environmental conditions among the main bacterial phyla. The thaw pond networks were composed of a limited number of highly connected taxa. This "small world network" property would render the communities more robust to environmental change but vulnerable to the loss of microbial keystone species.

  14. Regulation of bacterial communities through antimicrobial activity by the coral holobiont.

    PubMed

    Kvennefors, E Charlotte E; Sampayo, Eugenia; Kerr, Caroline; Vieira, Genyess; Roff, George; Barnes, Andrew C

    2012-04-01

    Interactions between corals and associated bacteria and amongst these bacterial groups are likely to play a key role in coral health. However, the complexity of these interactions is poorly understood. We investigated the functional role of specific coral-associated bacteria in maintaining microbial communities on the coral Acropora millepora (Ehrenberg 1834) and the ability of coral mucus to support or inhibit bacterial growth. Culture-independent techniques were used to assess bacterial community structures whilst bacterial culture was employed to assess intra- and inter-specific antimicrobial activities of bacteria. Members of Pseudoalteromonas and ribotypes closely related to Vibrio coralliilyticus displayed potent antimicrobial activity against a range of other cultured isolates and grew readily on detached coral mucus. Although such bacterial ribotypes would be expected to have a competitive advantage, they were rare or absent on intact and healthy coral colonies growing in situ (analysed using denaturing gradient gel electrophoresis and 16S rRNA gene sequencing). The most abundant bacterial ribotypes found on healthy corals were Gammaproteobacteria, previously defined as type A coral associates. Our results indicate that this group of bacteria and specific members of the Alphaproteobacteria described here as 'type B associates' may be important functional groups for coral health. We suggest that bacterial communities on coral are kept in check by a combination of host-derived and microbial interactions and that the type A associates in particular may play a key role in maintaining stability of microbial communities on healthy coral colonies. PMID:21984347

  15. The protective role of endogenous bacterial communities in chironomid egg masses and larvae

    PubMed Central

    Senderovich, Yigal; Halpern, Malka

    2013-01-01

    Insects of the family Chironomidae, also known as chironomids, are distributed worldwide in a variety of water habitats. These insects display a wide range of tolerance toward metals and organic pollutions. Bacterial species known for their ability to degrade toxicants were identified from chironomid egg masses, leading to the hypothesis that bacteria may contribute to the survival of chironomids in polluted environments. To gain a better understanding of the bacterial communities that inhabit chironomids, the endogenous bacteria of egg masses and larvae were studied by 454-pyrosequencing. The microbial community of the egg masses was distinct from that of the larval stage, most likely due to the presence of one dominant bacterial Firmicutes taxon, which consisted of 28% of the total sequence reads from the larvae. This taxon may be an insect symbiont. The bacterial communities of both the egg masses and the larvae were found to include operational taxonomic units, which were closely related to species known as toxicant degraders. Furthermore, various bacterial species with the ability to detoxify metals were isolated from egg masses and larvae. Koch-like postulates were applied to demonstrate that chironomid endogenous bacterial species protect the insect from toxic heavy metals. We conclude that chironomids, which are considered pollution tolerant, are inhabited by stable endogenous bacterial communities that have a role in protecting their hosts from toxicants. This phenomenon, in which bacteria enable the continued existence of their host in hostile environments, may not be restricted only to chironomids. PMID:23804150

  16. Bacterial communities in Malagasy soils with differing levels of disturbance affecting botanical diversity.

    PubMed

    Blasiak, Leah C; Schmidt, Alex W; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P; Schmidt, Thomas M; Hill, Russell T

    2014-01-01

    Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas. PMID:24465484

  17. Involvement of dietary salt in shaping bacterial communities in European sea bass (Dicentrarchus labrax)

    PubMed Central

    Sun, Haifeng; Jami, Elie; Harpaz, Sheenan; Mizrahi, Itzhak

    2013-01-01

    Bacteria associated with the digestive tract of multicellular organisms have been shown to play a major role in their hosts' functioning. In fish, it has been proposed that food fermentation occurs inside the pyloric ceca, pouch like organs found in their digestive tract. However, this notion remains controversial. Furthermore, changes in pyloric cecal bacterial populations under different diets have yet to be demonstrated in fish. In this study, we explore the changes occurring in the bacterial community residing in the pyloric ceca of carnivorous fish fed different diets, which were shown to induce different growth rates. Our results revealed that different diets do indeed induce distinct bacterial compositions within the pyloric ceca. We found that, when salt was added to a low fish meal diet, the bacterial changes were accompanied by a significant enhancement in weight gain, hinting at a possible involvement of the bacterial community in energy harvest. PMID:23558231

  18. [Effects of rotation and intercropping on bacterial communities in rhizosphere soil of cucumber].

    PubMed

    Wu, Feng-zhi; Wang, Shu; Yang, Yang

    2008-12-01

    By the method of PCR-DGGE, this paper studied the effects of rotation with wheat, soybean, villose vetch, clover, and alfalfa and intercropping with onion and garlic on the bacterial communities in rhizosphere soil of cucumber. The results showed that rotation and intercropping with test plants increased the diversity and evenness indices of bacterial communities in cucumber rhizosphere soil, and also, cucumber yield. The sequencing of DGGE bands indicated that most of the bands had high homology with uncultured bacterial species, and were of Sphingobacterium and Proteobacteria. High bacterium G+C was only detected when cucumber was intercropped with onion. The diversity of soil bacterial communities varied with the growth stages of cucumber, being the highest at vigorous fruiting stage. It was suggested that intercropping with onion and rotation with wheat were the best cultivation modes of cucumber. PMID:19288729

  19. Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient

    NASA Astrophysics Data System (ADS)

    Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.

    1987-01-01

    Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.

  20. Bacterial community in sclerotia of Cenococcum species and soil in sub-alpine forest, central Japan

    NASA Astrophysics Data System (ADS)

    Nonoyama, Y.; Narisawa, K.; Ohta, H.; Watanabe, M.

    2009-04-01

    Species of Cenococcum, ectomycorrhizal fungi, may be particularly abundant in cold- or nutrient-stressed habitats. The fungus is easily recognized by its jet-black hyphae, and distinct compact masses of fungal mycelium called sclerotia. They are hard, black, comparatively smooth and mostly spherical. Sclerotia are formed in rhizosphere and can provide sufficient inoculums for several years. The purpose of this study is to investigate bacterial community inside sclerotia, with an interest on contribution of sclerotia to microbial diversity in rhizosphere. To investigate bacterial community inside of the fungal sclerotia by 16S rDNA gene clone library, several hundred of sclerotia (ca. 1g) were collected from sub-alpine forest soil in central Japan. Furthermore, three sclerotium grains were applied to investigate internal bacteria community by culture method. The isolated bacterial strains were then proceeded to determine their 16S rDNA partial sequences. The predominant group determined by clone library analysis of 16S ribosomal RNA genes with DNA from the sclerotia was Acidobacteria in both sclerotia and soil. Bacterial community of sclerotia showed higher diversity compared to soil. On the contrary, bacterial flora isolated from single sclerotium differed each other. Additionally, the bacterial community was composed by limited species of related genus.

  1. Bacterial communities associated with the ctenophores Mnemiopsis leidyi and Beroe ovata.

    PubMed

    Daniels, Camille; Breitbart, Mya

    2012-10-01

    Residing in a phylum of their own, ctenophores are gelatinous zooplankton that drift through the ocean's water column. Although ctenophores are known to be parasitized by a variety of eukaryotes, no studies have examined their bacterial associates. This study describes the bacterial communities associated with the lobate ctenophore Mnemiopsis leidyi and its natural predator Beroe ovata in Tampa Bay, Florida, USA. Investigations using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of 16S rRNA genes demonstrated that ctenophore bacterial communities were distinct from the surrounding water. In addition, each ctenophore genus contained a unique microbiota. Ctenophore samples contained fewer bacterial operational taxonomic units (OTUs) by T-RFLP and lower diversity communities by 16S rRNA gene sequencing than the water column. Both ctenophore genera contained sequences related to bacteria previously described in marine invertebrates, and sequences similar to a sea anemone pathogen were abundant in B. ovata. Temporal sampling revealed that the ctenophore-associated bacterial communities varied over time, with no single OTU detected at all time points. This is the first report of distinct and dynamic bacterial communities associated with ctenophores, suggesting that these microbial consortia may play important roles in ctenophore ecology. Future work needs to elucidate the functional roles and mode of acquisition of these bacteria. PMID:22571334

  2. Characteristics of aquatic bacterial community and the influencing factors in an urban river.

    PubMed

    Wang, Peng; Chen, Bo; Yuan, Ruiqiang; Li, Chuangqiong; Li, Yan

    2016-11-01

    Bacteria play a critical role in environmental and ecological processes in river ecosystems. We studied the bacterial community in the Ganjiang River, a major tributary of the Yangtze River, as it flowed through Nanchang, the largest city in the Ganjiang River basin. Water was sampled at five sites monthly during the wet season, and the bacterial community was characterized using Illumina high-throughput sequencing. A total of 811 operational taxonomic units (OTUs) were observed for all samples, ranging from 321 to 519 for each sample. The bacterial communities were maintained by a core of OTUs that persisted longitudinally and monthly. Actinobacteria (41.17% of total sequences) and Proteobacteria (31.80%) were the dominant phyla, while Firmicutes (mostly genus Lactococcus) became most abundant during flooding. Temperature and flow rate, rather than water chemistry, were the main factors influencing the bacterial community in river water. Temperature was the best individual parameter explaining the variations in OTU abundance, while flow rate was the best individual parameter explaining the variations in phylum abundance. Except for Proteobacteria, the relative abundance of bacterial phyla did not differ significantly between sites, and the degrees of influence of urban landscape on the bacterial community were estimated to be 17%-34%. PMID:27348702

  3. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee.

    PubMed

    McFrederick, Quinn S; Rehan, Sandra M

    2016-05-01

    Many insects obtain gut microbes from their diet, but how a mother's foraging patterns influence the microbes found in her offspring's food remains an open question. To address this gap, we studied a bee that forages for pollen from multiple species of plants and may therefore acquire diverse bacteria from different plants. We tested the hypothesis that pollen diversity correlates with bacterial diversity by simultaneously characterizing these two communities in bee brood provisions for the first time. We used deep sequencing of the plant RBCL gene and the bacterial 16S rRNA gene to characterize pollen and bacterial diversity. We then tested for associations between pollen and bacterial species richness and community composition, as well as co-occurrence of specific bacteria and pollen types. We found that both pollen and bacterial communities were extremely diverse, indicating that mother bees visit a wide variety of flowers for pollen and nectar and subsequently bring a diversity of microbes back into their nests. Pollen and bacterial species richness and community composition, however, were not correlated. Certain pollen types significantly co-occurred with the most proportionally abundant bacteria, indicating that the plants these pollen types came from may serve as reservoirs for these bacteria. Even so, the overall diversity of these communities appears to mask these associations at a broader scale. Further study of these pollen and bacteria associations will be important for understanding the complicated relationship between bacteria and wild bees. PMID:26945527

  4. Synergistic effect of crude oil plus dispersant on bacterial community in a louisiana salt marsh sediment.

    PubMed

    Al-Jawasim, Mohammed; Yu, Kewei; Park, Joong-Wook

    2015-09-01

    A combined effect of crude oil plus dispersant (Corexit 9500A) significantly altered indigenous bacterial communities in a Louisiana salt marsh sediment after 30 days of incubation; the crude oil and/or Corexit 9500A treatments triggered shifts in bacterial communities and the shifted bacterial structure by crude oil plus Corexit 9500A was considerably different from those by either crude oil or Corexit 9500A. However, the synergistic effect of crude oil plus Corexit 9500A was not observed after 7 days of incubation; the bacterial community was slightly shifted by Corexit 9500A and the crude oil did not trigger any bacterial community shift after 7 days of incubation. DNA sequencing data indicated that Chromobacterium species was enriched in the Corexit 9500A microcosms after 7 days of incubation, while Pseudomonas, Advenella, Acidocella and Dyella spp. were enriched after 30 days of incubation. Parvibaculum was a dominant species in the crude oil microcosms after 30 days of incubation. Rhodanobacter, Dyella and Frateuria spp. were dominant in crude oil plus Corexit 9500A microcosms after 30 days of incubation. Our data show that the effect of crude oil plus Corexit 9500A on bacterial community is synergistic, and thus the dispersant effect should be considered with the spilled oil to correctly evaluate the environmental impact. PMID:26316543

  5. Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India

    PubMed Central

    Ghosh, Devanita; Bhadury, Punyasloke; Routh, Joyanto

    2014-01-01

    High arsenic (As) concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variation within the As contaminated Bengal Delta Plain (BDP) aquifers of India. Groundwater samples collected from two shallow aquifers in Karimpur II (West Bengal, India), during years 2010 and 2011, were investigated to trace the effects immediately after monsoon period (precipitation) on community structure and diversity of bacterial assemblages with a focus on arsenite oxidizing bacterial phyla for two successive years. The study focused on amplification, clone library generation and sequencing of the arsenite oxidase large sub-unit gene aioA and 16S rRNA marker, with respect to changes in elemental concentrations. New set of primers were designed to amplify the aioA gene as a phylogenetic marker to study taxonomically diverse arsenite oxidizing bacterial groups in these aquifers. The overall narrow distribution of bacterial communities based on aioA and 16S rRNA sequences observed was due to poor nutrient status and anoxic conditions in these As contaminated aquifers. Proteobacteria was the dominant phylum detected, within which Acidovorax, Hydrogenophaga, Albidiferax, Bosea, and Polymorphum were the major arsenite oxidizing bacterial genera based on the number of clones sequenced. The structure of bacterial assemblages including those of arsenite oxidizing bacteria seems to have been affected by increase in major elemental concentrations (e.g., As, Fe, S, and Si) within two sampling sessions, which was supported by statistical analyses. One of the significant findings of this study is detection of novel lineages of 16S rRNA-like bacterial sequences indicating presence of

  6. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  7. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters.

    PubMed

    Bainbridge, Melissa L; Cersosimo, Laura M; Wright, André-Denis G; Kraft, Jana

    2016-05-01

    Rumen bacteria form a dynamic, complex, symbiotic relationship with their host, degrading forages to provide volatile fatty acids (VFA) and other substrates as energy to the animal. The objectives were to characterize rumen bacteria in three genetic lines of primiparous dairy cattle, Holstein (HO,n= 7), Jersey (JE,n= 8), and HO × JE crossbreeds (CB,n= 7) across a lactation [3, 93, 183 and 273 days in milk (DIM)] and correlate these factors with VFA, bacterial cell membrane fatty acids (FA), and animal production (i.e. milk yield). This study employed Illumina MiSeq (v. 3) to investigate rumen bacterial communities and gas-liquid chromatography/mass spectroscopy to identify bacterial membrane FA. Lactation stage had a prominent effect on rumen bacterial communities, whereas genetics had a lesser effect on rumen bacteria. The FA composition of bacterial cell membranes was affected by both lactation stage and genetics. Few correlations existed between VFA and bacterial communities; however, moderate correlations occurred between milk yield, protein percentage, fat yield and rumen bacterial communities. Positive correlations were found between branched-chain FA (BCFA) in bacterial cell membranes and bacterial genera. In conclusion, bacterial communities and their FA compositions are more affected by stage of lactation than by genetics of dairy cow. PMID:26985012

  8. Changes in the Airborne Bacterial Community in Outdoor Environments following Asian Dust Events

    PubMed Central

    Yamaguchi, Nobuyasu; Park, Jonguk; Kodama, Makiko; Ichijo, Tomoaki; Baba, Takashi; Nasu, Masao

    2014-01-01

    Bacterial abundance and community compositions have been examined in aeolian dust in order to clarify their possible impacts on public health and ecosystems. The influence of transcontinentally transported bacterial cells on microbial communities in the outdoor environments of downwind areas should be determined because the rapid influx of a large amount of bacterial cells can disturb indigenous microbial ecosystems. In the present study, we analyzed bacteria in air samples (approximately 100 m3 d−1) that were collected on both Asian dust days and non-Asian dust days over 2 years (between November 2010 and July 2012). Changes in bacterial abundance and community composition were investigated based on their 16S rRNA gene amount and sequence diversity. Seasonal monitoring revealed that airborne bacterial abundance was more than 10-fold higher on severe dust days, while moderate dust events did not affect airborne bacterial abundance. A comparison of bacterial community compositions revealed that bacteria in Asian dust did not immediately disturb the airborne microbial community in areas 3,000–5,000 km downwind of dust source regions, even when a large amount of bacterial cells were transported by the atmospheric event. However, microbes in aeolian dust may have a greater impact on indigenous microbial communities in downwind areas near the dust source. Continuous temporal and spatial analyses from dust source regions to downwind regions (e.g., from the Gobi desert to China, Korea, Japan, and North America) will assist in estimating the impact of atmospherically transported bacteria on indigenous microbial ecosystems in downwind areas. PMID:24553107

  9. ACTION OF A FLUORANTHENE-UTILIZING BACTERIAL COMMUNITY OF POLYCYLIC AROMATIC HYDROCARBON COMPONENTS OF CREOSOTE

    EPA Science Inventory

    Cultures enriched by serial transfer through a mineral salts medium containing fluoranthene were used to establish a stable, 7-membered bacterial community from a sandy soil highly contaminated with coal-tar creosote. his community exhibited an ability to utilize fluoranthene as ...

  10. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae.

    PubMed

    Mason, Charles J; Raffa, Kenneth F

    2014-06-01

    Insects are associated with a diversity of bacteria that colonize their midguts. The extent to which these communities reflect maternal transmission, environmental acquisition, and subsequent structuring by the extreme conditions within the insect gut are poorly understood in many species. We used gypsy moth (Lymantria dispar L.) as a model to investigate interactions between egg mass and environmental sources of bacteria on larval midgut communities. Egg masses were collected from several wild and laboratory populations, and the effects of diet, initial egg mass community, and internal host environment were evaluated using 454 16S-rRNA gene pyrosequencing. Wild populations were highly diverse, while laboratory-maintained egg masses were associated with few operational taxonomic units. As larvae developed, their midgut bacterial communities became more similar to each other and the consumed diet despite initial differences in egg mass-associated bacteria. Subsequent experiments revealed that while midgut membership was more similar to bacteria associated with diet than with egg mass-associated bacteria, we were unable to detect distinct, persistent differences attributable to specific host plants. The differences between foliar communities and midgut communities of larvae that ingested them were owing to relative changes in populations of several bacteria phylotypes. We conclude that gypsy moth has a relatively characteristic midgut bacterial community that is reflective of, but ultimately distinct from, its foliar diet. This work demonstrates that environmental acquisition of diverse microbes can lead to similar midgut bacterial assemblages, underscoring the importance of host physiological environment in structuring bacterial communities. PMID:24780292

  11. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria

    PubMed Central

    Šimek, Karel; Kasalický, Vojtěch; Jezbera, Jan; Horňák, Karel; Nedoma, Jiří; Hahn, Martin W; Bass, David; Jost, Steffen; Boenigk, Jens

    2013-01-01

    Different bacterial strains can have different value as food for heterotrophic nanoflagellates (HNF), thus modulating HNF growth and community composition. We examined the influence of prey food quality using four Limnohabitans strains, one Polynucleobacter strain and one freshwater actinobacterial strain on growth (growth rate, length of lag phase and growth efficiency) and community composition of a natural HNF community from a freshwater reservoir. Pyrosequencing of eukaryotic small subunit rRNA amplicons was used to assess time-course changes in HNF community composition. All four Limnohabitans strains and the Polynucleobacter strain yielded significant HNF community growth while the actinobacterial strain did not although it was detected in HNF food vacuoles. Notably, even within the Limnohabitans strains we found significant prey-related differences in HNF growth parameters, which could not be related only to size of the bacterial prey. Sequence data characterizing the HNF communities showed also that different bacterial prey items induced highly significant differences in community composition of flagellates. Generally, Stramenopiles dominated the communities and phylotypes closely related to Pedospumella (Chrysophyceae) were most abundant bacterivorous flagellates rapidly reacting to addition of the bacterial prey of high food quality. PMID:23552621

  12. Molecular Assessment of Bacterial Community Dynamics and Functional End Points during Sediment Bioaccumulation Tests.

    PubMed

    Diepens, Noël J; Dimitrov, Mauricio R; Koelmans, Albert A; Smidt, Hauke

    2015-11-17

    Whole sediment toxicity tests play an important role in environmental risk assessment of organic chemicals. It is not clear, however, to what extent changing microbial community composition and associated functions affect sediment test results. We assessed the development of bacterial communities in artificial sediment during a 28 day bioaccumulation test with polychlorinated biphenyls, chlorpyrifos, and four marine benthic invertebrates. DGGE and 454-pyrosequencing of PCR-amplified 16S rRNA genes were used to characterize bacterial community composition. Abundance of total bacteria and selected genes encoding enzymes involved in important microbially mediated ecosystem functions were measured by qPCR. Community composition and diversity responded most to the time course of the experiment, whereas organic matter (OM) content showed a low but significant effect on community composition, biodiversity and two functional genes tested. Moreover, OM content had a higher influence on bacterial community composition than invertebrate species. Medium OM content led to the highest gene abundance and is preferred for standard testing. Our results also indicated that a pre-equilibration period is essential for growth and stabilization of the bacterial community. The observed changes in microbial community composition and functional gene abundance may imply actual changes in such functions during tests, with consequences for exposure and toxicity assessment. PMID:26466173

  13. Sea urchin larvae decipher the epiphytic bacterial community composition when selecting sites for attachment and metamorphosis.

    PubMed

    Nielsen, Shaun J; Harder, Tilmann; Steinberg, Peter D

    2015-01-01

    Most marine invertebrates have dispersive larvae and relatively immobile adults. These developmental stages are linked by a settlement event, which is often mediated by specific cues in bacterial biofilms. While larvae distinguish between biofilms from different environments, it remains unknown if they receive information from all, only a few or even just a single bacterial species in natural biofilms. Here we asked how specific is larval settlement to the bacterial community structure and/or taxonomically distinguishable groups of bacteria in epiphytic marine biofilms? We used novel multivariate statistical approaches to investigate if larval settlement of two sea urchins correlated with the microbial community composition. Larval settlement of Heliocidaris erythrogramma revealed a strong correlation with the community composition, highlighted by canonical analysis of principle components, a constrained ordination technique. Using this technique, the importance of operational taxonomic units (OTUs) within communities relative to larval settlement was investigated. Larval settlement not only correlated, both positively and negatively, with the epiphytic bacterial community composition but also with the relative abundance of few OTUs within these communities. In contrast, no such correlation was observed for the other urchin, Holopneustes purpurascens, whose larvae likely respond to bacterial biofilms in a more general way and specifically respond to a defined settlement cue of algal origin. PMID:25764535

  14. Shift of Bacterial Community in Synanthropic Mite Tyrophagus putrescentiae Induced by Fusarium Fungal Diet

    PubMed Central

    Hubert, Jan; Nesvorná, Marta; Ságová-Marečková, Markéta; Kopecký, Jan

    2012-01-01

    Background Tyrophagus putrescentiae (Acari: Astigmata) and Fusarium sp. co-occur in poorly managed grain. In a laboratory experiment, mite grazing resulted in significant reduction of fungal mycelium on cultivation plates. The destruction of mycelium appeared to be a result of an interaction between the mites, fungi and associated bacteria. Methodology and Principal Findings A laboratory experiment was performed to simulate a situation of grain multiinfested by mites and Fusarium fungi. Changes of mite-associated bacterial community in T. putrescentiae were described in 3 habitats: (i) T. putrescentiae mites from a rearing diet prior to their transfer to fungal diet; (ii) fungal mycelium before mite introduction; (iii) mites after 7 day diet of each Fusarium avenaceum, F. culmorum, F. poae and F. verticillioides. Bacterial communities were characterized by 16 S rRNA gene sequencing. In total, 157 nearly full-length 16 S rRNA gene sequences from 9 samples representing selected habitats were analyzed. In the mites, the shift from rearing to fungal diet caused changes in mite associated bacterial community. A diverse bacterial community was associated with mites feeding on F. avenaceum, while feeding on the other three Fusarium spp. led to selection of a community dominated by Bacillaceae. Conclusions/Significance The work demonstrated changes of bacterial community associated with T. putrescentiae after shift to fungal diets suggesting selection for Bacillaceae species known as chitinase producers, which might participate in the fungal mycelium hydrolysis. PMID:23119013

  15. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities.

