Science.gov

Sample records for polyploidy tumor-cell invasion

  1. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness.

    PubMed

    Pathak, Amit; Kumar, Sanjay

    2011-04-01

    Invasion of cancer cells into the extracellular matrix (ECM) is a key step in tumor infiltration and metastasis. While the strong influence of ECM stiffness in governing tumor cell migration has been well established in two-dimensional culture paradigms, investigation of this parameter in three-dimensional (3D) ECMs has proven considerably more challenging, in part because perturbations that change 3D ECM stiffness often concurrently change microscale matrix parameters that critically regulate cell migration, such as pore size, fiber architecture, and local material deformability. Here we review the potential importance of these parameters in the context of tumor cell migration in 3D ECMs. We begin by discussing biophysical mechanisms of cell motility in 3D ECMs, with an emphasis on the cell-matrix mechanical interactions that underlie this process and key signatures of mesenchymal and amoeboid modes of motility. We then consider microscale matrix physical properties that are particularly relevant to 3D culture and would be expected to regulate motility, including matrix microstructure and nonlinear elasticity. We also discuss how changes in 3D matrix properties might be expected to trigger transitions in subcellular mechanisms, which in turn contribute to mesenchymal-amoeboid transition (MAT) by imposing restrictions on 3D motility. We expect that the field will gain valuable insight into invasion and metastasis by deepening its understanding of microscale, biophysical interactions between tumor cells and matrix elements and by creating new 3D scaffolds that permit orthogonal manipulation of specific matrix parameters. PMID:21210057

  2. The more the better? The role of polyploidy in facilitating plant invasions

    PubMed Central

    te Beest, Mariska; Le Roux, Johannes J.; Richardson, David M.; Brysting, Anne K.; Suda, Jan; Kubešová, Magdalena; Pyšek, Petr

    2012-01-01

    Background Biological invasions are a major ecological and socio-economic problem in many parts of the world. Despite an explosion of research in recent decades, much remains to be understood about why some species become invasive whereas others do not. Recently, polyploidy (whole genome duplication) has been proposed as an important determinant of invasiveness in plants. Genome duplication has played a major role in plant evolution and can drastically alter a plant's genetic make-up, morphology, physiology and ecology within only one or a few generations. This may allow some polyploids to succeed in strongly fluctuating environments and/or effectively colonize new habitats and, thus, increase their potential to be invasive. Scope We synthesize current knowledge on the importance of polyploidy for the invasion (i.e. spread) of introduced plants. We first aim to elucidate general mechanisms that are involved in the success of polyploid plants and translate this to that of plant invaders. Secondly, we provide an overview of ploidal levels in selected invasive alien plants and explain how ploidy might have contributed to their success. Conclusions Polyploidy can be an important factor in species invasion success through a combination of (1) ‘pre-adaptation’, whereby polyploid lineages are predisposed to conditions in the new range and, therefore, have higher survival rates and fitness in the earliest establishment phase; and (2) the possibility for subsequent adaptation due to a larger genetic diversity that may assist the ‘evolution of invasiveness’. Alternatively, polyploidization may play an important role by (3) restoring sexual reproduction following hybridization or, conversely, (4) asexual reproduction in the absence of suitable mates. We, therefore, encourage invasion biologists to incorporate assessments of ploidy in their studies of invasive alien species. PMID:22040744

  3. The interplay between invasion and proliferation in tumor cell navigation

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, Eshel

    2013-03-01

    Tumor cells can employ different cellular and molecular modes of invasion. The two main phenotypic mechanisms are: 1. Amoeboid (or ``path finder'') cells that can squeeze through small gaps in the ECM (extracellular matrix). 2. Mesenchymal (or ``path generator'') cells that are more rigid and can decompose the ECM to pass through. In addition there is interplay between energy directed to more rapid motility vs. energy used for proliferation. Understanding the relative contributions of these distinct mechanisms and the balance between motility and proliferation to the efficiency of metastatic cancer migration is fundamental to the therapeutic targeting of cancer. We present a conceptual and modeling framework for the analysis and assessment of the success rate, time-to-target, and survival probability of amoeboid vs. mesenchymal modes. Similarly, we contrast invasion with and without proliferation. We treat the complex ECM geometry as a maze and employ semi-realistic modeling of cell motility. Our approach includes metabolic and timing degrees of freedom. The theoretical studies were compared with experimental efforts of cell navigation in specially designed microfluidic devices. Center for Theoretical Biological Physics sponsored by the NSF (Grant PHY-0822283) Rice University, The Tauber Family Foundation and the Maguy-Glass Chair in Physics of Complex Systems at Tel Aviv University.

  4. Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion

    PubMed Central

    Rivadeneira, Dayana B.; Caino, M. Cecilia; Seo, Jae Ho; Angelin, Alessia; Wallace, Douglas C.; Languino, Lucia R.; Altieri, Dario C.

    2015-01-01

    Survivin promotes cell division and suppresses apoptosis in many human cancers, and increased abundance correlates with metastasis and poor prognosis. Here, we showed that a pool of survivin that localized to the mitochondria of certain tumor cell lines enhanced the stability of oxidative phosphorylation Complex II, which promoted cellular respiration. Survivin also supported the subcellular trafficking of mitochondria to the cortical cytoskeleton of tumor cells, which was associated with increased membrane ruffling, increased focal adhesion complex turnover, and increased tumor cell migration and invasion in cultured cells, and enhanced metastatic dissemination in vivo. Therefore, we found that mitochondrial respiration enhanced by survivin contributes to cancer metabolism, and relocalized mitochondria may provide a “regional” energy source to fuel tumor cell invasion and metastasis. PMID:26268608

  5. Endothelial Cells Enhance Tumor Cell Invasion through a Crosstalk Mediated by CXC Chemokine Signaling1

    PubMed Central

    Warner, Kristy A; Miyazawa, Marta; Cordeiro, Mabel M R; Love, William J; Pinsky, Matthew S; Neiva, Kathleen G; Spalding, Aaron C; Nör, Jacques E

    2008-01-01

    Field cancerization involves the lateral spread of premalignant or malignant disease and contributes to the recurrence of head and neck tumors. The overall hypothesis underlying this work is that endothelial cells actively participate in tumor cell invasion by secreting chemokines and creating a chemotactic gradient for tumor cells. Here we demonstrate that conditioned medium from head and neck tumor cells enhance Bcl-2 expression in neovascular endothelial cells. Oral squamous cell carcinoma-3 (OSCC3) and Kaposi's sarcoma (SLK) show enhanced invasiveness when cocultured with pools of human dermal microvascular endothelial cells stably expressing Bcl-2 (HDMEC-Bcl-2), compared to cocultures with empty vector controls (HDMEC-LXSN). Xenografted OSCC3 tumors vascularized with HDMEC-Bcl-2 presented higher local invasion than OSCC3 tumors vascularized with control HDMEC-LXSN. CXCL1 and CXCL8 were upregulated in primary endothelial cells exposed to vascular endothelial growth factor (VEGF), as well as in HDMEC-Bcl-2. Notably, blockade of CXCR2 signaling, but not CXCR1, inhibited OSCC3 and SLK invasion toward endothelial cells. These data demonstrate that CXC chemokines secreted by endothelial cells induce tumor cell invasion and suggest that the process of lateral spread of tumor cells observed in field cancerization is guided by chemotactic signals that originated from endothelial cells. PMID:18283335

  6. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion.

    PubMed

    Caino, M Cecilia; Ghosh, Jagadish C; Chae, Young Chan; Vaira, Valentina; Rivadeneira, Dayana B; Faversani, Alice; Rampini, Paolo; Kossenkov, Andrew V; Aird, Katherine M; Zhang, Rugang; Webster, Marie R; Weeraratna, Ashani T; Bosari, Silvano; Languino, Lucia R; Altieri, Dario C

    2015-07-14

    Molecular therapies are hallmarks of "personalized" medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, "spatiotemporal" mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target. PMID:26124089

  7. Surface Expression of Precursor N-cadherin Promotes Tumor Cell Invasion12

    PubMed Central

    Maret, Deborah; Gruzglin, Eugenia; Sadr, Mohamad Seyed; Siu, Vincent; Shan, Weisong; Koch, Alexander W; Seidah, Nabil G; Del Maestro, Rolando F; Colman, David R

    2010-01-01

    The expression of N-cadherin (NCAD) has been shown to correlate with increased tumor cell motility and metastasis. However, NCAD-mediated adhesion is a robust phenomenon and therefore seems to be inconsistent with the “release” from intercellular adhesion required for invasion. We show that in the most invasive melanoma and brain tumor cells, altered posttranslational processing results in abundant nonadhesive precursor N-cadherin (proNCAD) at the cell surface, although total NCAD levels remain constant. We demonstrate that aberrantly processed proNCAD promotes cell migration and invasion in vitro. Furthermore, in human tumor specimens, we find high levels of proNCAD as well, supporting an overall conclusion that proNCAD and mature NCAD coexist on these tumor cell surfaces and that it is the ratio between these functionally antagonistic moieties that directly correlates with invasion potential. Our work provides insight into what may be a widespread mechanism for invasion and metastasis and challenges the current dogma of the functional roles played by classic cadherins in tumor progression. PMID:21170270

  8. Detection and enumeration of circulating tumor cells based on their invasive property

    PubMed Central

    Liu, Xingtong; Reuben, James M.; Xie, Yongzhuang; Xu, Huaxi; Bu, Guojun; Pei, Yihua; Gupta, Vineet; Wu, Xiangwei

    2015-01-01

    Circulating tumor cells (CTCs) are in limited numbers and heterogeneous, making their detection, isolation, and enumeration a major challenge. To overcome these difficulties, we developed a novel method to detect and enumerate CTCs with invasive property. Our assay consists of three simple steps: enrichment, Matrigel invasion assay, and immunostaining. We have validated this method using mouse xenograft tumor models and confirmed its utility in human cancer patients. Our method does not require special equipment and antigen expression for CTC selection, is less likely to be affected by the heterogeneity of the CTCs, and could be applicable to virtually all cancers. Most important, our method enumerates invasive CTCs, which may allow more accurate correlations with clinical outcome and treatment response compared with other CTC detection methods. PMID:26247814

  9. Schwann Cells Increase Prostate and Pancreatic Tumor Cell Invasion Using Laminin Binding A6 Integrin

    PubMed Central

    Sroka, Isis C.; Chopra, Harsharon; Das, Lipsa; Gard, Jaime M.C.; Nagle, Raymond B.; Cress, Anne E.

    2016-01-01

    Human pancreatic and prostate cancers metastasize along nerve axons during perineural invasion. The extracellular matrix laminin class of proteins is an abundant component of both myelinated and non-myelinated nerves. Analysis of human pancreatic and prostate tissue revealed both perineural and endoneural invasion with Schwann cells surrounded or disrupted by tumor, respectively. Tumor and nerve cell co-culture conditions were used to determine if myelinating or non-myelinating Schwann cell (S16 and S16Y, respectively) phenotype was equally likely to promote integrin-dependent cancer cell invasion and migration on laminin. Conditioned medium from S16 cells increased tumor cell (DU145, PC3, and CFPAC1) invasion into laminin approximately 1.3–2.0 fold compared to fetal bovine serum (FBS) treated cells. Integrin function (e.g., ITGA6p formation) increased up to 1.5 fold in prostate (DU145, PC3, RWPE-1) and pancreatic (CFPAC1) cells, and invasion was dependent on ITGA6p formation and ITGB1 as determined by function-blocking antibodies. In contrast, conditioned medium isolated from S16Y cells (non-myelinating phenotype) decreased constitutive levels of ITGA6p in the tumor cells by 50% compared to untreated cells and decreased ITGA6p formation 3.0 fold compared to S16 treated cells. Flow cytometry and western blot analysis revealed loss of ITGA6p formation as reversible and independent of overall loss of ITGA6 expression. These results suggest that the myelinating phenotype of Schwann cells within the tumor microenvironment increased integrin-dependent tumor invasion on laminin. PMID:26239765

  10. Plasma fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell invasion.

    PubMed

    Malik, Gunjan; Knowles, Lynn M; Dhir, Rajiv; Xu, Shuping; Yang, Shuting; Ruoslahti, Erkki; Pilch, Jan

    2010-06-01

    The attachment of circulating tumor cells to the blood vessels of distant organs is an important step in metastasis. We show here that experimental lung metastasis by two cell lines, B16F1 melanoma and 3LL lung carcinoma, is greatly reduced in transgenic mice that lack plasma fibronectin. This multifunctional adhesive glycoprotein becomes cross-linked to fibrin during clotting. Here, we report that eliminating plasma fibronectin from the blood circulation reverses the prometastatic effects of blood clotting and tumor cell integrin alphavbeta3. In vitro studies showed that fibrin-fibronectin complexes, but not purified fibrin, supported tumor cell attachment and invasion. These functions correlate with the ability of fibrin-fibronectin complexes to induce the activation of integrin alphavbeta3. Our findings reveal an important contribution of plasma fibronectin in lung metastasis. Furthermore, they suggest that the previously noted effects of blood clotting on lung metastasis might be mediated in part by a fibronectin-alphavbeta3 integrin axis, in which plasma fibronectin has to be incorporated into the blood clot. PMID:20501851

  11. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  12. Functional Interaction of SCAI with the SWI/SNF Complex for Transcription and Tumor Cell Invasion

    PubMed Central

    Kreßner, Camilla; Nollau, Peter; Grosse, Robert; Brandt, Dominique T.

    2013-01-01

    We have recently characterized SCAI (Suppressor of Cancer Cell Invasion), a transcriptional modulator regulating cancer cell motility through suppression of MAL/SRF dependent gene transcription. We show here that SCAI is expressed in a wide range of normal human tissues and its expression is diminished in a large array of primary human breast cancer samples indicating that SCAI expression might be linked to the etiology of human cancer. To establish a functional link between SCAI and tumorigenesis we performed affinity columns to identify SCAI-interacting proteins. Our data show that SCAI interacts with the tumor suppressing SWI/SNF chromatin remodeling complex to promote changes in gene expression and the invasive capacities of human tumor cells. Moreover our data implicate a functional hierarchy between SCAI and BRM, since SCAI function is abrogated in the absence of BRM expression. PMID:23936361

  13. Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms

    PubMed Central

    Shaikh, Faheem M; Seales, Eric C; Clem, William C; Hennessy, Kristin M; Zhuo, Ya; Bellis, Susan L

    2008-01-01

    The ST6Gal-I glycosyltransferase, which adds α2-6-linked sialic acids to glycoproteins, is overexpressed in colon adenocarcinoma, and enzyme activity is correlated with tumor cell invasiveness. Previously we reported that forced expression of oncogenic ras in HD3 colonocytes causes upregulation of ST6Gal-I, leading to increased α2-6 sialylation of β1 integrins. To determine whether ras-induced sialylation is involved in promoting the tumor cell phenotype, we used shRNA to downregulate ST6Gal-I in ras-expressors, and then monitored integrin-dependent responses. Here we show that forced ST6Gal-I downregulation, leading to diminished α2-6 sialylation of integrins, inhibits cell adhesion to collagen-I, a β1 ligand. Correspondingly, collagen binding is reduced by enzymatic removal of cell surface sialic acids from ras-expressors with high ST6Gal-I levels (i.e., no shRNA). Cells with forced ST6Gal-I downregulation also exhibit decreased migration on collagen-I and diminished invasion through Matrigel. Importantly, GD25 cells, which lack β1 integrins (and ST6Gal-I), do not demonstrate differential invasiveness when forced to express ST6Gal-I, suggesting that the effects of variant sialylation are mediated specifically by β1 integrins. The observation that cell migration and invasion can be blocked in oncogenic ras-expressing cells by forcing ST6Gal-I downregulation implicates differential sialylation as an important ras effector, and also suggests that ST6Gal-I is a promising therapeutic target. PMID:18703050

  14. Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion

    PubMed Central

    Roselli, Séverine; Pundavela, Jay; Demont, Yohann; Faulkner, Sam; Keene, Sheridan; Attia, John; Jiang, Chen Chen; Zhang, Xu Dong; Walker, Marjorie M.; Hondermarck, Hubert

    2015-01-01

    The neuronal membrane protein sortilin has been reported in a few cancer cell lines, but its expression and impact in human tumors is unclear. In this study, sortilin was analyzed by immunohistochemistry in a series of 318 clinically annotated breast cancers and 53 normal breast tissues. Sortilin was detected in epithelial cells, with increased levels in cancers, as compared to normal tissues (p = 0.0088). It was found in 79% of invasive ductal carcinomas and 54% of invasive lobular carcinomas (p < 0.0001). There was an association between sortilin expression and lymph node involvement (p = 0.0093), suggesting a relationship with metastatic potential. In cell culture, sortilin levels were higher in cancer cell lines compared to non-tumorigenic breast epithelial cells and siRNA knockdown of sortilin inhibited cancer cell adhesion, while proliferation and apoptosis were not affected. Breast cancer cell migration and invasion were also inhibited by sortilin knockdown, with a decrease in focal adhesion kinase and SRC phosphorylation. In conclusion, sortilin participates in breast tumor aggressiveness and may constitute a new therapeutic target against tumor cell invasion. PMID:25871389

  15. Osteopontin (OPN/SPP1) isoforms collectively enhance tumor cell invasion and dissemination in esophageal adenocarcinoma

    PubMed Central

    Lin, Jules; Myers, Amy L.; Wang, Zhuwen; Nancarrow, Derek J.; Ferrer-Torres, Daysha; Handlogten, Amy; Leverenz, Kimmy; Bao, Julia; Thomas, Dafydd G.; Wang, Thomas D.; Orringer, Mark B.; Reddy, Rishindra M.; Chang, Andrew C.; Beer, David G.; Lin, Lin

    2015-01-01

    Esophageal adenocarcinoma (EAC) is often diagnosed at an advanced stage, thus understanding the molecular basis for EAC invasion and metastasis is critical. Here we report that SPP1/OPN was highly overexpressed in primary EACs and intracellularly localized to tumor cells. We further demonstrate that all known OPN isoforms (OPNa, b, c, 4 and 5) were frequently co-overexpressed in primary EACs. Distinct pro-invasion and dissemination phenotypes of isoform-specific OPNb and OPNc stable transfectants were observed. Expression of OPNb significantly enhanced cell migration and adhesion to laminin. In contrast, OPNc cells showed significantly decreased cell migration yet increased cell detachment. Enhanced invasion, both in vitro and in vivo, was observed for OPNb- but not OPNc-expressing cells. Inhibition of RGD integrins, one family of OPN receptors, attenuated OPNb cell migration, abrogated OPNb cell adhesion and significantly reduced OPNb cell clonogenic survival but did not affect OPNc phenotypes, indicating that OPNb but not OPNc acts through integrin-dependent signaling. Differential expression of vimentin, E-cadherin and β-catenin in OPN stable cells may account for the variation in cell adhesion and detachment between these isoforms. We conclude that while all OPN isoforms are frequently co-overexpressed in primary EACs, isoforms OPNb and OPNc enhance invasion and dissemination through collective yet distinct mechanisms. PMID:26068949

  16. Wilfoside K1N isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion.

    PubMed

    Kim, Myoung Sook; Baek, Jin Hyen; Park, Jeong Ae; Hwang, Bang Yeon; Kim, Se Eun; Lee, Jung Joon; Kim, Kyu-Won

    2005-06-01

    Wilfoside K1N is a polyoxypregnane glycoside isolated from Cynanchum wilfordii (Asclepiadaceae). Polyoxypregnane glycosides are associated with cellular immunity and anti-tumor activity, and increase the cytotoxicity of many anti-cancer drugs showing multidrug resistant activity on tumor cells. In the present study, we investigated the anti-angiogenic and anti-invasive activities of wilfoside K1N. In in vivo Matrigel plug assay using C57BL/6 mice, wilfoside K1N strongly inhibited basic fibroblast growth factor-induced microvessel formation. Exposure of wilfoside K1N to human umbilical vein endothelial cells (HUVEC) suppressed in vitro tube formation at a concentration not affecting cell viability. Moreover, wilfoside K1N significantly reduced the proliferation of HUVEC and calf pulmonary artery endothelial cells. In addition, wilfoside K1N decreased in vitro invasion of HT1080 human fibrosarcoma cells, and the inhibition might be through down-regulation of activity as well as quantity of matrix metalloproteinase-9. Therefore, our present study suggests that wilfoside K1N may have a potential to have strong anti-angiogenic and anti-invasive activities both in vitro and in vivo. PMID:15870866

  17. Human ovarian tumor cell interactions with extracellular matrix: development of a model to study tumor cell invasion

    SciTech Connect

    Niedbala, M.J.

    1986-01-01

    In order to investigate the mechanisms involved in ovarian carcinoma cell implantation and the associated tumor cell-host interactions, a model system was developed employing a mesothelial cell line grown on bovine corneal endothelial cell extracellular matrix (ECM), in an attempt to reconstruct the mesothelium in vitro. Morphologic alterations of the reconstructed mesothelium induced by OCC were observed using immunohistochemical staining, light and electron microscopy. A relationship was observed between extracellular ..beta..-N-acetylhexosaminidase activity and (1) the ability of OCC to morphologically degrade ECM; (2) the capacity of OCC to degrade (/sup 3/H)-glucosamine radiolabelled ECM. The rate of accumulation of extracellular hexosaminidase in cell free-conditioned medium was progressive and closely paralleled the rate of OCC mediated release of (/sup 3/H)-glucosamine from ECM. Purified hexosaminidase (placental and/or OCC) was observed to directly hydrolzye (/sup 3/H)-glucosamine radiolabelled structurally intact ECM (up to 70% radiolabel) and resulted in the cumulative release of free (/sup 3/H)-N-acetylglucosamine.

  18. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness.

    PubMed

    McGuire, Christina; Cotter, Kristina; Stransky, Laura; Forgac, Michael

    2016-08-01

    V-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V(1) domain that hydrolyzes ATP and an integral V(0) domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues. Our laboratory has demonstrated that glucose-dependent assembly of the V-ATPase complex in yeast is controlled by the Ras/cAMP/PKA pathway. By contrast, increased assembly of the V-ATPase during dendritic cell maturation involves the PI-3 kinase and mTORC1 pathways. Recently, we have shown that amino acids regulate V-ATPase assembly in mammalian cells, possibly as a means to maintain adequate levels of amino acids upon nutrient starvation. V-ATPases have also been implicated in cancer cell survival and invasion. V-ATPases are targeted to different cellular membranes by isoforms of subunit a, with a3 targeting V-ATPases to the plasma membrane of osteoclasts. We have shown that highly invasive human breast cancer cell lines express higher levels of the a3 isoform than poorly invasive lines and that knockdown of a3 reduces both expression of V-ATPases at the plasma membrane and in vitro invasion of breast tumor cells. Moreover, overexpression of a3 in a non-invasive breast epithelial line increases both plasma membrane V-ATPases and in vitro invasion. Finally, specific ablation of plasma membrane V-ATPases in highly invasive human breast cancer cells using either an antibody or small molecule approach inhibits both in vitro invasion and migration. These results suggest that plasma membrane and a3-containing V-ATPases represent a novel and important target in the development of therapeutics to limit breast cancer metastasis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics

  19. Circulating tumor cells in early breast cancer: A connection with vascular invasion.

    PubMed

    Maltoni, Roberta; Fici, Pietro; Amadori, Dino; Gallerani, Giulia; Cocchi, Claudia; Zoli, Martina; Rocca, Andrea; Cecconetto, Lorenzo; Folli, Secondo; Scarpi, Emanuela; Serra, Patrizia; Fabbri, Francesco

    2015-10-10

    Although circulating tumor cells (CTCs) have been studied in early breast cancer (EBC), their value in this setting is still not fully understood. We isolated and studied CTCs in the peripheral blood (PB) of 48 EBC patients pre-surgery and one and 6 months post-surgery using an approach involving EpCAM-independent enrichment and a dielectrophoresis-based device. Method feasibility and the correlation between CTCs and primary tumor features were evaluated. CTCs were found in 27.1% of pre-surgery patients, 20.9% of patients one-month post-surgery, and about 33% of patients 6-months post-surgery. CTCs were recovered singly for further molecular characterization. Pre-surgery CTC-positive patients more frequently had negative prognostic features, i.e. high proliferation, large tumor dimension, lymph node positivity and negative receptor status than the other subgroup. In particular, vascular invasion showed a statistically significant correlation with CTC-positivity. Our procedure proved feasible and capable of recovering CTCs from EBC patients. Furthermore, our results suggest that CTCs may be linked to vascular invasion and to other known negative prognostic factors. PMID:26184997

  20. Epidermal Growth Factor-Induced Tumor Cell Invasion and Metastasis Initiated by Dephosphorylation and Downregulation of Focal Adhesion Kinase

    PubMed Central

    Lu, Zhimin; Jiang, Guoqiang; Blume-Jensen, Peter; Hunter, Tony

    2001-01-01

    Upregulated epidermal growth factor (EGF) receptor (EGFR) expression and EGFR-induced signaling have been correlated with progression to invasion and metastasis in a wide variety of carcinomas, but the mechanism behind this is not well understood. We show here that, in various human carcinoma cells that overexpress EGFR, EGF treatment induced rapid tyrosine dephosphorylation of focal adhesion kinase (FAK) associated with downregulation of its kinase activity. The downregulation of FAK activity was both required and sufficient for EGF-induced refractile morphological changes, detachment of cells from the extracellular matrix, and increased tumor cell motility, invasion, and metastasis. Tumor cells with downregulated FAK activity became less adherent to the extracellular matrix. However, once cells started reattaching, FAK activity was restored by activated integrin signaling. Moreover, this process of readhesion and spreading could not be abrogated by further EGF stimulation. Interruption of transforming growth factor alpha-EGFR autocrine regulation with an EGFR tyrosine kinase inhibitor led to a substantial increase in FAK tyrosine phosphorylation and inhibition of tumor cell invasion in vitro. Consistent with this, FAK tyrosine phosphorylation was reduced in cells from tumors growing in transplanted, athymic, nude mice, which have an intact autocrine regulation of the EGFR. We suggest that the dynamic regulation of FAK activity, initiated by EGF-induced downregulation of FAK leading to cell detachment and increased motility and invasion, followed by integrin-dependent reactivation during readhesion, plays a role in EGF-associated tumor invasion and metastasis. PMID:11359909

  1. Multi-photon Imaging of Tumor Cell Invasion in an Orthotopic Mouse Model of Oral Squamous Cell Carcinoma

    PubMed Central

    Gatesman Ammer, Amanda; Hayes, Karen E.; Martin, Karen H.; Zhang, Lingqing; Spirou, George A.; Weed, Scott A.

    2011-01-01

    Loco-regional invasion of head and neck cancer is linked to metastatic risk and presents a difficult challenge in designing and implementing patient management strategies. Orthotopic mouse models of oral cancer have been developed to facilitate the study of factors that impact invasion and serve as model system for evaluating anti-tumor therapeutics. In these systems, visualization of disseminated tumor cells within oral cavity tissues has typically been conducted by either conventional histology or with in vivo bioluminescent methods. A primary drawback of these techniques is the inherent inability to accurately visualize and quantify early tumor cell invasion arising from the primary site in three dimensions. Here we describe a protocol that combines an established model for squamous cell carcinoma of the tongue (SCOT) with two-photon imaging to allow multi-vectorial visualization of lingual tumor spread. The OSC-19 head and neck tumor cell line was stably engineered to express the F-actin binding peptide LifeAct fused to the mCherry fluorescent protein (LifeAct-mCherry). Fox1nu/nu mice injected with these cells reliably form tumors that allow the tongue to be visualized by ex-vivo application of two-photon microscopy. This technique allows for the orthotopic visualization of the tumor mass and locally invading cells in excised tongues without disruption of the regional tumor microenvironment. In addition, this system allows for the quantification of tumor cell invasion by calculating distances that invaded cells move from the primary tumor site. Overall this procedure provides an enhanced model system for analyzing factors that contribute to SCOT invasion and therapeutic treatments tailored to prevent local invasion and distant metastatic spread. This method also has the potential to be ultimately combined with other imaging modalities in an in vivo setting. PMID:21808230

  2. Polyethylenimine-coated SPION exhibits potential intrinsic anti-metastatic properties inhibiting migration and invasion of pancreatic tumor cells.

    PubMed

    Mulens-Arias, Vladimir; Rojas, José Manuel; Pérez-Yagüe, Sonia; Morales, María del Puerto; Barber, Domingo F

    2015-10-28

    Due to its aggressive behavior, pancreatic cancer is one of the principal causes of cancer-related deaths. The highly metastatic potential of pancreatic tumor cells demands the development of more effective anti-metastatic approaches for this disease. Although polyethylenimine-coated superparamagnetic iron oxide nanoparticles (PEI-coated SPIONs) have been studied for their utility as transfection agents, little is known of their effect on tumor cell biology. Here we demonstrated that PEI-coated SPIONs have potent inhibitory effects on pancreatic tumor cell migration/invasion, through inhibition of Src kinase and decreased expression of MT1-MMP and MMP2 metalloproteinases. When treated with PEI-coated SPIONs, the pancreatic tumor cell line Pan02 showed reduced invadosome density and thus, a decrease in their ability to invade through basement membrane. These nanoparticles temporarily downmodulated microRNA-21, thereby upregulating the cell migration inhibitors PTEN, PDCD4 and Sprouty-1. PEI-coated SPIONs thus show intrinsic, possibly anti-metastatic properties for modulating pancreatic tumor cell migration machinery, which indicates their potential as anti-metastatic agents for treatment of pancreatic cancer. PMID:26264831

  3. Biodegradable nano-films for capture and non-invasive release of circulating tumor cells

    PubMed Central

    Park, Myoung-Hwan; Castleberry, Steven; Deng, Jason Z.; Hsu, Bryan; Mayner, Sarah; Jensen, Anne E.; Sequist, Lecia V.; Maheswaran, Shyamala; Haber, Daniel A.; Toner, Mehmet; Stott, Shannon L.; Hammond, Paula T.

    2016-01-01

    Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an important capability for both clinical medicine and biological research. Current techniques to perform this task place the isolated cells under excessive stresses that reduce cell viability, and potentially induce phenotype change, therefore losing valuable information about the isolated cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a library of ultrathin coatings using a broad range of materials through complementary interactions. By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on command, we are able to gently isolate cancer cells and recover them without compromising cell viability or proliferative potential. Our approach has the capability to overcome practical hurdles and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell genomics, and in vitro cell culture of recovered cells. Furthermore, CTCs from cancer patients were also captured, identified, and successfully released using the LbL-modified microchips. PMID:26142780

  4. Biodegradable nano-films for capture and non-invasive release of circulating tumor cells.

    PubMed

    Li, Wei; Reátegui, Eduardo; Park, Myoung-Hwan; Castleberry, Steven; Deng, Jason Z; Hsu, Bryan; Mayner, Sarah; Jensen, Anne E; Sequist, Lecia V; Maheswaran, Shyamala; Haber, Daniel A; Toner, Mehmet; Stott, Shannon L; Hammond, Paula T

    2015-10-01

    Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an important capability for both clinical medicine and biological research. Current techniques to perform this task place the isolated cells under excessive stresses that reduce cell viability, and potentially induce phenotype change, therefore losing valuable information about the isolated cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a library of ultrathin coatings using a broad range of materials through complementary interactions. By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on command, we are able to gently isolate cancer cells and recover them without compromising cell viability or proliferative potential. Our approach has the capability to overcome practical hurdles and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell genomics, and in vitro cell culture of recovered cells. Furthermore, CTCs from cancer patients were also captured, identified, and successfully released using the LbL-modified microchips. PMID:26142780

  5. Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion.

    PubMed

    Hu, Bin; Thirtamara-Rajamani, Keerthi K; Sim, Hosung; Viapiano, Mariano S

    2009-11-01

    Malignant gliomas are highly invasive tumors with an almost invariably rapid and lethal outcome. Surgery and chemoradiotherapy fail to remove resistant tumor cells that disperse within normal tissue, which are a major cause for disease progression and therapy failure. Infiltration of the neural parenchyma is a distinctive property of malignant gliomas compared with other solid tumors. Thus, glioma cells are thought to produce unique molecular changes that remodel the neural extracellular matrix and form a microenvironment permissive for their motility. Here, we describe the unique expression and proinvasive role of fibulin-3, a mesenchymal matrix protein specifically upregulated in gliomas. Fibulin-3 is downregulated in peripheral tumors and is thought to inhibit tumor growth. However, we found fibulin-3 highly upregulated in gliomas and cultured glioma cells, although the protein was undetectable in normal brain or cultured astrocytes. Overexpression and knockdown experiments revealed that fibulin-3 did not seem to affect glioma cell morphology or proliferation, but enhanced substrate-specific cell adhesion and promoted cell motility and dispersion in organotypic cultures. Moreover, orthotopic implantation of fibulin-3-overexpressing glioma cells resulted in diffuse tumors with increased volume and rostrocaudal extension compared with controls. Tumors and cultured cells overexpressing fibulin-3 also showed elevated expression and activity of matrix metalloproteases, such as MMP-2/MMP-9 and ADAMTS-5. Taken together, our results suggest that fibulin-3 has a unique expression and protumoral role in gliomas, and could be a potential target against tumor progression. Strategies against this glioma-specific matrix component could disrupt invasive mechanisms and restrict the dissemination of these tumors. PMID:19887559

  6. FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness.

    PubMed

    Wang, I-Ching; Chen, Yi-Ju; Hughes, Douglas E; Ackerson, Timothy; Major, Michael L; Kalinichenko, Vladimir V; Costa, Robert H; Raychaudhuri, Pradip; Tyner, Angela L; Lau, Lester F

    2008-07-25

    The Forkhead box M1 (FoxM1) protein is a proliferation-specific transcription factor that plays a key role in controlling both the G(1)/S and G(2)/M transitions through the cell cycle and is essential for the development of various cancers. We show here that FoxM1 directly activates the transcription of the c-Jun N-terminal kinase (JNK1) gene in U2OS osteosarcoma cells. Expression of JNK1, which regulates the expression of genes important for the G(1)/S transition, rescues the G(1)/S but not the G(2)/M cell cycle block in FoxM1-deficient cells. Knockdown of either FoxM1 or JNK1 inhibits tumor cell migration, invasion, and anchorage-independent growth. However, expression of JNK1 in FoxM1-depleted cells does not rescue these defects, indicating that JNK1 is a necessary but insufficient downstream mediator of FoxM1 in these processes. Consistent with this interpretation, FoxM1 regulates the expression of the matrix metalloproteinases MMP-2 and MMP-9, which play a role in tumor cell invasion, through JNK1-independent and -dependent mechanisms in U2OS cells, respectively. Taken together, these findings identify JNK1 as a critical transcriptional target of FoxM1 that contributes to FoxM1-regulated cell cycle progression, tumor cell migration, invasiveness, and anchorage-independent growth. PMID:18524773

  7. Prognostic analysis of invasive circulating tumor cells (iCTCs) in epithelial ovarian cancer

    PubMed Central

    Pearl, Michael L.; Zhao, Qiang; Yang, Jie; Dong, Huan; Tulley, Shaun; Zhang, Qiao1; Golightly, Marc; Zucker, Stanley; Chen, Wen-Tien

    2014-01-01

    Goals: Circulating tumor cells (CTCs) have been introduced as a biomarker in detecting advanced Epithelial Ovarian Cancer (EOC). The goals are to examine the prevalence of the invasive subpopulation of CTCs (iCTCs) in patients at high risk of EOC and to compare this biomarker to serum CA125. Methods: We used a unique Cell Adhesion Matrix (CAM)-based, functional cell enrichment and identification platform to isolate iCTCs from 129 preoperative patients. We confirmed the identity of iCTCs using positive epithelial (Epi+) markers and negative hematopoietic lineage (HL-) markers. Sensitivity and specificity of the assays were examined and iCTCs / CA125 were correlated with overall survival (OS), progression-free survival (PFS) and clinical parameters. Results: We found a 41.2% sensitivity, 95.1% specificity and 77.8% positive predictive value (PPV) of the iCTC assay in detecting patients with stage I and II EOC malignancy, and a 83% sensitivity and 97.3% PPV in detecting all stages of EOC malignancy. However, a positive CA125 test provided weak evidence to detect stage I and II malignancy (61.6% PPV) and all EOC (92.1% PPV), because of its 76.2% specificity. A significantly stronger concordance in OS and PFS of clinical factors (tumor stage, debulking and platinum sensitivity) was noted for elevated iCTCs than for serum CA125. Conclusion: The CAM-initiated CTC enrichment / identification method enabled the detection of early stage EOC. iCTCs were better correlated with worse OS and PFS, more specific and better PPV than CA125 in detecting EOC malignancy in patients at high risk of EOC. PMID:24972191

  8. Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase

    PubMed Central

    Petrella, Brenda L; Brinckerhoff, Constance E

    2006-01-01

    Background Metastatic renal cell carcinoma (RCC) remains the leading cause of mortality in patients with clear cell RCC arising from mutations in the von Hippel Lindau (VHL) tumor suppressor. Successful RCC tumor suppression by VHL requires the negative regulation of hypoxia inducible factor alpha (HIF alpha) protein and its downstream targets. Thus, identification of HIF target genes responsible for RCC tumor progression will aid in the development of therapies for this disease. We previously identified membrane type-1 matrix metalloproteinase (MT1-MMP) as a transcriptional target of HIF-2alpha in RCC cells null for VHL and showed that MT1-MMP is overexpressed in these cells. MT1-MMP is a key regulator of tumor progression through its functions as a matrix-degrading enzyme, as well as its ability to cleave factors, such as adhesion molecules and other MMPs. The aim of this study was to investigate the contribution of MT1-MMP to the invasive potential of RCC cells using in vitro type I collagen degradation and invasion assays. Results We evaluated RCC cells wild-type (WT8) and null (pRc-9) for VHL for invasive characteristics and showed that the pRc-9 cells demonstrated a greater propensity for both invasion and degradation of a type I collagen matrix. Furthermore, overexpression of either HIF-2alpha or MT1-MMP in the poorly invasive cell line, WT8, promoted collagen degradation and invasion of these cells. Finally, using RNAi, we show that inhibition of MT1-MMP suppresses tumor cell invasion of RCC cells. Conclusion Our results suggest that MT1-MMP is a major mediator of tumor cell invasiveness and type I collagen degradation by VHL RCC cells that express either MT1-MMP or HIF-2alpha. As such, MT1-MMP may represent a novel target for anti-invasion therapy for this disease. PMID:17140440

  9. Cytotoxic activity and inhibition of tumor cell invasion by derivatives of a chemically modified tetracycline CMT-3 (COL-3).

    PubMed

    Lokeshwar, B L; Escatel, E; Zhu, B

    2001-02-01

    Tetracyclines such as chlortetracycline and doxycycline with antimicrobial activity were reported to possess cytostatic and cytotoxic activity against mammalian tumor cells, often at high doses. Non-antimicrobial chemically modified tetracyclines (CMTs), with limited systemic toxicity but with significant tumor cell toxicity and antimetastatic activity, are attractive for long term treatment for cancer. We recently reported one such CMT, 6-deoxy,6-demethyl 4-dedimethylamino tetracycline (CMT-3) is a potent anti-tumor and anti-metastatic drug. Here we report on the anti-cell proliferation and anti-invasive activity of five nitro derivatives of CMT-3 (CMT-3N). All the five CMT-3Ns (CMT-302, CMT-303, CMT-306, CMT-308 and CMT-316) inhibited in vitro cell proliferation of prostate cancer cells. The 50% growth inhibition concentration (IC(50)) of CMT-3Ns was similar to that of CMT-3. Although CMT-3 was by far the most potent anti-cell proliferation drug, all CMT-3Ns except CMT-303 and CMT-308 had similar anti-cell proliferation activity (IC(50): 2.5 -5.7 microg/ml). IC(50)s for CMT-303 and CMT-308 were approximately 8.1 and -12.4 microg/ml, respectively. Activity against tumor cell invasion was tested in vitro using the Matrigel invasion assay. All CMT-3Ns had similar anti- invasive activity. While cytotoxic activity of CMT-3 was strongly associated with cell death-effector caspase activation, mitochondrial permeablization and apoptosis, the CMT-3Ns weakly induced apoptosis and did not activate Caspase-3. However, the CMT-3Ns were able to induce mitochondrial permeabilization. This dichotomous mechanism of cytotoxic activity of CMTs may have significance in their selection for clinical application. PMID:11172682

  10. Twist-mediated Epithelial-mesenchymal Transition Promotes Breast Tumor Cell Invasion via Inhibition of Hippo Pathway

    PubMed Central

    Wang, Yifan; Liu, Jingyi; Ying, Xuhua; Lin, Pengnian Charles; Zhou, Binhua P.

    2016-01-01

    Twist is a key transcription factor for Epithelial-mesenchymal transition (EMT), which is a cellular de-differentiation program that promotes invasion and metastasis, confers tumor cells with cancer stem cell (CSC)-like characteristics, and increases therapeutic resistance. However, the mechanisms that facilitate the functions of Twist remain unclear. Here we report that Twist overexpression increased expression of PAR1, an upstream regulator of the Hippo pathway; PAR1 promotes invasion, migration, and CSC-like properties in breast cancer by activating the transcriptional co-activator TAZ. Our study indicates that Hippo pathway inhibition is required for the increased migratory and invasiveness ability of breast cancer cells in Twist-mediated EMT. PMID:27094683

  11. Twist-mediated Epithelial-mesenchymal Transition Promotes Breast Tumor Cell Invasion via Inhibition of Hippo Pathway.

    PubMed

    Wang, Yifan; Liu, Jingyi; Ying, Xuhua; Lin, Pengnian Charles; Zhou, Binhua P

    2016-01-01

    Twist is a key transcription factor for Epithelial-mesenchymal transition (EMT), which is a cellular de-differentiation program that promotes invasion and metastasis, confers tumor cells with cancer stem cell (CSC)-like characteristics, and increases therapeutic resistance. However, the mechanisms that facilitate the functions of Twist remain unclear. Here we report that Twist overexpression increased expression of PAR1, an upstream regulator of the Hippo pathway; PAR1 promotes invasion, migration, and CSC-like properties in breast cancer by activating the transcriptional co-activator TAZ. Our study indicates that Hippo pathway inhibition is required for the increased migratory and invasiveness ability of breast cancer cells in Twist-mediated EMT. PMID:27094683

  12. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP).

    PubMed

    Tsygankova, Oxana M; Wang, Hongbin; Meinkoth, Judy L

    2013-08-23

    The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells. PMID:23864657

  13. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton

    PubMed Central

    von Nandelstadh, Pernilla; Gucciardo, Erika; Lohi, Jouko; Li, Rui; Sugiyama, Nami; Carpen, Olli; Lehti, Kaisa

    2014-01-01

    Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP–negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain–containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion. PMID:24989798

  14. Misregulation of Stromelysin-1 in Mouse Mammary Tumor Cells Accompanies Acquisition of Stromelysin-1 dependent Invasive Properties

    SciTech Connect

    Lochter, A.; Srebrow, A.; Sympson, C.J.; Terracio, N.; Werb, Z.; Bissell, M.J.

    1997-02-21

    Stromelysin-1 is a member of the metalloproteinase family of extracellular matrix-degrading enzymes that regulates tissue remodeling. We previously established a transgenic mouse model in which rat stromelysin-1 targeted to the mammary gland augmented expression of endogenous stromelysin-1, disrupted functional differentiation, and induced mammary tumors. A cell line generated from an adenocarcinoma in one of these animals and a previously described mammary tumor cell line generated in culture readily invaded both a reconstituted basement membrane and type I collagen gels, whereas a nonmalignant, functionally normal epithelial cell line did not. Invasion of Matrigel by tumor cells was largely abolished by metalloproteinase inhibitors, but not by inhibitors of other proteinase families. Inhibition experiments with antisense oligodeoxynucleotides revealed that Matrigel invasion of both cell lines was critically dependent on stromelysin-1 expression. Invasion of collagen, on the other hand, was reduced by only 40-50%. Stromelysin-1 was expressed in both malignant and nonmalignant cells grown on plastic substrata. Its expression was completely inhibited in nonmalignant cells, but up-regulated in tumor cells, in response to Matrigel. Thus misregulation of stromelysin-1 expression appears to be an important aspect of mammary tumor cell progression to an invasive phenotype. The matrix metalloproteinases (MMPs) are a family of extracellular matrix (ECM)-degrading enzymes that have been implicated in a variety of normal developmental and pathological processes, including tumorigenesis. The MMP family comprises at least 15 members with different, albeit overlapping, substrate specificities. During activation of latent MMPs, their propeptides are cleaved and they are converted to a lower molecular weight form by other enzymes, including serine proteinases, and by autocatalytic cleavage. Among the MMPs, stromelysin-1 (SL1) possesses the broadest substrate specificity. Despite

  15. Cytoskeletal protein flightless I inhibits apoptosis, enhances tumor cell invasion and promotes cutaneous squamous cell carcinoma progression

    PubMed Central

    Kopecki, Zlatko; Yang, Gink N.; Jackson, Jessica E.; Melville, Elizabeth L.; Cal1ey, Matthew P.; Murrell, Dedee F.; Darby, Ian A.; O'Toole, Edel A.; Samuel, Michael S.; Cowin, Allison J.

    2015-01-01

    Flightless I (Flii) is an actin remodeling protein that affects cellular processes including adhesion, proliferation and migration. In order to determine the role of Flii during carcinogenesis, squamous cell carcinomas (SCCs) were induced in Flii heterozygous (Flii+/−), wild-type and Flii overexpressing (FliiTg/Tg) mice by intradermal injection of 3-methylcholanthrene (MCA). Flii levels were further assessed in biopsies from human SCCs and the human SCC cell line (MET-1) was used to determine the effect of Flii on cellular invasion. Flii was highly expressed in human SCC biopsies particularly by the invading cells at the tumor edge. FliiTg/Tg mice developed large, aggressive SCCs in response to MCA. In contrast Flii+/− mice had significantly smaller tumors that were less invasive. Intradermal injection of Flii neutralizing antibodies during SCC initiation and progression significantly reduced the size of the tumors and, in vitro, decreased cellular sphere formation and invasion. Analysis of the tumors from the Flii overexpressing mice showed reduced caspase I and annexin V expression suggesting Flii may negatively regulate apoptosis within these tumors. These studies therefore suggest that Flii enhances SCC tumor progression by decreasing apoptosis and enhancing tumor cell invasion. Targeting Flii may be a potential strategy for reducing the severity of SCCs. PMID:26497552

  16. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival

    PubMed Central

    Vajkoczy, Peter; Knyazev, Pjotr; Kunkel, Andrea; Capelle, Hans-Holger; Behrndt, Sandra; von Tengg-Kobligk, Hendrik; Kiessling, Fabian; Eichelsbacher, Uta; Essig, Marco; Read, Tracy-Ann; Erber, Ralf; Ullrich, Axel

    2006-01-01

    Malignant gliomas remain incurable brain tumors because of their diffuse-invasive growth. So far, the genetic and molecular events underlying gliomagenesis are poorly understood. In this study, we have identified the receptor tyrosine kinase Axl as a mediator of glioma growth and invasion. We demonstrate that Axl and its ligand Gas6 are overexpressed in human glioma cell lines and that Axl is activated under baseline conditions. Furthermore, Axl is expressed at high levels in human malignant glioma. Inhibition of Axl signaling by overexpression of a dominant-negative receptor mutant (AXL-DN) suppressed experimental gliomagenesis (growth inhibition >85%, P < 0.05) and resulted in long-term survival of mice after intracerebral glioma cell implantation when compared with Axl wild-type (AXL-WT) transfected tumor cells (survival times: AXL-WT, 10 days; AXL-DN, >72 days). A detailed analysis of the distinct hallmarks of glioma pathology, such as cell proliferation, migration, and invasion and tumor angiogenesis, revealed that inhibition of Axl signaling interfered with cell proliferation (inhibition 30% versus AXL-WT), glioma cell migration (inhibition 90% versus mock and AXL-WT, P < 0.05), and invasion (inhibition 62% and 79% versus mock and AXL-WT, respectively; P < 0.05). This study describes the identification, functional manipulation, in vitro and in vivo validation, and preclinical therapeutic inhibition of a target receptor tyrosine kinase mediating glioma growth and invasion. Our findings implicate Axl in gliomagenesis and validate it as a promising target for the development of approaches toward a therapy of these highly aggressive but, as yet, therapy-refractory, tumors. PMID:16585512

  17. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion

    PubMed Central

    Mense, Sarah M.; Barrows, Douglas; Hodakoski, Cindy; Steinbach, Nicole; Schoenfeld, David; Su, William; Hopkins, Benjamin D.; Su, Tao; Fine, Barry; Hibshoosh, Hanina; Parsons, Ramon

    2016-01-01

    The tumor suppressor PTEN restrains cell migration and invasion by a mechanism that is independent of inhibition of the PI3K pathway and decreased activation of the kinase AKT. PREX2, a widely distributed GEF that activates the GTPase RAC1, binds to and inhibits PTEN. We used mouse embryonic fibroblasts and breast cancer cell lines to show that PTEN suppresses cell migration and invasion by blocking PREX2 activity. In addition to metabolizing the phosphoinositide PIP3, PTEN inhibited PREX2-induced invasion by a mechanism that required the tail domain of PTEN, but not its lipid phosphatase activity. Fluorescent nucleotide exchange assays revealed that PTEN inhibited the GEF activity of PREX2 toward RAC1. PREX2 is a frequently mutated GEF in cancer, and examination of human tumor data showed that PREX2 mutation was associated with high PTEN expression. Therefore, we tested whether cancer-derived somatic PREX2 mutants, which accelerate tumor formation of immortalized melanocytes, were inhibited by PTEN. The three stably expressed, somatic PREX2 cancer mutants that we tested were resistant to PTEN-mediated inhibition of invasion but retained the ability to inhibit the lipid phosphatase activity of PTEN. In vitro analysis showed that PTEN did not block the GEF activity of two PREX2 cancer mutants and had a reduced binding affinity for the third. Thus, PTEN antagonized migration and invasion by restraining PREX2 GEF activity, and PREX2 mutants are likely selected in cancer to escape PTEN-mediated inhibition of invasion. PMID:25829446

  18. SphK1 promotes tumor cell migration and invasion in colorectal cancer.

    PubMed

    Long, Jianting; Xie, Ying; Yin, Junmei; Lu, Wei; Fang, Shi

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide. Sphingosine kinase 1 (SphK1), which phosphorylates sphingosine to sphingosine-1-phosphate (S1P), is overexpressed in various types of cancers and may act as an oncogene in tumorigenesis. However, little is known about the role of SphK1 in CRC patients. We studied the expression of SphK1 in 85 cases of CRC tissues by immunohistochemistry, qRT-PCR, and western blot. We also evaluated the effect of SphK1 on cell proliferation and invasion by MTT and transwell invasion assay. SphK1 is overexpressed in CRC tissues and cell lines, and upregulation of SphK1 correlated significantly with the following parameters: lymph node metastasis, liver metastasis, and advanced TNM stage. SphK1 knockdown results in inhibition of cancer cell proliferation. Inhibition of CRC cell migration and invasion is also evident through reversal of EMT by increases in E-cadherin expression and decreases in vimentin expression. In conclusion, SphK1 is associated with the proliferation and invasiveness of CRC cells and the SphK1 gene may contribute to a novel therapeutic approach against CRC. PMID:26662312

  19. Expression of SPRR3 is associated with tumor cell proliferation and invasion in glioblastoma multiforme.

    PubMed

    Liu, Qingyang; Zhang, Chuanbao; Ma, Guofo; Zhang, Quangeng

    2014-02-01

    Esophagin, also known as small proline-rich protein 3 (SPRR3), has been demonstrated to be important in the initiation and progression of numerous types of tumor, including colorectal and breast cancer. However, studies concerning the biological functions of SPRR3 in glioblastoma multiforme (GBM) are limited. Therefore, we aimed to identify the functions and molecular mechanisms underlying the role of SPRR3 in GBM. Hypomethylation of SPRR3 was observed and associated with a poor clinical outcome in GBM patients compared with healthy individuals by using gene methylation profiling. The present study was performed to investigate the expression status and effects of SPRR3 in GBM. The U251 cell line was used in the functional analyses. Cell growth was examined by MTT and colony formation assay. Cell invasion was measured using the Transwell invasion assay. The expression of SPRR3 in tissue samples was examined by immunohistochemistry. The results revealed that the overexpression of SPRR3 accelerates U251 cell proliferation and invasion. It was also observed that SPRR3 was markedly upregulated in 72.7% of GBM samples (24/33) compared with the normal tissue. These results suggest that an increased expression of SPRR3 is involved in tumorigenesis. PMID:24396461

  20. Inhibition of arachidonic acid metabolism decreases tumor cell invasion and matrix metalloproteinase expression.

    PubMed

    Koontongkaew, Sittichai; Monthanapisut, Paopanga; Saensuk, Theeranuch

    2010-11-01

    Head and neck cancers are known to synthesize arachidonic acid metabolites. Interfering with arachidonic acid metabolism may inhibit growth and invasiveness of cancer cells. In this study we investigate effects of sulindac (the non-selective COX inhibitor), aspirin (the irreversible, preferential COX-1 inhibitor), NS-398 (the selective COX-2 inhibitor), NDGA (nordihydroguaiaretic acid, the selective LOX inhibitor) and ETYA (5,8,11,14-eicosatetraynoic acid, the COX and LOX inhibitor) on cell viability, MMP-2 and MMP-9 activities, and in vitro invasion of cancer cells derived from primary and metastatic head and neck, and colon cancers. The inhibitors of COX and/or LOX could inhibit cell proliferation, MMP activity and invasion in head and neck and colon cancer cells. However, the inhibitory effect was obviously observed in colon cancer cells. Inhibition of arachidonic acid metabolism caused a decrease in cancer cell motility, which partially explained by the inhibition of MMPs. Therefore, COX and LOX pathways play important roles in head and neck cancer cell growth. PMID:20654727

  1. Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics.

    PubMed

    Wang, J; Cai, J; Huang, Y; Ke, Q; Wu, B; Wang, S; Han, X; Wang, T; Wang, Y; Li, W; Lao, C; Song, W; Xiang, A P

    2016-06-16

    Nestin is widely expressed in numerous tumors and has become a diagnostic and prognostic indicator. However, the exact mechanism by which nestin contributes to tumor malignancy remains poorly understood. Here, we found marked upregulation of nestin expression in highly proliferative and invasive gastrointestinal stromal tumor (GIST) specimens. Nestin knockdown in GIST cells reduced the proliferative and invasive activity owing to a decrease of mitochondrial intracellular reactive oxygen species (ROS) generation. Furthermore, nestin was co-localized with mitochondria, and knockdown of nestin increased mitochondrial elongation and influenced the mitochondrial function, including oxygen consumption rates, ATP generation and mitochondrial membrane potential and so on. In exploring the underlying mechanism, we demonstrated nestin knockdown inhibited the mitochondrial recruitment of Dynamin-related protein1 and induced the change of mitochondrial dynamics. Thus, nestin may have an important role in GIST malignancy by regulating mitochondrial dynamics and altering intracellular ROS levels. The findings provide new clues to reveal mechanisms by which nestin mediates the proliferation and invasion of GISTs. PMID:26434586

  2. LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP

    PubMed Central

    Lagoutte, Emilie; Villeneuve, Clémentine; Lafanechère, Laurence; Wells, Claire M.; Jones, Gareth E.; Chavrier, Philippe; Rossé, Carine

    2016-01-01

    During their metastatic spread, cancer cells need to remodel the extracellular matrix in order to migrate through stromal compartments adjacent to the primary tumor. Dissemination of breast carcinoma cells is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14), the main invadopodial matrix degradative component. Here, we identify MT1-MMP as a novel interacting partner of dual-specificity LIM Kinase-1 and -2 (LIMK1/2), and provide several evidence for phosphorylation of tyrosine Y573 in the cytoplasmic domain of MT1-MMP by LIMK. Phosphorylation of Y573 influences association of F-actin binding protein cortactin to MT1-MMP-positive endosomes and invadopodia formation and matrix degradation. Moreover, we show that LIMK1 regulates cortactin association to MT1-MMP-positive endosomes, while LIMK2 controls invadopodia-associated cortactin. In turn, LIMK1 and LIMK2 are required for MT1-MMP-dependent matrix degradation and cell invasion in a three-dimensional type I collagen environment. This novel link between LIMK1/2 and MT1-MMP may have important consequences for therapeutic control of breast cancer cell invasion. PMID:27116935

  3. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (VCAM-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion.

    PubMed

    Zheng, Yanhua; Yang, Weiwei; Aldape, Kenneth; He, Jie; Lu, Zhimin

    2013-11-01

    Activated EGF receptor (EGFR) signaling plays an instrumental role in glioblastoma (GBM) progression. However, how EGFR activation regulates the tumor microenvironment to promote GBM cell invasion remains to be clarified. Here, we demonstrate that the levels of EGFR activation in tumor cells correlated with the levels of macrophage infiltration in human GBM specimens. This was supported by our observation that EGFR activation enhanced the interaction between macrophages and GBM cells. In addition, EGF treatment induced up-regulation of vascular cell adhesion molecule-1 (VCAM-1) expression in a PKCε- and NF-κB-dependent manner. Depletion of VCAM-1 interrupted the binding of macrophages to GBM cells and inhibited EGF-induced and macrophage-promoted GBM cell invasion. These results demonstrate an instrumental role for EGF-induced up-regulation of VCAM-1 expression in EGFR activation-promoted macrophage-tumor cell interaction and tumor cell invasion and indicate that VCAM-1 is a potential molecular target for improving cancer therapy. PMID:24045955

  4. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation.

    PubMed

    Yan, L; Zhou, J; Gao, Y; Ghazal, S; Lu, L; Bellone, S; Yang, Y; Liu, N; Zhao, X; Santin, A D; Taylor, H; Huang, Y

    2015-06-01

    The imprinted, developmentally regulated H19 long noncoding RNA has been implicated in the pathogenesis of diverse human cancers, but the underlying mechanisms have remained poorly understood. Here, we report that H19 promotes tumor cell migration and invasion by inhibiting let-7, a potent tumor suppressor microRNA that functions to posttranscriptionally suppress the expression of oncogenes that regulate cell growth and motility. We show that H19 depletion impairs, whereas its overexpression enhances the motility and invasiveness of tumor cells. These phenomena occur, at least in part through affecting let-7-mediated regulation of metastasis-promoting genes, including Hmga2, c-Myc and Igf2bp3. This H19/let-7-dependent regulation is recapitulated in vivo where co-expressions of oncogenes and H19 exist in both primary human ovarian and endometrial cancers. Furthermore, we provide evidence that the anti-diabetic drug metformin inhibits tumor cell migration and invasion, partly by downregulating H19 via DNA methylation. Our results reveal a novel mechanism underpinning H19-mediated regulation in metastasis and may explain why in some cases increased let-7 expression unexpectedly correlates with poor prognosis, given the widely accepted role for let-7 as a tumor suppressor. Targeting this newly identified pathway might offer therapeutic opportunities. PMID:25088204

  5. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells

    PubMed Central

    Patsialou, Antonia; Wang, Yarong; Pignatelli, Jeanine; Chen, Xiaoming; Entenberg, David; Oktay, Maja; Condeelis, John S.

    2014-01-01

    Patient data suggest that colony stimulating factor-1 (CSF1) and its receptor (CSF1R) play critical roles during breast cancer progression. We have previously shown that in human breast tumors expressing both CSF1 and CSF1R, invasion in vivo is dependent both on a paracrine interaction with tumor-associated macrophages and an autocrine regulation of CSF1R in the tumor cells themselves. Although the role of the paracrine interaction between tumor cells and macrophages has been extensively studied, very little is known about the mechanism by which the autocrine CSF1R signaling contributes to tumor progression. We show here that breast cancer patients of the claudin-low subtype have significantly increased expression of CSF1R. Using a panel of breast cancer cells lines, we confirm that CSF1R expression is elevated and regulated by TGFβ specifically in claudin-low cell lines. Abrogation of autocrine CSF1R signaling in MDA-MB-231 xenografts (a claudin-low cell line) leads to increased tumor size by enhanced proliferation, but significantly reduced invasion, dissemination and metastasis. Indeed, we show that proliferation and invasion are oppositely regulated by CSF1R downstream of TGFβ only in claudin-low cells lines. Intravital multiphoton imaging revealed that inhibition of CSF1R in the tumor cells leads to decreased in vivo motility and a more cohesive morphology. We show that, both in vitro and in vivo, CSF1R inhibition results in a reversal of claudin-low marker expression by significant upregulation of luminal keratins and tight junction proteins such as claudins. Finally, we show that artificial overexpression of claudins in MDA-MB-231 cells is sufficient to tip the cells from an invasive state to a proliferative state. Our results suggest that autocrine CSF1R signaling is essential in maintaining low claudin expression and that it mediates a switch between the proliferative and the invasive state in claudin-low tumor cells downstream of TGFβ. PMID:25088194

  6. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    SciTech Connect

    Matsuoka, Hiroshi; Tsubaki, Masanobu; Yamazoe, Yuzuru; Ogaki, Mitsuhiko; Satou, Takao; Itoh, Tatsuki; Kusunoki, Takashi; Nishida, Shozo

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.