    PubMed

    Ge, Yuan; Priester, John H; Van De Werfhorst, Laurie C; Schimel, Joshua P; Holden, Patricia A

    2013-12-17

    It has been reported that engineered nanoparticles (ENPs) alter soil bacterial communities, but the underlying mechanisms and environmental controls of such effects remain unknown. Besides direct toxicity, ENPs may indirectly affect soil bacteria by changing soil water availability or other properties. Alternatively, soil water or other environmental factors may mediate ENP effects on soil bacterial communities. To test, we incubated nano-TiO2-amended soils across a range of water potentials for 288 days. Following incubation, the soil water characteristics, organic matter, total carbon, total nitrogen, and respiration upon rewetting (an indicator of bioavailable organic carbon) were measured. Bacterial community shifts were characterized by terminal restriction fragment length polymorphism (T-RFLP). The endpoint soil water holding had been reported previously as not changing with this nano-TiO2 amendment; herein, we also found that some selected soil properties were unaffected by the treatments. However, we found that nano-TiO2 altered the bacterial community composition and reduced diversity. Nano-TiO2-induced community dissimilarities increased but tended to approach a plateau when soils became drier. Taken together, nano-TiO2 effects on soil bacteria appear to be a result of direct toxicity rather than indirectly through nano-TiO2 affecting soil water and organic matter pools. However, such directs effects of nano-TiO2 on soil bacterial communities are mediated by soil water. PMID:24256577

  16. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    SciTech Connect

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik; Jansson, Janet K.; Sjoling, Sara

    2008-05-15

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.

  17. Plants of the fynbos biome harbour host species-specific bacterial communities.

    PubMed

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. PMID:27190163

  18. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities

    PubMed Central

    Ronca, Sandra; Ramond, Jean-Baptiste; Jones, Brian E.; Seely, Mary; Cowan, Don A.

    2015-01-01

    The sand dunes and inter-dune zones of the hyper-arid central Namib Desert represent heterogeneous soil habitats. As little is known about their indigenous edaphic bacterial communities, we aimed to evaluate their diversity and factors of assembly and hypothesized that soil physicochemistry gradients would strongly shape dune/interdune communities. We sampled a total of 125 samples from 5 parallel dune/interdune transects and characterized 21 physico-chemical edaphic parameters coupled with 16S rRNA gene bacterial community fingerprinting using T-RFLP and 454 pyrosequencing. Multivariate analyses of T-RFLP data showed significantly different bacterial communities, related to physico-chemical gradients, in four distinct dune habitats: the dune top, slope, base and interdune zones. Pyrosequencing of 16S rRNA gene amplicon sets showed that each dune zone presented a unique phylogenetic profile, suggesting a high degree of environmental selection. The combined results strongly infer that habitat filtering is an important factor shaping Namib Desert dune bacterial communities, with habitat stability, soil texture and mineral and nutrient contents being the main environmental drivers of bacterial community structures. PMID:26388839

  19. Invasive lionfish harbor a different external bacterial community than native Bahamian fishes

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; Olson, J. B.

    2013-12-01

    The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.

  20. Two decades of warming increases diversity of a potentially lignolytic bacterial community.

    PubMed

    Pold, Grace; Melillo, Jerry M; DeAngelis, Kristen M

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  1. Changes in soil bacterial communities induced by the invasive plant Pennisetum setaceum in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Caballero, Gema; Caravaca, Fuensanta; del Mar Alguacil, María; Fernández-López, Manuel; José Fernández-González, Antonio; García-Orenes, Fuensanta; Roldán, Antonio

    2016-04-01

    Invasive alien species are considered as a global threat being among the main causes of biodiversity loss. Plant invasions have been extensively studied from different disciplines with the purpose of identifying predictor traits of invasiveness and finding solutions. However, less is known about the implication of the rhizosphere microbiota in these processes, even when it is well known the importance of the interaction between plant rhizosphere and microbial communities. The objective of this study was to determine whether native and invasive plants support different bacterial communities in their rhizospheres and whether there are bacterial indicator species that might be contributing to the invasion process of these ecosystems. We carried out a study in five independent locations under Mediterranean semiarid conditions, where the native Hyparrhenia hirta is being displaced by Pennisetum setaceum, an aggressive invasive Poaceae and soil bacterial communities were amplified and 454-pyrosequenced. Changes in the composition and structure of the bacterial communities, owing to the invasive status of the plant, were detected when the richness and alpha-diversity estimators were calculated as well as when we analyzed the PCoA axes scores. The Indicator Species Analysis results showed a higher number of indicators for invaded communities at all studied taxonomic levels. In conclusion, the effect of the invasiveness and its interaction with the soil location has promoted shifts in the rhizosphere bacterial communities which might be facilitating the invader success in these ecosystems.

  2. Two decades of warming increases diversity of a potentially lignolytic bacterial community

    PubMed Central

    Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  3. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities.

    PubMed

    Ronca, Sandra; Ramond, Jean-Baptiste; Jones, Brian E; Seely, Mary; Cowan, Don A

    2015-01-01

    The sand dunes and inter-dune zones of the hyper-arid central Namib Desert represent heterogeneous soil habitats. As little is known about their indigenous edaphic bacterial communities, we aimed to evaluate their diversity and factors of assembly and hypothesized that soil physicochemistry gradients would strongly shape dune/interdune communities. We sampled a total of 125 samples from 5 parallel dune/interdune transects and characterized 21 physico-chemical edaphic parameters coupled with 16S rRNA gene bacterial community fingerprinting using T-RFLP and 454 pyrosequencing. Multivariate analyses of T-RFLP data showed significantly different bacterial communities, related to physico-chemical gradients, in four distinct dune habitats: the dune top, slope, base and interdune zones. Pyrosequencing of 16S rRNA gene amplicon sets showed that each dune zone presented a unique phylogenetic profile, suggesting a high degree of environmental selection. The combined results strongly infer that habitat filtering is an important factor shaping Namib Desert dune bacterial communities, with habitat stability, soil texture and mineral and nutrient contents being the main environmental drivers of bacterial community structures. PMID:26388839

  4. The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats

    PubMed Central

    Nelson, Tiffanie M.; Rogers, Tracey L.; Brown, Mark V.

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness. PMID:24386245

  5. Seasonal bacterial community dynamics in a full-scale enhanced biological phosphorus removal plant.

    PubMed

    Flowers, Jason J; Cadkin, Tracey A; McMahon, Katherine D

    2013-12-01

    Activated sludge is one of the most abundant and effective wastewater treatment process used to treat wastewater, and has been used in developed countries for nearly a century. In all that time, several hundreds of studies have explored the bacterial communities responsible for treatment, but most studies were based on a handful of samples and did not consider temporal dynamics. In this study, we used the DNA fingerprinting technique called automated ribosomal intergenic spacer region analysis (ARISA) to study bacterial community dynamics over a two-year period in two different treatment trains. We also used quantitative PCR to measure the variation of five phylogenetically-defined clades within the Accumulibacter lineage, which is a model polyphosphate accumulating organism. The total bacterial community exhibited seasonal patterns of change reminiscent of those observed in lakes and oceans. Surprisingly, all five Accumulibacter clades were present throughout the study, and the total Accumulibacter community was relatively stable. However, the abundance of each clade did fluctuate through time. Clade IIA dynamics correlated positively with temperature (ρ = 0.65, p < 0.05) while Clade IA dynamics correlated negatively with temperature (ρ = -0.35, p < 0.05). This relationship with temperature hints at the mechanisms that may be driving the seasonal patterns in overall bacterial community dynamics and provides further evidence for ecological differentiation among clades within the Accumulibacter lineage. This work provides a valuable baseline for activated sludge bacterial community variation. PMID:24200007

  6. Seasonal bacterial community dynamics in a full-scale enhanced biological phosphorus removal plant

    PubMed Central

    Flowers, Jason J.; Cadkin, Tracey A.; McMahon, Katherine D.

    2014-01-01

    Activated sludge is one of the most abundant and effective wastewater treatment process used to treat wastewater, and has been used in developed countries for nearly a century. In all that time, several hundreds of studies have explored the bacterial communities responsible for treatment, but most studies were based on a handful of samples and did not consider temporal dynamics. In this study, we used the DNA fingerprinting technique called automated ribosomal intergenic spacer region analysis (ARISA) to study bacterial community dynamics over a two-year period in two different treatment trains. We also used quantitative PCR to measure the variation of five phylogenetically-defined clades within the Accumulibacter lineage, which is a model polyphosphate accumulating organism. The total bacterial community exhibited seasonal patterns of change reminiscent of those observed in lakes and oceans. Surprisingly, all five Accumulibacter clades were present throughout the study, and the total Accumulibacter community was relatively stable. However, the abundance of each clade did fluctuate through time. Clade IIA dynamics correlated positively with temperature (ρ = 0.65, p < 0.05) while Clade IA dynamics correlated negatively with temperature (ρ = –0.35, p < 0.05). This relationship with temperature hints at the mechanisms that may be driving the seasonal patterns in overall bacterial community dynamics and provides further evidence for ecological differentiation among clades within the Accumulibacter lineage. This work provides a valuable baseline for activated sludge bacterial community variation. PMID:24200007

  7. Characterization of Halophilic Bacterial Communities in Turda Salt Mine (Romania)

    NASA Astrophysics Data System (ADS)

    Carpa, Rahela; Keul, Anca; Muntean, Vasile; Dobrotă, Cristina

    2014-09-01

    Halophilic organisms are having adaptations to extreme salinity, the majority of them being Archaean, which have the ability to grow at extremely high salt concentrations, (from 3 % to 35 %). Level of salinity causes natural fluctuations in the halophilic populations that inhabit this particular habitat, raising problems in maintaining homeostasis of the osmotic pressure. Samples such as salt and water taken from Turda Salt Mine were analyzed in order to identify the eco-physiological bacterial groups. Considering the number of bacteria of each eco-physiological group, the bacterial indicators of salt quality (BISQ) were calculated and studied for each sample. The phosphatase, catalase and dehydrogenases enzymatic activities were quantitatively determined and the enzymatic indicators of salt quality (EISQ) were calculated. Bacterial isolates were analyzed using 16S rRNA gene sequence analysis. Universal bacterial primers, targeting the consensus region of the bacterial 16S rRNA gene were used. Analysis of a large fragment, of 1499 bp was performed to improve discrimination at the species level.

  8. Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and Performance

    PubMed Central

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016

  9. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  10. Characterization of the Bacterial Communities of Life Stages of Free Living Lone Star Ticks (Amblyomma americanum)

    PubMed Central

    Williams-Newkirk, Amanda Jo; Rowe, Lori A.; Mixson-Hayden, Tonya R.; Dasch, Gregory A.

    2014-01-01

    The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females) from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5–3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii) and an obligate Coxiella symbiont, together accounting for 6.7–100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001), but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002) and structure (p = 0.002) of their bacterial communities. Adults differed only in their community structure (p = 0.002) with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of the

  11. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum).

    PubMed

    Williams-Newkirk, Amanda Jo; Rowe, Lori A; Mixson-Hayden, Tonya R; Dasch, Gregory A

    2014-01-01

    The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females) from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5-3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii) and an obligate Coxiella symbiont, together accounting for 6.7-100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001), but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002) and structure (p = 0.002) of their bacterial communities. Adults differed only in their community structure (p = 0.002) with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of the

  12. Bacterial community composition and structure in an Urban River impacted by different pollutant sources.

    PubMed

    Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E

    2016-10-01

    Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water

  13. Environmental Determinants of and Impact on Childhood Asthma by the Bacterial Community in Household Dust▿ †

    PubMed Central

    Maier, Raina M.; Palmer, Michael W.; Andersen, Gary L.; Halonen, Marilyn J.; Josephson, Karen C.; Maier, Robert S.; Martinez, Fernando D.; Neilson, Julia W.; Stern, Debra A.; Vercelli, Donata; Wright, Anne L.

    2010-01-01

    Asthma increased dramatically in the last decades of the 20th century and is representative of chronic diseases that have been linked to altered microbial exposure and immune responses. Here we evaluate the effects of environmental exposures typically associated with asthma protection or risk on the microbial community structure of household dust (dogs, cats, and day care). PCR-denaturing gradient gel analysis (PCR-DGGE) demonstrated that the bacterial community structure in house dust is significantly impacted by the presence of dogs or cats in the home (P = 0.0190 and 0.0029, respectively) and by whether or not children attend day care (P = 0.0037). In addition, significant differences in the dust bacterial community were associated with asthma outcomes in young children, including wheezing (P = 0.0103) and specific IgE (P = 0.0184). Our findings suggest that specific bacterial populations within the community are associated with either risk or protection from asthma. PMID:20154107

  14. Community-Acquired Bacterial Meningitis in Alcoholic Patients

    PubMed Central

    Weisfelt, Martijn; de Gans, Jan; van der Ende, Arie; van de Beek, Diederik

    2010-01-01

    Background Alcoholism is associated with susceptibility to infectious disease, particularly bacterial pneumonia. In the present study we described characteristics in alcoholic patients with bacterial meningitis and delineate the differences with findings in non-alcoholic adults with bacterial meningitis. Methods/Principal Findings This was a prospective nationwide observational cohort study including patients aged >16 years who had bacterial meningitis confirmed by culture of cerebrospinal fluid (696 episodes of bacterial meningitis occurring in 671 patients). Alcoholism was present in 27 of 686 recorded episodes of bacterial meningitis (4%) and alcoholics were more often male than non-alcoholics (82% vs 48%, P = 0.001). A higher proportion of alcoholics had underlying pneumonia (41% vs 11% P<0.001). Alcoholics were more likely to have meningitis due to infection with Streptococcus pneumoniae (70% vs 50%, P = 0.01) and Listeria monocytogenes (19% vs 4%, P = 0.005), whereas Neisseria meningitidis was more common in non-alcoholic patients (39% vs 4%, P = 0.01). A large proportion of alcoholics developed complications during clinical course (82% vs 62%, as compared with non-alcoholics; P = 0.04), often cardiorespiratory failure (52% vs 28%, as compared with non-alcoholics; P = 0.01). Alcoholic patients were at risk for unfavourable outcome (67% vs 33%, as compared with non-alcoholics; P<0.001). Conclusions/Significance Alcoholic patients are at high risk for complications resulting in high morbidity and mortality. They are especially at risk for cardiorespiratory failure due to underlying pneumonia, and therefore, aggressive supportive care may be crucial in the treatment of these patients. PMID:20161709

  15. Dynamic bacterial communities on reverse-osmosis membranes in a full-scale desalination plant.

    PubMed

    Manes, C-L de O; West, N; Rapenne, S; Lebaron, P

    2011-01-01

    To better understand biofouling of seawater reverse osmosis (SWRO) membranes, bacterial diversity was characterized in the intake water, in subsequently pretreated water and on SWRO membranes from a full-scale desalination plant (FSDP) during a 9 month period. 16S rRNA gene fingerprinting and sequencing revealed that bacterial communities in the water samples and on the SWRO membranes were very different. For the different sampling dates, the bacterial diversity of the active and the total bacterial fractions of the water samples remained relatively stable over the sampling period whereas the bacterial community structure on the four SWRO membrane samples was significantly different. The richness and evenness of the SWRO membrane bacterial communities increased with usage time with an increase in the Shannon diversity index of 2.2 to 3.7. In the oldest SWRO membrane (330 days), no single operational taxonomic unit (OTU) dominated and the majority of the OTUs fell into the Alphaproteobacteria or the Planctomycetes. In striking contrast, a Betaproteobacteria OTU affiliated to the genus Ideonella was dominant and exclusively found in the membrane used for the shortest time (10 days). This suggests that bacteria belonging to this genus could be one of the primary colonizers of the SWRO membrane. Knowledge of the dominant bacterial species on SWRO membranes and their dynamics should help guide culture studies for physiological characterization of biofilm forming species. PMID:21108068

  16. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance.

    PubMed

    Hein, John W; Wolfe, Gordon V; Blee, Kristopher A

    2008-02-01

    Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a beta-glucoronidase (GUS) reporter construct driven by the beta-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon-Weiner, and Simpson's diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages. PMID:17619212

  17. Diversity and structure of bacterial communities associated with Phanerochaete chrysosporium during wood decay.

    PubMed

    Hervé, Vincent; Le Roux, Xavier; Uroz, Stéphane; Gelhaye, Eric; Frey-Klett, Pascale

    2014-07-01

    Wood recycling is key to forest biogeochemical cycles, largely driven by microorganisms such as white-rot fungi which naturally coexist with bacteria in the environment. We have tested whether and to what extent the diversity of the bacterial community associated with wood decay is determined by wood and/or by white-rot fungus Phanerochaete chrysosporium. We combined a microcosm approach with an enrichment procedure, using beech sawdust inoculated with or without P.chrysosporium. During 18 weeks, we used 16S rRNA gene-based pyrosequencing to monitor the forest bacterial community inoculated into these microcosms. We found bacterial communities associated with wood to be substantially less diverse than the initial forest soil inoculum. The presence of most bacterial operational taxonomic units (OTUs) varied over time and between replicates, regardless of their treatment, suggestive of the stochastic processes. However, we observed two OTUs belonging to Xanthomonadaceae and Rhizobium, together representing 50% of the relative bacterial abundance, as consistently associated with the wood substrate, regardless of fungal presence. Moreover, after 12 weeks, the bacterial community composition based on relative abundance was significantly modified by the presence of the white-rot fungus. Effectively, members of the Burkholderia genus were always associated with P.chrysosporium, representing potential taxonomic bioindicators of the white-rot mycosphere. PMID:24286477

  18. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis.

    PubMed

    Yao, Zhichao; Wang, Ailin; Li, Yushan; Cai, Zhaohui; Lemaitre, Bruno; Zhang, Hongyu

    2016-05-01

    The guts of metazoans are in permanent contact with the microbial realm that includes beneficial symbionts, nonsymbionts, food-borne microbes and life-threatening pathogens. However, little is known concerning how host immunity affects gut bacterial community. Here, we analyze the role of a dual oxidase gene (BdDuox) in regulating the intestinal bacterial community homeostasis of the oriental fruit fly Bactrocera dorsalis. The results showed that knockdown of BdDuox led to an increased bacterial load, and to a decrease in the relative abundance of Enterobacteriaceae and Leuconostocaceae bacterial symbionts in the gut. The resulting dysbiosis, in turn, stimulates an immune response by activating BdDuox and promoting reactive oxygen species (ROS) production that regulates the composition and structure of the gut bacterial community to normal status by repressing the overgrowth of minor pathobionts. Our results suggest that BdDuox plays a pivotal role in regulating the homeostasis of the gut bacterial community in B. dorsalis. PMID:26565723

  19. Soil bacterial community responses to warming and grazing in a Tibetan alpine meadow.

    PubMed

    Li, Yaoming; Lin, Qiaoyan; Wang, Shiping; Li, Xiangzhen; Liu, Wentso; Luo, Caiyun; Zhang, Zhenhua; Zhu, Xiaoxue; Jiang, Lili; Li, Xine

    2016-01-01

    Warming and grazing significantly affect the structure and function of an alpine meadow ecosystem. Yet, the responses of soil microbes to these disturbances are not well understood. Controlled asymmetrical warming (+1.2/1.7°C during daytime/nighttime) with grazing experiments were conducted to study microbial response to warming, grazing and their interactions. Significant interactive effects of warming and grazing were observed on soil bacterial α-diversity and composition. Warming only caused significant increase in bacterial α-diversity under no-grazing conditions. Grazing induced no substantial differences in bacterial α-diversity and composition irrespective of warming. Warming, regardless of grazing, caused a significant increase in soil bacterial community similarity across space, but grazing only induced significant increases under no-warming conditions. The positive effects of warming on bacterial α-diversity and grazing on community similarity were weakened by grazing and warming, respectively. Soil and plant variables explained well the variations in microbial communities, indicating that changes in soil and plant properties may primarily regulate soil microbial responses to warming in this alpine meadow. The results suggest that bacterial communities may become more similar across space in a future, warmed climate and moderate grazing may potentially offset, at least partially, the effects of global warming on the soil microbial diversity. PMID:26635411

  20. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens.

    PubMed

    Jeon, Hyunbum; Park, Soyoung; Choi, Jiyoung; Jeong, Gilsang; Lee, Sang-Beom; Choi, Youngcheol; Lee, Sung-Jae

    2011-05-01

    As it is known that food waste can be reduced by the larvae of Hermetia illucens (Black soldier fly, BSF), the scientific and commercial value of BSF larvae has increased recently. We hypothesised that the ability of catabolic degradation by BSF larvae might be due to intestinal microorganisms. Herein, we analysed the bacterial communities in the gut of BSF larvae by pyrosequencing of extracting intestinal metagenomic DNA from larvae that had been fed three different diets. The 16S rRNA sequencing results produced 9737, 9723 and 5985 PCR products from larval samples fed food waste, cooked rice and calf forage, respectively. A BLAST search using the EzTaxon program showed that the bacterial community in the gut of larvae fed three different diets was mainly composed of the four phyla with dissimilar proportions. Although the composition of the bacterial communities depended on the different nutrient sources, the identified bacterial strains in the gut of BSF larvae represented unique bacterial species that were unlike the intestinal microflora of other insects. Thus, our study analysed the structure of the bacterial communities in the gut of BSF larvae after three different feedings and assessed the application of particular bacteria for the efficient degradation of organic compounds. PMID:21267722

  1. Biogeographic Patterns Between Bacterial Phyllosphere Communities of the Southern Magnolia (Magnolia grandiflora) in a Small Forest.

    PubMed

    Stone, Bram W G; Jackson, Colin R

    2016-05-01

    The phyllosphere presents a unique system of discrete and easily replicable surfaces colonized primarily by bacteria. However, the biogeography of bacteria in the phyllosphere is little understood, especially at small to intermediate scales. Bacterial communities on the leaves of 91 southern magnolia (Magnolia grandiflora) trees 1-452 m apart in a small forest plot were analyzed and fragments of the 16S ribosomal RNA (rRNA) gene sequenced using the Illumina platform. Assemblages were dominated by members of the Alphaproteobacteria, Bacteroidetes, and Acidobacteria. Patterns in community composition were measured by both relative abundance (theta) and presence-absence (Jaccard) dissimilarity metrics. Distance-based Moran's eigenvector map analyses of the distance-decay relationship found a significant, positive relationship between each dissimilarity metric and significant eigenfunctions derived from geographic distance between trees, indicating trees that were closer together had more similar bacterial phyllosphere communities. Indirect gradient analyses revealed that several environmental parameters (canopy cover, tree elevation, and the slope and aspect of the ground beneath trees) were significantly related to multivariate ordination scores based on relative bacterial sequence abundances; however, these relationships were not significant when looking at the incidence of bacterial taxa. This suggests that bacterial growth and abundance in the phyllosphere is shaped by different assembly mechanisms than bacterial presence or absence. More broadly, this study demonstrates that the distance-decay relationship applies to phyllosphere communities at local scales, and that environmental parameters as well as neutral forces may both influence spatial patterns in the phyllosphere. PMID:26883131

  2. Mineral composition and charcoal determine the bacterial community structure in artificial soils.

    PubMed

    Ding, Guo-Chun; Pronk, Geertje Johanna; Babin, Doreen; Heuer, Holger; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    To study the influence of the clay minerals montmorillonite (M) and illite (I), the metal oxides ferrihydrite (F) and aluminum hydroxide (A), and charcoal (C) on soil bacterial communities, seven artificial soils with identical texture provided by quartz (Q) were mixed with sterilized manure as organic carbon source before adding a microbial inoculant derived from a Cambisol. Bacterial communities established in artificial soils after 90 days of incubation were compared by DGGE analysis of bacterial and taxon-specific 16S rRNA gene amplicons. The bacterial community structure of charcoal-containing soils highly differed from the other soils at all taxonomic levels studied. Effects of montmorillonite and illite were observed for Bacteria and Betaproteobacteria, but not for Actinobacteria or Alphaproteobacteria. A weak influence of metal oxides on Betaproteobacteria was found. Barcoded pyrosequencing of 16S rRNA gene amplicons done for QM, QI, QIF, and QMC revealed a high bacterial diversity in the artificial soils. The composition of the artificial soils was different from the inoculant, and the structure of the bacterial communities established in QMC soil was most different from the other soils, suggesting that charcoal provided distinct microenvironments and biogeochemical interfaces formed. Several populations with discriminative relative abundance between artificial soils were identified. PMID:23289489

  3. Differences in Bacterial Community Structure on Hydrilla verticillata and Vallisneria americana in a Freshwater Spring

    PubMed Central

    Gordon-Bradley, Nadine; Lymperopoulou, Despoina S.; Williams, Henry Neal

    2014-01-01

    The phylogenetic composition of the epiphytic bacterial community of an invasive aquatic plant (Hydrilla verticillata) and a native species (Vallisneria americana [eelgrass]) of the Wakulla Spring (Florida) was investigated, along with the water column bacterial composition, using clone libraries of the 16S rRNA genes. The bacterial clones from three clone libraries were classified into 182 operational taxonomic units (OTUs), most of which were affiliated with bacterial divisions commonly found in freshwater ecosystems. Based on the identified classes, the bacterial communities on eelgrass and Hydrilla were distinct, such that Planctomycetes, Cyanobacteria, Bacilli and Actinobacteria were found on eelgrass and in the water column but not on Hydrilla. On the other hand, Deltaproteobacteria and Verrucomicrobiae were found on Hydrilla and in the water column but not on eelgrass. Further distinctions observed were that Armatimonadia and Deinococci were found only on Hydrilla while Gemmatimonadetes was found only on eelgrass. Our results indicated differences between the epiphytic bacterial community on the two plants and the water column at the species level, but an even representation of the most abundant phylogenetic taxa (classes) in all three libraries was revealed. Statistical comparison of the retrieved sequences confirmed that the three libraries did not differ significantly at the community level (LIBSHUFF, p <0.05). PMID:24553106

  4. Dynamics of size-fractionated bacterial communities during the coastal dispersal of treated municipal effluents.

    PubMed

    Liu, SiGuang; Luo, YuanRong; Huang, LingFeng

    2016-07-01

    Everyday huge amount of treated municipal wastewater is discharged into the coastal seawater. However, microbial biomarkers for the municipal effluent instead of the fecal species from raw sewage have not been proposed. Meanwhile, bacterial taxa for degrading large amounts of input organics have not been fully understood. In this study, raw effluent and serial water samples were collected from the coastal dispersal of two sewage treatment plants in Xiamen, China. Free-living (FL) and particle-associated (PA) bacterial communities were analyzed via high-throughput sequencing of 16S rRNA gene and quantitative PCR to measure bacterial abundance. The PA bacterial communities in our samples exhibited higher cell abundance, alpha diversity, and population dynamics than the FL bacterial communities, which supports greater environmental significance of the PA bacterial communities. Two non-fecal but typical genera in activated sludge, Zoogloea and Dechloromonas, exhibited decreased but readily detectable abundance along the effluent dispersal distance. Furthermore, the dominating microbial species near the outfalls were related to well-known marine indigenous taxa, such as SAR11 clade, OM60 clade, low-GC Actinobacteria, and unclassified Flavobacteriales, as well as the less understood taxa like Pseudohongiella and Microbacteriaceae. It is interesting that these taxa exhibited two types of correlation patterns with COD concentration. Our study suggested Zoogloea as a potential indicator of municipal effluents and also proposed potential utilizers of residual effluent COD in marine environments. PMID:26944731

  5. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood

    PubMed Central

    Hervé, Vincent; Ketter, Elodie; Pierrat, Jean-Claude; Gelhaye, Eric; Frey-Klett, Pascale

    2016-01-01

    Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities. PMID:26824755

  6. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood.

    PubMed

    Hervé, Vincent; Ketter, Elodie; Pierrat, Jean-Claude; Gelhaye, Eric; Frey-Klett, Pascale

    2016-01-01

    Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities. PMID:26824755

  7. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area

    PubMed Central

    Mukherjee, Nabanita; Dowd, Scot E.; Wise, Andy; Kedia, Sapna; Vohra, Varun; Banerjee, Pratik

    2014-01-01

    Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA) utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc.) within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water). Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities) may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users. PMID:25479039

  8. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation.

    PubMed

    Li, Hui; Xu, Zhuwen; Yang, Shan; Li, Xiaobin; Top, Eva M; Wang, Ruzhen; Zhang, Yuge; Cai, Jiangping; Yao, Fei; Han, Xingguo; Jiang, Yong

    2016-05-01

    It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect. PMID:26838999

  9. Distinct patterns of marine bacterial communities in the South and North Pacific Oceans.

    PubMed

    Suh, Sung-Suk; Park, Mirye; Hwang, Jinik; Lee, Sukchan; Chung, Youngjae; Lee, Taek-Kyun

    2014-10-01

    The study of oceanic microbial communities is crucial for our understanding of the role of microbes in terms of biomass, diversity and ecosystem function. In this study, 16S rRNA gene tag pyrosequencing was used to investigate change in bacterial community structure between summer and winter water masses from Gosung Bay in the South Sea of Korea and Chuuk in Micronesia, located in the North and South Pacific Oceans, respectively. Summer and winter sampling from each water mass revealed highly diverse bacterial communities, containing ~900 Operational Taxonomic Units (OTUs). The microbial distribution and highly heterogeneous composition observed at both sampling sites were different from those of most macroorganisms. The bacterial communities in the seawater at both sites were most abundant in Proteobacteria during the summer in Gosung and in Bacterioidetes during the winter. The proportion of Cyanobacteria was higher in summer than in winter in Chuuk and similar in Gosung. Additionally, the microbial community during summer in Gosung was significantly different from other communities observed based on the unweighted UniFrac distance. These data suggest that in both oceanic areas sampled, the bacterial communities had distinct distribution patterns with spatially- and temporally-heterogeneous distributions. PMID:25269604

  10. Dynamics of bacterial community development in the reef coral Acropora muricata following experimental antibiotic treatment

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Croquer, A.; Bythell, J. C.

    2011-12-01

    Development of the bacterial community associated with the coral Acropora muricata (= formosa) was monitored using 16S rRNA gene-based techniques and abundance counts over time following experimental modification of the existing microbial community using the antibiotic ciprofloxacin. Abundance of bacteria was reduced >99% by the treatment, resulting in significant changes in bacterial community structure. Following redeployment to their natural environment, some settlement and re-growth of bacteria took place within a few hours, including ribosomal types that were not present, or in low abundance, in the natural microbiota. However, complete recovery of the bacterial community required longer than 96 h, which indicates a relatively slow settlement and growth of bacteria from the water column and suggests that turnover of the natural community is similarly slow. The early developing community was dominated by antibiotic-resistant bacteria from the natural microbiota that survived the treatment and proliferated in the absence of natural competitors, but also included some non-resident ribotypes colonizing from the water column. Almost, all these opportunists were significantly reduced or eliminated within 96 h after treatment, demonstrating a high resilience in the natural bacterial community. Potential pathogens, including a Clostridium sp., inhabited the coral at low abundances, only becoming prevalent when the natural microbiota was disturbed by the treatment. The healthy coral-associated microbiota appears to be strongly controlled by microbial interactions.

  11. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting.

    PubMed

    Barnard, Romain L; Osborne, Catherine A; Firestone, Mary K

    2013-11-01

    The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured. Although bacterial community composition differed among sites, all sites shared a similar response pattern of the present and potentially active bacterial community to dry-down and wet-up. In contrast, the fungal community was not detectably different among sites, and was largely unaffected by dry-down, showing marked resistance to dessication. The potentially active bacterial community changed significantly as summer dry-down progressed, then returned to pre-dry-down composition within several hours of rewetting, displaying spectacular resilience. Upon rewetting, transcript copies of bacterial rpoB genes increased consistently, reflecting rapid activity resumption. Acidobacteria and Actinobacteria were the most abundant phyla present and potentially active, and showed the largest changes in relative abundance. The relative increase (Actinobacteria) and decrease (Acidobacteria) with dry-down, and the reverse responses to rewetting reflected a differential response, which was conserved at the phylum level and consistent across sites. These contrasting desiccation-related bacterial life-strategies suggest that predicted changes in precipitation patterns may affect soil nutrient and carbon cycling by differentially impacting activity patterns of microbial communities. PMID:23823489

  12. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting

    PubMed Central

    Barnard, Romain L; Osborne, Catherine A; Firestone, Mary K

    2013-01-01

    The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured. Although bacterial community composition differed among sites, all sites shared a similar response pattern of the present and potentially active bacterial community to dry-down and wet-up. In contrast, the fungal community was not detectably different among sites, and was largely unaffected by dry-down, showing marked resistance to dessication. The potentially active bacterial community changed significantly as summer dry-down progressed, then returned to pre-dry-down composition within several hours of rewetting, displaying spectacular resilience. Upon rewetting, transcript copies of bacterial rpoB genes increased consistently, reflecting rapid activity resumption. Acidobacteria and Actinobacteria were the most abundant phyla present and potentially active, and showed the largest changes in relative abundance. The relative increase (Actinobacteria) and decrease (Acidobacteria) with dry-down, and the reverse responses to rewetting reflected a differential response, which was conserved at the phylum level and consistent across sites. These contrasting desiccation-related bacterial life-strategies suggest that predicted changes in precipitation patterns may affect soil nutrient and carbon cycling by differentially impacting activity patterns of microbial communities. PMID:23823489

  13. Host-specificity and dynamics in bacterial communities associated with Bloom-forming freshwater phytoplankton.

    PubMed

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  14. The Vaginal Bacterial Communities of Japanese Women Resemble Those of Women in Other Racial Groups

    PubMed Central

    Zhou, Xia; Hansmann, Melanie A.; Davis, Catherine C.; Suzuki, Haruo; Brown, Celeste J.; Schutte, Ursel; Pierson, Jacob D.; Forney, Larry J.

    2009-01-01

    To determine if different racial groups shared common types of vaginal microbiota we characterized the composition and structure of vaginal bacterial communities in asymptomatic and apparently healthy Japanese women in Tokyo, Japan and compared them with those of White and Black women from North America. The composition of vaginal communities was compared based on community profiles of terminal restriction fragments of 16S rRNA genes and phylogenetic analysis of cloned 16S rRNA gene sequences of the numerically dominant bacterial populations. The types of vaginal communities found in Japanese women were similar to those of Black and White women. As with White and Black women, most vaginal communities were dominated by lactobacilli, and only four species of Lactobacillus (L. iners, L. crispatus, L. jensenii and L. gasseri) were commonly found. Communities dominated by multiple species of lactobacilli were common in Japanese and White women, but rare in Black women. The incidence in Japanese women of vaginal communities with several non-Lactobacillus species at moderately high frequencies was intermediate between Black women and White women. The limited number of community types found among women in different ethnic groups suggests that host genetic factors, including the innate and adaptive immune systems, may be more important in determining the species composition of vaginal bacterial communities than are cultural and behavioral differences. PMID:19912342

  15. Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales.

    PubMed

    Bissett, A; Richardson, A E; Baker, G; Wakelin, S; Thrall, P H

    2010-10-01

    The extent to which the distribution of soil bacteria is controlled by local environment vs. spatial factors (e.g. dispersal, colonization limitation, evolutionary events) is poorly understood and widely debated. Our understanding of biogeographic controls in microbial communities is likely hampered by the enormous environmental variability encountered across spatial scales and the broad diversity of microbial life histories. Here, we constrained environmental factors (soil chemistry, climate, above-ground plant community) to investigate the specific influence of space, by fitting all other variables first, on bacterial communities in soils over distances from m to 10² km. We found strong evidence for a spatial component to bacterial community structure that varies with scale and organism life history (dispersal and survival ability). Geographic distance had no influence over community structure for organisms known to have survival stages, but the converse was true for organisms thought to be less hardy. Community function (substrate utilization) was also shown to be highly correlated with community structure, but not to abiotic factors, suggesting nonstochastic determinants of community structure are important Our results support the view that bacterial soil communities are constrained by both edaphic factors and geographic distance and further show that the relative importance of such constraints depends critically on the taxonomic resolution used to evaluate spatio-temporal patterns of microbial diversity, as well as life history of the groups being investigated, much as is the case for macro-organisms. PMID:25241408

  16. Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface

    PubMed Central

    Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406

  17. Effects of CO2 leakage on soil bacterial communities from simulated CO2-EOR areas.

    PubMed

    Chen, Fu; Yang, Yongjun; Ma, Yanjun; Hou, Huping; Zhang, Shaoliang; Ma, Jing

    2016-05-18

    CO2-EOR (enhanced oil recovery) has been proposed as a viable option for flooding oil and reducing anthropogenic CO2 contribution to the atmospheric pool. However, the potential risk of CO2 leakage from the process poses a threat to the ecological system. High-throughput sequencing was used to investigate the effects of CO2 emission on the composition and structure of soil bacterial communities. The diversity of bacterial communities notably decreased with increasing CO2 flux. The composition of bacterial communities varied along the CO2 flux, with increasing CO2 flux accompanied by increases in the relative abundance of Bacteroidetes and Firmicutes phyla, but decreases in the relative abundance of Acidobacteria and Chloroflexi phyla. Within the Firmicutes phylum, the genus Lactobacillus increased sharply when the CO2 flux was at its highest point. Alpha and beta diversity analysis revealed that differences in bacterial communities were best explained by CO2 flux. The redundancy analysis (RDA) revealed that differences in bacterial communities were best explained by soil pH values which related to CO2 flux. These results could be useful for evaluating the risk of potential CO2 leakages on the ecosystems associated with CO2-EOR processes. PMID:27056285

  18. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    PubMed Central

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site. PMID:26500442

  19. Variability of Bacterial Communities in the Moth Heliothis virescens Indicates Transient Association with the Host

    PubMed Central

    Staudacher, Heike; Kaltenpoth, Martin; Breeuwer, Johannes A. J.; Menken, Steph B. J.; Heckel, David G.; Groot, Astrid T.

    2016-01-01

    Microbes associated with insects can confer a wide range of ecologically relevant benefits to their hosts. Since insect-associated bacteria often increase the nutritive value of their hosts' diets, the study of bacterial communities is especially interesting in species that are important agricultural pests. We investigated the composition of bacterial communities in the noctuid moth Heliothis virescens and its variability in relation to developmental stage, diet and population (field and laboratory), using bacterial tag-encoded FLX pyrosequencing of 16S rRNA amplicons. In larvae, bacterial communities differed depending on the food plant on which they had been reared, although the within-group variation between biological replicates was high as well. Moreover, larvae originating from a field or laboratory population did not share any OTUs. Interestingly, Enterococcus sp. was found to be the dominant taxon in laboratory-reared larvae, but was completely absent from field larvae, indicating dramatic shifts in microbial community profiles upon cultivation of the moths in the laboratory. Furthermore, microbiota composition varied strongly across developmental stages in individuals of the field population, and we found no evidence for vertical transmission of bacteria from mothers to offspring. Since sample sizes in our study were small due to pooling of samples for sequencing, we cautiously conclude that the high variability in bacterial communities suggests a loose and temporary association of the identified bacteria with H. virescens. PMID:27139886

  20. Spatial and Vertical Variability in Bacterial Community Structure in the Sediment of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, P.; Xie, W.; Chen, S.; Zhang, C. L.

    2014-12-01

    The ocean subsurface contains one of the largest pools of reactive carbon and nitrogen on earth, and thus serves as the largest realm for microbial life. However, the microbial communities that drive deep-subsurface geochemical processes are vastly unexplored. In this study, the bacterial community structure in the subsurface of the South China Sea were examined using sediment cores collected from shelf (water depth 667 m) to slope (water depth 3840 m). High-throughput sequencing of the bacterial 16S rRNA genes from the sediment samples resulted in a total of 270,000 sequences with each sample averaging about 10,000 sequences. In all sediment cores, the 16S rRNA gene copies of bacteria were highest in the surface sediment and decreased with the core depth. The bacterial community was dominated by Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. In most of the sediment cores, Proteobacteria dominated surface sediment samples and decreased with depth. The community structure showed no significant difference among the stations at different water depths, which indicates that bacterial distribution in the sediment is not influenced by the water column above. However, stations along the transect from Pearl River canyon to the deep basin were grouped together by cluster analysis, which indicates that bacterial community structure at these stations may bear the same consequence of sedimentary processes of the deep South China Sea.

  1. Compression of polyphase codes with Doppler shift

    NASA Astrophysics Data System (ADS)

    Wirth, W. D.

    It is shown that pulse compression with sufficient Doppler tolerance may be achieved with polyphase codes derived from linear frequency modulation (LFM) and nonlinear frequency modulation (NLFM). Low sidelobes in range and Doppler are required especially for the radar search function. These may be achieved by an LFM derived phase coder together with Hamming weighting or by applying a PNL polyphase code derived from NLFM. For a discrete and known Doppler frequency with an expanded and mismatched reference vector a sidelobe reduction is possible. The compression is then achieved without a loss in resolution. A set up for the expanded reference gives zero sidelobes only in an interval around the signal peak or a least square minimization for all range elements. This version may be useful for target tracking.

  2. Carrier synchronization and detection of polyphase signals.

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1972-01-01

    Digital communication networks used for the distribution of high-speed digital information are currently the subject of design studies for many civil and military applications. This paper presents results that are useful in such studies as well as in network planning. In particular, the paper is concerned with the problems of carrier synchronization and noisy reference detection of polyphase signals. Reconstruction of coherent references for the detection of polyphase signals is considered and analyzed for three carrier reconstruction loops, namely, Nth power (multiply-and-divide) loops, generalized Costas (I-Q) loops, and extensions of data-aided (modulation wipeoff) loops. General expressions for the error probability are developed when the reconstructed reference signals are noisy.

  3. Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China.

    PubMed

    Hu, Anyi; Yang, Xiaoyong; Chen, Nengwang; Hou, Liyuan; Ma, Ying; Yu, Chang-Ping

    2014-02-15

    This study used 16S rRNA gene-based pyrosequencing (16S-pyrotag) to investigate both planktonic and benthic bacterial communities in two main tributaries (North River and West River) of the Jiulong River Watershed (JRW), a mesoscale subtropical watershed that has experienced intensive human perturbation in recent decades. The results of 16S-pyrotag showed that benthic bacterial communities were clearly more diverse and uniform than surface bacterioplankton communities. The results of taxonomic assignments indicated that Betaproteobacteria, Actinobacteria and Firmicutes were significantly more abundant in planktonic than in benthic communities, whereas the relative abundances of Acidobacteria, Delta-, Gammaproteobacteria, Chloroflexi and Nitrospira were higher in sediment than in water samples. In particular, several sewer- and fecal-pollution bacterial indicators were observed in water samples, implying that the water bodies of the JRW were contaminated by fecal pollution. Using the typical freshwater bacteria (TFB) taxonomic framework, 57.6 ± 10%, 27.6 ± 10.9% and 10.4 ± 6.9% of sequences recovered from planktonic communities could be assigned to lineages, clades and tribes of TFB, respectively. The relatively lower abundance of TFB implied that some unknown or unique autochthonous bacterioplankton populations occurred in the JRW. The principal coordinate analysis (PCoA) and one way analysis of similarity (ANOSIM) analysis demonstrated that planktonic bacterial community structures were significantly different between North River and West River, whereas benthic communities from these two tributaries were grouped together. Multivariate statistical analysis revealed that nutrient concentrations and stoichiometry were the key drivers of both α- and β-diversity patterns of bacterioplankton communities. Overall, our results indicate that the diversity, composition and structure of planktonic bacterial communities are sensitive to water chemistry (e.g., nutrient

  4. Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany

    PubMed Central

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835

  5. Manipulating Bacterial Communities by in situ Microbiome Engineering.

    PubMed

    Sheth, Ravi U; Cabral, Vitor; Chen, Sway P; Wang, Harris H

    2016-04-01

    Microbial communities inhabit our entire planet and have a crucial role in biogeochemical processes, agriculture, biotechnology, and human health. Here, we argue that 'in situ microbiome engineering' represents a new paradigm of community-scale genetic and microbial engineering. We discuss contemporary applications of this approach to directly add, remove, or modify specific sets of functions and alter community-level properties in terrestrial, aquatic, and host-associated microbial communities. Specifically, we highlight emerging in situ genome engineering approaches as tractable techniques to manipulate microbial communities with high specificity and efficacy. Finally, we describe opportunities for technological innovation and ways to bridge existing knowledge gaps to accelerate the development of in situ approaches for microbiome manipulations. PMID:26916078

  6. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    PubMed Central

    Rassner, Sara M. E.; Anesio, Alexandre M.; Girdwood, Susan E.; Hell, Katherina; Gokul, Jarishma K.; Whitworth, David E.; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  7. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies.

    PubMed

    Sickel, Wiebke; Grafe, T Ulmar; Meuche, Ivonne; Steffan-Dewenter, Ingolf; Keller, Alexander

    2016-05-01

    Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats. PMID:26790863

  8. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar

    PubMed Central

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that “everything is everywhere, but the environment selects”. Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs. PMID:24922317

  9. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning

    PubMed Central

    Dini-Andreote, Francisco; de Cássia Pereira e Silva, Michele; Triadó-Margarit, Xavier; Casamayor, Emilio O; van Elsas, Jan Dirk; Salles, Joana Falcão

    2014-01-01

    The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time. PMID:24739625

  10. Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment

    PubMed Central

    Zerbe, Stefan

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P < 0.05) on 16S rRNA gene diversity revealed significant differences (P < 0.05) between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities. PMID:24995302

  11. Effect of substrate type on bacterial community composition in biofilms from the Great Barrier Reef.

    PubMed

    Witt, Verena; Wild, Christian; Uthicke, Sven

    2011-10-01

    Natural and anthropogenic impacts such as terrestrial runoff, influence the water quality along the coast of the Great Barrier Reef (GBR) and may in turn affect coral reef communities. Associated bacterial biofilms respond rapidly to environmental conditions and are potential bioindicators for changes in water quality. As a prerequisite to study the effects of water quality on biofilm communities, appropriate biofilm substrates for deployment in the field must be developed and evaluated. This study investigates the effect of different settlement substrates (i.e. glass slides, ceramic tiles, coral skeletons and reef sediments) on bacterial biofilm communities grown in situ for 48 days at two locations in the Whitsunday Island Group (Central GBR) during two sampling times. Bacterial communities associated with the biofilms were analysed using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA genes. Findings revealed that substrate type had little influence on bacterial community composition. Of particular relevance, glass slides and coral skeletons exhibited very similar communities during both sampling times, suggesting the suitability of standardized glass slides for long-term biofilm indicator studies in tropical coral reef ecosystems. PMID:22092719

  12. Effects of Dispersal and Initial Diversity on the Composition and Functional Performance of Bacterial Communities.

    PubMed

    Zha, Yinghua; Berga, Mercè; Comte, Jérôme; Langenheder, Silke

    2016-01-01

    Natural communities are open systems and consequently dispersal can play an important role for the diversity, composition and functioning of communities at the local scale. It is, however, still unclear how effects of dispersal differ depending on the initial diversity of local communities. Here we implemented an experiment where we manipulated the initial diversity of natural freshwater bacterioplankton communities using a dilution-to-extinction approach as well as dispersal from a regional species pool. The aim was further to test whether dispersal effects on bacterial abundance and functional parameters (average community growth rates, respiration rates, substrate utilisation ability) differ in dependence of the initial diversity of the communities. First of all, we found that both initial diversity and dispersal rates had an effect on the recruitment of taxa from a regional source, which was higher in communities with low initial diversity and at higher rates of dispersal. Higher initial diversity and dispersal also promoted higher levels of richness and evenness in local communities and affected, both, separately or interactively, the functional performance of communities. Our study therefore suggests that dispersal can influence the diversity, composition and functioning of bacterial communities and that this effect may be enhanced if the initial diversity of communities is depleted. PMID:27182596

  13. Effects of Dispersal and Initial Diversity on the Composition and Functional Performance of Bacterial Communities

    PubMed Central

    Zha, Yinghua; Berga, Mercè; Comte, Jérôme; Langenheder, Silke

    2016-01-01

    Natural communities are open systems and consequently dispersal can play an important role for the diversity, composition and functioning of communities at the local scale. It is, however, still unclear how effects of dispersal differ depending on the initial diversity of local communities. Here we implemented an experiment where we manipulated the initial diversity of natural freshwater bacterioplankton communities using a dilution-to-extinction approach as well as dispersal from a regional species pool. The aim was further to test whether dispersal effects on bacterial abundance and functional parameters (average community growth rates, respiration rates, substrate utilisation ability) differ in dependence of the initial diversity of the communities. First of all, we found that both initial diversity and dispersal rates had an effect on the recruitment of taxa from a regional source, which was higher in communities with low initial diversity and at higher rates of dispersal. Higher initial diversity and dispersal also promoted higher levels of richness and evenness in local communities and affected, both, separately or interactively, the functional performance of communities. Our study therefore suggests that dispersal can influence the diversity, composition and functioning of bacterial communities and that this effect may be enhanced if the initial diversity of communities is depleted. PMID:27182596

  14. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis

    PubMed Central

    Sullam, Karen E.; Essinger, Steven D.; Lozupone, Catherine A.; O’Connor, Michael P.; Rosen, Gail L.; Knight, Rob; Kilham, Susan S.; Russell, Jacob A.