  7. Map2k4 Functions as a Tumor Suppressor in Lung Adenocarcinoma and Inhibits Tumor Cell Invasion by Decreasing Peroxisome Proliferator-Activated Receptor γ2 Expression ▿

    PubMed Central

    Ahn, Young-Ho; Yang, Yanan; Gibbons, Don L.; Creighton, Chad J.; Yang, Fei; Wistuba, Ignacio I.; Lin, Wei; Thilaganathan, Nishan; Alvarez, Cristina A.; Roybal, Jonathon; Goldsmith, Elizabeth J.; Tournier, Cathy; Kurie, Jonathan M.

    2011-01-01

    MAP2K4 encodes a dual-specificity kinase (mitogen-activated protein kinase kinase 4, or MKK4) that is mutated in a variety of human malignancies, but the biochemical properties of the mutant kinases and their roles in tumorigenesis have not been fully elucidated. Here we showed that 8 out of 11 cancer-associated MAP2K4 mutations reduce MKK4 protein stability or impair its kinase activity. On the basis of findings from bioinformatic studies on human cancer cell lines with homozygous MAP2K4 loss, we posited that MKK4 functions as a tumor suppressor in lung adenocarcinomas that develop in mice owing to expression of mutant Kras and Tp53. Conditional Map2k4 inactivation in the bronchial epithelium of mice had no discernible effect alone but increased the multiplicity and accelerated the growth of incipient lung neoplasias induced by oncogenic Kras. MKK4 suppressed the invasion and metastasis of Kras-Tp53-mutant lung adenocarcinoma cells. MKK4 deficiency increased peroxisomal proliferator-activated receptor γ2 (PPARγ2) expression through noncanonical MKK4 substrates, and PPARγ2 enhanced tumor cell invasion. We conclude that Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing PPARγ2 levels. PMID:21896780

  8. RNA interference-mediated targeting of DKK1 gene expression in Ishikawa endometrial carcinoma cells causes increased tumor cell invasion and migration

    PubMed Central

    YI, NUO; LIAO, QIN-PING; LI, ZHEN-HUA; XIE, BAO-JIANG; HU, YU-HONG; YI, WEI; LIU, MIN

    2013-01-01

    The Wnt signaling pathway plays an essential role in tumor invasion and migration. DKK1 functions as an important inhibitor of the pathway and represents a promising target for cancer therapy. The aim of the present study was to determine the role of DKK1 in endometrial carcinoma (EC) cell invasion and migration using RNA interference (RNAi) technology. Ishikawa EC cells were transfected at high efficiency with specific DKK1 siRNA. RT-PCR and western blot analysis were used to determine the mRNA and protein levels of DKK1, β-catenin and metalloproteinase 14 (MMP14) in siRNA-treated and -untreated cells. In addition, the invasion and migration of the EC cells were detected by invasion and migration assays. Transient transfection of DKK1 siRNA significantly inhibited the mRNA and protein levels of DKK1. Markedly increased cell invasion and migration was observed following treatment with DKK1 siRNA when compared with the negative control siRNA-treated and siRNA-untreated cells. The knockdown of DKK1 also elevated the mRNA and protein levels of β-catenin and MMP14 involved in the Wnt signaling pathway, indicating that targeting this gene may promote intracellular Wnt signal transduction and thus, accelerate EC cell invasion and migration in vitro. The RNAi-mediated targeting of DKK1 gene expression in Ishikawa EC cells resulted in increased tumor cell invasion and migration. DKK1 was identified as an inhibitor of EC cell invasion and migration via its novel role in the Wnt signaling pathway. Targeting DKK1 may therefore represent an effective anti-invasion and -migration strategy for the treatment of EC. PMID:24137406

  9. The NHERF1 PDZ2 Domain Regulates PKA–RhoA–p38-mediated NHE1 Activation and Invasion in Breast Tumor Cells

    PubMed Central

    Cardone, Rosa A.; Bellizzi, Antonia; Busco, Giovanni; Weinman, Edward J.; Dell'Aquila, Maria E.; Casavola, Valeria; Azzariti, Amalia; Mangia, Anita; Paradiso, Angelo

    2007-01-01

    Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na+/H+ exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1α expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na+/H+ exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling. PMID:17332506

  10. MicroRNA-124 suppresses tumor cell proliferation and invasion by targeting CD164 signaling pathway in non-small cell lung cancer

    PubMed Central

    Lin, Jing; Xu, Kai; Wei, Jun; Heimberger, Amy B; Roth, Jack A.; Ji, Lin

    2016-01-01

    MicroRNAs play critical roles in regulating gene expression and various cellular processes in human cancer malignant progression. Down-regulated expression of miR-124 gene has been shown to be significantly associated with a poor prognosis in patients with non-small cell lung cancer (NSCLC) but its biological function and regulatory roles in lung cancer tumorigenesis are largely unknown. In this study, we aimed to determine effects of ectopic expression of miR-124 on tumor cell proliferation, invasion, and induction of apoptosis by DOTAP:Cholesterol nanoparticle-mediated gene transfer and identify its endogenous targets under physiological conditions in NSCLC cells. Overexpression of miR-124 significantly suppresses tumor cell proliferation, colony formation, migration, and induction of apoptosis in H322 and A549 cells. Two endogenous miR-124 targeting sites in the 3′UTR of CD164 mRNA are identified by a stem-loop-array reverse transcription PCR (SLA-RT-PCR) assay in H1299 cells under physiological condition. Ectopic expression of miR-124 induces CD164 mRNA cleavage and down-regulated its gene and protein expression. Our results suggest that miR-124 function as a tumor suppressor miRNA and suppress tumor proliferation and aggression by directly targeting oncogenic CD164 signaling pathway in NSCLC. PMID:27376157

  11. Polyploidy and the proteome.

    PubMed

    Soltis, Douglas E; Misra, Biswapriya B; Shan, Shengchen; Chen, Sixue; Soltis, Pamela S

    2016-08-01

    Although major advances have been made during the past 20 years in our understanding of the genetic and genomic consequences of polyploidy, our knowledge of polyploidy and the proteome is in its infancy. One of our goals is to stimulate additional study, particularly broad-scale proteomic analyses of polyploids and their progenitors. Although it may be too early to generalize regarding the extent to which transcriptomic data are predictive of the proteome of polyploids, it is clear that the proteome does not always reflect the transcriptome. Despite limited data, important observations on the proteomes of polyploids are emerging. In some cases, proteomic profiles show qualitatively and/or quantitatively non-additive patterns, and proteomic novelty has been observed. Allopolyploids generally combine the parental contributions, but there is evidence of parental dominance of one contributing genome in some allopolyploids. Autopolyploids are typically qualitatively identical to but quantitatively different from their parents. There is also evidence of parental legacy at the proteomic level. Proteomes clearly provide insights into the consequences of genomic merger and doubling beyond what is obtained from genomic and/or transcriptomic data. Translating proteomic changes in polyploids to differences in morphology and physiology remains the holy grail of polyploidy--this daunting task of linking genotype to proteome to phenotype should emerge as a focus of polyploidy research in the next decade. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26993527

  12. CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion.

    PubMed

    Zhou, Pengcheng; Erfani, Sonia; Liu, Zeyi; Jia, Changhe; Chen, Yecang; Xu, Bingwei; Deng, Xinyu; Alfáro, Jose E; Chen, Li; Napier, Dana; Lu, Michael; Huang, Jian-An; Liu, Chunming; Thibault, Olivier; Segal, Rosalind; Zhou, Binhua P; Kyprianou, Natasha; Horbinski, Craig; Yang, Xiuwei H

    2015-10-01

    Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3β1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3β1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p < 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3β1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma. PMID:26377974

  13. CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion

    PubMed Central

    Xu, Bingwei; Deng, Xinyu; Alfáro, Jose E.; Chen, Li; Napier, Dana; Lu, Michael; Huang, Jian-An; Liu, Chunming; Thibault, Olivier; Segal, Rosalind; Zhou, Binhua P.; Kyprianou, Natasha; Horbinski, Craig; Yang, Xiuwei H.

    2015-01-01

    Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3β1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3β1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p < 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3β1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma. PMID:26377974

  14. Does polyploidy facilitate long-distance dispersal?

    PubMed Central

    Linder, H. Peter; Barker, Nigel P.

    2014-01-01

    Background and Aims The ability of plant lineages to reach all continents contributes substantially to their evolutionary success. This is exemplified by the Poaceae, one of the most successful angiosperm families, in which most higher taxa (tribes, subfamilies) have global distributions. Due to the old age of the ocean basins relative to the major angiosperm radiations, this is only possible by means of long-distance dispersal (LDD), yet the attributes of lineages with successful LDD remain obscure. Polyploid species are over-represented in invasive floras and in the previously glaciated Arctic regions, and often have wider ecological tolerances than diploids; thus polyploidy is a candidate attribute of successful LDD. Methods The link between polyploidy and LDD was explored in the globally distributed grass subfamily Danthonioideae. An almost completely sampled and well-resolved species-level phylogeny of the danthonioids was used, and the available cytological information was assembled. The cytological evolution in the clade was inferred using maximum likelihood (ML) as implemented in ChromEvol. The biogeographical evolution in the clade was reconstructed using ML and Bayesian approaches. Key Results Numerous increases in ploidy level are demonstrated. A Late Miocene–Pliocene cycle of polyploidy is associated with LDD, and in two cases (the Australian Rytidosperma and the American Danthonia) led to secondary polyploidy. While it is demonstrated that successful LDD is more likely in polyploid than in diploid lineages, a link between polyploidization events and LDD is not demonstrated. Conclusions The results suggest that polyploids are more successful at LDD than diploids, and that the frequent polyploidy in the grasses might have facilitated the extensive dispersal among continents in the family, thus contributing to their evolutionary success. PMID:24694830

  15. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells

    PubMed Central

    Porther, N; Barbieri, MA

    2015-01-01

    Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon PMID:26317377

  16. Manganese superoxide dismutase promotes interaction of actin, S100A4 and Talin, and enhances rat gastric tumor cell invasion

    PubMed Central

    Indo, Hiroko P.; Matsui, Hirofumi; Chen, Jing; Zhu, Haining; Hawkins, Clare L.; Davies, Michael J.; Yarana, Chontida; St. Clair, Daret K.; Majima, Hideyuki J.

    2015-01-01

    It has been demonstrated that cancer cells are under high levels of oxidative stress and express high levels of Manganese superoxide dismutase (MnSOD) to protect themselves and support the anabolic metabolism needed for growth and cell motility. The aim of this study was to identify proteins that may have a correlation with invasion and redox regulation by mitochondrial reactive oxygen species (ROS). MnSOD scavenges superoxide anions generated from mitochondria and is an important regulator of cellular redox status. Oxidative posttranslational modification of cysteine residues is a key mechanism that regulates protein structure and function. We hypothesized that MnSOD regulates intracellular reduced thiol status and promotes cancer invasion. A proteomic thiol-labeling approach with 5-iodoacetamidofluorescein was used to identify changes in intracellular reduced thiol-containing proteins. Our results demonstrate that overexpression of MnSOD maintained the major structural protein, actin, in a reduced state, and enhanced the invasion ability in gastric mucosal cancer cells, RGK1. We also found that the expression of Talin and S100A4 were increased in MnSOD-overexpressed RGK1 cells. Moreover, Talin bound not only with actin but also with S100A4, suggesting that the interaction of these proteins may, in part, contribute to the invasive ability of rat gastric cancer. PMID:26236095

  17. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma

    SciTech Connect

    Zhai, Jian; Qu, Shuping; Li, Xiaowei; Zhong, Jiaming; Chen, Xiaoxia; Qu, Zengqiang; Wu, Dong

    2015-08-14

    Emerging evidence suggests that microRNAs (miRNAs) play important roles in regulating HCC development and progression; however, the mechanisms by which their specific functions and mechanisms remained to be further explored. miR-129 has been reported in gastric cancers, lung cancer and colon cancer. In this study, we disclosed a new tumor suppresser function of miR-129 in HCC. We also found the downregulation of miR-129 occurred in nearly 3/4 of the tumors examined (56/76) compared with adjacent nontumorous tissues, which was more importantly, correlated to the advanced stage and vascular invasion. We then demonstrated that miR-129 overexpression attenuated HCC cells proliferation and invasion, inducing apoptosis in vitro. Moreover, we used miR-129 antagonist and found that anti-miR-129 promoted HCC cells malignant phenotypes. Mechanistically, our further investigations revealed that miR-129 suppressed cell proliferation and invasion by targeting the 3’-untranslated region of PAK5, as well as miR-129 silencing up-regulated PAK5 expression. Moreover, miR-129 expression was inversely correlated with PAK5 expression in 76 cases of HCC samples. RNA interference of PAK5 attenuated anti-miR-129 mediated cell proliferation and invasion in HCC cells. Taken together, these results demonstrated that miR-129 suppressed tumorigenesis and progression by directly targeting PAK5, defining miR-129 as a potential treatment target for HCC. - Highlights: • Decreased of miR-129 is found in HCC and associated with advanced stage and metastasis. • miR-129 suppresses proliferation and invasion of HCC cells. • miR-129 directly targets the 3′ UTR of PAK5 and diminishes PAK5 expression. • PAK5 is involved in miR-129 mediated suppression functions.

  18. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo

    PubMed Central

    Botkjaer, Kenneth A.; Kwok, Hang Fai; Terp, Mikkel G.; Karatt-Vellatt, Aneesh; Santamaria, Salvatore; McCafferty, John; Andreasen, Peter A.; Itoh, Yoshifumi; Ditzel, Henrik J.; Murphy, Gillian

    2016-01-01

    The membrane-associated matrix metalloproteinase-14, MT1-MMP, has been implicated in pericellular proteolysis with an important role in cellular invasion of collagenous tissues. It is substantially upregulated in various cancers and rheumatoid arthritis, and has been considered as a potential therapeutic target. Here, we report the identification of antibody fragments to MT1-MMP that potently and specifically inhibit its cell surface functions. Lead antibody clones displayed inhibitory activity towards pro-MMP-2 activation, collagen-film degradation and gelatin-film degradation, and were shown to bind to the MT1-MMP catalytic domain outside the active site cleft, inhibiting binding to triple helical collagen. Affinity maturation using CDR3 randomization created a second generation of antibody fragments with dissociation constants down to 0.11 nM, corresponding to an improved affinity of 332-fold with the ability to interfere with cell-surface MT1-MMP functions, displaying IC50 values down to 5 nM. Importantly, the new inhibitors were able to inhibit collagen invasion by tumor-cells in vitro and in vivo primary tumor growth and metastasis of MDA-MB-231 cells in a mouse orthotopic xenograft model. Herein is the first demonstration that an inhibitory antibody targeting sites outside the catalytic cleft of MT1-MMP can effectively abrogate its in vivo activity during tumorigenesis and metastasis. PMID:26934448

  19. Soluble Urokinase Receptor Is Released Selectively by Glioblastoma Cells That Express Epidermal Growth Factor Receptor Variant III and Promotes Tumor Cell Migration and Invasion*♦

    PubMed Central

    Gilder, Andrew S.; Jones, Karra A.; Hu, Jingjing; Wang, Lei; Chen, Clark C.; Carter, Bob S.; Gonias, Steven L.

    2015-01-01

    Genomic heterogeneity is characteristic of glioblastoma (GBM). In many GBMs, the EGF receptor gene (EGFR) is amplified and may be truncated to generate a constitutively active form of the receptor called EGFRvIII. EGFR gene amplification and EGFRvIII are associated with GBM progression, even when only a small fraction of the tumor cells express EGFRvIII. In this study, we show that EGFRvIII-positive GBM cells express significantly increased levels of cellular urokinase receptor (uPAR) and release increased amounts of soluble uPAR (suPAR). When mice were xenografted with human EGFRvIII-expressing GBM cells, tumor-derived suPAR was detected in the plasma, and the level was significantly increased compared with that detected in plasma samples from control mice xenografted with EGFRvIII-negative GBM cells. suPAR also was increased in plasma from patients with EGFRvIII-positive GBMs. Purified suPAR was biologically active when added to cultures of EGFRvIII-negative GBM cells, activating cell signaling and promoting cell migration and invasion. suPAR did not significantly stimulate cell signaling or migration of EGFRvIII-positive cells, probably because cell signaling was already substantially activated in these cells. The activities of suPAR were replicated by conditioned medium (CM) from EGFRvIII-positive GBM cells. When the CM was preincubated with uPAR-neutralizing antibody or when uPAR gene expression was silenced in cells used to prepare CM, the activity of the CM was significantly attenuated. These results suggest that suPAR may function as an important paracrine signaling factor in EGFRvIII-positive GBMs, inducing an aggressive phenotype in tumor cells that are EGFRvIII-negative. PMID:25837250

  20. Species interactions and plant polyploidy.

    PubMed

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. PMID:27370313

  1. Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Xu, Xuehe; Jin, Aihui; Jia, Qunying; Zhou, Huaibin; Kang, Shuai; Lou, Yongliang; Gao, Jimin; Lu, Jianxin

    2013-09-01

    We used a baculovirus expression system to express fusion proteins of HCV core, RGD (Arg-Gly-Asp) peptide, and IFN-α2a fragments in Sf9 cells. Western blotting and electron microscopy demonstrate that HCV core, peptides RGD, and IFN-α2a fusion proteins assemble into 30 to 40 nm nano-particles (virus-like particles, VLPs). Xenograft assays show that VLPs greatly reduced tumor volume and weight with regard to a nontreated xenograft. Migration and invasion results show that VLPs can inhibit the migration and invasion of the breast cancer cells MDA-MB231. This study will provide theoretical and experimental basis for the establishment of safe and effective tumor-targeted drug delivery systems and clinical application of VLPs carrying cell interacting cargo.

  2. MicroRNA-126 inhibits tumor cell invasion and metastasis by downregulating ROCK1 in renal cell carcinoma

    PubMed Central

    ZHANG, GUI-MING; LUO, LEI; DING, XUE-MEI; DONG, DA-HAI; LI, BIN; MA, XIAO-CHENG; SUN, LI-JIANG

    2016-01-01

    MicroRNAs (miRNAs) are involved in cancer development and progression. Renal cell carcinoma (RCC) frequently undergoes metastasis and has a high mortality rate. The current study measured miRNA-126 (miR-126) expression levels in 128 pairs of clear cell RCC and adjacent normal kidney tissue samples by reverse transcription-quantitative polymerase chain reaction, and analyzed the association between miR-126 and various clinicopathological parameters. In addition, cell proliferation, wound healing and cell invasion assays were conducted using RCC cells overexpressing miR-126. Potential miR-126 target genes and the signaling pathways that may be regulated by miR-126 were then examined. miR-126 expression was significantly reduced in patients with metastatic RCC compared with patients without metastasis. Consistently, overexpression of miR-126 in RCC cells significantly inhibited cell proliferation, migration and invasion in vitro compared with negative control miRNA. A luciferase reporter assay demonstrated that miR-126 targets Rho associated coiled-coil containing protein kinase 1 (ROCK1) by directly binding the 3′-untranslated region. Furthermore, western blotting identified miR-126 as an important regulator of the AKT and extracellular signal-regulated 1/2 signaling pathways. The results of the present study indicate that miR-126 inhibits RCC cell proliferation, migration and invasion by downregulating ROCK1. These findings suggest that miR-126 may be valuable as a potential target for therapeutic intervention in RCC. PMID:27108693

  3. MicroRNA-126 inhibits tumor cell invasion and metastasis by downregulating ROCK1 in renal cell carcinoma.

    PubMed

    Zhang, Gui-Ming; Luo, Lei; Ding, Xue-Mei; Dong, Da-Hai; Li, Bin; Ma, Xiao-Cheng; Sun, Li-Jiang

    2016-06-01

    MicroRNAs (miRNAs) are involved in cancer development and progression. Renal cell carcinoma (RCC) frequently undergoes metastasis and has a high mortality rate. The current study measured miRNA‑126 (miR‑126) expression levels in 128 pairs of clear cell RCC and adjacent normal kidney tissue samples by reverse transcription‑quantitative polymerase chain reaction, and analyzed the association between miR‑126 and various clinicopathological parameters. In addition, cell proliferation, wound healing and cell invasion assays were conducted using RCC cells overexpressing miR‑126. Potential miR‑126 target genes and the signaling pathways that may be regulated by miR‑126 were then examined. miR‑126 expression was significantly reduced in patients with metastatic RCC compared with patients without metastasis. Consistently, overexpression of miR‑126 in RCC cells significantly inhibited cell proliferation, migration and invasion in vitro compared with negative control miRNA. A luciferase reporter assay demonstrated that miR‑126 targets Rho associated coiled‑coil containing protein kinase 1 (ROCK1) by directly binding the 3'‑untranslated region. Furthermore, western blotting identified miR‑126 as an important regulator of the AKT and extracellular signal‑regulated 1/2 signaling pathways. The results of the present study indicate that miR‑126 inhibits RCC cell proliferation, migration and invasion by downregulating ROCK1. These findings suggest that miR‑126 may be valuable as a potential target for therapeutic intervention in RCC. PMID:27108693

  4. Induction of integrin β3 by sustained ERK activity promotes the invasiveness of TGFβ-induced mesenchymal tumor cells.

    PubMed

    Hong, Soon-Ki; Park, Jeong-Rak; Kwon, Ok-Seon; Kim, Keun-Tae; Bae, Gab-Yong; Cha, Hyuk-Jin

    2016-07-01

    The emerging roles of integrin β3 in the epithelial-mesenchymal transition (EMT) and drug resistance underline its significance in cancer metastasis and recurrence. However, the molecular mechanism underlying the distinctive expression of integrin β3 is less understood. In the present report, we demonstrated that repetitive exposure to transforming growth factor β (TGFβ), a potent inducer of the EMT, significantly increased the expression of integrin β3 in A549 lung cancer cells with distinct mesenchymal properties, such as actin filament reorganization and invasiveness. Notably, integrin β3 expression was associated to cancer cell invasion and migration, and was determined not by Smad4-dependent pathways but by sustained ERK1/2 activity in the mesenchymal cancer cells. These data suggest that ERK1/2 plays an important role in mediating non-canonical TGFβ signal pathways for integrin β3 expression. Therefore, the targeting of the MEK/ERK activity seems to be a promising therapeutic approach to suppressing EMT-associated cancer progression that potentially occurs in TGFβ-enriched microenvironments, which would lead to the suppression of the metastatic potential of integrin β3-positive cancer cells. PMID:27085460

  5. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    PubMed Central

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  6. MicroRNA-542-3p Suppresses Tumor Cell Invasion via Targeting AKT Pathway in Human Astrocytoma.

    PubMed

    Cai, Junchao; Zhao, JingJing; Zhang, Nu; Xu, Xiaonan; Li, Rong; Yi, Yang; Fang, Lishan; Zhang, Le; Li, Mengfeng; Wu, Jueheng; Zhang, Heng

    2015-10-01

    The molecular mechanism underlying constitutive activation of AKT signaling, which plays essential roles in astrocytoma progression, is not fully characterized. Increasing numbers of studies have reported that microRNAs are involved in the malignant behavior of astrocytoma cells via directly targeting multiple oncogenes or tumor suppressors. Here, we found that microRNA (miR)-542-3p expression was decreased in glioblastoma cell lines and astrocytoma tissues, and reduced levels of miR-542-3p expression correlated with high histopathological grades and poor prognosis of astrocytoma patients. Exogenous miR-542-3p suppressed glioblastoma cell invasion through not only targeting AKT1 itself but also directly down-regulating its two important upstream regulators, namely, integrin-linked kinase and PIK3R1. Notably, overexpressing miR-542-3p decreased AKT1 phosphorylation and directly and indirectly repressed nuclear translocation and transactivation activity of β-catenin to exert its anti-invasive effect. Furthermore, the miR-542-3p expression level negatively correlated with AKT activity as well as levels of integrin-linked kinase and PIK3R1 in human astrocytoma specimens. These findings suggest that miR-542-3p acts as a negative regulator in astrocytoma progression and that miR-542-3p down-regulation contributes to aberrant activation of AKT signaling, leaving open the possibility that miR-542-3p may be a potential therapeutic target for high grade astrocytoma. PMID:26286747

  7. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: Study in African-American and Caucasian prostate cancer models

    PubMed Central

    Parray, Aijaz; Siddique, Hifzur R.; Kuriger, Jacquelyn K.; Mishra, Shrawan K.; Rhim, Johng S.; Nelson, Heather H.; Aburatani, Hiroyuki; Konety, Badrinath R.; Koochekpour, Shahriar; Saleem, Mohammad

    2015-01-01

    High-risk populations exhibit early transformation of localized prostate cancer (CaP) disease to metastasis which results in the mortality of such patients. The paucity of knowledge about the molecular mechanism involved in acquiring of metastatic behavior by primary tumor cells and non-availability of reliable phenotype-discriminating biomarkers are stumbling blocks in the management of CaP disease. Here, we determine the role and translational relevance of ROBO1 (an organogenesis-associated gene) in human CaP. Employing CaP-progression models and prostatic tissues of Caucasian and African-American patients, we show that ROBO1 expression is localized to cell-membrane and significantly lost in primary and metastatic tumors. While Caucasians exhibited similar ROBO1 levels in primary and metastatic phenotype, a significant difference was observed between tumor phenotypes in African-Americans. Epigenetic assays identified promoter methylation of ROBO1 specific to African-American metastatic CaP cells. Using African-American CaP models for further studies, we show that ROBO1 negatively regulates motility and invasiveness of primary CaP cells, and its loss causes these cells to acquire invasive trait. To understand the underlying mechanism, we employed ROBO1-expressing/ROBO1-C2C3-mutant constructs, immunoprecipitation, confocal-microscopy and luciferase-reporter techniques. We show that ROBO1 through its interaction with DOCK1 (at SH3-SH2-domain) controls the Rac-activation. However, loss of ROBO1 results in Rac1-activation which in turn causes E-Cadherin/β-catenin cytoskeleton destabilization and induction of cell migration. We suggest that ROBO1 is a predictive biomarker that has potential to discriminate among CaP types, and could be exploited as a molecular target to inhibit the progression of disease as well as treat metastasis in high-risk populations such as African-Americans. PMID:24752651

  8. Involvement of S100-related calcium-binding protein pEL98 (or mts1) in cell motility and tumor cell invasion.

    PubMed

    Takenaga, K; Nakamura, Y; Endo, H; Sakiyama, S

    1994-08-01

    We examined the relationship between cell motility and the expressions of pEL98 (mts1) mRNA and protein in various murine normal and transformed cells. The expression of pEL98 (mts1) in v-Ha-ras-transformed NIH3T3 cells and in normal rat kidney cells transformed by either v-Ha-ras or v-src was increased over that in the corresponding parental cells at both mRNA and protein levels. The expression in normal rat fibroblasts (3Y1) transformed by v-Ha-ras was also increased compared with that in 3Y1 cells. However, the expression of pEL98 (mts1) in 3Y1 cells transformed by v-src was increased in one clone (src 3Y1-K), but decreased in another clone (src 3Y1-H). The expression level of pEL98 (mts1) correlated well with cell motility, which was examined by measuring cell tracks by phagokinesis. In order to test direct involvement of the pEL98 (mts1) protein in cell motility, src 3Y1-H cells that showed low cell motility were transfected with pEL98 cDNA. The transfectants expressing large amounts of the pEL98 protein showed significantly higher cell motility than src 3Y1-H cells. The expression of pEL98 (mts1) was also found to be correlated with motile and invasive abilities in various clones derived from Lewis lung carcinoma. These results suggest that the pEL98 (mts1) protein plays a role in regulating cell motility and tumor cell invasiveness. PMID:7928629

  9. NF-{kappa}B p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    SciTech Connect

    Gao Ming; Yeh, P.Y.; Lu, Y.-S.; Chang, W.C.; Kuo, M.-L.; Cheng, A.-L.

    2008-11-14

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-{kappa}B controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-{kappa}B activity in response to TNF-{alpha}, an abundance of basal and TNF-{alpha}-induced NF-{kappa}B-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a {kappa}B site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells.

  10. Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations.

    PubMed

    Ferrero, Victoria; Barrett, Spencer C H; Castro, Sílvia; Caldeirinha, Patrícia; Navarro, Luis; Loureiro, João; Rodríguez-Echeverría, Susana

    2015-05-01

    Genetic diversity in populations of invasive species is influenced by a variety of factors including reproductive systems, ploidy level, stochastic forces associated with colonization and multiple introductions followed by admixture. Here, we compare genetic variation in native and introduced populations of the clonal plant Oxalis pes-caprae to investigate the influence of reproductive mode and ploidy on levels of diversity. This species is a tristylous geophyte native to South Africa. Invasive populations throughout much of the introduced range are composed of a sterile clonal pentaploid short-styled form. We examined morph ratios, ploidy level, reproductive mode and genetic diversity at nuclear microsatellite loci in 10 and 12 populations from South Africa and the Western Mediterranean region, respectively. Flow cytometry confirmed earlier reports of diploids and tetraploids in the native range, with a single population containing pentaploid individuals. Introduced populations were composed mainly of pentaploids, but sexual tetraploids were also found. There was clear genetic differentiation between ploidy levels, but sexual populations from both regions were not significantly different in levels of diversity. Invasive populations of the pentaploid exhibited dramatically reduced levels of diversity but were not genetically uniform. The occurrence of mixed ploidy levels and stylar polymorphism in the introduced range is consistent with multiple introductions to the Western Mediterranean. This inference was supported by variation patterns at microsatellite loci. Our study indicates that some invasive populations of Oxalis pes-caprae are not entirely clonal, as often assumed, and multiple introductions and recombination have the potential to increase genetic variation in the introduced range. PMID:25604701

  11. Up-regulation of Histone Methyltransferase, DOT1L, by Matrix Hyaluronan Promotes MicroRNA-10 Expression Leading to Tumor Cell Invasion and Chemoresistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma.

    PubMed

    Bourguignon, Lilly Y W; Wong, Gabriel; Shiina, Marisa

    2016-05-13

    Human head and neck squamous cell carcinoma is a solid tumor malignancy associated with major morbidity and mortality. In this study, we determined that human head and neck squamous cell carcinoma-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by a high level of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. Importantly, matrix hyaluronan (HA) induces the up-regulation of stem cell markers that display the hallmark CSC properties. Histone methyltransferase, DOT1L, is also up-regulated by HA in CSCs (isolated from HSC-3 cells). Further analyses indicate that the stimulation of microRNA-10b (miR-10b) expression is DOT1L-specific and HA/CD44-dependent in CSCs. This process subsequently results in the overexpression of RhoGTPases and survival proteins leading to tumor cell invasion and cisplatin resistance. Treatment of CSCs with DOT1L-specific small interfering RNAs (siRNAs) effectively blocks HA/CD44-mediated expression of DOT1L, miR-10b production, and RhoGTPase/survival protein up-regulation as well as reduces tumor cell invasion and enhances chemosensitivity. CSCs were also transfected with a specific anti-miR-10b inhibitor to silence miR-10b expression and block its target functions. Our results demonstrate that the anti-miR-10 inhibitor not only decreases RhoGTPase/survival protein expression and tumor cell invasion, but also increases chemosensitivity in HA-treated CSCs. Taken together, these findings strongly support the contention that histone methyltransferase, DOT1L-associated epigenetic changes induced by HA play pivotal roles in miR-10 production leading to up-regulation of RhoGTPase and survival proteins. All of these events are critically important for the acquisition of cancer stem cell properties, including self-renewal, tumor cell invasion, and chemotherapy resistance in HA/CD44-activated head and neck cancer. PMID:27002147

  12. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production

    PubMed Central

    Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha

    2015-01-01

    S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis. PMID:26315114

  13. Interaction of tumor cells with the microenvironment

    PubMed Central

    2011-01-01

    Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma) is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM) of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT), migration, invasion (i.e. migration through connective tissue), metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS. PMID:21914164

  14. Altered glycosylation in tumor cells

    SciTech Connect

    Reading, C.L. ); Hakomori, S. ); Marcus, D.M. )

    1988-01-01

    This book contains the proceeding on the following: Glycoconjugates of normal and tumor cells; Glycosyltransferases in normal and neoplastic cells; Mammalian lectins of normal tissues and tumor cells; and Immune recognition of carbohydrates and clinical applications.

  15. Aberrant Wnt-1/beta-catenin signaling and WIF-1 deficiency are important events which promote tumor cell invasion and metastasis in salivary gland adenoid cystic carcinoma.

    PubMed

    Wang, Ruinan; Geng, Ning; Zhou, Yuqiao; Zhang, Dunfang; Li, Longjiang; Li, Jing; Ji, Ning; Zhou, Min; Chen, Yu; Chen, Qianming

    2015-01-01

    This study investigates whether Wnt components play a role in carcinogenesis, or the invasion and metastasis of salivary glands, also referred to as adenoid cystic carcinoma (sAdCC). Several sAdCC cell lines with low invasive potential (ACC-2), high metastatic potential (ACC-M), and higher invasive potential (T-ACC-M) were examined to determine whether Wnt components correlate with tumors' invasive and metastatic behavior. Immunohistochemistry was performed in a sAdCC tissue array. ACC-M expressed higher levels of Wnt-1, beta-catenin and lower WIF-1 compared to ACC-2 (P<0.05). T-ACC-M exhibited increased mRNA of Wnt-1 and beta-catenin, and decreased WIF-1 compared to ACC-2 and ACC-M. Immuno-histochemistry showed up-regulation of Wnt-1 and down-regulation of WIF-1 in sAdCC compared with normal salivary glands. Beta-catenin was found in the cytoplasm and nuclei of sAdCC. Dislocation of E-cadherin in sAdCC was observed. These results suggest that sAdCC exhibits diverse expressions of Wnt components. It has an important relationship with the invasive phenotype of these cells. PMID:26405993

  16. T-box transcription factor brachyury promotes tumor cell invasion and metastasis in non-small cell lung cancer via upregulation of matrix metalloproteinase 12.

    PubMed

    Wan, Zongmiao; Jiang, Dongjie; Chen, Su; Jiao, Jian; Ji, Lei; Shah, Abdus Saboor; Wei, Haifeng; Yang, Xinghai; Li, Xiaotao; Wang, Ying; Xiao, Jianru

    2016-07-01

    T-box transcription factor brachyury and matrix metalloproteinases (MMPs) play important roles in non-small cell lung cancer (NSCLC) cell invasion and metastasis. However, the association between Brachyury and the MMP family has not yet been fully investigated. The present study aimed to assess the influence of Brachyury on the expression of 23 MMP members and to further explore the mechanisms involved in the promotion of NSCLC cell invasion by Brachyury and MMPs in the H460 and H1299 stable cell lines. The protein expression levels and correlations between the brachyury transcription factor and the targeted MMPs were also validated in 52 NSCLC patient tissue samples. We observed that brachyury significantly upregulated MMP12 expression to promote NSCLC cell invasion. We also found a potential binding site for the brachyury transcription factor in the MMP12 promoter. PMID:27176766

  17. Upregulation of microRNA-31 targeting integrin α5 suppresses tumor cell invasion and metastasis by indirectly regulating PI3K/AKT pathway in human gastric cancer SGC7901 cells.

    PubMed

    Zhang, Xue-Bin; Song, Lei; Wen, Hong-Juan; Bai, Xiao-Xue; Li, Zhen-Juan; Ma, Lian-Jun

    2016-06-01

    To verify the hypothesis that upregulation of microRNA-31 (miR-31) targeting integrin α5 (ITGA5) suppresses tumor cell invasion and metastasis by indirectly regulating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in human SGC7901 gastric cancer (GC) cells. The miRTarBase was used to predict whether ITGA5 is the target gene of miR-31, which was further confirmed by luciferase reporter gene assay. The SGC7901 GC cells were divided into five groups including the blank, miR-31 mimic, miR-31 mimic control, miR-31 inhibitor, and miR-31 inhibitor control groups. Reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting, cell scratch test, and transwell assays were respectively performed in our study. TGA5 was found as the target gene of miR-31. The RT-PCR detection revealed that, compared with the blank group, ITGA5 messenger RNA (mRNA) expression decreased in the miR-31 mimic group, but increased in the miR-31 inhibitor group. The western blotting examination suggested that the expressions of ITGA5, PI3K, and AKT proteins reduced in the miR-31 mimic group, but enhanced in the miR-31 inhibitor group when compared to the blank group, respectively. The cell scratch and transwell assays indicated that the miR-31 expressions were negatively associated with GC cell migration and invasion. Besides, RT-PCR combined with western blotting demonstrated that the miR-31 expressions were higher in the normal tissues than those in the GC tissues, while the ITGA5 mRNA and protein showed lower expression in the normal tissues than they did in the GC tissues. Our study concluded that upregulation of miR-31 targeting ITGA5 may suppress tumor cell invasion and metastasis by indirectly regulating PI3K/AKT signaling pathway in human SGC7901 GC cells. PMID:26729197

  18. Regulated polyploidy in halophilic archaea.

    PubMed

    Breuert, Sebastian; Allers, Thorsten; Spohn, Gabi; Soppa, Jörg

    2006-01-01

    Polyploidy is common in higher eukaryotes, especially in plants, but it is generally assumed that most prokaryotes contain a single copy of a circular chromosome and are therefore monoploid. We have used two independent methods to determine the genome copy number in halophilic archaea, 1) cell lysis in agarose blocks and Southern blot analysis, and 2) Real-Time quantitative PCR. Fast growing H. salinarum cells contain on average about 25 copies of the chromosome in exponential phase, and their ploidy is downregulated to 15 copies in early stationary phase. The chromosome copy number is identical in cultures with a twofold lower growth rate, in contrast to the results reported for several other prokaryotic species. Of three additional replicons of H. salinarum, two have a low copy number that is not growth-phase regulated, while one replicon even shows a higher degree of growth phase-dependent regulation than the main replicon. The genome copy number of H. volcanii is similarly high during exponential phase (on average 18 copies/cell), and it is also downregulated (to 10 copies) as the cells enter stationary phase. The variation of genome copy numbers in the population was addressed by fluorescence microscopy and by FACS analysis. These methods allowed us to verify the growth phase-dependent regulation of ploidy in H. salinarum, and they revealed that there is a wide variation in genome copy numbers in individual cells that is much larger in exponential than in stationary phase. Our results indicate that polyploidy might be more widespread in archaea (or even prokaryotes in general) than previously assumed. Moreover, the presence of so many genome copies in a prokaryote raises questions about the evolutionary significance of this strategy. PMID:17183724

  19. Suppression of PMA-induced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of NF-κB-dependent MMP-9 expression.

    PubMed

    Li, Li; Wang, Yiwen; Qi, Benquan; Yuan, Dongdong; Dong, Shuying; Guo, Daohua; Zhang, Cuiling; Yu, Meiling

    2014-11-01

    Ginseng has become one of the most commonly used alternative herbal medicines, and its active component, ginsenoside Rg1 has known pharmacological effects, including anticancer properties. However, the effects of ginsenoside Rg1 on metastasis have yet to be investigated. In this study, we demonstrated the ability of ginsenoside Rg1 to suppress phorbol myristate acetate (PMA)-induced invasion and migration in MCF-7 breast cancer cells. MCF-7 cells were treated with ginsenoside Rg1 and incubated with or without PMA. The protein and mRNA expression of MMP-9 and MMP-2 was analyzed using Transwell and wound‑healing assays and western blotting. The results showed that suppression was associated with the reduced secretion of MMP-9, a key metastatic enzyme. MMP-9 levels were regulated transcriptionally and correlated with the suppression of NF-κB phosphorylation and DNA binding activity. Conversely, ginsenoside Rg1 did not affect MMP-2 mRNA and TIMP-1 mRNA levels, or the activation of AP-1, suggesting a specificity of pathway inhibition. Inhibition of NF‑κB activation by p65 small‑interfering RNA (siRNA) was shown to suppress PMA-induced cell invasion and migration. The siRNA studies also showed that PMA-induced MMP-9 expression is NF-κB-dependent. The results suggested that the anticancer properties of ginsenoside Rg1 may derive from its ability to inhibit invasion and migration, and that these processes are regulated in breast cancer cells through the NF-κB‑mediated regulation of MMP-9 expression. PMID:25174454

  20. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  1. Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC)

    PubMed Central

    Winkler, Juliane; Roessler, Stephanie; Sticht, Carsten; DiGuilio, Amanda L.; Drucker, Elisabeth; Holzer, Kerstin; Eiteneuer, Eva; Herpel, Esther; Breuhahn, Kai; Gretz, Norbert; Schirmacher, Peter; Ori, Alessandro; Singer, Stephan

    2016-01-01

    Importins and exportins represent an integral part of the nucleocytoplasmic transport machinery with fundamental importance for eukaryotic cell function. A variety of malignancies including hepatocellular carcinoma (HCC) show de-regulation of nuclear transport factors such as overexpression of the exportin Cellular Apoptosis Susceptibility (CAS). The functional implications of CAS in hepatocarcinogenesis remain, however, poorly understood. Here we integrated proteomics, transcriptomics and functional assays with patient data to further characterize the role of CAS in HCC. By analyzing ∼ 1700 proteins using quantitative mass spectrometry in HCC cells we found that CAS depletion by RNAi leads to de-regulation of integrins, particularly down-regulation of integrin β1. Consistent with this finding, CAS knockdown resulted in substantially reduced migration and invasion of HCC cell lines as analyzed by 2D ‘scratch’ and invasion chamber assays, respectively. Supporting the potential in vivo relevance, high expression levels of CAS in HCC tissue samples were associated with macroangioinvasion and poorer patient outcome. Our data suggest a previously unanticipated link between CAS and integrin signaling which correlates with an aggressive HCC phenotype. PMID:27015362

  2. PEA3 transcription factors are downstream effectors of Met signaling involved in migration and invasiveness of Met-addicted tumor cells.

    PubMed

    Kherrouche, Zoulika; Monte, Didier; Werkmeister, Elisabeth; Stoven, Luc; De Launoit, Yvan; Cortot, Alexis B; Tulasne, David; Chotteau-Lelievre, Anne

    2015-11-01

    Various solid tumors including lung or gastric carcinomas display aberrant activation of the Met receptor which correlates with aggressive phenotypes and poor prognosis. Although downstream signaling of Met is well described, its integration at the transcriptional level is poorly understood. We demonstrate here that in cancer cells harboring met gene amplification, inhibition of Met activity with tyrosine kinase inhibitors or specific siRNA drastically decreased expression of ETV1, ETV4 and ETV5, three transcription factors constituting the PEA3 subgroup of the ETS family, while expression of the other members of the family were less or not affected. Similar link between Met activity and PEA3 factors expression was found in lung cancer cells displaying resistance to EGFR targeted therapy involving met gene amplification. Using silencing experiments, we demonstrate that the PEA3 factors are required for efficient migration and invasion mediated by Met, while other biological responses such as proliferation or unanchored growth remain unaffected. PEA3 overexpression or silencing revealed that they participated in the regulation of the MMP2 target gene involved in extracellular matrix remodeling. Our results demonstrated that PEA3-subgroup transcription factors are key players of the Met signaling integration involved in regulation of migration and invasiveness. PMID:26238631

  3. Bone-derived soluble factors and laminin-511 cooperate to promote migration, invasion and survival of bone-metastatic breast tumor cells.

    PubMed

    Denoyer, Delphine; Kusuma, Nicole; Burrows, Allan; Ling, Xiawei; Jupp, Lara; Anderson, Robin L; Pouliot, Normand

    2014-04-01

    Tumor intrinsic and extrinsic factors are thought to contribute to bone metastasis but little is known about how they cooperate to promote breast cancer spread to bone. We used the bone-metastatic 4T1BM2 mammary carcinoma model to investigate the cooperative interactions between tumor LM-511 and bone-derived soluble factors in vitro. We show that bone conditioned medium cooperates with LM-511 to enhance 4T1BM2 cell migration and invasion and is sufficient alone to promote survival in the absence of serum. These responses were associated with increased secretion of MMP-9 and activation of ERK and AKT signaling pathways and were partially blocked by pharmacological inhibitors of MMP-9, AKT-1/2 or MEK. Importantly, pre-treatment of 4T1BM2 cells with an AKT-1/2 inhibitor significantly reduced experimental metastasis to bone in vivo. Promotion of survival and invasive responses by bone-derived soluble factors and tumor-derived LM-511 are likely to contribute to the metastatic spread of breast tumors to bone. PMID:24601751

  4. Tumor cell intravasation.

    PubMed

    Chiang, Serena P H; Cabrera, Ramon M; Segall, Jeffrey E

    2016-07-01

    The process of entering the bloodstream, intravasation, is a necessary step in the development of distant metastases. The focus of this review is on the pathways and molecules that have been identified as being important based on current in vitro and in vivo assays for intravasation. Properties of the vasculature which are important for intravasation include microvessel density and also diameter of the vasculature, with increased intravasation correlating with increased vessel diameter in some tumors. TGFB signaling can enhance intravasation at least in part through induction of EMT, and we discuss other TGFB target genes that are important for intravasation. In addition to TGFB signaling, a number of studies have demonstrated that activation of EGF receptor family members stimulates intravasation, with downstream signaling through PI3K, N-WASP, RhoA, and WASP to induce invadopodia. With respect to proteases, there is strong evidence for contributions by uPA/uPAR, while the roles of MMPs in intravasation may be more tumor specific. Other cells including macrophages, fibroblasts, neutrophils, and platelets can also play a role in enhancing tumor cell intravasation. The technology is now available to interrogate the expression patterns of circulating tumor cells, which will provide an important reality check for the model systems being used. With a better understanding of the mechanisms underlying intravasation, the goal is to provide new opportunities for improving prognosis as well as potentially developing new treatments. PMID:27076614

  5. Aqueous Extract of Bambusae Caulis in Taeniam Inhibits PMA-Induced Tumor Cell Invasion and Pulmonary Metastasis: Suppression of NF-κB Activation through ROS Signaling

    PubMed Central

    Yim, Nam-Hui; Jung, Young Pil; Ma, Jin Yeul

    2013-01-01

    Bamboo shavings (Bambusae Caulis in Taeniam, BCT) are widely used as a traditional Chinese medicine to control hypertension and cardiovascular disease, and to alleviate fever, vomiting, and diarrhea. It has been demonstrated that BCT reduces ovalbumin-induced airway inflammation by regulating pro-inflammatory cytokines, and decreases tumor growth in tumor-bearing mice. However, the effects of BCT on the metastatic potential of malignant cancer cells and the detailed mechanism of its anti-metastatic activity have not been examined previously. In this study, we investigated whether an aqueous extract of BCT (AE-BCT) reduces the metastatic potential of HT1080 cells, and elucidated the underlying anti-metastatic mechanism. In addition, we examined whether AE-BCT administration inhibits pulmonary metastasis of intravenously injected B16F10 cells in C57BL/6J mice. AE-BCT (50–250 µg/ml) dose-dependently suppressed colony-forming activity under anchorage-dependent and -independent growth conditions. Pretreatment with AE-BCT efficiently inhibited cell migration, invasion, and adhesion. AE-BCT also dramatically suppressed PMA-induced MMP-9 activity and expression by blocking NF-κB activation and ERK phosphorylation. Production of intracellular ROS, a key regulator of NF-κB-induced MMP-9 activity, was almost completely blocked by pretreatment with AE-BCT. Furthermore, daily oral administration of AE-BCT at doses of 50 and 100 mg/kg efficiently inhibited lung metastasis of B16F10 cells injected into the tail veins of C57BL/6J mice with no systemic toxicity. These results demonstrate that AE-BCT significantly reduced the metastatic activity of highly malignant cancer cells by suppressing MMP-9 activity via inhibition of ROS-mediated NF-κB activation. These results indicate that AE-BCT may be a safe natural product for treatment of metastatic cancer. PMID:24205091

  6. Polyploidy can drive rapid adaptation in yeast

    PubMed Central

    Selmecki, Anna; Maruvka, Yosef E.; Richmond, Phillip A.; Guillet, Marie; Shoresh, Noam; Sorenson, Amber; De, Subhajyoti; Kishony, Roy; Michor, Franziska; Dowell, Robin; Pellman, David

    2015-01-01

    Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood1–4. Polyploidy, usually whole genome duplication (WGD), is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations 2,5–7. For example, in diverse cell types and organisms, immediately after a WGD, newly formed polyploids missegregate chromosomes and undergo genetic instability8–13. The instability following WGDs is thought to provide adaptive mutations in microorganisms13,14 and can promote tumorigenesis in mammalian cells11,15. Polyploidy may also affect adaptation independent of beneficial mutations through ploidy-specific changes in cell physiology16. Here, we performed in vitro evolution experiments to directly test whether polyploidy can accelerate evolutionary adaptation. Compared to haploids and diploids, tetraploids underwent significantly faster adaptation. Mathematical modeling suggested that rapid adaptation of tetraploids was driven by higher rates of beneficial mutations with stronger fitness effects, which was supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provided large fitness gains. We identified several mutations whose beneficial effects were manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation. PMID:25731168

  7. Polyploidy can drive rapid adaptation in yeast

    NASA Astrophysics Data System (ADS)

    Selmecki, Anna M.; Maruvka, Yosef E.; Richmond, Phillip A.; Guillet, Marie; Shoresh, Noam; Sorenson, Amber L.; de, Subhajyoti; Kishony, Roy; Michor, Franziska; Dowell, Robin; Pellman, David

    2015-03-01

    Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.

  8. Platelets surrounding primary tumor cells are related to chemoresistance.

    PubMed

    Ishikawa, Satoko; Miyashita, Tomoharu; Inokuchi, Masafumi; Hayashi, Hironori; Oyama, Katsunobu; Tajima, Hidehiro; Takamura, Hironori; Ninomiya, Itasu; Ahmed, A Karim; Harman, John W; Fushida, Sachio; Ohta, Tetsuo

    2016-08-01

    Platelets are crucial components of the tumor microenvironment that function to promote tumor progression and metastasis. In the circulation, the interaction between tumor cells and platelets increases invasiveness, protects tumor cells from shear stress and immune surveillance, and facilitates tumor cell extravasation to distant sites. However, the role and presence of platelets in the primary tumor have not been fully determined. Here, we investigated the presence of platelets around breast cancer primary tumor cells and the associations between these cells. We further investigated the associations among platelets, tumor cells, chemoresistance, and epithelial-mesenchymal transition (EMT). We retrospectively analyzed data from 74 patients with human epidermal growth factor receptor 2 (HER2)‑negative breast cancer who underwent biopsies before treatment and subsequent neo-adjuvant chemotherapy. In biopsy specimens, we evaluated the expression of platelet-specific markers and EMT markers using immunohistochemistry. The associations among the expression of platelet‑specific markers in biopsy specimens, EMT, response to neo‑adjuvant chemotherapy, and survival were analyzed. The presence of platelets was observed in 44 out of 74 (59%) primary breast cancer biopsy specimens. Platelet‑positive tumor cells showed EMT‑like morphological changes and EMT marker expression. Primary tumor cells associated with platelets were less responsive to neo‑adjuvant chemotherapy (pCR rate: 10 vs. 50%, respectively; p=0.0001). Platelets were an independent predictor of the response to chemotherapy upon multivariable analysis (p<0.0001). In conclusion, there was a significant association between platelets surrounding primary tumor cells in the biopsy specimens and the chemotherapeutic response in breast cancer. Platelets surrounding primary tumor cells may represent novel predictors of chemotherapeutic responses. PMID:27349611

  9. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    SciTech Connect

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  10. Circulating tumor cells in germ cell tumors: are those biomarkers of real prognostic value? A review

    PubMed Central

    CEBOTARU, CRISTINA LIGIA; OLTEANU, ELENA DIANA; ANTONE, NICOLETA ZENOVIA; BUIGA, RARES; NAGY, VIORICA

    2016-01-01

    Analysis of circulating tumor cells from patients with different types of cancer is nowadays a fascinating new tool of research and their number is proven to be useful as a prognostic factor in metastatic breast, colon and prostate cancer patients. Studies are going beyond enumeration, exploring the circulating tumor cells to better understand the mechanisms of tumorigenesis, invasion and metastasis and their value for characterization, prognosis and tailoring of treatment. Few studies investigated the prognostic significance of circulating tumor cells in germ cell tumors. In this review, we examine the possible significance of the detection of circulating tumor cells in this setting. PMID:27152069

  11. Detection of Circulating Tumor Cells

    PubMed Central

    Terstappen, Leon W. M. M.

    2014-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the detection of circulating tumor cells and discuss potential future directions for improvements. PMID:25133014

  12. Tumor heterogeneity and circulating tumor cells.

    PubMed

    Zhang, Chufeng; Guan, Yan; Sun, Yulan; Ai, Dan; Guo, Qisen

    2016-05-01

    In patients with cancer, individualized treatment strategies are generally guided by an analysis of molecular biomarkers. However, genetic instability allows tumor cells to lose monoclonality and acquire genetic heterogeneity, an important characteristic of tumors, during disease progression. Researchers have found that there is tumor heterogeneity between the primary tumor and metastatic lesions, between different metastatic lesions, and even within a single tumor (either primary or metastatic). Tumor heterogeneity is associated with heterogeneous protein functions, which lowers diagnostic precision and consequently becomes an obstacle to determining the appropriate therapeutic strategies for individual cancer patients. With the development of novel testing technologies, an increasing number of studies have attempted to explore tumor heterogeneity by examining circulating tumor cells (CTCs), with the expectation that CTCs may comprehensively represent the full spectrum of mutations and/or protein expression alterations present in the cancer. In addition, this strategy represents a minimally invasive approach compared to traditional tissue biopsies that can be used to dynamically monitor tumor evolution. The present article reviews the potential efficacy of using CTCs to identify both spatial and temporal tumor heterogeneity. This review also highlights current issues in this field and provides an outlook toward future applications of CTCs. PMID:26902424

  13. The biology of circulating tumor cells.

    PubMed

    Pantel, K; Speicher, M R

    2016-03-10

    Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice. PMID:26050619

  14. Physical Biology in Cancer. 4. Physical cues guide tumor cell adhesion and migration

    PubMed Central

    Stroka, Kimberly M.

    2013-01-01

    As tumor cells metastasize from the primary tumor location to a distant secondary site, they encounter an array of biologically and physically heterogeneous microenvironments. While it is well established that biochemical signals guide all stages of the metastatic cascade, mounting evidence indicates that physical cues also direct tumor cell behavior, including adhesion and migration phenotypes. Physical cues acting on tumor cells in vivo include extracellular matrix mechanical properties, dimensionality, and topography, as well as interstitial flow, hydrodynamic shear stresses, and local forces due to neighboring cells. State-of-the-art technologies have recently enabled us and other researchers to engineer cell microenvironments that mimic specific physical properties of the cellular milieu. Through integration of these engineering strategies, along with physics, molecular biology, and imaging techniques, we have acquired new insights into tumor cell adhesion and migration mechanisms. In this review, we focus on the extravasation and invasion stages of the metastatic cascade. We first discuss the physical role of the endothelium during tumor cell extravasation and invasion and how contractility of endothelial and tumor cells contributes to the ability of tumor cells to exit the vasculature. Next, we examine how matrix dimensionality and stiffness coregulate tumor cell adhesion and migration beyond the vasculature. Finally, we summarize how tumor cells translate and respond to physical cues through mechanotransduction. Because of the critical role of tumor cell mechanotransduction at various stages of the metastatic cascade, targeting signaling pathways involved in tumor cell mechanosensing of physical stimuli may prove to be an effective therapeutic strategy for cancer patients. PMID:24133064

  15. Size Does Matter: Why Polyploid Tumor Cells are Critical Drug Targets in the War on Cancer

    PubMed Central

    Coward, Jermaine; Harding, Angus

    2014-01-01

    Tumor evolution presents a formidable obstacle that currently prevents the development of truly curative treatments for cancer. In this perspective, we advocate for the hypothesis that tumor cells with significantly elevated genomic content (polyploid tumor cells) facilitate rapid tumor evolution and the acquisition of therapy resistance in multiple incurable cancers. We appeal to studies conducted in yeast, cancer models, and cancer patients, which all converge on the hypothesis that polyploidy enables large phenotypic leaps, providing access to many different therapy-resistant phenotypes. We develop a flow-cytometry based method for quantifying the prevalence of polyploid tumor cells, and show the frequency of these cells in patient tumors may be higher than is generally appreciated. We then present recent studies identifying promising new therapeutic strategies that could be used to specifically target polyploid tumor cells in cancer patients. We argue that these therapeutic approaches should be incorporated into new treatment strategies aimed at blocking tumor evolution by killing the highly evolvable, therapy-resistant polyploid cell subpopulations, thus helping to maintain patient tumors in a drug sensitive state. PMID:24904834

  16. Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells

    PubMed Central

    Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.

    2014-01-01

    Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137

  17. Has the connection between polyploidy and diversification actually been tested?

    PubMed

    Kellogg, Elizabeth A

    2016-04-01

    Many major clades of angiosperms have several whole genome duplications (polyploidization events) in their distant past, suggesting that polyploidy drives or at least permits diversification. However, data on recently diverged groups are more equivocal, finding little evidence of elevated diversification following polyploidy. The discrepancy may be attributable at least in part to methodology. Many studies use indirect methods, such as chromosome numbers, genome size, and Ks plots, to test polyploidy, although these approaches can be misleading, and often lack sufficient resolution. A direct test of diversification following polyploidy requires a sequence-based approach that traces the history of nuclear genomes rather than species. These methods identify the point of coalescence of ancestral genomes, but may be misleading about the time and thus the extent of diversification. Limitations of existing methods mean that the connection between polyploidy and diversification has not been rigorously tested and remains unknown. PMID:26855304

  18. Polyploidy in fungi: evolution after whole-genome duplication

    PubMed Central

    Albertin, Warren; Marullo, Philippe

    2012-01-01

    Polyploidy is a major evolutionary process in eukaryotes—particularly in plants and, to a less extent, in animals, wherein several past and recent whole-genome duplication events have been described. Surprisingly, the incidence of polyploidy in other eukaryote kingdoms, particularly within fungi, remained largely disregarded by the scientific community working on the evolutionary consequences of polyploidy. Recent studies have significantly increased our knowledge of the occurrence and evolutionary significance of fungal polyploidy. The ecological, structural and functional consequences of polyploidy in fungi are reviewed here and compared with the knowledge acquired with conventional plant and animal models. In particular, the genus Saccharomyces emerges as a relevant model for polyploid studies, in addition to plant and animal models. PMID:22492065

  19. Effects of polyploidy and reproductive mode on life history trait expression.

    PubMed

    Larkin, Katelyn; Tucci, Claire; Neiman, Maurine

    2016-02-01

    Ploidy elevation is increasingly recognized as a common and important source of genomic variation. Even so, the consequences and biological significance of polyploidy remain unclear, especially in animals. Here, our goal was to identify potential life history costs and benefits of polyploidy by conducting a large multiyear common garden experiment in Potamopyrgus antipodarum, a New Zealand freshwater snail that is a model system for the study of ploidy variation, sexual reproduction, host-parasite coevolution, and invasion ecology. Sexual diploid and asexual triploid and tetraploid P. antipodarum frequently coexist, allowing for powerful direct comparisons across ploidy levels and reproductive modes. Asexual reproduction and polyploidy are very often associated in animals, allowing us to also use these comparisons to address the maintenance of sex, itself one of the most important unresolved questions in evolutionary biology. Our study revealed that sexual diploid P. antipodarum grow and mature substantially more slowly than their asexual polyploid counterparts. We detected a strong negative correlation between the rate of growth and age at reproductive maturity, suggesting that the relatively early maturation of asexual polyploid P. antipodarum is driven by relatively rapid growth. The absence of evidence for life history differences between triploid and tetraploid asexuals indicates that ploidy elevation is unlikely to underlie the differences in trait values that we detected between sexual and asexual snails. Finally, we found that sexual P. antipodarum did not experience discernable phenotypic variance-related benefits of sex and were more likely to die before achieving reproductive maturity than the asexuals. Taken together, these results suggest that under benign conditions, polyploidy does not impose obvious life history costs in P. antipodarum and that sexual P. antipodarum persist despite substantial life history disadvantages relative to their asexual

  20. Genetic traits for hematogeneous tumor cell dissemination in cancer patients.

    PubMed

    Joosse, Simon A; Pantel, Klaus

    2016-03-01

    Metastatic relapse in patients with solid tumors is the consequence of cancer cells that disseminated to distant sites, adapted to the new microenvironment, and escaped systemic adjuvant therapy. There is increasing evidence that hematogeneous dissemination starts at an early stage of cancer progression with single tumor cells or cell clusters leaving the primary site and entering the blood circulation. These circulating tumor cells (CTCs) can extravasate into secondary tissues where they become disseminated tumor cells (DTCs). Patients might relapse years after initial resection of the primary tumor when DTCs become overt metastases. Current diagnostic strategies for stratification of therapies against metastatic cells focus on the primary tumor tissue. This approach is based on the availability of stored primary tumors obtained at primary surgery, but it ignores that the DTCs might have evolved over years, which can affect the antimetastatic drug response. However, taking biopsies from metastatic tissues is an invasive procedure, and multiple metastases located at different sites in an individual patient show marked genomic heterogeneity. Thus, capturing CTCs from the peripheral blood as a "liquid biopsy" has obvious advantages in particular when repeated sampling is required for monitoring therapies in cancer patients. However, the biology behind tumor cell dissemination and its contribution to metastatic progression in cancer patients is still subject to controversial discussions. This manuscript reviews current theories on the genetic traits behind the spread of CTCs and progression of DTCs into overt metastases. PMID:26931653

  1. [Research progress of tumor cell migration strategy and the migration transition mechanism].

    PubMed

    Wang, Hongbing; Tan, Qiaoyan; Yang, Ben Yanzi; Zou, Xiaobing; Yang, Li

    2011-12-01

    Tumor cells exhibit two main different migration strategies when invading in 3D environment, i. e. mesenchymal migration and amoeboid migration. This review summarizes the internal reasons and characteristics on various modes of migration adaptation to the microenvironment, and the molecular mechanisms in particular environment where they are mutually interchangeable. A study of the mechanisms that may possibly trigger mesenchymal-amoeboid transition/amoeboid-mesenchymal transition help us to understand the change and the plasticity in the migration strategies of tumor cells. These are important for the development of a cancer treatment, which would efficiently suppress tumor cell invasiveness. PMID:22295724

  2. Three-dimensional chemotaxis-driven aggregation of tumor cells

    PubMed Central

    Puliafito, Alberto; De Simone, Alessandro; Seano, Giorgio; Gagliardi, Paolo Armando; Di Blasio, Laura; Chianale, Federica; Gamba, Andrea; Primo, Luca; Celani, Antonio

    2015-01-01

    One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation – mediated by a diffusible attractant – is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells. PMID:26471876

  3. Three-dimensional chemotaxis-driven aggregation of tumor cells.

    PubMed

    Puliafito, Alberto; De Simone, Alessandro; Seano, Giorgio; Gagliardi, Paolo Armando; Di Blasio, Laura; Chianale, Federica; Gamba, Andrea; Primo, Luca; Celani, Antonio

    2015-01-01

    One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation - mediated by a diffusible attractant - is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells. PMID:26471876

  4. Polyploidy in relation to plant evolution and speciation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyploidy is a dominant force in plant evolution and speciation. Allopolyploids, resulting from interspecific or intergeneric hybridization coupled with chromosome doubling, are preponderant in nature. For the meiotic and reproductive stability of the allopolyploids, a precise genetic control of ...

  5. Investigating Polyploidy: Using Marigold Stomates and Fingernail Polish.

    ERIC Educational Resources Information Center

    Hunter, Kimberly L.; Leone, Rebecca S.; Kohlhepp, Kimberly; Hunter, Richard B.

    2002-01-01

    Describes a science activity on polyploidy targeting middle and high school students which can be used to discuss topics such as chromosomes, cells, plant growth, and functions of stomates. Integrates mathematics in data collection. (Contains 13 references.) (YDS)

  6. Different cell fates after mitotic slippage: From aneuploidy to polyploidy.

    PubMed

    Ohashi, Akihiro

    2016-03-01

    The molecular mechanism responsible for cell fate after mitotic slippage remains unclear. We investigated the different postmitotic effects of aneuploidy versus polyploidy using chemical inhibitors of centromere-associated protein-E (CENP-E) and kinesin family member 11 (KIF11, also known as Eg5). Aneuploidy caused substantial proteotoxic stress and DNA damage accompanied by p53-mediated postmitotic apoptosis, whereas polyploidy did not induce these antiproliferative effects. PMID:27308610

  7. Circulating Tumor Cells in Breast Cancer Patients.

    PubMed

    Hall, Carolyn; Valad, Lily; Lucci, Anthony

    2016-01-01

    Breast cancer is the most commonly diagnosed cancer among women, resulting in an estimated 40,000 deaths in 2014.1 Metastasis, a complex, multi-step process, remains the primary cause of death for these patients. Although the mechanisms involved in metastasis have not been fully elucidated, considerable evidence suggests that metastatic spread is mediated by rare cells within the heterogeneous primary tumor that acquire the ability to invade into the bloodstream. In the bloodstream, they can travel to distant sites, sometimes remaining undetected and in a quiescent state for an extended period of time before they establish distant metastases in the bone, lung, liver, or brain. These occult micrometastatic cells (circulating tumor cells, CTCs) are rare, yet their prognostic significance has been demonstrated in both metastatic and non-metastatic breast cancer patients. Because repeated tumor tissue collection is typically not feasible and peripheral blood draws are minimally invasive, serial CTC enumeration might provide "real-time liquid biopsy" snapshots that could be used to identify early-stage breast cancer patients with micrometastatic disease who are at risk for disease progression and monitor treatment response in patients with advanced disease. In addition, characterizing CTCs might aid in the development of novel, personalized therapies aimed at eliminating micrometastases. This review describes current CTC isolation, detection, and characterization strategies in operable breast cancer. PMID:27481009

  8. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells.

    PubMed

    Wang, Xue-Ying; Pei, Ying; Xie, Min; Jin, Zi-He; Xiao, Ya-Shi; Wang, Yang; Zhang, Li-Na; Li, Yan; Huang, Wei-Hua

    2015-02-21

    Reproducing a tumor microenvironment consisting of blood vessels and tumor cells for modeling tumor invasion in vitro is particularly challenging. Here, we report an artificial blood vessel implanted 3D microfluidic system for reproducing transvascular migration of tumor cells. The transparent, porous and elastic artificial blood vessels are obtained by constructing polysaccharide cellulose-based microtubes using a chitosan sacrificial template, and possess excellent cytocompatibility, permeability, and mechanical characteristics. The artificial blood vessels are then fully implanted into the collagen matrix to reconstruct the 3D microsystem for modeling transvascular migration of tumor cells. Well-defined simulated vascular lumens were obtained by proliferation of the human umbilical vein endothelial cells (HUVECs) lining the artificial blood vessels, which enables us to reproduce structures and functions of blood vessels and replicate various hemodynamic parameters. Based on this model, the adhesion and transvascular migration of tumor cells across the artificial blood vessel have been well reproduced. PMID:25565271

  9. Cimetidine induces apoptosis of human salivary gland tumor cells.

    PubMed

    Fukuda, Masakatsu; Tanaka, Shin; Suzuki, Seiji; Kusama, Kaoru; Kaneko, Tadayoshi; Sakashita, Hideaki

    2007-03-01

    It has been reported that cimetidine, a histamine type-2 receptor (H2R) antagonist, inhibits the growth of glandular tumors such as colorectal cancer. However, its effects against salivary gland tumors are still unknown. We demonstrated previously that human salivary gland tumor (HSG) cells spontaneously express the neural cell adhesion molecule (NCAM) and also that HSG cell proliferation could be controlled via a homophilic (NCAM-NCAM) binding mechanism and that NCAM may be associated with perineural invasion by malignant salivary gland tumors. In the present study, we investigated the effects of cimetidine via the expression of NCAM on tumor growth and perineural/neural invasion in salivary gland tumor cells. Expression of both NCAM mRNA and protein was found to decrease in a dose-dependent manner upon treatment with cimetidine for 24 h. The MTT assay and confocal laser microscopy clearly showed that HSG cells underwent apoptosis after treatment with cimetidine. Activation of caspases 3, 7, 8 and 9 was observed in HSG cells after cimetidine treatment, thus confirming that the apoptosis was induced by the activated caspases. Apaf-1 activity was also detected in HSG cells in a dose-dependent manner after treatment with cimetidine. We also found that the cimetidine-mediated down-regulation of NCAM expression in HSG cells did not occur via blocking of the histamine receptor, even though H2R expression was observed on HSG cells, as two other H2R antagonists, famotidine and ranitidine, did not show similar effects. We demonstrated for the first time that cimetidine can induce significant apoptosis of salivary gland tumor cells, which express NCAM, at least in part by down-regulation of NCAM expression on the cells. These findings suggest that the growth, development and perineural/neural invasion of salivary gland tumor cells can be blocked by cimetidine administration through down-regulation of NCAM expression, as well as induction of apoptosis. PMID:17273750

  10. Polyploidy and the petal transcriptome of Gossypium

    PubMed Central

    2014-01-01

    Background Genes duplicated by polyploidy (homoeologs) may be differentially expressed in plant tissues. Recent research using DNA microarrays and RNAseq data have described a cacophony of complex expression patterns during development of cotton fibers, petals, and leaves. Because of its highly canalized development, petal tissue has been used as a model tissue for gene expression in cotton. Recent advances in cotton genome annotation and assembly now permit an enhanced analysis of duplicate gene deployment in petals from allopolyploid cotton. Results Homoeologous gene expression levels were quantified in diploid and tetraploid flower petals of Gossypium using the Gossypium raimondii genome sequence as a reference. In the polyploid, most homoeologous genes were expressed at equal levels, though a subset had an expression bias of AT and DT copies. The direction of gene expression bias was conserved in natural and recent polyploids of cotton. Conservation of direction of bias and additional comparisons between the diploids and tetraploids suggested different regulation mechanisms of gene expression. We described three phases in the evolution of cotton genomes that contribute to gene expression in the polyploid nucleus. Conclusions Compared to previous studies, a surprising level of expression homeostasis was observed in the expression patterns of polyploid genomes. Conserved expression bias in polyploid petals may have resulted from cis-acting modifications that occurred prior to polyploidization. Some duplicated genes were intriguing exceptions to general trends. Mechanisms of gene regulation for these and other genes in the cotton genome warrants further investigation. PMID:24393201

  11. Ecological studies of polyploidy in the 100 years following its discovery

    PubMed Central

    Ramsey, Justin; Ramsey, Tara S.

    2014-01-01

    Polyploidy is a mutation with profound phenotypic consequences and thus hypothesized to have transformative effects in plant ecology. This is most often considered in the context of geographical and environmental distributions—as achieved from divergence of physiological and life-history traits—but may also include species interactions and biological invasion. This paper presents a historical overview of hypotheses and empirical data regarding the ecology of polyploids. Early researchers of polyploidy (1910s–1930s) were geneticists by training but nonetheless savvy to its phenotypic effects, and speculated on the importance of genome duplication to adaptation and crop improvement. Cytogenetic studies in the 1930s–1950s indicated that polyploids are larger (sturdier foliage, thicker stems and taller stature) than diploids while cytogeographic surveys suggested that polyploids and diploids have allopatric or parapatric distributions. Although autopolyploidy was initially regarded as common, influential writings by North American botanists in the 1940s and 1950s argued for the principle role of allopolyploidy; according to this view, genome duplication was significant for providing a broader canvas for hybridization rather than for its phenotypic effects per se. The emphasis on allopolyploidy had a chilling effect on nascent ecological work, in part due to taxonomic challenges posed by interspecific hybridization. Nonetheless, biosystematic efforts over the next few decades (1950s–1970s) laid the foundation for ecological research by documenting cytotype distributions and identifying phenotypic correlates of polyploidy. Rigorous investigation of polyploid ecology was achieved in the 1980s and 1990s by population biologists who leveraged flow cytometry for comparative work in autopolyploid complexes. These efforts revealed multi-faceted ecological and phenotypic differences, some of which may be direct consequences of genome duplication. Several classical

  12. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer

    PubMed Central

    YAN, LI-XU; LIU, YAN-HUI; XIANG, JIAN-WEN; WU, QI-NIAN; XU, LEI-BO; LUO, XIN-LAN; ZHU, XIAO-LAN; LIU, CHAO; XU, FANG-PING; LUO, DONG-LAN; MEI, PING; XU, JIE; ZHANG, KE-PING; CHEN, JIE

    2016-01-01

    We have previously shown that dysregulation of miR-21 functioned as an oncomiR in breast cancer. The aim of the present study was to elucidate the mechanisms by which miR-21 regulate breast tumor migration and invasion. We applied pathway analysis on genome microarray data and target-predicting algorithms for miR-21 target screening, and used luciferase reporting assay to confirm the direct target. Thereafter, we investigated the function of the target gene phosphoinositide-3-kinase, regulatory subunit 1 (α) (PIK3R1), and detected PIK3R1 coding protein (p85α) by immunohistochemistry and miR-21 by RT-qPCR on 320 archival paraffin-embedded tissues of breast cancer to evaluate the correlation of their expression with prognosis. First, we found that PIK3R1 suppressed growth, invasiveness, and metastatic properties of breast cancer cells. Next, we identified the PIK3R1 as a direct target of miR-21 and showed that it was negatively regulated by miR-21. Furthermore, we demonstrated that p85α overexpression phenocopied the suppression effects of antimiR-21 on breast cancer cell growth, migration and invasion, indicating its tumor suppressor role in breast cancer. On the contrary, PIK3R1 knockdown abrogated antimiR-21-induced effect on breast cancer cells. Notably, antimiR-21 induction increased p85α, accompanied by decreased p-AKT level. Besides, antimiR-21/PIK3R1-induced suppression of invasiveness in breast cancer cells was mediated by reversing epithelial-mesenchymal transition (EMT). p85α downregulation was found in 25 (7.8%) of the 320 breast cancer patients, and was associated with inferior 5-year disease-free survival (DFS) and overall survival (OS). Taken together, we provide novel evidence that miR-21 knockdown suppresses cell growth, migration and invasion partly by inhibiting PI3K/AKT activation via direct targeting PIK3R1 and reversing EMT in breast cancer. p85α downregulation defined a specific subgroup of breast cancer with shorter 5-year DFS and OS

  13. Evolutionary Consequences, Constraints and Potential of Polyploidy in Plants

    PubMed Central

    Weiss-Schneeweiss, H.; Emadzade, K.; Jang, T.-S.; Schneeweiss, G.M.

    2013-01-01

    Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue. PMID:23796571

  14. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  15. Deformability of Tumor Cells versus Blood Cells.

    PubMed

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T; Hecht, Vivian C; Maheswaran, Shyamala; Stott, Shannon L; Toner, Mehmet; Hynes, Richard O; Manalis, Scott R

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  16. Deformability of Tumor Cells versus Blood Cells

    PubMed Central

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T.; Hecht, Vivian C.; Maheswaran, Shyamala; Stott, Shannon L.; Toner, Mehmet; Hynes, Richard O.; Manalis, Scott R.

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  17. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters.

    PubMed

    Cheung, Kevin J; Padmanaban, Veena; Silvestri, Vanesa; Schipper, Koen; Cohen, Joshua D; Fairchild, Amanda N; Gorin, Michael A; Verdone, James E; Pienta, Kenneth J; Bader, Joel S; Ewald, Andrew J

    2016-02-16

    Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14(+) cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14(+) epithelial tumor cell clusters disseminate collectively to colonize distant organs. PMID:26831077

  18. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters

    PubMed Central

    Cheung, Kevin J.; Padmanaban, Veena; Silvestri, Vanesa; Schipper, Koen; Cohen, Joshua D.; Fairchild, Amanda N.; Gorin, Michael A.; Verdone, James E.; Pienta, Kenneth J.; Bader, Joel S.; Ewald, Andrew J.

    2016-01-01

    Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14+ cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14+ epithelial tumor cell clusters disseminate collectively to colonize distant organs. PMID:26831077

  19. Snail levels control the migration mechanism of mesenchymal tumor cells

    PubMed Central

    BELGIOVINE, CRISTINA; CHIESA, GIULIO; CHIODI, ILARIA; FRAPOLLI, ROBERTA; BONEZZI, KATIUSCIA; TARABOLETTI, GIULIA; D'INCALCI, MAURIZIO; MONDELLO, CHIARA

    2016-01-01

    Cancer cells use two major types of movement: Mesenchymal, which is typical of cells of mesenchymal origin and depends on matrix metalloproteinase (MMP) activity, and amoeboid, which is characteristic of cells with a rounded shape and relies on the activity of Rho-associated kinase (ROCK). The present authors previously demonstrated that, during neoplastic transformation, telomerase-immortalized human fibroblasts (cen3tel cells) acquired a ROCK-dependent/MMP independent mechanism of invasion, mediated by the downregulation of the ROCK cellular inhibitor Round (Rnd)3/RhoE. In the present study, cen3tel transformation was also demonstrated to be paralleled by downregulation of Snail, a major determinant of the mesenchymal movement. To test whether Snail levels could determine the type of movement adopted by mesenchymal tumor cells, Snail was ectopically expressed in tumorigenic cells. It was observed that ectopic Snail did not increase the levels of typical mesenchymal markers, but induced cells to adopt an MMP-dependent mechanism of invasion. In cells expressing ectopic Snail, invasion became sensitive to the MMP inhibitor Ro 28–2653 and insensitive to the ROCK inhibitor Y27632, suggesting that, once induced by Snail, the mesenchymal movement prevails over the amoeboid one. Snail-expressing cells had a more aggressive behavior in vivo, and exhibited increased tumor growth rate and metastatic ability. These results confirm the high plasticity of cancer cells, which can adopt different types of movement in response to changes in the expression of specific genes. Furthermore, the present findings indicate that Rnd3 and Snail are possible regulators of the type of invasion mechanism adopted by mesenchymal tumor cells. PMID:27347214

  20. Violacein induces p44/42 mitogen-activated protein kinase-mediated solid tumor cell death and inhibits tumor cell migration

    PubMed Central

    MEHTA, TORAL; VERCRUYSSE, KOEN; JOHNSON, TERRANCE; EJIOFOR, ANTHONY OKECHUKWU; MYLES, ELBERT; QUICK, QUINCY ANTOINE

    2015-01-01

    Microbial secondary metabolites have emerged as alternative novel drugs for the treatment of human cancers. Violacein, a purple pigment produced by Chromobacterium violaceum, was investigated in the present study for its anti-tumor properties in tumor cell lines. Clinically applicable concentrations of violacein were demonstrated to inhibit the proliferative capacity of tumor cell lines according to a crystal violet proliferation assay. The underlying mechanism was the promotion of apoptotic cell death, as indicated by poly(ADP ribose) polymerase cleavage and p44/42 mitogen-activated protein kinase signaling determined by western blot analysis. Collectively, this provided mechanistic evidence that violacein elicits extracellular-signal regulated kinase-induced apoptosis via the intrinsic pathway. The anti-malignant properties of violacein in the present study were further demonstrated by its inhibitory effects on brain tumor cell migration, specifically glioblastomas, one of the most invasive and therapeutically resistant neoplasms in the clinic. Additionally, solid tumors examined in the present study displayed differential cellular responses and sensitivities to violacein as observed by morphologically induced cellular changes that contributed to its anti-migratory properties. In conclusion, violacein is a novel natural product with the potential to kill several types of human tumor cell lines, as well as prevent disease recurrence by antagonizing cellular processes that contribute to metastatic invasion. PMID:25816226

  1. DAPK loss in colon cancer tumor buds: implications for migration capacity of disseminating tumor cells

    PubMed Central

    Karamitopoulou, Eva; Dawson, Heather; Koelzer, Viktor Hendrik; Agaimy, Abbas; Garreis, Fabian; Söder, Stephan; Laqua, William; Lugli, Alessandro; Hartmann, Arndt; Rau, Tilman T.; Schneider-Stock, Regine

    2015-01-01

    Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation. PMID:26405175

  2. Energy and Redox Homeostasis in Tumor Cells

    PubMed Central

    de Oliveira, Marcus Fernandes; Amoêdo, Nívea Dias; Rumjanek, Franklin David

    2012-01-01

    Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1). The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg's original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers. PMID:22693511

  3. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  4. Polyploidy in haloarchaea: advantages for growth and survival.

    PubMed

    Zerulla, Karolin; Soppa, Jörg

    2014-01-01

    The investigated haloarchaeal species, Halobacterium salinarum, Haloferax mediterranei, and H. volcanii, have all been shown to be polyploid. They contain several replicons that have independent copy number regulation, and most have a higher copy number during exponential growth phase than in stationary phase. The possible evolutionary advantages of polyploidy for haloarchaea, most of which have experimental support for at least one species, are discussed. These advantages include a low mutation rate and high resistance toward X-ray irradiation and desiccation, which depend on homologous recombination. For H. volcanii, it has been shown that gene conversion operates in the absence of selection, which leads to the equalization of genome copies. On the other hand, selective forces might lead to heterozygous cells, which have been verified in the laboratory. Additional advantages of polyploidy are survival over geological times in halite deposits as well as at extreme conditions on earth and at simulated Mars conditions. Recently, it was found that H. volcanii uses genomic DNA as genetic material and as a storage polymer for phosphate. In the absence of phosphate, H. volcanii dramatically decreases its genome copy number, thereby enabling cell multiplication, but diminishing the genetic advantages of polyploidy. Stable storage of phosphate is proposed as an alternative driving force for the emergence of DNA in early evolution. Several additional potential advantages of polyploidy are discussed that have not been addressed experimentally for haloarchaea. An outlook summarizes selected current trends and possible future developments. PMID:24982654

  5. Polyploidy in haloarchaea: advantages for growth and survival

    PubMed Central

    Zerulla, Karolin; Soppa, Jörg

    2014-01-01

    The investigated haloarchaeal species, Halobacterium salinarum, Haloferax mediterranei, and H. volcanii, have all been shown to be polyploid. They contain several replicons that have independent copy number regulation, and most have a higher copy number during exponential growth phase than in stationary phase. The possible evolutionary advantages of polyploidy for haloarchaea, most of which have experimental support for at least one species, are discussed. These advantages include a low mutation rate and high resistance toward X-ray irradiation and desiccation, which depend on homologous recombination. For H. volcanii, it has been shown that gene conversion operates in the absence of selection, which leads to the equalization of genome copies. On the other hand, selective forces might lead to heterozygous cells, which have been verified in the laboratory. Additional advantages of polyploidy are survival over geological times in halite deposits as well as at extreme conditions on earth and at simulated Mars conditions. Recently, it was found that H. volcanii uses genomic DNA as genetic material and as a storage polymer for phosphate. In the absence of phosphate, H. volcanii dramatically decreases its genome copy number, thereby enabling cell multiplication, but diminishing the genetic advantages of polyploidy. Stable storage of phosphate is proposed as an alternative driving force for the emergence of DNA in early evolution. Several additional potential advantages of polyploidy are discussed that have not been addressed experimentally for haloarchaea. An outlook summarizes selected current trends and possible future developments. PMID:24982654

  6. Interaction of MSC with tumor cells.

    PubMed

    Melzer, Catharina; Yang, Yuanyuan; Hass, Ralf

    2016-01-01

    Tumor development and tumor progression is not only determined by the corresponding tumor cells but also by the tumor microenvironment. This includes an orchestrated network of interacting cell types (e.g. immune cells, endothelial cells, fibroblasts, and mesenchymal stroma/stem cells (MSC)) via the extracellular matrix and soluble factors such as cytokines, chemokines, growth factors and various metabolites. Cell populations of the tumor microenvironment can interact directly and indirectly with cancer cells by mutually altering properties and functions of the involved partners. Particularly, mesenchymal stroma/stem cells (MSC) play an important role during carcinogenesis exhibiting different types of intercellular communication. Accordingly, this work focusses on diverse mechanisms of interaction between MSC and cancer cells. Moreover, some functional changes and consequences for both cell types are summarized which can eventually result in the establishment of a carcinoma stem cell niche (CSCN) or the generation of new tumor cell populations by MSC-tumor cell fusion. PMID:27608835

  7. [Somatic polyploidy associated metabolic changes revealed by modular biology].

    PubMed

    Anatskaia, O V; Vinogradov, A E

    2010-01-01

    Excessive somatic polyploidy usually accompanies physiologic and pathologic overload and it is generally accepted as a symptom of pathology. At the same time, polyploidy cells exist in most fungal, plant, mollusk, fish, bird and mammalian tissues confirming their great evolutionary success. The secret of this success remains enigmatic. Since transcriptome rearrangements usually start with metabolic flux redistribution, we decided to investigate firstly the effects of polyploidy on cell metabolism. Using multitest approach of modular biology and databases Entrez Gene, RefSeq, GNF SymAtlas, Gene Ontology, KEGG, BioCarta; MsigDb, Reactome, GenMAPP, and HumanCyc, we performed detailed comparison of metabolic genes expression in human and mouse organs with reciprocal pattern of polyploidy (i. e. in the heart and in the liver). Pairwise criss-cross comparison of diploid vs. polyploid organs allowed removing species- and tissue-specific effects. From our results, polyploidy is associated with rearrangements of main metabolic pathways. We found deep depression of mitochondrial processes, features of autophagia, and increased carbohydrate degradation and lipid biosynthesis. Taken together, these changes pointed to the energy and oxygen deprivation. We also found clear indications of enhanced oxidative stress protection. The major of them are triggering of pentose-phosphate pathway, depression of mitochondria-cytoplasm electron shuttles, and impartment of electron flows across 1 (NADH dehydrogenase) and IV (cytochrome c-oxydase) breath complexes. We suggest that all these changes are necessary for the increase in metabolic plasticity and for the protection of replicating DNA from oxidative damage. PMID:20302017

  8. Imaging Tumor Cell Movement In Vivo

    PubMed Central

    Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E.

    2013-01-01

    This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging them. Additional protocols for labeling macrophages, blood vessel imaging, and image analysis are also included. PMID:23456602

  9. Mechanical response of tumor cells flowing through a microfluidic capillary

    NASA Astrophysics Data System (ADS)

    Khan, Zeina S.; Kamyabi, Nabiollah; Hussain, Fazle; Vanapalli, Siva A.

    2014-03-01

    Circulating tumor cells, the primary cause of cancer metastasis, are transported throughout the body to distant organs by blood flow. Despite the importance of cell transport and deformability in the vasculature for cancer metastasis, quantitative understanding of the hydrodynamic interactions between the cells and the blood vessel walls is lacking. Using a model microfluidic capillary of rectangular cross-section with an on-chip manometer coupled with high speed video imaging, we quantitatively investigate the hydrodynamic behavior via the cell excess pressure drop. By characterizing our device with simple model systems including viscous drops and soft elastic particles, we find that the excess pressure drop shows no apparent dependence on elastic modulus or interfacial tension, but depends significantly on internal viscosity for moderate confinements and shear stresses within the physiological range of 1-10 Pa. This suggests that the metastatic potential of circulating cells can be characterized by the effective viscosity. We test this hypothesis with several tumor cell lines and find that the effective cell viscosity determined from excess pressure drop measurements can be used to differentiate highly from lowly invasive cells.

  10. Nanotechnology for enrichment and detection of circulating tumor cells

    PubMed Central

    Bhana, Saheel; Wang, Yongmei; Huang, Xiaohua

    2015-01-01

    Circulating tumor cells (CTCs) are a hallmark of invasive behavior of cancer, responsible for the development of metastasis. Their detection and analysis have significant impacts in cancer biology and clinical practice. However, CTCs are rare events and contain heterogeneous subpopulations, requiring highly sensitive and specific techniques to identify and capture CTCs with high efficiency. Nanotechnology shows strong promises for CTC enrichment and detection owning to the unique structural and functional properties of nanoscale materials. In this review, we discuss the CTC enrichment and detection technologies based on a variety of functional nanosystems and nanostructured substrates, with the goal to highlight the role of nanotechnology in the advancement of basic and clinical CTC research. PMID:26139129

  11. Anatomical alterations due to polyploidy in cassava, Manihot esculenta Crantz.

    PubMed

    Nassar, Nagib M A; Graciano-Ribeiro, D; Fernandes, S D C; Araujo, P C

    2008-01-01

    Information on anatomical structure is needed by breeders working on improvement for drought tolerance. For studying the effect of polyploidy on cassava anatomy and its significance to tolerance to drought, we induced a polyploidy type of a selected clone (UnB 530) by applying an aqueous solution of 0.2% colchicine on lateral buds for a period of 12 h. The stem identified as tetraploid was propagated to produce the whole plant. Free-hand cross-sections of the median portion between stem internodes were made. They were clarified using 50% sodium hypochlorite solution, stained with 1% safranin-alcian blue, passed through an ethanol series and butyl acetate and mounted in synthetic resin. The tetraploid type showed more prismatic and druse crystals in the cortical parenchyma, and its pericycle fibers had thicker walls. The secondary xylem of tetraploid types was wider than diploid ones, having thinner walls and less starch. PMID:18551393

  12. Can resource costs of polyploidy provide an advantage to sex?

    PubMed Central

    Neiman, M; Kay, A D; Krist, A C

    2013-01-01

    The predominance of sexual reproduction despite its costs indicates that sex provides substantial benefits, which are usually thought to derive from the direct genetic consequences of recombination and syngamy. While genetic benefits of sex are certainly important, sexual and asexual individuals, lineages, or populations may also differ in physiological and life history traits that could influence outcomes of competition between sexuals and asexuals across environmental gradients. Here, we address possible phenotypic costs of a very common correlate of asexuality, polyploidy. We suggest that polyploidy could confer resource costs related to the dietary phosphorus demands of nucleic acid production; such costs could facilitate the persistence of sex in situations where asexual taxa are of higher ploidy level and phosphorus availability limits important traits like growth and reproduction. We outline predictions regarding the distribution of diploid sexual and polyploid asexual taxa across biogeochemical gradients and provide suggestions for study systems and empirical approaches for testing elements of our hypothesis. PMID:23188174

  13. Polyploidy alters advertisement call structure in gray treefrogs.

    PubMed Central

    Keller, M. J.; Gerhardt, H. C.

    2001-01-01

    Whole-genome duplication is believed to have played a significant role in the early evolution and diversification of vertebrate animals. The establishment of newly arisen polyploid lineages of sexually reproducing animals requires assortative mating between polyploids. Here, we show that genome duplication can directly alter a phenotypic trait mediating mate choice in the absence of genotypic change. Our results suggest that the direct effect of polyploidy on behaviour is a consequence of increased cell size. PMID:11270429

  14. Apoptin: specific killer of tumor cells?

    PubMed

    Tavassoli, M; Guelen, L; Luxon, B A; Gäken, J

    2005-08-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.(1) These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.(2) In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin's function to kill tumor cells.(3) In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin's ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported "black and white" tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti

  15. Apoptin: Specific killer of tumor cells?

    PubMed Central

    Tavassoli, M.; Guelen, L.; Luxon, B. A.; Gäken, J.

    2010-01-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.1 These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at g2/M, possibly by interfering with the cyclosome.2 In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin’s function to kill tumor cells.3 In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin’s ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported “black and white” tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti

  16. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    PubMed Central

    2009-01-01

    Background Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression. Methods Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer. Results The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies. Conclusion The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer. PMID:19878561

  17. [Cancer stemness and circulating tumor cells].

    PubMed

    Saito, Tomoko; Mimori, Koshi

    2015-05-01

    The principle concept of cancer stem cells (CSCs) giving rise to the carcinogenesis, relapse or metastasis of malignancy is broadly recognized. On the other hand, circulating tumor cells (CTCs) also plays important roles in relapse or metastasis of malignancy, and there has been much focused on the association between CSCs and CTCs in cancer cases. The technical innovations for detection of CTCs enabled us to unveil the nature of CTCs. We now realize that CTCs isolated by cell surface antibodies, such as DCLK1, LGR5 indicated CSC properties, and CTCs with epitherial-mesenchymal transition(EMT) phenotype showed characteristics of CSCs. PMID:25985635

  18. Electric Field Analysis of Breast Tumor Cells

    PubMed Central

    Sree, V. Gowri; Udayakumar, K.; Sundararajan, R.

    2011-01-01

    An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this. PMID:22295214

  19. Second-harmonic generation scattering directionality predicts tumor cell motility in collagen gels

    NASA Astrophysics Data System (ADS)

    Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Van Hove, Amy; Benoit, Danielle S. W.; Perry, Seth W.; Brown, Edward

    2015-05-01

    Second-harmonic generation (SHG) allows for the analysis of tumor collagen structural changes throughout metastatic progression. SHG directionality, measured through the ratio of the forward-propagating to backward-propagating signal (F/B ratio), is affected by collagen fibril diameter, spacing, and disorder of fibril packing within a fiber. As tumors progress, these parameters evolve, producing concurrent changes in F/B. It has been recently shown that the F/B of highly metastatic invasive ductal carcinoma (IDC) breast tumors is significantly different from less metastatic tumors. This suggests a possible relationship between the microstructure of collagen, as measured by the F/B, and the ability of tumor cells to locomote through that collagen. Utilizing in vitro collagen gels of different F/B ratios, we explored the relationship between collagen microstructure and motility of tumor cells in a "clean" environment, free of the myriad cells, and signals found in in vivo. We found a significant relationship between F/B and the total distance traveled by the tumor cell, as well as both the average and maximum velocities of the cells. Consequently, one possible mechanism underlying the observed relationship between tumor F/B and metastatic output in IDC patient samples is a direct influence of collagen structure on tumor cell motility.

  20. Second-harmonic generation scattering directionality predicts tumor cell motility in collagen gels.

    PubMed

    Burke, Kathleen A; Dawes, Ryan P; Cheema, Mehar K; Van Hove, Amy; Benoit, Danielle S W; Perry, Seth W; Brown, Edward

    2015-05-01

    Second-harmonic generation (SHG) allows for the analysis of tumor collagen structural changes throughout metastatic progression. SHG directionality, measured through the ratio of the forward-propagating to backward-propagating signal (F/B ratio), is affected by collagen fibril diameter, spacing, and disorder of fibril packing within a fiber. As tumors progress, these parameters evolve, producing concurrent changes in F/B. It has been recently shown that the F/B of highly metastatic invasive ductal carcinoma (IDC) breast tumors is significantly different from less metastatic tumors. This suggests a possible relationship between the microstructure of collagen, as measured by the F/B, and the ability of tumor cells to locomote through that collagen. Utilizing in vitro collagen gels of different F/B ratios, we explored the relationship between collagen microstructure and motility of tumor cells in a “clean” environment, free of the myriad cells, and signals found in in vivo. We found a significant relationship between F/B and the total distance traveled by the tumor cell, as well as both the average and maximum velocities of the cells. Consequently, one possible mechanism underlying the observed relationship between tumor F/B and metastatic output in IDC patient samples is a direct influence of collagen structure on tumor cell motility. PMID:25625899

  1. NMR exposure sensitizes tumor cells to apoptosis.

    PubMed

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies. PMID:16528477

  2. Circulating Tumor Cells Measurements in Hepatocellular Carcinoma

    PubMed Central

    Chiappini, Franck

    2012-01-01

    Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC) reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1) there are few markers specific to the HCC (tumor cells versus nontumor cells) and (2) they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC. PMID:22690340

  3. Transcapillary Trafficking of Clustered Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Storey, Brian; Au, Sam; Chen, Yeng-Long; Sarioglu, Fatih; Javaid, Sarah; Haber, Daniel; Maheswaran, Shyamala; Stott, Shannon; Toner, Mehmet

    2015-11-01

    Aggregates of circulating tumor cells (CTC-clusters) are known to be more metastatic than equal numbers of singlet circulating tumor cells. Yet the mechanisms responsible for CTC-cluster dissemination and tumor seeding are still largely unknown. Without direct experimental evidence, it was assumed that because of their size, CTC-clusters would occlude and rupture capillaries. In this work, we have challenged this assumption by investigating the transit of CTC-clusters through microfluidic capillary constrictions under physiological pressures. Remarkably, cancer cell aggregates containing 2-20 cells were observed to successfully traverse constrictions 5-10 microns with over 90% efficiency. Clusters rapidly and reversibly reorganized into chain-like geometries to pass through constrictions in single file. This observation was verified by computational simulation of clusters modeled with physiological cell-cell interaction energies. Hydrodynamic analysis suggested that CTC-clusters were able to pass narrow constrictions by acting as individual cells in series, not as cohesive units. Upon exiting constrictions, clusters remained viable, proliferative and rapidly returned to `typical' cluster morphologies.

  4. Role of cell surface oligosaccharides of mouse mammary tumor cell lines in cancer metastasis.

    PubMed

    Zhao, Yunxue; Li, Jing; Wang, Jingjian; Xing, Yanli; Geng, Meiyu

    2007-06-01

    Malignant transformation is associated with changes in the glycosylation of cell surface proteins and lipids. In tumor cells, alterations in cellular glycosylation may play a key role in their metastatic behaviour. In the present study, we have assessed the relationship between cell surface oligosaccharides and the metastasis ability of mouse mammary tumor cell lines 67NR and 4TO7. The cell surface oligosaccharides have been analyzed using specific binding assays with some plant lectins and the metastasis ability has been studied using transwell migration and invasion assays. In addition, we investigated the role of terminal sialic acids in the metastatic potential (cell adhesion on fibronectin, cell migration and invasion) in the 4TO7 cells on treatment with neuraminidase. The cell lines used in study have different metastasis abilities in vivo - the 67NR form primary tumors, but no tumor cells are detectable in any distant tissues, while cells of the 4TO7 line are able to spread to lung. In vitro metastasis experiments have revealed higher ability of adhesion, cell migration and invasion in the 4TO7 cells than the 67NR cells. Specific lectins binding assays show that the 4TO7 cells expressed more high-mannose type, multi-antennary complex-type N-glycans, beta-1,6-GlcNAc-branching, alpha-2,6-linked sialic acids, N-acetylgalactosamine and galactosyl(beta-1,3)-N-acetylgalactosamine. Removal of sialic acids on treatment with neuraminidase decreases adhesion, but increases the migration and has shown no significant change in the invasion ability of the 4TO7 cells. The study suggests that the sialic acids are not crucial for the cell migration and invasion in the 4TO7 cells. The findings provide the new insights in understanding the role of cell surface oligosaccharides in cancer metastasis. PMID:17650582

  5. Polyploidy-associated genome modifications during land plant evolution

    PubMed Central

    Jiao, Yuannian; Paterson, Andrew H.

    2014-01-01

    The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more ‘particulate’ understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity. PMID:24958928

  6. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  7. Circulating tumor cells: utopia or reality?

    PubMed

    Conteduca, Vincenza; Zamarchi, Rita; Rossi, Elisabetta; Condelli, Valentina; Troiani, Laura; Aieta, Michele

    2013-09-01

    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia', but its actual utility remains among the fastest growing research fields in oncology. PMID:23980681

  8. Recent advances in the molecular characterization of circulating tumor cells.

    PubMed

    Lowes, Lori E; Allan, Alison L

    2014-01-01

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a "real-time liquid biopsy" that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing. PMID:24633084

  9. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    PubMed Central

    Lowes, Lori E.; Allan, Alison L.

    2014-01-01

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing. PMID:24633084

  10. Circulating Tumor Cells in the Adenocarcinoma of the Esophagus

    PubMed Central

    Gallerani, Giulia; Fabbri, Francesco

    2016-01-01

    Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted. PMID:27527155

  11. FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis

    PubMed Central

    TAKENAKA, MIKI; SEKI, NAOKO; TOH, UHI; HATTORI, SATOSHI; KAWAHARA, AKIHIKO; YAMAGUCHI, TOMOHIKO; KOURA, KEIKO; TAKAHASHI, RYUJI; OTSUKA, HIROKO; TAKAHASHI, HIROKI; IWAKUMA, NOBUTAKA; NAKAGAWA, SHINO; FUJII, TERUHIKO; SASADA, TETSURO; YAMAGUCHI, RIN; YANO, HIROHISA; SHIROUZU, KAZUO; KAGE, MASAYOSHI

    2013-01-01

    The forkhead box protein 3 (FOXP3) transcription factor is highly expressed in tumor cells as well as in regulatory T cells (Tregs). It plays a tumor-enhancing role in Tregs and suppresses carcinogenesis as a potent repressor of several oncogenes. The clinical prognostic value of FOXP3 expression has not yet been elucidated. In this study, immunohistochemistry was used to investigate the prognostic significance of FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes (TILs) in breast cancer patients. Of the 100 tumor specimens obtained from primary invasive breast carcinoma, 63 and 57% were evaluated as FOXP3+ tumor cells and as being highly infiltrated by FOXP3+ lymphocytes, respectively. Although FOXP3 expression in tumor cells was of no prognostic significance, FOXP3+ lymphocytes were significantly associated with poor overall survival (OS) (n=98, log-rank test P=0.008). FOXP3 exhibited a heterogeneous subcellular localization in tumor cells (cytoplasm, 31%; nucleus, 26%; both, 6%) and, although cytoplasmic FOXP3 was associated with poor OS (P= 0.058), nuclear FOXP3 demonstrated a significant association with improved OS (P=0.016). Furthermore, when patients were grouped according to their expression of tumor cytoplasmic FOXP3 and lymphocyte FOXP3, there were notable differences in the Kaplan-Meier curves for OS (P<0.001), with a high infiltration of FOXP3+ lymphocytes accompanied by a cytoplasmic FOXP3+ tumor being the most detrimental phenotype. These findings indicated that FOXP3 expression in lymphocytes as well as in tumor cells may be a prognostic marker for breast cancer. FOXP3 in tumor cells may have distinct biological activities and prognostic values according to its localization, which may help establish appropriate cancer treatments. PMID:24649219

  12. Antitumor efficacy of vaccinia virus-modified tumor cell vaccine

    SciTech Connect

    Ito, T.; Wang, D.Q.; Maru, M.; Nakajima, K.; Kato, S.; Kurimura, T.; Wakamiya, N. )

    1990-11-01

    The antitumor efficacies of vaccinia virus-modified tumor cell vaccines were examined in murine syngeneic MH134 and X5563 tumor cells. UV-inactivated vaccinia virus was inoculated i.p. into C3H/HeN mice that had received whole body X-irradiation at 150 rads. After 3 weeks, the vaccines were administered i.p. 3 times at weekly intervals. One week after the last injection, mice were challenged i.p. with various doses of syngeneic MH134 or X5563 viable tumor cells. Four methods were used for preparing tumor cell vaccines: X-ray irradiation; fixation with paraformaldehyde for 1 h or 3 months; and purification of the membrane fraction. All four vaccines were effective, but the former two vaccines were the most effective. A mixture of the membrane fraction of untreated tumor cells and UV-inactivated vaccinia virus also had an antitumor effect. These results indicate that vaccine with the complete cell structure is the most effective. The membrane fraction of UV-inactivated vaccinia virus-absorbed tumor cells was also effective. UV-inactivated vaccinia virus can react with not only intact tumor cells but also the purified membrane fraction of tumor cells and augment antitumor activity.

  13. Experimental Adaptation of Rotaviruses to Tumor Cell Lines

    PubMed Central

    Guerrero, Carlos A.; Guerrero, Rafael A.; Silva, Elver; Acosta, Orlando; Barreto, Emiliano

    2016-01-01

    A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death. PMID:26828934

  14. Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146).

    PubMed

    Ishikawa, Taichi; Wondimu, Zenebech; Oikawa, Yuko; Gentilcore, Giusy; Kiessling, Rolf; Egyhazi Brage, Suzanne; Hansson, Johan; Patarroyo, Manuel

    2014-09-01

    α4-laminins, such as laminins 411 and 421, are mesenchymal laminins expressed by blood and lymphatic vessels and some tumor cells. Laminin-411 promotes migration of leukocytes and endothelial cells, but the effect of this laminin and laminin-421 on tumor cells is poorly understood. In the present study, we demonstrate that laminin-411 and, to a greater extent, laminin-421 significantly promote migration of tumor cells originated from melanomas, gliomas and different carcinomas via α6β1 integrin. In solid-phase binding assays, both laminins similarly bound α6β1 integrin but only laminin-421, among several laminin isoforms, readily bound MCAM (CD146), a cell-surface adhesion molecule strongly associated with tumor progression. Accordingly, a function-blocking mAb to MCAM inhibited tumor cell migration on laminin-421 but not on laminins 411 or 521. In tumor tissues, melanoma cells co-expressed MCAM, laminin α4, β1, β2 and γ1 chains, and integrin α6 and β1 chains. The present data highlight the novel role of α4-laminins in tumor cell migration and identify laminin-421 as a primary ligand for MCAM and a putative mediator of tumor invasion and metastasis. PMID:24951930

  15. Host Adaptation and Speciation through Hybridization and Polyploidy in Phytophthora

    PubMed Central

    Bertier, Lien; Leus, Leen; D’hondt, Liesbet; de Cock, Arthur W. A. M.; Höfte, Monica

    2013-01-01

    It is becoming increasingly evident that interspecific hybridization is a common event in phytophthora evolution. Yet, the fundamental processes underlying interspecific hybridization and the consequences for its ecological fitness and distribution are not well understood. We studied hybridization events in phytophthora clade 8b. This is a cold-tolerant group of plant pathogenic oomycetes in which six host-specific species have been described that mostly attack winter-grown vegetables. Hybrid characterization was done by sequencing and cloning of two nuclear (ITS and Ypt1) and two mitochondrial loci (Cox1 and Nadh1) combined with DNA content estimation using flow cytometry. Three different mtDNA haplotypes were recovered among the presumed hybrid isolates, dividing the hybrids into three types, with different parental species involved. In the nuclear genes, additivity, i.e. the presence of two alleles coming from different parents, was detected. Hybrid isolates showed large variations in DNA content, which was positively correlated with the additivity in nuclear loci, indicating allopolyploid hybridization followed by a process of diploidization. Moreover, indications of homeologous recombination were found in the hybrids by cloning ITS products. The hybrid isolates have been isolated from a range of hosts that have not been reported previously for clade 8b species, indicating that they have novel pathogenic potential. Next to this, DNA content measurements of the non-hybrid clade 8b species suggest that polyploidy is a common feature of this clade. We hypothesize that interspecific hybridization and polyploidy are two linked phenomena in phytophthora, and that these processes might play an important and ongoing role in the evolution of this genus. PMID:24386473

  16. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream.

    PubMed

    Weber, Martin R; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E; Zijlstra, Andries; Quigley, James P; Staflin, Karin; Eliceiri, Brian P; Krueger, Joseph S; Marchese, Patrizia; Ruggeri, Zaverio M; Felding, Brunhilde H

    2016-04-01

    Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. PMID:27067975

  17. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream

    PubMed Central

    Weber, Martin R.; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E.; Zijlstra, Andries; Quigley, James P.; Staflin, Karin; Eliceiri, Brian P.; Krueger, Joseph S.; Marchese, Patricia; Ruggeri, Zaverio M.; Felding, Brunhilde H.

    2016-01-01

    Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. PMID:27067975

  18. Tumor Cell Plasticity in Uveal Melanoma

    PubMed Central

    Folberg, Robert; Arbieva, Zarema; Moses, Jonas; Hayee, Amin; Sandal, Tone; Kadkol, ShriHari; Lin, Amy Y.; Valyi-Nagy, Klara; Setty, Suman; Leach, Lu; Chévez-Barrios, Patricia; Larsen, Peter; Majumdar, Dibyen; Pe’er, Jacob; Maniotis, Andrew J.

    2006-01-01

    The histological detection of laminin-rich vasculogenic mimicry patterns in human primary uveal melanomas is associated with death from metastases. We therefore hypothesized that highly invasive uveal melanoma cells forming vasculogenic mimicry patterns after exposure to a laminin-rich three-dimensional microenvironment would differentially express genes associated with invasive and metastatic behavior. However, we discovered that genes associated with differentiation (GDF15 and ATF3) and suppression of proliferation (CDKNa1/p21) were up-regulated in highly invasive uveal melanoma cells forming vasculogenic mimicry patterns, and genes associated with promotion of invasive and metastatic behavior such as CD44, CCNE2 (cyclin E2), THBS1 (thrombospondin 1), and CSPG2 (chondroitin sulfate proteoglycan; versican) were down-regulated. After forming vasculogenic mimicry patterns, uveal melanoma cells invaded only short distances, failed to replicate, and changed morphologically from the invasive epithelioid to the indolent spindle A phenotype. In human tissue samples, uveal melanoma cells within vasculogenic mimicry patterns assumed the spindle A morphology, and the expression of Ki67 was significantly reduced in adjacent melanoma cells. Thus, the generation of vasculogenic mimicry patterns is accompanied by dampening of the invasive and metastatic uveal melanoma genotype and phenotype and underscores the plasticity of these cells in response to cues from the microenvironment. PMID:17003493

  19. The critical role of CD133+CD44+/high tumor cells in hematogenous metastasis of liver cancers

    PubMed Central

    Hou, Ying; Zou, Qifei; Ge, Ruiliang; Shen, Feng; Wang, Yizheng

    2012-01-01

    Metastatic hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. However, the cell population responsible for its metastasis remains largely unknown. Here, we reported that CD133+CD44+/high defined a subgroup of tumor cells that was responsible for hematogenous metastasis of liver cancers. Immunohistochemical investigation of human HCC specimens revealed that the number of CD133+ and CD44+ HCC cells was increased and was associated with portal vein invasion. Purified CD133+ or CD44high HCC cells were superior in clonogenic growth and vascular invasion, respectively. Thus, the combination of CD133 and CD44 was used to define a novel HCC sub-population. CD133+CD44high, but not CD133+CD44low/−, CD133−CD44high or CD133−CD44low/− xenografts, produced intrahepatic or lung metastasis in nude mice. Further analysis of human HCC samples by flow cytometry showed that the number of CD133+CD44+ tumor cells was associated with portal vein metastasis. The cDNA microarray analysis of CD133+CD44+ and CD133+CD44− tumor cells isolated from metastatic HCC patients revealed that these cells comprised of two different populations possessing distinct gene expression profiles. Our results suggest that CD133+CD44+ tumor cells are a particular population responsible for hematogenous metastasis in liver cancers and that these cells might be targets for treatment of HCC metastasis. PMID:21862973

  20. Isolation of Circulating Tumor Cells by Dielectrophoresis

    PubMed Central

    Gascoyne, Peter R. C.; Shim, Sangjo

    2014-01-01

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies. PMID:24662940

  1. Circulating tumor cells in lung cancer.

    PubMed

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. PMID:23207444

  2. Polyploidy Did Not Predate the Evolution of Nodulation in All Legumes

    PubMed Central

    Cannon, Steven B.; Ilut, Dan; Farmer, Andrew D.; Maki, Sonja L.; May, Gregory D.; Singer, Susan R.; Doyle, Jeff J.

    2010-01-01

    Background Several lines of evidence indicate that polyploidy occurred by around 54 million years ago, early in the history of legume evolution, but it has not been known whether this event was confined to the papilionoid subfamily (Papilionoideae; e.g. beans, medics, lupins) or occurred earlier. Determining the timing of the polyploidy event is important for understanding whether polyploidy might have contributed to rapid diversification and radiation of the legumes near the origin of the family; and whether polyploidy might have provided genetic material that enabled the evolution of a novel organ, the nitrogen-fixing nodule. Although symbioses with nitrogen-fixing partners have evolved in several lineages in the rosid I clade, nodules are widespread only in legume taxa, being nearly universal in the papilionoids and in the mimosoid subfamily (e.g., mimosas, acacias) – which diverged from the papilionoid legumes around 58 million years ago, soon after the origin of the legumes. Methodology/Principal Findings Using transcriptome sequence data from Chamaecrista fasciculata, a nodulating member of the mimosoid clade, we tested whether this species underwent polyploidy within the timeframe of legume diversification. Analysis of gene family branching orders and synonymous-site divergence data from C. fasciculata, Glycine max (soybean), Medicago truncatula, and Vitis vinifera (grape; an outgroup to the rosid taxa) establish that the polyploidy event known from soybean and Medicago occurred after the separation of the mimosoid and papilionoid clades, and at or shortly before the Papilionoideae radiation. Conclusions The ancestral legume genome was not fundamentally polyploid. Moreover, because there has not been an independent instance of polyploidy in the Chamaecrista lineage there is no necessary connection between polyploidy and nodulation in legumes. Chamaecrista may serve as a useful model in the legumes that lacks a paleopolyploid history, at least relative to

  3. Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging.

    PubMed

    Zako, Tamotsu; Nagata, Hiroyasu; Terada, Naofumi; Utsumi, Arata; Sakono, Masafumi; Yohda, Masafumi; Ueda, Hiroshi; Soga, Kohei; Maeda, Mizuo

    2009-03-27

    One of the great challenges of oncology is to improve methods for early tumor detection. Thus tumor cell-targeted optical imaging has been intensively studied. Bioimaging with upconversion (UC) phosphors (UCPs) is of considerable interest due to a variety of possible applications taking advantage of infrared-to-visible luminescence. Here we report for the first time tumor cell-targeted UC imaging using UCPs modified with cyclic RGD peptide (RGD-Y2O3). Cyclic RGD peptide binds specifically to integrin alphavbeta3 which is highly expressed in a tumor cell surface of certain cancer types but not in normal tissues. Since UC emission from RGD-Y2O3 was observed for U87MG cancer cell (high integrin alphavbeta3 expression), but not for MCF-7 cancer cell (low integrin alphavbeta3 expression), this UC imaging is considered to be integrin alphavbeta3 specific. The non-invasive imaging of integrin alphavbeta3 expression using UCP-based probes will have great potential in cancer imaging in general in living subjects. PMID:19351594

  4. Nanoroughened Surfaces for Efficient Capture of Circulating Tumor Cells without Using Capture Antibodies

    PubMed Central

    Chen, Weiqiang; Weng, Shinuo; Zhang, Feng; Allen, Steven; Li, Xiang; Bao, Liwei; Lam, Raymond H. W.; Macoska, Jill A.; Merajver, Sofia D.; Fu, Jianping

    2014-01-01

    Circulating tumor cells (CTCs) detached from both primary and metastatic lesions represent a potential alternative to invasive biopsies as a source of tumor tissue for the detection, characterization and monitoring of cancers. Here we report a simple yet effective strategy for capturing CTCs without using capture antibodies. Our method uniquely utilized the differential adhesion preference of cancer cells to nanorough surfaces when compared to normal blood cells and thus did not depend on their physical size or surface protein expression, a significant advantage as compared to other existing CTC capture techniques. PMID:23194329

  5. Tumor cell response to bevacizumab single agent therapy in vitro

    PubMed Central

    2013-01-01

    Background Angiogenesis represents a highly multi-factorial and multi-cellular complex (patho-) physiologic event involving endothelial cells, tumor cells in malignant conditions, as well as bone marrow derived cells and stromal cells. One main driver is vascular endothelial growth factor (VEGFA), which is known to interact with endothelial cells as a survival and mitogenic signal. The role of VEGFA on tumor cells and /or tumor stromal cell interaction is less clear. Condition specific (e.g. hypoxia) or tumor specific expression of VEGFA, VEGF receptors and co-receptors on tumor cells has been reported, in addition to the expression on the endothelium. This suggests a potential paracrine/autocrine loop that could affect changes specific to tumor cells. Methods We used the monoclonal antibody against VEGFA, bevacizumab, in various in vitro experiments using cell lines derived from different tumor entities (non small cell lung cancer (NSCLC), colorectal cancer (CRC), breast cancer (BC) and renal cell carcinoma (RCC)) in order to determine if potential VEGFA signaling could be blocked in tumor cells. The experiments were done under hypoxia, a major inducer of VEGFA and angiogenesis, in an attempt to mimic the physiological tumor condition. Known VEGFA induced endothelial biological responses such as proliferation, migration, survival and gene expression changes were evaluated. Results Our study was able to demonstrate expression of VEGF receptors on tumor cells as well as hypoxia regulated angiogenic gene expression. In addition, there was a cell line specific effect in tumor cells by VEGFA blockade with bevacizumab in terms of proliferation; however overall, there was a limited measurable consequence of bevacizumab therapy detected by migration and survival. Conclusion The present study showed in a variety of in vitro experiments with several tumor cell lines from different tumor origins, that by blocking VEGFA with bevacizumab, there was a limited autocrine or cell

  6. Pharmacogenomics of Scopoletin in Tumor Cells.

    PubMed

    Seo, Ean-Jeong; Saeed, Mohamed; Law, Betty Yuen Kwan; Wu, An Guo; Kadioglu, Onat; Greten, Henry Johannes; Efferth, Thomas

    2016-01-01

    Drug resistance and the severe side effects of chemotherapy necessitate the development of novel anticancer drugs. Natural products are a valuable source for drug development. Scopoletin is a coumarin compound, which can be found in several Artemisia species and other plant genera. Microarray-based RNA expression profiling of the NCI cell line panel showed that cellular response of scopoletin did not correlate to the expression of ATP-binding cassette (ABC) transporters as classical drug resistance mechanisms (ABCB1, ABCB5, ABCC1, ABCG2). This was also true for the expression of the oncogene EGFR and the mutational status of the tumor suppressor gene, TP53. However, mutations in the RAS oncogenes and the slow proliferative activity in terms of cell doubling times significantly correlated with scopoletin resistance. COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression resulted in a set of 40 genes, which all harbored binding motifs in their promoter sequences for the transcription factor, NF-κB, which is known to be associated with drug resistance. RAS mutations, slow proliferative activity, and NF-κB may hamper its effectiveness. By in silico molecular docking studies, we found that scopoletin bound to NF-κB and its regulator IκB. Scopoletin activated NF-κB in a SEAP-driven NF-κB reporter cell line, indicating that NF-κB might be a resistance factor for scopoletin. In conclusion, scopoletin might serve as lead compound for drug development because of its favorable activity against tumor cells with ABC-transporter expression, although NF-κB activation may be considered as resistance factor for this compound. Further investigations are warranted to explore the full therapeutic potential of this natural product. PMID:27092478

  7. Identifying cancer origin using circulating tumor cells

    PubMed Central

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-01-01

    ABSTRACT Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK+ and CK18+ CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7+ or TTF-1+, (CK20/ CDX2)+, or (PSA/ PSMA)+ corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  8. Detection and Characterization of Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Bruce, Richard

    2009-03-01

    Circulating tumor cells (CTCs) occur in blood below the concentration of 1 cell in a hundred thousand white blood cells and can provide prognostic and diagnostic information about the underlying disease. While numeration of CTCs has provided useful information on progression-free and overall survival, it does not provide guidance of treatment choice. Since CTCs are presumed contain features of the metastatic tissue, characterization of cancer markers on these cells could help selection of treatment. At such low concentrations, reliable location and identification of these cells represents a significant technical challenge. Automated digital microscopy (ADM) provides high levels of sensitivity, but the analysis time is prohibitively long for a clinical assay. Enrichment methods have been developed to reduce sample size but can result in cell loss. A major barrier in reliable enrichment stems from the biological heterogeneity of CTCs, exhibited in a wide range of genetic, biochemical, immunological and biological characteristics. We have developed an approach that uses fiber-optic array scanning technology (FAST) to detect CTCs. Here, laser-printing optics are used to excite 300,000 cells/sec, and fluorescence from immuno-labels is collected in an array of optical fibers that forms a wide collection aperture. The FAST cytometer can locate CTCs at a rate that is 500 times faster than an ADM with comparable sensitivity and improved specificity. With this high scan rate, no enrichment of CTCs is required. The target can be a cytoplasm protein with a very high expression level, which reduces sensitivity to CTC heterogeneity. We use this method to measure expression levels of multiple markers on CTCs to help predict effective cancer treatment.

  9. Identifying cancer origin using circulating tumor cells.

    PubMed

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-04-01

    Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK(+) and CK18(+) CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7(+) or TTF-1(+), (CK20/ CDX2)(+), or (PSA/ PSMA)(+) corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  10. Circulating Tumor Cell Composition in Renal Cell Carcinoma

    PubMed Central

    Bublitz, Kira; Lazaridis, Lazaros; Goergens, André; Giebel, Bernd; Schuler, Martin; Hoffmann, Andreas-Claudius

    2016-01-01

    Purpose Due to their minimal-invasive yet potentially current character circulating tumor cells (CTC) might be useful as a “liquid biopsy” in solid tumors. However, successful application in metastatic renal cell carcinoma (mRCC) has been very limited so far. High plasticity and heterogeneity of CTC morphology challenges currently available enrichment and detection techniques with EpCAM as the usual surface marker being underrepresented in mRCC. We recently described a method that enables us to identify and characterize non-hematopoietic cells in the peripheral blood stream with varying characteristics and define CTC subgroups that distinctly associate to clinical parameters. With this pilot study we wanted to scrutinize feasibility of this approach and its potential usage in clinical studies. Experimental Design Peripheral blood was drawn from 14 consecutive mRCC patients at the West German Cancer Center and CTC profiles were analyzed by Multi-Parameter Immunofluorescence Microscopy (MPIM). Additionally angiogenesis-related genes were measured by quantitative RT-PCR analysis. Results We detected CTC with epithelial, mesenchymal, stem cell-like or mixed-cell characteristics at different time-points during anti-angiogenic therapy. The presence and quantity of N-cadherin-positive or CD133-positive CTC was associated with inferior PFS. There was an inverse correlation between high expression of HIF1A, VEGFA, VEGFR and FGFR and the presence of N-cadherin-positive and CD133-positive CTC. Conclusions Patients with mRCC exhibit distinct CTC profiles that may implicate differences in therapeutic outcome. Prospective evaluation of phenotypic and genetic CTC profiling as prognostic and predictive biomarker in mRCC is warranted. PMID:27101285

  11. Stromal Activation by Tumor Cells: An in Vitro Study in Breast Cancer

    PubMed Central

    Merlino, Giuseppe; Miodini, Patrizia; Paolini, Biagio; Carcangiu, Maria Luisa; Gennaro, Massimiliano; Dugo, Matteo; Daidone, Maria Grazia; Cappelletti, Vera

    2016-01-01

    Background: The tumor microenvironment participates in the regulation of tumor progression and influences treatment sensitivity. In breast cancer, it also may play a role in determining the fate of non-invasive lesions such as ductal carcinoma in situ (DCIS), a non-obligate precursor of invasive diseases, which is aggressively treated despite its indolent nature in many patients since no biomarkers are available to predict the progression of DCIS to invasive disease. In vitro models of stromal activation by breast tumor cells might provide clues as to specific stromal genes crucial for the transition from DCIS to invasive disease. Methods: normal human dermal fibroblasts (NHDF) were treated under serum-free conditions with cell culture media conditioned by breast cancer cell lines (SkBr3, MDA-MB-468, T47D) for 72 h and subjected to gene expression profiling with Illumina platform. Results: TGM2, coding for a tissue transglutaminase, was identified as candidate gene for stromal activation. In public transcriptomic datasets of invasive breast tumors TGM2 expression proved to provide prognostic information. Conversely, its role as an early biosensor of tumor invasiveness needs to be further investigated by in situ analyses. Conclusion: Stromal TGM2 might probably be associated with precancerous evolution at earlier stages compared to DCIS. PMID:27600076

  12. IL17 Promotes Mammary Tumor Progression by Changing the Behavior of Tumor Cells and Eliciting Tumorigenic Neutrophils Recruitment.