    2013-01-01

    Symbiotic bacteria often help their hosts acquire nutrients from their diet, showing trends of co-evolution and independent acquisition by hosts from the same trophic levels. While these trends hint at important roles for biotic factors, the effects of the abiotic environment on symbiotic community composition remain comparably understudied. In this investigation, we examined the influence of abiotic and biotic factors on the gut bacterial communities of fish from different taxa, trophic levels and habitats. Phylogenetic and statistical analyses of 25 16S rRNA libraries revealed that salinity, trophic level and possibly host phylogeny shape the composition of fish gut bacteria. When analysed alongside bacterial communities from other environments, fish gut communities typically clustered with gut communities from mammals and insects. Similar consideration of individual phylotypes (vs. communities) revealed evolutionary ties between fish gut microbes and symbionts of animals, as many of the bacteria from the guts of herbivorous fish were closely related to those from mammals. Our results indicate that fish harbour more specialized gut communities than previously recognized. They also highlight a trend of convergent acquisition of similar bacterial communities by fish and mammals, raising the possibility that fish were the first to evolve symbioses resembling those found among extant gut fermenting mammals. PMID:22486918

  15. Specific features of bacterial communities in floodplain agrocenoses

    NASA Astrophysics Data System (ADS)

    Dobrovol'Skaya, T. G.; Leont'evskaya, E. A.; Sneg, A. A.; Balabko, P. N.

    2010-04-01

    The analysis of the taxonomic structure of the bacterial complexes in the alluvial soils of the Oka River valley allowed revealing the distinct differences in the spectrum of the bacterial dominants in the virgin and cultivated soils. Arthrobacter and pigment coryneform bacteria are shown to predominate in the virgin soil; bacilli and pseudomonades are common in the soil under vegetables. On cabbage leaves and carrot roots (both healthy and rotten), the spectrum of dominants is composed of two genera of enterobacteria: Pantoea and Erwinia. As a result of the plowing in of vegetables into the soil, enterobacteria accumulate; among them, phytopathogenic species are present. Within a year after this plowing in and the new yield, the enterobacteria practically disappeared, but myxobacteria and cytophages developed. Since these bacteria belong to the cellulose-destroying prokaryotes, the increase in their contents in the soil testified to their participation in the decomposition of the buried vegetable residues. Weeds are known to concentrate various bacterial forms in the phylloplane; they enter from different ecological niches: soil, water, meadow, and agricultural plants. Representatives of phytopathogenic bacteria as minor components were found on weeds.

  16. Metagenomic exploration of the bacterial community structure at Paradip Port, Odisha, India.

    PubMed

    Pramanik, Arnab; Basak, Pijush; Banerjee, Satabdi; Sengupta, Sanghamitra; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2016-03-01

    This is a pioneering report on the metagenomic exploration of the bacterial diversity from a busy sea port in Paradip, Odisha, India. In our study, high-throughput sequencing of community 16S rRNA gene amplicon was performed using 454 GS Junior platform. Metagenome contain 34,121 sequences with 16,677,333 bp and 56.3% G + C content. Metagenome sequences data are now available at NCBI under the Sequence Read Archive (SRA) database with accession no. SRX897055. Community metagenome sequence revealed the presence of 11,705 species belonging to 40 different phyla. Bacteroidetes (23%), Firmicutes (19%), Proteobacteria (17%), Spirochaetes (10%), Nitrospirae (8%), Actinobacteria (7%) and Acidobacteria (3%) are the predominant bacterial phyla in this port soil. Analysis of metagenomic sequences unfolded the interesting distribution of several phyla which pointed to the significant anthropogenic intervention influencing the bacterial community character of this port. PMID:26981374

  17. Metagenomic exploration of the bacterial community structure at Paradip Port, Odisha, India

    PubMed Central

    Pramanik, Arnab; Basak, Pijush; Banerjee, Satabdi; Sengupta, Sanghamitra; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2015-01-01

    This is a pioneering report on the metagenomic exploration of the bacterial diversity from a busy sea port in Paradip, Odisha, India. In our study, high-throughput sequencing of community 16S rRNA gene amplicon was performed using 454 GS Junior platform. Metagenome contain 34,121 sequences with 16,677,333 bp and 56.3% G + C content. Metagenome sequences data are now available at NCBI under the Sequence Read Archive (SRA) database with accession no. SRX897055. Community metagenome sequence revealed the presence of 11,705 species belonging to 40 different phyla. Bacteroidetes (23%), Firmicutes (19%), Proteobacteria (17%), Spirochaetes (10%), Nitrospirae (8%), Actinobacteria (7%) and Acidobacteria (3%) are the predominant bacterial phyla in this port soil. Analysis of metagenomic sequences unfolded the interesting distribution of several phyla which pointed to the significant anthropogenic intervention influencing the bacterial community character of this port. PMID:26981374

  18. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rizzi, Agostino; Baldi, Franco; Ventura, Stefano; Daffonchio, Daniele; Borin, Sara

    2011-02-01

    In arctic glacier moraines, bioweathering primed by microbial iron oxidizers creates fertility gradients that accelerate soil development and plant establishment. With the aim of investigating the change of bacterial diversity in a pyrite-weathered gradient, we analyzed the composition of the bacterial communities involved in the process by sequencing 16S rRNA gene libraries from different biological soil crusts (BSC). Bacterial communities in three BSC of different morphology, located within 1 m distance downstream a pyritic conglomerate rock, were significantly diverse. The glacier moraine surrounding the weathered site showed wide phylogenetic diversity and high evenness with 15 represented bacterial classes, dominated by Alphaproteobacteria and pioneer Cyanobacteria colonizers. The bioweathered area showed the lowest diversity indexes and only nine bacterial families, largely dominated by Acidobacteriaceae and Acetobacteraceae typical of acidic environments, in accordance with the low pH of the BSC. In the weathered BSC, iron-oxidizing bacteria were cultivated, with counts decreasing along with the increase of distance from the rock, and nutrient release from the rock was revealed by environmental scanning electron microscopy-energy dispersive X-ray analyses. The vegetated area showed the presence of Actinomycetales, Verrucomicrobiales, Gemmatimonadales, Burkholderiales, and Rhizobiales, denoting a bacterial community typical of developed soils and indicating that the lithoid substrate of the bare moraine was here subjected to an accelerated colonization, driven by iron-oxidizing activity. PMID:20953598

  19. Impacts of Poultry House Environment on Poultry Litter Bacterial Community Composition

    PubMed Central

    Dumas, Michael D.; Polson, Shawn W.; Ritter, Don; Ravel, Jacques; Gelb, Jack; Morgan, Robin; Wommack, K. Eric

    2011-01-01

    Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly Gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens. PMID:21949751

  20. Algal exudates and stream organic matter influence the structure and function of denitrifying bacterial communities.

    PubMed

    Kalscheur, Kathryn N; Rojas, Miguel; Peterson, Christopher G; Kelly, John J; Gray, Kimberly A

    2012-11-01

    Within aquatic ecosystems, periphytic biofilms can be hot spots of denitrification, and previous work has suggested that algal taxa within periphyton can influence the species composition and activity of resident denitrifying bacteria. This study tested the hypothesis that algal species composition within biofilms influences the structure and function of associated denitrifying bacterial communities through the composition of organic exudates. A mixed population of bacteria was incubated with organic carbon isolated from one of seven algal species or from one of two streams that differed in anthropogenic inputs. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) revealed differences in the organic composition of algal exudates and stream waters, which, in turn, selected for distinct bacterial communities. Organic carbon source had a significant effect on potential denitrification rates (DNP) of the communities, with organics isolated from a stream with high anthropogenic inputs resulting in a bacterial community with the highest DNP. There was no correlation between DNP and numbers of denitrifiers (based on nirS copy numbers), but there was a strong relationship between the species composition of denitrifier communities (as indicated by tag pyrosequencing of nosZ genes) and DNP. Specifically, the relative abundance of Pseudomonas stutzeri-like nosZ sequences across treatments correlated significantly with DNP, and bacterial communities incubated with organic carbon from the stream with high anthropogenic inputs had the highest relative abundance of P. stutzeri-like nosZ sequences. These results demonstrate a significant relationship between bacterial community composition and function and provide evidence of the potential impacts of anthropogenic inputs on the structure and function of stream microbial communities. PMID:22828897

  1. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels.

    PubMed

    Stothart, Mason R; Bobbie, Colleen B; Schulte-Hostedde, Albrecht I; Boonstra, Rudy; Palme, Rupert; Mykytczuk, Nadia C S; Newman, Amy E M

    2016-01-01

    Bacterial diversity within animals is emerging as an essential component of health, but it is unknown how stress may influence the microbiome. We quantify a proximate link between the oral microbiome and hypothalamic-pituitary-adrenal (HPA) axis activity using faecal glucocorticoid metabolites (FGM) in wild red squirrels (Tamiasciurus hudsonicus). Not only was bacterial diversity lower at higher levels of FGM, but also between capture periods a change in bacterial relative abundance was related to an increase in FGM. These linkages between the HPA axis and microbiome communities represent a powerful capacity for stress to have multi-dimensional effects on health. PMID:26740566

  2. Response of soil bacterial and fungal communities to summer drought and subsequent rainfall

    NASA Astrophysics Data System (ADS)

    Barnard, R. L.; Osborne, C.; Firestone, M. K.

    2011-12-01

    Rewetting of dry Mediterranean grasslands triggers a flush of carbon substrates, fueling a large soil CO2 pulse, which constitutes an important component of the annual carbon cycle in these ecosystems. However, little is known about the dynamics of activity and resource allocation of the soil microbial community over the dry summer period, which likely sets the stage for the rapid response upon rewetting. In three California grasslands, soil prokaryotic and fungal communities were assessed (by DNA- and RNA-based sequencing) several times over a summer to track changes in the soil microbial community characteristics. In a companion greenhouse-based study, soil from a California grassland was subjected to three different Spring-summer dry-down treatments over four months: weekly water inputs, weekly water inputs for two months followed by drought, and no water input. In both experiments, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were assessed over time by sequencing, and the abundance of selected genes determined by qPCR analysis. At the end of summer, soil CO2 efflux rates were determined during a controlled wet-up and the soil microbial community was also analyzed post-wet-up. In soil samples from the field, we found an overall increase in bacterial 16S DNA and fungal 28S DNA gene copies (but not of rRNA) over the summer. At each site, the composition of the RNA-based bacterial community changed significantly as summer drought progressed, then returned to pre-drought composition within several hours of rewetting. Upon rewetting, bacterial mRNA transcript copies significantly increased at all sites, reflecting rapid resumption of activity. In the Spring dry-down experiment, we found significantly more bacterial 16S DNA and fungal 28S DNA gene copies in the dry treatment than in the weekly-watered soil treatment. Upon rewetting, bacterial mRNA transcript copies increased dramatically in both treatments that

  3. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    PubMed

    Apprill, Amy; Robbins, Jooke; Eren, A Murat; Pack, Adam A; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Moore, Kathleen M T; Mincer, Tracy J

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly serve

  4. Humpback Whale Populations Share a Core Skin Bacterial Community: Towards a Health Index for Marine Mammals?

    PubMed Central

    Apprill, Amy; Robbins, Jooke; Eren, A. Murat; Pack, Adam A.; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Moore, Kathleen M. T.; Mincer, Tracy J.

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin – a unique interface between the host and environment - is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly

  5. Temporal Dynamics of Bacterial and Fungal Community Composition in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Fierer, N.

    2014-12-01

    There is increasing evidence for significant microbial influences on atmospheric chemistry, cloud condensation, and ice nuclei concentrations, with known health impacts, yet we have a limited understanding of the types, abundances, and spatiotemporal dynamics of bacteria and fungi in the atmosphere. Here we use culture-independent molecular approaches, including targeted gene sequencing and quantitative PCR, to characterize bacterial and fungal community composition and abundance in the atmospheric boundary layer. We present results from 32 air samples, collected via vacuum filtration at 10 m and 250 m on the Boulder Atmospheric Observatory tower (Erie, CO) between November 2013 and April 2014. Samples were collected at night, and each sample was integrated over consecutive nights for approximately two weeks. Significant temporal shifts in bacterial and fungal community composition were observed over the course of the study, corresponding to changing bacterial and fungal concentrations. Within the same sampling time periods, bacterial and fungal communities from the near-surface atmosphere (10 m) were generally similar to those aloft (250 m), although coupled temporal and altitudinal effects were observed in some cases, particularly for fungi. Overall, our results indicate that bacterial and fungal communities exhibit minimal vertical stratification throughout the nocturnal atmospheric boundary layer but show a high degree of variability on two-week timescales. This study paves the way for further research into the connections between boundary layer microbiology, atmospheric dynamics, emissions, and local meteorology.

  6. Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System.

    PubMed

    Jin, Di; Zhao, Shengguo; Wang, Pengpeng; Zheng, Nan; Bu, Dengpan; Beckers, Yves; Wang, Jiaqi

    2016-01-01

    Urea, a non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by urease produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for rumen bacterial growth. However, there is limited knowledge with regard to the ureolytic bacteria community in the rumen. To explore the ruminal ureolytic bacterial community, urea, or acetohydroxamic acid (AHA, an inhibitor of urea hydrolysis) were supplemented into the rumen simulation systems. The bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the ureoltyic bacteria by comparing different treatments. The results revealed that urea supplementation significantly increased the ammonia concentration, and AHA addition inhibited urea hydrolysis. Urea supplementation significantly increased the richness of bacterial community and the proportion of ureC genes. The composition of bacterial community following urea or AHA supplementation showed no significant difference compared to the groups without supplementation. The abundance of Bacillus and unclassified Succinivibrionaceae increased significantly following urea supplementation. Pseudomonas, Haemophilus, Neisseria, Streptococcus, and Actinomyces exhibited a positive response to urea supplementation and a negative response to AHA addition. Results retrieved from the NCBI protein database and publications confirmed that the representative bacteria in these genera mentioned above had urease genes or urease activities. Therefore, the rumen ureolytic bacteria were abundant in the genera of Pseudomonas, Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus, and unclassified Succinivibrionaceae. Insights into abundant rumen ureolytic bacteria provide the regulation targets to mitigate urea hydrolysis and increase efficiency of urea nitrogen utilization in ruminants. PMID:27446045

  7. Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters.

    PubMed

    Cleary, Daniel F R; Becking, Leontine E; de Voogd, Nicole J; Pires, Ana C C; Polónia, Ana R M; Egas, Conceição; Gomes, Newton C M

    2013-09-01

    Marine lakes are unique ecosystems that contain isolated populations of marine organisms. Isolated from the surrounding marine habitat, many lakes house numerous endemic species. In this study, microbial communities of sponges inhabiting these lakes were investigated for the first time using barcoded pyrosequencing of 16S rRNA gene amplicons. Our main goals were to compare the bacterial richness and composition of two sponge species (Suberites diversicolor and Cinachyrella australiensis) inhabiting both marine lakes and adjacent open coastal systems. Host species and habitat explained almost 59% of the variation in bacterial composition. There was a significant difference in composition between both host species. Within S. diversicolor, there was little discernible difference between bacterial communities inside and outside lakes. The bacterial community of this species was, furthermore, dominated (63% of all sequences) by three very closely related alphaproteobacterial taxa identified as belonging to the recently described order Kiloniellales. Cinachyrella australiensis, in contrast, hosted markedly different bacterial communities inside and outside lakes with very few shared abundant taxa. Cinachyrella australiensis in open habitat only shared 9.4% of OTUs with C. australiensis in lake habitat. Bacteria were thus both highly species specific and, in the case of C. australiensis, habitat specific. PMID:23607753

  8. Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System

    PubMed Central

    Jin, Di; Zhao, Shengguo; Wang, Pengpeng; Zheng, Nan; Bu, Dengpan; Beckers, Yves; Wang, Jiaqi

    2016-01-01

    Urea, a non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by urease produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for rumen bacterial growth. However, there is limited knowledge with regard to the ureolytic bacteria community in the rumen. To explore the ruminal ureolytic bacterial community, urea, or acetohydroxamic acid (AHA, an inhibitor of urea hydrolysis) were supplemented into the rumen simulation systems. The bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the ureoltyic bacteria by comparing different treatments. The results revealed that urea supplementation significantly increased the ammonia concentration, and AHA addition inhibited urea hydrolysis. Urea supplementation significantly increased the richness of bacterial community and the proportion of ureC genes. The composition of bacterial community following urea or AHA supplementation showed no significant difference compared to the groups without supplementation. The abundance of Bacillus and unclassified Succinivibrionaceae increased significantly following urea supplementation. Pseudomonas, Haemophilus, Neisseria, Streptococcus, and Actinomyces exhibited a positive response to urea supplementation and a negative response to AHA addition. Results retrieved from the NCBI protein database and publications confirmed that the representative bacteria in these genera mentioned above had urease genes or urease activities. Therefore, the rumen ureolytic bacteria were abundant in the genera of Pseudomonas, Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus, and unclassified Succinivibrionaceae. Insights into abundant rumen ureolytic bacteria provide the regulation targets to mitigate urea hydrolysis and increase efficiency of urea nitrogen utilization in ruminants. PMID:27446045

  9. Effects of benthic macrofauna bioturbation on the bacterial community composition in lake sediments.

    PubMed

    Zeng, Jin; Zhao, Da-Yong; Liu, Peng; Yu, Zhong-Bo; Huang, Rui; Wu, Qinglong L

    2014-08-01

    Benthic macrofauna are considered to be an important part of the lacustrine ecosystem, and bioturbation may greatly affect the biogeochemical processes and microbial activities in sediments. In the present study, the bacterial community composition in sediments inhabited by 3 different types of benthic macrofauna (Corbicula fluminea, Chironomidae larvae, and tubificid worms) in the shallow and eutrophic Lake Taihu was studied to investigate the different effects of bioturbation on the composition of these communities. Microcosms were constructed, and culture-independent methods, including terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis, were performed to evaluate the bacterial communities. Analysis of similarities (ANOSIM) and multidimensional scaling (MDS) analysis of T-RFLP patterns demonstrated that differences in the bacterial community composition between the control and the macrofauna-inhabited sediments were not as great as expected, although the chemical properties of the sediments changed remarkably. Nevertheless, the dominant bacterial group in each type of macrofauna-inhabited sediment was different. Acidobacteria, Betaproteobacteria, and Deltaproteobacteria were the dominant bacterial groups in sediments inhabited by C. fluminea, tubificid worms, and Chironomidae larvae, respectively. The data obtained in this study are helpful for understanding the effects of bioturbation in a shallow, eutrophic lake. PMID:25070418

  10. Functional Characterization of Bacterial Communities Responsible for Fermentation of Doenjang: A Traditional Korean Fermented Soybean Paste

    PubMed Central

    Jung, Woo Yong; Jung, Ji Young; Lee, Hyo Jung; Jeon, Che Ok

    2016-01-01

    Doenjang samples were prepared in triplicate and their microbial abundance, bacterial communities, and metabolites throughout fermentation were analyzed to investigate the functional properties of microorganisms in doenjang. Viable bacterial cells were approximately three orders of magnitude higher than fungal cells, suggesting that bacteria are more responsible for doenjang fermentation. Pyrosequencing and proton nuclear magnetic resonance spectroscopy were applied for the analysis of bacterial communities and metabolites, respectively. Bacterial community analysis based on 16S rRNA gene sequences revealed that doenjang samples included Bacillus, Enterococcus, Lactobacillus, Clostridium, Staphylococcus, Corynebacterium, Oceanobacillus, and Tetragenococcus. These genera were found either in doenjang-meju or solar salts, but not in both, suggesting two separate sources of bacteria. Bacillus and Enterococcus were dominant genera during the fermentation, but their abundances were not associated with metabolite changes, suggesting that they may not be major players in doenjang fermentation. Tetragenococcus was dominant in 108 day-doenjang samples, when lactate, acetate, putrescine, and tyramine increased quickly as glucose and fructose decreased, indicating that Tetragenococcus might be primarily responsible for organic acid and biogenic amine production. Lactobacillus was identified as a dominant group from the 179-day samples, associated with the increase of γ-aminobutyric acid (GABA) and the decrease of galactose, indicating a potential role for this genus as a major GABA producer during fermentation. The results of this study clarified the functional properties of major bacterial communities in the doenjang fermentation process, contributing to the production of safe and high-quality doenjang. PMID:27303399

  11. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic Lake Area.