    PubMed

    Benevides, Luciana; da Fonseca, Denise Morais; Donate, Paula Barbim; Tiezzi, Daniel Guimarães; De Carvalho, Daniel D; de Andrade, Jurandyr M; Martins, Gislaine A; Silva, João S

    2015-09-15

    The aggressiveness of invasive ductal carcinoma (IDC) of the breast is associated with increased IL17 levels. Studying the role of IL17 in invasive breast tumor pathogenesis, we found that metastatic primary tumor-infiltrating T lymphocytes produced elevated levels of IL17, whereas IL17 neutralization inhibited tumor growth and prevented the migration of neutrophils and tumor cells to secondary disease sites. Tumorigenic neutrophils promote disease progression, producing CXCL1, MMP9, VEGF, and TNFα, and their depletion suppressed tumor growth. IL17A also induced IL6 and CCL20 production in metastatic tumor cells, favoring the recruitment and differentiation of Th17. In addition, IL17A changed the gene-expression profile and the behavior of nonmetastatic tumor cells, causing tumor growth in vivo, confirming the protumor role of IL17. Furthermore, high IL17 expression was associated with lower disease-free survival and worse prognosis in IDC patients. Thus, IL17 blockade represents an attractive approach for the control of invasive breast tumors. PMID:26208902

  13. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation

    PubMed Central

    Tape, Christopher J.; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M.; Worboys, Jonathan D.; Leong, Hui Sun; Norrie, Ida C.; Miller, Crispin J.; Poulogiannis, George; Lauffenburger, Douglas A.; Jørgensen, Claus

    2016-01-01

    Summary Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRASG12D) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRASG12D signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRASG12D engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRASG12D. Consequently, reciprocal KRASG12D produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRASG12D alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. Video Abstract PMID:27087446

  14. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation.

    PubMed

    Tape, Christopher J; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M; Worboys, Jonathan D; Leong, Hui Sun; Norrie, Ida C; Miller, Crispin J; Poulogiannis, George; Lauffenburger, Douglas A; Jørgensen, Claus

    2016-05-01

    Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT. PMID:27087446

  15. Risk of tumor cell seeding through biopsy and aspiration cytology

    PubMed Central

    Shyamala, K.; Girish, H. C.; Murgod, Sanjay

    2014-01-01

    Cancer cells, besides reproducing uncontrollably, lose cohesiveness and orderliness of normal tissue, invade and get detached from the primary tumor to travel and set up colonies elsewhere. Dislodging neoplastically altered cells from a tumor during biopsy or surgical intervention or during simple procedure like needle aspiration is a possibility because they lack cohesiveness, and they attain the capacity to migrate and colonize. Considering the fact that, every tumor cell, is bathed in interstitial fluid, which drains into the lymphatic system and has an individualized arterial blood supply and venous drainage like any other normal cell in our body, inserting a needle or a knife into a tumor, there is a jeopardy of dislodging a loose tumor cell into either the circulation or into the tissue fluid. Tumor cells are easier to dislodge due to lower cell-to-cell adhesion. This theory with the possibility of seeding of tumor cells is supported by several case studies that have shown that after diagnostic biopsy of a tumor, many patients developed cancer at multiple sites and showed the presence of circulating cancer cells in the blood stream on examination. In this review, we evaluate the risk of exposure to seeding of tumor cells by biopsy and aspiration cytology and provide some suggested practices to prevent tumor cell seeding. PMID:24818087

  16. Influence of Anti-Mouse Interferon Serum on the Growth and Metastasis of Tumor Cells Persistently Infected with Virus and of Human Prostatic Tumors in Athymic Nude Mice

    NASA Astrophysics Data System (ADS)

    Reid, Lola M.; Minato, Nagahiro; Gresser, Ion; Holland, John; Kadish, Anna; Bloom, Barry R.

    1981-02-01

    Baby hamster kidney or HeLa cells form tumors in 100% of athymic nude mice. When such cells are persistently infected (PI) with RNA viruses, such as mumps or measles virus, the tumor cells either fail to grow or form circumscribed benign nodules. Neither the parental nor the virus PI tumor cells form invasive or metastatic lesions in nude mice. Previous studies have indicated a correlation between the susceptibility of virus-PI tumor cells in vitro and the cytolytic activity of natural killer (NK) cells and their failure to grow in vivo. Because interferon (IF) is the principal regulatory molecule governing the differentiation of NK cells, it was possible to test the relevance of the IF--NK cell system in vivo to restriction of tumor growth by treatment of nude mice with anti-IF globulin. This treatment was shown to reduce both IF production and NK activity in spleen cells. Both parental and virus-PI tumor cells grew and formed larger tumors in nude mice treated with anti-IF globulin than in control nude mice. The viral-PI tumor cells and the uninfected parental cells formed tumors in treated mice that were highly invasive and often metastatic. Some human tumor types have been notoriously difficult to establish as tumor lines in nude mice (e.g., primary human prostatic carcinomas). When transplanted into nude mice treated either with anti-IF globulin or anti-lymphocyte serum, two prostatic carcinomas grew and produced neoplasms with local invasiveness and some metastases. The results are consistent with the view that interferon may be important in restricting the growth, invasiveness, and metastases of tumor cells by acting indirectly through components of the immune system, such as NK cells.

  17. Wound-Induced Polyploidy Is Required for Tissue Repair

    PubMed Central

    Losick, Vicki P.

    2016-01-01

    Significance: All organs suffer wounds to some extent during an animal's lifetime and to compensate for cell loss, tissues often rely on cell division. However, many organs are made up of differentiated cells with only a limited capacity to divide. It is not well understood how cells are replaced in the absence of cell division. Recent Advances: Recent studies in the model organism Drosophila melanogaster have proven that wound-induced polyploidy (WIP) is an essential mechanism to replace tissue mass and restore tissue integrity in the absence of cell division. In this repair mechanism, preexisting differentiated cells increase their DNA content and cell size by becoming polyploid. Critical Issues: Cells within mammalian organs such as the liver, heart, and cornea have also been observed to increase their DNA ploidy in response to injury, suggesting that WIP may be an evolutionarily conserved mechanism to compensate for cell loss. Future Directions: The Hippo signal transduction pathway is required for differentiated cells to initiate WIP in Drosophila. Continued studies in Drosophila will help to identify other signaling pathways required for WIP as well as the conserved mechanisms that polyploid cells may play during wound repair in all organisms. PMID:27274437

  18. The "virgin birth", polyploidy, and the origin of cancer.

    PubMed

    Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Jackson, Thomas R; Vazquez-Martin, Alejandro; Cragg, Mark S

    2015-01-01

    Recently, it has become clear that the complexity of cancer biology cannot fully be explained by somatic mutation and clonal selection. Meanwhile, data have accumulated on how cancer stem cells or stemloids bestow immortality on tumour cells and how reversible polyploidy is involved. Most recently, single polyploid tumour cells were shown capable of forming spheroids, releasing EMT-like descendents and inducing tumours in vivo. These data refocus attention on the centuries-old embryological theory of cancer. This review attempts to reconcile seemingly conflicting data by viewing cancer as a pre-programmed phylogenetic life-cycle-like process. This cycle is apparently initiated by a meiosis-like process and driven as an alternative to accelerated senescence at the DNA damage checkpoint, followed by an asexual syngamy event and endopolyploid-type embryonal cleavage to provide germ-cell-like (EMT) cells. This cycle is augmented by genotoxic treatments, explaining why chemotherapy is rarely curative and drives resistance. The logical outcome of this viewpoint is that alternative treatments may be more efficacious - either those that suppress the endopolyploidy-associated 'life cycle' or, those that cause reversion of embryonal malignant cells into benign counterparts. Targets for these opposing strategies are components of the same molecular pathways and interact with regulators of accelerated senescence. PMID:25821840

  19. Imaging Circulating Tumor Cells in Freely Moving Awake Small Animals Using a Miniaturized Intravital Microscope

    PubMed Central

    Sasportas, Laura Sarah; Gambhir, Sanjiv Sam

    2014-01-01

    Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs) into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM) strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals. PMID:24497977

  20. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro

    PubMed Central

    Ndishabandi, Dorothy; Duquette, Cameron; Billah, Ghita El-Moatassim; Reyes, Millys; Duquette, Mark; Lawler, Jack; Kazerounian, Shideh

    2015-01-01

    It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression. PMID:26273699

  1. Efficient Purification and Release of Circulating Tumor Cells by Synergistic Effect of Biomarker and SiO2 @Gel-Microbead-Based Size Difference Amplification.

    PubMed

    Huang, Qinqin; Cai, Bo; Chen, Bolei; Rao, Lang; He, Zhaobo; He, Rongxiang; Guo, Feng; Zhao, Libo; Kondamareddy, Kiran Kumar; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2016-07-01

    Microfluidics-based circulating tumor cell (CTC) isolation is achieved by using gelatin-coated silica microbeads conjugated to CTC-specific antibodies. Bead-binding selectively enlarges target cell size, providing efficient high-purity capture. CTCs captured can be further released non-invasively. This stratagem enables high-performance CTC isolation for subsequent studies. PMID:27028055

  2. Targeting VEGFR1- and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy.

    PubMed

    Xu, Wen Wen; Li, Bin; Lam, Alfred K Y; Tsao, Sai Wah; Law, Simon Y K; Chan, Kwok Wah; Yuan, Qiu Ju; Cheung, Annie L M

    2015-01-30

    Increasing appreciation of tumor heterogeneity and the tumor-host interaction has stimulated interest in developing novel therapies that target both tumor cells and tumor microenvironment. Bone marrow derived cells (BMDCs) constitute important components of the tumor microenvironment. In this study, we aim to investigate the significance of VEGFR1- and VEGFR2-expressing non-tumor cells, including BMDCs, in esophageal cancer (EC) progression and in VEGFR1/VEGFR2-targeted therapies. Here we report that VEGFR1 or VEGFR2 blockade can significantly attenuate VEGF-induced Src and Erk signaling, as well as the proliferation and migration of VEGFR1⁺ and VEGFR2⁺ bone marrow cells and their pro-invasive effect on cancer cells. Importantly, our in vivo data show for the first time that systemic blockade of VEGFR1⁺ or VEGFR2⁺ non-tumor cells with neutralizing antibodies is sufficient to significantly suppress esophageal tumor growth, angiogenesis and metastasis in mice. Moreover, our tissue microarray study of human EC clinical specimens showed the clinicopathological significance of VEGFR1 and VEGFR2 in EC, which suggest that anti-VEGFR1/VEGFR2 therapies may be particularly beneficial for patients with aggressive EC. In conclusion, this study demonstrates the important contributions of VEGFR1⁺ and VEGFR2⁺ non-tumor cells in esophageal cancer progression, and substantiates the validity of these receptors as therapeutic targets for this deadly disease. PMID:25595897

  3. Targeting VEGFR1- and VEGFR2-expressing non-tumor cells is essential for esophageal cancer therapy

    PubMed Central

    Xu, Wen Wen; Li, Bin; Lam, Alfred KY; Tsao, Sai Wah; Law, Simon YK; Chan, Kwok Wah; Yuan, Qiu Ju; Cheung, Annie LM

    2015-01-01

    Increasing appreciation of tumor heterogeneity and the tumor-host interaction has stimulated interest in developing novel therapies that target both tumor cells and tumor microenvironment. Bone marrow derived cells (BMDCs) constitute important components of the tumor microenvironment. In this study, we aim to investigate the significance of VEGFR1- and VEGFR2-expressing non-tumor cells, including BMDCs, in esophageal cancer (EC) progression and in VEGFR1/VEGFR2-targeted therapies. Here we report that VEGFR1 or VEGFR2 blockade can significantly attenuate VEGF-induced Src and Erk signaling, as well as the proliferation and migration of VEGFR1+ and VEGFR2+ bone marrow cells and their pro-invasive effect on cancer cells. Importantly, our in vivo data show for the first time that systemic blockade of VEGFR1+ or VEGFR2+ non-tumor cells with neutralizing antibodies is sufficient to significantly suppress esophageal tumor growth, angiogenesis and metastasis in mice. Moreover, our tissue microarray study of human EC clinical specimens showed the clinicopathological significance of VEGFR1 and VEGFR2 in EC, which suggest that anti-VEGFR1/VEGFR2 therapies may be particularly beneficial for patients with aggressive EC. In conclusion, this study demonstrates the important contributions of VEGFR1+ and VEGFR2+ non-tumor cells in esophageal cancer progression, and substantiates the validity of these receptors as therapeutic targets for this deadly disease. PMID:25595897

  4. E-Cadherin Suppression Directs Cytoskeletal Rearrangement and Intraepithelial Tumor Cell Migration in 3D Human Skin Equivalents

    PubMed Central

    Alt-Holland, Addy; Shamis, Yulia; Riley, Kathleen N.; DesRochers, Teresa M.; Fusenig, Norbert E.; Herman, Ira M.; Garlick, Jonathan A.

    2010-01-01

    The link between loss of cell–cell adhesion, the activation of cell migration, and the behavior of intraepithelial (IE) tumor cells during the early stages of skin cancer progression is not well understood. The current study characterized the migratory behavior of a squamous cell carcinoma cell line (HaCaT-II-4) upon E-cadherin suppression in both 2D, monolayer cultures and within human skin equivalents that mimic premalignant disease. The migratory behavior of tumor cells was first analyzed in 3D tissue context by developing a model that mimics transepithelial tumor cell migration. We show that loss of cell adhesion enabled migration of single, IE tumor cells between normal keratinocytes as a prerequisite for stromal invasion. To further understand this migratory behavior, E-cadherin-deficient cells were analyzed in 2D, monolayer cultures and displayed altered cytoarchitecture and enhanced membrane protrusive activity that was associated with circumferential actin organization and induction of the nonmuscle, β actin isoform. These features were associated with increased motility and random, individual cell migration in response to scrape-wounding. Thus, loss of E-cadherin-mediated adhesion led to the acquisition of phenotypic properties that augmented cell motility and directed the transition from the precancer to cancer in skin-like tissues. PMID:18528437

  5. Extravasation of leukocytes in comparison to tumor cells

    PubMed Central

    Strell, Carina; Entschladen, Frank

    2008-01-01

    The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body. PMID:19055814

  6. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells

    PubMed Central

    MONZAVI-KARBASSI, BEHJATOLAH; HINE, R. JEAN; STANLEY, JOSEPH S.; RAMANI, VISHNU PRAKASH; CARCEL-TRULLOLS, JAIME; WHITEHEAD, TRACY L.; KELLY, THOMAS; SIEGEL, ERIC R.; ARTAUD, CECILE; SHAAF, SAEID; SAHA, RINKU; JOUSHEGHANY, FARIBA; HENRY-TILLMAN, RONDA; KIEBER-EMMONS, THOMAS

    2012-01-01

    Aberrant glycosylation is a universal feature of cancer cells, and certain glycan structures are well-known markers for tumor progression. Availability and composition of sugars in the microenvironment may affect cell glycosylation. Recent studies of human breast tumor cell lines indicate their ability to take up and utilize fructose. Here we tested the hypothesis that adding fructose to culture as a carbon source induces phenotypic changes in cultured human breast tumor cells that are associated with metastatic disease. MDA-MB-468 cells were adapted to culture media in which fructose was substituted for glucose. Changes in cell surface glycan structures, expression of genes related to glycan assembly, cytoskeleton F-actin, migration, adhesion and invasion were determined. Cells cultured in fructose expressed distinct cell-surface glycans. The addition of fructose affected sialylation and fucosylation patterns. Fructose feeding also increased binding of leukoagglutinating Phaseolus vulgaris isolectin, suggesting a possible rise in expression of branching β-1, 6 GlcNAc structures. Rhodamine-phalloidin staining revealed an altered F-actin cytoskeletal system. Fructose accelerated cellular migration and increased invasion. These data suggest that changing the carbon source of the less aggressive MDA-MB-468 cell line induced characteristics associated with more aggressive phenotypes. These data could be of fundamental importance due to the markedly increased consumption of sweeteners containing free fructose in recent years, as they suggest that the presence of fructose in nutritional micro-environment of tumor cells may negatively affect the outcome for some breast cancer patients. PMID:20664930

  7. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells.

    PubMed

    Monzavi-Karbassi, Behjatolah; Hine, R Jean; Stanley, Joseph S; Ramani, Vishnu Prakash; Carcel-Trullols, Jaime; Whitehead, Tracy L; Kelly, Thomas; Siegel, Eric R; Artaud, Cecile; Shaaf, Saeid; Saha, Rinku; Jousheghany, Fariba; Henry-Tillman, Ronda; Kieber-Emmons, Thomas

    2010-09-01

    Aberrant glycosylation is a universal feature of cancer cells, and certain glycan structures are well-known markers for tumor progression. Availability and composition of sugars in the microenvironment may affect cell glycosylation. Recent studies of human breast tumor cell lines indicate their ability to take up and utilize fructose. Here we tested the hypothesis that adding fructose to culture as a carbon source induces phenotypic changes in cultured human breast tumor cells that are associated with metastatic disease. MDA-MB-468 cells were adapted to culture media in which fructose was substituted for glucose. Changes in cell surface glycan structures, expression of genes related to glycan assembly, cytoskeleton F-actin, migration, adhesion and invasion were determined. Cells cultured in fructose expressed distinct cell-surface glycans. The addition of fructose affected sialylation and fucosylation patterns. Fructose feeding also increased binding of leukoagglutinating Phaseolus vulgaris isolectin, suggesting a possible rise in expression of branching beta-1, 6 GlcNAc structures. Rhodamine-phalloidin staining revealed an altered F-actin cytoskeletal system. Fructose accelerated cellular migration and increased invasion. These data suggest that changing the carbon source of the less aggressive MDA-MB-468 cell line induced characteristics associated with more aggressive phenotypes. These data could be of fundamental importance due to the markedly increased consumption of sweeteners containing free fructose in recent years, as they suggest that the presence of fructose in nutritional microenvironment of tumor cells may negatively affect the outcome for some breast cancer patients. PMID:20664930

  8. Plasma-activated medium induced apoptosis on tumor cells

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Tanaka, Hiromasa; Mizuno, Masaaki; Nakamura, Kae; Kajiyama, Hiroaki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Kikkawa, Fumitaka

    2013-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has attracted attention in cancer therapy. In this study, the fresh medium was treated with our developed NEAPP, ultra-high electron density (approximately 2 × 1016 cm-3). The medium called the plasma-activated medium (PAM) killed not normal cells but tumor cells through induction of apoptosis. Cell proliferation assays showed that the tumor cells were selectively killed by the PAM. Those cells induced apoptosis using an apoptotic molecular marker, cleaved Caspase3/7. The molecular mechanisms of PAM-mediated apoptosis in the tumor cells were also found that the PAM downregulated the expression of AKT kinase, a marker molecule in a survival signal transduction pathway. These results suggest that PAM may be a promising tool for tumor therapy by downregulating the survival signals in cancers.

  9. Biology, detection, and clinical implications of circulating tumor cells

    PubMed Central

    Joosse, Simon A; Gorges, Tobias M; Pantel, Klaus

    2015-01-01

    Cancer metastasis is the main cause of cancer-related death, and dissemination of tumor cells through the blood circulation is an important intermediate step that also exemplifies the switch from localized to systemic disease. Early detection and characterization of circulating tumor cells (CTCs) is therefore important as a general strategy to monitor and prevent the development of overt metastatic disease. Furthermore, sequential analysis of CTCs can provide clinically relevant information on the effectiveness and progression of systemic therapies (e.g., chemo-, hormonal, or targeted therapies with antibodies or small inhibitors). Although many advances have been made regarding the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this important diagnostic approach. In this review, we discuss the biology of tumor cell dissemination, technical advances, as well as the challenges and potential clinical implications of CTC detection and characterization. PMID:25398926

  10. The Action of Discoidin Domain Receptor 2 in Basal Tumor Cells and Stromal Cancer-Associated Fibroblasts Is Critical for Breast Cancer Metastasis.

    PubMed

    Corsa, Callie A S; Brenot, Audrey; Grither, Whitney R; Van Hove, Samantha; Loza, Andrew J; Zhang, Kun; Ponik, Suzanne M; Liu, Yuming; DeNardo, David G; Eliceiri, Kevin W; Keely, Patricia J; Longmore, Gregory D

    2016-06-14

    High levels of collagen deposition in human and mouse breast tumors are associated with poor outcome due to increased local invasion and distant metastases. Using a genetic approach, we show that, in mice, the action of the fibrillar collagen receptor discoidin domain receptor 2 (DDR2) in both tumor and tumor-stromal cells is critical for breast cancer metastasis yet does not affect primary tumor growth. In tumor cells, DDR2 in basal epithelial cells regulates the collective invasion of tumor organoids. In stromal cancer-associated fibroblasts (CAFs), DDR2 is critical for extracellular matrix production and the organization of collagen fibers. The action of DDR2 in CAFs also enhances tumor cell collective invasion through a pathway distinct from the tumor-cell-intrinsic function of DDR2. This work identifies DDR2 as a potential therapeutic target that controls breast cancer metastases through its action in both tumor cells and tumor-stromal cells at the primary tumor site. PMID:27264173

  11. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  12. X-ray sensitivity of human tumor cells in vitro

    SciTech Connect

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1980-04-01

    Clonally-derived cells from ten human malignant tumors considered radiocurable (breast, neuroblastoma, medulloblastoma) or non-radiocurable (osteosarcoma, hypernephroma, glioblastoma, melanoma) were studied in cell culture and their in vitro x-ray survival curve parameters determined (anti n, D/sub 0/). There were no significant differences among the tumor cell lines suggesting that survival parameters in vitro do not explain differences in clinical radiocurability. Preliminary investigation with density inhibited human tumor cells indicate that such an approach may yield information regarding inherent cellular differences in radiocurability.

  13. Single-cell analyses of circulating tumor cells

    PubMed Central

    Chen, Xi-Xi; Bai, Fan

    2015-01-01

    Circulating tumor cells (CTCs) are a population of tumor cells mediating metastasis, which results in most of the cancer related deaths. The number of CTCs in the peripheral blood of patients is rare, and many platforms have been launched for detection and enrichment of CTCs. Enumeration of CTCs has already been used as a prognosis marker predicting the survival rate of cancer patients. Yet CTCs should be more potential. Studies on CTCs at single cell level may help revealing the underlying mechanism of tumorigenesis and metastasis. Though far from developed, this area of study holds much promise in providing new clinical application and deep understanding towards metastasis and cancer development. PMID:26487963

  14. KRAS Genotypic Changes of Circulating Tumor Cells during Treatment of Patients with Metastatic Colorectal Cancer

    PubMed Central

    Kalikaki, Aristea; Politaki, Helen; Souglakos, John; Apostolaki, Stella; Papadimitraki, Elisavet; Georgoulia, Nefeli; Tzardi, Maria; Mavroudis, Dimitris; Georgoulias, Vassilis; Voutsina, Alexandra

    2014-01-01

    Introduction Circulating tumor cells (CTCs) could represent a non-invasive source of cancer cells used for longitudinal monitoring of the tumoral mutation status throughout the course of the disease. The aims of the present study were to investigate the detection of KRAS mutations in CTCs from patients with metastatic colorectal cancer (mCRC) and to compare their mutation status during treatment or disease progression with that of the corresponding primary tumors. Materials and Methods Identification of the seven most common KRAS mutations on codons 12 and 13 was performed by Peptide Nucleic Acid (PNA)-based qPCR method. The sensitivity of the assay was determined after isolation of KRAS mutant cancer cells spiked into healthy donors' blood, using the CellSearch Epithelial Cell kit. Consistent detection of KRAS mutations was achieved in samples containing at least 10 tumor cells/7.5 ml of blood. Results The clinical utility of the assay was assessed in 48 blood samples drawn from 31 patients with mCRC. All patients had PIK3CA and BRAF wild type primary tumors and 14 KRAS mutant tumors. CTCs were detected in 65% of specimens obtained from 74% of patients. KRAS mutation analysis in CTC-enriched specimens showed that 45% and 16.7% of patients with mutant and wild type primary tumors, respectively, had detectable mutations in their CTCs. Assessing KRAS mutations in serial blood samples revealed that individual patient's CTCs exhibited different mutational status of KRAS during treatment. Conclusions The current findings support the rationale for using the CTCs as a dynamic source of tumor cells which, by re-evaluating their KRAS mutation status, could predict, perhaps more accurately, the response of mCRC patients to targeted therapy. PMID:25137394

  15. The same and not the same: heterogeneous functional activation of prostate tumor cells by TLR ligation

    PubMed Central

    2014-01-01

    Background Many types of tumors are organized in a hierarchy of heterogeneous cell populations with different molecular signature. Such heterogeneity may be associated with different responsiveness to microenvironment stimuli. In the present study, the effects of lipopolysaccharide (LPS) and lipoteichoic acid (LTA), as well-known mediators of inflammation, on cancerous behavior of three prostate tumor cells, LNCaP, PC3 and DU145, were investigated. Methods Expression of TLR1-10, CD14 and MyD88 transcripts was investigated by RT-PCR. Protein expression of TLR2 and 4 was scrutinized by flow cytometry, immunofluorescent staining and Western blotting. Experiments were set up to assess the effects of LPS and LTA at different concentrations and times on cell proliferation, extracellular matrix invasion, adhesion and cytokine production. Results We showed that prostate cancer cell lines differentially express TLR1-10, MyD88 and CD14 transcripts. DU145 failed to express TLR4 gene. Positively-identified TLR2 protein in all prostate cancer cells and TLR4 protein in PC3 and LNCaP by Western blotting was not accompanied by cell surface expression, as judged by flow cytometry. Immunofluorescent staining clearly demonstrated predominantly perinuclear localization of TLR2 and TLR4. LTA activation of all prostate cancer cells significantly increased cell proliferation. Regardless of lacking TLR4, DU145 cells proliferated in response to LPS treatment. While LPS caused increased invasiveness of LNCaP, invasive capacity of PC3 was significantly reduced after LPS or LTA stimulation. Stimulation of all prostate tumor cells with LTA was associated with increased cell adhesion and IL-8 production. IL-6 production, however, was differentially regulated by LPS stimulation in prostate tumor cells. Conclusion The data shows that cancer cells originated from the same histologically origin exhibit heterogeneous response to the same TLR ligand. Therefore, a thorough and comprehensive judgment

  16. Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3.

    PubMed

    Sharifi, Marina N; Mowers, Erin E; Drake, Lauren E; Collier, Chris; Chen, Hong; Zamora, Marta; Mui, Stephanie; Macleod, Kay F

    2016-05-24

    Autophagy is a conserved catabolic process that plays a housekeeping role in eliminating protein aggregates and organelles and is activated during nutrient deprivation to generate metabolites and energy. Autophagy plays a significant role in tumorigenesis, although opposing context-dependent functions of autophagy in cancer have complicated efforts to target autophagy for therapeutic purposes. We demonstrate that autophagy inhibition reduces tumor cell migration and invasion in vitro and attenuates metastasis in vivo. Numerous abnormally large focal adhesions (FAs) accumulate in autophagy-deficient tumor cells, reflecting a role for autophagy in FA disassembly through targeted degradation of paxillin. We demonstrate that paxillin interacts with processed LC3 through a conserved LIR motif in the amino-terminal end of paxillin and that this interaction is regulated by oncogenic SRC activity. Together, these data establish a function for autophagy in FA turnover, tumor cell motility, and metastasis. PMID:27184837

  17. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    PubMed

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. PMID:27066976

  18. X-ray enabled detection and eradication of circulating tumor cells with nanoparticles.

    PubMed

    Hossain, Mainul; Luo, Yang; Sun, Zhaoyong; Wang, Chaoming; Zhang, Minghui; Fu, Hanyu; Qiao, Yong; Su, Ming

    2012-01-01

    The early detection and eradication of circulating tumor cells (CTCs) play an important role in cancer metastasis management. This paper describes a new nanoparticle-enabled technique for integrated enrichment, detection and killing of CTCs by using magnetic nanoparticles and bismuth nanoparticles, X-ray fluorescence spectrometry, and X-ray radiation. The nanoparticles are modified with tumor targeting agents and conjugated with tumor cells through folate receptors over-expressed on cancer cells. A permanent micro-magnet is used to collect CTCs suspended inside a flowing medium that contains phosphate buffered saline (PBS) or whole blood. The characteristic X-ray emissions from collected bismuth nanoparticles, upon excitation with collimated X-rays, are used to detect CTCs. Results show that the method is capable of selectively detecting CTCs at concentrations ranging from 100-100,000 cells/mL in the buffer solution, with a detection limit of ≈ 100 CTCs/mL. Moreover, the dose of primary X-rays can be enhanced to kill the localized CTCs by radiation induced DNA damage, with minimal invasiveness, thus making in vivo personalized CTC management possible. PMID:22776179

  19. Oligonucleotide aptamers: A next-generation technology for the capture and detection of circulating tumor cells.

    PubMed

    Dickey, David D; Giangrande, Paloma H

    2016-03-15

    A critical challenge for treating cancer is the early identification of those patients who are at greatest risk of developing metastatic disease. The number of circulating tumor cells (CTCs) in cancer patients has recently been shown to be a valuable (and non-invasively accessible) diagnostic indicator of the state of metastatic disease. CTCs are rare cancer cells found in the blood circulation of cancer patients believed to provide a means of diagnosing the likelihood for metastatic spread and assessing response to therapy in advanced, as well as early stage disease settings. Numerous technical efforts have been made to reliably detect and quantify CTCs, but the development of a universal assay has proven quite difficult. Notable challenges for developing a broadly useful CTC-based diagnostic assay are the development of easy-to-operate methods that (1) are sufficiently sensitive to reliably detect the small number of CTCs that are present in the circulation and (2) can capture the molecular heterogeneity of tumor cells. In this review, we describe recent progress towards the application of synthetic oligonucleotide aptamers as promising, novel, robust tools for the isolation and detection of CTCs. Advantages and challenges of the aptamer approach are also discussed. PMID:26631715

  20. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect

    PubMed Central

    Chen, Xi-sha; Li, Lan-ya; Guan, Yi-di; Yang, Jin-ming; Cheng, Yan

    2016-01-01

    Tumor cells rely mainly on glycolysis for energy production even in the presence of sufficient oxygen, a phenomenon termed the Warburg effect, which is the most outstanding characteristic of energy metabolism in cancer cells. This metabolic adaptation is believed to be critical for tumor cell growth and proliferation, and a number of onco-proteins and tumor suppressors, including the PI3K/Akt/mTOR signaling pathway, Myc, hypoxia-inducible factor and p53, are involved in the regulation of this metabolic adaptation. Moreover, glycolytic cancer cells are often invasive and impervious to therapeutic intervention. Thus, altered energy metabolism is now appreciated as a hallmark of cancer and a promising target for cancer treatment. A better understanding of the biology and the regulatory mechanisms of aerobic glycolysis has the potential to facilitate the development of glycolysis-based therapeutic interventions for cancer. In addition, glycolysis inhibition combined with DNA damaging drugs or chemotherapeutic agents may be effective anticancer strategies through weakening cell damage repair capacity and enhancing drug cytotoxicity. PMID:27374491

  1. Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells

    PubMed Central

    Busch, Tobias; Armacki, Milena; Eiseler, Tim; Joodi, Golsa; Temme, Claudia; Jansen, Julia; von Wichert, Götz; Omary, M. Bishr; Spatz, Joachim; Seufferlein, Thomas

    2012-01-01

    Cell migration and invasion are largely dependent on the complex organization of the various cytoskeletal components. Whereas the role of actin filaments and microtubules in cell motility is well established, the role of intermediate filaments in this process is incompletely understood. Organization and structure of the keratin cytoskeleton, which consists of heteropolymers of at least one type 1 and one type 2 intermediate filament, are in part regulated by post-translational modifications. In particular, phosphorylation events influence the properties of the keratin network. Sphingosylphosphorylcholine (SPC) is a bioactive lipid with the exceptional ability to change the organization of the keratin cytoskeleton, leading to reorganization of keratin filaments, increased elasticity, and subsequently increased migration of epithelial tumor cells. Here we investigate the signaling pathways that mediate SPC-induced keratin reorganization and the role of keratin phosphorylation in this process. We establish that the MEK–ERK signaling cascade regulates both SPC-induced keratin phosphorylation and reorganization in human pancreatic and gastric cancer cells and identify Ser431 in keratin 8 as the crucial residue whose phosphorylation is required and sufficient to induce keratin reorganization and consequently enhanced migration of human epithelial tumor cells. PMID:22344252

  2. Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression.

    PubMed

    Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid

    2016-05-01

    Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D).We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen.In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2. PMID:27121132

  3. Development of a Biomimetic Chondroitin Sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells

    PubMed Central

    Liu, Yang; Wang, Shujun; Sun, Dongsheng; Liu, Yongdong; Liu, Yang; Wang, Yang; Liu, Chang; Wu, Hao; Lv, Yan; Ren, Ying; Guo, Xin; Sun, Guangwei; Ma, Xiaojun

    2016-01-01

    Tumor metastasis with resistance to anticancer therapies is the main cause of death in cancer patients. It is necessary to develop reliable tumor metastasis models that can closely recapitulate the pathophysiological features of the native tumor tissue. In this study, chondroitin sulfate (CS)-modified alginate hydrogel beads (ALG-CS) are developed to mimic the in vivo tumor microenvironment with an abnormally increased expression of CS for the promotion of tumor cell metastasis. The modification mechanism of CS on alginate hydrogel is due to the cross-linking between CS and alginate molecules via coordination of calcium ions, which enables ALG-CS to possess significantly different physical characteristics than the traditional alginate beads (ALG). And quantum chemistry calculations show that in addition to the traditional egg-box structure, novel asymmetric egg-box-like structures based on the interaction between these two kinds of polymers are also formed within ALG-CS. Moreover, tumor cell metastasis is significantly enhanced in ALG-CS compared with that in ALG, as confirmed by the increased expression of MMP genes and proteins and greater in vitro invasion ability. Therefore, ALG-CS could be a convenient and effective 3D biomimetic scaffold that would be used to construct standardized tumor metastasis models for tumor research and anticancer drug screening. PMID:27432752

  4. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.

    PubMed

    Chen, Xi-Sha; Li, Lan-Ya; Guan, Yi-di; Yang, Jin-Ming; Cheng, Yan

    2016-08-01

    Tumor cells rely mainly on glycolysis for energy production even in the presence of sufficient oxygen, a phenomenon termed the Warburg effect, which is the most outstanding characteristic of energy metabolism in cancer cells. This metabolic adaptation is believed to be critical for tumor cell growth and proliferation, and a number of onco-proteins and tumor suppressors, including the PI3K/Akt/mTOR signaling pathway, Myc, hypoxia-inducible factor and p53, are involved in the regulation of this metabolic adaptation. Moreover, glycolytic cancer cells are often invasive and impervious to therapeutic intervention. Thus, altered energy metabolism is now appreciated as a hallmark of cancer and a promising target for cancer treatment. A better understanding of the biology and the regulatory mechanisms of aerobic glycolysis has the potential to facilitate the development of glycolysis-based therapeutic interventions for cancer. In addition, glycolysis inhibition combined with DNA damaging drugs or chemotherapeutic agents may be effective anticancer strategies through weakening cell damage repair capacity and enhancing drug cytotoxicity. PMID:27374491

  5. Mechanical phenotyping of tumor cells using a microfluidic cell squeezer device

    NASA Astrophysics Data System (ADS)

    Khan, Zeina S.; Kamyabi, Nabiollah; Vanapalli, Siva A.

    2013-03-01

    Studies have indicated that cancer cells have distinct mechanical properties compared to healthy cells. We are investigating the potential of cell mechanics as a biophysical marker for diagnostics and prognosis of cancer. To establish the significance of mechanical properties for cancer diagnostics, a high throughput method is desired. Although techniques such as atomic force microscopy are very precise, they are limited in throughput for cellular mechanical property measurements. To develop a device for high throughput mechanical characterization of tumor cells, we have fabricated a microfludic cell squeezer device that contains narrow micrometer-scale pores. Fluid flow is used to drive cells into these pores mimicking the flow-induced passage of circulating tumor cells through microvasculature. By integrating high speed imaging, the device allows for the simultaneous characterization of five different parameters including the blockage pressure, cell velocity, cell size, elongation and the entry time into squeezer. We have tested a variety of in vitro cell lines, including brain and prostate cancer cell lines, and have found that the entry time is the most sensitive measurement capable of differentiating between cell lines with differing invasiveness.

  6. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    EPA Science Inventory

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  7. Antiangiogenic Variant of TSP-1 Targets Tumor Cells in Glioblastomas

    PubMed Central

    Choi, Sung Hugh; Tamura, Kaoru; Khajuria, Rajiv Kumar; Bhere, Deepak; Nesterenko, Irina; Lawler, Jack; Shah, Khalid

    2015-01-01

    Three type-1 repeat (3TSR) domain of thrombospondin-1 is known to have anti-angiogenic effects by targeting tumor-associated endothelial cells, but its effect on tumor cells is unknown. This study explored the potential of 3TSR to target glioblastoma (GBM) cells in vitro and in vivo. We show that 3TSR upregulates death receptor (DR) 4/5 expression in a CD36-dependent manner and primes resistant GBMs to tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)-induced caspase-8/3/7 mediated apoptosis. We engineered human mesenchymal stem cells (MSC) for on-site delivery of 3TSR and a potent and secretable variant of TRAIL (S-TRAIL) in an effort to simultaneously target tumor cells and associated endothelial cells and circumvent issues of systemic delivery of drugs across the blood–brain barrier. We show that MSC-3TSR/S-TRAIL inhibits tumor growth in an expanded spectrum of GBMs. In vivo, a single administration of MSC-3TSR/S-TRAIL significantly targets both tumor cells and vascular component of GBMs, inhibits tumor progression, and extends survival of mice bearing highly vascularized GBM. The ability of 3TSR/S-TRAIL to simultaneously act on tumor cells and tumor-associated endothelial cells offers a great potential to target a broad spectrum of cancers and translate 3TSR/TRAIL therapies into clinics. PMID:25358253

  8. Multiple polyploidy events in the early radiation of nodulating and non-nodulating legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD af...

  9. Induced Polyploidy in Diploid Ornamental Ginger (Hedychium muluense) Using Colchicine and Oryzalin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ploidy level of H. muluense, a diploid (2n = 2x = 34) and dwarf ornamental ginger species, has been determined and is reported for the first time. Oryzalin and colchicine were successfully used to induce polyploidy in Hedychium muluense in vitro. Embryogenic cell lines were treated with oryzalin...

  10. Differential effects of polyploidy and diploidy on fitness of apomictic Boechera.

    PubMed

    Voigt-Zielinski, Marie-Luise; Piwczyński, Marcin; Sharbel, Timothy F

    2012-06-01

    The co-occurrence of apomixis (asexual reproduction) and polyploidy in plants has been the subject of debate in regard to the origin and evolution of asexuality. In recent years, polyploidy has been postulated as a maintenance and stabilization factor rather than as a source of apomixis origin. It is assumed polyploidy facilitates the compensation for mutation accumulation, and hence, the rare occurrence of diploid apomixis indirectly supports this finding. Nevertheless, diploid apomicts exist and are successful, especially in the genus Boechera. While comparing phenotypic traits, fitness-related traits and apomixis penetrance between both diploid and triploid apomicts in the genus Boechera, it was expected to find trait variance that can be attributed to ploidy. Surprisingly, little trait variation could be assigned to ploidy, but rather trait variations were mainly genotype-specific. Additionally, it is shown that paternal contribution is very important for trait success, even though all offspring are genetically identical to the mother plant. This harbors implications for the introduction of apomixis into crop plants, considering the effects of paternal contribution during asexual reproduction. Nevertheless, polyploidy is an efficient way to buffer deleterious mutations, but the flexibility of diploid apomicts of the genus Boechera for rare sexual events contributes to their success in nature. PMID:22367230

  11. Inhibition of medulloblastoma cell invasion by Slit.

    PubMed

    Werbowetski-Ogilvie, T E; Seyed Sadr, M; Jabado, N; Angers-Loustau, A; Agar, N Y R; Wu, J; Bjerkvig, R; Antel, J P; Faury, D; Rao, Y; Del Maestro, R F

    2006-08-24

    Invasion of brain tumor cells has made primary malignant brain neoplasms among the most recalcitrant to therapeutic strategies. We tested whether the secreted protein Slit2, which guides the projection of axons and developing neurons, could modulate brain tumor cell invasion. Slit2 inhibited the invasion of medulloblastoma cells in a variety of in vitro models. The effect of Slit2 was inhibited by the Robo ectodomain. Time-lapse videomicroscopy indicated that Slit2 reduced medulloblastoma invasion rate without affecting cell direction or proliferation. Both medulloblastoma and glioma tumors express Robo1 and Slit2, but only medulloblastoma invasion is inhibited by recombinant Slit2 protein. Downregulation of activated Cdc42 may contribute to this differential response. Our findings reinforce the concept that neurodevelopmental cues such as Slit2 may provide insights into brain tumor invasion. PMID:16636676

  12. Miniaturized Nuclear Magnetic Resonance Platform for Detection and Profiling of Circulating Tumor Cells

    PubMed Central

    Castro, Cesar M.; Ghazani, Arezou A.; Chung, Jaehoon; Shao, Huilin; Issadore, David; Yoon, Tae-Jong; Weissleder, Ralph; Lee, Hakho

    2013-01-01

    Accurate detection and profiling of circulating tumor cells (CTCs) is a highly sought after technology to improve cancer management. Such “liquid biopsies” could offer a non-invasive, repeatable window into each patient’s tumor, facilitating early cancer diagnosis and treatment monitoring. The rarity of CTCs, approximated at 1 CTC for every billion peripheral blood cells, however, poses significant challenges to sensitive and reliable detection. We have recently developed a new biosensor platform, namely a micro-nuclear magnetic resonance (µNMR). Through the synergistic integration of microfabrication, nanosensors, and novel chemistries, the µNMR platform offers high detection sensitivity and point-of-care operation, overcoming technical barriers in CTC research. We herein review the µNMR technology with emphasis on its application on CTC detection. Recent advances in the sensing technology will be summarized, followed by the description on the dynamic interplay between preclinical and clinical CTC studies. PMID:23835814

  13. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy

    PubMed Central

    PASTOREK, MICHAL; SIMKO, VERONIKA; TAKACOVA, MARTINA; BARATHOVA, MONIKA; BARTOSOVA, MARIA; HUNAKOVA, LUBA; SEDLAKOVA, OLGA; HUDECOVA, SONA; KRIZANOVA, OLGA; DEQUIEDT, FRANCK; PASTOREKOVA, SILVIA; SEDLAK, JAN

    2015-01-01

    One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules. PMID:25955133

  14. MDSCs Mediate Angiogenesis and Predispose Canine Mammary Tumor Cells for Metastasis via IL-28/IL-28RA (IFN-λ) Signaling

    PubMed Central

    Mucha, Joanna; Majchrzak, Kinga; Taciak, Bartłomiej; Hellmén, Eva; Król, Magdalena

    2014-01-01

    Background Myeloid-derived suppressor cells (MDSCs) function in immunosuppression and tumor development by induction of angiogenesis in a STAT3-dependent manner. Knowledge of MDSC biology is mainly limited to mice studies, and more clinical investigations using spontaneous tumor models are required. Here we performed in vitro experiments and clinical data analysis obtained from canine patients. Methods Using microarrays we examined changes in gene expression in canine mammary cancer cells due to their co-culture with MDSCs. Further, using Real-time rt-PCR, Western blot, IHC, siRNA, angiogenesis assay and migration/invasion tests we examined a role of the most important signaling pathway. Results In dogs with mammary cancer, the number of circulating MDSCs increases with tumor clinical stage. Microarray analysis revealed that MDSCs had significantly altered molecular pathways in tumor cells in vitro. Particularly important was the detected increased activation of IL-28/IL-28RA (IFN-λ) signaling. The highest expression of IL-28 was observed in stage III/IV mammary tumor-bearing dogs. IL-28 secreted by MDSCs stimulates STAT3 in tumor cells, which results in increased expression of angiogenic factors and subsequent induction of angiogenesis by endothelial cells, epithelial-mesenchymal transition (EMT) and increased migration of tumor cells in vitro. Knockdown of IL-28RA decreased angiogenesis, tumor cell invasion and migration. Conclusions We showed for the first time that MDSCs secrete IL-28 (IFN-λ), which promotes angiogenesis, EMT, invasion and migration of tumor cells. Thus, IL-28 may constitute an interesting target for further therapies. Moreover, the similarity in circulating MDSC levels at various tumor clinical stages between canine and human patients indicates canines as a good model for clinical trials of drugs targeting MDSCs. PMID:25075523

  15. Fibroblasts induce epithelial to mesenchymal transition in breast tumor cells which is prevented by fibroblasts treatment with histamine in high concentration.

    PubMed

    Porretti, Juliana C; Mohamad, Nora A; Martín, Gabriela A; Cricco, Graciela P

    2014-06-01

    Epithelial to mesenchymal transition (EMT) of cancer cells is an essential process in cancer progression. Cancer cells that undergone EMT loose cell-cell contacts, acquire mesenchymal properties and develop migratory and invasive abilities. In previous studies we have demonstrated that histamine may modify the invasive phenotype of pancreatic and mammary tumor cells. In this work we proposed to investigate whether histamine may also influence the interaction between tumor cells and normal fibroblasts. The potential activation of normal CCD-1059Sk fibroblasts by histamine and EMT phenotypic changes induced in MCF-7 and MDA-MB-231 breast tumor cells by the conditioned media (CM) derived from fibroblasts were evaluated. Initially, we determined the presence of H1, H2 and H4 histamine receptors and matrix metalloproteinase 2 (MMP2) mRNA in CCD-1059Sk fibroblasts. MMP2 gelatinolytic activity, cell migration and alpha-smooth muscle actin expression were increased in fibroblasts by low doses (<1μM) and decreased by high doses (20μM) of histamine. MCF-7 cells cultured with CM from fibroblasts exhibited spindle-shaped morphology, cell spreading and cytoplasmic expression of β-catenin but there was no change in MMP2 activity and cell migration. MDA-MB-231 cells cultured with CM from fibroblasts showed a more elongated phenotype, cell spreading, cytoplasmic β-catenin, increased MMP2 activity and endogenous TGF-β1 expression, and enhanced cell migration and invasion. Notably, all these features were reversed when mammary tumor cells were cultured with CM from fibroblasts treated with 20μM histamine. In conclusion, high doses of histamine may prevent the activation of fibroblasts and also avert the EMT related changes induced in epithelial tumor cells by fibroblasts CM. PMID:24685678

  16. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts

    PubMed Central

    Alili, Lirija; Chapiro, Swetlana; Marten, Gernot U.; Schmidt, Annette M.; Zanger, Klaus; Brenneisen, Peter

    2015-01-01

    Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS) and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles. PMID:26090418

  17. Antigen loading of dendritic cells with whole tumor cell preparations.

    PubMed

    Thumann, Peter; Moc, Isabelle; Humrich, Jens; Berger, Thomas G; Schultz, Erwin S; Schuler, Gerold; Jenne, Lars

    2003-06-01

    Dendritic cells (DC) based vaccinations have been widely used for the induction of anti-tumoral immunity in clinical studies. Antigen loading of DC with whole tumor cell preparations is an attractive method whenever tumor cell material is available. In order to determine parameters for the loading procedure, we performed dose finding and timing experiments. We found that apoptotic and necrotic melanoma cells up to a ratio of one-to-one, equivalent to 1mg/ml protein per 1 x 10(6) DC, can be added to monocyte derived DC without effecting DC recovery extensively. Using the isolated protein content of tumor cells (lysate) as a parameter, up to 5 mg/ml protein per 1 x 10(6) DC can be added. To achieve significant protein uptake at least 1 mg/ml of protein have to be added for more than 24 h as tested with FITC-labelled ovalbumin. Maturation inducing cytokines can be added simultaneously with the tumor cell preparations to immature DC without affecting the uptake. Furthermore, we tested the feasibility of cryopreservation of loaded and matured DC to facilitate the generation of ready to use aliquots. DC were cryopreserved in a mix of human serum albumin, DMSO and 5% glucose. After thawing, surface expression of molecules indicating the mature status (CD83, costimulatory and MHC molecules), was found to be unaltered. Furthermore, cryopreserved DC kept the capability to stimulate allogenic T-cell proliferation in mixed leukocyte reactions at full level. Loaded and matured DC pulsed with influenza matrix peptide (IMP) retained the capacity to induce the generation of IMP-specific cytotoxic T-lymphocytes after cryopreservation as measured by ELISPOT and tetramer staining. The expression of the chemokine receptor CXCR-4 and CCR-7 remained unaltered during cryopreservation and the migratory responsiveness towards MIP-3beta was unaltered as measured in a migration assay. Thus we conclude that the large scale loading and maturation of DC with whole tumor cell preparations can be

  18. Inhibition of transcellular tumor cell migration and metastasis by novel carba-derivatives of cyclic phosphatidic acid

    PubMed Central

    Uchiyama, Ayako; Mukai, Mutsuko; Fujiwara, Yuko; Kobayashi, Susumu; Kawai, Nobuyuki; Murofushi, Hiromu; Inoue, Masahiro; Enoki, Shigenori; Tanaka, Yuichiro; Niki, Tamotsu; Kobayashi, Tetsuyuki; Tigyi, Gabor; Murakami-Murofushi, Kimiko

    2010-01-01

    Cyclic phosphatidic acid (1-acyl-sn-glycerol-2,3-cyclic phosphate; cPA) is a naturally occurring analog of lysophosphatidic acid (LPA) with a variety of distinctly different biological activities from those of LPA. In contrast to LPA, a potent inducer of tumor cell invasion, palmitoyl-cPA inhibits FBS- and LPA-induced transcellular migration and metastasis. To prevent the conversion of cPA to LPA we synthesized cPA derivatives by stabilizing the cyclic phosphate ring; to prevent the cleavage of the fatty acid we generated alkyl ether analogs of cPA. Both sets of compounds were tested for inhibitory activity on transcellular tumor cell migration. Carba derivatives, in which the phosphate oxygen was replaced with a methylene group at either the sn-2 or the sn-3 position, showed much more potent inhibitory effects on MM1 tumor cell transcellular migration and the pulmonary metastasis of B16-F0 melanoma than the natural pal-cPA. The antimetastatic effect of carba-cPA was accompanied by the inhibition of RhoA activation and was not due to inhibition of the activation of LPA receptors. PMID:17123862

  19. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules

    PubMed Central

    Yu, Jie; Javier, David; Yaseen, Mohammad A.; Nitin, Nitin; Richards-Kortum, Rebecca; Anvari, Bahman; Wong, Michael S.

    2010-01-01

    New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use is very difficult to carry out. We report the three-step room-temperature synthesis of ~120-nm capsules loaded with ICG within salt-crosslinked polyallylamine aggregates, and coated with anti-epidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression, and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm2. These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using non-covalent chemistry. PMID:20092330

  20. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules.

    PubMed

    Yu, Jie; Javier, David; Yaseen, Mohammad A; Nitin, Nitin; Richards-Kortum, Rebecca; Anvari, Bahman; Wong, Michael S

    2010-02-17

    New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use are difficult to carry out. We report the three-step room-temperature synthesis of approximately 120-nm capsules loaded with ICG within salt-cross-linked polyallylamine aggregates, and coated with antiepidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm(2). These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using noncovalent chemistry. PMID:20092330

  1. Hypoxic Tumor Cell Modulates Its Microenvironment to Enhance Angiogenic and Metastatic Potential by Secretion of Proteins and Exosomes*

    PubMed Central

    Park, Jung Eun; Tan, Hon Sen; Datta, Arnab; Lai, Ruenn Chai; Zhang, Huoming; Meng, Wei; Lim, Sai Kiang; Sze, Siu Kwan

    2010-01-01

    Under hypoxia, tumor cells produce a secretion that modulates their microenvironment to facilitate tumor angiogenesis and metastasis. Here, we observed that hypoxic or reoxygenated A431 carcinoma cells exhibited enhanced angiogenic and metastatic potential such as reduced cell-cell and cell-extracellular matrix adhesion, increased invasiveness, and production of a secretion with increased chorioallantoic membrane angiogenic activity. Consistent with these observations, quantitative proteomics revealed that under hypoxia the tumor cells secreted proteins involved in angiogenesis, focal adhesion, extracellular matrix-receptor interaction, and immune cell recruitment. Unexpectedly, the secreted proteins were predominantly cytoplasmic and membrane proteins. Ultracentrifugation at 100,000 × g precipitated 54% of the secreted proteins and enriched for many exosome-associated proteins such as the tetraspanins and Alix and also proteins with the potential to facilitate angiogenesis and metastasis. Two tetraspanins, CD9 and CD81, co-immunoprecipitated. Together, these data suggested that tumor cells secrete proteins and exosomes with the potential to modulate their microenvironment and facilitate angiogenesis and metastasis. PMID:20124223

  2. Enhanced and Differential Capture of Circulating Tumor Cells from Lung Cancer Patients by Microfluidic Assays Using Aptamer Cocktail

    PubMed Central

    Zhao, Libo; Tang, Chuanhao; Xu, Li; Zhang, Zhen; Li, Xiaoyan; Hu, Haixu; Cheng, Si; Zhou, Wei; Huang, Mengfei; Fong, Anna; Liu, Bing; Tseng, Hsian-Rong; Gao, Hongjun; Liu, Yi; Fang, Xiaohong

    2016-01-01

    Collecting circulating tumor cells (CTCs) shed from solid tumor through a minimally invasive approach provides an opportunity to solve a long-standing oncology problem, the real-time monitoring of tumor state and analysis of tumor heterogeneity. However, efficient capture and detection of CTCs with diverse phenotypes is still challenging. In this work, a microfluidic assay is developed using the rationally-designed aptamer cocktails with synergistic effect. Enhanced and differential capture of CTCs for nonsmall cell lung cancer (NSCLC) patients is achieved. It is also demonstrated that the overall consideration of CTC counts obtained by multiple aptamer combinations can provide more comprehensive information in treatment monitoring. PMID:26763166

  3. Characterization of DNA Methylation in Circulating Tumor Cells

    PubMed Central

    Pixberg, Constantin F.; Schulz, Wolfgang A.; Stoecklein, Nikolas H.; Neves, Rui P. L.

    2015-01-01

    Epigenetics contributes to molecular mechanisms leading to tumor cell transformation and systemic progression of cancer. However, the dynamics of epigenetic remodeling during metastasis remains unexplored. In this context, circulating tumor cells (CTCs) might enable a direct insight into epigenetic mechanisms relevant for metastasis by providing direct access to systemic cancer. CTCs can be used as prognostic markers in cancer patients and are regarded as potential metastatic precursor cells. However, despite substantial technical progress, the detection and molecular characterization of CTCs remain challenging, in particular the analysis of DNA methylation. As recent studies have started to address the epigenetic state of CTCs, we discuss here the potential of such investigations to elucidate mechanisms of metastasis and to develop tumor biomarkers. PMID:26506390

  4. Effects of radiation on metastasis and tumor cell migration.

    PubMed

    Vilalta, Marta; Rafat, Marjan; Graves, Edward E

    2016-08-01

    It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However, the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may, thereby, facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies. PMID:27022944

  5. A Pathway Toward Tumor Cell-Selective CPPs?

    PubMed

    Alves, Isabel D; Carré, Manon; Lavielle, Solange

    2015-01-01

    Despite the great potential of CPPs in therapeutics and diagnosis, their application still suffers from a non-negligible drawback: a complete lack of cell-type specificity. In the innumerous routes proposed for CPP cell entry there is common agreement that electrostatic interactions between cationic CPPs and anionic components in membranes, including lipids and glycosaminoglycans, play a crucial role. Tumor cells have been shown to overexpress certain glycosaminoglycans at the cell membrane surface and to possess a higher amount of anionic lipids in their outer leaflet when compared with healthy cells. Such molecules confer tumor cell membranes an enhanced anionic character, a property that could be exploited by CPPs to preferentially target these cells. Herein, these aspects are discussed in an attempt to confer CPPs certain selectivity toward cancer cells. PMID:26202276

  6. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines.

    PubMed

    Chiang, Cheryl Lai-Lai; Kandalaft, Lana E; Coukos, George

    2011-01-01

    Whole tumor cell lysates can serve as excellent multivalent vaccines for priming tumor-specific CD8(+) and CD4(+) T cells. Whole cell vaccines can be prepared with hypochlorous acid oxidation, UVB-irradiation and repeat cycles of freeze and thaw. One major obstacle to successful immunotherapy is breaking self-tolerance to tumor antigens. Clinically approved adjuvants, including Montanide™ ISA-51 and 720, and keyhole-limpet proteins can be used to enhance tumor cell immunogenicity by stimulating both humoral and cellular anti-tumor responses. Other potential adjuvants, such as Toll-like receptor agonists (e.g., CpG, MPLA and PolyI:C), and cytokines (e.g., granulocyte-macrophage colony stimulating factor), have also been investigated. PMID:21557641

  7. Transport processes in biological systems: Tumoral cells and human brain

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  8. Ascites produced in rats without tubercle bacilli or tumor cells.

    PubMed

    Levine, S; Saltzman, A

    1999-01-01

    Intraperitoneal injection of rats with two doses of pertussis vaccine produces a small amount of ascitic fluid. Much larger amounts of fluid are produced when two spaced injections of the vaccine are preceded by a small amount of liquid petrolatum. A similar result is obtained by a single injection of pertussis vaccine emulsified in liquid petrolatum and Arlacel A. Ascites produced without tubercle bacilli or tumor cells may increase the use of rats for antibody production. PMID:10574628

  9. Spontaneous rejection of intradermally transplanted non-engineered tumor cells by neutrophils and macrophages from syngeneic strains of mice.

    PubMed

    Ibata, Minenori; Takahashi, Takeshi; Shimizu, Tetsunosuke; Inoue, Yoshihiro; Maeda, Shogo; Tashiro-Yamaji, Junko; Okada, Masashi; Ueda, Koichi; Kubota, Takahiro; Yoshida, Ryotaro

    2011-10-01

    It is not surprising that tumors arising spontaneously are rarely rejected by T cells, because in general they lack molecules to elicit a primary T-cell response. In fact, cytokine-engineered tumors can induce granulocyte infiltration leading to tumor rejection. In the present study, we i.d. injected seven kinds of non-engineered tumor cells into syngeneic strains of mice. Three of them (i.e. B16, KLN205, and 3LL cells) continued to grow, whereas four of them (i.e. Meth A, I-10, CL-S1, and FM3A cells) were spontaneously rejected after transient growth or without growth. In contrast to the i.d. injection of B16 cells into C57BL/6 mice, which induces infiltration of TAMs into the tumors, the i.d. injection of Meth A cells into BALB/c mice induced the invasion of cytotoxic inflammatory cells, but not of TAMs, into or around the tumors leading to an IFN-γ-dependent rejection. On day 5, the cytotoxic activity against the tumor cells reached a peak; and the effector cells were found to be neutrophils and macrophages. The i.d. Meth A or I-10 cell-immunized, but not non-immunized, mice rejected i.p.- or i.m.-transplanted Meth A or I-10 cells without growth, respectively. The main effector cells were CTLs; and there was no cross-sensitization between these two kinds of tumor cells, suggesting specific rejection of tumor cells by CTLs from i.d. immunized mice. These results indicate that infiltration of cytotoxic myeloid cells (i.e. neutrophils and macrophages, but not TAMs) into or around tumors is essential for their IFN-γ-dependent spontaneous rejection. PMID:21806674

  10. Single cell molecular recognition of migrating and invading tumor cells using a targeted fluorescent probe to receptor PTPmu.

    PubMed

    Burden-Gulley, Susan M; Qutaish, Mohammed Q; Sullivant, Kristin E; Tan, Mingqian; Craig, Sonya E L; Basilion, James P; Lu, Zheng-Rong; Wilson, David L; Brady-Kalnay, Susann M

    2013-04-01

    Detection of an extracellular cleaved fragment of a cell-cell adhesion molecule represents a new paradigm in molecular recognition and imaging of tumors. We previously demonstrated that probes that recognize the cleaved extracellular domain of receptor protein tyrosine phosphatase mu (PTPmu) label human glioblastoma brain tumor sections and the main tumor mass of intracranial xenograft gliomas. In this article, we examine whether one of these probes, SBK2, can label dispersed glioma cells that are no longer connected to the main tumor mass. Live mice with highly dispersive glioma tumors were injected intravenously with the fluorescent PTPmu probe to test the ability of the probe to label the dispersive glioma cells in vivo. Analysis was performed using a unique three-dimensional (3D) cryo-imaging technique to reveal highly migratory and invasive glioma cell dispersal within the brain and the extent of colabeling by the PTPmu probe. The PTPmu probe labeled the main tumor site and dispersed cells up to 3.5 mm away. The cryo-images of tumors labeled with the PTPmu probe provide a novel, high-resolution view of molecular tumor recognition, with excellent 3D detail regarding the pathways of tumor cell migration. Our data demonstrate that the PTPmu probe recognizes distant tumor cells even in parts of the brain where the blood-brain barrier is likely intact. The PTPmu probe has potential translational significance for recognizing tumor cells to facilitate molecular imaging, a more complete tumor resection and to serve as a molecular targeting agent to deliver chemotherapeutics to the main tumor mass and distant dispersive tumor cells. PMID:22987116

  11. Tumor cell lysates as immunogenic sources for cancer vaccine design

    PubMed Central

    González, Fermín E; Gleisner, Alejandra; Falcón-Beas, Felipe; Osorio, Fabiola; López, Mercedes N; Salazar-Onfray, Flavio

    2015-01-01

    Autologous dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumor-derived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients. PMID:25625929

  12. Microvascular Transport and Tumor Cell Adhesion in the Microcirculation

    PubMed Central

    Fu, Bingmei M.; Liu, Yang

    2016-01-01

    One critical step in tumor metastasis is tumor cell adhesion to the endothelium forming the microvessel wall. Understanding this step may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to, and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent ECs (interendothelial cleft) is the principal pathway for water and solutes transport through the microvessel wall in health. It is also suggested to be the pathway for high molecular weight plasma proteins, leukocytes and tumor cells across microvessel walls in disease. Thus the first part of the review introduced the mathematical models for water and solutes transport through the interendothelial cleft. These models, combined with the experimental results from in vivo animal studies and electron microscopic observations, are used to evaluate the role of the endothelial surface glycocalyx, the junction strand geometry in the interendothelial cleft, and the surrounding extracellular matrix and tissue cells, as the determinants of microvascular transport. The second part of the review demonstrated how the microvascular permeability, hydrodynamic factors, microvascular geometry and cell adhesion molecules affect tumor cell adhesion in the microcirculation. PMID:22476895

  13. Sphingosine Kinase Activity Is Not Required for Tumor Cell Viability

    PubMed Central

    Brown, Matthew L.; Carlson, Timothy; Coxon, Angela; Fajardo, Flordeliza; Frank, Brendon; Gustin, Darin; Kamb, Alexander; Kassner, Paul D.; Li, Shyun; Li, Yihong; Morgenstern, Kurt; Plant, Matthew; Quon, Kim; Ruefli-Brasse, Astrid; Schmidt, Joanna; Swearingen, Elissa; Walker, Nigel; Wang, Zhulun; Watson, J. E. Vivienne; Wickramasinghe, Dineli; Wong, Mariwil; Xu, Guifen; Wesche, Holger

    2013-01-01

    Sphingosine kinases (SPHKs) are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P). In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress. Despite numerous publications with supporting evidence, a clear experimental confirmation of the impact of this mechanism on tumor cell viability in vitro and in vivo has been hampered by the lack of suitable tool reagents. Utilizing a structure based design approach, we developed potent and specific SPHK1/2 inhibitors. These compounds completely inhibited intracellular S1P production in human cells and attenuated vascular permeability in mice, but did not lead to reduced tumor cell growth in vitro or in vivo. In addition, siRNA experiments targeting either SPHK1 or SPHK2 in a large panel of cell lines failed to demonstrate any statistically significant effects on cell viability. These results show that the SPHK rheostat does not play a major role in tumor cell viability, and that SPHKs might not be attractive targets for pharmacological intervention in the area of oncology. PMID:23861887

  14. Microfluidic Device for Studying Tumor Cell Extravasation in Cancer Metastasis

    SciTech Connect

    Lin, Henry K; Thundat, Thomas George; Evans III, Boyd Mccutchen; Datar, Ram H; Reese, Benjamin E; Zheng, Siyang

    2010-01-01

    Metastasis is the process by which cancer spreads to form secondary tumors at downstream locations throughout the body. This uncontrolled spreading is the leading cause of death in patients with epithelial cancers and is the main reason that suppressing and targeting cancer has proven to be so challenging. Tumor cell extravasation is one of the key steps in cancer s progression towards a metastatic state. This occurs when circulating tumor cells found within the blood stream are able to transmigrate through the endothelium lining and basement membrane of the vasculature to form metastatic tumors at secondary sites within the body. Predicting the likelihood of this occurrence in patients, or being able to determine specific markers involved in this process could lead to preventative measures targeting these types of cancer; moreover, this may lead to the discovery of novel anti-metastatic drugs. We have developed a microfluidic device that has shown the extravasation of fluorescently labeled tumor cells across an endothelial cell lined membrane coated with matrigel followed by the formation of colonies. This device provides the advantages of combining a controlled environment, mimicking that found within the body, with real-time monitoring capabilities allowing for the study of these biomarkers and cellular interactions along with other potential mechanisms involved in the process of extravasation.

  15. Intracellular particle tracking as a tool for tumor cell characterization

    NASA Astrophysics Data System (ADS)

    Li, Yixuan; Schnekenburger, Juergen; Duits, Michael H. G.

    2009-11-01

    We studied the dynamics of two types of intracellular probe particles, ballistically injected latex spheres and endogenous granules, in tumor cell lines of differerent metastatic potential: breast tumor cells (MCF-7 malignant, MCF-10A benign) and pancreas adenocarcinoma (PaTu8988T malignant, PaTu8988S benign). For both tissue types and for both probes, the mean squared displacement (MSD) function measured in the malignant cells was substantially larger than in the benign cells. Only a few cells were needed to characterize the tissue as malignant or benign based on their MSD, since variations in MSD within the same cell line were relatively small. These findings suggest that intracellular particle tracking (IPT) can serve as a simple and reliable method for characterization of cell states obtained from a small amount of cell sample. Mechanical analysis of the same cell lines with atomic force microscopy (AFM) in force-distance mode revealed that AFM could distinguish between the benign and malignant breast cancer cells but not the pancreatic tumor cell lines. This underlines the potential value of IPT as a complementary nanomechanical tool for studying cell-state-dependent mechanical properties.

  16. Tumor cell lysates as immunogenic sources for cancer vaccine design.

    PubMed

    González, Fermín E; Gleisner, Alejandra; Falcón-Beas, Felipe; Osorio, Fabiola; López, Mercedes N; Salazar-Onfray, Flavio

    2014-01-01

    Autologous dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumor-derived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients. PMID:25625929

  17. Induction of protein tyrosine phosphorylation in macrophages incubated with tumor cells.

    PubMed

    Sodhi, A; Shrivastava, A; Kumar, R

    1995-03-01

    The cellular and molecular interaction between monocyte/macrophage and tumor cells leading to macrophage activation is not clearly understood. Since protein tyrosine phosphorylation appears to be a major intracellular signalling event, we checked whether the tumor cells alter tyrosine phosphorylation of proteins in macrophages. We found that both L929 and Yac-1 tumor cells induced increased tyrosine phosphorylation of several polypeptides in peritoneal as well as P388D-1 and IC-21 macrophages. Macrophages co-cultured with tumor cells also showed increased fluorescence with anti-phosphotyrosine-FITC antibody. These observations suggest that increased tyrosine phosphorylation plays a role in tumor cell-induced activation of macrophages. PMID:7539664

  18. A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean1[OPEN

    PubMed Central

    Kim, Kyung Do; El Baidouri, Moaine; Abernathy, Brian; Iwata-Otsubo, Aiko; Chavarro, Carolina; Gonzales, Michael; Libault, Marc; Grimwood, Jane; Jackson, Scott A.

    2015-01-01

    Soybean (Glycine max) and common bean (Phaseolus vulgaris) share a paleopolyploidy (whole-genome duplication [WGD]) event, approximately 56.5 million years ago, followed by a genus Glycine-specific polyploidy, approximately 10 million years ago. Cytosine methylation is an epigenetic mark that plays an important role in the regulation of genes and transposable elements (TEs); however, the role of DNA methylation in the fate/evolution of genes following polyploidy and speciation has not been fully explored. Whole-genome bisulfite sequencing was used to produce nucleotide resolution methylomes for soybean and common bean. We found that, in soybean, CG body-methylated genes were abundant in WGD genes, which were, on average, more highly expressed than single-copy genes and had slower evolutionary rates than unmethylated genes, suggesting that WGD genes evolve more slowly than single-copy genes. CG body-methylated genes were also enriched in shared single-copy genes (single copy in both species) that may be responsible for the broad and high expression patterns of this class of genes. In addition, diverged methylation patterns in non-CG contexts between paralogs were due mostly to TEs in or near genes, suggesting a role for TEs and non-CG methylation in regulating gene expression post polyploidy. Reference methylomes for both soybean and common bean were constructed, providing resources for investigating epigenetic variation in legume crops. Also, the analysis of methylation patterns of duplicated and single-copy genes has provided insights into the functional consequences of polyploidy and epigenetic regulation in plant genomes. PMID:26149573

  19. Determination by flow cytometry polyploidy inducing-capacity of colchicine in Cajanus cajan (L.) Mill sp.

    PubMed

    Udensi, O U; Ontui, V

    2013-07-01

    The need to optimize flow cytometric analysis for the determination of ploidy level is a worthwhile venture to precisely know at what concentration of a mutagen and at what time of exposure polyploidy could be induced. Flow cytometry was used to determine the polyploidy inducing-capacity of colchicine in pigeon pea (Cajanus cajan (L.) Mill sp). Seeds of pigeon pea were soaked in three different concentrations of colchicine-5 mg, 10 and 15 mg L(-1) for 24, 48 and 72 h, respectively, while the control group was soaked in water. Treated seeds and those from the control were planted in a greenhouse using a Completely Randomized Design (CRD). Results show that colchicine induced tetraploids (4n) and mixoploids (2n+ 4n) as the concentration of colchicine increased and soaking duration. Days to seedling emergence increased as concentration of colchicine and duration of soaking increased while germination rate decreased proportionately with the increase in colchicine concentration and soaking duration but did not significantly affect percentage seedling survival. Explicitly, colchicine has the capacity of inducing polyploidy; especially tetraploids on the seeds of pigeon pea, which obviously could be harnessed for further breeding and improvement of the pigeon pea. PMID:24505986

  20. An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae).

    PubMed

    Schmidt-Lebuhn, A N; Fuchs, J; Hertel, D; Hirsch, H; Toivonen, J; Kessler, M

    2010-11-01

    The Andean tree genus Polylepis (Rosaceae) is notorious for the high morphological plasticity of its species and the difficulty in their circumscription. The evolutionary mechanisms that have driven diversification of the genus are still poorly understood, with factors as diverse as ecological specialisation, reticulate evolution, polyploidisation and apomixis being proposed to contribute. In the present study, chromosome counts, flow cytometry and stomata guard cell size measurements were employed to document for the first time the presence of polyploidy in the genus and to infer ploidy levels for most species. Inferred ploidy levels show a clear progression from diploidy in cloud forest species to polyploidy (tetra- to octoploidy) in the morphologically and ecologically specialised incana group, indicating that polyploidisation may have played a major role in speciation processes and the colonisation of novel habitats during the Andean uplift. At least two species of Polylepis comprise populations with varying degrees of ploidy. More extensive studies are needed to obtain a better understanding of the prevalence and effects of intraspecific polyploidy in the genus. PMID:21040307

  1. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration.

    PubMed

    Pathak, Amit; Kumar, Sanjay

    2013-08-01

    It is now well established that tumor cell invasion through tissue is strongly regulated by the microstructural and mechanical properties of the extracellular matrix (ECM). However, it remains unclear how these physical microenvironmental inputs are jointly processed with oncogenic lesions to drive invasion. In this study, we address this open question by combining a microfabricated polyacrylamide channel (μPAC) platform that enables independent control of ECM stiffness and confinement with an isogenically-matched breast tumor progression series in which the oncogenes ErbB2 and 14-3-3ζ are overexpressed independently or in tandem. We find that increasing channel confinement and overexpressing ErbB2 both promote cell migration to a similar degree when other parameters are kept constant. In contrast, 14-3-3ζ overexpression slows migration speed, and does so in a fashion that dwarfs effects of ECM confinement and stiffness. We also find that ECM stiffness dramatically enhances cell motility when combined with ErbB2 overexpression, demonstrating that biophysical cues and cell-intrinsic parameters promote cell invasion in an integrative manner. Morphometric analysis of cells inside the μPAC platform reveals that the rapid cell migration induced by narrow channels and ErbB2 overexpression are both accompanied by increased cell polarization. Disruption of this polarization occurs by pharmacological inhibition of Rac GTPase phenocopies 14-3-3ζ overexpression by reducing cell polarization and slowing migration. By systematically measuring migration speed as a function of matrix stiffness and confinement, we also quantify for the first time the sensitivity of migration speed to microchannel properties and transforming potential. These results demonstrate that oncogenic lesions and ECM biophysical properties can synergistically interact to drive invasive migration, and that both inputs may act through common molecular mechanisms to enhance migration speed. PMID:23832051

  2. Inhibitor of Aurora Kinase B Induces Differentially Cell Death and Polyploidy via DNA Damage Response Pathways in Neurological Malignancy: Shedding New Light on the Challenge of Resistance to AZD1152-HQPA.

    PubMed

    Zekri, Ali; Ghaffari, Seyed H; Yaghmaie, Marjan; Estiar, Mehrdad Asghari; Alimoghaddam, Kamran; Modarressi, Mohammad Hossein; Ghavamzadeh, Ardeshir

    2016-04-01

    Aurora kinase B (AURKB), a crucial regulator of malignant mitosis, is involved in chromosome segregation and cytokinesis. AZD1152-HQPA is a selective inhibitor for AURKB activity and currently bears clinical assessment for several malignancies. However, the effect of this drug still needs to be elucidated in neurological malignancies. In this study, we investigated the restrictive potentials of AZD1152-HQPA in U87MG and SK-N-MC. AZD1152-HQPA treatment resulted in growth arrest, modification of cell cycle, and inhibition of colony formation in both cell lines. Furthermore, lower concentrations of AZD1152-HQPA profoundly induced apoptosis in U87GM (p53/p73 wild type) cells in parallel with an upregulation of p53 and its target genes BAX, BAD, APAF1, and PUMA. But remarkably, SK-N-MC (p53/p73 double null) responded to AZD1152-HQPA at much higher concentrations with an upregulation of genes involved in cell cycle progression, induction of excessive endoreduplication, and polyploidy rather than apoptosis. Although SK-N-MC was resistant to AZD1152-HQPA, we did not find a mutation in the coding sequence of Aurora B gene or overexpressions of ABCG2 and ABCB1 as reported previously to be resistance mechanisms. However, our results suggest that p53/p73 status could be an important mechanism for the type of response and resistance of the tumor cells to AZD1152-HQPA. Collectively, inhibition of Aurora kinase B differentially induced cell death and polyploidy via DNA damage response pathways, depending on the status of p53/p73. We suggest p53/p73 could be a key regulator of sensitivity to AZD1152-HQPA and their status should be explored in clinical response to this ongoing drug in clinical trials. PMID:25752998

  3. Passive Entrapment of Tumor Cells Determines Metastatic Dissemination to Spinal Bone and Other Osseous Tissues.

    PubMed

    Broggini, Thomas; Piffko, Andras; Hoffmann, Christian J; Harms, Christoph; Vajkoczy, Peter; Czabanka, Marcus

    2016-01-01

    During the metastatic process tumor cells circulate in the blood stream and are carried to various organs. In order to spread to different organs tumor cell-endothelial cell interactions are crucial for extravasation mechanisms. It remains unclear if tumor cell dissemination to the spinal bone occurs by passive entrapment of circulating tumor cells or by active cellular mechanisms mediated by cell surface molecules or secreted factors. We investigated the seeding of three different tumor cell lines (melanoma, lung and prostate carcinoma) to the microvasculature of different organs. Their dissemination was compared to biologically passive microbeads. The spine and other organs were resected three hours after intraarterial injection of tumor cells or microbeads. Ex vivo homogenization and fluorescence analysis allowed quantification of tumor cells or microbeads in different organs. Interestingly, tumor cell distribution to the spinal bone was comparable to dissemination of microbeads independent of the tumor cell type (melanoma: 5.646% ± 7.614%, lung: 6.007% ± 1.785%, prostate: 3.469% ± 0.602%, 7 μm beads: 9.884% ± 7.379%, 16 μm beads: 7.23% ± 1.488%). Tumor cell seeding differed significantly between tumor cells and microbeads in all soft tissue organs. Moreover, there were significant differences between the different tumor cell lines in their dissemination behaviour to soft tissue organs only. These findings demonstrate that metastatic dissemination of tumor cells to spinal bone and other osseous organs is mediated by passive entrapment of tumor cells similar to passive plugging of microvasculature observed after intraarterial microbeads injection. PMID:27603673

  4. Liquid biopsy of gastric cancer patients: circulating tumor cells and cell-free nucleic acids.

    PubMed

    Tsujiura, Masahiro; Ichikawa, Daisuke; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Otsuji, Eigo

    2014-03-28

    To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called "liquid biopsy", would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of "tailor-made" cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC. PMID:24696609

  5. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    NASA Astrophysics Data System (ADS)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  6. The Ultrasound effects on non tumoral cell line at 1 MHz therapeutic frequency

    NASA Astrophysics Data System (ADS)

    Di Giambattista, L.; Grimaldi, P.; Udroiu, I.; Pozzi, D.; Cinque, G.; Frogley, M. D.; Cassarà, A. M.; Bedini, A.; Giliberti, C.; Palomba, R.; Buogo, S.; Giansanti, A.; Congiu Castellano, A.

    2011-02-01

    The aim of this research is to investigate some bioeffects due to Therapeutic Ultrasound (1 MHz and 50tumoral cells. Ultrasound (US) has been demonstrated to alter the cell membrane permeability due to a biophysical mechanism, Sonoporation, and exploited as a promising non-invasive gene transfer method. We have used the NIH-3T3 cell line as a model system and exposed it to US medical equipment for 15, 30, 45, 60 minutes at distances of 10 and 15 cm from the source transducer, corresponding to the far field region where cm. We have worked with the maximum power in pulsed system with 75% duty cycle. Characterization of the unfocused, planar and with a circular geometry 1 MHz source transducer, was performed and the acoustics pressure was measured by a calibrated 0.5 mm needle hydrophone; moreover, the pressure field generated by the source transducer was simulated. The US effects on cells were assessed by Fourier transform infrared (FTIR) Imaging with focal plane array (FPA) detector. By the IR analysis, the US exposure on non tumoral cells has induced a change of the intensity for CH2 asymmetric stretching (2924 cm-1) band in the lipid region (3000-2800 cm-1) that it could detect an energy-dependent process. It has already shown that cells invest energy to catalyze lipid movement in order to maintain a specific transmembrane phospholipid distribution. Although asymmetry is the rule for control cells, the loss of asymmetry could be associated with the permeability change of plasma membrane inducing temporary pores.

  7. Identification of novel therapeutic targets in the secretome of ionizing radiation‑induced senescent tumor cells.

    PubMed

    Hwang, Hyun Jung; Jung, Seung Hee; Lee, Hyung Chul; Han, Na Kyung; Bae, In Hwa; Lee, Minyoung; Han, Young-Hoon; Kang, Young-Sun; Lee, Su-Jae; Park, Heon Joo; Ko, Young-Gyu; Lee, Jae-Seon

    2016-02-01

    Cellular senescence is a state of irreversible growth arrest that can be triggered by multiple mechanisms, including telomere shortening, the epigenetic derepression of the INK4α/ARF locus and DNA damage. Senescence has been considered a tumor‑suppressing mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells have deleterious effects on the tissue microenvironment. Some of these effects could be attributed to the senescence‑associated secretory phenotype that has the ability to promote tumor progression. However, secreted proteins from senescent tumor cells and their effects on the tumor microenvironment due to ionizing radiation (IR) exposure have not yet been fully elucidated. In the present study, we analyzed cytokines secreted from IR‑induced senescent MCF7 cells by using cytokine microarrays and confirmed by western blot analysis that increased secretion of osteoprotegerin (OPG), midkine (MDK) and apolipoprotein E3 (ApoE3) occurs in these cells. Invasive, migratory and wound‑healing activities were observed in MDA‑MB‑231 and MCF‑10A cells following treatment with recombinant human OPG, MDK and ApoE3 proteins. Additionally, tube‑formation activity was assessed in OPG‑, MDK‑ and ApoE3‑treated human umbilical vein endothelial cells (HUVECs). We found that OPG, MDK and ApoE3 affected cell motility and tube‑formation activity. Since OPG markedly affected cell motility, we examined the effect of senescent conditioned media containing neutralizing OPG antibodies on migration and wound‑healing activity. Our results demonstrated that IR‑induced senescent tumor cells influence the tumor microenvironment by increasing the production of cytokines, such as OPG, MDK and ApoE3. Furthermore, these data suggest that OPG is likely a promising target capable of reducing the deleterious effects on the tumor microenvironment during radiation therapy. PMID:26717900

  8. Diagnostic Applications and Methods to Isolate Circulating Tumor Cells (CTCs) from Blood

    NASA Astrophysics Data System (ADS)

    Tang, Cha-Mei

    2013-03-01

    Each year a million new cancer cases are diagnosed in the United States. Ninety percent of the deaths will be the result of metastasis, not from the primary tumor. Tissue biopsy is a universally accepted tool for cancer diagnosis and determination of treatment. The procedure varies, but is invasive, costly, and can be fatal, and for these reasons is seldom repeated after initial diagnosis. Monitoring of treatment response and for possible relapse is usually done by CT or MRI scan, both of which are expensive and require the tumor to change size perceptibly. Further, cancer can mutate or develop resistance to therapeutics and require modification of the treatment regimen. The initial tissue biopsy often cannot reflect the disease as it progresses, requiring new biopsy samples to determine a change of treatment. All carcinomas, about 80% of all cancer, shed tumor cells into the circulation, most often at the later stages when treatment is more critical. These circulating tumor cells (CTCs) are the cause of metastasis, and can be isolated from patient blood to serve as ``liquid biopsy''. These CTCs contain a valuable trove of information that help both patient and clinician understand disease status. In addition to counting the number of CTCs (known to be a prognostic indicator of survival), CTCs can provide biomarker information such as protein expressions and gene mutations, amplifications, and translocations. This information can be used to determine treatment. During treatment, the number of intact and apoptotic CTCs can be measured on a repeated basis to measure the patient's response to treatment and disease progression. Following treatment, liquid biopsy can be repeated at regular intervals to watch for relapse. Methods to isolate CTCs can be grouped into three categories: i) immunocapture based on surface markers of CTCs, ii) size exclusion based on CTC size, typically larger than blood cells, and iii) negative selection utilizing red blood cell lysis, white

  9. Escin, a Pentacyclic Triterpene, Chemosensitizes Human Tumor Cells through Inhibition of Nuclear Factor-κB Signaling Pathway

    PubMed Central

    Harikumar, Kuzhuvelil B.; Sung, Bokyung; Pandey, Manoj K.; Guha, Sushovan; Krishnan, Sunil

    2010-01-01

    Agents that can enhance tumor cell apoptosis and inhibit invasion have potential for the treatment of cancer. Here, we report the identification of escin, a pentacyclic triterpenoid from horse chestnut that exhibits antitumor potential against leukemia and multiple myeloma. Whether examined by esterase staining, phosphatidyl-serine staining, DNA breakage, or caspase-mediated poly(ADP-ribose) polymerase cleavage, escin potentiated tumor necrosis factor (TNF)-induced apoptosis but inhibited tumor cell invasion. This correlated with the down-regulation of bcl-2, cellular inhibitor of apoptosis protein-2, cyclin D1, cyclooxygenase-2, intercellular adhesion molecule-1, matrix metalloproteinase-9, and vascular endothelial growth factor, which are all regulated by the activation of the transcription factor NF-κB. When examined by electrophoretic mobility shift assay, the triterpenoid suppressed nuclear factor-κB (NF-κB) activation induced by TNF and other inflammatory agents, and this correlated with the inhibition of IκBα phosphorylation and degradation, inhibition of IκB kinase complex (IKK) activation, suppression of p65 phosphorylation and nuclear translocation, and abrogation of NF-κB-dependent reporter activity. Overall, our results demonstrate that escin inhibits activation of NF-κB through inhibition of IKK, leading to down-regulation of NF-κB-regulated cell survival and metastatic gene products and thus resulting in sensitization of cells to cytokines and chemotherapeutic agents. PMID:20103608

  10. Detection of Circulating Tumor Cells by Fluorescent Immunohistochemistry in Patients with Esophageal Squamous Cell Carcinoma: Potential Clinical Applications.

    PubMed

    Li, Shu-Ping; Guan, Quan-Lin; Zhao, Da; Pei, Guang-Jun; Su, Hong-Xin; Du, Lan-Ning; He, Jin-Xiang; Liu, Zhao-Chen

    2016-01-01

    BACKGROUND Circulating tumor cells (CTCs) are tumor cells that leave the primary tumor site and enter the bloodstream, where they can spread to other organs; they are very important in the diagnosis, treatment, and prognosis of malignant tumors. However, few studies have investigated CTCs in esophageal squamous cell carcinoma (ESCC). The aim of this study was to investigate the CTCs in blood of ESCC patients and its potential relevance to clinicopathological features and prognosis. MATERIAL AND METHODS CTCs were acquired by a negative enrichment method that used magnetic activated cell sorting (MACSTM). Fluorescent immunohistochemistry (IHC) was used to identify the CTCs. Then, the positive CTC patients with ESCC were analyzed, after which the relationship between CTCs and clinicopathologic features was evaluated. RESULTS In the present study, 62 out of 140 (44.3%) patients with ESCC were positive for CTCs. The positive rate of CTCs was significantly related with stage of ESCC patients (P=0.013). However, there was no relationship between CTC status and age, sex, smoking tumor history, tumor location, differentiation of tumor, lymphatic invasion, or lymph venous invasion (P>0.05). Kaplan-Meier analysis showed that patients positive for CTCs had significantly shorter survival time than patients negative for CTCs. Multivariate analysis demonstrated that stage and CTC status were significant prognostic factors for patients with ESCC. CONCLUSIONS CTCs positivity is an independent prognostic biomarker that indicates a worse prognosis for patients with ESCC. PMID:27184872

  11. Ceramide Kinase Promotes Tumor Cell Survival and Mammary Tumor Recurrence

    PubMed Central

    Payne, Ania W.; Pant, Dhruv K.; Pan, Tien-chi; Chodosh, Lewis A.

    2014-01-01

    Recurrent breast cancer is typically an incurable disease and, as such, is disproportionately responsible for deaths from this disease. Recurrent breast cancers arise from the pool of disseminated tumor cells (DTCs) that survive adjuvant or neoadjuvant therapy, and patients with detectable DTCs following therapy are at substantially increased risk for recurrence. Consequently, the identification of pathways that contribute to the survival of breast cancer cells following therapy could aid in the development of more effective therapies that decrease the burden of residual disease and thereby reduce the risk of breast cancer recurrence. We now report that Ceramide Kinase (Cerk) is required for mammary tumor recurrence following HER2/neu pathway inhibition and is spontaneously up-regulated during tumor recurrence in multiple genetically engineered mouse models for breast cancer. We find that Cerk is rapidly up-regulated in tumor cells following HER2/neu down-regulation or treatment with Adriamycin and that Cerk is required for tumor cell survival following HER2/neu down-regulation. Consistent with our observations in mouse models, analysis of gene expression profiles from over 2,200 patients revealed that elevated CERK expression is associated with an increased risk of recurrence in women with breast cancer. Additionally, although CERK expression is associated with aggressive subtypes of breast cancer, including those that are ER–, HER2+, basal-like, or high grade, its association with poor clinical outcome is independent of these clinicopathological variables. Together, our findings identify a functional role for Cerk in breast cancer recurrence and suggest the clinical utility of agents targeted against this pro-survival pathway. PMID:25164007

  12. Secondary specific immune response in vitro to MSV tumor cells.

    PubMed

    Senik, A; Hebrero, F P; Levy, J P

    1975-12-15

    The interactions which occur between antigenic tumor cells and normal or immune lymphoid cells in a 3-day in vitro culture, have been studied with a murine sarcoma virus (MSV)-induced tumor. The 3H-thymidine incorporation of lymphoma cells growing in suspension, and the radioactive-chromium release of freshly sampled lymphoma cells regularly added to the culture, have been compared to determine the part played by immune lymphoid cells in cytolysis and cytostasis of the tumor-cell population. The cytolytic activity increases in the culture from day 0 to day 3. It is due, predominantly, to T-cells, and remains specific to antigens shared by MSV tumors and related lymphomas. This activity would be difficult to detect unless freshly sampled ascitic cells were used as targets, since the lymphoma cells spontaneously lose a part of their sensitivity to immune cytolysis during in vitro culture. The method used in the present experiments is a secondary chromium release test (SCRT), which measures the invitro secondary stimulation of cytotoxic T-lymphocytes (CTL) by tumor cells. In the absence of stimulatory cells, the CTL activity would have rapidly fallen in vitro. The cytostatic activity also increases during the 3 days in vitro, in parallel to the cytolytic activity: it is due to non-T-cells and remains mainly non-specific. The significance of these data for the interpretation of invitro demonstrated cell-mediated anti-tumor immune reactions is briefly discussed, as well as their relevance in the in vivo role of immune CTL. PMID:53210

  13. Correlation of proliferative and clonogenic tumor cells in multiple myeloma

    SciTech Connect

    Karp, J.E.; Burke, P.J.; Saylor, P.L.; Humphrey, R.L.

    1984-09-01

    To expand on the findings from previous clinical trials that the growth of residual tumor is increased at a predictable time following initial drug administration, malignant plasma cells from bone marrows of patients with multiple myeloma (MM) were examined for changes in proliferation and clonogenicity induced in vivo by cyclophosphamide and in vitro by drug-induced humoral stimulatory activity. Peak plasma cell (/sup 3/H)thymidine labeling index (LI) occurred predictably following drug and paralleled changes in agar colony formation by marrow cells obtained during therapy. Colony-forming capacity of pretreatment MM marrow populations was enhanced when those cells were cultured with humoral stimulatory activity, similar to the increased colony formation detected in Day 9 postcyclophosphamide marrows at the time of peak plasma cell LI. To further define a relationship between proliferative plasma cells and colony-forming tumor cells, MM marrows were fractionated by sedimentation on an isokinetic gradient. Enrichment of a proliferative tumor cell cohort was achieved, evidenced by (/sup 3/H)thymidine LI. Colony-forming cells were also enriched by isokinetic gradient sedimentation, and agar colony formation by MM marrow cell fractions correlated with the kinetic characteristics of the isolated subpopulations. These studies of whole and fractionated human MM marrow cell populations suggest that the kinetically active cells which are induced to proliferate in vivo and in vitro are closely related to the clonogenic tumor cells which produce colonies in agar and which, like those cells measured by (/sup 3/H)thymidine LI, respond to growth stimulation by drug-induced humoral stimulatory activity.

  14. Select forms of tumor cell apoptosis induce dendritic cell maturation.

    PubMed

    Demaria, Sandra; Santori, Fabio R; Ng, Bruce; Liebes, Leonard; Formenti, Silvia C; Vukmanovic, Stanislav

    2005-03-01

    Dendritic cells (DC) play a crucial role in initiating immune responses to tumors. DC can efficiently present antigens from apoptotic tumor cells, but apoptotic cells are thought to lack the inflammatory signals required to induce DC maturation. Here, we show that apoptosis of 67NR mouse carcinoma cells via the Fas (CD95) pathway or induced by the anticancer drug bortezomib (PS-341) but not by ultraviolet irradiation is associated with the production of maturation signals for DC. These data have important implications for the effects of chemotherapy on antitumor immunity in solid and hematologic malignancies. PMID:15569694

  15. Mechanobiology of tumor invasion: engineering meets oncology

    PubMed Central

    Carey, Shawn P.; D’Alfonso, Timothy M.; Shin, Sandra J.; Reinhart-King, Cynthia A.

    2011-01-01

    The physical sciences and engineering have introduced novel perspectives into the study of cancer through model systems, tools, and metrics that enable integration of basic science observations with clinical data. These methods have contributed to the identification of several overarching mechanisms that drive processes during cancer progression including tumor growth, angiogenesis, and metastasis. During tumor cell invasion – the first clinically observable step of metastasis – cells demonstrate diverse and evolving physical phenotypes that cannot typically be defined by any single molecular mechanism, and mechanobiology has been used to study the physical cell behaviors that comprise the “invasive phenotype”. In this review, we discuss the continually evolving pathological characterization and in vitro mechanobiological characterization of tumor invasion, with emphasis on emerging physical biology and mechanobiology strategies that have contributed to a more robust mechanistic understanding of tumor cell invasion. These physical approaches may ultimately help to better predict and identify tumor metastasis. PMID:22178415

  16. Persistent complement activation on tumor cells in breast cancer.

    PubMed Central

    Niculescu, F.; Rus, H. G.; Retegan, M.; Vlaicu, R.

    1992-01-01

    The neoantigens of the C5b-9 complement complex, IgG, C3, C4, S-protein/vitronectin, fibronectin, and macrophages were localized on 17 samples of breast cancer and on 6 samples of benign breast tumors using polyclonal or monoclonal antibodies and the streptavidin-biotin-peroxidase technique. All the tissue samples with carcinoma in each the TNM stages presented C5b-9 deposits on the membranes of tumor cells, thin granules on cell remnants, and diffuse deposits in the necrotic areas. When chemotherapy and radiation therapy preceded surgery, C5b-9 deposits were more intense and extended. The C5b-9 deposits were absent in all the samples with benign lesions. S-protein/vitronectin was present as fibrillar deposits in the connective tissue matrix and as diffuse deposits around the tumor cells, less intense and extended than fibronectin. IgG, C3, and C4 deposits were present only in carcinoma samples. The presence of C5b-9 deposits is indicative of complement activation and its subsequent pathogenetic effects in breast cancer. Images Figure 1 PMID:1374587

  17. Silicon Micropore based Electromechanical Transducer to Differentiate Tumor Cells

    NASA Astrophysics Data System (ADS)

    Ali, Waqas; Raza, Muhammad U.; Khanzada, Raja R.; Kim, Young-Tae; Iqbal, Samir M.

    2015-03-01

    Solid-state micropores have been used before to differentiate cancer cells from normal cells using size-based filtering. Tumor cells differ from normal ones not only in size but also in physical properties like elasticity, shape, motility etc. Tumor cells show different physical attributes depending on the stage and type of cancer. We report a micropore based electromechanical transducer that differentiated cancer cells based on their mechanophysical properties. The device was interfaced with a high-speed patch-clamp measurement system that biased the ionic solution across the silicon-based membrane. The bias resulted in the flow of ionic current. Electrical pulses were generated when cells passed through. Different cells depicted characteristic pulses. Translocation profiles of cells that were either small or were more elastic and flexible caused electrical pulses shorter in widths and amplitudes whereas cells with larger size or lesser elasticity/flexibility showed deeper and wider pulses. Three non-small cell lung cancer (NSCLC) cell lines NCI-H1155, A549 and NCI-H460 were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found quickest in translocating through. The solid-sate micropore based electromechanical transducer could process the whole blood sample of cancer patient without any pre-processing requirements and is ideal for point-of-care applications. Support Acknowledged from NSF through ECCS-1201878.

  18. Porous biodegradable EW62 medical implants resist tumor cell growth.

    PubMed

    Hakimi, O; Ventura, Y; Goldman, J; Vago, R; Aghion, E

    2016-04-01

    Magnesium alloys have been widely investigated for biodegradable medical applications. However, the shielding of harmful cells (eg. bacteria or tumorous cells) from immune surveillance may be compounded by the increased porosity of biodegradable materials. We previously demonstrated the improved corrosion resistance and mechanical properties of a novel EW62 (Mg-6%Nd-2%Y-0.5%Zr)) magnesium alloy by rapid solidification followed by extrusion (RS) compared to its conventional counterpart (CC). The present in vitro study evaluated the influence of rapid solidification on cytotoxicity to murine osteosarcoma cells. We found that CC and RS corrosion extracts significantly reduced cell viability over a 24-h exposure period. Cell density was reduced over 48 h following direct contact on both CC and RS surfaces, but was further reduced on the CC surface. The direct presence of cells accelerated corrosion for both materials. The corroded RS material exhibited superior mechanical properties relative to the CC material. The data show that the improved corrosion resistance of the rapidly solidified EW62 alloy (RS) resulted in a relatively reduced cytotoxic effect on tumorous cells. Hence, the tested alloy in the form of a rapidly solidified substance may introduce a good balance between its biodegradation characteristics and cytotoxic effect towards cancerous and normal cells. PMID:26838879

  19. Genetic engineering of platelets to neutralize circulating tumor cells.

    PubMed

    Li, Jiahe; Sharkey, Charles C; Wun, Brittany; Liesveld, Jane L; King, Michael R

    2016-04-28

    Mounting experimental evidence demonstrates that platelets support cancer metastasis. Within the circulatory system, platelets guard circulating tumor cells (CTCs) from immune elimination and promote their arrest at the endothelium, supporting CTC extravasation into secondary sites. Neutralization of CTCs in blood circulation can potentially attenuate metastases to distant organs. Therefore, extensive studies have explored the blockade of platelet-CTC interactions as an anti-metastatic strategy. Such an intervention approach, however, may cause bleeding disorders since the platelet-CTC interactions inherently rely on the blood coagulation cascade including platelet activation. On the other hand, platelets have been genetically engineered to correct inherited bleeding disorders in both animal models and human clinical trials. In this study, inspired by the physical association between platelets and CTCs, platelets were genetically modified to express surface-bound tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine known to induce apoptosis specifically in tumor cells. The TRAIL-expressing platelets were demonstrated to kill cancer cells in vitro and significantly reduce metastases in a mouse model of prostate cancer metastasis. Our results suggest that using platelets to produce and deliver cancer-specific therapeutics can provide a Trojan-horse strategy of neutralizing CTCs to attenuate metastasis. PMID:26921521

  20. Identification of peptides that bind to irradiated pancreatic tumor cells

    SciTech Connect

    Huang Canhui; Liu, Xiang Y.; Rehemtulla, Alnawaz; Lawrence, Theodore S. . E-mail: tsl@med.umich.edu

    2005-08-01

    Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

  1. Kinetic studies of porphyrin distribution in suspensions of tumor cells

    NASA Astrophysics Data System (ADS)

    Zorin, Vladimir P.; Mel'nov, Sergey B.; Savitsky, Valery P.; Zorina, Tatyana E.

    1996-12-01

    Using a fluorescence activated cell sorting, we investigated the dynamics of porphyrins in suspensions of tumor cells. In addition to direct studies of the incorporation and output of several porphyrins (hematoporphyrin, hematoporphyrin dimethyl ester, chlorin e6 and its mono-, di-, trimethyl esters) from cells, their transfer between cells was investigated. It was shown that the rate of pigment accumulation by cells correlated with the rate of porphyrin penetration across the plasma membrane. As a result, apolar chlorins and HpDME displayed enhanced staining capacity which was independent on the integrity of plasma membrane of cells. To estimate the rate of pigment redistribution between cells, the suspension of tumor cells loaded with porphyrin had been mixed with unloaded cells and the distribution of all cells according to porphyrin fluorescence was determined in different intervals of time. It was obtained that the highest rate of the pigment transfer between cells was exhibited in the case of moderately apolar pigment. Porphyrins with dominantly hydrophobic and hydrophilic properties had a decreased capacity to intercellular migration. The results of this study indicate that, depending on the photosensitizer used, the processes of its distribution in the bulk of tumor tissue mediated by intercellular exchange may occur with a different rate.

  2. Statins Impair Glucose Uptake in Tumor Cells1

    PubMed Central

    Malenda, Agata; Skrobanska, Anna; Issat, Tadeusz; Winiarska, Magdalena; Bil, Jacek; Oleszczak, Bozenna; Sinski, Maciej; Firczuk, Małgorzata; Bujnicki, Janusz M; Chlebowska, Justyna; Staruch, Adam D; Glodkowska-Mrowka, Eliza; Kunikowska, Jolanta; Krolicki, Leszek; Szablewski, Leszek; Gaciong, Zbigniew; Koziak, Katarzyna; Jakobisiak, Marek; Golab, Jakub; Nowis, Dominika A

    2012-01-01

    Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20) tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1)-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at either transcriptional or protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered 18F-fluorodeoxyglucose (18F-FDG) uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting 18F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology. PMID:22577346

  3. Isolation and characterization of circulating tumor cells in prostate cancer

    PubMed Central

    Diamond, Elan; Lee, Guang Yu; Akhtar, Naveed H.; Kirby, Brian J.; Giannakakou, Paraskevi; Tagawa, Scott T.; Nanus, David M.

    2012-01-01

    Circulating tumor cells (CTCs) are tumor cells found in the peripheral blood that putatively originate from established sites of malignancy and likely have metastatic potential. Analysis of CTCs has demonstrated promise as a prognostic marker as well as a source of identifying potential targets for novel therapeutics. Isolation and characterization of these cells for study, however, remain challenging owing to their rarity in comparison with other cellular components of the peripheral blood. Several techniques that exploit the unique biochemical properties of CTCs have been developed to facilitate their isolation. Positive selection of CTCs has been achieved using microfluidic surfaces coated with antibodies against epithelial cell markers or tumor-specific antigens such as EpCAM or prostate-specific membrane antigen (PSMA). Following isolation, characterization of CTCs may help guide clinical decision making. For instance, molecular and genetic characterization may shed light on the development of chemotherapy resistance and mechanisms of metastasis without the need for a tissue biopsy. This paper will review novel isolation techniques to capture CTCs from patients with advanced prostate cancer, as well as efforts to characterize the CTCs. We will also review how these analyzes can assist in clinical decision making. Conclusion: The study of CTCs provides insight into the molecular biology of tumors of prostate origin that will eventually guide the development of tailored therapeutics. These advances are predicated on high yield and accurate isolation techniques that exploit the unique biochemical features of these cells. PMID:23087897

  4. Tumor cell responses to inhibition of thymidylate synthase

    SciTech Connect

    Keyomarsi, K.

    1989-01-01

    The cellular, biochemical and molecular events that occur in tumor cells treated with inhibitors of thymidylate synthase (TS) were studied. 5-Fluorouracil (5-FUra) and fluorodeoxyuridine (FdUrd) are more growth inhibitory to mouse and human tumor cells when grown in medium containing folinate. L1210 cells exposed to folinate and noncytotoxic concentrations of 5-FUra or FdUrd, resulted in a 98% to 99.98% cell kill. Exposure of L1210 cells to folinate resulted in expansion of intracellular pools of 5,10-methylenetetrahydrofolate, delayed the reappearance of catalytically active TS following FdUrd exposure, and stabilized inactive TS complexes over the same concentration range that augmented the cytotoxic effect of FdUrd and 5-FUra. In intact L1210 cells, fluorodeoxyuridylate (FdUMP) behaved as an inhibitor whose complexes with TS dissociate with a biologically significant rate. However, these complexes become functionally irreversible in cells incubated with high levels of folinate. CB 3717 eliminated TS activity in L1210 cells, yet the inactive enzyme retained the ability to bind ({sup 3}H)-FdUMP covalently, suggesting that the binding of one subunit of TS inactivates the catalytic activity of both subunits.

  5. Extracorporeal Photo-Immunotherapy for Circulating Tumor Cells

    PubMed Central

    Kim, Gwangseong; Gaitas, Angelo

    2015-01-01

    It is well established that metastasis through the circulatory system is primarily caused by circulating tumor cells (CTCs). In this preliminary effort, we report an approach to eliminate circulating tumor cells from the blood stream by flowing the blood though an extracorporeal tube and applying photodynamic therapy (PDT). Chlorin e6 (Ce6), a photosensitizer, was conjugated to CD44 antibody in order to target PC-3, a prostate cancer cell line. PC-3 cells were successfully stained by the Ce6-CD44 antibody conjugate. PDT was performed on whole blood spiked with stained PC-3 cells. As the blood circulated through a thin transparent medical tube, it was exposed to light of 660 nm wavelength generated by an LED array. An exposure of two minutes was sufficient to achieve selective cancer cell necrosis. In comparison, to PDT of cells growing inside a tissue culture, the PDT on thin tube exhibited significantly enhanced efficiency in cell killing, by minimizing light attenuation by blood. It suggests a new extracorporeal methodology of PDT for treating CTCs as well as other hematological pathogens. PMID:26011055

  6. Essential role of AKT in tumor cells addicted to FGFR.

    PubMed

    Hu, Yi; Lu, Huiru; Zhang, Jinchao; Chen, Jun; Chai, Zhifang; Zhang, Jingxin

    2014-02-01

    Tumor cells with genetic amplifications or mutations in the fibroblast growth factor receptor (FGFR) family are often addicted to FGFR and heavily dependent on its signaling to survive. Although it is critical to understand which signaling pathway downstream of FGFR plays an essential role to guide the research and development of FGFR inhibitors, it has remained unclear partly because the tool compounds used in the literature also hit many other kinases, making the results difficult to interpret. With the development of a potent FGFR-specific inhibitor, BGJ398, we are now able to dissect various pathways with low drug concentrations to minimize multiple-target effects. Importantly, here, we show that inhibition of FGFR signaling by BGJ398 leads to only transient inhibition of ERK1/2 phosphorylation, whereas the inhibitory effect on AKT phosphorylation is sustainable, indicating that AKT, not ERK as commonly believed, serves as an appropriate pharmacodynamic biomarker for BGJ398. Although AKT inhibition by a pan-PI3K inhibitor alone has almost no effect on cell growth, heterologous expression of myr-AKT, an active form of AKT, rescues BGJ398-mediated suppression of tumor cell proliferation. These results indicate that AKT is an essential component downstream of FGFR. Finally, combination of the FGFR inhibitor BGJ398 with rapamycin significantly inhibits AKT phosphorylation and enhances their antiproliferative effects in FGFR-addicted cells, suggesting an effective combination strategy for clinical development of FGFR inhibitors. PMID:24100276

  7. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  8. Triple combination of irradiation, chemotherapy (pemetrexed), and VEGFR inhibition (SU5416) in human endothelial and tumor cells

    SciTech Connect

    Bischof, Marc; Abdollahi, Amir; Gong Ping; Stoffregen, Clemens; Lipson, Kenneth E.; Debus, Juergen; Weber, Klaus J.; Huber, Peter E. . E-mail: p.huber@dkfz.de

    2004-11-15

    Purpose: This is the first preclinical report evaluating a trimodal therapy consisting of irradiation, chemotherapy, and antiangiogenesis in the context of a multimodal anticancer strategy. The combination of the folate antimetabolite pemetrexed, SU5416, a receptor tyrosine kinase inhibitor of VEGFR2, and irradiation was investigated in human endothelial cells and tumor cell lines. Methods and materials: Primary isolated human umbilical vein endothelial cells (HUVEC), human dermal microvascular endothelial cells (HDMEC), and human glioblastoma (U87) and prostate cancer cells (PC3) were exposed to pemetrexed (2 h) alone and in combination with SU5416 (2 h). When combined with irradiation up to 8 Gy, fixed concentrations of pemetrexed (1.06 {mu}M) and SU5416 (1.0 {mu}M) were used. Proliferation and clonogenic assays were conducted with endothelial and tumor cells. The migration/invasion ability of endothelial cells and the ability to produce tubular structures were tested in Matrigel and tube formation assays. Apoptosis was measured by sub-G1 DNA and caspase-3 flow cytometry. To investigate underlying cell signaling, immunocytochemistry was used to detect Akt survival signaling involvement. Results: Triple combination using only a low-toxicity drug exposure of pemetrexed and SU5416 results in greater response than each treatment alone or than each combination of two modalities in all tested endothelial and tumor cell models. Triple combination substantially inhibits proliferation, migration/invasion, tube formation, and clonogenic survival. Triple combination also induced the highest rate of apoptosis in HDMEC and HUVEC as indicated by sub-1 G1 and caspase-3 assessment. Interestingly, triple combination therapy also reduces proliferation and clonogenic survival significantly in U87 and PC3 tumor cell lines. SU5416 potently inhibited Akt phosphorylation which could be induced by radiation and radiochemotherapy in human endothelial cells. Conclusions: Our findings

  9. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1

    PubMed Central

    Schultz, Zachery D.; Warrick, Jay W.; Guckenberger, David J.; Pezzi, Hannah M.; Sperger, Jamie M.; Heninger, Erika; Saeed, Anwaar; Leal, Ticiana; Mattox, Kara; Traynor, Anne M.; Campbell, Toby C.; Berry, Scott M.; Beebe, David J.; Lang, Joshua M.

    2016-01-01

    Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria

  10. Isolated tumor cells and micrometastases in regional lymph nodes in stage I to II endometrial cancer

    PubMed Central

    Minobe, Shinichiro

    2016-01-01

    Objective The aim of this study was to clarify the clinical significance of isolated tumor cells (ITCs) or micrometastasis (MM) in regional lymph nodes in patients with International Federation of Gynecology and Obstetrics (FIGO) stage I to II endometrial cancer. Methods In this study, a series of 63 patients with FIGO stage I to II were included, who had at least one of the following risk factors for recurrence: G3 endometrioid/serous/clear cell adenocarcinomas, deep myometrial invasion, cervical involvement, lympho-vascular space invasion, and positive peritoneal cytology. These cases were classified as intermediate-risk endometrial cancer. Ultrastaging by multiple slicing, staining with hematoxylin and eosin and cytokeratin, and microscopic examination was performed on regional lymph nodes that had been diagnosed as negative for metastases. Results Among 61 patients in whom paraffin-embedded block was available, ITC/MM was identified in nine patients (14.8%). Deep myometrial invasion was significantly associated with ITC/MM (p=0.028). ITC/MM was an independent risk factor for extrapelvic recurrence (hazard ratio, 17.9; 95% confidence interval [CI], 1.4 to 232.2). The 8-year overall survival (OS) and recurrence-free survival (RFS) rates were more than 20% lower in the ITC/MM group than in the node-negative group (OS, 71.4% vs. 91.9%; RFS, 55.6% vs. 84.0%), which were statistically not significant (OS, p=0.074; RFS, p=0.066). Time to recurrence tended to be longer in the ITC/MM group than in the node-negative group (median, 49 months vs. 16.5 months; p=0.080). Conclusions It remains unclear whether ITC/MM have an adverse influence on prognosis of intermediate-risk endometrial cancer. A multicenter cooperative study is needed to clarify the clinical significance of ITC/MM. PMID:25925293

  11. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    PubMed Central

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; De Giorgi, Vincenzo; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and

  12. Internalization of Vectored Liposomes in a Culture of Poorly Differentiated Tumor Cells.

    PubMed

    Mel'nikov, P A; Baklaushev, V P; Gabashvili, A N; Nukolova, N V; Levinsky, A B; Chehonin, V P

    2016-08-01

    Internalization of liposomal nanocontainers conjugated with monoclonal antibodies to VEGF, VEGFR2 (KDR), and proteins overproduced in the tumor tissue was studied in vitro on cultures of poorly differentiated tumor cells. Comparative analysis of accumulation of vectored liposomes in the tumor cells was performed by evaluating co-localization of labeled containers and cell organelles by laser scanning confocal microscopy. We observed nearly 2 times more active penetration and accumulation of liposomes vectored with antibodies in the tumor cells in comparison with non-vectored liposomes. Selective clathrin-dependent penetration of vectored liposomes into tumor cells was demonstrated by using pharmacological agents inhibiting endocytosis. PMID:27590766

  13. Apoptosis as a mechanism of cytolysis of tumor cells by a pathogenic free-living amoeba.

    PubMed Central

    Alizadeh, H; Pidherney, M S; McCulley, J P; Niederkorn, J Y

    1994-01-01

    Previous studies have shown that trophozoites of the pathogenic free-living amoeba Acanthamoeba castellanii rapidly lysed a variety of tumor cells in vitro. Tumor cells undergoing parasite-mediated lysis displayed characteristic cell membrane blebbing reminiscent of apoptosis. The present investigation examined the role of apoptosis (programmed cell death) in Acanthamoeba-mediated tumor cell lysis. The results showed that more than 70% of tumor cell DNA was fragmented following exposure to Acanthamoeba cell extracts. By contrast, only 7% of untreated control cells underwent DNA fragmentation. DNA fragmentation increased significantly in a dose-dependent fashion following concentration of the parasite extract. Apoptosis was also confirmed by DNA ladder formation. Characteristic DNA ladders, consisting of multimers of approximately 180 to 200 bp, were produced by tumor cells exposed to Acanthamoeba cell extracts. The morphology of tumor cell lysis was examined by light and scanning electron microscopy. Tumor cells exposed to parasite extract displayed morphological features characteristic of apoptosis including cell shrinkage, cell membrane blebbing, formation of apoptotic bodies, and nuclear condensation. By contrast, similar effects were not found in tumor cells exposed to extract similarly prepared from normal mammalian cells (i.e., human keratocytes). The results suggest that at least one species of pathogenic free-living amoeba is able to lyse tumor cells by a process that culminates in apoptosis. Images PMID:8132336

  14. Development of a New Rapid Isolation Device for Circulating Tumor Cells (CTCs) Using 3D Palladium Filter and Its Application for Genetic Analysis

    PubMed Central

    Yusa, Akiko; Toneri, Makoto; Masuda, Taisuke; Ito, Seiji; Yamamoto, Shuhei; Okochi, Mina; Kondo, Naoto; Iwata, Hiroji; Yatabe, Yasushi; Ichinosawa, Yoshiyuki; Kinuta, Seichin; Kondo, Eisaku; Honda, Hiroyuki; Arai, Fumihito; Nakanishi, Hayao

    2014-01-01

    Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings. PMID:24523941

  15. Expression of FOXP1 in mucosa-associated lymphoid tissue lymphoma suggests a large tumor cell transformation and predicts a poorer prognosis in the positive thyroid patients.

    PubMed

    Jiang, Wei; Li, Lei; Tang, Yuan; Zhang, Wen-yan; Liu, Wei-ping; Li, Gan-di

    2012-12-01

    The forkhead box protein P1 (FOXP1) expression resulted from chromosome translocation was found in MALT lymphoma, and its nuclear expression in diffuse large B cell lymphoma has been believed to be a poor prognostic factor. In our study, FOXP1 expression was investigated in its relationship to the occurrence of large tumor cells, clinical features, and prognosis in a series of 115 MALT lymphomas divided into two groups with or without the large tumor cells. All cases were morphologically reviewed, and FOXP1 expression was detected both in mRNA and protein levels by real-time PCR, immunochemical staining, and Western blot hybridization. All available clinical data were collected. In the MALT lymphoma with large cells, FOXP1 expression was higher at both mRNA (P = 0.008) and protein (P = 0.000) levels than that in group without large cells, and most large tumor cells showed FOXP1 positivity. It was also found that cases beyond Ann Arbor stage I have a higher FOXP1 expression rate than cases in stage I (P = 0.01), moreover, FOXP1-positive group has more plasmacytic differentiation (P = 0.025), deeper filtrating depth in digestive tract (P = 0.039), and a higher Ki67 proliferation index (P = 0.022). However, no statistical significance was identified in the involved anatomic sites and prognosis. Our data demonstrated the close relationship between FOXP1 nuclear expression and the occurrence of large tumor cells in MALT lymphoma, which suggested the possibility of large cell transformation of FOXP1-positive cases. And FOXP1 positivity was associated with enhanced invasion and proliferation ability of tumor cells. In the thyroid cases, the FOXP1 positivity showed a poorer prognosis (P = 0.043), but the significance was not found in the overall survival analysis (P = 0.1123). PMID:22736042

  16. Genome size variation and incidence of polyploidy in Scrophulariaceae sensu lato from the Iberian Peninsula

    PubMed Central

    Castro, Mariana; Castro, Sílvia; Loureiro, João

    2012-01-01

    Background and aims In the last decade, genomic studies using DNA markers have strongly influenced the current phylogeny of angiosperms. Genome size and ploidy level have contributed to this discussion, being considered important characters in biosystematics, ecology and population biology. Despite the recent increase in studies related to genome size evolution and polyploidy incidence, only a few are available for Scrophulariaceae. In this context, we assessed the value of genome size, mostly as a taxonomic marker, and the role of polyploidy as a process of genesis and maintenance of plant diversity in Scrophulariaceae sensu lato in the Iberian Peninsula. Methodology Large-scale analyses of genome size and ploidy-level variation across the Iberian Peninsula were performed using flow cytometry. One hundred and sixty-two populations of 59 distinct taxa were analysed. A bibliographic review on chromosome counts was also performed. Principal results From the 59 sampled taxa, 51 represent first estimates of genome size. The majority of the Scrophulariaceae species presented very small to small genome sizes (2C ≤ 7.0 pg). Furthermore, in most of the analysed genera it was possible to use this character to separate several taxa, independently if these genera were homoploid or heteroploid. Also, some genome-related phenomena were detected, such as intraspecific variation of genome size in some genera and the possible occurrence of dysploidy in Verbascum spp. With respect to polyploidy, despite a few new DNA ploidy levels having been detected in Veronica, no multiple cytotypes have been found in any taxa. Conclusions This work contributed with important basic scientific knowledge on genome size and polyploid incidence in the Scrophulariaceae, providing important background information for subsequent studies, with several perspectives for future studies being opened. PMID:23240073

  17. Effect of Recepteur d'Origine Nantais expression on chemosensitivity and tumor cell behavior in colorectal cancer.

    PubMed

    Kim, Nuri; Cho, Sung-Bum; Park, Young-Lan; Park, Sun-Young; Myung, Eun; Kim, Seung-Hun; Yu, Hyung-Min; Son, Young-Ae; Myung, Dae-Seong; Lee, Wan-Sik; Joo, Young-Eun

    2016-06-01

    Recepteur d'Origine Nantais (RON) expression is known to induce oncogenic properties including tumor cell growth, survival, motility, angiogenesis and chemoresistance. In the present study, we evaluated whether RON affects chemosensitivity and oncogenic behavior of colorectal cancer cells and investigated its prognostic value in colorectal cancer. To evaluate the impact of RON on chemosensitivity and tumor cell behavior, we treated colorectal cancer cells with small interfering RNAs specific to RON. This was followed by flow cytometric analyses and migration, Matrigel invasion and endothelial tube formation assays. The expression of RON was investigated by immunohistochemistry in colorectal cancer tissues. TUNEL assay and immunohistochemical staining for CD34 and D2-40 were deployed to determine apoptosis, angiogenesis and lymphangiogenesis. RON knockdown enhanced 5-fluorouracil (FU)-induced apoptosis by upregulating the activities of caspases and expression of proapoptotic genes. Moreover, it enhanced 5-FU-induced cell cycle arrest by decreasing the expression of cyclins and cyclin‑dependent kinases and inducing that of p21. Furthermore, RON knockdown augmented the 5-FU-induced inhibition of invasion and migration of colorectal cancer cells. The β-catenin signaling cascade was blocked by RON knockdown upon 5-FU treatment. RON knockdown also decreased endothelial tube formation and expression of VEGF-A and HIF-1α and increased angiostatin expression. Furthermore, it inhibited lymphatic endothelial cell tube formation and the expression of VEGF-C and COX-2. RON expression was observed to be associated with age, tumor size, lymphovascular and perineural invasion, tumor stage, lymph node and distant metastasis, and poor survival rate. The mean microvessel density value of RON-positive tumors was significantly higher than that of RON-negative ones. These results indicate that RON is associated with tumor progression by inhibiting chemosensitivity and enhancing

  18. Water permeation drives tumor cell migration in confined microenvironments.

    PubMed

    Stroka, Kimberly M; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X; Konstantopoulos, Konstantinos

    2014-04-24

    Cell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  19. Hyperthermic effects of gold nanorods on tumor cells

    PubMed Central

    Huff, Terry B.; Tong, Ling; Zhao, Yan; Hansen, Matthew N.; Cheng, Ji-Xin; Wei, Alexander

    2008-01-01

    Summary Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared (NIR) frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the nanorods' surface chemistry is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with CTAB (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of CTAB from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 44 W/cm2. PMID:17716198

  20. Hyperthermic effects of gold nanorods on tumor cells.

    PubMed

    Huff, Terry B; Tong, Ling; Zhao, Yan; Hansen, Matthew N; Cheng, Ji-Xin; Wei, Alexander

    2007-02-01

    Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm2. PMID:17716198

  1. Collective Behavior of Brain Tumor Cells: the Role of Hypoxia

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Katakowski, Mark; Hopkins, Scott; Szalad, Alexandra; Zheng, Xuguang; Jiang, Feng; Chopp, Michael

    2013-03-01

    We consider emergent collective behavior of a multicellular biological system. Specifically we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. The first set of experiments was performed in a typical wound healing geometry: cells were placed on a substrate, and a scratch was done. In the second set of experiments, cell migration away from a tumor spheroid was investigated. Experiments show a controversy: cells under normal and hypoxic conditions have migrated the same distance in the ``spheroid'' experiment, while in the ``scratch'' experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.