    PubMed

    Wang, Neng Fei; Zhang, Tao; Yang, Xiao; Wang, Shuang; Yu, Yong; Dong, Long Long; Guo, Yu Dong; Ma, Yong Xing; Zang, Jia Ye

    2016-01-01

    This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard). A total of 2,987 operational taxonomic units were identified by high-throughput sequencing, targeting bacterial 16S rRNA gene. The samples from four sites (three samples in each site) were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chloroflexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococcus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p < 0.001), water content (p < 0.01), ammonium nitrogen ([Formula: see text]-N, p < 0.01), silicate silicon ([Formula: see text]-Si, p < 0.01), nitrite nitrogen ([Formula: see text]-N, p < 0.05), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the bacterial community composition. The results suggest soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments. PMID:27516761

  12. Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China

    PubMed Central

    Zhao, Yao; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Cui, Jin-Jie

    2016-01-01

    Aphids are infected with a wide variety of endosymbionts that can confer ecologically relevant traits. However, the bacterial communities of most aphid species are still poorly characterized. This study investigated the bacterial diversity of the cotton aphid Aphis gossypii associated with Bt cotton in northern China by targeting the V4 region of the 16S rDNA using the Illumina MiSeq platform. Our sequencing data revealed that bacterial communities of A. gossypii were generally dominated by the primary symbiont Buchnera, together with the facultative symbionts Arsenophonus and Hamiltonella. To our knowledge, this is the first report documenting the facultative symbiont Hamiltonella in A. gossypii. Moreover, the bacterial community structure was similar within aphids from the same province, but distinct among those from different provinces. The taxonomic diversity of the bacterial community is greater in Hebei Province compared with in samples from Henan and Shandong Provinces. The selection pressure exerted by the different geographical locations could explain the differences found among the various provinces. These findings broaden our understanding of the interactions among aphids, endosymbionts and their environments, and provide clues to develop potential biocontrol techniques against this cotton aphid. PMID:27079679

  13. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic Lake Area

    PubMed Central

    Wang, Neng Fei; Zhang, Tao; Yang, Xiao; Wang, Shuang; Yu, Yong; Dong, Long Long; Guo, Yu Dong; Ma, Yong Xing; Zang, Jia Ye

    2016-01-01

    This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard). A total of 2,987 operational taxonomic units were identified by high-throughput sequencing, targeting bacterial 16S rRNA gene. The samples from four sites (three samples in each site) were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chloroflexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococcus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p < 0.001), water content (p < 0.01), ammonium nitrogen (NH4+-N, p < 0.01), silicate silicon (SiO42--Si, p < 0.01), nitrite nitrogen (NO2--N, p < 0.05), organic carbon (p < 0.05), and organic nitrogen (p < 0.05) were the most significant factors that correlated with the bacterial community composition. The results suggest soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments. PMID:27516761

  14. Functional Characterization of Bacterial Communities Responsible for Fermentation of Doenjang: A Traditional Korean Fermented Soybean Paste.

    PubMed

    Jung, Woo Yong; Jung, Ji Young; Lee, Hyo Jung; Jeon, Che Ok

    2016-01-01

    Doenjang samples were prepared in triplicate and their microbial abundance, bacterial communities, and metabolites throughout fermentation were analyzed to investigate the functional properties of microorganisms in doenjang. Viable bacterial cells were approximately three orders of magnitude higher than fungal cells, suggesting that bacteria are more responsible for doenjang fermentation. Pyrosequencing and proton nuclear magnetic resonance spectroscopy were applied for the analysis of bacterial communities and metabolites, respectively. Bacterial community analysis based on 16S rRNA gene sequences revealed that doenjang samples included Bacillus, Enterococcus, Lactobacillus, Clostridium, Staphylococcus, Corynebacterium, Oceanobacillus, and Tetragenococcus. These genera were found either in doenjang-meju or solar salts, but not in both, suggesting two separate sources of bacteria. Bacillus and Enterococcus were dominant genera during the fermentation, but their abundances were not associated with metabolite changes, suggesting that they may not be major players in doenjang fermentation. Tetragenococcus was dominant in 108 day-doenjang samples, when lactate, acetate, putrescine, and tyramine increased quickly as glucose and fructose decreased, indicating that Tetragenococcus might be primarily responsible for organic acid and biogenic amine production. Lactobacillus was identified as a dominant group from the 179-day samples, associated with the increase of γ-aminobutyric acid (GABA) and the decrease of galactose, indicating a potential role for this genus as a major GABA producer during fermentation. The results of this study clarified the functional properties of major bacterial communities in the doenjang fermentation process, contributing to the production of safe and high-quality doenjang. PMID:27303399

  15. Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China.

    PubMed

    Zhao, Yao; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Cui, Jin-Jie

    2016-01-01

    Aphids are infected with a wide variety of endosymbionts that can confer ecologically relevant traits. However, the bacterial communities of most aphid species are still poorly characterized. This study investigated the bacterial diversity of the cotton aphid Aphis gossypii associated with Bt cotton in northern China by targeting the V4 region of the 16S rDNA using the Illumina MiSeq platform. Our sequencing data revealed that bacterial communities of A. gossypii were generally dominated by the primary symbiont Buchnera, together with the facultative symbionts Arsenophonus and Hamiltonella. To our knowledge, this is the first report documenting the facultative symbiont Hamiltonella in A. gossypii. Moreover, the bacterial community structure was similar within aphids from the same province, but distinct among those from different provinces. The taxonomic diversity of the bacterial community is greater in Hebei Province compared with in samples from Henan and Shandong Provinces. The selection pressure exerted by the different geographical locations could explain the differences found among the various provinces. These findings broaden our understanding of the interactions among aphids, endosymbionts and their environments, and provide clues to develop potential biocontrol techniques against this cotton aphid. PMID:27079679

  16. Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.

    1994-01-01

    Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.

  17. Intracellular Bacterial Communities: A Potential Etiology for Chronic Lower Urinary Tract Symptoms

    PubMed Central

    Scott, Victoria C. S.; Haake, David A.; Churchill, Bernard M.; Justice, Sheryl S.; Kim, Ja-Hong

    2015-01-01

    Patients with persistent lower urinary tract symptoms and negative urine cultures are often difficult to treat. Infection may go undetected in these patients because the concentrations of bacteria in their urine are beneath the threshold of standard urine culture techniques. Empiric treatment may result in temporary relief, followed by recurrent symptoms. Occult and recurrent urinary tract infection may be due to both invasion of the bladder wall by uropathogenic Escherichia coli and the formation of biofilm-like intracellular bacterial communities. This review examines emerging evidence for a role of intracellular bacterial communities in human infection. PMID:26189137

  18. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion.

    PubMed

    Stiborova, Hana; Wolfram, Jan; Demnerova, Katerina; Macek, Tomas; Uhlik, Ondrej

    2015-11-01

    Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus. PMID:25921720

  19. Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition.

    PubMed

    Severin, Ina; Östman, Örjan; Lindström, Eva S

    2013-01-01

    Previous studies have shown variable relationships between dispersal rate and ecosystem functioning, but the reasons for and mechanisms behind variable dispersal rate-functioning patterns are currently unknown. In this study we used six bacterial lake water communities in a laboratory experiment in order to investigate how dispersal among communities influences community productivity by evaluating three different mechanisms: 1) changes in taxonomic diversity, 2) changes in phylogenetic diversity or 3) changes in the composition of functional traits. The experiment was conducted in two phases; (A) a dialysis bag experiment where the dispersal rate among six communities was manipulated and the subsequent change in bacterial diversity and growth rate was recorded, and (B) a regrowth experiment where we manipulated available resources to study how well a taxon grows on certain organic carbon resources, i.e. their functional traits. From experiment (B) we could thus estimate changes in functional traits in communities in experiment (A). Bacterial production was affected by dispersal, but not consistently among lakes. Neither change in taxonomic or phylogenetic diversity with dispersal could explain the observed dispersal-productivity relationships. Instead, changes in trait composition with dispersal, especially the communities' ability to use p-coumaric acid, an aromatic compound, could explain the observed dispersal-productivity relationships. Changes in this trait caused by dispersal seemed especially important for bacterial productivity in waters with a high aromaticity of the organic matter pool. We conclude that the effect of dispersal on bacterial communities can affect ecosystem functioning in different ways, through changes in functional key-traits which are important for the local environment. PMID:24324633

  20. Diversity and seasonal dynamics of bacterial community in indoor environment

    PubMed Central

    Rintala, Helena; Pitkäranta, Miia; Toivola, Mika; Paulin, Lars; Nevalainen, Aino

    2008-01-01

    Background We spend most of our lives in indoor environments and are exposed to microbes present in these environments. Hence, knowledge about this exposure is important for understanding how it impacts on human health. However, the bacterial flora in indoor environments has been only fragmentarily explored and mostly using culture methods. The application of molecular methods previously utilised in other environments has resulted in a substantial increase in our awareness of microbial diversity. Results The composition and dynamics of indoor dust bacterial flora were investigated in two buildings over a period of one year. Four samples were taken in each building, corresponding to the four seasons, and 16S rDNA libraries were constructed. A total of 893 clones were analysed and 283 distinct operational taxonomic units (OTUs) detected among them using 97% sequence similarity as the criterion. All libraries were dominated by Gram-positive sequences, with the most abundant phylum being Firmicutes. Four OTUs having high similarity to Corynebacterium-, Propionibacterium-, Streptococcus- and Staphylococcus- sequences were present in all samples. The most abundant of the Gram-negative OTUs were members of the family Sphingomonadaceae, followed by Oxalobacteraceae, Comamonadaceae, Neisseriaceae and Rhizobiaceae. The relative abundance of alpha- and betaproteobacteria increased slightly towards summer at the expense of firmicutes. The proportion of firmicutes and gammaproteobacteria of the total diversity was highest in winter and that of actinobacteria, alpha- and betaproteobacteria in spring or summer, whereas the diversity of bacteroidetes peaked in fall. A statistical comparison of the libraries revealed that the bacterial flora of the two buildings differed during all seasons except spring, but differences between seasons within one building were not that clear, indicating that differences between the buildings were greater than the differences between seasons

  1. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.

    PubMed

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L; Bohannan, B J M

    2014-02-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity - variation in outdoor bioaerosols, ventilation strategy, and occupancy load - we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. PMID:23621155

  2. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source

    PubMed Central

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L ; Bohannan, B J M

    2014-01-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity – variation in outdoor bioaerosols, ventilation strategy, and occupancy load – we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. PMID:23621155

  3. Morphological and Compositional Shifts in an Experimental Bacterial Community Influenced by Protists with Contrasting Feeding Modes

    PubMed Central

    Simek, K.; Vrba, J.; Pernthaler, J.; Posch, T.; Hartman, P.; Nedoma, J.; Psenner, R.

    1997-01-01

    In a two-stage continuous-flow system, we studied the impacts of different protozoan feeding modes on the morphology and taxonomic structure of mixed bacterial consortia, which were utilizing organic carbon released by a pure culture of a Rhodomonas sp. grown on inorganic medium in the first stage of the system. Two of three second stages operated in parallel were inoculated by a bacterivorous flagellate, Bodo saltans, and an algivorous ciliate, Urotricha furcata, respectively. The third vessel served as a control. In two experiments, where algal and bacterial populations grew at rates and densities typical for eutrophic waters, we compared community changes of bacteria, algae, and protozoa under quasi-steady-state conditions and during the transient stage after the protozoan inoculation. In situ hybridization with fluorescent oligonucleotide probes and cultivation-based approaches were used to tentatively analyze the bacterial community composition. Initially the cell size distribution and community structure of all cultivation vessels showed similar patterns, with a dominance of 1- to 2.5-(mu)m-long rods from the beta subdivision of the phylum Proteobacteria ((beta)-Proteobacteria). Inoculation with the ciliate increased bacterial growth in this substrate-controlled variant, seemingly via a recycling of nutrients and substrate released by grazing on algae, but without any detectable effect on the composition of bacterial assemblage. In contrast, an inoculation with the bacterivore, B. saltans, resulted in a decreased proportion of the (beta)-Proteobacteria. One part of the assemblage (<4% of total bacterial numbers), moreover, produced large grazing-resistant threadlike cells. As B. saltans ingested only cells of <3 (mu)m, this strategy yielded a refuge for (symbl)70% of total bacterial biomass from being grazed. Another consequence of the heavy predation in this variant was a shift to the numerical dominance of the (alpha)-Proteobacteria. The enhanced

  4. Dynamics and functions of bacterial communities in bark, charcoal and sand filters treating greywater.

    PubMed

    Dalahmeh, Sahar S; Jönsson, Håkan; Hylander, Lars D; Hui, Nan; Yu, Dan; Pell, Mikael

    2014-05-01

    This study explored the effects of greywater application on the dynamics and functions of biofilms developed in bark, activated charcoal and sand filters used for removal of organic matter and nitrogen. Duplicate columns (20 cm diameter, 60 cm deep) were packed with bark, charcoal or sand with effective size 1.4 mm and uniformity coefficient 2.2, and dosed with 32 L m(-2) day(-1) of an artificial greywater (14 g BOD5 m(-2) day(-1)) for 116 days. Potential respiration rate (PRR), determined in filter samples after addition of excess glucose, and bacterial diversity and composition, analysed by 454-pyrosequencing of bacterial 16S ribosomal DNA, were measured at different times and depths in the filters. The bark and charcoal filters were more efficient in removing BOD5 than the sand (98, 97% and 75%, respectively). The highest PRR in the 0-2 cm layer of the columns on day 84 was found in the bark filters, followed by the charcoal and sand filters (632 ± 66, 222 ± 34 and 56 ± 2 mg O2 L(-1), respectively; n = 2). Bacterial community in the bark filters showed the highest richness. The charcoal and sand filters both developed more diverse and dynamic (changing over time and depth) bacterial communities than the bark. In addition to the greywater, the lignocelluosic composition of the bark and its lower pH probably selected for the bacterial community structure and the organic content provided additional substrate, as shown by its higher PRR and its different nitrifying bacterial genera. In the oligotrophic charcoal and sand, the composition of the greywater itself defined the bacterial community. Thus, the initially low bacterial biomass in the latter filters was enriched over time, allowing a diversified bacterial community to develop. The top layers of the bark and charcoal filters displayed a high dominance of Rhizobium, Pseudomonas and Acinetobacter, which were less evident in the 60 cm layer, whereas in the sand filters these genera were

  5. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    PubMed

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta. PMID:25314594

  6. Bacterial Communities Associated with Culex Mosquito Larvae and Two Emergent Aquatic Plants of Bioremediation Importance

    PubMed Central

    Duguma, Dagne; Rugman-Jones, Paul; Kaufman, Michael G.; Hall, Michael W.; Neufeld, Josh D.; Stouthamer, Richard; Walton, William E.

    2013-01-01

    Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis), the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus), and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae), was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species. PMID:23967314

  7. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children.

    PubMed

    Dannemiller, K C; Gent, J F; Leaderer, B P; Peccia, J

    2016-04-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non-random and demonstrated species segregation (C-score, P < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (P < 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics. PMID:25833176

  8. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.

    PubMed

    Duguma, Dagne; Rugman-Jones, Paul; Kaufman, Michael G; Hall, Michael W; Neufeld, Josh D; Stouthamer, Richard; Walton, William E

    2013-01-01

    Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis), the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus), and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae), was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species. PMID:23967314

  9. The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities.

    PubMed

    Koopman, Margaret M; Fuselier, Danielle M; Hird, Sarah; Carstens, Bryan C

    2010-03-01

    The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction. PMID:20097807

  10. [Analysis of the bacterial community developing in the course of Sphagnum moss decomposition].

    PubMed

    Kulichevskaia, I S; Belova, S E; Kevbrin, V V; Dedysh, S N; Zavarzin, G A

    2007-01-01

    Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 x 10(7) cells ml(-1). About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Phanctomycetes. The population sizes of Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH. PMID:18069332

  11. Bacterial community compositions in sediment polluted by perfluoroalkyl acids (PFAAs) using Illumina high-throughput sequencing.

    PubMed

    Sun, Yajun; Wang, Tieyu; Peng, Xiawei; Wang, Pei; Lu, Yonglong

    2016-06-01

    The characterization of bacterial community compositions and the change in perfluoroalkyl acids (PFAAs) along a natural river distribution system were explored in the present study. Illumina high-throughput sequencing was used to explore bacterial community diversity and structure in sediment polluted by PFAAs from the Xiaoqing River, the area with concentrated fluorochemical facilities in China. The concentration of PFAAs was in the range of 8.44-465.60 ng/g dry weight (dw) in sediment. Perfluorooctanoic acid (PFOA) was the dominant PFAA in all samples, which accounted for 94.2 % of total PFAAs. High-level PFOA could lead to an obvious increase in relative abundance of Proteobacteria, ε-Proteobacteria, Thiobacillus, and Sulfurimonas and the decrease in relative abundance of other bacteria. Redundancy analysis revealed that PFOA played an important role in the formation of bacterial community, and PFOA at higher concentration could reduce the diversity of bacterial community. When the concentration of PFOA was below 100 ng/g dw in sediment, no significant effect on microbial community structure was observed. Thiobacillus and Sulfurimonas were positively correlated with the concentration of PFOA, suggesting that both genera were resistant to PFOA contamination. PMID:26780047

  12. Context-Dependent Competition in a Model Gut Bacterial Community

    PubMed Central

    de Muinck, Eric J.; Stenseth, Nils Chr.; Sachse, Daniel; vander Roost, Jan; Rønningen, Kjersti S.; Rudi, Knut; Trosvik, Pål

    2013-01-01

    Understanding the ecological processes that generate complex community structures may provide insight into the establishment and maintenance of a normal microbial community in the human gastrointestinal tract, yet very little is known about how biotic interactions influence community dynamics in this system. Here, we use natural strains of Escherichia coli and a simplified model microbiota to demonstrate that the colonization process on the strain level can be context dependent, in the sense that the outcome of intra-specific competition may be determined by the composition of the background community. These results are consistent with previous models for competition between organisms where one competitor has adapted to low resource environments whereas the other is optimized for rapid reproduction when resources are abundant. The genomic profiles of E. coli strains representing these differing ecological strategies provide clues for deciphering the genetic underpinnings of niche adaptation within a single species. Our findings extend the role of ecological theory in understanding microbial systems and the conceptual toolbox for describing microbial community dynamics. There are few, if any, concrete examples of context-dependent competition on a single trophic level. However, this phenomenon can have potentially dramatic effects on which bacteria will successfully establish and persist in the gastrointestinal system, and the principle should be equally applicable to other microbial ecosystems. PMID:23922635

  13. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Comte, J.; Lovejoy, C.; Crevecoeur, S.; Vincent, W. F.

    2016-01-01

    Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their microbial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-basin lakes that are located in distinct valleys along a north-south permafrost degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to determine co-occurrence patterns among bacterial taxa (operational taxonomic units, OTUs), and then analyzed these results relative to environmental variables to identify variables controlling bacterial community structure. Network analysis was applied to identify possible ecological linkages among the bacterial taxa and with abiotic and biotic variables. The results showed an overall high level of shared taxa among bacterial communities within each valley; however, the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the different valleys that were statistically related to dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-occurrence networks revealed complex interdependencies within the bacterioplankton communities and showed contrasting linkages to environmental conditions among the main bacterial phyla. The thaw pond networks were composed of a limited number of highly connected taxa. This "small world network" property would render the communities more robust to environmental change but vulnerable to the loss of microbial "keystone species". These highly connected nodes (OTUs) in the network were not merely the numerically dominant taxa, and their loss would alter the organization of microbial consortia and ultimately the food web structure and functioning of these aquatic ecosystems.

  14. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  15. Dynamic of bacterial communities attached to lightened phytodetritus.

    PubMed

    Petit, Morgan; Bonin, Patricia; Amiraux, Rémi; Michotey, Valérie; Guasco, Sophie; Armitano, Joshua; Jourlin-Castelli, Cécile; Vaultier, Frédéric; Méjean, Vincent; Rontani, Jean-François

    2015-09-01

    The effects of singlet oxygen ((1)O2) transfer to bacteria attached on phytodetritus were investigated under laboratory-controlled conditions. For this purpose, a nonaxenic culture of Emiliania huxleyi in late stationary phase was studied for bacterial viability. Our results indicated that only 9 ± 3% of attached bacteria were alive compared to 46 ± 23% for free bacteria in the E. huxleyi culture. Apparently, under conditions of low irradiance (36 W m(-2)), during the culture, the cumulative dose received (22,000 kJ m(-2)) was sufficiently important to induce an efficient (1)O2 transfer to attached bacteria during the senescence of E. huxleyi cells. At this stage, attached bacteria appeared to be dominated by pigmented bacteria (Maribacter, Roseobacter, Roseovarius), which should resist to (1)O2 stress probably due to their high contents of carotenoids. After subsequent irradiation of the culture until fully photodegradation of chlorophyll, DGGE analyses showed that the diversity of bacteria attached to E. huxleyi cells is modified by light. Photooxidative alterations of bacteria were confirmed by the increasing amounts of cis-vaccenic photoproducts (bacterial marker) per bacteria observed during irradiation time. Interestingly, preliminary chemotaxis experiments showed that Shewanella oneidensis considered here as a model of motile bacteria was attracted by phytodetritus producing or not (1)O2. This lack of repulsive effects could explain the high mortality rate of bacteria measured on E. huxleyi cells. PMID:25687611

  16. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards* #

    PubMed Central

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-01-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle. PMID:25367788

  17. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert

    PubMed Central

    Řeháková, Klára; Chroňáková, Alica; Krištůfek, Václav; Kuchtová, Barbora; Čapková, Kateřina; Scharfen, Josef; Čapek, Petr; Doležal, Jiří

    2015-01-01

    Although bacterial assemblages are important components of soils in arid ecosystems, the knowledge about composition, life-strategies, and environmental drivers is still fragmentary, especially in remote high-elevation mountains. We compared the quality and quantity of heterotrophic bacterial assemblages between the rhizosphere of the dominant cushion-forming plant Thylacospermum ceaspitosum and its surrounding bulk soil in two mountain ranges (East Karakoram: 4850–5250 m and Little Tibet: 5350–5850 m), in communities from cold steppes to the subnival zone in Ladakh, arid Trans-Himalaya, northwest India. Bacterial communities were characterized by molecular fingerprinting in combination with culture-dependent methods. The effects of environmental factors (elevation, mountain range, and soil physico-chemical parameters) on the bacterial community composition and structure were tested by multivariate redundancy analysis and conditional inference trees. Actinobacteria dominate the cultivable part of community and represent a major bacterial lineage of cold desert soils. The most abundant genera were Streptomyces, Arthrobacter, and Paenibacillus, representing both r- and K-strategists. The soil texture is the most important factor for the community structure and the total bacteria counts. Less abundant and diverse assemblages are found in East Karakoram with coarser soils derived from leucogranite bedrock, while more diverse assemblages in Little Tibet are associated with finer soils derived from easily weathering gneisses. Cushion rhizosphere is in general less diverse than bulk soil, and contains more r-strategists. K-strategists are more associated with the extremes of the gradient, with drought at lowest elevations (4850–5000 m) and frost at the highest elevations (5750–5850 m). The present study illuminates the composition of soil bacterial assemblages in relation to the cushion plant T. ceaspitosum in a xeric environment and brings important information

  18. [Algo-bacterial communities of the Kulunda steppe (Altai region, Russia) soda lakes].

    PubMed

    Samylina, O S; Sapozhnikov, F V; Gaĭnanova, O Iu; Riabova, A V; Nikitin, M A; Sorokin, D Iu

    2015-01-01

    The composition and macroscopic structure of the floating oxygenic phototrophic communities from Kulunda steppe soda lakes (Petukhovskoe sodovoe, Tanatara VI, and Gorchiny 3) was described based on the data of the 2011 and 2012 expeditions (Winogradsky Institute of Microbiology). The algo-bacterial community with a green alga Ctenocladus circinnatus as an edificator was the typical one. Filamentous Geitlerinema sp. and Nodosilinea sp. were the dominant cyanobacteria. Apart from C. circinnatus, the algological component of the community contained unicellular green algae Dunaliella viridis and cf. Chlorella minutissima, as well as diatoms (Anomeoneis sphaerophora, Brchysira brebissonii, Brachysira zellensis, Mastogloia pusilla var. subcapitata, Nitzschia amphibia, Nitzschia communis, and Nitzschia sp.1). The latter have not been previously identified in the lakes under study. In all lakes, a considerable increase in salinity was found to result in changes in the composition and macroscopic structure of algo-bacterial communities. PMID:25916153

  19. Relationships between Arabidopsis thaliana and soil bacterial communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizosphere microbial communities are impacted by resident plant species and have reciprocal effects on their host plants. In this study, we collected resident soil from five wild populations of Arabidopsis in the United States and Europe in an effort to characterize the soil microbiome that co-exis...