  2. Nanostructured substrates for isolation of circulating tumor cells

    PubMed Central

    Wang, Lixue; Asghar, Waseem; Demirci, Utkan; Wan, Yuan

    2014-01-01

    Summary Circulating tumor cells (CTCs) originate from the primary tumor mass and enter into the peripheral bloodstream. CTCs hold the key to understanding the biology of metastasis and also play a vital role in cancer diagnosis, prognosis, disease monitoring, and personalized therapy. However, CTCs are rare in blood and hard to isolate. Additionally, the viability of CTCs can easily be compromised under high shear stress while releasing them from a surface. The heterogeneity of CTCs in biomarker expression makes their isolation quite challenging; the isolation efficiency and specificity of current approaches need to be improved. Nanostructured substrates have emerged as a promising biosensing platform since they provide better isolation sensitivity at the cost of specificity for CTC isolation. This review discusses major challenges faced by CTC isolation techniques and focuses on nanostructured substrates as a platform for CTC isolation. PMID:24944563

  3. Modeling and simulation of circulating tumor cells in flow

    NASA Astrophysics Data System (ADS)

    Lee, Angela Meeyoun

    In this thesis, we mathematically model and computationally simulate several aspects associated with the dynamics of circulating tumor cells in the bloodstream. We focus on physical processes that initiate cancer metastasis, such as intravasation and the subsequent diffusion of thrombin by the expression of tissue factor (TF) on the surface of the circulating tumor cells that are of epithelial origin. In Part I, we develop a low-dimensional parametric deformation model of a cancer cell under shear flow. The surface deformation of MDA-MB-213 cells is imaged using DIC microscopy imaging techniques until the cell releases into the flow. We post-process the time sequence of images using an Active Shape Model (ASM) to obtain the principal components of deformation, which are then used as parameters in an empirical constitutive equation to model the cell deformations as a function of the fluid normal and shear forces imparted. The cell surface is modeled as a 2D Gaussian interface with three active parameters: height, x-width, and y-width. Fluid forces are calculated on the cell surface by discretizing the surface with regularized Stokeslets, and the flow is driven by a stochastically fluctuating pressure gradient. The Stokeslet strengths are obtained so that viscous boundary conditions are enforced on the surface of the cell and the surrounding plate. We show that the low-dimensional model is able to capture the principal deformations of the cell reasonably well and argue that Active Shape Models can be exploited further as a useful tool to bridge the gap between experiments, models, and numerical simulations in this biological setting. In Part II, we describe a mathematical and computational model for diffusion-limited procoagulant circulating tumor cells (CTCs) in flow. We first build a model based on an exact formulation of Green's function solutions for domains with a blood vessel wall and for closed domains. Time-dependent gradient trackers are used to highlight

  4. Significance of Circulating Tumor Cells in Soft Tissue Sarcoma

    PubMed Central

    Nicolazzo, Chiara; Gradilone, Angela

    2015-01-01

    Circulating tumor cells can be detected from the peripheral blood of cancer patients. Their prognostic value has been established in the last 10 years for metastatic colorectal, breast, and prostate cancer. On the contrary their presence in patients affected by sarcomas has been poorly investigated. The discovery of EpCAM mRNA expression in different sarcoma cell lines and in a small cohort of metastatic sarcoma patients supports further investigations on these rare tumors to deepen the importance of CTC isolation. Although it is not clear whether EpCAM expression might be originally present on tumor sarcoma cells or acquired during the mesenchymal-epithelial transition, the discovery of EpCAM on circulating sarcoma cells opens a new scenario in CTC detection in patients affected by a rare mesenchymal tumor. PMID:26167450

  5. Water Permeation Drives Tumor Cell Migration in Confined Microenvironments

    PubMed Central

    Stroka, Kimberly M.; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X.; Konstantopoulos, Konstantinos

    2014-01-01

    SUMMARY Cell migration is a critical process for diverse (patho) physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach (“Osmotic Engine Model”) and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  6. Isolation and retrieval of circulating tumor cells using centrifugal forces

    PubMed Central

    Hou, Han Wei; Warkiani, Majid Ebrahimi; Khoo, Bee Luan; Li, Zi Rui; Soo, Ross A.; Tan, Daniel Shao-Weng; Lim, Wan-Teck; Han, Jongyoon; Bhagat, Ali Asgar S.; Lim, Chwee Teck

    2013-01-01

    Presence and frequency of rare circulating tumor cells (CTCs) in bloodstreams of cancer patients are pivotal to early cancer detection and treatment monitoring. Here, we use a spiral microchannel with inherent centrifugal forces for continuous, size-based separation of CTCs from blood (Dean Flow Fractionation (DFF)) which facilitates easy coupling with conventional downstream biological assays. Device performance was optimized using cancer cell lines (> 85% recovery), followed by clinical validation with positive CTCs enumeration in all samples from patients with metastatic lung cancer (n = 20; 5–88 CTCs per mL). The presence of CD133+ cells, a phenotypic marker characteristic of stem-like behavior in lung cancer cells was also identified in the isolated subpopulation of CTCs. The spiral biochip identifies and addresses key challenges of the next generation CTCs isolation assay including antibody independent isolation, high sensitivity and throughput (3 mL/hr); and single-step retrieval of viable CTCs. PMID:23405273

  7. Nexavar/Stivarga and viagra interact to kill tumor cells.

    PubMed

    Tavallai, Mehrad; Hamed, Hossein A; Roberts, Jane L; Cruickshanks, Nichola; Chuckalovcak, John; Poklepovic, Andrew; Booth, Laurence; Dent, Paul

    2015-09-01

    We determined whether the multi-kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/β were over-expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/β recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK-1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re-expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by 'rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti-tumor therapy for solid tumor patients. PMID:25704960

  8. Nexavar/Stivarga and Viagra Interact to Kill Tumor Cells

    PubMed Central

    TAVALLAI, MEHRAD; HAMED, HOSSEIN A.; ROBERTS, JANE L.; CRUICKSHANKS, NICHOLA; CHUCKALOVCAK, JOHN; POKLEPOVIC, ANDREW; BOOTH, LAURENCE; DENT, PAUL

    2016-01-01

    We determined whether the multi-kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/β were over-expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/β recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK-1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re-expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by ‘rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti-tumor therapy for solid tumor patients. PMID:25704960

  9. Apoptosis by Direct Current Treatment in Tumor Cells and Tissues

    NASA Astrophysics Data System (ADS)

    Kim, Hongbae; Sim, Sungbo; Ahn, Saeyoung

    2003-10-01

    Electric field induces cell fusion, electroporation on biological cells, including apoptosis. Apoptosis is expressed in a series of natural enzymatic reactions for the natural elimination of unhealthy, genetically damaged, or otherwise aberrant cells that are not needed or not advantageous to the well-being of the organism. Its markers involve cell shrinkage, activation of intracellular caspase proteases, externalization of phosphatidylserine at the plasma membrane, and fragmentation of DNA. Direct electric fields using direct current have been exploited recently to investigate its effects on tumor cells and tissues, but the mechanism of direct electric fields has not been exhibited clearly other than by electroosmosis or pH changes. Direct electric field induces apoptosis in tumor cells cultured and tumor tissues as indicated by cell shrinkage, DNA fragmentation and tumor suppression. In our experiment that direct electric field was applied to tumor tissues via two needle electrodes inserted into tumor tissue 5mm at distance in parallel, pH changes resulted from electrochemical reaction, exhibiting about pH 9.0, 1.83, 2.0 in the vicinity of cathodic and anodic electrode, and at their mid-point, respectively. DNA fragmentation of tumor tissues destructed by direct electric field was analyzed by Tunel assay by ApopTag technology. As a result of this analysis, it showed that apoptosis in tumor tissue destructed was increased up to 59.1normal(control) tissues, showing 41.1, 31.1cathodic tissues. In vitro cell survival was exhibited that it was decreased with enhancing electric current intensity in the same condition of electrical charge 5C having different time applied. We will show results of apoptosis analyzed by flow cytometry in vitro.

  10. Can Biomarker Assessment on Circulating Tumor Cells Help Direct Therapy in Metastatic Breast Cancer?

    PubMed Central

    Turner, Natalie; Pestrin, Marta; Galardi, Francesca; De Luca, Francesca; Malorni, Luca; Di Leo, Angelo

    2014-01-01

    Circulating tumor cell (CTC) count has prognostic significance in metastatic breast cancer, but the predictive utility of CTCs is uncertain. Molecular studies on CTCs have often been limited by a low number of CTCs isolated from a high background of leukocytes. Improved enrichment techniques are now allowing molecular characterisation of single CTCs, whereby molecular markers on single CTCs may provide a real-time assessment of tumor biomarker status from a blood test or “liquid biopsy”, potentially negating the need for a more invasive tissue biopsy. The predictive ability of CTC biomarker analysis has predominantly been assessed in relation to HER2, with variable and inconclusive results. Limited data exist for other biomarkers, such as the estrogen receptor. In addition to the need to define and validate the most accurate and reproducible method for CTC molecular analysis, the clinical relevance of biomarkers, including gain of HER2 on CTC after HER2 negative primary breast cancer, remains uncertain. This review summarises the currently available data relating to biomarker evaluation on CTCs and its role in directing management in metastatic breast cancer, discusses limitations, and outlines measures that may enable future development of this approach. PMID:24670368

  11. Blood-Based Analyses of Cancer: Circulating Tumor Cells and Circulating Tumor DNA

    PubMed Central

    Haber, Daniel A.; Velculescu, Victor E.

    2015-01-01

    The ability to study nonhematologic cancers through noninvasive sampling of blood is one of the most exciting and rapidly advancing fields in cancer diagnostics. This has been driven both by major technologic advances, including the isolation of intact cancer cells and the analysis of cancer cell–derived DNA from blood samples, and by the increasing application of molecularly driven therapeutics, which rely on such accurate and timely measurements of critical biomarkers. Moreover, the dramatic efficacy of these potent cancer therapies drives the selection for additional genetic changes as tumors acquire drug resistance, necessitating repeated sampling of cancer cells to adjust therapy in response to tumor evolution. Together, these advanced noninvasive diagnostic capabilities and their applications in guiding precision cancer therapies are poised to change the ways in which we select and monitor cancer treatments. Significance Recent advances in technologies to analyze circulating tumor cells and circulating tumor DNA are setting the stage for real-time, noninvasive monitoring of cancer and providing novel insights into cancer evolution, invasion, and metastasis. PMID:24801577

  12. Comparison of the photodynamic effect in human and animal tumor cell lines

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena; Alexandrova, Radostina; Nedkova, Kristina; Ivanova, Elena; Sabotinov, Ognian; Zdravkov, Kaloian; Minchev, Georgi

    2005-04-01

    The aim of the present work is to compare the photodynamic effect in vitro for permanent cell lines established from some of the most common and invasive human cancers (breast cancer and brain glioblastoma) as well as for animal cell lines obtained from virus-induced transplantable tumors. The cytotoxicity assessment was performed for human breast adenocarcinoma MCF-7, human glioblastoma 8-MG-BA, and two virus-induced animal tumor cell lines: a cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc20, and a line LSR-SF- SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin. We used in the experiments a PS produced by NIOPIK, Russia) [www.tech-db.ru/istc/db/inst.nsf/wu] with peak absorption around 670 nm. The photodynamic effect was assessed by a neutral red uptake cytotoxicity test. To activate the photosensitizer we used a semiconductor laser that emitted at 672 nm at irradiance of 120 mW/cm2; the latter value had been chosen after comparison of the photodynamic effect at 12, 60 and 120 mW/cm2.

  13. Receptor tyrosine kinase expression of circulating tumor cells in small cell lung cancer

    PubMed Central

    Hamilton, Gerhard; Rath, Barbara; Klameth, Lukas; Hochmair, Maximilian

    2015-01-01

    Small cell lung cancer (SCLC) has a poor prognosis and is found disseminated at first presentation in the majority of cases. The cell biological mechanisms underlying metastasis and drug resistance are not clear. SCLC is characterized by high numbers of circulating tumor cells (CTCs) and we were able to expand several CTC lines ex vivo and to relate chitinase-3-like-1/YKL-40 (CHI3L1) as marker. Availability of expanded SCLC CTC cells allowed for a screening of receptor tyrosine kinases (RTKs) expressed. The metastatic CHI3L1-negative SCLC cell line SCLC26A, established from a pleural effusion was used for comparison. The CTC cell line BHGc10 was found to exhibit increased expression of RYK, AXL, Tie-1, Dtk, ROR1/2, several ephrins (Eph) and FGF/EGF receptors compared to SCLC26A. All of these RTKs have been associated with cell motility, invasion and poor prognosis in diverse cancer entities without knowledge of their association with CTCs. The identification of RYK, AXL and ROR1/2 as pseudokinases, lacking activity, seems to be related to the observed failure of RTK inhibitors in SCLC. These kinases are involved in the noncanonical WNT pathway and their expression in SCLC CTCs represents a cancer stem cell-like phenotype. PMID:26328272

  14. The Tetraspanin CD151 Is Required for Met-dependent Signaling and Tumor Cell Growth*

    PubMed Central

    Franco, Mélanie; Muratori, Claudia; Corso, Simona; Tenaglia, Enrico; Bertotti, Andrea; Capparuccia, Lorena; Trusolino, Livio; Comoglio, Paolo M.; Tamagnone, Luca

    2010-01-01

    CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that β4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and β4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of β4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through β4 integrin-mediated pathways, independent of cell-substrate adhesion. PMID:20937830

  15. Liquid biopsy in patients with pancreatic cancer: Circulating tumor cells and cell-free nucleic acids

    PubMed Central

    Imamura, Taisuke; Komatsu, Shuhei; Ichikawa, Daisuke; Kawaguchi, Tsutomu; Miyamae, Mahito; Okajima, Wataru; Ohashi, Takuma; Arita, Tomohiro; Konishi, Hirotaka; Shiozaki, Atsushi; Morimura, Ryo; Ikoma, Hisashi; Okamoto, Kazuma; Otsuji, Eigo

    2016-01-01

    Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer (PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs), such as DNA, mRNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called “liquid biopsy” has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfNAs in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field. PMID:27433079

  16. Using circulating tumor cells to inform on prostate cancer biology and clinical utility

    PubMed Central

    Li, Jing; Gregory, Simon G.; Garcia-Blanco, Mariano A.; Armstrong, Andrew J.

    2016-01-01

    Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable “liquid biopsy” of a patient’s cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer. PMID:26079252

  17. Circulating tumor cell detection using carbon nanotube devices: specific versus non-specific interactions

    PubMed Central

    King, Benjamin C.; Burkhead, Thomas; Panchapakesan, Balaji

    2013-01-01

    Detection of circulating tumor cells (CTCs) from patient blood samples offers a desirable alternative to invasive tissue biopsies for screening of malignant carcinomas. A rigorous CTC detection method must identify CTCs from millions of other formed elements in blood and distinguish them from healthy tissue cells also present in the blood. CTCs are known to overexpress certain surface receptors, many of which aid them in invading other tissue, and these provide an avenue for their detection. We have developed carbon nanotube (CNT) thin film devices to specifically detect these receptors in intact cells. The CNT sidewalls are functionalized with antibodies specific to Epithelial Cell Adhesion Molecule (EpCAM), a marker overexpressed by breast and other carcinomas. Specific binding of EpCAM to anti-EpCAM causes a change in the local charge environment of the CNT surface which produces a characteristic electrical signal. Two cell lines are tested in the device: MCF7, a mammary adenocarcinoma line which overexpresses EpCAM, and MCF10A, a non-tumorigenic mammary epithelial line which does not. Introduction of MCF7s causes significant changes in the electrical conductance of the devices due to specific binding and associated charge environment change near the CNT sidewalls. Introduction of MCF10A displays a different profile due to purely nonspecific interactions. The profile of specific vs. nonspecific interaction signatures using carbon based devices will guide development of this diagnostic tool towards clinical sample volumes.

  18. Do Circulating Tumor Cells, Exosomes, and Circulating Tumor Nucleic Acids Have Clinical Utility?

    PubMed Central

    Gold, Bert; Cankovic, Milena; Furtado, Larissa V.; Meier, Frederick; Gocke, Christopher D.

    2016-01-01

    Diagnosing and screening for tumors through noninvasive means represent an important paradigm shift in precision medicine. In contrast to tissue biopsy, detection of circulating tumor cells (CTCs) and circulating tumor nucleic acids provides a minimally invasive method for predictive and prognostic marker detection. This allows early and serial assessment of metastatic disease, including follow-up during remission, characterization of treatment effects, and clonal evolution. Isolation and characterization of CTCs and circulating tumor DNA (ctDNA) are likely to improve cancer diagnosis, treatment, and minimal residual disease monitoring. However, more trials are required to validate the clinical utility of precise molecular markers for a variety of tumor types. This review focuses on the clinical utility of CTCs and ctDNA testing in patients with solid tumors, including somatic and epigenetic alterations that can be detected. A comparison of methods used to isolate and detect CTCs and some of the intricacies of the characterization of the ctDNA are also provided. PMID:25908243

  19. Siva1 suppresses epithelial–mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules

    PubMed Central

    Li, Nan; Jiang, Peng; Du, Wenjing; Wu, Zhengsheng; Li, Cong; Qiao, Mengran; Yang, Xiaolu; Wu, Mian

    2011-01-01

    Epithelial–mesenchymal transition (EMT) enables epithelial cells to acquire motility and invasiveness that are characteristic of mesenchymal cells. It plays an important role in development and tumor cell metastasis. However, the mechanisms of EMT and their dysfunction in cancer cells are still not well understood. Here we report that Siva1 interacts with stathmin, a microtubule destabilizer. Siva1 inhibits stathmin's activity directly as well as indirectly through Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of stathmin at Ser16. Via the inhibition of stathmin, Siva1 enhances the formation of microtubules and impedes focal adhesion assembly, cell migration, and EMT. Low levels of Siva1 and Ser16-phosphorylated stathmin correlate with high metastatic states of human breast cancer cells. In mouse models, knockdown of Siva1 promotes cancer dissemination, whereas overexpression of Siva1 inhibits it. These results suggest that microtubule dynamics are critical for EMT. Furthermore, they reveal an important role for Siva1 in suppressing cell migration and EMT and indicate that down-regulation of Siva1 may contribute to tumor cell metastasis. PMID:21768358

  20. HGFL supports mammary tumorigenesis by enhancing tumor cell intrinsic survival and influencing macrophage and T-cell responses

    PubMed Central

    Benight, Nancy M.; Wagh, Purnima K.; Zinser, Glendon M.; Peace, Belinda E.; Stuart, William D.; Vasiliauskas, Juozas; Pathrose, Peterson; Starnes, Sandra L.; Waltz, Susan E.

    2015-01-01

    The Ron receptor is overexpressed in human breast cancers and is associated with heightened metastasis and poor survival. Ron overexpression in the mammary epithelium of mice is sufficient to induce aggressive mammary tumors with a high degree of metastasis. Despite the well-documented role of Ron in breast cancer, few studies have examined the necessity of the endogenous Ron ligand, hepatocyte growth factor-like protein (HGFL) in mammary tumorigenesis. Herein, mammary tumor growth and metastasis were examined in mice overexpressing Ron in the mammary epithelium with or without HGFL. HGFL ablation decreased oncogenic Ron activation and delayed mammary tumor initiation. HGFL was important for tumor cell proliferation and survival. HGFL loss resulted in increased numbers of macrophages and T-cells within the tumor. T-cell proliferation and cytotoxicity dramatically increased in HGFL deficient mice. Biochemical analysis of HGFL proficient tumors showed increased local HGFL production, with HGFL loss decreasing β-catenin expression and NF-κB activation. Re-expression of HGFL in HGFL deficient tumor cells stimulated cell migration and invasion with coordinate activation of NF-κB and reduced apoptosis. Together, these results demonstrate critical in vivo functions for HGFL in promoting breast tumorigenesis and suggest that targeting HGFL may inhibit tumor growth and reactivate anti-tumor immune responses. PMID:25938541

  1. DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival.

    PubMed

    Zerulla, Karolin; Chimileski, Scott; Näther, Daniela; Gophna, Uri; Papke, R Thane; Soppa, Jörg

    2014-01-01

    Haloferax volcanii uses extracellular DNA as a source for carbon, nitrogen, and phosphorous. However, it can also grow to a limited extend in the absence of added phosphorous, indicating that it contains an intracellular phosphate storage molecule. As Hfx. volcanii is polyploid, it was investigated whether DNA might be used as storage polymer, in addition to its role as genetic material. It could be verified that during phosphate starvation cells multiply by distributing as well as by degrading their chromosomes. In contrast, the number of ribosomes stayed constant, revealing that ribosomes are distributed to descendant cells, but not degraded. These results suggest that the phosphate of phosphate-containing biomolecules (other than DNA and RNA) originates from that stored in DNA, not in rRNA. Adding phosphate to chromosome depleted cells rapidly restores polyploidy. Quantification of desiccation survival of cells with different ploidy levels showed that under phosphate starvation Hfx. volcanii diminishes genetic advantages of polyploidy in favor of cell multiplication. The consequences of the usage of genomic DNA as phosphate storage polymer are discussed as well as the hypothesis that DNA might have initially evolved in evolution as a storage polymer, and the various genetic benefits evolved later. PMID:24733558

  2. Effect of induced polyploidy on some biochemical parameters in Cannabis sativa L.

    PubMed

    Bagheri, Mahsa; Mansouri, Hakimeh

    2015-03-01

    This study is aimed at testing the efficiency of colchicine on inducing polyploidy in Cannabis sativa L. and investigation of effects of polyploidy induction on some primary and secondary metabolites. Shoot tips were treated with three different concentrations of colchicine (0, 0.1, 0.2 % w/v) for 24 or 48 h. The biggest proportion of the almost coplanar tetraploids (43.33 %) and mixoploids (13.33 %) was obtained from the 24-h treatment in 0.2 and 0.1 % w/v, respectively. Colchicine with 0.2 % concentration and 48 h duration was more destructive than 24 h. The ploidy levels were screened with flow cytometry. The biochemical analyses showed that reducing sugars, soluble sugars, total protein, and total flavonoids increased significantly in mixoploid plants compared with tetraploid and diploid plants. Tetraploid plants had a higher amount of total proteins, total flavonoids, and starch in comparison with control plants. The results showed that polyploidization could increase the contents of tetrahydrocannabinol in mixoploid plants only, but tetraploid plants had lower amounts of this substance in comparison with diploids. Also, we found such changes in protein concentration in electrophoresis analysis. In overall, our study suggests that tetraploidization could not be useful to produce tetrahydrocannabinol for commercial use, and in this case, mixoploids are more suitable. PMID:25492688

  3. DNA as a Phosphate Storage Polymer and the Alternative Advantages of Polyploidy for Growth or Survival

    PubMed Central

    Zerulla, Karolin; Chimileski, Scott; Näther, Daniela; Gophna, Uri; Papke, R. Thane; Soppa, Jörg

    2014-01-01

    Haloferax volcanii uses extracellular DNA as a source for carbon, nitrogen, and phosphorous. However, it can also grow to a limited extend in the absence of added phosphorous, indicating that it contains an intracellular phosphate storage molecule. As Hfx. volcanii is polyploid, it was investigated whether DNA might be used as storage polymer, in addition to its role as genetic material. It could be verified that during phosphate starvation cells multiply by distributing as well as by degrading their chromosomes. In contrast, the number of ribosomes stayed constant, revealing that ribosomes are distributed to descendant cells, but not degraded. These results suggest that the phosphate of phosphate-containing biomolecules (other than DNA and RNA) originates from that stored in DNA, not in rRNA. Adding phosphate to chromosome depleted cells rapidly restores polyploidy. Quantification of desiccation survival of cells with different ploidy levels showed that under phosphate starvation Hfx. volcanii diminishes genetic advantages of polyploidy in favor of cell multiplication. The consequences of the usage of genomic DNA as phosphate storage polymer are discussed as well as the hypothesis that DNA might have initially evolved in evolution as a storage polymer, and the various genetic benefits evolved later. PMID:24733558

  4. Low Temperature and Polyploidy Result in Larger Cell and Body Size in an Ectothermic Vertebrate.

    PubMed

    Hermaniuk, Adam; Rybacki, Mariusz; Taylor, Jan R E

    2016-01-01

    Previous studies reported that low temperatures result in increases in both cell size and body size in ectotherms that may explain patterns of geographic variation of their body size across latitudinal ranges. Also, polyploidy showed the same effect on body size in invertebrates. In vertebrates, despite their having larger cells, no clear effect of polyploidy on body size has been found. This article presents the relationship between temperature, cell size, growth rate, and body size in diploid and polyploid hybridogenetic frog Pelophylax esculentus reared as tadpoles at 19° and 24°C. The size of cells was larger in both diploid and triploid tadpoles at 19°C, and triploids had larger cells at both temperatures. In diploid and triploid froglets, the temperature in which they developed as tadpoles did not affect the size of their cells, but triploids still had larger cells. Triploid tadpoles grew faster than diploids at 19°C and had larger body mass; there was no clear difference between ploidies in growth rate at 24°C. This indicates better adaptation of triploid tadpoles to cold environment. This is the first report on the increase of body mass of a polyploid vertebrate caused by low temperature, and we showed relationship between increase in cell size and increased body mass. The large body mass of triploids may provide a selective advantage, especially in colder environments, and this may explain the prevalence of triploids in the northern parts of the geographic range of P. esculentus. PMID:27082722

  5. Aligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells.

    PubMed

    Beliveau, Alexander; Thomas, Gawain; Gong, Jiaxin; Wen, Qi; Jain, Anjana

    2016-01-01

    Glioblastoma multiforme (GBM) is an aggressive, Grade IV astrocytoma with a poor survival rate, primarily due to the GBM tumor cells migrating away from the primary tumor site along the nanotopography of white matter tracts and blood vessels. It is unclear whether this nanotopography influences the biomechanical properties (i.e. cytoskeletal stiffness) of GBM tumor cells. Although GBM tumor cells have an innate propensity to migrate, we believe this capability is enhanced due to the influence of nanotopography on the tumor cells' biomechanical properties. In this study, we used an aligned nanofiber film that mimics the nanotopography in the tumor microenvironment to investigate the mechanical properties of GBM tumor cells in vitro. The data demonstrate that the cytoskeletal stiffness, cell traction stress, and focal adhesion area were significantly lower in the GBM tumor cells compared to healthy astrocytes. Moreover, the cytoskeletal stiffness was significantly reduced when cultured on aligned nanofiber films compared to smooth and randomly aligned nanofiber films. Gene expression analysis showed that tumor cells cultured on the aligned nanotopography upregulated key migratory genes and downregulated key proliferative genes. Therefore, our data suggest that the migratory potential is elevated when GBM tumor cells are migrating along aligned nanotopographical substrates. PMID:27189099

  6. Multimodality Raman and photoacoustic imaging of surface-enhanced-Raman-scattering-targeted tumor cells

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Paproski, Robert J.; Shao, Peng; Forbrich, Alexander; Lewis, John D.; Zemp, Roger J.

    2016-02-01

    A multimodality Raman and photoacoustic imaging system is presented. This system has ultralow background and can detect tumor cells labeled with modified surface-enhanced-Raman-scattering (SERS) nanoparticles in vivo. Photoacoustic imaging provides microvascular context and can potentially be used to guide magnetic trapping of circulating tumor cells for SERS detection in animal models.

  7. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  8. Vascular endothelial growth factor blockade elicits a stable metabolic shift in tumor cells: therapeutic implications

    PubMed Central

    Indraccolo, Stefano

    2016-01-01

    The metabolism of tumors differs remarkably from that of normal tissues, but whether this is a stable feature of tumor cells is largely unknown. Recent findings by independent teams indicate that antiangiogenic drugs cause a metabolic shift in tumor cells that is associated with increased malignancy. These results suggest therapy-driven evolutionary dynamics of tumor metabolism that could be therapeutically targeted. PMID:27308579

  9. Optical Detection and Virotherapy of Live Metastatic Tumor Cells in Body Fluids with Vaccinia Strains

    PubMed Central

    Minev, Boris R.; Zimmermann, Martina; Aguilar, Richard J.; Zhang, Qian; Sturm, Julia B.; Fend, Falko; Yu, Yong A.; Cappello, Joseph; Lauer, Ulrich M.; Szalay, Aladar A.

    2013-01-01

    Metastatic tumor cells in body fluids are important targets for treatment, and critical surrogate markers for evaluating cancer prognosis and therapeutic response. Here we report, for the first time, that live metastatic tumor cells in blood samples from mice bearing human tumor xenografts and in blood and cerebrospinal fluid samples from patients with cancer were successfully detected using a tumor cell-specific recombinant vaccinia virus (VACV). In contrast to the FDA-approved CellSearch system, VACV detects circulating tumor cells (CTCs) in a cancer biomarker-independent manner, thus, free of any bias related to the use of antibodies, and can be potentially a universal system for detection of live CTCs of any tumor type, not limited to CTCs of epithelial origin. Furthermore, we demonstrate for the first time that VACV was effective in preventing and reducing circulating tumor cells in mice bearing human tumor xenografts. Importantly, a single intra-peritoneal delivery of VACV resulted in a dramatic decline in the number of tumor cells in the ascitic fluid from a patient with gastric cancer. Taken together, these results suggest VACV to be a useful tool for quantitative detection of live tumor cells in liquid biopsies as well as a potentially effective treatment for reducing or eliminating live tumor cells in body fluids of patients with metastatic disease. PMID:24019862

  10. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma

    PubMed Central

    Ma, Xiaohong; Piao, Shengfu; Wang, Dan; Mcafee, Quentin; Nathanson, Katherine L.; Lum, Julian J.; Li, Lin Z.; Amaravadi, Ravi K.

    2011-01-01

    Purpose Autophagy consists of lysosome-dependent degradation of cytoplasmic contents sequestered by autophagic vesicles (AV). The role of autophagy in determining tumor aggressiveness and response to therapy in melanoma was investigated in this study. Experimental Design Autophagy was measured in tumor biopsies obtained from metastatic melanoma patients enrolled on a phase II trial of temozolomide and sorafenib and correlated to clinical outcome. These results were compared to autophagy measurements in aggressive and indolent melanoma cells grown in two and three dimensional culture and as xenograft tumors. The effects of autophagy inhibition with either hydroxychloroquine or inducible shRNA against the autophagy gene ATG5 were assessed in three dimensional spheroids. Results Patients whose tumors had a high autophagic index were less likely to respond to treatment and had a shorter survival compared to those with a low autophagic index. Differences in autophagy were less evident in aggressive and indolent melanoma cells grown in monolayer culture. In contrast, autophagy was increased in aggressive compared to indolent melanoma xenograft tumors. This difference was recapitulated when aggressive and indolent melanoma cells were grown as spheroids. Autophagy inhibition with either hydroxychloroquine or inducible shRNA against ATG5 resulted in cell death in aggressive melanoma spheroids, and significantly augmented temozolomide-induced cell death. Conclusions Autophagy is a potential prognostic factor and therapeutic target in melanoma. Three dimensional culture mimics the tumor microenvironment better than monolayer culture and is an appropriate model for studying therapeutic combinations involving autophagy modulators autophagy inhibition should be tested clinically in patients with melanoma. PMID:21325076

  11. Overexpression of CAP1 and its significance in tumor cell proliferation, migration and invasion in glioma.

    PubMed

    Fan, Yue-Chao; Cui, Chen-Chen; Zhu, Yi-Shuo; Zhang, Lei; Shi, Meng; Yu, Jin-Song; Bai, Jin; Zheng, Jun-Nian

    2016-09-01

    Adenylate cyclase-associated protein 1 (CAP1), a protein related to the regulation of actin filaments and the Ras/cAMP pathway, is associated with tumor progression. Nevertheless, the expression level and effects of CAP1 in regards to glioma have not been reported. In the present study, we examined the expression of CAP1 in glioma and tumor adjacent normal brain tissues by tissue microarray and immunohistochemistry. Our results showed that CAP1 was overexpressed in glioma tissues in comparison with that noted in the tumor adjacent normal brain tissues and increased staining of CAP1 was found to be correlated with WHO stage. In addition, we discovered that knockdown of CAP1 by specific RNA interference markedly inhibited cell growth and caused downregulation of the proliferation markers, PCNA and cyclin A. We further demonstrated that knockdown of CAP1 inhibited cell metastatic abilities by downregulating N-cadherin and vimentin and upregulating E-cadherin. These findings revealed that CAP1 expression is markedly increased in human glioma and that downregulation of CAP1 in tumors may serve as a treatment for glioma patients. PMID:27432289

  12. Maximum recovery potential of human tumor cells may predict clinical outcome in radiotherapy

    SciTech Connect

    Weichselbaum, R.R.; Beckett, M.

    1987-05-01

    We studied inherent radiosensitivity/resistance (D0), ability to accumulate sublethal damage (n) and repair of potentially lethal damage (PLDR) in established human tumor cell lines as well as early passage human tumor cell lines derived from patients with known outcome following radiotherapy. Survival 24 hrs after treatment of human tumor cells with X rays in plateau phase cultures is a function of initial damage (D0, n), as well as recovery over 24 hrs (PLDR). A surviving fraction greater than .1 24 hrs following treatment with 7 Gy in plateau phase cultures is associated with tumor cell types (melanoma, osteosarcoma) with a high probability of radiotherapy failure or tumor cells derived from patients who actually failed radiotherapy. Therefore, total cellular recovery following radiation may be an important determinant of radiocurability. Accurate assays of radiotherapy outcome may need to account for all these radiobiological parameters.

  13. Circulating tumor cells are correlated with disease progression and treatment response in an orthotopic hepatocellular carcinoma model.

    PubMed

    Yan, Jun; Fan, Zhichao; Wu, Xiufeng; Xu, Min; Jiang, Jiahao; Tan, Changjun; Wu, Weizhong; Wei, Xunbin; Zhou, Jian

    2015-11-01

    Hepatocellular carcinoma (HCC) is a highly malignant tumor characterized by rapid progression, poor prognosis, and frequent hematogenous metastasis. A minimally invasive diagnostic biomarker that can predict disease progression and treatment response would be of extraordinary benefit. Therefore, we have investigated whether the number of circulating tumor cells (CTCs) is correlated with disease progression and treatment response in HCC. Here we report that the number of CTCs, monitored by in vivo flow cytometry (IVFC), is strongly correlated with disease progression and treatment response in a highly metastatic orthotopic nude mouse model of green fluorescent protein (GFP)-labeled HCC. Sorafenib treatment reduces the number of CTCs significantly. The decreased number of CTCs is consistent with low lung metastasis. This study has demonstrated a considerable clinical value of CTCs as a biomarker in predicting disease progression and monitoring therapeutic efficacy in patients with HCC. PMID:26355643

  14. Microchip-based immunomagnetic detection of circulating tumor cells.

    PubMed

    Hoshino, Kazunori; Huang, Yu-Yen; Lane, Nancy; Huebschman, Michael; Uhr, Jonathan W; Frenkel, Eugene P; Zhang, Xiaojing

    2011-10-21

    Screening for circulating tumor cells (CTCs) in blood has been an object of interest for evidence of progressive disease, status of disease activity, recognition of clonal evolution of molecular changes and for possible early diagnosis of cancer. We describe a new method of microchip-based immunomagnetic CTC detection, in which the benefits of both immunomagnetic assay and the microfluidic device are combined. As the blood sample flows through the microchannel closely above arrayed magnets, cancer cells labeled with magnetic nanoparticles are separated from blood flow and deposited at the bottom wall of the glass coverslip, which allows direct observation of captured cells with a fluorescence microscope. A polydimethylsiloxane (PDMS)-based microchannel fixed on a glass coverslip was used to screen blood samples. The thin, flat dimensions of the microchannel, combined with the sharp magnetic field gradient in the vicinity of arrayed magnets with alternate polarities, lead to an effective capture of labeled cells. Compared to the commercially available CellSearch™ system, fewer (25%) magnetic particles are required to achieve a comparable capture rate, while the screening speed (at an optimal blood flow rate of 10 mL h(-1)) is more than five times faster than those reported previously with a microchannel-based assay. For the screening experiment, blood drawn from healthy subjects into CellSave™ tubes was spiked with cultured cancer cell lines of COLO205 and SKBR3. The blood was then kept at room temperature for 48 hours before the screening, emulating the actual clinical cases of blood screening. Customized Fe(3)O(4) magnetic nanoparticles (Veridex Ferrofluid™) conjugated to anti-epithelial cell adhesion molecule (EpCAM) antibodies were introduced into the blood samples to label cancer cells, and the blood was then run through the microchip device to capture the labelled cells. After capture, the cells were stained with fluorescent labelled anti

  15. Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers.

    PubMed

    Scott, Alison Dawn; Stenz, Noah W M; Ingvarsson, Pär K; Baum, David A

    2016-07-01

    Polyploidy is common and an important evolutionary factor in most land plant lineages, but it is rare in gymnosperms. Coast redwood (Sequoia sempervirens) is one of just two polyploid conifer species and the only hexaploid. Evidence from fossil guard cell size suggests that polyploidy in Sequoia dates to the Eocene. Numerous hypotheses about the mechanism of polyploidy and parental genome donors have been proposed, based primarily on morphological and cytological data, but it remains unclear how Sequoia became polyploid and why this lineage overcame an apparent gymnosperm barrier to whole-genome duplication (WGD). We sequenced transcriptomes and used phylogenetic inference, Bayesian concordance analysis and paralog age distributions to resolve relationships among gene copies in hexaploid coast redwood and close relatives. Our data show that hexaploidy in coast redwood is best explained by autopolyploidy or, if there was allopolyploidy, it happened within the Californian redwood clade. We found that duplicate genes have more similar sequences than expected, given the age of the inferred polyploidization. Conflict between molecular and fossil estimates of WGD can be explained if diploidization occurred very slowly following polyploidization. We extrapolate from this to suggest that the rarity of polyploidy in gymnosperms may be due to slow diploidization in this clade. PMID:26996245

  16. [Evolutionary regularities of somatic polyploidy expansion in salivary glands of gastropod mollusks. V. Subclasses Opisthobranchia and Pulmonata].

    PubMed

    Anisimov, A P; Ziumchenko, N E

    2012-01-01

    Salivary glands of 25 species of euthyneural gastropod mollusks (Opisthobranchia and Pulmonata) have been investigated by means of histochemical methods and DNA cytophotometry in nuclei of cells. The cells of three basic types are distinguished in glandular epithelim: granular cells (with glicoproteid granular inclusions), mucocytes-I (with sulfatic acid mucopolysaccharides) and mucocytes-II (with neutral and acid nonsulfatic polysaccharides and proteins) and so the epithelial ciliated cells and cells of the ducts. It was shown that glandular cells of salivary glands of all discovered mollusks' species are polyploid in different degree. The highest ploidy level estimated by means of DNA content in most of species is 64-128c. The giant polyploidy, attained to 4096c, is discovered in cells of salivary glands of Tritonia diomedea. The functional conditionality connected with features of feeding of different mollusk species and phylogenetic tendencies of expansion of somatic polyploidy in class Gastropoda are discussed. In comparison with allogenic, facultative and small polyploidy manifestation in Prosobranchia the obligatory polyploidization of high degree revealed in cells of salivary glands of Opisthobranchia and Pulmonata is consider to be the original cytological arogenesis. The probable causes of such differences are conneted with euthyneural type of organization of central nervous system and giant polyploidy of neurons in Opisthobranchia and Pulmonata mollusks. The causes, mechanisms and significance of such correlations are unclear for the present. PMID:22590930

  17. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    SciTech Connect

    Hoshiba, Takashi; Tanaka, Masaru

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  18. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    PubMed Central

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  19. Approaches to isolation and molecular characterization of disseminated tumor cells

    PubMed Central

    Magbanua, Mark Jesus M.; Das, Rishi; Polavarapu, Prithi; Park, John W.

    2015-01-01

    Micrometastatic cells in the bone marrow, now usually referred to as “disseminated tumor cells (DTCs)”, can be detected in early stage cancer patients. It has been hypothesized that DTCs represent key intermediates in the metastatic process as possible precursors of bone and visceral metastases, and are indicators of metastatic potential. Indeed, multiple clinical studies have unequivocally demonstrated the prognostic value of these cells in breast and other cancers, as DTCs have been associated with adverse outcomes, including inferior overall and disease-free survival. Despite this established clinical significance, the molecular nature of DTCs remains elusive. The complexity of the bone marrow poses a unique challenge in the isolation and direct characterization of these rare cells. However, recent advances in rare-cell technology along with technical improvements in analyzing limited cell inputs have enabled the molecular profiling of DTCs. In this review, we discuss research featuring the isolation and genomic analysis of DTCs. Emerging work on the molecular characterization of DTCs is now providing new insights into the biology of these cells. PMID:26378808

  20. Circulating tumor cell detection using photoacoustic spectral methods

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2014-03-01

    A method to detect and differentiate circulating melanoma tumor cells (CTCs) from blood cells using ultrasound and photoacoustic signals with frequencies over 100 MHz is presented. At these frequencies, the acoustic wavelength is similar to the dimensions of a cell, which results in unique features in the signal; periodically varying minima and maxima occur throughout the power spectrum. The spacing between minima depends on the ratio of the size to sound speed of the cell. Using a 532 nm pulsed laser and a 375 MHz center frequency wide-bandwidth transducer, the ultrasound and photoacoustic signals were measured from single cells. A total of 80 cells were measured, 20 melanoma cells, 20 white blood cells (WBCs) and 40 red blood cells (RBCs). The photoacoustic spectral spacing Δf between minima was 95 +/- 15 MHz for melanoma cells and greater than 230 MHz for RBCs. No photoacoustic signal was detected from WBCs. The ultrasonic spectral spacing between minima was 46 +/- 9 MHz for melanoma cells and 98 +/- 11 for WBCs. Both photoacoustic and ultrasound signals were detected from melanoma cells, while only ultrasound signals were detected from WBCs. RBCs showed distinct photoacoustic spectral variations in comparison to any other type of cell. Using the spectral spacing and signal amplitudes, each cell type could be grouped together to aid in cell identification. This method could be used for label-free counting and classifying cells in a sample.

  1. Transport Mechanisms of Circulating Tumor Cells in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Rangharajan, Kaushik; Conlisk, A. T.; Prakash, Shaurya

    2014-11-01

    Lab-on-a-chip (LoC) devices are becoming an essential tool for several emerging point-of-care healthcare needs and applications. Among the plethora of challenging problems in the personalized healthcare domain, early detection of cancer continues to be a challenge. For instance, identification of most tumors occurs by the time the tumor comprises approximately 1 billion cells, with poor prognosis for metastatic disease. The key obstacle in identifying and subsequent capture of circulating tumor cells (CTCs) is that the amount of CTCs in the blood stream is ~1 in 109 cells. The fundamental challenge in design and fabrication of microfluidic devices arises due to lack of information on suitable sorting needed for sample preparation before any labeling or capture scheme can be employed. Moreover, the ability to study these low concentration cells relies on knowledge of their physical and chemical properties, of which the physical properties are poorly understood. Also, nearly all existing microfluidic mixers were developed for aqueous electrolyte solutions to enhance mixing in traditional low Re flows. However, no systematic studies have developed design rules for particle mixing. Therefore, we present a numerical model to discuss design rules for microscale mixers and sorters for particle sorting for high efficiency antibody labeling of CTCs along with presenting a pathway for a device to capture CTCs without the need for labeling based on particle electrical properties. NSF Nanoscale Science and Engineering Center (NSEC) for the Affordable Nanoengineering of Polymeric Biomedical Devices EEC-0914790.

  2. CD44 enhances tumor aggressiveness by promoting tumor cell plasticity.

    PubMed

    Paulis, Yvette W J; Huijbers, Elisabeth J M; van der Schaft, Daisy W J; Soetekouw, Patricia M M B; Pauwels, Patrick; Tjan-Heijnen, Vivianne C G; Griffioen, Arjan W

    2015-08-14

    Aggressive tumor cells can obtain the ability to transdifferentiate into cells with endothelial features and thus form vasculogenic networks. This phenomenon, called vasculogenic mimicry (VM), is associated with increased tumor malignancy and poor clinical outcome. To identify novel key molecules implicated in the process of vasculogenic mimicry, microarray analysis was performed to compare gene expression profiles of aggressive (VM+) and non-aggressive (VM-) cells derived from Ewing sarcoma and breast carcinoma. We identified the CD44/c-Met signaling cascade as heavily relevant for vasculogenic mimicry. CD44 was at the center of this cascade, and highly overexpressed in aggressive tumors. Both CD44 standard isoform and its splice variant CD44v6 were linked to increased aggressiveness in VM. Since VM is most abundant in Ewing sarcoma tumors functional analyses were performed in EW7 cells. Overexpression of CD44 allowed enhanced adhesion to its extracellular matrix ligand hyaluronic acid. CD44 expression also facilitated the formation of vasculogenic structures in vitro, as CD44 knockdown experiments repressed migration and vascular network formation. From these results and the observation that CD44 expression is associated with vasculogenic structures and blood lakes in human Ewing sarcoma tissues, we conclude that CD44 increases aggressiveness in tumors through the process of vasculogenic mimicry. PMID:26189059

  3. Electrical Detection Method for Circulating Tumor Cells Using Graphene Nanoplates.

    PubMed

    Han, Song-I; Han, Ki-Ho

    2015-10-20

    This paper presents a microfluidic device for electrical discrimination of circulating tumor cells (CTCs) using graphene nanoplates (GNPs) as a highly conductive material bound to the cell surface. For two-step cascade discrimination, the microfluidic device is composed of a CTC-enrichment device and an impedance cytometry. Using lateral magnetophoresis, the CTC-enrichment device enriches rare CTCs from millions of background blood cells. Then, the impedance cytometry electrically identifies CTCs from the enriched sample, containing CTCs and persistent residual blood cells, based on the electrical impedance of CTCs modified by the GNPs. GNPs were used as a highly conductive material for modifying surface conductivity of CTCs, thereby improving the accuracy of electrical discrimination. The experimental results showed that a colorectal cancer cell line (DLD-1) spiked into peripheral blood was enriched by nearly 500-fold by the CTC-enrichment device. The phase of the electrical signal measured from DLD-1 cells covered by GNPs shifted by about 100° in comparison with that from normal blood cells, which allows the impedance cytometry to identify CTCs at a rate of 94% from the enriched samples. PMID:26402053

  4. Fractal Dimensions of In Vitro Tumor Cell Proliferation

    PubMed Central

    Lambrou, George I.

    2015-01-01

    Biological systems are characterized by their potential for dynamic adaptation. One of the challenges for systems biology approaches is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics in tumor models could help us understand the steps leading to the initiation of the disease and its progression. In vitro models are useful in answering this question by providing information over the spatiotemporal nature of such dynamics. In the present work, we used physical quantities such as growth rate, velocity, and acceleration for the cellular proliferation and identified the fractal structures in tumor cell proliferation dynamics. We provide evidence that the rate of cellular proliferation is of nonlinear nature and exhibits oscillatory behavior. We also calculated the fractal dimensions of our cellular system. Our results show that the temporal transitions from one state to the other also follow nonlinear dynamics. Furthermore, we calculated self-similarity in cellular proliferation, providing the basis for further investigation in this topic. Such systems biology approaches are very useful in understanding the nature of cellular proliferation and growth. From a clinical point of view, our results may be applicable not only to primary tumors but also to tumor metastases. PMID:25883653

  5. Photoacoustic monitoring of circulating tumor cells released during medical procedures

    NASA Astrophysics Data System (ADS)

    Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Galanzha, Ekaterina; Suen, James Y.; Zharov, Vladimir P.

    2013-03-01

    Many cancer deaths are related to metastasis to distant organs due to dissemination of circulating tumor cells (CTCs) shed from the primary tumor. For many years, oncologists believed some medical procedures may provoke metastasis; however, no direct evidence has been reported. We have developed a new, noninvasive technology called in vivo photoacoustic (PA) flow cytometry (PAFC), which provides ultrasensitive detection of CTCs. When CTCs with strongly light-absorbing intrinsic melanin pass through a laser beam aimed at a peripheral blood vessel, laser-induced acoustic waves from CTCs were detected using an ultrasound transducer. We focused on melanoma as it is one of the most metastatically aggressive malignancies. The goal of this research was to determine whether melanoma manipulation, like compression, incisional biopsy, or tumor excision, could enhance penetration of cancer cells from the primary tumor into the circulatory system. The ears of nude mice were inoculated with melanoma cells. Blood vessels were monitored for the presence of CTCs using in vivo PAFC. We discovered some medical procedures, like compression of the tumor, biopsy, and surgery may either initiate CTC release in the blood which previously contained no CTCs, or dramatically increased (10-30-fold) CTC counts above the initial level. Our results warn oncologists to use caution during physical examination, and surgery. A preventive anti-CTC therapy during or immediately after surgery, by intravenous drug administration could serve as an option to treat the resulting release of CTCs.

  6. Molecular characterization of circulating tumor cells in ovarian cancer

    PubMed Central

    Kolostova, Katarina; Pinkas, Michael; Jakabova, Anna; Pospisilova, Eliska; Svobodova, Pavla; Spicka, Jan; Cegan, Martin; Matkowski, Rafal; Bobek, Vladimir

    2016-01-01

    The main focus of the study was to detect circulating tumor cells (CTCs) in ovarian cancer (OC) patients using a new methodological approach (MetaCellTM) which is based on size-dependent separation of CTCs and subsequent cytomorphological evaluation. Cytomorphological evaluation using vital fluorescence microscopy approach enables to use the captured cells for further RNA/DNA analysis. The cytomorphological analysis is then completed by gene expression analysis (GEA). GEA showed that relative expression of EPCAM is elevated in CTC-enriched fractions in comparison to the whole peripheral blood sample and that the expression grows with in vitro cultivation time. Comparison of the relative gene expression level in the group of peripheral blood samples and CTC-fraction samples confirmed a statistically significant difference for the following genes (p < 0.02): KRT7, WT1, EPCAM, MUC16, MUC1, KRT18 and KRT19. Thus, we suggest that the combination of the above listed genes could confirm CTCs presence in OC patients with higher specificity than when GEA tests are performed for one marker only. The GEA revealed two separate clusters identifying patients with or without CTCs. PMID:27293992

  7. High incidence of TERT mutation in brain tumor cell lines.

    PubMed

    Johanns, Tanner M; Fu, Yujie; Kobayashi, Dale K; Mei, Yu; Dunn, Ian F; Mao, Diane D; Kim, Albert H; Dunn, Gavin P

    2016-07-01

    TERT promoter gene mutations are highly recurrent in malignant glioma. However, little information exists regarding their presence in experimental brain tumor models. To better characterize systems in which TERT mutation studies could be appropriately modeled experimentally, the TERT promoter was examined by conventional sequencing in primary brain tumor initiating cells (BTIC), two matched recurrent BTIC lines, a panel of established malignant glioma cell lines, and two meningioma cell lines. Telomerase gene expression was examined by quantitative PCR. We found that all glioblastoma BTIC lines harbored a TERT mutation, which was retained in two patient-matched recurrent BTIC. The TERT C228T or C250T mutation was found in 33/35 (94 %) of established malignant glioma cell lines and both meningioma cell lines examined. Brain tumor cell lines expressed variably high telomerase levels. Thus, a high percentage of glioma cell lines, as well as two meningioma cell lines, harbors TERT mutations. These data characterize tractable, accessible models with which to further explore telomerase biology in these tumor types. PMID:26960334

  8. Nanostructured Substrates for Capturing Circulating Tumor Cells in Whole Blood

    NASA Astrophysics Data System (ADS)

    Tseng, Hsian-Rong

    2009-03-01

    Over the past decade, circulating tumor cells (CTCs) has become an emerging ``biomarker'' for detecting early-stage cancer metastasis, predicting patient prognosis, as well as monitoring disease progression and therapeutic outcomes. However, isolation of CTCs has been technically challenging due to the extremely low abundance (a few to hundreds per ml) of CTCs among a high number of hematologic cells (109 per mL) in the blood. Our joint research team at UCLA has developed a new cell capture technology for quantification of CTCs in whole blood samples. Similar to most of the existing approaches, epithelial cell adhesion molecule antibody (anti-EpCAM) was grafted onto the surfaces to distinguish CTCs from the surrounding hematologic cells. The uniqueness of our technology is the use of nanostructured surfaces, which facilitates local topographical interactions between CTCs and substrates at the very first cell/substrate contacting time point. We demonstrated the ability of these nanostructured substrates to capture CTCs in whole blood samples with significantly improved efficiency and selectivity. The successful demonstration of this cell capture technology using brain, breast and prostate cancer cell lines encouraged us to test this approach in clinical setting. We have been able to bond our first validation study with a commercialized technology based on the use of immunomagnetic nanoparticles. A group of clinically well-characterized prostate cancer patients at UCLA hospital have been recruited and tested in parallel by these two technologies.

  9. Clusters of circulating tumor cells traverse capillary-sized vessels.

    PubMed

    Au, Sam H; Storey, Brian D; Moore, John C; Tang, Qin; Chen, Yeng-Long; Javaid, Sarah; Sarioglu, A Fatih; Sullivan, Ryan; Madden, Marissa W; O'Keefe, Ryan; Haber, Daniel A; Maheswaran, Shyamala; Langenau, David M; Stott, Shannon L; Toner, Mehmet

    2016-05-01

    Multicellular aggregates of circulating tumor cells (CTC clusters) are potent initiators of distant organ metastasis. However, it is currently assumed that CTC clusters are too large to pass through narrow vessels to reach these organs. Here, we present evidence that challenges this assumption through the use of microfluidic devices designed to mimic human capillary constrictions and CTC clusters obtained from patient and cancer cell origins. Over 90% of clusters containing up to 20 cells successfully traversed 5- to 10-μm constrictions even in whole blood. Clusters rapidly and reversibly reorganized into single-file chain-like geometries that substantially reduced their hydrodynamic resistances. Xenotransplantation of human CTC clusters into zebrafish showed similar reorganization and transit through capillary-sized vessels in vivo. Preliminary experiments demonstrated that clusters could be disrupted during transit using drugs that affected cellular interaction energies. These findings suggest that CTC clusters may contribute a greater role to tumor dissemination than previously believed and may point to strategies for combating CTC cluster-initiated metastasis. PMID:27091969

  10. Nanotechnology for the detection and kill of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Yuan, Zhou

    2014-09-01

    Circulating tumor cells (CTCs) represent a surrogate biomarker of hematogenous metastases and thus could be considered as a `liquid biopsy' which reveals metastasis in action. But it is absolutely a challenge to detect CTCs due to their extreme rarity. At present, the most common principle is to take advantage of the epithelial surface markers of CTCs which attach to a specific antibody. Antibody-magnetic nanobeads combine with the epithelial surface markers, and then the compound is processed by washing, separation, and detection. However, a proportion of CTC antigen expressions are down-regulated or lost in the process of epithelial-mesenchymal transition (EMT), and thus, this part of CTCs cannot be detected by classical detection methods such as CellSearch. To resolve this problem, some multiple-marker CTC detections have been developed rapidly. Additionally, nanotechnology is a promising approach to kill CTCs with high efficiency. Implantable nanotubes coated with apoptosis-promoting molecules improve the disease-free survival and overall survival. The review introduces some novel CTC detection techniques and therapeutic methods by virtue of nanotechnology to provide a better knowledge of the progress about CTC study.

  11. Immunonanoshells for targeted photothermal ablation of tumor cells

    PubMed Central

    Lowery, Amanda R; Gobin, André M; Day, Emily S; Halas, Naomi J; West, Jennifer L

    2006-01-01

    Consisting of a silica core surrounded by a thin gold shell, nanoshells possess an optical tunability that spans the visible to the near infrared (NIR) region, a region where light penetrates tissues deeply. Conjugated with tumor-specific antibodies, NIR-absorbing immunonanoshells can preferentially bind to tumor cells. NIR light then heats the bound nanoshells, thus destroying the targeted cells. Antibodies can be consistently bound to the nanoshells via a bifunctional polyethylene glycol (PEG) linker at a density of ~150 antibodies per nanoshell. In vitro studies have confirmed the ability to selectively induce cell death with the photothermal interaction of immunonanoshells and NIR light. Prior to incubation with anti-human epidermal growth factor receptor (HER2) immunonanoshells, HER2-expressing SK-BR-3 breast carcinoma cells were seeded alone or adjacent to human dermal fibroblasts (HDFs). Anti-HER2 immunonanoshells bound to HER2-expressing cells resulted in the death of SK-BR-3 cells after NIR exposure only within the irradiated area, while HDFs remained viable after similar treatment since the immunonanoshells did not bind to these cells at high levels. Control nanoshells, conjugated with nonspecific anti-IgG or PEG, did not bind to either cell type, and cells continued to be viable after treatment with these control nanoshells and NIR irradiation. PMID:17722530

  12. Molecular profiling of single circulating tumor cells with diagnostic intention

    PubMed Central

    Polzer, Bernhard; Medoro, Gianni; Pasch, Sophie; Fontana, Francesca; Zorzino, Laura; Pestka, Aurelia; Andergassen, Ulrich; Meier-Stiegen, Franziska; Czyz, Zbigniew T; Alberter, Barbara; Treitschke, Steffi; Schamberger, Thomas; Sergio, Maximilian; Bregola, Giulia; Doffini, Anna; Gianni, Stefano; Calanca, Alex; Signorini, Giulio; Bolognesi, Chiara; Hartmann, Arndt; Fasching, Peter A; Sandri, Maria T; Rack, Brigitte; Fehm, Tanja; Giorgini, Giuseppe; Manaresi, Nicolò; Klein, Christoph A

    2014-01-01

    Several hundred clinical trials currently explore the role of circulating tumor cell (CTC) analysis for therapy decisions, but assays are lacking for comprehensive molecular characterization of CTCs with diagnostic precision. We therefore combined a workflow for enrichment and isolation of pure CTCs with a non-random whole genome amplification method for single cells and applied it to 510 single CTCs and 189 leukocytes of 66 CTC-positive breast cancer patients. We defined a genome integrity index (GII) to identify single cells suited for molecular characterization by different molecular assays, such as diagnostic profiling of point mutations, gene amplifications and whole genomes of single cells. The reliability of > 90% for successful molecular analysis of high-quality clinical samples selected by the GII enabled assessing the molecular heterogeneity of single CTCs of metastatic breast cancer patients. We readily identified genomic disparity of potentially high relevance between primary tumors and CTCs. Microheterogeneity analysis among individual CTCs uncovered pre-existing cells resistant to ERBB2-targeted therapies suggesting ongoing microevolution at late-stage disease whose exploration may provide essential information for personalized treatment decisions and shed light into mechanisms of acquired drug resistance. PMID:25358515

  13. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  14. LAI reactivity in rats immunized with tumor cells.

    PubMed

    Pham Manh Hung; Kalafut, F; Novotná, L; Koníková, E

    1980-01-01

    Leukocytes of peripheral blood of F1 hybrid inbred strain of rats LW X AVN and rats of inbred Lewis strain, immunized for three consecutive weeks with increasing doses of live or dead MC-1 or B 77 tumor cells, incubated for 20 hours with specific tumor extract, showed a lower adhering ability (LAI 32.8 +/- 16.6, 44.4 +/- 14.0, 43.1 +/- 7.4%) than that of the same cell population cultured without a specific antigen. The nonspecific tumor extract did not produce any LAI reactivity (4.4 +/- 5.9, 5.8 +/- 8.2, 6.7 +/- 5.9%). The values of LAI leukocytes of the controls tested by both the antigens were concordant with those found in samples of the same cell population tested without any antigens. The discussion bears on a possibility of applying the 20-hour modification of the LAI test in studies of cell immunity in immunized patients. PMID:7005699

  15. Collective behavior of brain tumor cells: The role of hypoxia

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Katakowski, Mark; Hopkins, Scott; Szalad, Alexandra; Zheng, Xuguang; Jiang, Feng; Chopp, Michael

    2011-03-01

    We consider emergent collective behavior of a multicellular biological system. Specifically, we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. In the first set of experiments, cell migration away from a tumor spheroid was investigated. The second set of experiments was performed in a typical wound-healing geometry: Cells were placed on a substrate, a scratch was made, and cell migration into the gap was investigated. Experiments show a surprising result: Cells under normal and hypoxic conditions have migrated the same distance in the “spheroid” experiment, while in the “scratch” experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.

  16. Clusters of circulating tumor cells traverse capillary-sized vessels

    PubMed Central

    Au, Sam H.; Storey, Brian D.; Moore, John C.; Tang, Qin; Chen, Yeng-Long; Javaid, Sarah; Sarioglu, A. Fatih; Sullivan, Ryan; Madden, Marissa W.; O’Keefe, Ryan; Haber, Daniel A.; Maheswaran, Shyamala; Langenau, David M.; Stott, Shannon L.; Toner, Mehmet

    2016-01-01

    Multicellular aggregates of circulating tumor cells (CTC clusters) are potent initiators of distant organ metastasis. However, it is currently assumed that CTC clusters are too large to pass through narrow vessels to reach these organs. Here, we present evidence that challenges this assumption through the use of microfluidic devices designed to mimic human capillary constrictions and CTC clusters obtained from patient and cancer cell origins. Over 90% of clusters containing up to 20 cells successfully traversed 5- to 10-μm constrictions even in whole blood. Clusters rapidly and reversibly reorganized into single-file chain-like geometries that substantially reduced their hydrodynamic resistances. Xenotransplantation of human CTC clusters into zebrafish showed similar reorganization and transit through capillary-sized vessels in vivo. Preliminary experiments demonstrated that clusters could be disrupted during transit using drugs that affected cellular interaction energies. These findings suggest that CTC clusters may contribute a greater role to tumor dissemination than previously believed and may point to strategies for combating CTC cluster-initiated metastasis. PMID:27091969

  17. Integrin receptors on tumor cells facilitate NK cell-mediated antibody-dependent cytotoxicity.

    PubMed

    Anikeeva, Nadia; Steblyanko, Maria; Fayngerts, Svetlana; Kopylova, Natalya; Marshall, Deborah J; Powers, Gordon D; Sato, Takami; Campbell, Kerry S; Sykulev, Yuri

    2014-08-01

    NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells. Although all tested tumor cells were killed by CD16.NK-92 effectors in the presence of the antibodies, the killing of target cells with a low level of ICAM-1 expression revealed a dramatic decrease in their specific lysis at high antibody concentration, revealing a dose limiting effect. A similar effect was also observed with primary human NK cells. The effect was erased after IFN-γ treatment of tumor cells resulting in upregulation of ICAM-1. Furthermore, killing of the same tumor cells induced by Herceptin antibody was significantly impaired in the presence of CNTO 95Ala-Ala antibody variant that blocks αV integrins but is incapable of binding to CD16. These data suggest that αV integrins on tumor cells could compensate for the loss of ICAM-1 molecules, thereby facilitating ADCC by NK cells. Thus, NK cells could exercise cytolytic activity against ICAM-1 deficient tumor cells in the absence of proinflammatory cytokines, emphasizing the importance of NK cells in tumor-specific immunity at early stages of cancer. PMID:24810893

  18. Lactate Activates HIF-1 in Oxidative but Not in Warburg-Phenotype Human Tumor Cells

    PubMed Central

    De Saedeleer, Christophe J.; Copetti, Tamara; Porporato, Paolo E.; Verrax, Julien

    2012-01-01

    Cancer can be envisioned as a metabolic disease driven by pressure selection and intercellular cooperativeness. Together with anaerobic glycolysis, the Warburg effect, formally corresponding to uncoupling glycolysis from oxidative phosphorylation, directly participates in cancer aggressiveness, supporting both tumor progression and dissemination. The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key contributor to glycolysis. It stimulates the expression of glycolytic transporters and enzymes supporting high rate of glycolysis. In this study, we addressed the reverse possibility of a metabolic control of HIF-1 in tumor cells. We report that lactate, the end-product of glycolysis, inhibits prolylhydroxylase 2 activity and activates HIF-1 in normoxic oxidative tumor cells but not in Warburg-phenotype tumor cells which also expressed lower basal levels of HIF-1α. These data were confirmed using genotypically matched oxidative and mitochondria-depleted glycolytic tumor cells as well as several different wild-type human tumor cell lines of either metabolic phenotype. Lactate activates HIF-1 and triggers tumor angiogenesis and tumor growth in vivo, an activity that we found to be under the specific upstream control of the lactate transporter monocarboxylate transporter 1 (MCT1) expressed in tumor cells. Because MCT1 also gates lactate-fueled tumor cell respiration and mediates pro-angiogenic lactate signaling in endothelial cells, MCT1 inhibition is confirmed as an attractive anticancer strategy in which a single drug may target multiple tumor-promoting pathways. PMID:23082126

  19. Novel cancer vaccines prepared by anchoring cytokines to tumor cells avoiding gene transfection

    NASA Astrophysics Data System (ADS)

    Nizard, Philippe; Gross, David-Alexandre; Chenal, Alexandre; Beaumelle, Bruno; Kosmatopoulos, Konstadinos; Gillet, Daniel

    2002-06-01

    Cytokines have a strong potential for triggering anticancer immunity if released in the tumor microenvironment. Successful vaccines have been engineered using tumor cells genetically modified to secrete the cytokines. Unfortunately, this approach remains difficult and hazardous to perform in the clinic. We describe a new way of combining cytokines with tumor cells to prepare anticancer vaccines. This consists in anchoring recombinant cytokines to the membrane of killed tumor cells. Attachment is mediated by a fragment of diphtheria toxin (T) genetically connected to the cytokine. It is triggered by an acid pH pulse. The method was applied to IL-2, a potent anti-tumor cytokine. IL-2 anchored to the surface of tumor cells by the T anchor retained its IL-2 activity and remained exposed several days. Interestingly, vaccination of mice with these modified tumor cells induced a protective anti-tumor immunity mediated by tumor-specific cytotoxic T lymphocytes. This procedure presents several advantages as compared to the conventional approaches based on the transfection of tumor cells with cytokine genes. It does not require the culture of tumor cells from the patients and eliminates the safety problems connected with viral vectors while allowing the control of the amount of cytokines delivered with the vaccine.

  20. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent

    PubMed Central

    Alkasalias, Twana; Flaberg, Emilie; Kashuba, Vladimir; Alexeyenko, Andrey; Pavlova, Tatiana; Savchenko, Andrii; Szekely, Laszlo; Klein, George; Guven, Hayrettin

    2014-01-01

    Normal human and murine fibroblasts can inhibit proliferation of tumor cells when cocultured in vitro. The inhibitory capacity varies depending on the donor and the site of origin of the fibroblast. We showed previously that effective inhibition requires formation of a morphologically intact fibroblast monolayer before seeding of the tumor cells. Here we show that inhibition is extended to motility of tumor cells and we dissect the factors responsible for these inhibitory functions. We find that inhibition is due to two different sets of molecules: (i) the extracellular matrix (ECM) and other surface proteins of the fibroblasts, which are responsible for contact-dependent inhibition of tumor cell proliferation; and (ii) soluble factors secreted by fibroblasts when confronted with tumor cells (confronted conditioned media, CCM) contribute to inhibition of tumor cell proliferation and motility. However, conditioned media (CM) obtained from fibroblasts alone (nonconfronted conditioned media, NCM) did not inhibit tumor cell proliferation and motility. In addition, quantitative PCR (Q-PCR) data show up-regulation of proinflammatory genes. Moreover, comparison of CCM and NCM with an antibody array for 507 different soluble human proteins revealed differential expression of growth differentiation factor 15, dickkopf-related protein 1, endothelial-monocyte-activating polypeptide II, ectodysplasin A2, Galectin-3, chemokine (C-X-C motif) ligand 2, Nidogen1, urokinase, and matrix metalloproteinase 3. PMID:25404301

  1. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma

    PubMed Central

    Eyles, Jo; Puaux, Anne-Laure; Wang, Xiaojie; Toh, Benjamin; Prakash, Celine; Hong, Michelle; Tan, Tze Guan; Zheng, Lin; Ong, Lai Chun; Jin, Yi; Kato, Masashi; Prévost-Blondel, Armelle; Chow, Pierce; Yang, Henry; Abastado, Jean-Pierre

    2010-01-01

    Although metastasis is the leading cause of cancer-related death, it is not clear why some patients with localized cancer develop metastatic disease after complete resection of their primary tumor. Such relapses have been attributed to tumor cells that disseminate early and remain dormant for prolonged periods of time; however, little is known about the control of these disseminated tumor cells. Here, we have used a spontaneous mouse model of melanoma to investigate tumor cell dissemination and immune control of metastatic outgrowth. Tumor cells were found to disseminate throughout the body early in development of the primary tumor, even before it became clinically detectable. The disseminated tumor cells remained dormant for varying periods of time depending on the tissue, resulting in staggered metastatic outgrowth. Dormancy in the lung was associated with reduced proliferation of the disseminated tumor cells relative to the primary tumor. This was mediated, at least in part, by cytostatic CD8+ T cells, since depletion of these cells resulted in faster outgrowth of visceral metastases. Our findings predict that immune responses favoring dormancy of disseminated tumor cells, which we propose to be the seed of subsequent macroscopic metastases, are essential for prolonging the survival of early stage cancer patients and suggest that therapeutic strategies designed to reinforce such immune responses may produce marked benefits in these patients. PMID:20501944

  2. Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture

    PubMed Central

    Pollmann, Mary-Ann; Shao, Qing; Laird, Dale W; Sandig, Martin

    2005-01-01

    Introduction Metastasis involves the emigration of tumor cells through the vascular endothelium, a process also known as diapedesis. The molecular mechanisms regulating tumor cell diapedesis are poorly understood, but may involve heterocellular gap junctional intercellular communication (GJIC) between tumor cells and endothelial cells. Method To test this hypothesis we expressed connexin 43 (Cx43) in GJIC-deficient mammary epithelial tumor cells (HBL100) and examined their ability to form gap junctions, establish heterocellular GJIC and migrate through monolayers of human microvascular endothelial cells (HMVEC) grown on matrigel-coated coverslips. Results HBL100 cells expressing Cx43 formed functional heterocellular gap junctions with HMVEC monolayers within 30 minutes. In addition, immunocytochemistry revealed Cx43 localized to contact sites between Cx43 expressing tumor cells and endothelial cells. Quantitative analysis of diapedesis revealed a two-fold increase in diapedesis of Cx43 expressing cells compared to empty vector control cells. The expression of a functionally inactive Cx43 chimeric protein in HBL100 cells failed to increase migration efficiency, suggesting that the observed up-regulation of diapedesis in Cx43 expressing cells required heterocellular GJIC. This finding is further supported by the observation that blocking homocellular and heterocellular GJIC with carbenoxolone in co-cultures also reduced diapedesis of Cx43 expressing HBL100 tumor cells. Conclusion Collectively, our results suggest that heterocellular GJIC between breast tumor cells and endothelial cells may be an important regulatory step during metastasis. PMID:15987459

  3. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice

    PubMed Central

    Sonveaux, Pierre; Végran, Frédérique; Schroeder, Thies; Wergin, Melanie C.; Verrax, Julien; Rabbani, Zahid N.; De Saedeleer, Christophe J.; Kennedy, Kelly M.; Diepart, Caroline; Jordan, Bénédicte F.; Kelley, Michael J.; Gallez, Bernard; Wahl, Miriam L.; Feron, Olivier; Dewhirst, Mark W.

    2008-01-01

    Tumors contain oxygenated and hypoxic regions, so the tumor cell population is heterogeneous. Hypoxic tumor cells primarily use glucose for glycolytic energy production and release lactic acid, creating a lactate gradient that mirrors the oxygen gradient in the tumor. By contrast, oxygenated tumor cells have been thought to primarily use glucose for oxidative energy production. Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative metabolism of oxygenated tumor cells. There is therefore a symbiosis in which glycolytic and oxidative tumor cells mutually regulate their access to energy metabolites. We identified monocarboxylate transporter 1 (MCT1) as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate for oxidative metabolism. Inhibiting MCT1 with α-cyano-4-hydroxycinnamate (CHC) or siRNA in these cells induced a switch from lactate-fueled respiration to glycolysis. A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung carcinoma and xenotransplanted human colorectal adenocarcinoma cells was observed after administration of CHC. This retarded tumor growth, as the hypoxic/glycolytic tumor cells died from glucose starvation, and rendered the remaining cells sensitive to irradiation. As MCT1 was found to be expressed by an array of primary human tumors, we suggest that MCT1 inhibition has clinical antitumor potential. PMID:19033663

  4. Aligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells

    PubMed Central

    Beliveau, Alexander; Thomas, Gawain; Gong, Jiaxin; Wen, Qi; Jain, Anjana

    2016-01-01

    Glioblastoma multiforme (GBM) is an aggressive, Grade IV astrocytoma with a poor survival rate, primarily due to the GBM tumor cells migrating away from the primary tumor site along the nanotopography of white matter tracts and blood vessels. It is unclear whether this nanotopography influences the biomechanical properties (i.e. cytoskeletal stiffness) of GBM tumor cells. Although GBM tumor cells have an innate propensity to migrate, we believe this capability is enhanced due to the influence of nanotopography on the tumor cells’ biomechanical properties. In this study, we used an aligned nanofiber film that mimics the nanotopography in the tumor microenvironment to investigate the mechanical properties of GBM tumor cells in vitro. The data demonstrate that the cytoskeletal stiffness, cell traction stress, and focal adhesion area were significantly lower in the GBM tumor cells compared to healthy astrocytes. Moreover, the cytoskeletal stiffness was significantly reduced when cultured on aligned nanofiber films compared to smooth and randomly aligned nanofiber films. Gene expression analysis showed that tumor cells cultured on the aligned nanotopography upregulated key migratory genes and downregulated key proliferative genes. Therefore, our data suggest that the migratory potential is elevated when GBM tumor cells are migrating along aligned nanotopographical substrates. PMID:27189099

  5. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination.

    PubMed

    Jannasch, Katharina; Wegwitz, Florian; Lenfert, Eva; Maenz, Claudia; Deppert, Wolfgang; Alves, Frauke

    2015-07-01

    In this study, the effects of the standard chemotherapy, cyclophosphamide/adriamycin/5-fluorouracil (CAF) on tumor growth, dissemination and recurrence after orthotopic implantation of murine G-2 cells were analyzed in the syngeneic immunocompetent whey acidic protein-T mouse model (Wegwitz et al., PLoS One 2010; 5:e12103; Schulze-Garg et al., Oncogene 2000; 19:1028-37). Single-dose CAF treatment reduced tumor size significantly, but was not able to eradicate all tumor cells, as recurrent tumor growth was observed 4 weeks after CAF treatment. Nine days after CAF treatment, residual tumors showed features of regressive alterations and were composed of mesenchymal-like tumor cells, infiltrating immune cells and some tumor-associated fibroblasts with an intense deposition of collagen. Recurrent tumors were characterized by coagulative necrosis and less tumor cell differentiation compared with untreated tumors, suggesting a more aggressive tumor phenotype. In support, tumor cell dissemination was strongly enhanced in mice that had developed recurrent tumors in comparison with untreated controls, although only few disseminated tumor cells could be detected in various organs 9 days after CAF application. In vitro experiments revealed that CAF treatment of G-2 cells eliminates the vast majority of epithelial tumor cells, whereas tumor cells with a mesenchymal phenotype survive. These results together with the in vivo findings suggest that tumor cells that underwent epithelial-mesenchymal transition and/or exhibit stem-cell-like properties are difficult to eliminate using one round of CAF chemotherapy. The model system described here provides a valuable tool for the characterization of the effects of chemotherapeutic regimens on recurrent tumor growth and on tumor cell dissemination, thereby enabling the development and preclinical evaluation of novel therapeutic strategies to target mammary carcinomas. PMID:25449528

  6. A magnetic vehicle realized tumor cell-targeted radiotherapy using low-dose radiation.

    PubMed

    Chen, Hsiao-Ping; Tung, Fu-I; Chen, Ming-Hong; Liu, Tse-Ying

    2016-03-28

    Radiotherapy, a common cancer treatment, often adversely affects the surrounding healthy tissue and/or cells. Some tumor tissue-focused radiation therapies have been developed to lower radiation-induced lesion formation; however, achieving tumor cell-targeted radiotherapy (i.e., precisely focusing the radiation efficacy to tumor cells) remains a challenge. In the present study, we developed a novel tumor cell-targeted radiotherapy, named targeted sensitization-enhanced radiotherapy (TSER), that exploits tumor-specific folic acid-conjugated carboxymethyl lauryl chitosan/superparamagnetic iron oxide (FA-CLC/SPIO) micelles to effectively deliver chlorin e6 (Ce6, a sonosensitizer) to mitochondria of HeLa cells under magnetic guidance. For the in vitro tests, the sensitization of Ce6 induced by ultrasound, that could weaken the radiation resistant ability of tumor cells, occurred only in Ce6-internalizing tumor cells. Therefore, low-dose X-ray irradiation, that was not harmful to normal cells, could exert high tumor cell-specific killing ability. The ratio of viable normal cells to tumor cells was increased considerably, from 7.8 (at 24h) to 97.1 (at 72h), after they had received TSER treatment. Our data suggest that TSER treatment significantly weakens tumor cells, resulting in decreased viability in vitro as well as decreased in vivo subcutaneous tumor growth in nude mice, while the adverse effects were minimal. Taken together, TSER treatment appears to be an effective, clinically feasible tumor cell-targeted radiotherapy that can solve the problems of traditional radiotherapy and photodynamic therapy. PMID:26892750

  7. Structural Features Facilitating Tumor Cell Targeting and Internalization by Bleomycin and Its Disaccharide

    PubMed Central

    2016-01-01

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide–cytotoxin conjugates. PMID:25905565

  8. Roles of dynamic and reversible histone acetylation in plant development and polyploidy

    PubMed Central

    Chen, Z. Jeffrey; Tian, Lu

    2007-01-01

    Transcriptional regulation in eukaryotes is not simply determined by the DNA sequence, but rather mediated through dynamic chromatin modifications and remodeling. Recent studies have shown that reversible and rapid changes in histone acetylation play an essential role in chromatin modification, induce genome-wide and specific changes in gene expression, and affect a variety of biological processes in response to internal and external signals, such as cell differentiation, growth, development, light, temperature, and abiotic and biotic stresses. Moreover, histone acetylation and deacetylation are associated with RNA interference and other chromatin modifications including DNA and histone methylation. The reversible changes in histone acetylation also contribute to cell cycle regulation and epigenetic silencing of rDNA and redundant genes in response to interspecific hybridization and polyploidy. PMID:17556080

  9. Gibberellic-acid-induced cell elongation in pea epicotyls: Effect on polyploidy and DNA content.

    PubMed

    Boeken, G; Van Oostveldt, P

    1977-01-01

    In gibberellic-acid(GA3)-treated epicotyls of dwarf peas (Pisum sativum L.) grown in the light, DNA (per cell and per epicotyl) is followed. Histofluorometric DNA determinations show that GA3-promoted cell elongation is not accompanied by increased endomitosis, but chemical estimations show an increased DNA content per epicotyl. This difference must therefore be the result of increased mitotic activity in the GA3-treated tissue. Epicotyls of seedlings grown with or without cotyledons under continuous light with GA3 are tetraploid, as are those of ecotylized embryos grown in darkness. These epicotyls reach no more than half the length of octaploid epicotyls of seedlings grown in darkness. This result provides evidence for a relationship between polyploidy and final possible cell length. PMID:24419898

  10. Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae): a pathway to infraspecific polyploidy.

    PubMed

    Kim, Jung Sung; Oginuma, Kazuo; Tobe, Hiroshi

    2009-07-01

    Polyploidy, which is thought to have played an important role in plant evolution and speciation, is prevalent in Chrysanthemum (x = 9). In fact, polyploid series are known in C. zawadskii (2x, 4x, 6x, 8x, and 10x) and C. indicum (2x, 4x, and 6x), but the mechanism by which polyploidization occurs is unknown. Here we show that in diploid individuals of both C. zawadskii and C. indicum, the fusion between two adjacent pollen mother cells (PMCs) occurs at a frequency of 1.1-1.3% early in the first meiotic division. While possessing the chromosomes of both PMCs, the fused cell or syncyte undertakes subsequent meiotic division processes as a single large PMC, producing four 2n pollen grains that are able to germinate. Despite their low frequency, syncyte formation may have played a major role in the production of infraspecific polyploids in Chrysanthemum. PMID:19367445

  11. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.

    PubMed

    Lee, Woong Ryeol; Oh, Kyung Taek; Park, So Young; Yoo, Na Young; Ahn, Yong Sik; Lee, Don Haeng; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Eun Seong

    2011-07-01

    Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations. PMID:21420837

  12. The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL

    PubMed Central

    Ungewiss, Christin; Rizvi, Zain H.; Roybal, Jonathon D.; Peng, David H.; Gold, Kathryn A.; Shin, Dong-Hoon; Creighton, Chad J.; Gibbons, Don L.

    2016-01-01

    Tumor cell metastasis is a complex process that has been mechanistically linked to the epithelial-mesenchymal transition (EMT). The double-negative feedback loop between the microRNA-200 family and the Zeb1 transcriptional repressor is a master EMT regulator, but there is incomplete understanding of how miR-200 suppresses invasion. Our recent efforts have focused on the tumor cell-matrix interactions essential to tumor cell activation. Herein we utilized both our Kras/p53 mutant mouse model and human lung cancer cell lines to demonstrate that upon miR-200 loss integrin β1-collagen I interactions drive 3D in vitro migration/invasion and in vivo metastases. Zeb1-dependent EMT enhances tumor cell responsiveness to the ECM composition and activates FAK/Src pathway signaling by de-repression of the direct miR-200 target, CRKL. We demonstrate that CRKL serves as an adaptor molecule to facilitate focal adhesion formation, mediates outside-in signaling through Itgβ1 to drive cell invasion, and inside-out signaling that maintains tumor cell-matrix contacts required for cell invasion. Importantly, CRKL levels in pan-cancer TCGA analyses were predictive of survival and CRKL knockdown suppressed experimental metastases in vivo without affecting primary tumor growth. Our findings highlight the critical ECM-tumor cell interactions regulated by miR-200/Zeb1-dependent EMT that activate intracellular signaling pathways responsible for tumor cell invasion and metastasis. PMID:26728244

  13. The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL.

    PubMed

    Ungewiss, Christin; Rizvi, Zain H; Roybal, Jonathon D; Peng, David H; Gold, Kathryn A; Shin, Dong-Hoon; Creighton, Chad J; Gibbons, Don L

    2016-01-01

    Tumor cell metastasis is a complex process that has been mechanistically linked to the epithelial-mesenchymal transition (EMT). The double-negative feedback loop between the microRNA-200 family and the Zeb1 transcriptional repressor is a master EMT regulator, but there is incomplete understanding of how miR-200 suppresses invasion. Our recent efforts have focused on the tumor cell-matrix interactions essential to tumor cell activation. Herein we utilized both our Kras/p53 mutant mouse model and human lung cancer cell lines to demonstrate that upon miR-200 loss integrin β1-collagen I interactions drive 3D in vitro migration/invasion and in vivo metastases. Zeb1-dependent EMT enhances tumor cell responsiveness to the ECM composition and activates FAK/Src pathway signaling by de-repression of the direct miR-200 target, CRKL. We demonstrate that CRKL serves as an adaptor molecule to facilitate focal adhesion formation, mediates outside-in signaling through Itgβ1 to drive cell invasion, and inside-out signaling that maintains tumor cell-matrix contacts required for cell invasion. Importantly, CRKL levels in pan-cancer TCGA analyses were predictive of survival and CRKL knockdown suppressed experimental metastases in vivo without affecting primary tumor growth. Our findings highlight the critical ECM-tumor cell interactions regulated by miR-200/Zeb1-dependent EMT that activate intracellular signaling pathways responsible for tumor cell invasion and metastasis. PMID:26728244

  14. Pollen and stomata morphometrics and polyploidy in Eriotheca (Malvaceae-Bombacoideae).

    PubMed

    Marinho, R C; Mendes-Rodrigues, C; Bonetti, A M; Oliveira, P E

    2014-03-01

    Approximately 70% of the angiosperm species are polyploid, an important phenomenon in the evolution of those plants. But ploidy estimates have often been hindered because of the small size and large number of chromosomes in many tropical groups. Since polyploidy affects cell size, morphometric analyses of pollen grains and stomata have been used to infer ploidy level. Polyploidy is present in many species of the Cerrado, the Neotropical savanna region in Central Brazil, and has been linked to apomixis in some taxa. Eriotheca gracilipes and Eriotheca pubescens are common tree species in this region, and present cytotypes that form reproductive mosaics. Hexaploid individuals (2n = 6x = 276) are polyembryonic and apomictic, while tetraploid and diploid individuals (2n = 2x = 92, 2n = 4x = 184) are sexual and monoembryonic. We tested whether morphometric analysis can be used to estimate ploidy levels in E. gracilipes and E. pubescens individuals. Pollen material from diploid and hexaploid individuals of E. gracilipes, and tetraploid and hexaploid individuals of E. pubescens, were fixed in 50% FAA, and expanded leaves were dried in silica gel. Pollen grains and stomata of at least five individuals from each population were measured. The results demonstrate that all measures were significantly different among cytotypes. Individuals with higher levels of ploidy (hexaploid) all presented measurements that were higher than those with lower levels (diploid and tetraploid). There was no overlap between ploidy levels in each species at 95% confidence interval. Thus, the size of the pollen grains and stomata are effective parameters for analysis of ploidy levels in E. gracilipes and E. pubescens. PMID:24341784

  15. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells.

    PubMed

    Wang, S; He, M-f; Chen, Y-h; Wang, M-y; Yu, X-M; Bai, J; Zhu, H-y; Wang, Y-y; Zhao, H; Mei, Q; Nie, J; Ma, J; Wang, J-f; Wen, Q; Ma, L; Wang, Y; Wang, X-n

    2013-01-01

    A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance. PMID:24113190

  16. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    PubMed

    Shao, Chen; Liao, Chun-Peng; Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H T; Ng, Christopher S; Josephson, David Y; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L; Zhau, Haiyen E; Chung, Leland W K; Wang, Ruoxiang; Posadas, Edwin M

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+)) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population. PMID:24551200

  17. Inhibitory effect of delphinidin from Solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro.

    PubMed

    Nagase, H; Sasaki, K; Kito, H; Haga, A; Sato, T

    1998-04-01

    We investigated the inhibitory effect of eggplant (Solanum melongena var. marunasu) extract on human fibrosarcoma HT-1080 cell invasion of reconstituted basement membrane [Matrigel (MG)]. We found that the effective component of the plant extract was delphinidin, a flavonoid pigment contained in the peel. The extract and delphinidin did not affect tumor cell adhesion to MG or haptotactic migration to MG. HT-1080 secretes matrix metalloproteinase(MMP)-2 and MMP-9, which degrade extracellular matrix as part of the invasive process. Delphinidin slightly inhibited the activity of MMPs, which may have been responsible, in part, for the inhibition of tumor cell invasiveness. PMID:9581517

  18. Micro FT-IR Characterization Of Human Lung Tumor Cells

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano

    1989-12-01

    FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.

  19. Instant magnetic labeling of tumor cells by ultrasound in vitro

    NASA Astrophysics Data System (ADS)

    Mo, Runyang; Yang, Jian; Wu, Ed X.; Lin, Shuyu

    2011-09-01

    Magnetic labeling of living cells creates opportunities for numerous biomedical applications. Here we describe an instantly cell magnetic labeling method based on ultrasound. We present a detailed study on the ultrasound performance of a simple and efficient labeling protocol for H-22 cells in vitro. High frequency focus ultrasound was investigated as an alternative method to achieve instant cell labeling with the magnetic particles without the need for adjunct agents or initiating cell cultures. Mean diameter of 168 nm dextran-T40 coated superparamagnetic iron oxide (SPIO) nanoparticles were prepared by means of classical coprecipitation in solution in our laboratory. H-22 tumor cells suspended in phosphate-buffered saline (PBS, pH=7.2) were exposed to ultrasound at 1.37 MHz for up to 120 s in the presence of SPIOs. The cellular uptake of iron oxide nanoparticles was detected by prussion blue staining. The viability of cells was determined by a trypan blue exclusion test. At 2 W power and 60 s ultrasound exposure in presence of 410 μg/ml SPIOs, H-22 cell labeling efficiency reached 69.4±6.3% and the labeled cells exhibited an iron content of 10.38±2.43 pg per cell. Furthermore, 95.2±3.2% cells remained viable. The results indicated that the ultrasound protocol could be potentially applied to label cells with large-sized magnetic particles. We also calculated the shear stress at the 2 W power and 1.37 MHz used in experiments. The results showed that the shear stress threshold for ultrasonically induced H-22 cell reparable sonoporation was 697 Pa. These findings provide a quantitative guidance in designing ultrasound protocols for cell labeling.

  20. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells

    NASA Astrophysics Data System (ADS)

    Cheng, Dengfeng; Li, Xiao; Zhang, Guoxin; Shi, Hongcheng

    2014-04-01

    Forced oscillation of spherical and rod-shaped iron oxide magnetic nanoparticles (MNPs) via low-power and low-frequency alternating magnetic field (AMF) was firstly used to kill cancer cells in vitro. After being loaded by human cervical cancer cells line (HeLa) and then exposed to a 35-kHz AMF, MNPs mechanically damaged cell membranes and cytoplasm, decreasing the cell viability. It was found that the concentration and morphology of the MNPs significantly influenced the cell-killing efficiency of oscillating MNPs. In this preliminary study, when HeLa cells were pre-incubated with 100 μg/mL rod-shaped MNPs (rMNP, length of 200 ± 50 nm and diameter of 50 to 120 nm) for 20 h, MTT assay proved that the cell viability decreased by 30.9% after being exposed to AMF for 2 h, while the cell viability decreased by 11.7% if spherical MNPs (sMNP, diameter of 200 ± 50 nm) were used for investigation. Furthermore, the morphological effect of MNPs on cell viability was confirmed by trypan blue assay: 39.5% rMNP-loaded cells and 15.1% sMNP-loaded cells were stained after being exposed to AMF for 2 h. It was also interesting to find that killing tumor cells at either higher (500 μg/mL) or lower (20 μg/mL) concentration of MNPs was less efficient than that achieved at 100 μg/mL concentration. In conclusion, the relatively asymmetric morphological rod-shaped MNPs can kill cancer cells more effectively than spherical MNPs when being exposed to AMF by virtue of their mechanical oscillations.

  1. Detection and cultivation of circulating tumor cells in gastric cancer.

    PubMed

    Kolostova, Katarina; Matkowski, Rafal; Gürlich, Robert; Grabowski, Krzysztof; Soter, Katarzyna; Lischke, Robert; Schützner, Jan; Bobek, Vladimir

    2016-08-01

    Circulating tumor cells (CTCs) are important targets for treatment and critical surrogate markers when evaluating cancer prognosis and therapeutic response. A sensitive methodology for detecting CTCs in gastric cancer (GC) patients is needed. In this study we demonstrate a device for enrichment and cultivation of CTCs. In total, 22 patients with GC, all candidates for surgery, were enrolled in the study. Peripheral blood samples were collected before surgery, and patients were re-evaluated within operation and divided into two groups: resectable and non-resectable GC. A new size-based separation test for enrichment and cultivation of CTCs was used (MetaCell(®)). In addition to cytomorphological analysis, gene expression of tumor associated genes (Cytokeratin-18, Cytokeratin-19, Cytokeratin-20, Cytokeratin-7, EPCAM, MUC1, HER2, EGFR) and of leukocyte markers (e.g. CD45, CD68) was tested in enriched CTC fractions. CTCs were detected in 59 % of the patients studied (n = 13/22). CTCs were detected in seven patients of the resection group (7/10, 70 %) and six of the non-resectable group (6/12, 50 %). Enrichment of the viable CTCs allowed subsequent successful cultivation in vitro. The cytomorphological characterization of the CTCs was a prerequisite of random gene expression testing in CTC-positive samples. In CTC-positive samples gene expression of cytokeratin 18 and 19 was elevated in comparison to the whole blood gene expression analysis. CTCs were found to be present in both resectable and non-resectable gastric cancer patients. The size-based separation platform for CTCs may be used for in vitro cultivation, as well as in subsequent molecular analysis if desired. The sensitivity of CTC-detection could be enhanced by the combination of cytomorphological and molecular analysis. PMID:25862542

  2. A computational study of circulating large tumor cells traversing microvessels.

    PubMed

    Kojić, Nikola; Milošević, Miljan; Petrović, Dejan; Isailović, Velibor; Sarioglu, A Fatih; Haber, Daniel A; Kojić, Miloš; Toner, Mehmet

    2015-08-01

    Circulating tumor cells (CTCs) are known to be a harbinger of cancer metastasis. The CTCs are known to circulate as individual cells or as a group of interconnected cells called CTC clusters. Since both single CTCs and CTC clusters have been detected in venous blood samples of cancer patients, they needed to traverse at least one capillary bed when crossing from arterial to venous circulation. The diameter of a typical capillary is about 7µm, whereas the size of an individual CTC or CTC clusters can be greater than 20µm and thus size exclusion is believed to be an important factor in the capillary arrest of CTCs - a key early event in metastasis. To examine the biophysical conditions needed for capillary arrest, we have developed a custom-built viscoelastic solid-fluid 3D computational model that enables us to calculate, under physiological conditions, the maximal CTC diameter that will pass through the capillary. We show that large CTCs and CTC clusters can successfully cross capillaries if their stiffness is relatively small. Specifically, under physiological conditions, a 13µm diameter CTC passes through a 7µm capillary only if its stiffness is less than 500Pa and conversely, for a stiffness of 10Pa the maximal passing diameter can be as high as 140µm, such as for a cluster of CTCs. By exploring the parameter space, a relationship between the capillary blood pressure gradient and the CTC mechanical properties (size and stiffness) was determined. The presented computational platform and the resulting pressure-size-stiffness relationship can be employed as a tool to help study the biomechanical conditions needed for capillary arrest of CTCs and CTC clusters, provide predictive capabilities in disease progression based on biophysical CTC parameters, and aid in the rational design of size-based CTC isolation technologies where CTCs can experience large deformations due to high pressure gradients. PMID:26093786

  3. A computational study of circulating large tumor cells traversing microvessels

    PubMed Central

    Kojić, Nikola; Milošević, Miljan; Petrović, Dejan; Isailović, Velibor; Sarioglu, A. Fatih; Haber, Daniel A.; Kojić, Miloš; Toner, Mehmet

    2016-01-01

    Circulating tumor cells (CTCs) are known to be a harbinger of cancer metastasis. The CTCs are known to circulate as individual cells or as a group of interconnected cells called CTC clusters. Since both single CTCs and CTC clusters have been detected in venous blood samples of cancer patients, they needed to traverse at least one capillary bed when crossing from arterial to venous circulation. The diameter of a typical capillary is about 7 μm, whereas the size of an individual CTC or CTC clusters can be greater than 20 μm and thus size exclusion is believed to be an important factor in the capillary arrest of CTCs – a key early event in metastasis. To examine the biophysical conditions needed for capillary arrest, we have developed a custom-built viscoelastic solid–fluid 3D computational model that enables us to calculate, under physiological conditions, the maximal CTC diameter that will pass through the capillary. We show that large CTCs and CTC clusters can successfully cross capillaries if their stiffness is relatively small. Specifically, under physiological conditions, a 13 μm diameter CTC passes through a 7 μm capillary only if its stiffness is less than 500 Pa and conversely, for a stiffness of 10 Pa the maximal passing diameter can be as high as 140 μm, such as for a cluster of CTCs. By exploring the parameter space, a relationship between the capillary blood pressure gradient and the CTC mechanical properties (size and stiffness) was determined. The presented computational platform and the resulting pressure–size–stiffness relationship can be employed as a tool to help study the biomechanical conditions needed for capillary arrest of CTCs and CTC clusters, provide predictive capabilities in disease progression based on biophysical CTC parameters, and aid in the rational design of size-based CTC isolation technologies where CTCs can experience large deformations due to high pressure gradients. PMID:26093786

  4. Lab-on-chip platform for circulating tumor cells isolation

    NASA Astrophysics Data System (ADS)

    Maurya, D. K.; Fooladvand, M.; Gray, E.; Ziman, M.; Alameh, K.

    2015-12-01

    We design, develop and demonstrate the principle of a continuous, non-intrusive, low power microfluidics-based lab-ona- chip (LOC) structure for Circulating Tumor Cell (CTC) separation. Cell separation is achieved through 80 cascaded contraction and expansion microchannels of widths 60 μm and 300 μm, respectively, and depth 60 μm, which enable momentum-change-induced inertial forces to be exerted on the cells, thus routing them to desired destinations. The total length of the developed LOC is 72 mm. The LOC structure is simulated using the COMSOL multiphysics software, which enables the optimization of the dimensions of the various components of the LOC structure, namely the three inlets, three filters, three contraction and expansion microchannel segments and five outlets. Simulation results show that the LOC can isolate CTCs of sizes ranging from 15 to 30 μm with a recovery rate in excess of 90%. Fluorescent microparticles of two different sizes (5 μm and 15 μm), emulating blood and CTC cells, respectively, are used to demonstrate the principle of the developed LOC. A mixture of these microparticles is injected into the primary LOC inlet via an electronically-controlled syringe pump, and the large-size particles are routed to the primary LOC outlet through the contraction and expansion microchannels. Experimental results demonstrate the ability of the developed LOC to isolate particles by size exclusion with an accuracy of 80%. Ongoing research is focusing on the LOC design improvement for better separation efficiency and testing of biological samples for isolation of CTCs.

  5. Effect of immunomodulation on the fate of tumor cells in the central nervous system and systemic organs of mice. Distribution of (/sup 125/I)5-iodo-2'-deoxyuridine-labeled KHT tumor cells after left intracardial injection

    SciTech Connect

    Conley, F.K.

    1982-08-01

    The effect of systemic immunomodulation on tumor cell arrest and retention in the central nervous system was studied by following radioactively labeled tumor cells. KHT mouse sarcoma tumor cells were labeled in vitro with (/sup 125/I)IdUrd, and 1x10/sup 5/ tumor cells were injected into the left side of the hearts of syngeneic C3H mice. Experimental groups consisted of untreated normal mice, mice pretreated iv with Corynebacterium parvum, and mice chronically infected with Toxoplasma gondii; in this model both groups of immunomodulated mice are protected from developing systemic metastatic tumor, but only Toxoplasma-infected mice have protection against metastatic brain tumor. At time intervals from 1 to 96 hours, groups of mice from each experimental group were killed, and the brain and other organs were monitored for radioactivity to determine the number of viable tumor cells that had been present at the time of death. Normal mice demonstrated significant retention of tumor cells in the brain and kidneys plus adrenals at 96 hours. By contrast, in both groups of immunomodulated mice tumor cells were rapidly eliminated from systemic organs, but tumor cells were significantly retained in the central nervous system even at 96 hours after tumor cell injections. The results indicated that generalized immunomodulation had more effect in elimination of tumor cells from systemic organs than from the brain and that the elimination of tumor cells from the brain in Toxoplasma-infected mice was a delayed phenomenon.

  6. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

    PubMed Central

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B.; Goldman, Jonathan; Rao, Jianyu; Sledge, George W.; Pegram, Mark D.; Sheth, Shruti; Jeffrey, Stefanie S.; Kulkarni, Rajan P.; Sollier, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  7. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology.

    PubMed

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B; Goldman, Jonathan; Rao, Jianyu; Sledge, George W; Pegram, Mark D; Sheth, Shruti; Jeffrey, Stefanie S; Kulkarni, Rajan P; Sollier, Elodie; Di Carlo, Dino

    2016-03-15

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  8. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  9. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    SciTech Connect

    Pan, Si-Jian; Wu, Yue-Bing; Cai, Shang; Pan, Yi-Xin; Liu, Wei; Bian, Liu-Guan; Sun, Bomin; Sun, Qing-Fang

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  10. Size-selective collection of circulating tumor cells using Vortex technology.

    PubMed

    Sollier, Elodie; Go, Derek E; Che, James; Gossett, Daniel R; O'Byrne, Sean; Weaver, Westbrook M; Kummer, Nicolas; Rettig, Matthew; Goldman, Jonathan; Nickols, Nicholas; McCloskey, Susan; Kulkarni, Rajan P; Di Carlo, Dino

    2014-01-01

    A blood-based, low cost alternative to radiation intensive CT and PET imaging is critically needed for cancer prognosis and management of its treatment. "Liquid biopsies" of circulating tumor cells (CTCs) from a relatively non-invasive blood draw are particularly ideal, as they can be repeated regularly to provide up to date molecular information about the cancer, which would also open up key opportunities for personalized therapies. Beyond solely diagnostic applications, CTCs are also a subject of interest for drug development and cancer research. In this paper, we adapt a technology previously introduced, combining the use of micro-scale vortices and inertial focusing, specifically for the high-purity extraction of CTCs from blood samples. First, we systematically varied parameters including channel dimensions and flow rates to arrive at an optimal device for maximum trapping efficiency and purity. Second, we validated the final device for capture of cancer cell lines in blood, considering several factors, including the effect of blood dilution, red blood cell lysis and cell deformability, while demonstrating cell viability and independence on EpCAM expression. Finally, as a proof-of-concept, CTCs were successfully extracted and enumerated from the blood of patients with breast (N = 4, 25-51 CTCs per 7.5 mL) and lung cancer (N = 8, 23-317 CTCs per 7.5 mL). Importantly, samples were highly pure with limited leukocyte contamination (purity 57-94%). This Vortex approach offers significant advantages over existing technologies, especially in terms of processing time (20 min for 7.5 mL of whole blood), sample concentration (collecting cells in a small volume down to 300 μL), applicability to various cancer types, cell integrity and purity. We anticipate that its simplicity will aid widespread adoption by clinicians and biologists who desire to not only enumerate CTCs, but also uncover new CTC biology, such as unique gene mutations, vesicle secretion and roles in

  11. Isolation and Characterization of Circulating Tumor Cells from Patients with Localized and Metastatic Prostate Cancer

    PubMed Central

    Stott, Shannon L.; Lee, Richard J.; Nagrath, Sunitha; Yu, Min; Miyamoto, David T.; Ulkus, Lindsey; Inserra, Elizabeth J.; Ulman, Matthew; Springer, Simeon; Nakamura, Zev; Moore, Alessandra L.; Tsukrov, Dina I.; Kempner, Maria E.; Dahl, Douglas M.; Wu, Chin-Lee; Iafrate, A. John; Smith, Matthew R.; Tompkins, Ronald G.; Sequist, Lecia V.; Toner, Mehmet; Haber, Daniel A.; Maheswaran, Shyamala

    2011-01-01

    Rare circulating tumor cells (CTCs) are present in the blood of patients with metastatic epithelial cancers but have been difficult to measure routinely. We report a quantitative automated imaging system for analysis of prostate CTCs, taking advantage of prostate-specific antigen (PSA), a unique prostate tumor–associated marker. The specificity of PSA staining enabled optimization of criteria for baseline image intensity, morphometric measurements, and integration of multiple signals in a three-dimensional microfluidic device. In a pilot analysis, we detected CTCs in prostate cancer patients with localized disease, before surgical tumor removal in 8 of 19 (42%) patients (range, 38 to 222 CTCs per milliliter). For 6 of the 8 patients with preoperative CTCs, a precipitous postoperative decline (<24 hours) suggests a short half-life for CTCs in the blood circulation. Other patients had persistent CTCs for up to 3 months after prostate removal, suggesting early but transient disseminated tumor deposits. In patients with metastatic prostate cancer, CTCs were detected in 23 of 36 (64%) cases (range, 14 to 5000 CTCs per milliliter). In previously untreated patients followed longitudinally, the numbers of CTCs declined after the initiation of effective therapy. The prostate cancer–specific TMPRSS2-ERG fusion was detectable in RNA extracted from CTCs from 9 of 20 (45%) patients with metastatic disease, and dual staining of captured CTCs for PSA and the cell division marker Ki67 indicated a broad range for the proportion of proliferating cells among CTCs. This method for analysis of CTCs will facilitate the application of noninvasive tumor sampling to direct targeted therapies in advanced prostate cancer and warrants the initiation of long-term clinical studies to test the importance of CTCs in invasive localized disease. PMID:20424012

  12. An automated image segmentation and classification algorithm for immunohistochemically stained tumor cell nuclei

    NASA Astrophysics Data System (ADS)

    Yeo, Hangu; Sheinin, Vadim; Sheinin, Yuri

    2009-02-01

    As medical image data sets are digitized and the number of data sets is increasing exponentially, there is a need for automated image processing and analysis technique. Most medical imaging methods require human visual inspection and manual measurement which are labor intensive and often produce inconsistent results. In this paper, we propose an automated image segmentation and classification method that identifies tumor cell nuclei in medical images and classifies these nuclei into two categories, stained and unstained tumor cell nuclei. The proposed method segments and labels individual tumor cell nuclei, separates nuclei clusters, and produces stained and unstained tumor cell nuclei counts. The representative fields of view have been chosen by a pathologist from a known diagnosis (clear cell renal cell carcinoma), and the automated results are compared with the hand-counted results by a pathologist.

  13. Tumor cells as cellular vehicles to deliver gene therapies to metastatic tumors.

    PubMed

    García-Castro, Javier; Martínez-Palacio, Jesús; Lillo, Rosa; García-Sánchez, Félix; Alemany, Ramón; Madero, Luis; Bueren, Juan A; Ramírez, Manuel

    2005-04-01

    A long-pursued goal in cancer treatment is to deliver a therapy specifically to metastases. As a result of the disseminated nature of the metastatic disease, carrying the therapeutic agent to the sites of tumor growth represents a major step for success. We hypothesized that tumor cells injected intravenously (i.v.) into an animal with metastases would respond to many of the factors driving the metastatic process, and would target metastases. Using a model of spontaneous metastases, we report here that i.v. injected tumor cells localized on metastatic lesions. Based on this fact, we used genetically transduced tumor cells for tumor targeting of anticancer agents such as a suicide gene or an oncolytic virus, with evident antitumoral effect and negligible systemic toxicity. Therefore, autologous tumor cells may be used as cellular vehicles for systemic delivery of anticancer therapies to metastatic tumors. PMID:15650763

  14. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    PubMed Central

    2014-01-01

    Background The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Methods Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. Results TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Conclusions Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of

  15. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    SciTech Connect

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-05-09

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  16. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    PubMed

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. PMID:22687625

  17. Inhibition of adhesion and proliferation of peritoneally disseminated tumor cells by pegylated catalase.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Kobayashi, Yuki; Kuramoto, Yukari; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2006-01-01

    Hydrogen peroxide may aggravate the peritoneal dissemination of tumor cells by activating the expression of a variety of genes. In this study, we used pegylated catalase (PEG-catalase) to examine whether prolonged retention of catalase activity within the peritoneal cavity is effective in inhibiting peritoneal dissemination in mouse models. Murine B16-BL6 cells or colon 26 cells labeled with firefly luciferase gene were inoculated intraperitoneally into syngeneic mice. Compared with unmodified catalase, PEG-catalase was retained in the peritoneal cavity for a long period after intraperitoneal injection. A single injection of PEG-catalase just before tumor inoculation significantly reduced the number of the tumor cells at 1 and 7 days. The changes in the expression of molecules involved in the metastasis were evaluated by real time quantitative PCR analysis. Inoculation of the tumor cells increased the expression of intercellular adhesion molecule (ICAM)-1 in the greater omentum, which was inhibited by PEG-catalase. An injection of PEG-catalase at 3 days after tumor inoculation also reduced the number of the tumor cells, suggesting that processes other than the adhesion of tumor cells to peritoneal organs are also inhibited. Daily doses of PEG-catalase significantly prolonged the survival time of tumor-bearing mice. These results indicate that intraperitoneal injection of PEG-catalase inhibits the multiple processes of peritoneal dissemination of tumor cells by scavenging hydrogen peroxide in the peritoneal cavity. PMID:17086358

  18. Detection of disseminated tumor cells in aspirative drains after neck dissection.

    PubMed

    Mastronicola, R; Berteau, C; Tu, Q; Cortese, S; Guillet, J; Phulpin, B; Gangloff, P; Bezdetnaya, L; Merlin, J-L; Faure, G; Dolivet, G

    2016-02-01

    The dissemination of individual tumor cells is a common phenomenon in solid cancers. Detection of tumor cells in bone marrow disseminated tumor cells (DTC) and in peripheral blood circulating tumor cells (CTC) in nonmetastatic situation is of high prognostic significance. Compared to breast, colon and prostate cancers, the studies on CTC and DTC in head and neck cancers are sparse. The objective of our study was to detect DTC in drains after neck dissection. Fourteen patients undergoing surgery for stages III and IV head and neck cancers were enrolled in this study--twelve presenting with squamous cell carcinoma and two with adenocarcinoma. Redon drain analysis was performed by the Cellsearch method using immunomagnetic and fluorescence approaches. A positivity threshold value was set at 2DTC/7.5 ml of the sample. Tumor cells were detected in drains of 69 % of patients a few days after surgery. The range of quantification was 3-2,094 DTC/5 ml and we showed morphological differences between the two types of carcinoma cells. DTC were detected after neck dissection both in squamous cell carcinoma and in adenocarcinoma. Potential clinical significance of tumor cells needs to be further investigated as their presence could affect pre-surgical and post-operative treatments. PMID:25634063

  19. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    PubMed Central

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-01-01

    Abstract. Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations. PMID:26160347

  20. Ghrelin promotes oral tumor cell proliferation by modifying GLUT1 expression.

    PubMed

    Kraus, Dominik; Reckenbeil, Jan; Wenghoefer, Matthias; Stark, Helmut; Frentzen, Matthias; Allam, Jean-Pierre; Novak, Natalija; Frede, Stilla; Götz, Werner; Probstmeier, Rainer; Meyer, Rainer; Winter, Jochen

    2016-03-01

    In our study, ghrelin was investigated with respect to its capacity on proliferative effects and molecular correlations on oral tumor cells. The presence of all molecular components of the ghrelin system, i.e., ghrelin and its receptors, was analyzed and could be detected using real-time PCR and immunohistochemistry. To examine cellular effects caused by ghrelin and to clarify downstream-regulatory mechanisms, two different oral tumor cell lines (BHY and HN) were used in cell culture experiments. Stimulation of either cell line with ghrelin led to a significantly increased proliferation. Signal transduction occurred through phosphorylation of GSK-3β and nuclear translocation of β-catenin. This effect could be inhibited by blocking protein kinase A. Glucose transporter1 (GLUT1), as an important factor for delivering sufficient amounts of glucose to tumor cells having high requirements for this carbohydrate (Warburg effect) was up-regulated by exogenous and endogenous ghrelin. Silencing intracellular ghrelin concentrations using siRNA led to a significant decreased expression of GLUT1 and proliferation. In conclusion, our study describes the role for the appetite-stimulating peptide hormone ghrelin in oral cancer proliferation under the particular aspect of glucose uptake: (1) tumor cells are a source of ghrelin. (2) Ghrelin affects tumor cell proliferation through autocrine and/or paracrine activity. (3) Ghrelin modulates GLUT1 expression and thus indirectly enhances tumor cell proliferation. These findings are of major relevance, because glucose uptake is assumed to be a promising target for cancer treatment. PMID:26407611

  1. Diagnostics of tumor cells by combination of Raman spectroscopy and microfluidics

    NASA Astrophysics Data System (ADS)

    Neugebauer, U.; Dochow, S.; Krafft, C.; Bocklitz, T.; Clement, J. H.; Popp, J.

    2011-07-01

    Circulating epithelial tumor cells are of increasing importance for tumor diagnosis and therapy monitoring of cancer patients. The definite identification of the rare tumor cells within numerous blood cells is challenging. Therefore, within the research initiative "Jenaer Zell-Identifizierungs-Gruppe" (JenZIG) we develop new methods for cell identification, micromanipulation and sorting based on spectroscopic methods and microfluidic systems. In this contribution we show, that classification models based on Raman spectroscopic analysis allow a precise discrimination of tumor cells from non-tumor cells with high prediction accuracies, up to more than 99% for dried cells. That holds true for unknown cell mixtures (tumor cells and leukocytes/erythrocytes) under dried conditions as well as in solution using the Raman laser as an optical tweezers to keep the cells in focus. We extended our studies by using a capillary system consisting of a quartz capillary, fiber optics and an adjustable fitting to trap cells. This system allows a prediction accuracy of 92.2% on the single cell level, and is a prerequisite for the development of a cell sorting and identification device based on a microfluidic chip. Initial experiments show that tumor cell lines can be differentiated from healthy leukocyte cells with an accuracy of more than 98%.

  2. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    NASA Astrophysics Data System (ADS)

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ˜16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  3. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds.

    PubMed

    Holt, David; Parthasarathy, Ashwin B; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16 . Ten animals showed no residual tumor cells in the wound bed (mean SBR<2 , P<0.001 ). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15 , and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations. PMID:26160347

  4. Early membrane rupture events during neutrophil-mediated antibody-dependent tumor cell cytolysis.

    PubMed

    Kindzelskii, A L; Petty, H R

    1999-03-15

    Although cell-mediated cytolysis is a fundamental immune effector response, its mechanism remains poorly understood at the cellular level. In this report, we image for the first time transient ruptures, as inferred by cytoplasmic marker release, in tumor cell membranes during Ab-dependent cellular cytolysis. The cytosol of IgG-opsonized YAC tumor cells was labeled with tetra-methylrhodamine diacetate followed by the formation of tumor cell-neutrophil conjugates. We hypothesized that tumor cell cytolysis proceeds via a series of discrete membrane rupture/resealing events that contribute to marker release. To test this hypothesis, we occluded the fluorescence image of the labeled tumor cells by passing an opaque disk into a field-conjugated plane between the light source and the sample. Multiple small bursts of fluorescent label release from tumor cells could be detected using a photomultiplier tube. Similarly, multiple fluorescent plumes were observed at various sites around the perimeter of a target. These findings support a multihit model of target cytolysis and suggest that cytolytic release is not focused at specific sites. Cytolytic bursts were generally observed at 20-s intervals, which match the previously described reduced nicotinamide-adenine dinucleotide phosphate and superoxide release oscillation periods for neutrophils; we speculate that metabolic oscillations of the effector cell drive the membrane damage of the target. PMID:10092769

  5. Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model

    PubMed Central

    Rejniak, Katarzyna A.

    2012-01-01

    It is inevitable for tumor cells to deal with various mechanical forces in order to move from primary to metastatic sites. In particular, the circulating tumor cells that have detached from the primary tumor and entered into the bloodstream need to survive in a completely new microenvironment. They must withstand hemodynamic forces and overcome the effects of fluid shear before they can leave the vascular system (extravasate) to establish new metastatic foci. One of the hypotheses of the tumor cell extravasation process is based on the so called “adhesion cascade” that was formulated and observed in the context of leukocytes circulating in the vascular system. During this process, the cell needs to switch between various locomotion strategies, from floating with the blood stream, to rolling on the endothelial wall, to tumor cell arrest and crawling, and finally tumor cell transmigration through the endothelial layer. The goal of this project is to use computational mechanical modeling to investigate the fundamental biophysical parameters of tumor cells in circulation. As a first step to build a robust in silico model, we consider a single cell exposed to the blood flow. We examine parameters related to structure of the actin network, cell nucleus and adhesion links between the tumor and endothelial cells that allow for successful transition between different transport modes of the adhesion cascade. PMID:23024961

  6. Constitutional genomic instability, chromosome aberrations in tumor cells and retinoblastoma.

    PubMed

    Amare Kadam, P S; Ghule, P; Jose, J; Bamne, M; Kurkure, P; Banavali, S; Sarin, R; Advani, S

    2004-04-01

    Although retinoblastoma (Rb) is initiated as a result of biallelic inactivation of the RB1 gene, additional genetic events (M3) in tumor cells are indicative of their role in the full transformation of retinal cells. We investigated the constitutional genetic instability by fragile site (FS) expression studies and checked its relationship with loci of tumor cytogenetics in a series of 36 retinoblastoma patients (34 nonfamilial and 2 familial cases). Tumor cytogenetics revealed -13/+13, del/t(13)(q14) (50%), +1/del/t(1p/q) (65%), +6/i(6p) (60%), and del(16)(q13)/(q22 approximately q23) (60%). Conventional cytogenetics in leukocytes revealed constitutional del(13q14) in five unilateral Rb (URB) and one trilateral Rb (TRB). Constitutional del(16)(q22) and t(6;12) were also identified in two cases. Constitutional FS analysis showed a significant increase in the cellular fragility, with high prevalence at 13q14, 3p14, 6p23, 16q22 approximately q23, and 13q22 loci in retinoblastoma patients (P<0.05). Patients with constitutional del(13)(q14) demonstrated higher fragility than those with normal constitution. A strong correlation between loci of constitutional FSs and loci of recurrent chromosomal abnormalities in tumors strengthen and support the proposal that FS loci present as inherent genomic instability in retinoblastoma. The chromosomal changes and resultant genetic mutations, along with RB1 mutation events, probably contribute synergistically to the development and progression of Rb malignancy. Implementation of fluorescence in situ hybridization to nonfamilial Rb on a large scale (113 cases) could detect constitutional RB1 deletion in 12.3% of cases, with equally higher incidence in URB (14.7%) and bilateral Rb (13.6%), demonstrating that the true prevalence of patients with predisposition to RB1 mutation in sporadic URB is definitely higher in our populations. Also, higher incidence of constitutional RB1 deletion mosaicism in unilateral than in bilateral Rb

  7. Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis.

    PubMed

    Biggerstaff, J P; Seth, N; Amirkhosravi, A; Amaya, M; Fogarty, S; Meyer, T V; Siddiqui, F; Francis, J L

    1999-01-01

    There is considerable evidence for a relationship between hemostasis and malignancy. Since platelet adhesion to tumor cells has been implicated in the metastatic process and plasma levels of fibrinogen (Fg) and soluble fibrin (sFn) monomer are increased in cancer, we hypothesized that these molecules might enhance tumor-platelet interaction. We therefore studied binding of sFn monomer to tumor cells in a static microplate adhesion assay and determined the effect of pre-treating tumor cells with sFn on tumor cell-induced thrombocytopenia and experimental metastasis. Soluble fibrin (produced by adding thrombin to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro-amide (GPRP-NH2) significantly increased platelet adherence to tumor cells. This effect was primarily mediated by the integrins alphaIIb beta3 on the platelet and CD 54 (ICAM-1) on the tumor cells. Platelets adhered to untreated A375 cells (28 +/- 8 platelets/tumor cell) and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or GPRP-NH2. Although thrombin treatment increased adherence, pre-incubation of the tumor cells with sFn resulted in a further increase in platelet binding to tumor cells. In contrast to untreated tumor cells, intravenous injection of sFn-treated A 375 cells reduced the platelet count in anticoagulated mice, supporting the in vitro finding that sFn enhanced tumor cell-platelet adherence. In a more aggressive model of experimental metastasis, treating tumor cells with sFn enhanced lung seeding by 65% compared to untreated cells. Extrapolation of our data to the clinical situation suggests that coagulation activation, and subsequent increase in circulating Fn monomer, may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread. PMID:10919717

  8. Selective inhibition of tumor cell associated Vacuolar-ATPase 'a2' isoform overcomes cisplatin resistance in ovarian cancer cells.

    PubMed

    Kulshrestha, Arpita; Katara, Gajendra K; Ginter, Jordyn; Pamarthy, Sahithi; Ibrahim, Safaa A; Jaiswal, Mukesh K; Sandulescu, Corina; Periakaruppan, Ramayee; Dolan, James; Gilman-Sachs, Alice; Beaman, Kenneth D

    2016-06-01

    Development of resistance to platinum compounds significantly hinders successful ovarian cancer (OVCA) treatment. In tumor cells, dysregulated pH gradient across cell membranes is a key physiological mechanism of metastasis/chemo-resistance. These pH alterations are mediated by aberrant activation of key multi-subunit proton pumps, Vacuolar-ATPases (V-ATPases). In tumor cells, its 'a2' isoform (V-ATPase-V0a2) is a component of functional plasma-membrane complex and promotes tumor invasion through tumor-acidification and immuno-modulation. Its involvement in chemo-resistance has not been studied. Here, we show that V-ATPase-V0a2 is over-expressed in acquired-cisplatin resistant OVCA cells (cis-A2780/cis-TOV112D). Of all the 'a' subunit isoforms, V-ATPase-V0a2 exhibited an elevated expression on plasma membrane of cisplatin-resistant cells compared to sensitive counterparts. Immuno-histochemistry revealed V-ATPase-V0a2 expression in both low grade (highly drug-resistant) and high grade (highly recurrent) human OVCA tissues indicating its role in a centralized mechanism of tumor resistance. In cisplatin resistant cells, shRNA mediated inhibition of V-ATPase-V0a2 enhanced sensitivity towards both cisplatin and carboplatin. This improved cytotoxicity was mediated by enhanced cisplatin-DNA-adduct formation and suppressed DNA-repair pathway, leading to enhanced apoptosis. Suppression of V0a2 activity strongly reduced cytosolic pH in resistant tumor cells, which is known to enhance platinum-associated DNA-damage. As an indicator of reduced metastasis and chemo-resistance, in contrast to plasma membrane localization, a diffused cytoplasmic localization of acidic vacuoles was observed in V0a2-knockdown resistant cells. Interestingly, pre-treatment with monoclonal V0a2-inhibitory antibody enhanced cisplatin cytotoxicity in resistant cells. Taken together, our findings suggest that the isoform specific inhibition of V-ATPase-V0a2 could serve as a therapeutic strategy for chemo

  9. Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells

    PubMed Central

    Ritter, Andreas; Sanhaji, Mourad; Friemel, Alexandra; Roth, Susanne; Rolle, Udo; Louwen, Frank; Yuan, Juping

    2015-01-01

    Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients. PMID:26148251

  10. Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells.

    PubMed

    Ritter, Andreas; Sanhaji, Mourad; Friemel, Alexandra; Roth, Susanne; Rolle, Udo; Louwen, Frank; Yuan, Juping

    2015-01-01

    Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients. PMID:26148251

  11. p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells

    PubMed Central

    Harajly, Mohamad; Zalzali, Hasan; Nawaz, Zafar; Ghayad, Sandra E.; Ghamloush, Farah; Basma, Hussein; Zainedin, Samiha; Rabeh, Wissam; Jabbour, Mark; Tawil, Ayman; Badro, Danielle A.; Evan, Gerard I.