  20. Coral-associated bacterial communities on Ningaloo Reef, Western Australia.

    PubMed

    Ceh, Janja; Van Keulen, Mike; Bourne, David G

    2011-01-01

    Coral-associated microbial communities from three coral species (Pocillopora damicornis, Acropora tenuis and Favites abdita) were examined every 3 months (January, March, June, October) over a period of 1 year on Ningaloo Reef, Western Australia. Tissue from corals was collected throughout the year and additional sampling of coral mucus and seawater samples was performed in January. Tissue samples were also obtained in October from P. damicornis coral colonies on Rottnest Island off Perth, 1200 km south of Ningaloo Reef, to provide comparisons between coral-microbial associates in different locations. The community structures of the coral-associated microorganisms were analysed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse microbial profiles among all the coral species sampled. Principal component analysis revealed that samples grouped according to time and not species, indicating that coral-microbial associations may be a result of environmental drivers such as oceanographic characteristics, benthic community structure and temperature. Tissue samples from P. damicornis at Rottnest Island revealed similarities in bacteria to the samples at Ningaloo Reef. This study highlights that coral-associated microbial communities are highly diverse; however, the complex interactions that determine the stability of these associations are not necessarily dependent on coral host specificity. PMID:21044100

  1. Bacterial Invasion Dynamics in Zebrafish Gut Microbial Communities

    NASA Astrophysics Data System (ADS)

    Logan, Savannah; Jemielita, Matthew; Wiles, Travis; Schlomann, Brandon; Hammer, Brian; Guillemin, Karen; Parthasarathy, Raghuveer

    Microbial communities residing in the vertebrate intestine play an important role in host development and health. These communities must be in part shaped by interactions between microbial species as they compete for resources in a physically constrained system. To better understand these interactions, we use light sheet microscopy and zebrafish as a model organism to image established gut microbial communities as they are invaded by robustly-colonizing challengers. We demonstrate that features of the challenger, including motility and spatial distribution, impact success in invasion and in outcompeting the original community. We also show that physical characteristics of the host, such as the motility of the gut, play important roles in mediating inter-species competition. Finally, we examine the influence of the contact-dependent type VI secretion system (T6SS), which is used by specific bacteria to cause cell lysis by injecting toxic effector proteins into competitors. Our findings provide insights into the determinants of microbial success in the complex ecosystems found in the gut.

  2. Distinct soil bacterial communities revealed under a diversely managed agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land-use change and management are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, soil microbial community complexity after manipulations is still difficult to quantify. In this study, replicate soil samples we...

  3. Comparison of DNA preservation methods for environmental bacterial community samples

    USGS Publications Warehouse

    Gray, Michael A.; Pratte, Zoe A.; Kellogg, Christina A.

    2013-01-01

    Field collections of environmental samples, for example corals, for molecular microbial analyses present distinct challenges. The lack of laboratory facilities in remote locations is common, and preservation of microbial community DNA for later study is critical. A particular challenge is keeping samples frozen in transit. Five nucleic acid preservation methods that do not require cold storage were compared for effectiveness over time and ease of use. Mixed microbial communities of known composition were created and preserved by DNAgard™, RNAlater®, DMSO–EDTA–salt (DESS), FTA® cards, and FTA Elute® cards. Automated ribosomal intergenic spacer analysis and clone libraries were used to detect specific changes in the faux communities over weeks and months of storage. A previously known bias in FTA® cards that results in lower recovery of pure cultures of Gram-positive bacteria was also detected in mixed community samples. There appears to be a uniform bias across all five preservation methods against microorganisms with high G + C DNA. Overall, the liquid-based preservatives (DNAgard™, RNAlater®, and DESS) outperformed the card-based methods. No single liquid method clearly outperformed the others, leaving method choice to be based on experimental design, field facilities, shipping constraints, and allowable cost.

  4. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    PubMed Central

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  5. Spatial patterns of bacterial and archaeal communities along the Romanche Fracture Zone (tropical Atlantic).

    PubMed

    Lekunberri, Itziar; Sintes, Eva; de Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J

    2013-09-01

    The composition of prokaryotic communities was determined in the meso- and bathypelagic waters funneled through the Romanche Fracture Zone (RFZ, 2°7'S, 31°79'W to 0°6'N, 14°33'W) in the tropical Atlantic. Distinct water masses were identified based on their physical and chemical characteristics. The bacterial and archaeal communities were depth-stratified with a total of 116 and 25 operational taxonomic units (OTUs), respectively, distributed among the distinct water masses as revealed by terminal restriction fragment length polymorphism, and cloning and sequencing. The relative abundance of Thaumarchaeota, determined by catalyzed reporter deposition-fluorescence in situ hybridization, was significantly higher in deeper layers (Antarctic Bottom Water, AABW, > 4000 m depth), contributing up to 31% to the total prokaryotic community, than in the mesopelagic and lower euphotic layer. Although the contribution of SAR11 to bacterial abundance did not increase with depth, SAR202, SAR324, SAR406 and Alteromonas did increase with depth. Terminal restriction fragment length polymorphism analysis revealed successional changes in the bacterial and archaeal community composition of the North Atlantic Deep Water (NADW) with a passage time through the RFZ of c. 4 months but not in the under- and overlying water masses. Our results indicate that specific water masses harbor distinct bacterial and archaeal communities and that the prokaryotic community of the NADW undergoes successional changes in this conduit between the western and eastern Atlantic basin. Apparently, in the absence of major input of organic matter to specific deep-water masses, the indigenous prokaryotic community adapts to subtle physical and biogeochemical changes in the water mass within a time frame of weeks, similar to the reported seasonal changes in surface water prokaryotic communities. PMID:23621156

  6. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Yang, Zamin; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Gu, Baohua; Southworth, George R; Drake, Meghan M; Brandt, Craig C; Elias, Dwayne A

    2011-01-01

    High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.

  7. Mercury and other heavy metals influence bacterial community structure in low-order Tennessee streams

    SciTech Connect

    Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Palumbo, Anthony Vito; Podar, Mircea; Brown, Steven D; Brooks, Scott C; Southworth, George R; Drake, Meghan M; Brandt, Craig C

    2011-01-01

    High concentrations of the heavy metals U(VI) and Hg(II) as well as inorganic compounds including nitrate have contaminated streams located in the Department of Energy reservation in Oak Ridge, TN. Of particular concern is methylmercury (MeHg) as it is more neurotoxic than Hg0. Deltaproteobacteria including sulfate reducing bacteria (SRB) and iron reducing bacteria (IRB) have been generally identified as the primary methylators. In order to determine potential effects on microbial community composition by the contamination, surface stream sediments were collected 7 times during the year from 5 contaminated sites and 1 control site. Sixty samples were analyzed for bacterial community composition and geochemistry. Community characterization used GS 454 FLX pyrosequencing with 235 Mb of 16S rDNA sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high quality sequences with lengths of >200 bp. The bacterial community was represented by 24 phyla and unclassified Bacteria including Proteobacteria (22.9-58.5%), Cyanobacteria (0.2-32.0%), Acidobacteria (1.6-30.6%), and Verrucomicrobia (3.4-31.0%). Redundancy analysis indicated there were no significant differences in the bacterial community structure between midchannel and near bank samples. However, significant correlations existed between the bacterial community and seasonal as well as geochemical variation. Further, several members of the community appear to be positively associated with MeHg including the Proteobacteria group that includes SRBs as well as Verrucomicrobia. This study is the first to indicate the influence of MeHg on an in-situ microbial community and suggests possible roles for each of these phyla in the Hg/MeHg cycle.

  8. A Coexisting Fungal-Bacterial Community Stabilizes Soil Decomposition Activity in a Microcosm Experiment

    PubMed Central

    Ushio, Masayuki; Miki, Takeshi; Balser, Teri C.

    2013-01-01

    How diversity influences the stability of a community function is a major question in ecology. However, only limited empirical investigations of the diversity–stability relationship in soil microbial communities have been undertaken, despite the fundamental role of microbial communities in driving carbon and nutrient cycling in terrestrial ecosystems. In this study, we conducted a microcosm experiment to investigate the relationship between microbial diversity and stability of soil decomposition activities against changes in decomposition substrate quality by manipulating microbial community using selective biocides. We found that soil respiration rates and degradation enzyme activities by a coexisting fungal and bacterial community (a taxonomically diverse community) are more stable against changes in substrate quality (plant leaf materials) than those of a fungi-dominated or a bacteria-dominated community (less diverse community). Flexible changes in the microbial community composition and/or physiological state in the coexisting community against changes in substrate quality, as inferred by the soil lipid profile, may be the mechanism underlying this positive diversity–stability relationship. Our experiment demonstrated that the previously found positive diversity–stability relationship could also be valid in the soil microbial community. Our results also imply that the functional/taxonomic diversity and community ecology of soil microbes should be incorporated into the context of climate–ecosystem feedbacks. Changes in substrate quality, which could be induced by climate change, have impacts on decomposition process and carbon dioxide emission from soils, but such impacts may be attenuated by the functional diversity of soil microbial communities. PMID:24260368

  9. Bacterial communities in fish sauce mash using culture-dependent and -independent methods.

    PubMed

    Fukui, Youhei; Yoshida, Mitsuhiro; Shozen, Kei-ichi; Funatsu, Yasuhiro; Takano, Takashi; Oikawa, Hiroshi; Yano, Yutaka; Satomi, Masataka

    2012-01-01

    In fish sauce production, microorganisms are associated with the fermentation process; however, the sequential changes in the bacterial communities have never been examined throughout the period of fermentation. In this study, we determined the bacterial floras in a fish sauce mash over 8 months, using three different culture media and 16S rRNA gene clone library analysis. During the first 4 weeks, viable counts of non-halophilic and halophilic bacteria decreased and were dominated by Staphylococcus species. Between 4 and 6 weeks, halophilic and highly halophilic bacterial counts markedly increased from 10(7) to 10(8) cfu/g, and the predominant species changed to Tetragenococcus halophilus. The occurrence of T. halophilus was associated with an increase of lactic acid and a reduction of pH values. In contrast, non-halophilic bacterial counts decreased to 10(6) cfu/g by 6 weeks with Bacillus subtilis as the dominant isolate. Clone library analysis revealed that the dominant bacterial group also changed from Staphylococcus spp. to T. halophilus, and the changes were consistent with those of the floras of halophilic and highly halophilic isolates. This is the first report describing a combination approach of culture and clone library methods for the analysis of bacterial communities in fish sauce mash. PMID:22990487

  10. Characterization of the Bacterial Community of the Chemically Defended Hawaiian Sacoglossan Elysia rufescens

    PubMed Central

    Davis, Jeanette; Fricke, W. Florian; Hamann, Mark T.; Esquenazi, Eduardo; Dorrestein, Pieter C.

    2013-01-01

    Sacoglossans are characterized by the ability to sequester functional chloroplasts from their algal diet through a process called kleptoplasty, enabling them to photosynthesize. The bacterial diversity associated with sacoglossans is not well understood. In this study, we coupled traditional cultivation-based methods with 454 pyrosequencing to examine the bacterial communities of the chemically defended Hawaiian sacoglossan Elysia rufescens and its secreted mucus. E. rufescens contains a defense molecule, kahalalide F, that is possibly of bacterial origin and is of interest because of its antifungal and anticancer properties. Our results showed that there is a diverse bacterial assemblage associated with E. rufescens and its mucus, with secreted mucus harboring higher bacterial richness than entire-E. rufescens samples. The most-abundant bacterial groups affiliated with E. rufescens and its mucus are Mycoplasma spp. and Vibrio spp., respectively. Our analyses revealed that the Vibrio spp. that were highly represented in the cultivable assemblage were also abundant in the culture-independent community. Epifluorescence microscopy and matrix-assisted laser desorption–ionization mass spectrometry (MALDI-MS) were utilized to detect the chemical defense molecule kahalalide F on a longitudinal section of the sacoglossan. PMID:24014539

  11. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    PubMed

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties. PMID:25560266

  12. Comparative Study of Bacterial Communities in Nepenthes Pitchers and Their Correlation to Species and Fluid Acidity.

    PubMed

    Kanokratana, Pattanop; Mhuanthong, Wuttichai; Laothanachareon, Thanaporn; Tangphatsornruang, Sithichoke; Eurwilaichitr, Lily; Kruetreepradit, Trongtham; Mayes, Shawn; Champreda, Verawat

    2016-08-01

    Pitchers are specialized digestive organs of carnivorous plants which evolved for trapping prey and represent a unique environment harboring hidden diversity of unexplored microbes forming transient hydrolytic microcosms. In this study, the diversity of bacterial communities in the pitcher fluids of seven local Nepenthes found in Thailand was assessed by tagged 16S ribosomal RNA (rRNA) gene amplicon sequencing on an Ion PGM™ platform. A total of 1,101,000 filtered sequences were obtained which were taxonomically classified into 20 phyla, 48 classes, 72 orders, 153 families, and 442 genera while the remainder (1.43 %) could not be assigned to any existing taxa. Proteobacteria represented the predominant members in closed pitchers and more diversified bacterial taxa particularly Bacteriodetes and Actinobacteria, showed increasing abundance in open pitchers containing insect bodies. Principal coordinate analysis revealed that distribution of bacterial taxa was not significantly related to the Nepenthes species but strongly correlated to the pH of the pitcher fluids (pH 1.7-6.7). Acidicella was a highly dominant bacterial genus in acidic pitcher fluids while Dyella and Mycobacterium were also common genera in most pitchers. A unique microbial community structure was found in Nepenthes ampullaria which could reflect their adaptation to digest leaf litter, in addition to insect prey. The work revealed the highly unexplored nature of bacterial microcosms in Nepenthes pitcher fluids and provides insights into their community structure in this unique ecological system. PMID:27287538

  13. Environmental Factors Shape Sediment Anammox Bacterial Communities in Hypernutrified Jiaozhou Bay, China▿ †

    PubMed Central

    Dang, Hongyue; Chen, Ruipeng; Wang, Lin; Guo, Lizhong; Chen, Pingping; Tang, Zuwang; Tian, Fang; Li, Shaozheng; Klotz, Martin G.

    2010-01-01

    Bacterial anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. Because ongoing eutrophication of coastal bays contributes significantly to the formation of low-oxygen zones, monitoring of the anammox bacterial community offers a unique opportunity for assessment of anthropogenic perturbations in these environments. The current study used targeting of 16S rRNA and hzo genes to characterize the composition and structure of the anammox bacterial community in the sediments of the eutrophic Jiaozhou Bay, thereby unraveling their diversity, abundance, and distribution. Abundance and distribution of hzo genes revealed a greater taxonomic diversity in Jiaozhou Bay, including several novel clades of anammox bacteria. In contrast, the targeting of 16S rRNA genes verified the presence of only “Candidatus Scalindua,” albeit with a high microdiversity. The genus “Ca. Scalindua” comprised the apparent majority of active sediment anammox bacteria. Multivariate statistical analyses indicated a heterogeneous distribution of the anammox bacterial assemblages in Jiaozhou Bay. Of all environmental parameters investigated, sediment organic C/organic N (OrgC/OrgN), nitrite concentration, and sediment median grain size were found to impact the composition, structure, and distribution of the sediment anammox bacterial community. Analysis of Pearson correlations between environmental factors and abundance of 16S rRNA and hzo genes as determined by fluorescent real-time PCR suggests that the local nitrite concentration is the key regulator of the abundance of anammox bacteria in Jiaozhou Bay sediments. PMID:20833786

  14. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils.

    PubMed

    Fang, Hua; Lian, Jianjun; Wang, Huifang; Cai, Lin; Yu, Yunlong

    2015-04-01

    Substantial application of the herbicide atrazine in agriculture leads to persistent contamination, which may damage the succeeding crops and pose potential threats to soil ecology and environmental health. Here, the degradation characteristics of atrazine and dynamic change of soil bacterial community structure and function as well as their relations were studied during three repeated treatments at the recommended, double, and five-fold doses. The results showed that the degradation half-life of atrazine obviously decreased with increased treatment frequency. Soil microbial functional diversity displayed a variation trend of suppression-recovery-stimulation, which was associated with increased degradation rate of atrazine. 16S amplicon sequencing was conducted to explore bacterial community structure and correlate the genus to potential atrazine degradation. A total of seven potentially atrazine-degrading bacterial genera were found including Nocardioides, Arthrobacter, Bradyrhizobium, Burkholderia, Methylobacterium, Mycobacterium, and Clostridium. These bacterial genera showed almost complete atrazine degradation pathways including dechlorination, dealkylation, hydroxylation, and ring cleavage. Furthermore, the relative abundance of four of them (i.e., Nocardioides, Arthrobacter, Methylobacterium, and Bradyrhizobium) increased with treatment frequency and atrazine concentration, suggesting that they may participate in atrazine degradation during repeated treatments. Our findings reveal the potential relationship between atrazine degradation and soil bacterial community structure in repeatedly treated soils. PMID:25603295

  15. The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird

    PubMed Central

    Rodríguez-Ruano, Sonia M.; Martín-Vivaldi, Manuel; Martín-Platero, Antonio M.; López-López, J. Pablo; Peralta-Sánchez, Juan M.; Ruiz-Rodríguez, Magdalena; Soler, Juan J.; Valdivia, Eva; Martínez-Bueno, Manuel

    2015-01-01

    Molecular methods have revealed that symbiotic systems involving bacteria are mostly based on whole bacterial communities. Bacterial diversity in hoopoe uropygial gland secretion is known to be mainly composed of certain strains of enterococci, but this conclusion is based solely on culture-dependent techniques. This study, by using culture-independent techniques (based on the 16S rDNA and the ribosomal intergenic spacer region) shows that the bacterial community in the uropygial gland secretion is more complex than previously thought and its composition is affected by the living conditions of the bird. Besides the known enterococci, the uropygial gland hosts other facultative anaerobic species and several obligated anaerobic species (mostly clostridia). The bacterial assemblage of this community was largely invariable among study individuals, although differences were detected between captive and wild female hoopoes, with some strains showing significantly higher prevalence in wild birds. These results alter previous views on the hoopoe-bacteria symbiosis and open a new window to further explore this system, delving into the possible sources of symbiotic bacteria (e.g. nest environments, digestive tract, winter quarters) or the possible functions of different bacterial groups in different contexts of parasitism or predation of their hoopoe host. PMID:26445111

  16. Dynamics of bacterial communities in soils of rainforest fragments under restoration processes

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Rafael; Zucchi, Tiago; Taketani, Rodrigo; Andreote, Fernando; Cardoso, Elke

    2014-05-01

    The Brazilian Atlantic Forest ("Mata Atlântica") has been largely studied due to its valuable and unique biodiversity. Unfortunately, this priceless ecosystem has been widely deforested and only 10% of its original area still remains. Many projects have been successfully implemented to restore its fauna and flora but there is a lack of information on how the soil bacterial communities respond to this process. Thus, our aim was to evaluate the influence of soil attributes and seasonality on soil bacterial communities of rainforest fragments under restoration processes. Soil samples from a native site and two ongoing restoration fragments with different ages of implementation (10 and 20 years) were collected and assayed by using culture-independent approaches. Our findings demonstrate that seasonality barely altered the bacterial distribution whereas soil chemical attributes and plant diversity highly influenced the bacterial community structure during the restoration process. Moreover, the strict relationship observed for two bacterial groups, Solibacteriaceae and Verrucomicrobia, one with the youngest (10 years) and the other with the oldest (native) site suggests their use as bioindicators of soil quality and soil recovery of forest fragments under restoration.

  17. Bacterial community characterization in the soils of native and restored rainforest fragments.

    PubMed

    Vasconcellos, Rafael L F; Zucchi, Tiago D; Taketani, Rodrigo G; Andreote, Fernando D; Cardoso, Elke J B N

    2014-11-01

    The Brazilian Atlantic Forest ("Mata Atlântica") has been largely studied due to its valuable and unique biodiversity. Unfortunately, this priceless ecosystem has been widely deforested and only 10 % of its original area is still untouched. Some projects have been successfully implemented to restore its fauna and flora but there is a lack of information on how the soil bacterial communities respond to this process. Thus, our aim was to evaluate the influence of soil attributes and seasonality on soil bacterial communities of rainforest fragments under restoration processes. Soil samples from a native site and two ongoing restoration fragments with different times of implementation (10 and 20 years) were collected and assayed by using culture-independent approaches. Our findings demonstrate that seasonality barely altered the bacterial distribution whereas soil chemical attributes and plant species were related to bacterial community structure during the restoration process. Moreover, the strict relationship observed for two bacterial groups, Solibacteriaceae and Verrucomicrobia, increasing from the more recently planted (10 years) to the native site, with the 20 year old restoration site in the middle, which may suggest their use as bioindicators of soil quality and recovery of forest fragments being restored. PMID:25155863

  18. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils.

    PubMed

    Jung, Jaejoon; Yeom, Jinki; Han, Jiwon; Kim, Jisun; Park, Woojun

    2012-06-01

    The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change. PMID:22752898

  19. Bacterial communities associated with Chenopodium album and Stellaria media seeds from arable soils.

    PubMed

    van Overbeek, Leonard S; Franke, Angelinus C; Nijhuis, Els H M; Groeneveld, Roel M W; da Rocha, Ulisses Nunes; Lotz, Lambertus A P

    2011-08-01

    The bacterial community compositions in Chenopodium album and Stellaria media seeds recovered from soil (soil weed seedbank), from bulk soil, and from seeds harvested from plants grown in the same soils were compared. It was hypothesized that bacterial communities in soil weed seedbanks are distinct from the ones present in bulk soils. For that purpose, bacterial polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints, made from DNA extracts of different soils and seed fractions, were analyzed by principal component analysis. Bacterial fingerprints from C. album and S. media seeds differed from each other and from soil. Further, it revealed that bacterial fingerprints from soil-recovered and plant-harvested seeds from the same species clustered together. Hence, it was concluded that microbial communities associated with seeds in soil mostly originated from the mother plant and not from soil. In addition, the results indicated that the presence of a weed seedbank in arable soils can increase soil microbial diversity. Thus, a change in species composition or size of the soil weed seedbank, for instance, as a result of a change in crop management, could affect soil microbial diversity. The consequence of increased diversity is yet unknown, but by virtue of identification of dominant bands in PCR-DGGE fingerprints as Lysobacter oryzae (among four other species), it became clear that bacteria potentially antagonizing phytopathogens dominate in C. album seeds in soil. The role of these potential antagonists on weed and crop plant growth was discussed. PMID:21424277

  20. Variable Effects of Dispersal on Productivity of Bacterial Communities Due to Changes in Functional Trait Composition

    PubMed Central

    Severin, Ina; Östman, Örjan; Lindström, Eva S.

    2013-01-01

    Previous studies have shown variable relationships between dispersal rate and ecosystem functioning, but the reasons for and mechanisms behind variable dispersal rate – functioning patterns are currently unknown. In this study we used six bacterial lake water communities in a laboratory experiment in order to investigate how dispersal among communities influences community productivity by evaluating three different mechanisms: 1) changes in taxonomic diversity, 2) changes in phylogenetic diversity or 3) changes in the composition of functional traits. The experiment was conducted in two phases; (A) a dialysis bag experiment where the dispersal rate among six communities was manipulated and the subsequent change in bacterial diversity and growth rate was recorded, and (B) a regrowth experiment where we manipulated available resources to study how well a taxon grows on certain organic carbon resources, i.e. their functional traits. From experiment (B) we could thus estimate changes in functional traits in communities in experiment (A). Bacterial production was affected by dispersal, but not consistently among lakes. Neither change in taxonomic or phylogenetic diversity with dispersal could explain the observed dispersal – productivity relationships. Instead, changes in trait composition with dispersal, especially the communities’ ability to use p-coumaric acid, an aromatic compound, could explain the observed dispersal – productivity relationships. Changes in this trait caused by dispersal seemed especially important for bacterial productivity in waters with a high aromaticity of the organic matter pool. We conclude that the effect of dispersal on bacterial communities can affect ecosystem functioning in different ways, through changes in functional key-traits which are important for the local environment. PMID:24324633

  1. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    PubMed

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  2. Species sorting and neutral processes are both important during the initial assembly of bacterial communities

    PubMed Central

    Langenheder, Silke; Székely, Anna J

    2011-01-01

    Many studies have shown that species sorting, that is, the selection by local environmental conditions is important for the composition and assembly of bacterial communities. On the other hand, there are other studies that could show that bacterial communities are neutrally assembled. In this study, we implemented a microcosm experiment with the aim to determine, at the same time, the importance of species sorting and neutral processes for bacterial community assembly during the colonisation of new, that is, sterile, habitats, by atmospheric bacteria. For this we used outdoor microcosms, which contained sterile medium from three different rock pools representing different environmental conditions, which were seeded by rainwater bacteria. We found some evidence for neutral assembly processes, as almost every 4th taxon growing in the microcosms was also detectable in the rainwater sample irrespective of the medium. Most of these taxa belonged to widespread families with opportunistic growth strategies, such as the Pseudomonadaceae and Comamonadaceae, indicating that neutrally assembled taxa may primarily be generalists. On the other hand, we also found evidence for species sorting, as one out of three media selected a differently composed bacterial community. Species sorting effects were relatively weak and established themselves via differences in relative abundance of generalists among the different media, as well as media-specific occurrences of a few specific taxa. In summary, our results suggest that neutral and species sorting processes interact during the assembly of bacterial communities and that their importance may differ depending on how many generalists and specialists are present in a community. PMID:21270841

  3. Endophytic bacterial communities associated with two explant sources of Eucalyptus benthamii Maiden & Cambage.

    PubMed

    Esposito-Polesi, Natalia Pimentel; de Andrade, Pedro Avelino Maia; de Almeida, Cristina Vieira; Andreote, Fernando Dini; de Almeida, Marcílio

    2015-11-01

    Micropropagation has been applied in the recovery and rejuvenation of adult trees, which is achieved by various subcultures in the multiplication phase. This strategy has brought questions about the endophytic microbiota associated with these plants along its manipulation. Therefore, the aim of this study was to evaluate the composition of the endophytic bacterial communities associated with two explants sources [the canopy branches (CB) and the trunk base of the tree (TB)] under prolonged in vitro cultivation. In addition we analyzed the bacterial community dynamic along the subcultures in different micropropagation phases. Bacterial DNA was extracted from samples of mini-stumps (in vivo) from CB and TB and in micro-stumps produced by in vitro cultivations of these explants sources--both originated from one single matrix plant of Eucalyptus benthamii. In vitro establishment occurred in two dates and the evaluation of endophytic bacterial communities was made in vivo and in vitro samples (on 10th, 13th and 16th subcultures), when elongated shoots and roots were analyzed. Analysis was performed by PCR-DGGE based on the V6 region of ribosomal gene 16S rDNA. Bands profiles showed differences in communities between in vivo and in vitro samples, and also distinctions of communities assessed in the subcultures, elongated and rooted samples. Distinctions in the composition of endophytic bacterial communities were greater in CB micro-stumps. These results indicate a differential colonization of explants by endophytic bacteria, with predominance of common (ever-present) endophytes in TB samples and casual, here named opportunistic, in CB samples. PMID:26377625

  4. Bacterial Community Composition and Extracellular Enzyme Activity in Temperate Streambed Sediment during Drying and Rewetting

    PubMed Central

    Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen

    2013-01-01

    Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after

  5. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    PubMed Central

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  6. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process

    PubMed Central

    2014-01-01

    Background Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Results Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Conclusion Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that

  7. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    PubMed Central

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects–direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions. PMID:27020916

  8. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    NASA Astrophysics Data System (ADS)

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-03-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects–direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions.

  9. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    NASA Astrophysics Data System (ADS)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  10. Technical challenges in metatranscriptomic studies applied to the bacterial communities of freshwater ecosystems.

    PubMed

    Pascault, Noémie; Loux, Valentin; Derozier, Sandra; Martin, Véronique; Debroas, Didier; Maloufi, Selma; Humbert, Jean-François; Leloup, Julie

    2015-04-01

    Metatranscriptome analysis relates to the transcriptome of microbial communities directly sampled in the environment. Accessing the mRNA pool in natural bacterial communities presents some technical challenges such as the RNA extraction, rRNA depletion, and the choice of the high-throughput sequencing technique. The lack of technical details in scientific articles is a major problem to correctly obtained mRNA from a microbial community and thus the corresponding sequencing data. In our study, we present the methodological procedure that was developed in order to access to the metatranscriptome of the microbial communities during two cyanobacterial blooms successively occurring in a freshwater eutrophic lake. Each procedure step was detailed and discussed with regard to the choices and difficulties encountered and to the recent literature. Finally, the two major limits for metatranscriptomic approaches targeting bacterial communities from natural environments were (i) the removal of rRNA in order to increase the putative mRNA reads number after sequencing, and (ii) for most of the bacterial communities living in natural environments, the lack of reference genomes in databases that leads to the non-assignation of numerous reads. Once these challenges overcome, we managed to access putative mRNA of dominant species, i.e. cyanobacteria (from 6 to 72 % of mRNA assigned), and of the surrounding bacteria (from 1 to 5 % of mRNA assigned). PMID:25216965

  11. Bacterial community dynamics during industrial malting, with an emphasis on lactic acid bacteria.

    PubMed

    Justé, A; Malfliet, S; Waud, M; Crauwels, S; De Cooman, L; Aerts, G; Marsh, T L; Ruyters, S; Willems, K; Busschaert, P; Lievens, B

    2014-05-01

    Characterization of the microflora during malting is an essential step towards process management and optimization. Up till now, however, microbial characterization in the malting process has mostly been done using culture-dependent methods, probably leading to biased estimates of microbial diversity. The aim of this study was to characterize the bacterial communities using two culture-independent methods, including Terminal Restriction Fragment Length Polymorphism (T-RFLP) and 454 pyrosequencing, targeting the 16S rRNA gene. Studied samples originated from two harvest years and two malting houses malting the same batch of barley. Besides targeting the entire bacterial community (T-RFLP), emphasis was put on lactic acid bacteria (LAB) (T-RFLP and 454 pyrosequencing). The overall bacterial community richness was limited, but the community structure changed during the process. Zooming in on the LAB community using 454 pyrosequencing revealed a total of 47 species-level operational taxonomic units (OTUs). LAB diversity appeared relatively limited since 88% of the sequences were covered by the same five OTUs (representing members of Weissella, Lactobacillus and Leuconostoc) present in all samples investigated. Fluctuations in the relative abundances of the dominant LAB were observed with the process conditions. In addition, both the year of harvest and malting house influenced the LAB community structure. PMID:24387850

  12. Identification of bacterial communities in sediments of Poyang Lake, the largest freshwater lake in China.

    PubMed

    Kou, Wenbo; Zhang, Jie; Lu, Xinxin; Ma, Yantian; Mou, Xiaozhen; Wu, Lan

    2016-01-01

    Bacteria play a vital role in various biogeochemical processes in lacustrine sediment ecosystems. This study is among the first to investigate the spatial distribution patterns of bacterial community composition in the sediments of Poyang Lake, the largest freshwater lake of China. Sediment samples were collected from the main basins and mouths of major rivers that discharge into the Poyang Lake in May 2011. Quantitative PCR assay and pyrosequencing analysis of 16S rRNA genes showed that the bacteria community abundance and compositions of Poyang Lake sediment varied largely among sampling sites. A total of 25 phyla and 68 bacterial orders were distinguished. Burkholderiales, Gallionellales (Beta-proteobacteria), Myxococcales, Desulfuromonadales (Delta-proteobacteria), Sphingobacteriales (Bacteroidetes), Nitrospirales (Nitrospirae), Xanthomonadales (Gamma-proteobacteria) were identified as the major taxa and collectively accounted for over half of annotated sequences. Moreover, correlation analyses suggested that higher loads of total phosphorus and heavy metals (copper, zinc and cadmium) could enhance bacterial abundance in the sediment. PMID:27047727

  13. Probiotics Shown To Change Bacterial Community Structure in the Avian Gastrointestinal Tract

    PubMed Central

    Netherwood, Trudy; Gilbert, H. J.; Parker, D. S.; O’Donnell, A. G.

    1999-01-01

    Culturing and molecular techniques were used to monitor changes in the bacterial flora of the avian gastrointestinal (GI) tract following introduction of genetically modified (GM) and unmodified probiotics. Community hybridization of amplified 16S ribosomal DNA demonstrated that the bacterial flora of the GI tract changed significantly in response to the probiotic treatments. The changes were not detected by culturing. Although both GM and non-GM strains of Enterococcus faecium NCIMB 11508 changed the bacterial flora of the chicken GI tract, they did so differently. Probing the community DNA with an Enterococcus faecalis-specific probe showed that the relative amount of E. faecalis in the total eubacterial population increased in the presence of the non-GM strain and decreased in the presence of the GM probiotic compared with the results obtained with an untreated control group. PMID:10543832

  14. Changes in bacterial community structure in a full-scale membrane bioreactor for municipal wastewater treatment.

    PubMed

    Hashimoto, Kurumi; Tsutsui, Hirofumi; Takada, Kazuki; Hamada, Hiroshi; Sakai, Kousuke; Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Yamashita, Kyoko; Tsuji, Koji; Hashimoto, Toshikazu; Ike, Michihiko

    2016-07-01

    This study investigated changes in the structure and metabolic capabilities of the bacterial community in a full-scale membrane bioreactor (MBR) treating municipal wastewater. Microbial monitoring was also conducted for a parallel-running conventional activated sludge (CAS) process treating the same influent. The mixed-liquor suspended solid concentration in the MBR reached a steady-state on day 73 after the start-up. Then the MBR maintained higher rates of removal of organic compounds and nitrogen than the CAS process did. Terminal restriction fragment length polymorphism analysis revealed that the bacterial community structure in the MBR was similar to that in the CAS process at the start-up, but it became very different from that in the CAS process in the steady state. The bacterial community structure of the MBR continued to change dynamically even after 20 months of the steady-state operation, while that of the CAS process was maintained in a stable condition. By contrast, Biolog assay revealed that the carbon source utilization potential of the MBR resembled that of the CAS process as a whole, although it declined transiently. Overall, the results indicate that the bacterial community of the MBR has flexibility in terms of its phylogenetic structure and metabolic activity to maintain the high wastewater treatment capability. PMID:26811223

  15. Bacterial community structure in freshwater springs infested with the invasive plant species Hydrilla verticillata

    PubMed Central

    Gordon-Bradley, N.; Li, N.

    2015-01-01

    The phylogenetic composition and physiological profiles of bacterial communities in freshwater springs were evaluated during the blooming and non-blooming stages of the invasive plant species, Hydrilla verticillata. Community-level physiological profiles (CLPPs) and pyrosequencing of 16S rRNA gene amplicons were used to study potential Hydrilla mediated shifts in the physiological potential and phylogenetic composition of the bacterial community in infested systems. The results of CLPP revealed that the microbes in the Hydrilla invaded sites utilized less substrates during blooming periods than during nonblooming periods of the plant. Spearman’s rank correlation analysis showed some relationships between the relative abundances of bacterial taxa and the Biolog substrate utilization pattern. The relative abundance of the identified taxa showed some striking differences based on the blooming status of Hydrilla and to a lesser extent on site variation. The relative abundance of Actinobacteria, Bacteriodetes, and Verrucomicrobia was generally higher during Hydrilla blooms, while Deltaproteobacteria was generally higher during non-blooming stages of Hydrilla. The detected genera also varied based on the blooming stages of the plant. Based on the findings, it appears that Hydrilla alters the phylogenetic composition and structure of the bacterial community during the blooming stage. PMID:26207069

  16. Citrus huanglongbing shapes the structure of bacterial community associated with citrus roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the effect of pathogen on the diversity and structure of plant associated bacterial community, we carried out a molecular based analysis using citrus and huanglongbing as host-disease model. 16S rDNA clone library analysis of the citrus roots revealed shifts in the microbial diversity in ...

  17. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    PubMed

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance. PMID:26397118

  18. Changes in rumen bacterial communities and rumen chemistry in primiparous Holstein cows during the periparturient period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to study the changes in: 1) rumen bacterial community composition (BCC) and fermentation as influenced by feeding regimen and period; and 2) pH and VFA profiles among selected cows with minimum (stable) and maximum variation (unstable) between pre- and post-parturie...

  19. Comparison of bacterial communities from inside and outside of Rhizoctonia bare patches in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG-8 causes distinct patches of stunted wheat in the field. Bacterial communities from bulk soil and rhizospheres of wheat were analyzed with pyrosequencing. Replicated samples were taken from inside and outside of patches; and from patches that had recovered the previous 1–2 year...

  20. Changes in free-living bacterial community diversity reflect the magnitude of environmental variability.

    PubMed

    Ortmann, Alice C; Ortell, Natalie

    2014-01-01

    A 2-year study was undertaken to compare patterns in the diversity of free-living bacteria in a river-dominated estuary and offshore, on the shelf, to determine whether changes in the free-living bacterial community could be related to differences in environmental seasonality and variability. Although the environmental conditions inshore were significantly more variable than those on the shelf and demonstrated clear seasonal patterns, there were no significant differences in the alpha diversity of the communities based on richness, evenness, or phylogenetic diversity. Comparison of communities using Bray-Curtis similarity indicated no significant differences in the magnitude of change between sequential samples from inshore and on the shelf. Seasonal differences were detected both inshore and on the shelf. However, analysis using the weighted UniFrac distance indicated significantly lower overall change between shelf samples with no significant seasonal differences. These findings suggest different patterns of change between the two sites. Inshore, changes in the relative abundance of distantly related bacterial species reflect the larger environmental variability, while on the shelf, changes in the relative abundance of closely related bacterial species or strains may result in a more functionally stable community. Thus, the magnitude of environmental change can alter patterns of bacterial diversity in marine systems. PMID:24117806

  1. High Concentrations of Methyl Fluoride Affect the Bacterial Community in a Thermophilic Methanogenic Sludge

    PubMed Central

    Hao, Liping; Lü, Fan; Wu, Qing; Shao, Liming; He, Pinjing

    2014-01-01

    To precisely control the application of methyl fluoride (CH3F) for analysis of methanogenic pathways, the influence of 0–10% CH3F on bacterial and archaeal communities in a thermophilic methanogenic sludge was investigated. The results suggested that CH3F acts specifically on acetoclastic methanogenesis. The inhibitory effect stabilized at an initial concentration of 3–5%, with around 90% of the total methanogenic activity being suppressed, and a characteristic of hydrogenotrophic pathway in isotope fractionation was demonstrated under this condition. However, extended exposure (12 days) to high concentrations of CH3F (>3%) altered the bacterial community structure significantly, resulting in increased diversity and decreased evenness, which can be related to acetate oxidation and CH3F degradation. Bacterial clone library analysis showed that syntrophic acetate oxidizing bacteria Thermacetogenium phaeum were highly enriched under the suppression of 10% CH3F. However, the methanogenic community did not change obviously. Thus, excessive usage of CH3F over the long term can change the composition of the bacterial community. Therefore, data from studies involving the use of CH3F as an acetoclast inhibitor should be interpreted with care. Conversely, CH3F has been suggested as a factor to stimulate the enrichment of syntrophic acetate oxidizing bacteria. PMID:24658656

  2. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal

    NASA Astrophysics Data System (ADS)

    Kaown, D.; Kim, H.; Lee, S.; Hyun, Y.; Moon, H.; Ko, K.; Lee, K.

    2012-12-01

    The release of leachate from animal carcass disposal can potentially contaminate soil and groundwater. During the Korea's foot-and-mouth disease (FMD) outbreak in 2010-2011, about 3.53 million of pigs and cattle were slaughtered and 4,538 burial sites were constructed. The objectives of this study are to determine the hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass burial facilities were monitored to prevent further soil and groundwater contamination and to build effective plans for stabilization of the burial site. Two burial sites were investigated in this study. An animal carcass disposal site is located in a flat area and another disposal site is found in mountain area. The hydrogeochemical and hydrogeological characteristics were analyzed to identify groundwater contamination by leachate from livestock burial sites. After 5-6 months of burial, the concentrations of NH4+, Cl-, and HCO3- in leachate were decreased since the leachate was regularly pumped and treated. However, high concentrations of major contaminants (NH4+, Cl-, and HCO3-) were still observed in landfill leachate of mountain area even though pumping and treatment of leachate were continuously conducted. Bacterial community diversity over time in leachate from animal carcass disposal was analyzed using 16S rRNA gene-based pyrosequencing. The impact of landfill leachate on change of bacterial community in soil and groundwater were monitored for a year.

  3. pH Dynamics and Bacterial Community Composition in the Rumen of Lactating Dairy Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of pH dynamics on ruminal bacterial community composition (BCC) was studied in 8 ruminally cannulated Holstein cows fitted with indwelling electrodes that recorded pH at 10-min intervals over a 2.4-d period. Cows were fed a silage-based TMR supplemented with monensin. Ruminal samples wer...

  4. Bacterial community composition in low-flowing river water with different sources of pollutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollution of water resources is a major risk to human health and water quality throughout the world. The purpose of this study was to determine the influence of pollutant sources from agricultural activities, urban runoffs, and runoffs from wastewater treatment plants (WWTPs) on bacterial communitie...

  5. Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    PubMed Central

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  6. pH Dynamics and Bacterial Community Composition in the Rumen of Lactating Dairy Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of pH dynamics on ruminal bacterial community composition was studied in 8 ruminally cannulated Holstein cows fitted with indwelling electrodes that recorded pH at 10-min intervals over a 3-d period. Cows were fed a silage-based TMR supplemented with monensin. Ruminal samples were col...

  7. Spatial and temporal variability of bacterial communities in high alpine water spring sediments.

    PubMed

    Esposito, Alfonso; Engel, Michael; Ciccazzo, Sonia; Daprà, Luca; Penna, Daniele; Comiti, Francesco; Zerbe, Stefan; Brusetti, Lorenzo

    2016-05-01

    Water springs are complex, fragile and taxa-rich environments, especially in highly dynamic ecosystems such as glacier forefields experiencing glacier retreat. Bacterial communities are important actors in alpine water body metabolism, and have shown both high seasonal and spatial variations. Seven springs from a high alpine valley (Matsch Valley, South Tyrol, Italy) were examined via a multidisciplinary approach using both hydrochemical and microbiological techniques. Amplified ribosomal intergenic spacer analysis (ARISA) and electric conductivity (EC) measurements, as well as elemental composition and water stable isotopic analyses, were performed. Our target was to elucidate whether and how bacterial community structure is influenced by water chemistry, and to determine the origin and extent of variation in space and time. There existed variations in both space and time for all variables measured. Diversity values more markedly differed at the beginning of summer and then at the end; the extent of variation in space was prevalent over the time scale. Bacterial community structural variation responded to hydrochemical parameter changes; moreover, the stability of the hydrochemical parameters played an important role in shaping distinctive bacterial communities. PMID:26776565

  8. Effect of starch source in pelleted concentrates on fecal bacterial communities in Thoroughbred mares

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High starch concentrates are often added to equine diets to meet digestible energy requirements of some horses, such as broodmares. Starch source has been shown to affect fecal bacterial communities of horses when fed cereal grains with little to no processing. Others suggest that grain processing, ...

  9. Characterization of bacterial communities in heavy metal contaminated soils.

    PubMed

    Roane, T M; Kellogg, S T

    1996-06-01

    Heavy metal pollution is a principle source of environmental contamination. We analyzed heavy metal impacted soil microbial communities and found that, in general, although lead adversely affected biomass, metabolic activity, and diversity, autochthonous lead- and cadmium-resistant isolates were found. In several metal-stressed soils, the microbial community consisted of two populations, either resistant or sensitive to lead. Additionally, a lead-resistant isolate was isolated from a control soil with no known previous exposure to lead, suggesting widespread lead resistance. Lead-resistant genera isolated included Pseudomonas, Bacillus, Corynebacterium, and Enterobacter species. Plasmids, ranging from 5 to 260 kb, were not detected through standard purifications from lead-resistant isolates. Positive correlations existed between antibiotic resistance and isolation habitat for lead-resistant strains, microbial metabolic activity and soil type, soluble lead concentration and microbial diversity, and arsenic concentration and total or viable cell concentrations. PMID:8801006

  10. Molecular Characterization of Aquatic Bacterial Communities in Dinaric Range Caves.

    PubMed

    Pleše, Bruna; Pojskić, Naris; Ozimec, Roman; Mazija, Mirna; Ćetković, Helena; Lukić-Bilela, Lada

    2016-07-01

    Dinaric limestone cave systems, recognized as a hotspot of subterranean biodiversity, inhabit composite microbial communities whose structure, function and importance to ecosystems was poorly considered until the last few years. Filamentous microbial biofilms from three caves in Dinaric karst were assessed using 16S rRNA-based phylogenetic approach combined with universally protein coding genes/proteins. Studied clone libraries shared divisions but phylogenetic distribution of the obtained phylotypes differed: in Veternica and Vjetrenica clone libraries, Nitrospirae prevailed with 36% and 60% respectively, while in Izvor Bistrac the most abundant were Alphaproteobacteria (41%) followed by Firmicutes (32%). Moreover, three phylotypes were associated with novel uncultured candidate divisions OP3, WS5 and OD1 revealing the diversity and uniqueness of the microbial world in caves. Deeply understanding subterranean habitats could elucidate many new aspects in phylogeny and evolution of microorganisms as well as animal taxa, adjacent to their energy suppliers in microbial communities and biofilms. PMID:27329058

  11. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    PubMed Central

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-01-01

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact. PMID:25954263

  12. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    SciTech Connect

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.

  13. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    DOE PAGESBeta

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes)more » in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.« less

  14. Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods.

    PubMed

    Dittmer, J; Beltran-Bech, S; Lesobre, J; Raimond, M; Johnson, M; Bouchon, D

    2014-05-01

    Animal-bacterial symbioses are highly dynamic in terms of multipartite interactions, both between the host and its symbionts as well as between the different bacteria constituting the symbiotic community. These interactions will be reflected by the titres of the individual bacterial taxa, for example via host regulation of bacterial loads or competition for resources between symbionts. Moreover, different host tissues represent heterogeneous microhabitats for bacteria, meaning that host-associated bacteria might establish tissue-specific bacterial communities. Wolbachia are widespread endosymbiotic bacteria, infecting a large number of arthropods and filarial nematodes. However, relatively little is known regarding direct interactions between Wolbachia and other bacteria. This study represents the first quantitative investigation of tissue-specific Wolbachia-microbiota interactions in the terrestrial isopod Armadillidium vulgare. To this end, we obtained a more complete picture of the Wolbachia distribution patterns across all major host tissues, integrating all three feminizing Wolbachia strains (wVulM, wVulC, wVulP) identified to date in this host. Interestingly, the different Wolbachia strains exhibited strain-specific tissue distribution patterns, with wVulM reaching lower titres in most tissues. These patterns were consistent across different host genetic backgrounds and might reflect different co-evolutionary histories between the Wolbachia strains and A. vulgare. Moreover, Wolbachia-infected females carried higher total bacterial loads in several, but not all, tissues, irrespective of the Wolbachia strain. Taken together, this quantitative approach indicates that Wolbachia is part of a potentially more diverse bacterial community, as exemplified by the presence of highly abundant bacterial taxa in the midgut caeca of several A. vulgare populations. PMID:24750488

  15. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests.