    2015-01-01

    The restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19Arf expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors. PMID:26598601

  12. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    PubMed

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types. PMID:27259361

  13. OASIS/CREB3L1 is epigenetically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro

    PubMed Central

    Rose, Michael; Schubert, Claudia; Dierichs, Laura; Gaisa, Nadine T; Heer, Matthias; Heidenreich, Axel; Knüchel, Ruth; Dahl, Edgar

    2014-01-01

    CREB3L1 has been recently proposed as a novel metastasis suppressor gene in breast cancer. Our current study highlights CREB3L1 expression, regulation, and function in bladder cancer. We demonstrate a significant downregulation of CREB3L1 mRNA expression (n = 64) in primary bladder cancer tissues caused by tumor-specific CREB3L1 promoter hypermethylation (n = 51). Based on pyrosequencing CREB3L1 methylation was shown to be potentially associated with a more aggressive phenotype of bladder cancer. These findings were verified by an independent public data set containing data from 184 bladder tumors. In addition, immunohistochemical evaluation showed that CREB3L1 protein expression is decreased in bladder cancer tissues as well. Interestingly, protein loss is predominately observed in the nuclei of aggressive tumor cells. Based on in vitro models we clearly show that CREB3L1 re-expression mediates suppression of tumor cell migration and colony growth of high grade and invasive bladder cancer cells. The candidate tumor suppressor and TGF-β signaling inhibitor HTRA3 was furthermore identified as putative target gene of CREB3L1 in both invasive J82 bladder cells and primary bladder tumors. Hence, our data provide for the first time evidence that the transcription factor CREB3L1 may have an important role as a putative tumor suppressor in bladder cancer. PMID:25625847

  14. Inhibition of Bcl-xL overcomes polyploidy resistance and leads to apoptotic cell death in acute myeloid leukemia cells

    PubMed Central

    Wu, Xing; Zou, Zhengzhi; Wang, Bin; Zeng, Yunxin; Wang, Hua; Liu, Anwen; Xu, Lingzhi; Liu, Quentin

    2015-01-01

    Small molecular inhibitors or drugs targeting specific molecular alterations are widely used in clinic cancer therapy. Despite the success of targeted therapy, the development of drug resistance remains a challenging problem. Identifying drug resistance mechanisms for targeted therapy is an area of intense investigation, and recent evidence indicates that cellular polyploidy may be involved. Here, we demonstrate that the cell cycle kinase inhibitor, Oxindole-1 (Ox-1), induces mitotic slippage, causing resistant polyploidy in acute myeloid leukemia (AML) cells. Indeed, Ox-1 decreases the kinase activity of CDK1 (CDC2)/cyclin B1, leading to inhibition of Bcl-xL phosphorylation and subsequent resistance to apoptosis. Addition of ABT-263, a Bcl-2 family inhibitor, to Ox-1, or the other polyploidy-inducer, ZM447439 (ZM), produces a synergistic loss of cell viability with greater sustained tumor growth inhibition in AML cell lines and primary AML blasts. Furthermore, genetic knockdown of Bcl-xL, but not Bcl-2, exhibited synergistic inhibition of cell growth in combination with Ox-1 or ZM. These data demonstrate that Bcl-xL is a key factor in polyploidization resistance in AML, and that suppression of Bcl-xL by ABT-263, or siRNAs, may hold therapeutic utility in drug-resistant polyploid AML cells. PMID:26188358

  15. Inhibition of Bcl-xL overcomes polyploidy resistance and leads to apoptotic cell death in acute myeloid leukemia cells.

    PubMed

    Zhou, Weihua; Xu, Jie; Gelston, Elise; Wu, Xing; Zou, Zhengzhi; Wang, Bin; Zeng, Yunxin; Wang, Hua; Liu, Anwen; Xu, Lingzhi; Liu, Quentin

    2015-08-28

    Small molecular inhibitors or drugs targeting specific molecular alterations are widely used in clinic cancer therapy. Despite the success of targeted therapy, the development of drug resistance remains a challenging problem. Identifying drug resistance mechanisms for targeted therapy is an area of intense investigation, and recent evidence indicates that cellular polyploidy may be involved. Here, we demonstrate that the cell cycle kinase inhibitor, Oxindole-1 (Ox-1), induces mitotic slippage, causing resistant polyploidy in acute myeloid leukemia (AML) cells. Indeed, Ox-1 decreases the kinase activity of CDK1 (CDC2)/cyclin B1, leading to inhibition of Bcl-xL phosphorylation and subsequent resistance to apoptosis. Addition of ABT-263, a Bcl-2 family inhibitor, to Ox-1, or the other polyploidy-inducer, ZM447439 (ZM), produces a synergistic loss of cell viability with greater sustained tumor growth inhibition in AML cell lines and primary AML blasts. Furthermore, genetic knockdown of Bcl-xL, but not Bcl-2, exhibited synergistic inhibition of cell growth in combination with Ox-1 or ZM. These data demonstrate that Bcl-xL is a key factor in polyploidization resistance in AML, and that suppression of Bcl-xL by ABT-263, or siRNAs, may hold therapeutic utility in drug-resistant polyploid AML cells. PMID:26188358

  16. Historical biogeography of the fern genus Deparia (Athyriaceae) and its relation with polyploidy.

    PubMed

    Kuo, Li-Yaung; Ebihara, Atsushi; Shinohara, Wataru; Rouhan, Germinal; Wood, Kenneth R; Wang, Chun-Neng; Chiou, Wen-Liang

    2016-11-01

    The wide geographical distribution of many fern species is related to their high dispersal ability. However, very limited studies surveyed biological traits that could contribute to colonization success after dispersal. In this study, we applied phylogenetic approaches to infer historical biogeography of the fern genus Deparia (Athyriaceae, Eupolypods II). Because polyploids are suggested to have better colonization abilities and are abundant in Deparia, we also examined whether polyploidy could be correlated to long-distance dispersal events and whether polyploidy could play a role in these dispersals/establishment and range expansion. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a four-region combined cpDNA dataset (rps16-matK IGS, trnL-L-F, matK and rbcL; a total of 4252 characters) generated from 50 ingroup (ca. 80% of the species diversity) and 13 outgroup taxa. Using the same sequence alignment and maximum likelihood trees, we carried out molecular dating analyses. The resulting chronogram was used to reconstruct ancestral distribution using the DEC model and ancestral ploidy level using ChromEvol. We found that Deparia originated around 27.7Ma in continental Asia/East Asia. A vicariant speciation might account for the disjunctive distribution of East Asia-northeast North America. There were multiple independent long-distance dispersals to Africa/Madagascar (at least once), Southeast Asia (at least once), south Pacific islands (at least twice), Australia/New Guinea/New Zealand (at least once), and the Hawaiian Islands (at least once). In particular, the long-distance dispersal to the Hawaiian Islands was associated with polyploidization, and the dispersal rate was slightly higher in the polyploids than in diploids. Moreover, we found five species showing recent infraspecific range expansions, all of which took place concurrently with polyploidization. In conclusion, our study provides the first investigation using phylogenetic

  17. Lipid tethering of breast tumor cells enables real-time imaging of free-floating cell dynamics and drug response

    PubMed Central

    Whipple, Rebecca A.; Zhang, Peipei; Sooklal, Elisabeth L.; Martin, Stuart S.; Jewell, Christopher M.

    2016-01-01

    Free-floating tumor cells located in the blood of cancer patients, known as circulating tumor cells (CTCs), have become key targets for studying metastasis. However, effective strategies to study the free-floating behavior of tumor cells in vitro have been a major barrier limiting the understanding of the functional properties of CTCs. Upon extracellular-matrix (ECM) detachment, breast tumor cells form tubulin-based protrusions known as microtentacles (McTNs) that play a role in the aggregation and re-attachment of tumor cells to increase their metastatic efficiency. In this study, we have designed a strategy to spatially immobilize ECM-detached tumor cells while maintaining their free-floating character. We use polyelectrolyte multilayers deposited on microfluidic substrates to prevent tumor cell adhesion and the addition of lipid moieties to tether tumor cells to these surfaces through interactions with the cell membranes. This coating remains optically clear, allowing capture of high-resolution images and videos of McTNs on viable free-floating cells. In addition, we show that tethering allows for the real-time analysis of McTN dynamics on individual tumor cells and in response to tubulin-targeting drugs. The ability to image detached tumor cells can vastly enhance our understanding of CTCs under conditions that better recapitulate the microenvironments they encounter during metastasis. PMID:26871289

  18. HER4 Selectively Coregulates Estrogen Stimulated Genes Associated with Breast Tumor Cell Proliferation

    PubMed Central

    Han, Wen; Jones, Frank E.

    2014-01-01

    The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex is unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of β-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, β-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the β-estradiol stimulated genes. Ingenuity Pathway Analysis of β-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was unaffected by loss of HER4 expression. In summary, we demonstrate for the first time that a cell surface receptor functions as an obligate ER coactivator with functional specificity associated with breast tumor cell proliferation and cell cycle progression. Nearly 90% of ER positive tumors coexpress HER4, therefore we predict that the majority of breast

  19. Macrophage-tumor cell interactions regulate the function of nitric oxide

    PubMed Central

    Rahat, Michal A.; Hemmerlein, Bernhard

    2013-01-01

    Tumor cell-macrophage interactions change as the tumor progresses, and the generation of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS) plays a major role in this interplay. In early stages, macrophages employ their killing mechanisms, particularly the generation of high concentrations of NO and its derivative reactive nitrogen species (RNS) to initiate tumor cell apoptosis and destroy emerging transformed cells. If the tumor escapes the immune system and grows, macrophages that infiltrate it are reprogramed in situ by the tumor microenvironment. Low oxygen tensions (hypoxia) and immunosuppressive cytokines inhibit iNOS activity and lead to production of low amounts of NO/RNS, which are pro-angiogenic and support tumor growth and metastasis by inducing growth factors (e.g., VEGF) and matrix metalloproteinases (MMPs). We review here the different roles of NO/RNS in tumor progression and inhibition, and the mechanisms that regulate iNOS expression and NO production, highlighting the role of different subtypes of macrophages and the microenvironment. We finally claim that some tumor cells may become resistant to macrophage-induced death by increasing their expression of microRNA-146a (miR-146a), which leads to inhibition of iNOS translation. This implies that some cooperation between tumor cells and macrophages is required to induce tumor cell death, and that tumor cells may control their fate. Thus, in order to induce susceptibility of tumors cells to macrophage-induced death, we suggest a new therapeutic approach that couples manipulation of miR-146a levels in tumors with macrophage therapy, which relies on ex vivo stimulation of macrophages and their re-introduction to tumors. PMID:23785333

  20. Macrophage-tumor cell interactions regulate the function of nitric oxide.

    PubMed

    Rahat, Michal A; Hemmerlein, Bernhard

    2013-01-01

    Tumor cell-macrophage interactions change as the tumor progresses, and the generation of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS) plays a major role in this interplay. In early stages, macrophages employ their killing mechanisms, particularly the generation of high concentrations of NO and its derivative reactive nitrogen species (RNS) to initiate tumor cell apoptosis and destroy emerging transformed cells. If the tumor escapes the immune system and grows, macrophages that infiltrate it are reprogramed in situ by the tumor microenvironment. Low oxygen tensions (hypoxia) and immunosuppressive cytokines inhibit iNOS activity and lead to production of low amounts of NO/RNS, which are pro-angiogenic and support tumor growth and metastasis by inducing growth factors (e.g., VEGF) and matrix metalloproteinases (MMPs). We review here the different roles of NO/RNS in tumor progression and inhibition, and the mechanisms that regulate iNOS expression and NO production, highlighting the role of different subtypes of macrophages and the microenvironment. We finally claim that some tumor cells may become resistant to macrophage-induced death by increasing their expression of microRNA-146a (miR-146a), which leads to inhibition of iNOS translation. This implies that some cooperation between tumor cells and macrophages is required to induce tumor cell death, and that tumor cells may control their fate. Thus, in order to induce susceptibility of tumors cells to macrophage-induced death, we suggest a new therapeutic approach that couples manipulation of miR-146a levels in tumors with macrophage therapy, which relies on ex vivo stimulation of macrophages and their re-introduction to tumors. PMID:23785333

  1. Rat Prostate Tumor Cells Progress in the Bone Microenvironment to a Highly Aggressive Phenotype1

    PubMed Central

    Bergström, Sofia Halin; Rudolfsson, Stina H; Bergh, Anders

    2016-01-01

    Prostate cancer generally metastasizes to bone, and most patients have tumor cells in their bone marrow already at diagnosis. Tumor cells at the metastatic site may therefore progress in parallel with those in the primary tumor. Androgen deprivation therapy is often the first-line treatment for clinically detectable prostate cancer bone metastases. Although the treatment is effective, most metastases progress to a castration-resistant and lethal state. To examine metastatic progression in the bone microenvironment, we implanted androgen-sensitive, androgen receptor–positive, and relatively slow-growing Dunning G (G) rat prostate tumor cells into the tibial bone marrow of fully immune-competent Copenhagen rats. We show that tumor establishment in the bone marrow was reduced compared with the prostate, and whereas androgen deprivation did not affect tumor establishment or growth in the bone, this was markedly reduced in the prostate. Moreover, we found that, with time, G tumor cells in the bone microenvironment progress to a more aggressive phenotype with increased growth rate, reduced androgen sensitivity, and increased metastatic capacity. Tumor cells in the bone marrow encounter lower androgen levels and a higher degree of hypoxia than at the primary site, which may cause high selective pressures and eventually contribute to the development of a new and highly aggressive tumor cell phenotype. It is therefore important to specifically study progression in bone metastases. This tumor model could be used to increase our understanding of how tumor cells adapt in the bone microenvironment and may subsequently improve therapy strategies for prostate metastases in bone. PMID:26992916

  2. Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine.

    PubMed

    Chefalo, Peter; Pan, Yanbin; Nagy, Nancy; Guo, Zhongwu; Harding, Clifford V

    2006-03-21

    Abnormal carbohydrates expressed on tumor cells, which are termed tumor-associated carbohydrate antigens (TACAs), are potential targets for the development of cancer vaccines. However, immune tolerance to TACAs has severely hindered progress in this area. To overcome this problem, we have developed a novel immunotherapeutic strategy based on synthetic cancer vaccines and metabolic engineering of TACAs on tumor cells. One critical step of this new strategy is metabolic engineering of cancer, namely, to induce expression of an artificial form of a TACA by supplying tumors with an artificial monosaccharide precursor. To identify the proper precursor for this application, N-propionyl, N-butanoyl, N-isobutanoyl, and N-phenylacetyl derivatives of d-mannosamine were synthesized, and their efficiency as biosynthetic precursors in modifying sialic acid and inducing expression of modified forms of GM3 antigen on tumor cells was investigated. For this purpose, tumor cells were incubated with different N-acyl-d-mannosamines, and modified forms of GM3 expressed on tumor cells were analyzed by flow cytometry using antigen-specific antisera. N-Phenylacetyl-d-mannosamine was efficiently incorporated in a time- and dose-dependent manner to bioengineer GM3 expression by several tumor cell lines, including K562, SKMEL-28, and B16-F0. Moreover, these tumor cell lines also exhibited ManPAc-dependent sensitivity to cytotoxicity mediated by anti-PAcGM3 immune serum and complement. These results provide an important validation for this novel therapeutic strategy. Because N-phenylacetyl GM3-protein conjugates are particularly immunogenic, the combination of an N-phenylacetyl GM3 conjugate vaccine with systemic N-phenylacetyl-d-mannosamine treatment is a promising immunotherapy for future development and application to melanoma and other GM3-bearing tumors. PMID:16533056

  3. Prevention of BMS-777607-induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics.

    PubMed

    Sharma, Sharad; Yao, Hang-Ping; Zhou, Yong-Qing; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai

    2014-05-01

    Targeted inhibition of MET/RON signaling by tyrosine kinase inhibitor BMS-777607 for cancer treatment is currently under clinical trials. We have previously shown that BMS-777607 induces chemoresistance in vitro by causing polyploidy, which hampers therapeutic efficacy. Here, we studied polyploidy-associated senescence induced by BMS-777607 in breast cancer cells and its prevention by mTOR inhibitor AZD8055, leading to increased chemosensitivity. In breast cancer T-47D and ZR-75-1 cells, BMS-777607 induced phenotypic changes including enlarged cellular size, flattened morphology, increased DNA content, and activity of senescence-associated β-galactosidase. These changes were accompanied by increased p21/WAF1 expression and decreased Retinoblastoma Ser(780) phosphorylation, indicating that BMS-777607 induces not only polyploidy but also senescence. The appearance of senescence was associated with polyploidy in which β-galactosidase is exclusively expressed in polyploid cells. Survivin expression was increased in polyploid/senescent cells as analyzed by Western blotting. Increased survivin accumulated both in the nucleus and cytoplasm and dissociated with condensed DNA and mitotic spindle at the metaphase. Abnormal accumulation of survivin also rendered polyploid/senescent cells insensitive to cytotoxic activities of YM155, a DNA damaging agent with a suppressive effect on survivin gene transcription. AZD8055, a specific mTOR inhibitor, effectively prevented BMS-777607-induced polyploidy and senescence and restored survivin expression and its nuclear localization to normal levels. Although a synergism was not observed, BMS-777607 plus AZD8055 increased cancer cell sensitivity toward different cytotoxic chemotherapeutics. In conclusion, BMS-777607-induced chemoresistance is associated with cell polyploidy and senescence. Inhibition of mTOR signaling by AZD8055 prevents BMS-777607-induced polyploidy/senescence and increases breast cancer cell chemosensitivity. PMID

  4. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels

    PubMed Central

    Yan, W. W.; Cai, B.

    2016-01-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30–50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method, and the tumor cell dynamics was governed by the Newton’s law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor celladhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10−2) laminar flow. PMID:21818636

  5. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    PubMed Central

    2014-01-01

    Background Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Methods Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Results Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2

  6. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    SciTech Connect

    Salmela, Anna-Leena; Pouwels, Jeroen; Kukkonen-Macchi, Anu; Waris, Sinikka; Toivonen, Pauliina; Jaakkola, Kimmo; Maeki-Jouppila, Jenni; Kallio, Lila; Kallio, Marko J.

    2012-03-10

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.

  7. Polyploidy can Confer Superiority to West African Acacia senegal (L.) Willd. Trees

    PubMed Central

    Diallo, Adja M.; Nielsen, Lene R.; Kjær, Erik D.; Petersen, Karen K.; Ræbild, Anders

    2016-01-01

    Polyploidy is a common phenomenon in the evolution of angiosperms. It has been suggested that polyploids manage harsh environments better than their diploid relatives but empirical data supporting this hypothesis are scarce, especially for trees. Using microsatellite markers and flow cytometry, we examine the frequency of polyploids and diploids in a progeny trial testing four different populations of Acacia senegal, a species native to sub-Saharan regions of Africa. We compare growth between cytotypes and test whether polyploid seedlings grow better than diploids. Our results show that polyploids coexist with diploids in highly variable proportions among populations in Senegal. Acacia senegal genotypes were predominantly diploid and tetraploid, but triploid, pentaploid, hexaploid, and octaploid forms were also found. We find that polyploids show faster growth than diploids under our test conditions: in an 18 years old field trial, polyploid superiority was estimated to be 17% in trunk diameter and 9% in height while in a growth chamber experiment, polyploids grew 28% taller, but only after being exposed to drought stress. The results suggest that polyploid A. senegal can have an adaptive advantage in some regions of Africa. PMID:27379120

  8. Polyploidy can Confer Superiority to West African Acacia senegal (L.) Willd. Trees.

    PubMed

    Diallo, Adja M; Nielsen, Lene R; Kjær, Erik D; Petersen, Karen K; Ræbild, Anders

    2016-01-01

    Polyploidy is a common phenomenon in the evolution of angiosperms. It has been suggested that polyploids manage harsh environments better than their diploid relatives but empirical data supporting this hypothesis are scarce, especially for trees. Using microsatellite markers and flow cytometry, we examine the frequency of polyploids and diploids in a progeny trial testing four different populations of Acacia senegal, a species native to sub-Saharan regions of Africa. We compare growth between cytotypes and test whether polyploid seedlings grow better than diploids. Our results show that polyploids coexist with diploids in highly variable proportions among populations in Senegal. Acacia senegal genotypes were predominantly diploid and tetraploid, but triploid, pentaploid, hexaploid, and octaploid forms were also found. We find that polyploids show faster growth than diploids under our test conditions: in an 18 years old field trial, polyploid superiority was estimated to be 17% in trunk diameter and 9% in height while in a growth chamber experiment, polyploids grew 28% taller, but only after being exposed to drought stress. The results suggest that polyploid A. senegal can have an adaptive advantage in some regions of Africa. PMID:27379120

  9. The “virgin birth”, polyploidy, and the origin of cancer

    PubMed Central

    Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Jackson, Thomas R.; Vazquez-Martin, Alejandro; Cragg, Mark S.

    2015-01-01

    Recently, it has become clear that the complexity of cancer biology cannot fully be explained by somatic mutation and clonal selection. Meanwhile, data have accumulated on how cancer stem cells or stemloids bestow immortality on tumour cells and how reversible polyploidy is involved. Most recently, single polyploid tumour cells were shown capable of forming spheroids, releasing EMT-like descendents and inducing tumours in vivo. These data refocus attention on the centuries-old embryological theory of cancer. This review attempts to reconcile seemingly conflicting data by viewing cancer as a pre-programmed phylogenetic life-cycle-like process. This cycle is apparently initiated by a meiosis-like process and driven as an alternative to accelerated senescence at the DNA damage checkpoint, followed by an asexual syngamy event and endopolyploid-type embryonal cleavage to provide germ-cell-like (EMT) cells. This cycle is augmented by genotoxic treatments, explaining why chemotherapy is rarely curative and drives resistance. The logical outcome of this viewpoint is that alternative treatments may be more efficacious - either those that suppress the endopolyploidy-associated ‘life cycle’ or, those that cause reversion of embryonal malignant cells into benign counterparts. Targets for these opposing strategies are components of the same molecular pathways and interact with regulators of accelerated senescence. PMID:25821840

  10. SK053 triggers tumor cells apoptosis by oxidative stress-mediated endoplasmic reticulum stress.

    PubMed

    Muchowicz, Angelika; Firczuk, Małgorzata; Wachowska, Małgorzata; Kujawa, Marek; Jankowska-Steifer, Ewa; Gabrysiak, Magdalena; Pilch, Zofia; Kłossowski, Szymon; Ostaszewski, Ryszard; Golab, Jakub

    2015-02-15

    Thioredoxins (Trx) together with thioredoxin reductases (TrxR) participate in the maintenance of protein thiol homeostasis and play cytoprotective roles in tumor cells. Therefore, thioredoxin-thioredoxin reductase system is considered to be a promising therapeutic target in cancer treatment. We have previously reported that SK053, a peptidomimetic compound targeting the thioredoxin-thioredoxin reductase system, induces oxidative stress and demonstrates antitumor activity in mice. In this study, we investigated the mechanisms of SK053-mediated tumor cell death. Our results indicate that SK053 induces apoptosis of Raji cells accompanied by the activation of the endoplasmic reticulum (ER) stress and induction of unfolded protein response. Incubation of tumor cells with SK053 induces increase in BiP, CHOP, and spliced XBP-1 levels, which precede induction of apoptosis. CHOP-deficient (CHOP(-/-)) mouse embryonic fibroblasts are more resistant to SK053-induced apoptosis as compared with normal fibroblasts indicating that the apoptosis of tumor cells depends on the expression of this transcription factor. Additionally, the ER-stress-induced apoptosis, caused by SK053, is strongly related with Trx expression levels. Altogether, our results indicate that SK053 induces ER stress-associated apoptosis and reveal a link between thioredoxin inhibition and induction of UPR in tumor cells. PMID:25573101

  11. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    PubMed Central

    Zhang, Xiaonan; de Milito, Angelo; Olofsson, Maria Hägg; Gullbo, Joachim; D’Arcy, Padraig; Linder, Stig

    2015-01-01

    The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS) or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations. PMID:26580606

  12. Generation of reactive oxygen species and radiation response in lymphocytes and tumor cells.

    PubMed

    Shankar, Bhavani; Kumar, S Santosh; Sainis, K B

    2003-10-01

    Several types of lymphoid and myeloid tumor cells are known to be relatively resistant to radiation-induced apoptosis compared to normal lymphocytes. The intracellular generation of reactive oxygen species was measured in irradiated spleen cells from C57BL/6 and BALB/c mice and murine tumor cells (EL-4 and P388) by flow cytometry using dichlorodihydrofluoresceindiacetate and dihydrorhodamine 123 as fluorescent probes. The amount of reactive oxygen species generated per cell was low in the tumor cells compared to spleen cells exposed to 1 to 10 Gy of gamma radiation. This could be due to the higher total antioxidant levels in tumor cells compared to normal cells. Further, the changes in mitochondrial membrane potential and cytoplasmic Ca2+ content were appreciable in lymphocytes even at a dose of 1 Gy. In EL-4 cells, no such changes were observed at any of the doses used. About 65% of spleen cells underwent apoptosis 24 h after 1 Gy irradiation. However, under the same conditions, EL-4 and P388 cells failed to undergo apoptosis, but they accumulated in G2/M phase. Thus the intrinsic radioresistance of tumor cells may be due to a decreased generation of reactive oxygen species after irradiation and down-regulation of the subsequent events leading to apoptosis. PMID:12968927

  13. Towards an optimized platform for the detection, enrichment, and semi-quantitation circulating tumor cells.

    PubMed

    Molloy, T J; Bosma, A J; van't Veer, Laura J

    2008-11-01

    Metastasis describes the process of migration of a frequently clinically occult circulating tumor cell (CTC) from the primary lesion to a new location and the subsequent formation of an overt growth. We and others have shown that the detection and quantitation of these cells has significant prognostic value, however there still remains no consensus as to the optimal methods to achieve this. The work described herein therefore considered various techniques, from storage and sample processing to data acquisition and analysis, to find an optimal combination of methods for an effective and practical platform for the detection of CTCs in peripheral blood. A dual-antigen epithelial cell enrichment procedure followed by a multi-marker QPCR analysis demonstrated the highest sensitivity and specificity, with the ability to detect as few as 10 tumor cells from a background of 10(6) peripheral blood mononuclear cells. Using these techniques in conjunction with a quadratic linear discriminant analysis (QDA) resulted in a platform able to generate this data and then combine it a single score for each patient, in which positivity reflected tumor cell presence, and negativity represented tumor cell absence. This assay was able to correctly determine tumor cell presence or absence in 100% of healthy controls and 84% of metastatic patients in a validation cohort of 39 individuals. This platform represents a highly sensitive and specific assay which could augment current routine assays for CTCs in the clinic. PMID:18213476

  14. Nifurtimox Is Effective Against Neural Tumor Cells and Is Synergistic with Buthionine Sulfoximine.

    PubMed

    Du, Michael; Zhang, Linna; Scorsone, Kathleen A; Woodfield, Sarah E; Zage, Peter E

    2016-01-01

    Children with aggressive neural tumors have poor survival rates and novel therapies are needed. Previous studies have identified nifurtimox and buthionine sulfoximine (BSO) as effective agents in children with neuroblastoma and medulloblastoma. We hypothesized that nifurtimox would be effective against other neural tumor cells and would be synergistic with BSO. We determined neural tumor cell viability before and after treatment with nifurtimox using MTT assays. Assays for DNA ladder formation and poly-ADP ribose polymerase (PARP) cleavage were performed to measure the induction of apoptosis after nifurtimox treatment. Inhibition of intracellular signaling was measured by Western blot analysis of treated and untreated cells. Tumor cells were then treated with combinations of nifurtimox and BSO and evaluated for viability using MTT assays. All neural tumor cell lines were sensitive to nifurtimox, and IC50 values ranged from approximately 20 to 210 μM. Nifurtimox treatment inhibited ERK phosphorylation and induced apoptosis in tumor cells. Furthermore, the combination of nifurtimox and BSO demonstrated significant synergistic efficacy in all tested cell lines. Additional preclinical and clinical studies of the combination of nifurtimox and BSO in patients with neural tumors are warranted. PMID:27282514

  15. Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy.

    PubMed

    Abravanel, Daniel L; Belka, George K; Pan, Tien-chi; Pant, Dhruv K; Collins, Meredith A; Sterner, Christopher J; Chodosh, Lewis A

    2015-06-01

    Breast cancer mortality is principally due to recurrent tumors that arise from a reservoir of residual tumor cells that survive therapy. Remarkably, breast cancers can recur after extended periods of clinical remission, implying that at least some residual tumor cells pass through a dormant phase prior to relapse. Nevertheless, the mechanisms that contribute to breast cancer recurrence are poorly understood. Using a mouse model of recurrent mammary tumorigenesis in combination with bioinformatics analyses of breast cancer patients, we have identified a role for Notch signaling in mammary tumor dormancy and recurrence. Specifically, we found that Notch signaling is acutely upregulated in tumor cells following HER2/neu pathway inhibition, that Notch signaling remains activated in a subset of dormant residual tumor cells that persist following HER2/neu downregulation, that activation of Notch signaling accelerates tumor recurrence, and that inhibition of Notch signaling by either genetic or pharmacological approaches impairs recurrence in mice. Consistent with these findings, meta-analysis of microarray data from over 4,000 breast cancer patients revealed that elevated Notch pathway activity is independently associated with an increased rate of recurrence. Together, these results implicate Notch signaling in tumor recurrence from dormant residual tumor cells and provide evidence that dormancy is a targetable stage of breast cancer progression. PMID:25961456

  16. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses

    PubMed Central

    Chiba, Shiho; Ikushima, Hiroaki; Ueki, Hiroshi; Yanai, Hideyuki; Kimura, Yoshitaka; Hangai, Sho; Nishio, Junko; Negishi, Hideo; Tamura, Tomohiko; Saijo, Shinobu; Iwakura, Yoichiro; Taniguchi, Tadatsugu

    2014-01-01

    The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications. DOI: http://dx.doi.org/10.7554/eLife.04177.001 PMID:25149452

  17. Biological Functionalization of Conjugated Polymer Nanoparticles for Targeted Imaging and Photodynamic Killing of Tumor Cells.

    PubMed

    Feng, Liheng; Zhu, Jiarong; Wang, Zhijun

    2016-08-01

    Conjugated polymer nanoparticles composed of PFT/PS as a core and PEG-COOH on the surface were prepared by a reprecipitating method. The CPNs diaplay excellet properties such as good photostability, low cytotoxicity, and strong brightness, etc. The average diamater of CPNs is 30 nm with a spherical morphology. To realize specific imaging in different parts of tumor cells, the bare CPNs with the carboxyls on the surface were conjugated with antibody or peptide by a covalent mode. Studies display that CPNs modified with anti-EpCAM can recognize MCF-7 tumor cells and locate on the membrane, while CPNs conjugated with transcriptional activator protein (Tat) specifically locate in the cytoplasm of MCF-7 cells. On the basis of the ability of CPNs for producing reactive oxygen species (ROS) under light irradiation, photodynamic therapy for tumor cells was investigated. Due to the long distance and wide diffusion range, MCF-7 tumor cells with CPNs/anti-EpCAM have no obvious change with or without white light irradiation. However, CPNs/Tat exhibits higher killing ability for MCF-7 cells. Noticeably, multifunctional CPNs linked with anti-EpCAM and Tat simultaneously not only can specifically target MCF-7 tumor cells, but also may inhibit and kill these cells. This work develops a potential application platform for multifunctional CPNs in locating imaging, photodynamic therapy, and other aspects. PMID:27406913

  18. 53BP1 foci as a marker of tumor cell radiosensitivity.

    PubMed

    Markova, E; Vasilyev, S; Belyaev, I

    2015-01-01

    Predicting tumor radiosensitivity has yet to be routinely integrated into radiotherapy. We analyzed the possibility to assess radiosensitivity of tumor cells based on endogenous and radiation-induced 53BP1 foci which are molecular markers of DNA double strand breaks (DSB). In eleven tumor cell lines of different origin, radiosensitivity was assessed by surviving cell fraction following irradiation with 2 Gy (SF2). 53BP1 foci were measured at 4 and 12 h post-irradiation by confocal laser microscopy and dedicated software. The correlation of 53BP1 foci and their post-irradiation kinetics with SF2 was assessed using Spearman rank test. The SF2 correlated with both excess of radiation-induced 53BP1 foci per cell at 4 h after irradiation and decay in number of 53BP1 foci from 4 to 12 h post-irradiation. The fraction of cells with multiple endogenous 53BP1 foci also correlated with SF2 of tumor cells. We conclude that the radiosensitivity of tumor cells can be predicted by kinetics of formation and decay of 53BP1 foci after irradiation. For the first time we report that the fraction of cells with multiple endogenous 53BP1 foci can be used as a marker of tumor cell radiosensitivity. PMID:26278144

  19. Morphological evidence of neutrophil-tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas.

    PubMed

    Caruso, R A; Muda, A O; Bersiga, A; Rigoli, L; Inferrera, C

    2002-01-01

    The phenomenon of neutrophil-tumor cell emperipolesis or phagocytosis has been documented by light microscopy in various human carcinomas, but little is known about the cellular pathological processes and the morphological changes involved. In an attempt to clarify the nature of this phenomenon, the authors' ultrastructural studies on the relationships among neutrophils and tumor cells in human gastric carcinomas are reviewed and analyzed. At the electron microscopy level, apoptotic neutrophils were found within vacuoles of adenocarcinoma cells in 2 cases. They showed either early apoptotic morphology with perinuclear chromatin aggregation but cytoplasm integrity or late apoptotic morphology with uniform, collapsed nucleus and tightly packed cytoplasmic granules. A light microscopy review of 200 cases of resected gastric carcinomas identified 22 cases (11%) that were characterized by neutrophil-tumor cell phagocytosis (cannibalism). TUNEL staining confirmed the presence of apoptotic neutrophils within the cytoplasm of the tumor cells. This study provides light and electron microscopic evidence of apoptotic neutrophils phagocytosed by gastric adenocarcinoma cells. The morphological features of neutrophil-tumor cell phagocytosis (cannibalism) would suggest a particular mechanism of tumor-immune escape in human gastric carcinoma. PMID:12396242

  20. Mobilization of Viable Tumor Cells Into the Circulation During Radiation Therapy

    SciTech Connect

    Martin, Olga A.; Anderson, Robin L.; Russell, Prudence A.; Ashley Cox, R.; Ivashkevich, Alesia; Swierczak, Agnieszka; Doherty, Judy P.; Jacobs, Daphne H.M.; Smith, Jai; Siva, Shankar; Daly, Patricia E.; Ball, David L.; and others

    2014-02-01

    Purpose: To determine whether radiation therapy (RT) could mobilize viable tumor cells into the circulation of non-small cell lung cancer (NSCLC) patients. Methods and Materials: We enumerated circulating tumor cells (CTCs) by fluorescence microscopy of blood samples immunostained with conventional CTC markers. We measured their DNA damage levels using γ-H2AX, a biomarker for radiation-induced DNA double-strand breaks, either by fluorescence-activated cell sorting or by immunofluorescence microscopy. Results: Twenty-seven RT-treated NSCLC patients had blood samples analyzed by 1 or more methods. We identified increased CTC numbers after commencement of RT in 7 of 9 patients treated with palliative RT, and in 4 of 8 patients treated with curative-intent RT. Circulating tumor cells were also identified, singly and in clumps in large numbers, during RT by cytopathologic examination (in all 5 cases studied). Elevated γ-H2AX signal in post-RT blood samples signified the presence of CTCs derived from irradiated tumors. Blood taken after the commencement of RT contained tumor cells that proliferated extensively in vitro (in all 6 cases studied). Circulating tumor cells formed γ-H2AX foci in response to ex vivo irradiation, providing further evidence of their viability. Conclusions: Our findings provide a rationale for the development of strategies to reduce the concentration of viable CTCs by modulating RT fractionation or by coadministering systemic therapies.

  1. The Effects of Nanotexturing Microfluidic Platforms to Isolate Brain Tumor Cells

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Sajid, Adeel; Kim, Young-Tae; Iqbal, Samir M.

    2015-03-01

    Detection of tumor cells in the early stages of disease requires sensitive and selective approaches. Nanotextured polydimethylsiloxane (PDMS) substrates were implemented to detect metastatic human glioblastoma (hGBM) cells. RNA aptamers that were specific to epidermal growth factor receptors (EGFR) were used to functionalize the substrates. EGFR is known to be overexpressed on many cancer cells including hGBM. Nanotextured PDMS was prepared by micro reactive ion etching. PDMS surfaces became hydrophilic uponnanotexturing. Nanotextured substrates were incubated in tumor cell solution and density of captured cells was determined. Nanotextured PDMS provided >300% cell capture compared to plain PDMS due to increased effective surface area of roughened substrates at nanoscale as well as mire focal points for cell adhesion. Next, aptamer functionalized nanotextured PDMS was incorporated in microfluidic device to detect tumor cells at different flow velocities. The shear stress introduced by the flow pressure and heterogeneity of the EGFR overexpression on cell membranes of the tumor cells had significant impact on the cell capture efficiency of aptamer anchored nanotextured microfluidic devices. Eventually tumor cells were detected from the mixture of white blood cells at an efficiency of 73% using the microfluidic device. The interplay of binding energies and surface energies was major factor in this system. Support Acknowledged from NSF through ECCS-1407990.

  2. Nifurtimox Is Effective Against Neural Tumor Cells and Is Synergistic with Buthionine Sulfoximine

    PubMed Central

    Du, Michael; Zhang, Linna; Scorsone, Kathleen A.; Woodfield, Sarah E.; Zage, Peter E.

    2016-01-01

    Children with aggressive neural tumors have poor survival rates and novel therapies are needed. Previous studies have identified nifurtimox and buthionine sulfoximine (BSO) as effective agents in children with neuroblastoma and medulloblastoma. We hypothesized that nifurtimox would be effective against other neural tumor cells and would be synergistic with BSO. We determined neural tumor cell viability before and after treatment with nifurtimox using MTT assays. Assays for DNA ladder formation and poly-ADP ribose polymerase (PARP) cleavage were performed to measure the induction of apoptosis after nifurtimox treatment. Inhibition of intracellular signaling was measured by Western blot analysis of treated and untreated cells. Tumor cells were then treated with combinations of nifurtimox and BSO and evaluated for viability using MTT assays. All neural tumor cell lines were sensitive to nifurtimox, and IC50 values ranged from approximately 20 to 210 μM. Nifurtimox treatment inhibited ERK phosphorylation and induced apoptosis in tumor cells. Furthermore, the combination of nifurtimox and BSO demonstrated significant synergistic efficacy in all tested cell lines. Additional preclinical and clinical studies of the combination of nifurtimox and BSO in patients with neural tumors are warranted. PMID:27282514

  3. Synergistic action of tiazofurin with hypoxanthine and allopurinol in human neuroectodermal tumor cell lines.

    PubMed

    Szekeres, T; Schuchter, K; Chiba, P; Ressmann, G; Lhotka, C; Gharehbaghi, K; Szalay, S M; Pillwein, K

    1993-12-01

    The activity of IMP dehydrogenase (EC 1.2.1.14), the key enzyme of de novo guanylate biosynthesis, was shown to be increased in tumor cells. Tiazofurin (TR), a potent and specific inhibitor of this enzyme, proved to be effective in the treatment of refractory granulocytic leukemia in blast crisis. We examined the effects of tiazofurin as a single agent and in combination with hypoxanthine and allopurinol in six different neuroectodermal tumor cell lines, the STA-BT-3 and 146-18 human glioblastoma cell lines, the SK-N-SH, LA-N-1 and LA-N-5 human neuroblastoma cell lines, and the STA-ET-1 Ewing tumor cell line. Tiazofurin inhibited tumor cell growth with IC50 values between 2.2 microM (LA-N-1 cell line) and 550 microM (LA-N-5 cells) and caused a significant decrease of intracellular GTP pools (GTP concentrations decreased to 39-79% of control). Incorporation of [8-14C]guanine into GTP pools was determined as a measure of guanylate salvage activity; incubation with 100 microM hypoxanthine caused a 62-96% inhibition of the salvage pathway. Incubation with tiazofurin (100 microM) and hypoxanthine (100 microM) synergistically inhibited tumor cell growth, and the addition of allopurinol (100 microM) strengthened these effects. Therefore, this drug combination, inhibiting guanylate de novo and salvage pathways, may prove useful in the treatment of human neuroectodermal tumors. PMID:7903533

  4. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  5. Identification of thyroid tumor cell vulnerabilities through a siRNA-based functional screening

    PubMed Central

    Cetti, Elena; Fraietta, Ivan; Todoerti, Katia; Miranda, Claudia; Mazzoni, Mara; Re, Claudia; Colombo, Riccardo; Ukmar, Giorgio; Camisasca, Stefano; Pagliardini, Sonia; Pierotti, Marco A.; Neri, Antonino; Galvani, Arturo; Greco, Angela

    2015-01-01

    The incidence of thyroid carcinoma is rapidly increasing. Although generally associated with good prognosis, a fraction of thyroid tumors are not cured by standard therapy and progress to aggressive forms for which no effective treatments are currently available. In order to identify novel therapeutic targets for thyroid carcinoma, we focused on the discovery of genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same degree for the viability of normal cells (non-oncogene addiction paradigm). We screened a siRNA oligonucleotide library targeting the human druggable genome in thyroid cancer BCPAP cell line in comparison with immortalized normal human thyrocytes (Nthy-ori 3–1). We identified a panel of hit genes whose silencing interferes with the growth of tumor cells, while sparing that of normal ones. Further analysis of three selected hit genes, namely Cyclin D1, MASTL and COPZ1, showed that they represent common vulnerabilities for thyroid tumor cells, as their inhibition reduced the viability of several thyroid tumor cell lines, regardless the histotype or oncogenic lesion. This work identified non-oncogenes essential for sustaining the phenotype of thyroid tumor cells, but not of normal cells, thus suggesting that they might represent promising targets for new therapeutic strategies. PMID:26431489

  6. Identification of thyroid tumor cell vulnerabilities through a siRNA-based functional screening.

    PubMed

    Anania, Maria; Gasparri, Fabio; Cetti, Elena; Fraietta, Ivan; Todoerti, Katia; Miranda, Claudia; Mazzoni, Mara; Re, Claudia; Colombo, Riccardo; Ukmar, Giorgio; Camisasca, Stefano; Pagliardini, Sonia; Pierotti, Marco; Neri, Antonino; Galvani, Arturo; Greco, Angela

    2015-10-27

    The incidence of thyroid carcinoma is rapidly increasing. Although generally associated with good prognosis, a fraction of thyroid tumors are not cured by standard therapy and progress to aggressive forms for which no effective treatments are currently available. In order to identify novel therapeutic targets for thyroid carcinoma, we focused on the discovery of genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same degree for the viability of normal cells (non-oncogene addiction paradigm). We screened a siRNA oligonucleotide library targeting the human druggable genome in thyroid cancer BCPAP cell line in comparison with immortalized normal human thyrocytes (Nthy-ori 3-1). We identified a panel of hit genes whose silencing interferes with the growth of tumor cells, while sparing that of normal ones. Further analysis of three selected hit genes, namely Cyclin D1, MASTL and COPZ1, showed that they represent common vulnerabilities for thyroid tumor cells, as their inhibition reduced the viability of several thyroid tumor cell lines, regardless the histotype or oncogenic lesion. This work identified non-oncogenes essential for sustaining the phenotype of thyroid tumor cells, but not of normal cells, thus suggesting that they might represent promising targets for new therapeutic strategies. PMID:26431489

  7. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity.

    PubMed

    McMillin, Douglas W; Delmore, Jake; Weisberg, Ellen; Negri, Joseph M; Geer, D Corey; Klippel, Steffen; Mitsiades, Nicholas; Schlossman, Robert L; Munshi, Nikhil C; Kung, Andrew L; Griffin, James D; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2010-04-01

    Conventional anticancer drug screening is typically performed in the absence of accessory cells of the tumor microenvironment, which can profoundly alter antitumor drug activity. To address this limitation, we developed the tumor cell-specific in vitro bioluminescence imaging (CS-BLI) assay. Tumor cells (for example, myeloma, leukemia and solid tumors) stably expressing luciferase are cultured with nonmalignant accessory cells (for example, stromal cells) for selective quantification of tumor cell viability, in presence versus absence of stromal cells or drug treatment. CS-BLI is high-throughput scalable and identifies stroma-induced chemoresistance in diverse malignancies, including imatinib resistance in leukemic cells. A stroma-induced signature in tumor cells correlates with adverse clinical prognosis and includes signatures for activated Akt, Ras, NF-kappaB, HIF-1alpha, myc, hTERT and IRF4; for biological aggressiveness; and for self-renewal. Unlike conventional screening, CS-BLI can also identify agents with increased activity against tumor cells interacting with stroma. One such compound, reversine, shows more potent activity in an orthotopic model of diffuse myeloma bone lesions than in conventional subcutaneous xenografts. Use of CS-BLI, therefore, enables refined screening of candidate anticancer agents to enrich preclinical pipelines with potential therapeutics that overcome stroma-mediated drug resistance and can act in a synthetic lethal manner in the context of tumor-stroma interactions. PMID:20228816

  8. Increasing the efficacy of tumor cell vaccines by enhancing cross priming

    PubMed Central

    Andersen, Brian M.; Ohlfest, John R.

    2012-01-01

    Cancer immunotherapy has been attempted for more than a century, and investment has intensified in the last 20 years. The complexity of the immune system is exemplified by the myriad of immunotherapeutic approaches under investigation. While anti-tumor immunity has been achieved experimentally with multiple effector cells and molecules, particular promise is shown for harnessing the CD8 T cell response. Tumor cell-based vaccines have been employed in hundreds of clinical trials to date and offer several advantages over subunit and peptide vaccines. However, tumor cell-based vaccines, often aimed at cross priming tumor-reactive CD8 T cells, have shown modest success in clinical trials. Here we review the mechanisms of cross priming and discuss strategies to increase the efficacy of tumor cell-based vaccines. A synthesis of recent findings on tissue culture conditions, cell death, and dendritic cell activation reveals promising new avenues for clinical investigation. PMID:22809568

  9. Targeting anthracycline-resistant tumor cells with synthetic aloe-emodin glycosides.

    PubMed

    Breiner-Goldstein, Elinor; Evron, Zoharia; Frenkel, Michael; Cohen, Keren; Meiron, Keren Nir; Peer, Dan; Roichman, Yael; Flescher, Eliezer; Fridman, Micha

    2011-07-14

    The cytotoxic activity of aloe-emodin (AE), a natural anthranoid that readily permeates anthracycline-resistant tumor cells, was improved by the attachment of an amino-sugar unit to its anthraquinone core. The new class of AE glycosides (AEGs) showed a significant improvement in cytotoxicity-up to more than 2 orders of magnitude greater than those of AE and the clinically used anthracycline doxorubicin (DOX)-against several cancer cell lines with different levels of DOX resistance. Incubation with the synthetic AEGs induced cell death in less than one cell cycle, indicating that these compounds do not directly target the cell division mechanism. Confocal microscopy provided evidence that unlike DOX, AEGs accumulated in anthracycline-resistant tumor cells in which resistance is conferred by P-glycoprotein efflux pumps. The results of this study demonstrate that AEGs may serve as a promising scaffold for the development of cytotoxic agents capable of overcoming anthracycline resistance in tumor cells. PMID:24900344

  10. Structural modification of luteolin from Flos Chrysanthemi leads to increased tumor cell growth inhibitory activity.

    PubMed

    Yang, Chao; Chen, Hui; Lu, Shihai; Zhang, Meng; Tian, Wei; Wang, Mingping; Zhang, Ling; Song, Yunlong; Shen, Aijun; Zhou, Youjun; Zhu, Ju; Zheng, Canhui

    2016-08-01

    The luteolin from Flos Chrysanthemi was found to directly bind to the Bcl-2 protein and inhibit the tumor cell growth in our previous study. However, it has been shown to possess wide and week biological activities. In this study, a series of derivatives of luteolin were designed and synthesized, and their tumor cell growth inhibitory activities were evaluated against human leukemia cell line HL-60. The results showed that compounds 1B-2, 2A-3, and 2B-5, with hydrophobic substituted benzyl groups introduced to B ring and hydrogen or methyl introduced to 7-OH group of luteolin, exhibited the strongest inhibitory activity with the IC50 lower than 10μM, which were significantly more potent than luteolin. The studies presented here offer a good example for modifications of flavones to improve their tumor cell growth inhibitory activities. PMID:27353532

  11. Mass spectrometry based proteomics for absolute quantification of proteins from tumor cells

    PubMed Central

    Wang, Hong; Hanash, Sam

    2015-01-01

    In-depth quantitative profiling of the proteome and sub-proteomes of tumor cells has relevance to tumor classification, the development of novel therapeutics, and of prognostic and predictive markers and to disease monitoring. In particular the tumor cell surface represents a highly relevant compartment for the development of targeted therapeutics and immunotherapy. We have developed a proteomic platform to profile tumor cells that encompasses enrichment of surface membrane proteins, intact protein fractionation and label-free mass spectrometry based absolute quantification. Here we describe the methodology for capture, identification and quantification of cell surface proteins using biotinylation for labeling of the cell surface, avidin for capture of biotinylated proteins and ion mobility mass spectrometry for protein identification and quantification. PMID:25794949

  12. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  13. Targeting Tumor Cells by Natural Anti-Carbohydrate Antibodies Using Rhamnose-Functionalized Liposomes.

    PubMed

    Li, Xuexia; Rao, Xiongjian; Cai, Li; Liu, Xuling; Wang, Huixia; Wu, Weinan; Zhu, Chenggang; Chen, Min; Wang, Peng G; Yi, Wen

    2016-05-20

    Recruitment of antibodies in human immune systems for targeted destruction of tumor cells has emerged as an exciting area of research due to its low occurrence of side effects, high efficacy, and high specificity. The presence of large amounts of anticarbohydrate natural antibodies in human sera has prompted research efforts to utilize carbohydrate epitopes for immune recruitment. Here, we have developed a general strategy for specific targeted destruction of tumor cells based on rhamnose-functionalized liposomes. Tumor cells artificially decorated with rhamnose epitopes were subjected to complement-mediated cytotoxicity in vitro and showed delayed tumor growth in vivo. This study highlights the therapeutic potential for activation of endogenous immune response through cell-surface glycan engineering. PMID:26982552

  14. eIF4E-phosphorylation-mediated Sox2 upregulation promotes pancreatic tumor cell repopulation after irradiation.

    PubMed

    Yu, Yang; Tian, Ling; Feng, Xiao; Cheng, Jin; Gong, Yanping; Liu, Xinjian; Zhang, Zhengxiang; Yang, Xuguang; He, Sijia; Li, Chuan-Yuan; Huang, Qian

    2016-05-28

    Pancreatic cancer is a devastating disease characterized by treatment resistance and high recurrence rate. Repopulation of surviving tumor cells undergoing radiotherapy is one of the most common reasons for recurrence. Our previous studies have discovered a novel mechanism for repopulation after irradiation that activation of caspase-3 in irradiated tumor cells activates PKCδ/p38 axis to transmit proliferation signals promoting repopulation of surviving tumor cells. Here we found Sox2 expression is up-regulated in irradiated pancreatic cancer cells, which played a major role in tumor cell repopulation after irradiation. Over-expression of Sox2 strongly enhanced the growth-stimulating effect of irradiated dying tumor cells on living tumor cells through a paracrine modality. Furthermore, we identified activated eIF4E, which is phosphorylated by MNK1, as a regulator of Sox2 expression after irradiation, and pharmacologic inhibition of eIF4E with CGP57380 and Ribavirin significantly weakened Sox2-mediated tumor cell repopulation. Finally, we showed the activation of caspase 3/PKCδ/p38/MNK1 signal pathway in irradiated pancreatic tumor cells. Together, we showed a novel pathway regulating Sox2 expression and Sox2 may be a promising target to reduce recurrence due to repopulation of surviving tumor cells after radiotherapy. PMID:26945967

  15. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    PubMed

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted. PMID:26028028

  16. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  17. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.

    PubMed

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier

    2015-08-01

    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process. PMID:25917957

  18. Inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1.

    PubMed

    Wang, X; He, X J; Xu, H Q; Chen, Z W; Fan, H H

    2016-01-01

    The aim of this study was to explore the inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1 and its mechanism. For this study, athymic nude mice were injected with either normal pituitary tumor RC-4B/C cells or LRIG1-transfected RC-4B/C cells. We then calculated the volume inhibition rate of the tumors, as well as the apoptosis index of tumor cells and the expression of Ras, Raf, AKt, and ERK mRNA in tumor cells. Tumor cell morphological and structural changes were also observed under electron microscope. Our data showed that subcutaneous tumor growth was slowed or even halted in LRIG1-transfected tumors. The tumor volumes were significantly different between the two groups of mice (χ2 = 2.14, P < 0.05). The tumor apoptosis index was found to be 8.72% in the control group and 39.7% in LRIG1-transfected mice (χ2 = 7.59, P < 0.05). The levels of Ras, Raf, and AKt mRNA in LRIG1-transfected RC-4B/C cells were significantly reduced after transfection (P < 0.01). Transfected subcutaneous tumor cells appeared to be in early or late apoptosis under an electron microscope, while only a few subcutaneous tumor cells appeared to be undergoing apoptosis in the control group. In conclusion, the LRIG1 gene is able to inhibit proliferation and promote apoptosis in subcutaneously implanted human pituitary tumors in nude mice. The mechanism of LRIG1 may involve the inhibition of the PI3K/ Akt and Ras/Raf/ERK signal transduction pathways. PMID:27173312

  19. Design of nanodrugs for miRNA targeting in tumor cells.

    PubMed

    Yoo, Byunghee; Ghosh, Subrata K; Kumar, Mohanraja; Moore, Anna; Yigit, Mehmet V; Medarova, Zdravka

    2014-06-01

    The delivery of oligonucleotide antagonists to cytosolic RNA targets such as microRNA represents an avenue for the post-transcriptional control of cellular phenotype. In tumor cells, oncogenic miRNAs, termed oncomirs, are tightly linked to processes that ultimately determine cancer initiation, progression, and response to therapy. Therefore, the capacity to redirect tumor cell fate towards therapeutically beneficial phenotypes holds promise in a future clinical scenario. Previously, we have designed "nanodrugs" for the specific inhibition of oncogenic microRNAs in tumor cells. The basic design of these nanodrugs includes dextran coated iron oxide nanoparticles, conjugated to a tumor-targeting peptide, and a locked nucleic acid (LNA)-modified antisense oligonucleotide that stably binds and inhibits the complementary mature miRNA. Here, we focus on elucidating an optimal nanodrug design for effective miRNA inhibition in tumor cells. Specifically, we investigate the choice of chemical linker for the conjugation of the oligonucleotide to the nanoparticles and evaluate the contribution of tumor-cell targeting to nanodrug uptake and functionality. We find that short labile linkers (SPDP; N-Succinimidyl 3-(2-pyridyldithio)-propionate) are superior to non-labile short linkers (GMBS; N-(gamma-Maleimidobutyryloxy)succinimide ester) or non-labile long linkers (PEG24; Succinimidyl-([N-maleimidopropionamido]-24ethyleneglycol)ester) in terms of their capacity to gain access to the cytosolic cellular compartment and to engage their cognate miRNA. Furthermore, using the nanodrug design that incorporates SPDP as a linker, we establish that the addition of tumor-cell targeting through functionalization of the nanodrug with the alphavbeta3-specific cyclic RGDfK-PEG peptide does not confer an advantage in vitro at long incubation times required for inhibition. PMID:24749405

  20. Inhibitory effects of a dendritic cell vaccine loaded with radiation-induced apoptotic tumor cells on tumor cell antigens in mouse bladder cancer.

    PubMed

    Xie, X F; Ding, Q; Hou, J G; Chen, G

    2015-01-01

    Herein, the preparation of a dendritic cell (DC) vaccine with radiation-induced apoptotic tumor cells and its immunological effects on bladder cancer in C57BL/6 mice was investigated. We used radiation to obtain a MB49 cell antigen that was sensitive to bone marrow-derived DCs to prepare a DC vaccine. An animal model of tumor-bearing mice was established with the MB49 mouse bladder cancer cell line. Animals were randomly allocated to an experimental group or control group. DC vaccine or phosphate-buffered saline was given 7 days before inoculation with tumor cells. Each group consisted of 2 subgroups in which tumor volume and the survival of tumor-bearing mice were recorded. Tumor volumes and average tumor masses of mice administered DC vaccine loaded with radiation-induced apoptotic cells were significantly lower than those in the control group (P < 0.01). Survival in the experimental group was also longer than that in the control group, and 2 mice survived without tumor formation. In the DC vaccine group, 2 mice were alive without tumor growth after 30 days, and no tumor was observed at 30 days after subcutaneous inoculation of MB49 cells. The DC vaccine loaded with radiation-induced apoptotic tumor cells had an anti-tumor effect and was associated with increased survival in a bladder cancer model in mice. PMID:26214433

  1. Rejection of intradermally injected syngeneic tumor cells from mice by specific elimination of tumor-associated macrophages with liposome-encapsulated dichloromethylene diphosphonate, followed by induction of CD11b(+)/CCR3(-)/Gr-1(-) cells cytotoxic against the tumor cells.

    PubMed

    Takahashi, Takeshi; Ibata, Minenori; Yu, Zhiqian; Shikama, Yosuke; Endo, Yasuo; Miyauchi, Yasunori; Nakamura, Masanori; Tashiro-Yamaji, Junko; Miura-Takeda, Sayako; Shimizu, Tetsunosuke; Okada, Masashi; Ueda, Koichi; Kubota, Takahiro; Yoshida, Ryotaro

    2009-12-01

    Tumor cell expansion relies on nutrient supply, and oxygen limitation is central in controlling neovascularization and tumor spread. Monocytes infiltrate into tumors from the circulation along defined chemotactic gradients, differentiate into tumor-associated macrophages (TAMs), and then accumulate in the hypoxic areas. Elevated TAM density in some regions or overall TAM numbers are correlated with increased tumor angiogenesis and a reduced host survival in the case of various types of tumors. To evaluate the role of TAMs in tumor growth, we here specifically eliminated TAMs by in vivo application of dichloromethylene diphosphonate (DMDP)-containing liposomes to mice bearing various types of tumors (e.g., B16 melanoma, KLN205 squamous cell carcinoma, and 3LL Lewis lung cancer), all of which grew in the dermis of syngeneic mouse skin. When DMDP-liposomes were injected into four spots to surround the tumor on day 0 or 5 after tumor injection and every third day thereafter, both the induction of TAMs and the tumor growth were suppressed in a dose-dependent and injection number-dependent manner; and unexpectedly, the tumor cells were rejected by 12 injections of three times-diluted DMDP-liposomes. The absence of TAMs in turn induced the invasion of inflammatory cells into or around the tumors; and the major population of effector cells cytotoxic against the target tumor cells were CD11b(+) monocytic macrophages, but not CCR3(+) eosinophils or Gr-1(+) neutrophils. These results indicate that both the absence of TAMs and invasion of CD11b(+) monocytic macrophages resulted in the tumor rejection. PMID:19365632

  2. Endogenous light scattering as an optical signature of circulating tumor cell clusters

    PubMed Central

    Lyons, Joe; Polmear, Michael; Mineva, Nora D.; Romagnoli, Mathilde; Sonenshein, Gail E.; Georgakoudi, Irene

    2016-01-01

    Circulating tumor cell clusters (CTCCs) are significantly more likely to form metastases than single tumor cells. We demonstrate the potential of backscatter-based flow cytometry (BSFC) to detect unique light scattering signatures of CTCCs in the blood of mice orthotopically implanted with breast cancer cells and treated with an anti-ADAM8 or a control antibody. Based on scattering detected at 405, 488, and 633 nm from blood samples flowing through microfluidic devices, we identified 14 CTCCs with large scattering peak widths and intensities, whose presence correlated strongly with metastasis. These initial studies demonstrate the potential to detect CTCCs via label-free BSFC. PMID:27231606

  3. HER4 selectively coregulates estrogen stimulated genes associated with breast tumor cell proliferation

    SciTech Connect

    Han, Wen; Jones, Frank E.

    2014-01-10

    Highlights: •HER4/4ICD is an obligate coactivator for 37% of estrogen regulated genes. •HER4/4ICD coactivated genes selectively regulate estrogen stimulated proliferation. •Estrogen stimulated tumor cell migration occurs independent of HER4/4ICD. •Disrupting HER4/4ICD and ER coactivated gene expression may suppress breast cancer. -- Abstract: The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex is unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of β-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, β-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the β-estradiol stimulated genes. Ingenuity Pathway Analysis of β-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was

  4. Circulating Tumor Cells in Prostate Cancer Diagnosis and Monitoring: An Appraisal of Clinical Potential

    PubMed Central

    Galletti, Giuseppe; Portella, Luigi; Tagawa, Scott T.; Kirby, Brian J.; Giannakakou, Paraskevi

    2014-01-01

    Circulating tumor cells (CTCs) have emerged as a viable solution to the lack of tumor tissue availability for patients with a variety of solid tumors, including prostate cancer. Different approaches have been used to capture this tumor cell population and several of these techniques have been used to assess the potential role of CTCs as a biological marker to predict treatment efficacy and clinical outcome. CTCs are now considered a strong tool to understand the molecular characteristics of prostate cancer, and to be used and analyzed as a ‘liquid biopsy’ in the attempt to grasp the biological portrait of the disease in the individual patient. PMID:24809501

  5. Review: circulating tumor cells in the practice of breast cancer oncology.

    PubMed

    Ramos-Medina, R; Moreno, F; Lopez-Tarruella, S; Del Monte-Millán, M; Márquez-Rodas, I; Durán, E; Jerez, Y; Garcia-Saenz, J A; Ocaña, I; Andrés, S; Massarrah, T; González-Rivera, M; Martin, M

    2016-08-01

    The primary cause of tumor-related death in breast cancer is still represented by distant metastasization. The dissemination of tumor cells from the primary tumor to distant sites through bloodstream cannot be early detected by standard imaging methods. Circulating tumor cells (CTCs) play a major role in the metastatic spread of breast cancer. Different analytical systems for CTCs isolation and detection have been developed and novel areas of research are directed towards developing assays for CTCs molecular characterization. This review describes the current state of art on CTCs detection techniques and the present and future clinical implications of CTCs enumeration and characterization. PMID:26646763

  6. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    NASA Astrophysics Data System (ADS)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging

  7. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    SciTech Connect

    Mill, Christopher P.; Gettinger, Kathleen L.; Riese, David J.

    2011-02-15

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1{beta}. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.