    PubMed

    Hesse, Cedar N; Mueller, Rebecca C; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D; Zak, Donald R; Kuske, Cheryl R

    2015-01-01

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact. PMID:25954263

  16. Inflammatory response in mixed viral-bacterial community-acquired pneumonia

    PubMed Central

    2014-01-01

    Background The role of mixed pneumonia (virus + bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP. Methods We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial). Results Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%. Conclusions Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP. PMID:25073709

  17. Decreases in average bacterial community rRNA operon copy number during succession.

    PubMed

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution. PMID:26565722

  18. Field experimental evidence that stochastic processes predominate in the initial assembly of bacterial communities.

    PubMed

    Hao, Yi-Qi; Zhao, Xin-Feng; Zhang, Da-Yong

    2016-06-01

    To assess the relative importance of environmental selection, dispersal and stochastic processes in structuring ecological communities, we conducted a bacterial community assembly experiment using microcosms filled with sterile liquid medium under field conditions in the Inner Mongolian grasslands. Multiple replicate microcosms containing different carbon substrates were placed at nine locations across three spatial scales (10, 300 and 10 000 m distance between locations) in such a way that the environment of microcosms varies independently of the geographical distance. The operational taxonomic units within the experimental communities were assessed via the terminal restriction fragment length polymorphism techniques on the 10th and 17th days after the onset of the experiment. We found no evidence of distance decay in community similarity, and communities within a given location were more similar to each other regardless of environment than communities at other locations within the same spatial scale. Variance partitioning indicated that location explained more compositional variation in microbial communities than environment, particularly on the 17th day, despite that environment and location in combination could only explain less than half of the total variation. These results suggest that bacterial dispersal is not limited by distance in this experiment, and community assembly in microcosms is not environmentally determined but governed by stochastic processes. PMID:25809418

  19. Mesocosms of aquatic bacterial communities from the Cuatro Cienegas Basin (Mexico): a tool to test bacterial community response to environmental stress.

    PubMed

    Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria

    2012-08-01

    Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment. PMID:22460437

  20. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes.

    PubMed

    Piao, Hailan; Hawley, Erik; Kopf, Scott; DeScenzo, Richard; Sealock, Steven; Henick-Kling, Thomas; Hess, Matthias

    2015-01-01

    Grapes harbor complex microbial communities. It is well known that yeasts, typically Saccharomyces cerevisiae, and bacteria, commonly the lactic acid fermenting Oenococcus oeni, work sequentially during primary and secondary wine fermentation. In addition to these main players, several microbes, often with undesirable effects on wine quality, have been found in grapes and during wine fermentation. However, still little is known about the dynamics of the microbial community during the fermentation process. In previous studies culture dependent methods were applied to detect and identify microbial organisms associated with grapes and grape products, which resulted in a picture that neglected the non-culturable fraction of the microbes. To obtain a more complete picture of how microbial communities change during grape fermentation and how different fermentation techniques might affect the microbial community composition, we employed next-generation sequencing (NGS)-a culture-independent method. A better understanding of the microbial dynamics and their effect on the final product is of great importance to help winemakers produce wine styles of consistent and high quality. In this study, we focused on the bacterial community dynamics during wine vinification by amplifying and sequencing the hypervariable V1-V3 region of the 16S rRNA gene-a phylogenetic marker gene that is ubiquitous within prokaryotes. Bacterial communities and their temporal succession was observed for communities associated with organically and conventionally produced wines. In addition, we analyzed the chemical characteristics of the grape musts during the organic and conventional fermentation process. These analyses revealed distinct bacterial population with specific temporal changes as well as different chemical profiles for the organically and conventionally produced wines. In summary these results suggest a possible correlation between the temporal succession of the bacterial population and the

  1. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes

    PubMed Central

    Piao, Hailan; Hawley, Erik; Kopf, Scott; DeScenzo, Richard; Sealock, Steven; Henick-Kling, Thomas; Hess, Matthias

    2015-01-01

    Grapes harbor complex microbial communities. It is well known that yeasts, typically Saccharomyces cerevisiae, and bacteria, commonly the lactic acid fermenting Oenococcus oeni, work sequentially during primary and secondary wine fermentation. In addition to these main players, several microbes, often with undesirable effects on wine quality, have been found in grapes and during wine fermentation. However, still little is known about the dynamics of the microbial community during the fermentation process. In previous studies culture dependent methods were applied to detect and identify microbial organisms associated with grapes and grape products, which resulted in a picture that neglected the non-culturable fraction of the microbes. To obtain a more complete picture of how microbial communities change during grape fermentation and how different fermentation techniques might affect the microbial community composition, we employed next-generation sequencing (NGS)—a culture-independent method. A better understanding of the microbial dynamics and their effect on the final product is of great importance to help winemakers produce wine styles of consistent and high quality. In this study, we focused on the bacterial community dynamics during wine vinification by amplifying and sequencing the hypervariable V1–V3 region of the 16S rRNA gene—a phylogenetic marker gene that is ubiquitous within prokaryotes. Bacterial communities and their temporal succession was observed for communities associated with organically and conventionally produced wines. In addition, we analyzed the chemical characteristics of the grape musts during the organic and conventional fermentation process. These analyses revealed distinct bacterial population with specific temporal changes as well as different chemical profiles for the organically and conventionally produced wines. In summary these results suggest a possible correlation between the temporal succession of the bacterial population

  2. Bacterial communities and species-specific associations with the mucus of Brazilian coral species.

    PubMed

    Carlos, Camila; Torres, Tatiana T; Ottoboni, Laura M M

    2013-01-01

    We investigated the existence of species-specific associations between Brazilian coral species and bacteria. Pyrosequencing of the V3 region of the 16S rDNA was used to analyze the taxonomic composition of bacterial communities associated with the mucus of four coral species (Madracis decactis, Mussismilia hispida, Palythoa caribaeorum, and Tubastraea coccinea) in two seasons (winter and summer), which were compared with the surrounding water and sediment. The microbial communities found in samples of mucus, water, and sediment differed according to the composition and relative frequency of OTUs. The coral mucus community seemed to be more stable and resistant to seasonal variations, compared to the water and sediment communities. There was no influence of geographic location on the composition of the communities. The sediment community was extremely diverse and might act as a "seed bank" for the entire environment. Species-specific OTUs were found in P. caribaeorum, T. coccinea, and M. hispida. PMID:23567936

  3. Bacterial communities and species-specific associations with the mucus of Brazilian coral species

    PubMed Central

    Carlos, Camila; Torres, Tatiana T.; Ottoboni, Laura M. M.

    2013-01-01

    We investigated the existence of species-specific associations between Brazilian coral species and bacteria. Pyrosequencing of the V3 region of the 16S rDNA was used to analyze the taxonomic composition of bacterial communities associated with the mucus of four coral species (Madracis decactis, Mussismilia hispida, Palythoa caribaeorum, and Tubastraea coccinea) in two seasons (winter and summer), which were compared with the surrounding water and sediment. The microbial communities found in samples of mucus, water, and sediment differed according to the composition and relative frequency of OTUs. The coral mucus community seemed to be more stable and resistant to seasonal variations, compared to the water and sediment communities. There was no influence of geographic location on the composition of the communities. The sediment community was extremely diverse and might act as a "seed bank" for the entire environment. Species-specific OTUs were found in P. caribaeorum, T. coccinea, and M. hispida. PMID:23567936

  4. Effect of Metal-Rich Sewage Sludge Application on the Bacterial Communities of Grasslands

    PubMed Central

    Barkay, Tamar; Tripp, Susan C.; Olson, Betty H.

    1985-01-01

    The effect of long-term application of heavy metal-laden sewage sludge on the total heterotrophic aerobic and the cadmium-resistant soil bacterial communities was studied. Gram-positive bacteria were completely absent from resistant communities. These findings suggest that this group is highly susceptible to Cd. Shannon's diversity indices estimated for total communities did not reveal negative effects on the communities that developed in the presence of sludge. However, Cd-resistant communities isolated from long-term sludge-amended soils were more diverse than the resistant communities from a control sample, suggesting that adaptation to Cd as a stressor had occurred in the presence of sludge constituents. This higher diversity was attributed to Cd resistance in pseudomonads and gram-negative fermenters. Resistance did not develop by dissemination of Cd resistance plasmids, because these were rarely detected in the genomes of resistant strains. PMID:16346720

  5. Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA).

    PubMed

    Davis, James P; Struchtemeyer, Christopher G; Elshahed, Mostafa S

    2012-11-01

    We monitored the bacterial communities in the gas-water separator and water storage tank of two newly drilled natural gas wells in the Barnett Shale in north central Texas, using a 16S rRNA gene pyrosequencing approach over a period of 6 months. Overall, the communities were composed mainly of moderately halophilic and halotolerant members of the phyla Firmicutes and Proteobacteria (classes Βeta-, Gamma-, and Epsilonproteobacteria) in both wells at all sampling times and locations. Many of the observed lineages were encountered in prior investigations of microbial communities from various fossil fluid formations and production facilities. In all of the samples, multiple H(2)S-producing lineages were encountered; belonging to the sulfate- and sulfur-reducing class Deltaproteobacteria, order Clostridiales, and phylum Synergistetes, as well as the thiosulfate-reducing order Halanaerobiales. The bacterial communities from the separator and tank samples bore little resemblance to the bacterial communities in the drilling mud and hydraulic-fracture waters that were used to drill these wells, suggesting the in situ development of the unique bacterial communities in such well components was in response to the prevalent geochemical conditions present. Conversely, comparison of the bacterial communities on temporal and spatial scales suggested the establishment of a core microbial community in each sampled location. The results provide the first overview of bacterial dynamics and colonization patterns in newly drilled, thermogenic natural gas wells and highlights patterns of spatial and temporal variability observed in bacterial communities in natural gas production facilities. PMID:22622766

  6. Phyllosphere Bacterial Community of Floating Macrophytes in Paddy Soil Environments as Revealed by Illumina High-Throughput Sequencing

    PubMed Central

    Xie, Wan-Ying

    2014-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments. PMID:25362067

  7. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils

    PubMed Central

    Li, Jing; Ma, Yi-Bing; Hu, Hang-Wei; Wang, Jun-Tao; Liu, Yu-Rong; He, Ji-Zheng

    2015-01-01

    Copper contamination on China's arable land could pose severe economic, ecological and healthy consequences in the coming decades. As the drivers in maintaining ecosystem functioning, the responses of soil microorganisms to long-term copper contamination in different soil ecosystems are still debated. This study investigated the impacts of copper gradients on soil bacterial communities in two agricultural fields with contrasting soil properties. Our results revealed consistent reduction in soil microbial biomass carbon (SMBC) with increasing copper levels in both soils, coupled by significant declines in bacterial abundance in most cases. Despite of contrasting bacterial community structures between the two soils, the bacterial diversity in the copper-contaminated soils showed considerably decreasing patterns when copper levels elevated. High-throughput sequencing revealed copper selection for major bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Chloroflexi were highly sensitive to copper. The thresholds that bacterial communities changed sharply were 800 and 200 added copper mg kg−1 in the fluvo-aquic soil and red soil, respectively, which were similar to the toxicity thresholds (EC50 values) characterized by SMBC. Structural equation model (SEM) analysis ascertained that the shifts of bacterial community composition and diversity were closely related with the changes of SMBC in both soils. Our results provide field-based evidence that copper contamination exhibits consistently negative impacts on soil bacterial communities, and the shifts of bacterial communities could have largely determined the variations of the microbial biomass. PMID:25699026

  8. Molecular Comparison of Bacterial Communities on Peripheral Intravenous Catheters and Matched Skin Swabs.

    PubMed

    Choudhury, Md Abu; Marsh, Nicole; Banu, Shahera; Paterson, David L; Rickard, Claire M; McMillan, David J

    2016-01-01

    Skin bacteria at peripheral intravenous catheter (PIVC) insertion sites pose a serious risk of microbial migration and subsequent colonisation of PIVCs, and the development of catheter related bloodstream infections (CRBSIs). Common skin bacteria are often associated with CRBSIs, therefore the bacterial communities at PIVC skin sites are likely to have major implications for PIVC colonisation. This study aimed to determine the bacterial community structures on skin at PIVC insertion sites and to compare the diversity with associated PIVCs. A total of 10 PIVC skin site swabs and matching PIVC tips were collected by a research nurse from 10 hospitalised medical/surgical patients at catheter removal. All swabs and PIVCs underwent traditional culture and high-throughput sequencing. The bacterial communities on PIVC skin swabs and matching PIVCs were diverse and significantly associated (correlation coefficient = 0.7, p<0.001). Methylobacterium spp. was the dominant genus in all PIVC tip samples, but not so for skin swabs. Sixty-one percent of all reads from the PIVC tips and 36% of all reads from the skin swabs belonged to this genus. Staphylococcus spp., (26%), Pseudomonas spp., (10%) and Acinetobacter spp. (10%) were detected from skin swabs but not from PIVC tips. Most skin associated bacteria commonly associated with CRBSIs were observed on skin sites, but not on PIVCs. Diverse bacterial communities were observed at skin sites despite skin decolonization at PIVC insertion. The positive association of skin and PIVC tip communities provides further evidence that skin is a major source of PIVC colonisation via bacterial migration but microbes present may be different to those traditionally identified via culture methods. The results provide new insights into the colonisation of catheters and potential pathogenesis of bacteria associated with CRBSI, and may assist in developing new strategies designed to reduce the risk of CRBSI. PMID:26731737

  9. Bacterial Community Responses to Soils along a Latitudinal and Vegetation Gradient on the Loess Plateau, China

    PubMed Central

    Zeng, Quanchao; Dong, Yanghong; An, Shaoshan

    2016-01-01

    Soil bacterial communities play an important role in nutrient recycling and storage in terrestrial ecosystems. Loess soils are one of the most important soil resources for maintaining the stability of vegetation ecosystems and are mainly distributed in northwest China. Estimating the distributions and affecting factors of soil bacterial communities associated with various types of vegetation will inform our understanding of the effect of vegetation restoration and climate change on these processes. In this study, we collected soil samples from 15 sites from north to south on the Loess Plateau of China that represent different ecosystem types and analyzed the distributions of soil bacterial communities by high-throughput 454 pyrosequencing. The results showed that the 142444 sequences were grouped into 36816 operational taxonomic units (OTUs) based on 97% similarity. The results of the analysis showed that the dominant taxonomic phyla observed in all samples were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes. Actinobacteria and Proteobacteria were the two most abundant groups in all samples. The relative abundance of Actinobacteria increased from 14.73% to 40.22% as the ecosystem changed from forest to sandy, while the relative abundance of Proteobacteria decreased from 35.35% to 21.40%. Actinobacteria and Proteobacteria had significant correlations with mean annual precipitation (MAP), pH, and soil moisture and nutrients. MAP was significantly correlated with soil chemical and physical properties. The relative abundance of Actinobacteria, Proteobacteria and Planctomycetes correlated significantly with MAP, suggesting that MAP was a key factor that affected the soil bacterial community composition. However, along with the MAP gradient, Chloroflexi, Bacteroidetes and Cyanobacteria had narrow ranges that did not significantly vary with the soil and environmental factors. Overall, we conclude that the edaphic properties and/or vegetation

  10. Molecular Comparison of Bacterial Communities on Peripheral Intravenous Catheters and Matched Skin Swabs

    PubMed Central

    Choudhury, Md Abu; Marsh, Nicole; Banu, Shahera; Paterson, David L.; Rickard, Claire M.; McMillan, David J.

    2016-01-01

    Skin bacteria at peripheral intravenous catheter (PIVC) insertion sites pose a serious risk of microbial migration and subsequent colonisation of PIVCs, and the development of catheter related bloodstream infections (CRBSIs). Common skin bacteria are often associated with CRBSIs, therefore the bacterial communities at PIVC skin sites are likely to have major implications for PIVC colonisation. This study aimed to determine the bacterial community structures on skin at PIVC insertion sites and to compare the diversity with associated PIVCs. A total of 10 PIVC skin site swabs and matching PIVC tips were collected by a research nurse from 10 hospitalised medical/surgical patients at catheter removal. All swabs and PIVCs underwent traditional culture and high-throughput sequencing. The bacterial communities on PIVC skin swabs and matching PIVCs were diverse and significantly associated (correlation coefficient = 0.7, p<0.001). Methylobacterium spp. was the dominant genus in all PIVC tip samples, but not so for skin swabs. Sixty-one percent of all reads from the PIVC tips and 36% of all reads from the skin swabs belonged to this genus. Staphylococcus spp., (26%), Pseudomonas spp., (10%) and Acinetobacter spp. (10%) were detected from skin swabs but not from PIVC tips. Most skin associated bacteria commonly associated with CRBSIs were observed on skin sites, but not on PIVCs. Diverse bacterial communities were observed at skin sites despite skin decolonization at PIVC insertion. The positive association of skin and PIVC tip communities provides further evidence that skin is a major source of PIVC colonisation via bacterial migration but microbes present may be different to those traditionally identified via culture methods. The results provide new insights into the colonisation of catheters and potential pathogenesis of bacteria associated with CRBSI, and may assist in developing new strategies designed to reduce the risk of CRBSI. PMID:26731737

  11. Host and Environmental Specificity in Bacterial Communities Associated to Two Highly Invasive Marine Species (Genus Asparagopsis)

    PubMed Central

    Aires, Tânia; Serrão, Ester A.; Engelen, Aschwin H.

    2016-01-01

    As habitats change due to global and local pressures, population resilience, and adaptive processes depend not only on their gene pools but also on their associated bacteria communities. The hologenome can play a determinant role in adaptive evolution of higher organisms that rely on their bacterial associates for vital processes. In this study, we focus on the associated bacteria of the two most invasive seaweeds in southwest Iberia (coastal mainland) and nearby offshore Atlantic islands, Asparagopsis taxiformis and Asparagopsis armata. Bacterial communities were characterized using 16S rRNA barcoding through 454 next generation sequencing and exploratory shotgun metagenomics to provide functional insights and a backbone for future functional studies. The bacterial community composition was clearly different between the two species A. taxiformis and A. armata and between continental and island habitats. The latter was mainly due to higher abundances of Acidimicrobiales, Sphingomonadales, Xanthomonadales, Myxococcales, and Alteromonadales on the continent. Metabolic assignments for these groups contained a higher number of reads in functions related to oxidative stress and resistance to toxic compounds, more precisely heavy metals. These results are in agreement with their usual association with hydrocarbon degradation and heavy-metals detoxification. In contrast, A. taxiformis from islands contained more bacteria related to oligotrophic environments which might putatively play a role in mineralization of dissolved organic matter. The higher number of functional assignments found in the metagenomes of A. taxiformis collected from Cape Verde Islands suggest a higher contribution of bacteria to compensate nutrient limitation in oligotrophic environments. Our results show that Asparagopsis-associated bacterial communities have host-specificity and are modulated by environmental conditions. Whether this environmental effect reflects the host's selective requirements or

  12. Hg bioavailability and impact on bacterial communities in a long-term polluted soil.

    PubMed

    Ruggiero, P; Terzano, R; Spagnuolo, M; Cavalca, L; Colombo, M; Andreoni, V; Rao, M A; Perucci, P; Monaci, E

    2011-01-01

    Different soil samples characterised by a long-term Hg-pollution were studied for Hg total content, fractionation, phytotoxicity and influence on the bacterial community. Hg pollution ranged from 1 to 50 mg kg(-1) and most of it was speciated in scarcely soluble forms. In agreement with this, the biochemical quality indexes were investigated (biomass, enzyme activities) and the bacterial community (viable heterotrophic (VH) bacteria, functional diversity) apparently was not influenced by the degree of Hg pollution. In particular, the investigated soils exhibited a low percentage of Hg-resistant (Hg(R)) bacteria ranging from less than 0.001% to 0.25% of the VH and the addition of available Hg in the form of HgCl(2) induced an enrichment of resistant Hg(R) populations. The general biodiversity of the bacterial community was evaluated by denaturing gradient gel electrophoresis of DNA of Hg spiked soil microcosms and of control soils. Hg(R) bacteria capable to grow in a minimal medium containing HgCl(2) were also isolated and identified. MerA and merB gene PCR fragments were obtained from different Hg(R) strains and the range of similarities at the DNA level and at the deduced amino acid level showed that they carried mercuric reductase and lyase. Differently from bacteria, some influence of soil Hg content on seeds' germination and root elongation was observed for Lepidium sativum L. and Solanum lycopersicum L. In conclusion, most of the Hg in these long-term polluted soils was scarcely mobile and available and did not significantly influence the soil bacterial community. The risk of potential Hg remobilization over time, that could be naturally favoured by the activity of plant roots or other inorganic processes occurring in soil, can be extenuated since bacterial community was resistant and resilient to subsequent Hg stress. PMID:21060931

  13. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya

    PubMed Central

    Delmont, Tom O.; Hammar, Katherine M.; Ducklow, Hugh W.; Yager, Patricia L.; Post, Anton F.

    2014-01-01

    Rising temperatures and changing winds drive the expansion of the highly productive polynyas (open water areas surrounded by sea ice) abutting the Antarctic continent. Phytoplankton blooms in polynyas are often dominated by the haptophyte Phaeocystis antarctica, and they generate the organic carbon that enters the resident microbial food web. Yet, little is known about how Phaeocystis blooms shape bacterial community structures and carbon fluxes in these systems. We identified the bacterial communities that accompanied a Phaeocystis bloom in the Amundsen Sea polynya during the austral summers of 2007–2008 and 2010–2011. These communities are distinct from those determined for the Antarctic Circumpolar Current (ACC) and off the Palmer Peninsula. Diversity patterns for most microbial taxa in the Amundsen Sea depended on location (e.g., waters abutting the pack ice near the shelf break and at the edge of the Dotson glacier) and depth, reflecting different niche adaptations within the confines of this isolated ecosystem. Inside the polynya, P. antarctica coexisted with the bacterial taxa Polaribacter sensu lato, a cryptic Oceanospirillum, SAR92 and Pelagibacter. These taxa were dominated by a single oligotype (genotypes partitioned by Shannon entropy analysis) and together contributed up to 73% of the bacterial community. Size fractionation of the bacterial community [<3 μm (free-living bacteria) vs. >3 μm (particle-associated bacteria)] identified several taxa (especially SAR92) that were preferentially associated with Phaeocystis colonies, indicative of a distinct role in Phaeocystis bloom ecology. In contrast, particle-associated bacteria at 250 m depth were enriched in Colwellia and members of the Cryomorphaceae suggesting that they play important roles in the decay of Phaeocystis blooms. PMID:25566197

  14. Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina.

    PubMed

    Vega-Avila, A D; Gumiere, T; Andrade, P A M; Lima-Perim, J E; Durrer, A; Baigori, M; Vazquez, F; Andreote, F D

    2015-02-01

    Plants interact with a myriad of microbial cells in the rhizosphere, an environment that is considered to be important for plant development. However, the differential structuring of rhizosphere microbial communities due to plant cultivation under differential agricultural practices remains to be described for most plant species. Here we describe the rhizosphere microbiome of grapevine cultivated under conventional and organic practices, using a combination of cultivation-independent approaches. The quantification of bacterial 16S rRNA and nifH genes, by quantitative PCR (qPCR), revealed similar amounts of these genes in the rhizosphere in both vineyards. PCR-DGGE was used to detect differences in the structure of bacterial communities, including both the complete whole communities and specific fractions, such as Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and those harboring the nitrogen-fixing related gene nifH. When analyzed by a multivariate approach (redundancy analysis), the shifts observed in the bacterial communities were poorly explained by variations in the physical and chemical characteristics of the rhizosphere. These approaches were complemented by high-throughput sequencing (67,830 sequences) based on the V6 region of the 16S rRNA gene, identifying the major bacterial groups present in the rhizosphere of grapevines: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Cloroflexi, Verrucomicrobia and Planctomycetes, which occur in distinct proportions in the rhizosphere from each vineyard. The differences might be related to the selection of plant metabolism upon distinct reservoirs of microbial cells found in each vineyard. The results fill a gap in the knowledge of the rhizosphere of grapevines and also show distinctions in these bacterial communities due to agricultural practices. PMID:25527391

  15. The Effect of Antibiotics on Associated Bacterial Community of Stored Product Mites

    PubMed Central

    Kopecky, Jan; Nesvorna, Marta; Mareckova-Sagova, Marketa; Hubert, Jan

    2014-01-01

    Background Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata). The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria. Methodology and Principal Findings Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mgg−1 of diet) for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomyci