Science.gov

Sample records for polysaccharide copolymerase protein

  1. Conserved transmembrane glycine residues in the Shigella flexneri polysaccharide co-polymerase protein WzzB influence protein-protein interactions.

    PubMed

    Papadopoulos, Magdalene; Tran, Elizabeth Ngoc Hoa; Murray, Gerald Laurence; Morona, Renato

    2016-06-01

    The O antigen (Oag) component of lipopolysaccharides (LPS) is crucial for virulence and Oag chain-length regulation is controlled by the polysaccharide co-polymerase class 1 (PCP1) proteins. Crystal structure analyses indicate that structural conservation among PCP1 proteins is highly maintained, however the mechanism of Oag modal-chain-length control remains to be fully elucidated. Shigella flexneri PCP1 protein WzzBSF confers a modal-chain length of 10-17 Oag repeat units (RUs), whereas the Salmonella enterica Typhimurium PCP1 protein WzzBST confers a modal-chain length of ~16-28 Oag RUs. Both proteins share >70 % overall sequence identity and contain two transmembrane (TM1 and TM2) regions, whereby a conserved proline-glycine-rich motif overlapping the TM2 region is identical in both proteins. Conserved glycine residues within TM2 are functionally important, as glycine to alanine substitutions at positions 305 and 311 confer very short Oag modal-chain length (~2-6 Oag RUs). In this study, WzzBSF was co-expressed with WzzBST in S. flexneri and a single intermediate modal-chain length of ~11-21 Oag RUs was observed, suggesting the presence of Wzz:Wzz interactions. Interestingly, co-expression of WzzBSF with WzzBG305A/G311A conferred a bimodal LPS Oag chain length (despite over 99 % protein sequence identity), and we hypothesized that the proteins fail to interact. Co-purification assays detected His6-WzzBSF co-purifying with FLAG-tagged WzzBST but not with FLAG-tagged WzzBG305A/G311A, supporting our hypothesis. These data indicate that the conserved glycine residues in TM2 are involved in Wzz:Wzz interactions, and provide insight into key interactions that drive Oag modal length control. PMID:27028755

  2. Bacterial Polysaccharide Co-Polymerases Share a Common Framework for Control of Polymer Length

    SciTech Connect

    Tocilj,A.; Munger, C.; Proteau, A.; Morona, R.; Purins, L.; Ajamian, E.; Wagner, J.; Papadopoulos, M.; Van Den bosch, L.; et al

    2008-01-01

    The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central alpha-helix extending 100 Angstroms into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal for its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.

  3. Rheology of interfacial protein-polysaccharide composites

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    2013-05-01

    The morphology and mechanical properties of protein adsorption layers can significantly be altered by the presence of surfactants, lipids, particles, other proteins, and polysaccharides. In food emulsions, polysaccharides are primarily considered as bulk thickener but can under appropriate environmental conditions stabilize or destabilize the protein adsorption layer and, thus, the entire emulsion system. Despite their ubiquitous usage as stabilization agent, relatively few investigations focus on the interfacial rheology of composite protein/polysaccharide adsorption layers. The manuscript provides a brief review on both main stabilization mechanisms, thermodynamic phase separation and electrostatic interaction and discusses the rheological response in light of the environmental conditions such as ionic strength and pH.

  4. Influence of polysaccharides on wine protein aggregation.

    PubMed

    Jaeckels, Nadine; Meier, Miriam; Dietrich, Helmut; Will, Frank; Decker, Heinz; Fronk, Petra

    2016-06-01

    Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine. PMID:26830558

  5. [Effect of proteins and polysaccharides in sewage sludge on dewaterability].

    PubMed

    He, Pei-pei; Yu, Guang-hui; Shao, Li-ming; He, Pin-jing

    2008-12-01

    The thermophilic (55 degrees C) hydrolysis and acidification were conducted in order to investigate the composition and distribution of proteins and polysaccharides and the effect of them on dewaterability of sludge. Sludge flocs were divided into four layers by centrifuge and ultrasound, i.e., slime, loosely bound-extracellular polymeric substances (LB-EPS), tightly bound-EPS (TB-EPS) and cells (Pellet). Results showed that most of proteins and polysaccharides located in pellet. Capillary suction time (CST) during digestion at pH 5.5 was slightly higher than the raw sludge, while CST during digestion at pH 10.0 was markedly higher than the raw sludge. Statistical analysis suggested that CST was affected by soluble proteins and soluble proteins/polysaccharides and virtually no affected by proteins, polysaccharides or proteins/polysaccharides in sludge and other layers except slime. PMID:19256385

  6. Designing Whey Protein-Polysaccharide Particles for Colloidal Stability.

    PubMed

    Wagoner, Ty; Vardhanabhuti, Bongkosh; Foegeding, E Allen

    2016-01-01

    Interactions between whey proteins and polysaccharides, in particular the formation of food-grade soluble complexes, are of interest because of potential functional and health benefits. A specific application that has not received much attention is the use of complexes for enhanced colloidal stability of protein sols, such as protein-containing beverages. In beverages, the primary goal is the formation of complexes that remain dispersed after thermal processing and extended storage. This review highlights recent progress in the area of forming whey protein-polysaccharide soluble complexes that would be appropriate for beverage applications. Research in this area indicates that soluble complexes can be formed and stabilized that are reasonably small in size and possess a large surface charge that would predict colloidal stability. Selection of specific proteins and polysaccharides can be tailored to desired conditions. The principal challenges involve overcoming restrictions on protein concentration and ensuring that protein remains bioavailable. PMID:26934171

  7. Enzyme-responsive protein/polysaccharide supramolecular nanoparticles.

    PubMed

    Hou, Xiao-Fang; Chen, Yong; Liu, Yu

    2015-03-28

    Biocompatible and enzyme-responsive supramolecular assemblies have attracted more and more interest in biomaterial fields, and find many feasible applications especially in the controlled drug release at specific sites where the target enzyme is located. In this work, novel supramolecular nanoparticles were successfully constructed from two biocompatible materials, i.e. a cyclic polysaccharide named sulfato-β-cyclodextrin (SCD) and a protein named protamine, through non-covalent association, and fully characterized by means of atomic force microscopy (AFM) and high-resolution transmission electron microscopy (TEM). Significantly, the disassembly of the resulting nanoparticles can respond especially to trypsin over other enzymes. Owing to their trypsin-triggered disassembly behaviors, these nanoparticles can efficiently release the encapsulated model substrate in a controlled manner. That is, the model substrate can be encapsulated inside the nanoparticles with a high stability and released when treated with trypsin. PMID:25679755

  8. Protein/Polysaccharide Electrostatic Complexes and Their Applications in Stabilizing Oil-in-Water Emulsions.

    PubMed

    Ai, Wenjia; Fang, Yapeng; Xiang, Shengping; Yao, Xiaolin; Nishinari, Katsuyoshi; Phillips, Glyn O

    2015-01-01

    Consumers are becoming increasingly fastidious in demanding food products with improved quality and functionality. This largely relies on rational design of food structures. As the two key food ingredients, protein and polysaccharides play important roles in food structuring. The combination of protein and polysaccharide provides rich opportunities for food structure and function designs through molecular interaction and assembly. This paper provides a brief review on the formation and characterization of protein/polysaccharide electrostatic complexes and their applications in stabilizing oil-in-water emulsions, particularly those containing polyunsaturated fatty acids. PMID:26598842

  9. Interactions between soy protein from water-soluble soy extract and polysaccharides in solutions with polydextrose.

    PubMed

    Spada, Jordana C; Marczak, Ligia D F; Tessaro, Isabel C; Cardozo, Nilo S M

    2015-12-10

    This study focuses on the investigation of the interactions between polysaccharides (carrageenan and carboxymethylcellulose--CMC) and soy proteins from the water-soluble soy extract. The influence of pH (2-7) and protein-polysaccharide ratio (5:1-40:1) on the interaction between these polyelectrolytes was investigated in aqueous solutions with 10% of polydextrose and without polydextrose. The studied systems were analyzed in terms of pH-solubility profile of protein, ζ-potential, methylene blue-polysaccharide interactions, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and confocal laser scanning microscopy. Although the mixtures of soy extract with both carrageenan and CMC showed dependency on the pH and protein-polysaccharide ratio, they did not present the same behavior. Both polysaccharides modified the pH-solubility profile of the soy protein, shifting the pH range in which the coacervate is formed to a lower pH region with the decrease of the soy extract-polysaccharide ratio. The samples also presented detectable differences regarding to ζ-potential, DSC, FTIR and microscopy analyses. The complex formation was also detected even in a pH range where both biopolymers were net-negatively charged. The changes promoted by the presence of polydextrose were mainly detected by blue-polysaccharide interactions measures and confocal microscopy. PMID:26428107

  10. Bioinspired matrices assembled by polysaccharide-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Le

    Bioinspired matrices assembled on the basis of noncovalent interactions between proteins and polysaccharides have been proved suitable to deliver therapeutically relevant proteins or DNAs. Our initial efforts were dedicated to the relationship between mechanical properties of hydrogels assembled based on specific interactions between low molecular weight heparin (LMWH) and heparin binding peptides (HBPs) such as HIP, ATIII, and PF4ZIP peptides. The measured differences in affinity and kinetics for LMWH-HBP binding likely lead to observed differences in the phase separation behavior of the poly (ethylene glycol) (PEG)-LMWH/PEG-HIP hydrogels versus the PEG-LMWH/PEG-ATIII hydrogels. More attention has been given to the PF4ZIP peptide employed for the noncovalent assembly of heparinized hydrogels. Multifunctional star PEG-PF4ZIP bioconjugates complexed with star PEG-LMWH form hydrogels that exhibit increasing elastic moduli with increasing mole ratio of PEG-PF4ZIP. The viscoelastic properties of the hydrogels can be controlled via alterations in the ratio between LMWH and PF4ZIP peptide, and comparisons with other PEG-LMWH/PEG-HBP hydrogels suggest the importance of both LMWH/HBP binding kinetics and the binding capacity of LMWH in determining rheological properties in these hydrogels. Characterization of the PEG-LMWH/PEG-PF4ZIP hydrogels suggests that useful moduli for soft tissue engineering applications are obtained at physiological temperatures and after applying high shear. Furthermore, in the basic fibroblast growth factor (bFGF) release, bFGF/vascular endothelial growth factor (VEGF) co-release, and hydrogel erosion results, the combination of growth factor (GF) release profiles and hydrogel erosion profiles suggests that GF delivery from the assembled hydrogels is mainly an erosion-controlled process that may permit co-release of GF with PEG-LMWH and may therefore also improve the bioactivity of GF delivered from these matrices. Hydrogels with such engineered

  11. Blend-modification of soy protein/lauric acid edible films using polysaccharides.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-05-15

    Different types of polysaccharides (propyleneglycol alginate (PGA), pectin, carrageenan and aloe polysaccharide) were incorporated into soy protein isolate (SPI)/lauric acid (La) films using a co-drying process or by direct addition to form biodegradable composite films with modified water vapour permeability (WVP) and mechanical properties. The WVP of SPI/La/polysaccharide films decreased when polysaccharides were added using the co-drying process, regardless of the type of polysaccharide. The tensile strength of SPI/La film was increased by the addition of polysaccharides, and the percentage elongation at break was increased by incorporating PGA using the co-drying process. Regarding oxygen-barrier performance, no notable differences were observed between the SPI/La and SPI/La/polysaccharide films. The most significant improvement was observed by blending PGA, with the co-dried preparation exhibiting better properties than the direct-addition preparation. Scanning electron microscopy (SEM) revealed that the microstructures of the films are the basis for the differences in the barrier and mechanical properties of the modified blends of SPI, polysaccharides and La. PMID:24423494

  12. Water Accessibility, Aggregation, and Motional Features of Polysaccharide-Protein Conjugate Vaccines

    PubMed Central

    Berti, Francesco; Costantino, Paolo; Fragai, Marco; Luchinat, Claudio

    2004-01-01

    A relaxometric investigation of a nontoxic mutant of diphtheria toxin and of its conjugates with capsular polysaccharides of different groups of Neisseria meningitidis was performed. The insertion of polysaccharides chains alters dramatically the hydrodynamic properties of the protein. The model-free analysis of the 1H nuclear magnetic relaxation dispersion profiles of their water solutions shows: i), a reduced protein hydration with respect to the carrier protein alone; ii), a much larger flexibility of the conjugates with respect to a compact macromolecule of the same molecular weight; and iii), a strong tendency to aggregate. The above findings are largely independent on the nature of the polysaccharide and thus provide a fairly general picture of the dynamic properties of glycoconjugate proteins. PMID:14695244

  13. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  14. Polysaccharide-protein nanoassemblies: novel soft materials for biomedical and biotechnological applications.

    PubMed

    Fuenzalida, Juan P; Goycoolea, Francisco M

    2015-01-01

    Polysaccharide and proteins are the major constituent building blocks of biological systems and often occur as highly organized macromolecular architectures (e.g. the capsid of viruses). Both can occur in the same or in different biological physiological environment interacting in specific or non-specific ways. When isolated and purified, these macromolecules can harness self-assembled (SA) soft nanomaterials by non-covalent electrostatic complexation. Although polysaccharide-protein electrostatic SA systems of this type have been studied for more than two decades, the possibility to design materials with enhanced biological function and improved technological advantages over those based on synthetic or inorganic components, has only started to be recognized and is yet to be fully realized. In this review we address two main type of SA polysaccharide-protein systems, namely, those based on chitosan-protein and those based on polyanionic polysaccharide (pectin, hyaluronic acid or alginate) - protein ones. The physical properties of chitosan- and polyanion-based SA nanocomplexes with oppositely charged proteins depend on the composition and conditions as reviewed here with reference to some specific systems. PMID:25692948

  15. A dry platform for separation of proteins from biomass-containing polysaccharides, lignin, and polyphenols.

    PubMed

    Barakat, Abdellatif; Jérôme, François; Rouau, Xavier

    2015-04-13

    License to mill: Proteins were continuously extracted from polysaccharides, lignin, and polyphenol by combining ultrafine milling with electrostatic separation. Such a fractionation process does not involve any solvent, catalyst, or external source of heating. In addition, this dry process is compatible with downstream enzymatic reactions, thus opening an attractive route for producing valuable chemicals from biomass. PMID:25760796

  16. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics.

    PubMed

    Jones, Owen Griffith; McClements, David Julian

    2010-03-01

    Biopolymer nanoparticles can be formed by heating globular protein-ionic polysaccharide electrostatic complexes above the thermal denaturation temperature of the protein. This study examined how the size and concentration of biopolymer particles formed by heating beta-lactoglobulin-pectin complexes could be manipulated by controlling preparation conditions: pH, ionic strength, protein concentration, holding time, and holding temperature. Biopolymer particle size and concentration increased with increasing holding time (0 to 30 min), decreasing holding temperature (90 to 70 degrees C), increasing protein concentration (0 to 2 wt/wt%), increasing pH (4.5 to 5), and increasing salt concentration (0 to 50 mol/kg). The influence of these factors on biopolymer particle size was attributed to their impact on protein-polysaccharide interactions, and on the kinetics of nucleation and particle growth. The knowledge gained from this study will facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes. PMID:20492252

  17. Improved conjugation and purification strategies for the preparation of protein-polysaccharide conjugates.

    PubMed

    Suárez, N; Massaldi, H; Franco Fraguas, L; Ferreira, F

    2008-12-12

    A glycoconjugate constituted by the Streptococcus pneumoniae serotype 14 capsular polysaccharide (CPS14) and bovine serum albumin (BSA) was prepared, and the unique properties of Sephadex LH-20 were used to separate the conjugate from the unconjugated material. The strength of this approach consists in its capacity to produce pure polysaccharide-protein conjugate in good yield and free from unconjugated material, a common residual contaminant of this type of immunobiologicals. The CPS14-BSA conjugate prepared via an improved 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP)-activation technique was characterized chemically and its immunogenicity was evaluated in mice. The purified conjugate, unlike the corresponding polysaccharide, produced a T-cell-dependent response in this species. PMID:18992885

  18. Flocculation behaviour of hematite-kaolinite suspensions in presence of extracellular bacterial proteins and polysaccharides.

    PubMed

    Poorni, S; Natarajan, K A

    2014-02-01

    Cells of Bacillus subtilis exhibited higher affinity towards hematite than to kaolinite. Bacterial cells were grown and adapted in the presence of hematite and kaolinite. Higher amounts of mineral-specific proteinaceous compounds were secreted in the presence of kaolinite while hematite-grown cells produced higher amounts of exopolysaccharides. Extracellular proteins (EP) exhibited higher adsorption density on kaolinite which was rendered more hydrophobic. Hematite surfaces were rendered more hydrophilic due to increased adsorption of extracellular polysaccharides (ECP). Significant surface chemical changes were produced due to interaction between minerals and extracellular proteins and polysaccharides. Iron oxides such as hematite could be effectively removed from kaolinite clays using selective bioflocculation of hematite after interaction with EP and ECP extracted from mineral-grown cells. PMID:24185193

  19. Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces

    PubMed Central

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.

    2011-01-01

    We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481

  20. Cellular response to poly(vinyl alcohol) nanofibers coated with biocompatible proteins and polysaccharides

    NASA Astrophysics Data System (ADS)

    Lee, So Young; Jang, Da Hyun; Kang, Yun Ok; Kim, O. Bok; Jeong, Lim; Kang, Hyun Ki; Lee, Seung Jin; Lee, Chong-Heon; Park, Won Ho; Min, Byung-Moo

    2012-07-01

    A PVA nanofibrous matrix was prepared by electrospinning an aqueous 10 wt% PVA solution. The mean diameter of the PVA nanofibers electrospun from the aqueous PVA solution was 240 nm. The water resistance of the as-spun PVA nanofibrous matrix was improved by physically crosslinking the PVA nanofibers by heat treatment at 150 °C for 10 min. In addition, the heat-treated PVA nanofibrous matrix was coated with biocompatible polysaccharides (chitosan (CHI) or hyaluronic acid (HA)) and proteins (collagen (COL) or silk fibroin (SF)) to construct biomimetic nanofibrous scaffolds. The coating of proteins or polysaccharides on the PVA nanofibrous matrix was confirmed by ATR-IR spectra, and the degree of coating was determined by elemental analysis based on nitrogen content. The coated PVA matrices exhibited less hydrophilicity, except for the HA coating, and better tensile properties than the pure PVA nanofibrous matrix. The increase in tensile properties was due to interfiber bonds formed by the coating. The effect of protein and polysaccharide coating on normal human keratinocytes (NHEKs) and fibroblasts (NHEFs) was examined by cytocompatibility assessment in vitro. Among the CHI-, COL-, HA- and SF-coated PVA matrices, the SF-coated PVA nanofibrous matrix was found to be the most promising scaffold for the attachment and spreading of NHEKs and NHEFs as compared to the pure PVA matrix. This approach to controlling the surface properties of nanofibrous structures with SF may be useful in the design and tailoring of novel matrices for skin regeneration.

  1. Effect of Protein, Polysaccharide, and Oxygen Concentration Profiles on Biofilm Cohesiveness▿

    PubMed Central

    Ahimou, Francois; Semmens, Michael J.; Haugstad, Greg; Novak, Paige J.

    2007-01-01

    It is important to control biofilm cohesiveness to optimize process performance. In this study, a membrane-aerated biofilm reactor inoculated with activated sludge was used to grow mixed-culture biofilms of different ages and thicknesses. The cohesions, or cohesive energy levels per unit volume of biofilm, based on a reproducible method using atomic force microscopy (F. Ahimou, M. J. Semmens, P. J. Novak, and G. Haugstad, Appl. Environ. Microbiol. 73:2897-2904, 2007), were determined at different locations within the depths of the biofilms. In addition, the protein and polysaccharide concentrations within the biofilm depths, as well as the dissolved oxygen (DO) concentration profiles within the biofilms, were measured. It was found that biofilm cohesion increased with depth but not with age. Level of biofilm cohesive energy per unit volume was strongly correlated with biofilm polysaccharide concentration, which increased with depth in the membrane-aerated biofilm. In a 12-day-old biofilm, DO also increased with depth and may therefore be linked to polysaccharide production. In contrast, protein concentration was relatively constant within the biofilm and did not appear to influence cohesion. PMID:17337565

  2. The derivatization of oxidized polysaccharides for protein immobilization and affinity chromatography.

    PubMed

    Junowicz, E; Charm, S E

    1976-03-25

    The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5'-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography. PMID:1260016

  3. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    PubMed

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system. PMID:27045683

  4. Polysaccharide-Protein Complexes in a Coarse-Grained Model.

    PubMed

    Poma, Adolfo B; Chwastyk, Mateusz; Cieplak, Marek

    2015-09-10

    We construct two variants of coarse-grained models of three hexaoses: one based on the centers of mass of the monomers and the other associated with the C4 atoms. The latter is found to be better defined and more suitable for studying interactions with proteins described within α-C based models. We determine the corresponding effective stiffness constants through all-atom simulations and two statistical methods. One method is the Boltzmann inversion (BI) and the other, named energy-based (EB), involves direct monitoring of energies as a function of the variables that define the stiffness potentials. The two methods are generally consistent in their account of the stiffness. We find that the elastic constants differ between the hexaoses and are noticeably different from those determined for the crystalline cellulose Iβ. The nonbonded couplings through hydrogen bonds between different sugar molecules are modeled by the Lennard-Jones potentials and are found to be stronger than the hydrogen bonds in proteins. We observe that the EB method agrees with other theoretical and experimental determinations of the nonbonded parameters much better than BI. We then consider the hexaose-Man5B catalytic complexes and determine the contact energies between their the C4-α-C atoms. These interactions are found to be stronger than the proteinic hydrogen bonds: about four times as strong for cellohexaose and two times for mannohexaose. The fluctuational dynamics of the coarse-grained complexes are found to be compatible with previous all-atom studies by Bernardi et al. PMID:26291477

  5. A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens

    PubMed Central

    Daniels, Calvin C.; Rogers, P. David

    2016-01-01

    This review describes development of currently available pneumococcal vaccines, provides summary tables of current pneumococcal vaccine recommendations in children and adults, and describes new potential vaccine antigens in the pipeline. Streptococcus pneumoniae, the bacteria responsible for pneumonia, otitis media, meningitis and bacteremia, remains a cause of morbidity and mortality in both children and adults. Introductions of unconjugated and conjugated pneumococcal polysaccharide vaccines have each reduced the rate of pneumococcal infections caused by the organism S. pneumoniae. The first vaccine developed, the 23-valent pneumococcal polysaccharide vaccine (PPSV23), protected adults and children older than 2 years of age against invasive disease caused by the 23 capsular serotypes contained in the vaccine. Because PPSV23 did not elicit a protective immune response in children younger than 2 years of age, the 7-valent pneumococcal conjugate vaccine (PCV7) containing seven of the most common serotypes from PPSV23 in pediatric invasive disease was developed for use in children younger than 2 years of age. The last vaccine to be developed, the 13-valent pneumococcal conjugate vaccine (PCV13), contains the seven serotypes in PCV7, five additional serotypes from PPSV23, and a new serotype not contained in PPSV23 or PCV7. Serotype replacement with virulent strains that are not contained in the polysaccharide vaccines has been observed after vaccine implementation and stresses the need for continued research into novel vaccine antigens. We describe eight potential protein antigens that are in the pipeline for new pneumococcal vaccines. PMID:26997927

  6. A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens.

    PubMed

    Daniels, Calvin C; Rogers, P David; Shelton, Chasity M

    2016-01-01

    This review describes development of currently available pneumococcal vaccines, provides summary tables of current pneumococcal vaccine recommendations in children and adults, and describes new potential vaccine antigens in the pipeline. Streptococcus pneumoniae, the bacteria responsible for pneumonia, otitis media, meningitis and bacteremia, remains a cause of morbidity and mortality in both children and adults. Introductions of unconjugated and conjugated pneumococcal polysaccharide vaccines have each reduced the rate of pneumococcal infections caused by the organism S. pneumoniae. The first vaccine developed, the 23-valent pneumococcal polysaccharide vaccine (PPSV23), protected adults and children older than 2 years of age against invasive disease caused by the 23 capsular serotypes contained in the vaccine. Because PPSV23 did not elicit a protective immune response in children younger than 2 years of age, the 7-valent pneumococcal conjugate vaccine (PCV7) containing seven of the most common serotypes from PPSV23 in pediatric invasive disease was developed for use in children younger than 2 years of age. The last vaccine to be developed, the 13-valent pneumococcal conjugate vaccine (PCV13), contains the seven serotypes in PCV7, five additional serotypes from PPSV23, and a new serotype not contained in PPSV23 or PCV7. Serotype replacement with virulent strains that are not contained in the polysaccharide vaccines has been observed after vaccine implementation and stresses the need for continued research into novel vaccine antigens. We describe eight potential protein antigens that are in the pipeline for new pneumococcal vaccines. PMID:26997927

  7. Production and Secretion of the Polysaccharide Biodispersan of Acinetobacter calcoaceticus A2 in Protein Secretion Mutants.

    PubMed

    Elkeles, A; Rosenberg, E; Ron, E Z

    1994-12-01

    Biodispersan is an extracellular anionic polysaccharide produced by Acinetobacter calcoaceticus A2 that changes the surface properties of limestone and acts both as a dispersant and as a grinding aid (E. Rosenberg, C. Rubinovitz, A. Gottlieb, S. Rosenhak, and E. Z. Ron, Appl. Environ. Microbiol. 54:317-322, 1988; E. Rosenberg, C. Rubinovitz, R. Legmann, and E. Z. Ron, Appl. Environ. Microbiol. 54:323-326, 1988; E. Rosenberg, Z. Schwartz, A. Tenenbaum, C. Rubinovitz, R. Legmann, and E. Z. Ron, J. Dispersion Sci. Technol. 10:241-250, 1989). Extracellular fluid also contains a high concentration of secreted proteins that create problems in the purification and application of biodispersan. In order to obtain preparations of biodispersan that contained smaller amounts of protein, we selected mutants of strain A2 that were defective in protein secretion. These mutants produced equal, or even higher, levels of total biodispersan compared with those of the parental strain. Moreover, although there was a significant drop in the concentration of extracellular proteins in the medium, the secretion of biodispersan was unaffected. These results suggest that secretion mutants are potentially useful for the production of extracellular polysaccharides. PMID:16349473

  8. Mycoplasma pulmonis Vsa proteins and polysaccharide modulate adherence to pulmonary epithelial cells.

    PubMed

    Bolland, Jeffrey R; Dybvig, Kevin

    2012-06-01

    The Mycoplasma pulmonis Vsa proteins are a family of size- and phase-variable lipoproteins that shield the mycoplasmas from complement and modulate attachment to abiotic surfaces. Mycoplasmas producing a long Vsa protein hemadsorb poorly and yet are proficient at colonizing rats and mice. The effect of the length of the Vsa protein on the attachment of mycoplasmas to epithelial cells has not been previously explored. We find that independent of Vsa isotype, mycoplasmas producing a long Vsa protein with many tandem repeats adhere poorly to murine MLE-12 cells compared with mycoplasmas producing a short Vsa. We also find that mutants lacking the EPS-I polysaccharide of M. pulmonis exhibited decreased adherence to MLE-12 cells, even though it has been shown previously that such mutants have an enhanced ability to form a biofilm. PMID:22428866

  9. Outer eggshell membrane as delivery vehicle for polysaccharide/protein microcapsules incorporated with vitamin E.

    PubMed

    Chai, Zhi; Li, Yuanyuan; Liu, Fei; Du, Bingjian; Jiao, Tong; Zhang, Chunyue; Leng, Xiaojing

    2013-01-23

    This study investigates the features of a new type of delivery system prepared by combining a natural outer eggshell membrane (OESM) with emulsified microcapsules. The loading efficiency, controlled release properties, and forming mechanisms of the prepared system were studied. The polysaccharide/protein microcapsules incorporated with vitamin E can be attached to highly cross-linked protein fiber networks of OESM. This attachment could be reinforced more than 2-fold using glutaraldehyde as a cross-linking agent. The combined OESM/microcapsule delivery system significantly exhibited better controlled release properties than the microcapsules alone because of the steric blocking effect. Moreover, the OESM delivery system incorporated with microcapsules formed by pectin/protein as wall material showed more resistance against enzymatic attacks because of the formation of compact aggregates promoted by electrostatic effects. PMID:23244530

  10. The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation.

    PubMed

    Schultink, Alex; Naylor, Dan; Dama, Murali; Pauly, Markus

    2015-04-01

    A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway. PMID:25681330

  11. Structural characteristics of pectic polysaccharides and arabinogalactan proteins from Heracleum sosnowskyi Manden.

    PubMed

    Shakhmatov, Evgeny G; Atukmaev, Konstantin V; Makarova, Elena N

    2016-01-20

    Polymers with different structures were isolated from the aboveground part of Heracleum sosnowskyi Manden. The sequential treatment of Heracleum with water, HCl solution, and (NH4)2C2O4 solution was observed to decrease the arabinogalactan proteins (AGP) content and increase the pectins content in the extracted polysaccharides. The linear region of the HSO-I polysaccharide having the highest yield was found to be composed mainly of partially methylesterified homogalacturonan fragments, whereas the branched region was made up of fragments of rhamnogalacturonan I whose core represents 1,2-α-L-rhamno-1,4-α-D-galacturonan. The carbohydrate side chains of the branched region are linked to the α-L-Rhap core residues via the 1,4-glycosidic bond and consist chiefly of T-β-D-Galp, 1,4-β-D-Galp and 1,6-β-D-Galp residues indicating the presence of the 1,4-β-D-galactan. NMR spectroscopy revealed the carbohydrate moiety of the AGP molecule to consist mainly of 1,3- and 1,3,6-β-D-Galp residues. The side chains comprised 1,6-β-D-Galp, terminal 4-O-Me-β-D-GlcpA, and β-D-Galp. PMID:26572481

  12. Structural correlates of carrier protein recognition in tetanus toxoid-conjugated bacterial polysaccharide vaccines.

    PubMed

    Lockyer, Kay; Gao, Fang; Derrick, Jeremy P; Bolgiano, Barbara

    2015-03-10

    An analysis of structure-antibody recognition relationships in nine licenced polysaccharide-tetanus toxoid (TT) conjugate vaccines was performed. The panel of conjugates used included vaccine components to protect against disease caused by Haemophilus influenzae type b, Neisseria meningitidis groups A, C, W and Y and Streptococcus pneumoniae serotype 18C. Conformation and structural analysis included size exclusion chromatography with multi-angle light scattering to determine size, and intrinsic fluorescence spectroscopy and fluorescence quenching to evaluate the protein folding and exposure of Trp residues. A capture ELISA measured the recognition of TT epitopes in the conjugates, using four rat monoclonal antibodies: 2 localised to the HC domain, and 2 of which were holotoxoid conformation-dependent. The conjugates had a wide range of average molecular masses ranging from 1.8×10(6) g/mol to larger than 20×10(6) g/mol. The panel of conjugates were found to be well folded, and did not have spectral features typical of aggregated TT. A partial correlation was found between molecular mass and epitope recognition. Recognition of the epitopes either on the HC domain or the whole toxoid was not necessarily hampered by the size of the molecule. Correlation was also found between the accessibility of Trp side chains and polysaccharide loading, suggesting also that a higher level of conjugated PS does not necessarily interfere with toxoid accessibility. There were different levels of carrier protein Trp side-chain and epitope accessibility that were localised to the HC domain; these were related to the saccharide type, despite the conjugates being independently manufactured. These findings extend our understanding of the molecular basis for carrier protein recognition in TT conjugate vaccines. PMID:25640334

  13. Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides.

    PubMed

    Fang, Wenwen; Arola, Suvi; Malho, Jani-Markus; Kontturi, Eero; Linder, Markus B; Laaksonen, Päivi

    2016-04-11

    Native cellulose nanocrystals (CNCs) are valuable high quality materials with potential for many applications including the manufacture of high performance materials. In this work, a relatively effortless procedure was introduced for the production of CNCs, which gives a nearly 100% yield of crystalline cellulose. However, the processing of the native CNCs is hindered by the difficulty in dispersing them in water due to the absence of surface charges. To overcome these difficulties, we have developed a one-step procedure for dispersion and functionalization of CNCs with tailored cellulose binding proteins. The process is also applicable for polysaccharides. The tailored cellulose binding proteins are very efficient for the dispersion of CNCs due to the selective interaction with cellulose, and only small fraction of proteins (5-10 wt %, corresponds to about 3 μmol g(-1)) could stabilize the CNC suspension. Xyloglucan (XG) enhanced the CNC dispersion above a fraction of 10 wt %. For CNC suspension dispersed with carboxylmethyl cellulose (CMC) we observed the most long-lasting stability, up to 1 month. The cellulose binding proteins could not only enhance the dispersion of the CNCs, but also functionalize the surface. This we demonstrated by attaching gold nanoparticles (GNPs) to the proteins, thus, forming a monolayer of GNPs on the CNC surface. Cryo transmission electron microscopy (Cryo-TEM) imaging confirmed the attachment of the GNPs to CNC solution conditions. PMID:26907991

  14. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGESBeta

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  15. A new family of β-helix proteins with similarities to the polysaccharide lyases

    SciTech Connect

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.

  16. Purification, characterization, and antioxidant activities of selenium-containing proteins and polysaccharides in royal sun mushroom, Agaricus brasiliensis (Higher Basidiomycetes).

    PubMed

    Mao, Guanghua; Feng, Weiwei; Xiao, Hui; Zhao, Ting; Li, Fang; Zou, Ye; Ren, Yuena; Zhu, Yang; Yang, Liuqing; Wu, Xiangyang

    2014-01-01

    The Agaricus brasiliensis proves to be the main source of many minerals, especially selenium (Se). In this study, Se-containing polysaccharides and proteins were isolated, purified, and characterized. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activity of Se-containing proteins and polysaccharides were also studied. Selenium in A. brasiliensis is present mostly in organic forms, accounting for 81.57% of the total Se. The organic forms of selenium mainly present in Se proteins account for 73.53%, while 12.23% is in Se polysaccharides. Two Se-containing proteins (AB-SePA-22) and (AB-SePG-22) with Se contents of 4.935 µg/g and 6.083 µg/g were obtained. AB-SePA-22 appeared as four bands with molecular masses of 16.7, 21.7, 26.3, and 33.6 kDa, respectively. The Se content of the three Se-containing polysaccharides, namely AB-SeP-1, AB-SeP-2, and AB-SeP-3, were 1.911, 0.613, and 0.671 µg/g, respectively. AB-SeP-1 (3.1×103 Da) was composed of glucose and galactose in a 7.494:1 molar ratio, whereas AB-SeP-2 (2.1×104 Da and 3.5×104 Da) and AB-SeP-3 (1.1×105 Da) were composed of glucose, galactose, and mannose with molar ratios of 27.01:1.55:1 and 9.805:1:1.22, respectively. Moreover, crude Se polysaccharide and total soluble Se protein had good antioxidant activities on scavenging DPPH and hydroxyl radical, and further research is needed. PMID:25271981

  17. Capsular Polysaccharide-Fimbrial Protein Conjugate Vaccine Protects against Porphyromonas gingivalis Infection in SCID Mice Reconstituted with Human Peripheral Blood Lymphocytes

    PubMed Central

    Choi, Jeom-Il; Schifferle, Robert E.; Yoshimura, Fuminobu; Kim, Byung-Woo

    1998-01-01

    The effect of immunization with either a Porphyromonas gingivalis fimbrial protein, a capsular polysaccharide, or a capsular polysaccharide-fimbrial protein conjugate vaccine were compared in hu-PBL-SCID mice. A significantly higher human immunoglobulin G antibody response and the highest degree of in vivo protection against bacterial challenge was observed in the group immunized with the conjugate vaccine. It was concluded that capsular polysaccharide-fimbrial protein conjugate from P. gingivalis could potentially be developed as a vaccine against periodontal infection by P. gingivalis. PMID:9423888

  18. Design and characterization of controlled-release edible packaging films prepared with synergistic whey-protein polysaccharide complexes.

    PubMed

    Liu, Fei; Jiang, Yanfeng; Du, Bingjian; Chai, Zhi; Jiao, Tong; Zhang, Chunyue; Ren, Fazheng; Leng, Xiaojing

    2013-06-19

    This paper describes an investigation into the properties of a doubly emulsified film incorporated with protein-polysaccharide microcapsules, which serves as a multifunctional food packaging film prepared using common edible materials in place of petroleum--based plastics. The relationships between the microstructural properties and controlled release features of a series of water-in-oil-in-water (W/O/W) microcapsulated edible films prepared in thermodynamically incompatible conditions were analyzed. The hydrophilic riboflavin (V(B2)) nano-droplets (13-50 nm) dispersed in α-tocopherol (V(E)) oil phase were embedded in whey protein-polysaccharide (WPs) microcapsules with a shell thickness of 20-56 nm. These microcapsules were then integrated in 103 μm thick WPs films. Different polysaccharides, including gum arabic (GA), low-methoxyl pectin (LMP), and κ-carrageenan (KCG), exhibited different in vitro synergistic effects on the ability of both films to effect enteric controlled release of both vitamins. GA, which showed a strong emulsifying ability, also showed better control of V(E) than other polysaccharides, and the highly charged KCG showed better control of V(B2) than GA did. PMID:23718814

  19. Immunogenicity of a Haemophilus influenzae polysaccharide-Neisseria meningitidis outer membrane protein complex conjugate vaccine.

    PubMed

    Donnelly, J J; Deck, R R; Liu, M A

    1990-11-01

    Polysaccharide-protein conjugate vaccines made with different carriers vary in their ability to elicit antipolysaccharide IgG antibody responses in young infants and an adult mouse model, suggesting that the carrier proteins used in the conjugate vaccines differ in their ability to act as carriers, or that additional mechanisms of immunogenicity play a role. A conjugate vaccine of Haemophilus influenzae PRP coupled to the outer membrane protein complex (OMPC) of Neisseria meningitidis serogroup B is immunogenic in children as young as 2 mo of age and is immunogenic in infant rhesus monkeys, an animal model for infant humans. In the present study, PRP-OMPC was found to induce efficient IgM to IgG switching of anti-PRP serum antibody in adult mice, whereas PRP conjugated to two other protein carriers did not. Thus the PRP-OMPC conjugate was examined in order to determine why PRP coupled to OMPC was so immunogenic, even more immunogenic than conjugates made with other carrier proteins. The OMPC carrier differs from the other protein carriers in that the proteins are present in a liposomal form containing lipids (including LPS) derived from the outer membrane of N. meningitidis. We studied the OMPC to see whether the different components or the nature of the OMPC carrier could contribute to its enhanced immunogenicity. Specifically we evaluated the OMPC for both classic Th cell carrier activity and adjuvanticity, and the LPS component of OMPC for systemic polyclonal B cell activation. Carrier recognition of the OMPC moiety of PRP-OMPC was demonstrated. In addition the PRP-OMPC conjugate vaccine was observed to have adjuvant properties for both T cell-dependent and T cell-independent Ag in the absence of LPS-induced systemic polyclonal B cell activation. These observations suggest that in addition to functioning as a classic protein carrier whereby the proteins in OMPC provide Th cell epitopes, the OMPC also has adjuvant activity that distinguishes it from other protein

  20. Physico-chemical characterization of protein associated polysaccharides extracted from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar Beet Pulp (SBP), contains 67 to 80% (dry weight) of potentially valuable polysaccharides. We have solubilized and separated polysaccharides from SBP into three fractions with steam assisted flash extraction (SAFE) employed to solubilize the first and second fractions. Pectin, the first fract...

  1. Evidence for a Role of the Polysaccharide Capsule Transport Proteins in Pertussis Pathogenesis

    PubMed Central

    Hoo, Regina; Lam, Jian Hang; Huot, Ludovic; Pant, Aakanksha; Li, Rui; Hot, David; Alonso, Sylvie

    2014-01-01

    Polysaccharide (PS) capsules are important virulence determinants for many bacterial pathogens. Bordetella pertussis, the agent of whooping cough, produces a surface associated microcapsule but its role in pertussis pathogenesis remained unknown. Here we showed that the B. pertussis capsule locus is expressed in vivo in murine lungs and that absence of the membrane-associated protein KpsT, involved in the transport of the PS polymers across the envelope, but not the surface-exposed PS capsule itself, affects drastically B. pertussis colonization efficacy in mice. Microarray analysis revealed that absence of KpsT in B. pertussis resulted in global down-regulation of gene expression including key virulence genes regulated by BvgA/S, the master two-component system. Using a BvgS phase-locked mutant, we demonstrated a functional link between KpsT and BvgA/S-mediated signal transduction. Whereas pull-down assays do not support physical interaction between BvgS sensor and any of the capsule locus encoded proteins, absence of KpsT impaired BvgS oligomerization, necessary for BvgS function. Furthermore, complementation studies indicated that instead of KpsT alone, the entire PS capsule transport machinery spanning the cell envelope likely plays a role in BvgS-mediated signal transduction. Our work thus provides the first experimental evidence of a role for a virulence-repressed gene in pertussis pathogenesis. PMID:25501560

  2. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-01-01

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry. PMID:25803397

  3. Preparation, characterization, and immunological properties in mice of Escherichia coli O157 O-specific polysaccharide-protein conjugate vaccines.

    PubMed Central

    Konadu, E; Robbins, J B; Shiloach, J; Bryla, D A; Szu, S C

    1994-01-01

    Escherichia coli O157 causes severe enteritis and the extraintestinal complication of hemolytic-uremic syndrome, with their highest incidence occurring in children. We postulated that serum immunoglobulin G (IgG) antibodies to the O-specific polysaccharide of lipopolysaccharide (LPS) may confer protective immunity to enteric pathogens by inducing bactericidal reactions against the ingested organisms in the jejunum (J. B. Robbins, C. Chu, and R. Schneerson, Clin. Infect. Dis. 15:346-361, 1992; S. C. Szu, R. Gupta, and J. B. Robbins, p. 381-394, in I. K. Wachsmuth, P. A. Blake, and O. Olsvik, ed., Vibrio cholerae, 1994). Because polysaccharide-protein conjugates induce serum IgG antibodies in infants, we bound the O-specific polysaccharide of E. coli O157 to proteins. E. coli O157 LPS, treated with acetic acid or hydrazine, was derivatized with adipic acid dihydrazide and bound to proteins by carbodiimide-mediated condensation. Conjugates of these adipic hydrazide derivative were prepared with bovine serum albumin, formalin-treated exotoxin C of Clostridium welchii (Pig Bel toxoid), or Pseudomonas aeruginosa recombinant exoprotein A. The conjugates had low levels of endotoxin and elicited serum antibodies with bactericidal activity to the O157 LPS. The largest increase in LPS antibodies was of the IgG class. Clinical evaluation of E. coli O157-toxoid conjugates is planned. Images PMID:7927787

  4. Effects of drying methods on physicochemical and immunomodulatory properties of polysaccharide-protein complexes from litchi pulp.

    PubMed

    Huang, Fei; Guo, Yajuan; Zhang, Ruifen; Yi, Yang; Deng, Yuanyuan; Su, Dongxiao; Zhang, Mingwei

    2014-01-01

    Dried litchi pulp has been used in traditional remedies in China for many years to treat various diseases, and the therapeutic activity has been, at least partly, attributed to the presence of bioactive polysaccharides. Polysaccharide-protein complexes from vacuum freeze-(VF), vacuum microwave-(VM) and heat pump (HP) dried litchi pulp, which were coded as LP-VF, LP-VM and LP-HP, were comparatively studied on the physicochemical and immunomodulatory properties. LP-HP had a predominance of galactose, while glucose was the major sugar component in LP-VF and LP-VM. Compared with LP-VF and LP-VM, LP-HP contained more aspartate and glutamic in binding protein. LP-HP also exhibited a stronger stimulatory effect on splenocyte proliferation at 200 μg/mL and triggered higher NO, TNF-α and IL-6 secretion from RAW264.7 macrophages. Different drying methods caused the difference in physicochemical properties of polysaccharide-protein complexes from dried litchi pulp, which resulted in significantly different immunomodulatory activity. HP drying appears to be the best method for preparing litchi pulp to improve its immunomodulatory properties. PMID:25140451

  5. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures.

    PubMed

    Yang, Wenchao; Li, Xianguo; Li, Zihui; Tong, Chenhong; Feng, Lijuan

    2015-11-01

    Crude polysaccharides and proteins extracted from algae were chosen as model materials to investigate the hydrothermal liquefaction (HTL) characteristics and pathways of low-lipid algae. Liquefaction behavior of the two individuals and their binary mixtures with different mass ratios were evaluated under different temperatures. Formation pathways of bio-oil from crude polysaccharides/proteins were proposed. Results showed that polysaccharides had a small contribution to bio-oil (<5%) and approximately 60% distributed in aqueous phase, while proteins played a crucial role on bio-oil formation (maximum 16.29%). Bio-oil from polysaccharides mainly contained cyclic ketones and phenols and from proteins composed of pyrazines, pyrroles and amines. Interaction between polysaccharides and proteins forming polycyclic nitrogenous compounds had a negative effect on bio-oil yield at 220 and 260°C. However, their further decomposition caused increase of bio-oil yield at 300°C. Mixture liquefaction obtained the highest higher heating value (HHV) of bio-oil and energy recovery than polysaccharides/proteins liquefaction at 300°C. PMID:26231129

  6. Protection of mice against Salmonella typhimurium with an O-specific polysaccharide-protein conjugate vaccine.

    PubMed Central

    Watson, D C; Robbins, J B; Szu, S C

    1992-01-01

    Serious infections with salmonellae remain a threat in many human populations. Despite extensive study of salmonella infections in animals and clinical experience with killed cellular vaccines, there are no vaccines against serotypes other than Salmonella typhi licensed for human use. Serum antibodies to the O-specific polysaccharide (O-SP) of salmonellae protect mice against invasive infection. In order to render it immunogenic, we have conjugated the O-SP of Salmonella typhimurium to carrier proteins by various schemes. O-SP conjugated to tetanus toxoid (O-SP-TT) elicited antibodies in outbred mice after three subcutaneous injections without adjuvant. The O-SP alone elicited no detectable antibody. The antibody response to O-SP-TT was boosted by successive doses and consisted of immunoglobulin G (IgG) and IgM. Most mice only produced antibodies specific for the abequose (O:4 factor) region of the O-SP. Occasional animals also produced antibodies to the core oligosaccharide. Immunized mice were protected against intraperitoneal challenge with S. typhimurium, demonstrating a 160-fold increase in the 50% lethal dose. Passive immunization with conjugate-induced IgM or IgG also protected against challenge. These results indicate that an O-SP-TT conjugate, when given by a route and formulation acceptable for human use, protects mice against challenge with S. typhimurium. Images PMID:1383154

  7. Stratification structure of polysaccharides and proteins in activated sludge with different aeration in membrane bioreactor.

    PubMed

    Zhang, Haifeng; Yu, Haihuan; Zhang, Lanhe; Song, Lianfa

    2015-09-01

    The effect of distribution pattern of polysaccharides (PS) and proteins (PN) in activated sludge (AS) stratification with different aeration rates on membrane fouling and rejection efficiency were investigated. During high aeration, PN and PS concentrations increased in supernatant, the dominant fraction (84% of PN and 73% of PS) was small molecules (<1 kDa). Less slime and loose bound extracellular polymeric substances (LB-EPS), more tight bound EPS (TB-EPS) were observed compared with low aeration. The decrease in PN/PS ratio and Ca(2+) concentration within EPS deteriorated AS flocculation ability. At slow trans-membrane pressure (TMP) rise stage, fouling rate under high aeration was 41% lower than low aeration due to lower PN within EPS outer. Low PS rejection rate (about 23%) leaded to higher PS in effluent at this stage. High PS rejection rate (about 94%) at rapid TMP rise stage resulted in about 2.2-time higher fouling rate than that low aeration. PMID:26056777

  8. Polysaccharide-Based Vaccines

    NASA Astrophysics Data System (ADS)

    Santana, Violeta Fernández; Balbin, Yury Valdés; Calderón, Janoi Chang; Icart, Luis Peña; Verez-Bencomo, Vicente

    Capsular polysaccharides (CPS) and lipopolysaccharides from bacteria are employed for the production of vaccines against human diseases. Initial development of CPS as a vaccine was followed by the development and introduction of conjugate polysaccharide-protein vaccines. The principles leading to both developments are reviewed.

  9. Vi capsular polysaccharide-protein conjugates for prevention of typhoid fever. Preparation, characterization, and immunogenicity in laboratory animals

    PubMed Central

    1987-01-01

    The Vi has proven to be a protective antigen in two double masked, controlled clinical trials in areas with high rates of typhoid fever (approximately 1% per annum). In both studies the protective efficacy of the Vi was approximately 70%. Approximately 75% of subjects in these areas responded with a fourfold or greater rise of serum Vi antibodies. In contrast, the Vi elicited a fourfold or greater rise in 95-100% of young adults in France and the United States. Methods were devised, therefore, to synthesize Vi-protein conjugates in order to both enhance the antibody response and confer T-dependent properties to the Vi (and theoretically increase its protective action in populations at high risk for typhoid fever). We settled on a method that used the heterobifunctional crosslinking reagent, N-succinimidyl-3-(2- pyridyldithio)-propionate (SPDP), to bind thiol derivatives of the Vi to proteins. This synthetic scheme was reproducible, provided high yields of Vi-protein conjugates, and was applicable to several medically relevant proteins such as diphtheria and tetanus toxoids. The resultant conjugates were more immunogenic in mice and juvenile Rhesus monkeys than the Vi alone. In contrast to the T-independent properties of the Vi, conjugates of this polysaccharide with several medically relevant proteins induced booster responses in mice and in juvenile Rhesus monkeys. Clinical studies with Vi-protein conjugates are planned. This scheme is also applicable to synthesize protein conjugates with other polysaccharides that have carboxyl functions. PMID:3681191

  10. Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol-gel process for protein recognition.

    PubMed

    Li, Feng; Li, Jing; Zhang, Shusheng

    2008-02-15

    An interfacial organic-inorganic hybridization concept was applied to the preparation of a new spherical imprinted material for protein recognition. The functional biopolymer chitosan (CS), shaped as microsphere and high-density cross-linked, constituted of the polysaccharide core for surface imprinting. After the model template protein, bovine serum albumin, was covalently immobilized by forming imine bonds with the functional amine groups of CS, two kinds of organic siloxane (3-aminopropyltrimethoxysiloxane: APTMS, and tetraethoxysiloxane: TEOS) assembled and polymerized on the polysaccharide-protein surface via sol-gel process in aqueous solution at room temperature. After template removal, the protein-imprinted sol-gel surface exhibited a prevalent preference for the template protein in adsorption experiments, as compared with four contrastive proteins. Bioinformatics methods were also employed to investigate the imprinting process and the recognition effect. The influence of siloxane type, pH, siloxane/water ratio on template removal and recognition selectivity was assessed. Under optimized imprinting conditions, a large quantity of well-distributed pores was observed on the immobilized-template imprinted surface. The surface-imprinted adsorbent offered a fast kinetics for template re-adsorption and could be reused. Compared with the imprinted material prepared with free-template, material prepared with immobilized-template possessed higher adsorption capacity towards template protein. Easy preparation of the described imprinted material, high affinity and good reusability make this approach attractive and broadly applicable in biotechnology for down-stream processing and biosensor. PMID:18371777

  11. Modeling investigation of membrane biofouling phenomena by considering the adsorption of protein, polysaccharide and humic acid.

    PubMed

    Demneh, Seyedeh Marzieh Ghasemi; Nasernejad, Bahram; Modarres, Hamid

    2011-11-01

    The importance of solute adsorption in the biofouling membrane has been clearly verified for the performance of membrane bioreactor (MBR). In order to quantify the mechanism of static adsorption in biofouling during of MBR process, we characterize membrane biofouling caused by model solutions containing a protein (bovine serum albumin, BSA), a humic substance (humic acid, HA) and a polysaccharide (alginic acid, Alg) on commercial hydrophilic polyethersulfone (PES) membrane. For static adsorption experiments, membranes were immersed in well-defined model solutions in three temperatures (298, 308 and 318 K) to obtain equilibrium data. To determine the characteristic parameters for this process, 7 isotherm models were applied to the experimental data. Three error analysis methods; the coefficient of nonlinear regression (R(2)), the sum of the squared errors (SSE) and standard deviation of residuals (S(yx)), were used to evaluate the data and determine the best fit isotherm for each model solutions. The error values demonstrated that the Sips isotherm model provided the best fit to the experimental data. AFM images were used for determination of changes in membrane surface after adsorption. These images confirmed the results obtained from adsorption isotherm study. Thermodynamic parameters such as standard free energy (Δ(r)G(θ)), enthalpy (Δ(r)H(θ)) and entropy (Δ(r)S(θ)) changes were determined; these adsorption processes were found to be feasible and endothermic but not spontaneous. The distribution of the substances adsorbed on PES surface were more chaotic than that in the aqueous solutions. Parameters obtained in this study can be used to determine the "fouling potential" of a given feed stream and a membrane. PMID:21798726

  12. Microanalysis, Pharmacokinetics and Tissue Distribution of Polysaccharide-Protein Complexes from Longan Pulp in Mice.

    PubMed

    Min, Ting; Sun, Jie; Yi, Yang; Wang, Hong-Xun; Hang, Fei; Ai, You-Wei; Wang, Li-Mei

    2015-01-01

    A high performance size exclusion-fluorescence detection (HPSEC-FD) method combined with fluorescein isothiocyanate (FITC) prelabeling was established for the microanalysis of polysaccharide-protein complexes from longan pulp (LPP). FITC-labeled LPP (LPPF) was fractionated by gel filtration chromatography. The weight-average molecular weight and FITC substitution degree of LPPF were 39.01 kDa and 0.20%, respectively. The HPSEC-FD calibration curves linear over the range of 1-200 µg/mL in mouse plasma, spleen and lung samples with correlation coefficients greater than 0.995. The inter-day and intra-day precisions of the method were not more than 6.9%, and the relative recovery ranged from 93.7% to 106.4%. The concentration-time curve of LPPF in plasma following intravenous (i.v.) administration at 40 mg/kg body weight well fitted to a two-compartment model. LPPF rapidly eliminated from plasma according to the short half-lives (t1/2α=2.23 min, t1/2β=39.11 min) and mean retention times (MRT0-t=1.15 h, MRT0-∞=1.39 h). After administration over 5 to 360 min, the concentration of LPPF in spleen homogenate decreased from 7.41 to 3.68 µg/mL; the concentration in lung homogenate decreased from 9.08 to 3.40 µg/mL. On the other hand, the increasing concentration of LPPF fraction with low molecular weight in heart homogenate was observed. PMID:26501257

  13. A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins.

    PubMed

    Carillo, Sara; Casillo, Angela; Pieretti, Giuseppina; Parrilli, Ermenegilda; Sannino, Filomena; Bayer-Giraldi, Maddalena; Cosconati, Sandro; Novellino, Ettore; Ewert, Marcela; Deming, Jody W; Lanzetta, Rosa; Marino, Gennaro; Parrilli, Michelangelo; Randazzo, Antonio; Tutino, Maria L; Corsaro, M Michela

    2015-01-14

    The low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one- and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanics and dynamics calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments. PMID:25525681

  14. A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate

    PubMed Central

    Abdelhameed, Ali Saber; Adams, Gary G.; Morris, Gordon A.; Almutairi, Fahad M.; Duvivier, Pierre; Conrath, Karel; Harding, Stephen E.

    2016-01-01

    Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 106 g.mol−1) compared to the native (Mw ~ 1.2 × 106 g.mol−1). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 106 g.mol−1), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution. PMID:26915577

  15. A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate.

    PubMed

    Abdelhameed, Ali Saber; Adams, Gary G; Morris, Gordon A; Almutairi, Fahad M; Duvivier, Pierre; Conrath, Karel; Harding, Stephen E

    2016-01-01

    Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 10(6) g.mol(-1)) compared to the native (Mw ~ 1.2 × 10(6) g.mol(-1)). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 10(6) g.mol(-1)), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution. PMID:26915577

  16. Construction of a single-axis molecular puller for measuring polysaccharide and protein mechanics by atomic force microscopy.

    PubMed

    Rabbi, Mahir; Marszalek, Piotr E

    2007-01-01

    INTRODUCTIONPolysaccharides and proteins are frequently subjected to mechanical forces in vivo. Because these forces affect a wide range of biological activities, it is important to develop methods that directly investigate the mechanical properties of these molecules. Recent progress in techniques that allow the mechanical manipulation of biopolymers at a single-molecule level has revealed the complex nature of the elasticity of proteins and polysaccharides. The atomic force microscope (AFM) is an excellent force spectrometer for probing the mechanical properties (e.g., length and tension) of individual polysaccharides and proteins. The following protocol describes the basic design and construction of an AFM (a single-axis molecular puller) that has four parts: a head, a base, electronics, and software. Those with a background in mechanical engineering, basic knowledge of electronics and data acquisition techniques, and some computer programming skills (e.g., with LabView, Matlab, or Igor) should be able to construct this instrument. It is advisable to inspect commercial AFMs before constructing one from scratch. PMID:21357001

  17. Comparison of protein-polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation.

    PubMed

    Jones, Owen G; Decker, Eric A; McClements, David Julian

    2010-04-01

    The nature of protein-polysaccharide nanoparticles prepared using two fabrication methods was compared: Type 1 particles were formed by creating beta-lactoglobulin nanoparticles, and then coating them with pectin; Type 2 particles were formed by heating beta-lactoglobulin and pectin complexes together. Protein nanoparticles (d=180 nm) were created by heating beta-lactoglobulin above its thermal denaturation temperature (T(m)) at pH 5.8. Type 1 particles were then formed by mixing these particles with high methoxy (HM) pectin under conditions where pectin adsorbed to the protein (pH<6). Type 2 particles were created by heating beta-lactoglobulin-HM pectin electrostatic complexes above T(m) at pH 4.75. At pH 4.5, Types 1 and 2 particulates had similar charge (-33 mV), protein content, and shapes (spheroid), however, Type 1 particulates were larger (d=430 nm) than Type 2 particulates (d=300 nm). The influence of pH, ionic strength and protein:pectin mass ratio (r) on the physical stability of the two types of particles was tested. A weight ratio of 2:1 (protein:pectin) gave good pH stability of the particles against aggregation by imparting more surface charge. Type 2 particles had a higher electrical charge, better stability to aggregation at lower pH values (pH<4), and better stability to aggregation at high salt concentrations (200 mM NaCl) than Type 1 particles. These differences suggested that Type 2 particulates had a higher surface coverage with pectin, thereby reducing their tendency to aggregate. These results have important consequences for the design of biopolymer nanoparticles based on thermal treatment of proteins and polysaccharides. PMID:20045114

  18. Further Studies on the Immunogenicity of Haemophilus influenzae Type b and Pneumococcal Type 6A Polysaccharide-Protein Conjugates

    PubMed Central

    Chu, Chiayung; Schneerson, Rachel; Robbins, John B.; Rastogi, Suresh C.

    1983-01-01

    Conjugates were prepared by carbodiimide-mediated coupling of adipic acid hydrazide derivatives of Haemophilus influenzae type b (Hib), Escherichia coli K100, and pneumococcal 6A (Pn6A) polysaccharides with tetanus toxoid (TT), as an example of a “useful” carrier, and horseshoe crab hemocyanin (HCH), as an example of a “nonsense” carrier. These conjugates were injected into NIH mice, and their serum antibody responses to the polysaccharides and proteins were characterized. As originally reported, Hib conjugates increased the immunogenicity of the capsular polysaccharide and elicited greater than the estimated protective levels of anti-Hib antibodies in most recipients after one injection and in all after the third injection (Schneerson et al., J. Exp. Med. 152:361-376, 1980). Both Hib conjugates induced similar anti-Hib responses. The K100-HCH conjugate was more immunogenic than the K100-TT conjugate and elicited anti-Hib responses similar to the Hib conjugates after the third injection. Simultaneous injection of the K100 and the Hib conjugates did not enhance the anti-Hib response. The Pn6A-TT conjugate induced low levels of anti-Hib antibodies; when injected simultaneously with the Hib conjugates, the anti-Hib response was enhanced, as all mice responded after the first injection and with higher levels of anti-Hib than observed with the Hib conjugates alone (P < 0.05). The Pn6A conjugates were not as immunogenic as the Hib conjugates. Pn6A-TT was more effective than was Pn6A-HCH; it elicited anti-Pn6A (>100 ng of antibody nitrogen per ml) in 6 of 10 mice after the third injection. The addition of the Hib-HCH conjugate to the Pn6A-TT conjugate increased the anti-Pn6A response with a higher geometric mean antibody titer, and 9 of 10 mice responded after the third injection. A preparation of diphtheria toxoid, TT, and pertussis vaccine increased the anti-Hib antibody levels after the first injection only in mice receiving Hib-TT, but not in mice receiving

  19. Examination of an aloe vera galacturonate polysaccharide capable of in situ gelation for the controlled release of protein therapeutics

    NASA Astrophysics Data System (ADS)

    McConaughy, Shawn David

    A therapeutic delivery platform has been investigated with the ultimate goal of designing a sustained protein release matrix utilizing an in-situ gelling, acidic polysaccharide derived from the Aloe vera plant. The Aloe vera polysaccharide (AvP) has been examined in order to determine how chemical composition, structure, molecular weight and solution behavior affect gelation and protein/peptide delivery. Correlations are drawn between structural characteristics and solution behavior in order to determine the impact of polymer conformation and solvation on gel formation under conditions designed to simulate nasal applications. Steady state and dynamic rheology, classic and dynamic light scattering, zeta potential, pulse field gradient nuclear magnetic resonance and fluorescence spectroscopy have been employed to gain insight into the effects of galacturonic acid content, degree of methylation, entanglement and ionic strength on both solution behavior and the hydrogel state which ultimately governs protein/peptide release. This dissertation is divided into two sections. In the first section, a series of Aloe vera polysaccharides (AvP), from the pectin family have been structurally characterized indicating high galacturonic acid (GalA) content, low degree of methylester substitution (DM), low numbers of rhamnose residues and high molecular weight with respect to pectins extracted from traditional sources. The behavior of AvP was examined utilizing dilute solution, low-shear rheological techniques for specific molecular weight samples at selected conditions of ionic strength. From these dilute aqueous solution studies, the Mark-Houwink-Sakurada (MHS) constants (K and alpha), persistence length (Lp) and inherent chain stiffness (B parameter) were determined, indicating an expanded random coil in aqueous salt solutions. The critical concentration for transition from dilute to concentrated solution, C e, was determined by measuring both the zero shear viscosity and

  20. The Role of the Plant-Specific ALTERED XYLOGLUCAN9 Protein in Arabidopsis Cell Wall Polysaccharide O-Acetylation1[OPEN

    PubMed Central

    Schultink, Alex; Naylor, Dan; Dama, Murali; Pauly, Markus

    2015-01-01

    A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway. PMID:25681330

  1. Bismuth dimercaptopropanol (BisBAL) inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta: implications for membrane microfiltration.

    PubMed

    Badireddy, Appala Raju; Chellam, Shankararaman; Yanina, Svetlana; Gassman, Paul; Rosso, Kevin M

    2008-02-15

    A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL) significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 microM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate O-acetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes. PMID:17705249

  2. Bismuth Dimercaptopropanol (BisBAL) Inhibits the Expression of Extracellular Polysaccharides and Proteins by Brevundimonas diminuta: Implications for Membrane Microfiltration

    SciTech Connect

    Badireddy, Appala R.; Chellam, Shankararaman; Yanina, Svetlana; Gassman, Paul L.; Rosso, Kevin M.

    2008-02-15

    A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL)significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 μM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate Oacetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes.

  3. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    PubMed

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%-OSA-modified DWxCn, WPI, 3%-OSA-modified DWxRc, α-L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid-like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. PMID:25922272

  4. Identification and functional characterization of the putative polysaccharide biosynthesis protein (CapD) of Enterococcus faecium U0317.

    PubMed

    Ali, Liaqat; Spiess, Meike; Wobser, Dominique; Rodriguez, Marta; Blum, Hubert E; Sakιnç, Türkân

    2016-01-01

    Most bacterial species produce capsular polysaccharides that contribute to disease pathogenesis through evasion of the host innate immune system and are also involved in inhibiting leukocyte killing. In the present study, we identified a gene in Enterococcus faecium U0317 with homologies to the polysaccharide biosynthesis protein CapD that is made up of 336 amino acids and putatively catalyzes N-linked glycosylation. A capD deletion mutant was constructed and complemented by homologous recombination that was confirmed by PCR and sequencing. The mutant revealed different growth behavior and morphological changes compared to wild-type by scanning electron microscopy, also the capD mutant showed a strong hydrophobicity and that was reversed in the reconstituted mutant. For further characterization and functional analyses, in-vitro cell culture and in-vivo a mouse infection models were used. Antibodies directed against alpha lipotechoic acid (αLTA) and the peptidyl-prolyl cis-trans isomerase (αPpiC), effectively mediated the opsonophagocytic killing in the capD knock-out mutant, while this activity was not observed in the wild-type and reconstituted mutant. By comparison more than 2-fold decrease was seen in mutant colonization and adherence to both T24 and Caco2 cells. However, a significant higher bacterial colonization was observed in capD mutant during bacteremia in the animal model, while virulence in a mouse UTI (urinary tract infection) model, there were no obvious differences. Further studies are needed to elucidate the function of capsular polysaccharide synthesis gene clusters and its involvement in the disease pathogenesis with the aim to develop targeted therapies to treat multidrug-resistant E. faecium infections. PMID:26611826

  5. Immunomodulatory Activity of Polysaccharide-Protein Complex from the Mushroom Sclerotia of Polyporus rhinocerus in Murine Macrophages.

    PubMed

    Liu, Chaoran; Chen, Jialun; Chen, Lei; Huang, Xuesong; Cheung, Peter C K

    2016-04-27

    A novel water-soluble polysaccharide-protein complex (PRW1) isolated from the sclerotia of an edible mushroom Polyporus rhinocerus which was purified by membrane ultrafiltration could significantly activate murine macrophages RAW264.7 in vitro. PRW1 had a molecular weight of less than 50 kDa and was found to be a highly branched heteropolysaccharide-protein complex composed of 45.7 ± 0.97% polysaccharide and 44.2 ± 0.41% protein. Based on the results of total acid hydrolysis, methylation analysis, and Fourier transform infrared spectroscopy, the carbohydrate moiety of PRW1 was found to be a β-d-mannoglucan with its backbone containing →1)-d-Glcp-(4→, →1)-d-Glcp-(6→, and →1)-d-Manp-(2→ residues (molar ratio of 5:4:6) and having terminal d-Glcp as side chain (degree of branching of 0.62). In vitro studies showed that PRW1 significantly induced NO production and enhanced the release of a variety of cytokines including G-CSF, GM-CSF, IL-6, IL12p40/70, MCP-1, MCP-5, MIP-1-α, MIP-2, RANTES, sTNFRI, and TNF-α. Mechanistically, PRW1 treatment triggered ERK phosphorylation to activate macrophages within 15 min and significantly increased the expression level of inducible NOS after 6 h. In summary, this study indicates that PRW1 derived from the sclerotia of P. rhinocerus is a potential immunomodulatory agent for cancer immunotherapy. PMID:27054263

  6. Effect of conjugation methodology on the immunogenicity and protective efficacy of meningococcal group C polysaccharide-P64k protein conjugates.

    PubMed

    Carmenate, Tania; Canaán, Leonardo; Alvarez, Anabel; Delgado, Maité; González, Sonia; Menéndez, Tamara; Rodés, Lorenzo; Guillén, Gerardo

    2004-04-01

    Neisseria meningitidis serogroup C polysaccharide (CCPS) was conjugated to the carrier protein P64k using two different conjugation procedures, condensation mediated by carbodiimide with adipic acid dihydrazide as spacer and the reductive amination method. BALB/c mice were immunized with the resultant polysaccharide-protein conjugates and the immune response was evaluated. All conjugates assayed generated at least 10-fold higher antibody titers than the free polysaccharide. The reductive amination method rendered the best conjugate (CCPS-P64kR) that was able to elicit antibody titers statistically higher than the titer elicited by the plain CCPS (P<0.001). The sera of the group immunized with CCPS-P64kR showed a three-fold higher bactericidal response than the sera of the group immunized with the plain CCPS and they were able to protect against challenge with meningococci in the infant rat protection model. In addition, three different conjugates were obtained from polysaccharides with molecular relative sizes of 2000-4000 Da, 4000-10,000 Da or 10,000-50,000 Da, but no differences were detected in the immune response obtained against the three conjugates. Our experiments demonstrate that it is possible to generate a protective, T-cell-dependent response against CCPS using the P64k protein as carrier. PMID:15039094

  7. Effect of conjugation methodology, carrier protein, and adjuvants on the immune response to Staphylococcus aureus capsular polysaccharides.

    PubMed

    Fattom, A; Li, X; Cho, Y H; Burns, A; Hawwari, A; Shepherd, S E; Coughlin, R; Winston, S; Naso, R

    1995-10-01

    Conjugate vaccines were prepared with S. aureus type 8 capsular polysaccharide (CP) using three carrier proteins: Pseudomonas aeruginosa exotoxin A (ETA), a non-toxic recombinant ETA (rEPA), and diphtheria toxoid (DTd). Adipic acid dihydrazide (ADH) or N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) was used as a spacer to link the CP to carrier protein. All conjugates gave a high immune response with a boost after the second immunization. Conjugates prepared with ADH gave higher antibody titers than conjugates prepared with SPDP. IgG1 was the primary subclass elicited by all conjugates regardless of the carrier protein or the conjugation method used to prepare the vaccines. The non-immunogenic CP and the conjugates were formulated with either monophosphoryl lipid A (MPL), QS21, or in Novasomes and evaluated in mice. While the adjuvants failed to improve the immunogenicity of the nonconjugated CP, a more than fivefold increase in the antibody levels was observed when these adjuvants were used with the conjugates. Significant rises in IgG2b and IgG3 were observed with all formulations. The enhancement of the immunogenicity and the IgG subclass shift, as seen with some adjuvants, may prove to be important in immunocompromised patients. PMID:8585282

  8. Safety and Immunogenicity of Improved Shigella O-Specific Polysaccharide-Protein Conjugate Vaccines in Adults in Israel

    PubMed Central

    Passwell, Justen H.; Harlev, Efrat; Ashkenazi, Shai; Chu, Chiayung; Miron, Dan; Ramon, Reut; Farzan, Naheed; Shiloach, Joseph; Bryla, Dolores A.; Majadly, Fathy; Roberson, Robin; Robbins, John B.; Schneerson, Rachel

    2001-01-01

    Data suggest that the O-specific polysaccharide (O-SP) domain of the lipopolysaccharide (LPS) of Shigella species is both an essential virulence factor and a protective antigen and that a critical level of serum immunoglobulin G (IgG) to this antigen will confer immunity to shigellosis. Because covalent attachment of polysaccharides to proteins increases their immunogenicity, especially in infants and in young children, the O-SP of Shigella species were bound to medically useful proteins, and the safety and immunogenicity of the resultant conjugates were confirmed in adults and 4- to 7-year-old children. Succinylation of the carrier protein improved the immunogenicity of Shigella conjugates in mice and increased their yield. Based on these results, a clinical trial of O-SP conjugates of Shigella sonnei and Shigella flexneri 2a bound to succinylated mutant Pseudomonas aeruginosa exotoxin A (rEPAsucc) or native or succinylated Corynebacterium diphtheriae toxin mutant (CRM9 or CRM9succ) was conducted in healthy adults. The conjugates were safe and immunogenic. S. sonnei-CRM9, S. sonnei-CRM9succ, and S. sonnei-rEPAsucc elicited significant rises of geometric mean (GM) IgG anti-LPS within 1 week of injection (P < 0.001). At 26 weeks, the GM anti-LPS levels elicited by these three conjugates were similar and higher than their prevaccination levels (P < 0.0001). GM IgG anti-LPS levels elicited by S. flexneri 2a-rEPAsucc were significantly higher than those elicited by S. flexneri 2a-rCRM9succ at all intervals after injection. At 26 weeks, the levels of IgG anti-LPS in vaccinees were higher than their prevaccination levels (P < 0.0001). The serum antibody responses were specific, as there was no significant rise of anti-LPS to the heterologous O-SP in any vaccinee. Both conjugates elicited statistically significant rises of serum antibodies to the injected carrier protein. At 6 months, these five Shigella conjugates elicited higher fold rises than similar conjugates (D. N

  9. Examination of an aloe vera galacturonate polysaccharide capable of in situ gelation for the controlled release of protein therapeutics

    NASA Astrophysics Data System (ADS)

    McConaughy, Shawn David

    A therapeutic delivery platform has been investigated with the ultimate goal of designing a sustained protein release matrix utilizing an in-situ gelling, acidic polysaccharide derived from the Aloe vera plant. The Aloe vera polysaccharide (AvP) has been examined in order to determine how chemical composition, structure, molecular weight and solution behavior affect gelation and protein/peptide delivery. Correlations are drawn between structural characteristics and solution behavior in order to determine the impact of polymer conformation and solvation on gel formation under conditions designed to simulate nasal applications. Steady state and dynamic rheology, classic and dynamic light scattering, zeta potential, pulse field gradient nuclear magnetic resonance and fluorescence spectroscopy have been employed to gain insight into the effects of galacturonic acid content, degree of methylation, entanglement and ionic strength on both solution behavior and the hydrogel state which ultimately governs protein/peptide release. This dissertation is divided into two sections. In the first section, a series of Aloe vera polysaccharides (AvP), from the pectin family have been structurally characterized indicating high galacturonic acid (GalA) content, low degree of methylester substitution (DM), low numbers of rhamnose residues and high molecular weight with respect to pectins extracted from traditional sources. The behavior of AvP was examined utilizing dilute solution, low-shear rheological techniques for specific molecular weight samples at selected conditions of ionic strength. From these dilute aqueous solution studies, the Mark-Houwink-Sakurada (MHS) constants (K and alpha), persistence length (Lp) and inherent chain stiffness (B parameter) were determined, indicating an expanded random coil in aqueous salt solutions. The critical concentration for transition from dilute to concentrated solution, C e, was determined by measuring both the zero shear viscosity and

  10. Heterogeneity of protein–polysaccharides of porcine articular cartilage. The sequential extraction of chondroitin sulphate–proteins with iso-osmotic neutral sodium acetate

    PubMed Central

    Brandt, Kenneth D.; Muir, Helen

    1971-01-01

    Protein–polysaccharides of knee-joint cartilage of 9-month-old pigs were extracted sequentially with neutral iso-osmotic sodium acetate after five repeated homogenizations. One-third of the uronic acid originally present in the tissue was brought into solution, about half being in the first extract. The protein–polysaccharides, which were purified by precipitation with 9-aminoacridine, were heterogeneous in size on gel chromatography. The smallest (retarded by 6% agarose) were the most easily extracted since they were most prevalent in the initial extracts and absent from later ones, whereas the proportion of larger molecules increased progressively in successive extracts. Nevertheless a small proportion of the largest molecules (excluded from Sepharose 2B) was present even in the first extract. None of the protein–polysaccharide preparations contained hydroxyproline, and the analyses of their constituent sugars were the same, although there was a progressive increase in the protein content and in the glucosamine/galactosamine molar ratio of successive extracts. In each preparation this molar ratio was invariably greater in larger than in smaller molecules separated by gel filtration. From galactosamine/pentose molar ratios it appeared that the chondroitin sulphate chains were on average about 29 disaccharide units in length in the protein–polysaccharides of each extract, although gel-chromatography and cetylpyridinium chloride elution profiles showed that a somewhat higher proportion of shorter chondroitin sulphate chains occurred in the larger protein–polysaccharides. In the last extract, where the largest molecules predominated, about half could be reversibly dissociated by urea, whereas this had no effect on the protein–polysaccharides of earlier extracts even though these contained some large molecules. PMID:5117031

  11. Antibiofilm polysaccharides

    PubMed Central

    Rendueles, Olaya; Kaplan, Jeffrey B.; Ghigo, Jean-Marc

    2012-01-01

    Summary Bacterial extracellular polysaccharides have been shown to mediate many of the cell-to cell and cell-to-surface interactions that are required for the formation, cohesion and stabilization of bacterial biofilms. However, recent studies have identified several bacterial polysaccharides that inhibit biofilm formation by a wide-spectrum of bacteria and fungi both in vitro and in vivo. This review discusses the composition, modes of action, and potential biological roles of antibiofilm polysaccharides recently identified in bacteria and eukaria. Some of these molecules may have technological applications as antibiofilm agents in industry and medicine. PMID:22730907

  12. A polysaccharide from Huaier induced apoptosis in MCF-7 breast cancer cells via down-regulation of MTDH protein.

    PubMed

    Luo, Zhiyong; Hu, Xiaopeng; Xiong, Hua; Qiu, Hong; Yuan, Xianglin; Zhu, Feng; Wang, Yihua; Zou, Yanmei

    2016-10-20

    In this study, one homogeneous polysaccharide (SP1), with a molecular weight of 56kDa, was isolated from the Huaier fruiting bodies. It had a backbone consisting of 1,4-linked-β-d-Galp and 1,3,6-linked-β-d-Galp residues, which was terminated with 1-linked-α-d-Glcp and 1-linked-α-l-Araf terminal at O-3 position of 1,3,6-linked-β-d-Galp unit along the main chain in the ratio of 1.1:2.0:1.1:1.1. MTT assay showed that shMTDH or SP1 (100, 200 and 400μg/ml) was able to suppress the proliferation of MCF-7 cells, due to a significant increase in the number of apoptotic cells as determined by flow cytometric analysis. Furthermore, Western blot analysis revealed that SP1 or shMTDH treatment led to a rise of ratio between proapoptotic Bax and antiapoptotic Bcl-2 protein in MCF-7 cells. In addition, carcinogene MTDH protein expression in MCF-7 cells received SP1 (100, 200 and 400μg/mL) or shMTDH treatment was also repressed after 48h incubation. Taken together, these findings indicated that SP1 has anticancer potential in the treatment of human breast cancer. PMID:27474651

  13. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review.

    PubMed

    de Oliveira, Fabíola Cristina; Coimbra, Jane Sélia Dos Reis; de Oliveira, Eduardo Basílio; Zuñiga, Abraham Damian Giraldo; Rojas, Edwin E Garcia

    2016-05-18

    The products formed by glycosylation of food proteins with carbohydrates via the Maillard reaction, also known as conjugates, are agents capable of changing and improving techno-functional characteristics of proteins. The Maillard reaction uses the covalent bond between a group of a reducing carbohydrates and an amino group of a protein. This reaction does not require additional chemicals as it occurs naturally under controlled conditions of temperature, time, pH, and moisture. Moreover, there is growing interest in modifying proteins for industrial food applications. This review analyses the current state of art of the Maillard reaction on food protein functionalities. It also discusses the influence of the Maillard reaction on the conditions and formulation of reagents that improve desirable techno-functional characteristics of food protein. PMID:24824044

  14. In vitro evaluation of the effects of protein-polyphenol-polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility.

    PubMed

    Oliveira, Ana; Pintado, Manuela

    2015-11-01

    The bioaccessibility of cyanidin-3-glucoside and (+)-catechin in model solutions when β-lactoglobulin (β-LG) and pectin/chitosan are present was investigated using an in vitro model simulating gastrointestinal conditions. In the mouth, the free cyanidin content increased (+) 90 and 14% while the (+)-catechin content decreased (-) 23 and 13%, respectively for mixtures with -pectin and -β-LG-pectin. Under gastric conditions, the cyanidin content decreased 85 and 28% for mixtures with -pectin and -β-LG-pectin. On the contrary, after gastric digestion, (+)-catechin bioaccessibility increased and exhibited values similar to the original samples for all the systems tested. The transition to the intestinal environment induced a significant alteration on both polyphenols and this effect was more marked for cyanidin. Systems with pectin allowed obtaining a higher content of bioaccessible cyanidin. The gastric conditions promoted an increase in the antioxidant capacity, followed by a decrease of it in the intestine. The free (+)-catechin and cyanidin-3-glucoside contents decreased when exposed to the gastrointestinal tract conditions. However, when incorporated in food matrix components, the gastrointestinal tract may act positively on the extraction of polyphenols, since they are progressively released from protein and polysaccharide bonds, being available for the absorption and to exert their biological effects. PMID:26289110

  15. Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Protein-Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides.

    PubMed

    Qin, Dingkui; Yang, Xiaojun; Gao, Songran; Yao, Junhu; McClements, David Julian

    2016-07-01

    The impact of dietary fibers on lipid digestion within the gastrointestinal tract depends on their molecular and physicochemical properties. In this study, the influence of the electrical characteristics of dietary fibers on their ability to interfere with the digestion of protein-coated lipid droplets was investigated using an in vitro small intestine model. Three dietary fibers were examined: cationic chitosan; anionic alginate; neutral locust bean gum (LBG). The particle size, ζ-potential, microstructure, and apparent viscosity of β-lactoglobulin stabilized oil-in-water emulsions containing different types and levels of dietary fiber were measured before and after lipid digestion. The rate and extent of lipid digestion depended on polysaccharide type and concentration. At relatively low dietary fiber levels (0.1 to 0.2 wt%), the initial lipid digestion rate was only reduced by chitosan, but the final extent of lipid digestion was unaffected by all 3 dietary fibers. At relatively high dietary fiber levels (0.4 wt%), alginate and chitosan significantly inhibited lipid hydrolysis, whereas LBG did not. The impact of chitosan on lipid digestion was attributed to its ability to promote fat droplet aggregation through bridging flocculation, thereby retarding access of the lipase to the droplet surfaces. The influence of alginate was mainly ascribed to its ability to sequester calcium ions and promote depletion flocculation. PMID:27300319

  16. Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis.

    PubMed

    Zan, Xinyi; Cui, Fengjie; Li, Yunhong; Yang, Yan; Wu, Di; Sun, Wenjing; Ping, Lifeng

    2015-05-01

    HEG-5 is a novel polysaccharide-protein purified from the fermented mycelia of Hericium erinaceus CZ-2. The present study aims to investigate the effects of HEG-5 on proliferation, cell cycle and apoptosis of human gastric cancer cells SGC-7901. Here, we first uncover that HEG-5 significantly inhibited the proliferation and colony formation of SGC-7901 cells by promoting apoptosis and cell cycle arrest at S phase. RT-PCR and Western blot analysis suggested that HEG-5 could decrease the expressions of Bcl2, PI3K and AKT1, while increase the expressions of Caspase-8, Caspase-3, p53, CDK4, Bax and Bad. These findings indicated that the Caspase-8/-3-dependent, p53-dependent mitochondrial-mediated and PI3k/Akt signaling pathways involved in the molecular events of HEG-5 induced apoptosis and cell cycle arrest. Thus, our study provides in vitro evidence that HEG-5 may be taken as a potential candidate for treating gastric cancer. PMID:25703932

  17. [Cytochemical study of the cysts of the sarcosporidian Sarcocystis bovicanis. I. Nucleic acids, polysaccharides, lipids and proteins].

    PubMed

    Metsis, A L

    1987-08-01

    A light microscopic study of S. bovicanis cysts and cyst stages has been carried out, in addition to morphological characterization of cysts. At least two types of cyst stages could be distinguished--merozoites and metrocytes. The light microscopic differentiation of the third type--the intermediate cells--from merozoites seems to be rather difficult especially when non-dividing cells are examined. Merozoites (zoites) much varied in size, and besides the usual parasitic cells with the terminal nuclei, cells with the central ones were recognized. Since the classical Feulgen reaction did not give sufficient results when establishing DNA distribution, its modification with a fluorescent agent Auramin O was used. The latter provided excellent results showing numerous chromatin granules in the nucleus, no distinct nucleoli being determined. Gallocyanin--chromalum method and methyl green--pyronin staining for DNA and RNA demonstrated a poor staining of the nucleus contrasting with an intensive coloration of cytoplasmic RNA and associated high level protein synthesis. The PAS reaction revealed numerous polysaccharide granules in the cytoplasm of zoites. On cryostat sections a certain PAS positive layer was distinguished around the cyst in the muscle tissue which did not disappear even after a long term amylase treatment. Even more intensively stained was the pre-cystic muscle after cytochemical test for general protein using amido black and coomassie blue. It does not seem unlikely that some metabolic changes may occur in the host cell harbouring the cyst. Several methods for lipid detection in cyst stages with Fat red, Oil red O and Sudan black B were used with negative results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2446408

  18. Short communication: Changes in fluorescence intensity induced by soybean soluble polysaccharide-milk protein interactions during acidification.

    PubMed

    Li, Y H; Wang, W J; Xu, X J; Meng, Y C; Zhang, L W; Chen, J; Qiu, R

    2015-12-01

    Interactions between stabilizer and milk protein are believed to influence the stabilizing behavior of the milk system. We investigated changes in fluorescence intensity induced by interactions of soybean soluble polysaccharide (SSPS) and milk protein (Mp) during acidification. The fluorescence intensity (If) of Mp increased as pH decreased from 6.8 to 5.2. Compared with Mp alone, If of SSPS-Mp mixtures increased as the pH decreased from 6.8 to 5.2. We found that the If of the SSPS-Mp mixture decreased in a pH range from 5.2 to 3.6, which indicated a change in the polarity microenvironment around the Trp residues. We also found that the maximum emission wavelength (λmax) shifted from 337 to 330nm as pH decreased from 6.8 to 3.6, in further support of SSPS interacting with the polar portion of Mp during acidification. Furthermore, an excited monomeric molecule (pyrene exciplex) was found as a ground-state pyrene formed and a broad band was shown at about 450nm. The intensity ratio of the first peak to the third peak (I1:I3) of Mp increased slightly, and the ratio of intensity of pyrene exciplex to monomer (Ie:Im) decreased because pyrene molecules were located in a less hydrophobic microenvironment during acidification. However, the ratio of I1:I3 decreased clearly at pH below 5.6 and the ratio of Ie:Im showed the opposite trend in the SSPS-Mp mixture. Changes in intrinsic and exogenous fluorescence intensity confirmed that interactions of SSPS and Mp could change the polarity of the microenvironment and that SSPS probably interacted with the polar portion of Mp. These results could give insight into the behavior of stabilizers in acid milk products. PMID:26476946

  19. A structural overview of GH61 proteins – fungal cellulose degrading polysaccharide monooxygenases

    PubMed Central

    Leggio, Leila Lo; Welner, Ditte; De Maria, Leonardo

    2012-01-01

    Recent years have witnessed a spurt of activities in the elucidation of the molecular function of a class of proteins with great potential in biomass degradation. GH61 proteins are of fungal origin and were originally classified in family 61 of the glycoside hydrolases. From the beginning they were strongly suspected to be involved in cellulose degradation because of their expression profiles, despite very low detectable endoglucanase activities. A major breakthrough came from structure determination of the first members, establishing the presence of a divalent metal binding site and a similarity to bacterial proteins involved in chitin degradation. A second breakthrough came from the identification of cellulase boosting activity dependent on the integrity of the metal binding site. Finally very recently GH61 proteins were demonstrated to oxidatively cleave crystalline cellulose in a Cu and reductant dependant manner. This mini-review in particular focuses on the contribution that structure elucidation has made in the understanding of GH61 molecular function and reviews the currently known structures and the challenges remaining ahead for exploiting this new class of enzymes to the full. PMID:24688660

  20. A structural overview of GH61 proteins - fungal cellulose degrading polysaccharide monooxygenases.

    PubMed

    Lo Leggio, Leila; Welner, Ditte; De Maria, Leonardo

    2012-01-01

    Recent years have witnessed a spurt of activities in the elucidation of the molecular function of a class of proteins with great potential in biomass degradation. GH61 proteins are of fungal origin and were originally classified in family 61 of the glycoside hydrolases. From the beginning they were strongly suspected to be involved in cellulose degradation because of their expression profiles, despite very low detectable endoglucanase activities. A major breakthrough came from structure determination of the first members, establishing the presence of a divalent metal binding site and a similarity to bacterial proteins involved in chitin degradation. A second breakthrough came from the identification of cellulase boosting activity dependent on the integrity of the metal binding site. Finally very recently GH61 proteins were demonstrated to oxidatively cleave crystalline cellulose in a Cu and reductant dependant manner. This mini-review in particular focuses on the contribution that structure elucidation has made in the understanding of GH61 molecular function and reviews the currently known structures and the challenges remaining ahead for exploiting this new class of enzymes to the full. PMID:24688660

  1. Non-covalent association of protein and capsular polysaccharide on bacteria-sized latex beads as a model for polysaccharide-specific humoral immunity to intact Gram-positive extracellular bacteria1

    PubMed Central

    Colino, Jesus; Duke, Leah; Snapper, Clifford M.

    2013-01-01

    Intact Streptococcus pneumoniae, expressing type 14 capsular polysaccharide (PPS14) and type III Streptococcus agalactiae containing a PPS14 core capsule identical to PPS14, exhibit non-covalent associations of PPS14 and bacterial protein, in contrast to soluble covalent conjugates of these respective antigens. Both bacteria and conjugates induce murine PPS14-specific IgG responses dependent on CD4+ T cells. Further, secondary immunization with conjugate and S. agalactiae, although not S. pneumoniae, results in a boosted response. However, in contrast to conjugate, PPS14-specific IgG responses to bacteria lack affinity maturation, utilize the 44.1-idiotype and are dependent on marginal zone B cells. To better understand the mechanism underlying this dichotomy we developed a minimal model of intact bacteria in which PPS14 and pneumococcal surface protein A (PspA) were stably attached to 1 μm (bacteria-sized) latex beads, but not directly linked to each other, in contrast to PPS14-PspA conjugate. PPS14+[PspA] beads, similar to conjugate, induced in mice boosted PPS14-specific IgG secondary responses, dependent on T cells and ICOS-dependent costimulation, and in which priming could be achieved with PspA alone. In contrast to conjugate, but similar to intact bacteria, the primary PPS14-specific IgG response to PPS14+[PspA] beads peaked rapidly, with the secondary response highly enriched for the 44.1-idiotype and lacking affinity maturation. These results demonstrate that non-covalent association in a particle, of polysaccharide and protein, recapitulates essential immunologic characteristics of intact bacteria that are distinct from soluble covalent conjugates of these respective antigens. PMID:23926322

  2. Dynamic contact angle analysis of protein adsorption on polysaccharide multilayer's films for biomaterial reendothelialization.

    PubMed

    Benni, Safiya; Avramoglou, Thierry; Hlawaty, Hanna; Mora, Laurence

    2014-01-01

    Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte's multilayer (PEM) films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE) as polycation and dextran sulphate (DS) as polyanion. One film was composed with 4 bilayers of (DEAE-DS)4 and was labeled D-. The other film was the same as D- but with an added terminal layer of DEAE polycation: (DEAE-DS)4-DEAE (labeled D+). The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA) and atomic force microscopy (AFM). Human endothelial cell (HUVEC) adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA). Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS)4 films. (DEAE-DS)4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation. PMID:25276808

  3. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  4. Antitumor activity of a polysaccharide-protein complex isolated from a wood-rotting polypore macro fungus Phellinus rimosus (Berk) Pilat.

    PubMed

    Meera, C R; Janardhanan, Kainoor K

    2012-01-01

    A protein-bound, water-soluble polysaccharide-protein complex was isolated from a medicinal mushroom, Phellinus rimosus (Berk) Pilat (PPC-Pr). The isolation was achieved by hot water extraction, filtration, solvent precipitation, dialysis, and freeze-drying. The proximate analysis showed that PPC-Pr comprised 54.8% polysaccharide and 28.6% protein. The molecular weight of the compound was determined by gel filtration using a Sephadex G 100. The molecular weight of PPC-Pr was approximately 1,200,000 D. The thin-layer chromatography analysis of PPC-Pr after acid hydrolysis with trifluroacetic acid showed that it was composed of glucose as the only monosaccharide unit. The amino acid profile analysis of PPC-Pr revealed that it contained large amounts of aspartic acid, glutamic acid, alanine, glycine, and serine. Thus, the results indicated that PPC-Pr is a glucan-protein complex. The PPC-Pr did not show in vitro cytotoxic activity against Dalton's lymphoma ascites and Ehrlich's ascites carcinoma cell lines. The PPC-Pr was found to be effective in increasing the life span of ascites tumors induced by Ehrlich's ascites carcinoma cell line in mice. PPC-Pr also was found to have significant preventive and curative effects on solid tumors induced by the Dalton's lymphoma ascites cell line. The experimental results thus indicated that protein-bound polysaccharide (PPC-Pr) isolated from P. rimosus possessed profound antitumor activity. The findings suggest the potential therapeutic use of this compound as an antitumor agent. PMID:23339697

  5. The effect of polyphenolic-polysaccharide conjugates from selected medicinal plants of Asteraceae family on the peroxynitrite-induced changes in blood platelet proteins.

    PubMed

    Saluk-Juszczak, Joanna; Pawlaczyk, Izabela; Olas, Beata; Kołodziejczyk, Joanna; Ponczek, Michal; Nowak, Pawel; Tsirigotis-Wołoszczak, Marta; Wachowicz, Barbara; Gancarz, Roman

    2010-12-01

    Lots of plants belonging to Asteraceae family are very popular in folk medicine in Poland. These plants are also known as being rich in acidic polysaccharides, due to the presence of hexuronic acids or its derivatives. Our preliminary experiments have shown that the extract from Conyza canadensis L. possesses various biological activity, including antiplatelet, antiocoagulant and antioxidant properties. The aim of our study was to assess if macromolecular glycoconjugates from selected herbal plants of Asteraceae family: Achillea millefolium L., Arnica montana L., Echinacea purpurea L., Solidago virgaurea L., Chamomilla recutita (L.) Rauschert., and Conyza canadensis L. protect platelet proteins against nitrative and oxidative damage induced by peroxynitrite, which is responsible for oxidative/nitrative modifications of platelet proteins: the formation of 3-nitrotyrosine and carbonyl groups. These modifications may lead to changes of blood platelet functions and can have pathological consequences. The role of these different medicinal plants in the defence against oxidative/nitrative stress in human platelets is still unknown, therefore the oxidative damage to platelet proteins induced by peroxynitrite and protectory effects of tested conjugates by the estimation of carbonyl group level and nitrotyrosine formation (a marker of protein nitration) were studied in vitro. The antioxidative properties of the polyphenolic-polysaccharide conjugates from selected tested medicinal plants were also compared with the action of a well characterized antioxidative commercial polyphenol - resveratrol (3,4',5-trihydroxystilbene). The obtained results demonstrate that the compounds from herbal plants: A. millefolium, A. montana, E. purpurea, C. recutita, S. virgaurea, possess antioxidative properties and protect platelet proteins against peroxynitrite toxicity in vitro, similar to the glycoconjugates from C. canadensis. However, in the comparative studies, the polyphenolic-polysaccharide

  6. Protein/polysaccharide cogel formation based on gelatin and chemically modified schizophyllan.

    PubMed

    Fang, Yapeng; Takahashi, Rheo; Nishinari, Katsuyoshi

    2005-01-01

    In the work, aldehyde groups were quantitatively introduced into schizophyllan (SPG) side chains through periodate oxidation. The periodate-oxidized SPG (POSPG) forms an elastic gel with gelatin. The cogel formation is based on the Schiff-base reaction between the amino groups of gelatin chains and the aldehyde groups of POSPG chains. The POSPG/gelatin cogel has an elastomeric character with a very small value of loss tangent. The gelation kinetics and gel properties were discussed as a function of POSPG concentration, gelatin concentration, oxidation degree, temperature, and pH. This method can be used to design a large variety of cogels between SPG and proteins. PMID:16283747

  7. Molecular characterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins.

    PubMed

    Iwai, Marin; Kawakami, Takuya; Ikemoto, Takeshi; Fujiwara, Daisuke; Takenaka, Shigeo; Nakazawa, Masami; Ueda, Mitsuhiro; Sakamoto, Tatsuji

    2015-10-01

    We previously described an endo-acting rhamnogalacturonan (RG) lyase, termed PcRGL4A, of Penicillium chrysogenum 31B. Here, we describe a second RG lyase, called PcRGLX. We determined the cDNA sequence of the Pcrglx gene, which encodes PcRGLX. Based on analyses using a BLAST search and a conserved domain search, PcRGLX was found to be structurally distinct from known RG lyases and might belong to a new polysaccharide lyase family together with uncharacterized fungal proteins of Nectria haematococca, Aspergillus oryzae, and Fusarium oxysporum. The Pcrglx cDNA gene product (rPcRGLX) expressed in Escherichia coli demonstrated specific activity against RG but not against homogalacturonan. Divalent cations were not essential for the enzymatic activity of rPcRGLX. rPcRGLX mainly released unsaturated galacturonosyl rhamnose (ΔGR) from RG backbones used as the substrate from the initial stage of the reaction, indicating that the enzyme can be classified as an exo-acting RG lyase (EC 4.2.2.24). This is the first report of an RG lyase with this mode of action in Eukaryota. rPcRGLX acted synergistically with PcRGL4A to degrade soybean RG and released ΔGR. This ΔGR was partially decorated with galactose (Gal) residues, indicating that rPcRGLX preferred oligomeric RGs to polymeric RGs, that the enzyme did not require Gal decoration of RG backbones for degradation, and that the enzyme bypassed the Gal side chains of RG backbones. These characteristics of rPcRGLX might be useful in the determination of complex structures of pectins. PMID:25921806

  8. Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) bind to seaweed polysaccharides and activate the prophenoloxidase system in white shrimp Litopenaeus vannamei.

    PubMed

    Chen, Yu-Yuan; Chen, Jiann-Chu; Kuo, Yi-Hsuan; Lin, Yong-Chin; Chang, Yu-Hsuan; Gong, Hong-Yi; Huang, Chien-Lun

    2016-02-01

    Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP), important pattern recognition proteins (PRPs), recognize lipopolysaccharide (LPS) and β-1,3-glucan (βG), known as pathogen-associated molecular patterns (PAMPs), and subsequently trigger innate immunity. Several seaweed polysaccharides and seaweed extracts increase immune parameters and resistance to pathogens. Here, we constructed the expression vector pET28b-LvLGBP and transferred it into Escherichia coli BL21 (DE3) for protein expression and to produce the recombinant protein LGBP (rLvLGBP) in white shrimp Litopenaeus vannamei. We examined the binding of rLvLGBP with seaweed-derived polysaccharides including alginate, carrageenan, fucoidan, laminarin, Gracilaria tenuistipitata extract (GTE), and Sargassum duplicatum extract (SDE), and examined the phenoloxidase activity of shrimp haemocytes incubated with a mixture of rLvLGBP and each polysaccharide. We also examined the binding of rLvLGBP with LPS and βG, and the phenoloxidase activity of shrimp haemocytes incubated with a mixture of rLvLGBP and LPS (rLvLGBP-LPS) or a mixture of rLvLGBP and βG (rLvLGBP-βG). An ELISA binding assay indicated that rLvLGBP binds to LPS, βG, alginate, carrageenan, fucoidan, laminarin, GTE, and SDE with dissociation constants of 0.1138-0.1770 μM. Furthermore, our results also indicated that the phenoloxidase activity of shrimp haemocytes incubated with a mixture of rLvLGBP and LPS, βG, alginate, carrageenan, fucoidan, laminarin, GTE, and SDE significantly increased by 328%, 172%, 200%, 213%, 197%, 194%, 191%, and 197%, respectively compared to controls (cacodylate buffer). We conclude that LvLGBP functions as a PRP, recognizes and binds to LPS, βG, alginate, carrageenan, fucoidan, laminarin, GTE, and SDE, and subsequently leads to activating innate immunity in shrimp. PMID:26522339

  9. Microanalysis, Pharmacokinetics and Tissue Distribution of Polysaccharide-Protein Complexes from Longan Pulp in Mice

    PubMed Central

    Min, Ting; Sun, Jie; Yi, Yang; Wang, Hong-Xun; Hang, Fei; Ai, You-Wei; Wang, Li-Mei

    2015-01-01

    A high performance size exclusion-fluorescence detection (HPSEC-FD) method combined with fluorescein isothiocyanate (FITC) prelabeling was established for the microanalysis of polysaccharide–protein complexes from longan pulp (LPP). FITC-labeled LPP (LPPF) was fractionated by gel filtration chromatography. The weight-average molecular weight and FITC substitution degree of LPPF were 39.01 kDa and 0.20%, respectively. The HPSEC-FD calibration curves linear over the range of 1–200 µg/mL in mouse plasma, spleen and lung samples with correlation coefficients greater than 0.995. The inter-day and intra-day precisions of the method were not more than 6.9%, and the relative recovery ranged from 93.7% to 106.4%. The concentration–time curve of LPPF in plasma following intravenous (i.v.) administration at 40 mg/kg body weight well fitted to a two-compartment model. LPPF rapidly eliminated from plasma according to the short half-lives (t1/2α = 2.23 min, t1/2β = 39.11 min) and mean retention times (MRT0–t = 1.15 h, MRT0–∞ = 1.39 h). After administration over 5 to 360 min, the concentration of LPPF in spleen homogenate decreased from 7.41 to 3.68 µg/mL; the concentration in lung homogenate decreased from 9.08 to 3.40 µg/mL. On the other hand, the increasing concentration of LPPF fraction with low molecular weight in heart homogenate was observed. PMID:26501257

  10. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  11. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4-mitogen-activated protein kinases-nuclear factor κB pathways.

    PubMed

    Ma, Xiaolei; Meng, Meng; Han, Lirong; Cheng, Dai; Cao, Xiaohong; Wang, Chunling

    2016-06-15

    We isolated a neutral polysaccharide from the fruiting body of a mushroom Grifola frondosa (GFP-A). The aim of this study was to characterize a neutral α-d-polysaccharide derived from G. frondosa and evaluate its immunomodulatory effect on toll-like receptor 4, mitogen-activated protein kinases and nuclear factor κB pathways of protein expression in macrophages. The structural features of GFP-A were characterized by physicochemical and instrumental analyses. Its molecular weight was found to be 8.48 × 10(2) kDa. The main chain of GFP-A consisted of (1 → 4)-linked and (1 → 6)-linked α-d-glucopyranosyl, and (1 → 3,6)-linked α-d-mannopyranosyl residues, which branched at C-3. The branches consisted of (1 → 6)-linked α-d-galactopyranosyl and t-l-rhamnopyranosyl residues. An in vitro immunomodulatory assay for pro-inflammatory cytokines (interleukin-1β, interleukin-2, tumor necrosis factor alpha, etc.) using the macrophage cell line, RAW 264.7, revealed that GFP-A exhibited significant immunomodulatory activity by stimulating the toll-like receptor 4, mitogen-activated protein kinases to nuclear factor κB/pathway. PMID:27220562

  12. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  13. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis.

    PubMed

    Gendre, Delphine; McFarlane, Heather E; Johnson, Errin; Mouille, Gregory; Sjödin, Andreas; Oh, Jaesung; Levesque-Tremblay, Gabriel; Watanabe, Yoichiro; Samuels, Lacey; Bhalerao, Rishikesh P

    2013-07-01

    The secretion of cell wall polysaccharides through the trans-Golgi network (TGN) is required for plant cell elongation. However, the components mediating the post-Golgi secretion of pectin and hemicellulose, the two major cell wall polysaccharides, are largely unknown. We identified evolutionarily conserved YPT/RAB GTPase Interacting Protein 4a (YIP4a) and YIP4b (formerly YIP2), which form a TGN-localized complex with ECHIDNA (ECH) in Arabidopsis thaliana. The localization of YIP4 and ECH proteins at the TGN is interdependent and influences the localization of VHA-a1 and SYP61, which are key components of the TGN. YIP4a and YIP4b act redundantly, and the yip4a yip4b double mutants have a cell elongation defect. Genetic, biochemical, and cell biological analyses demonstrate that the ECH/YIP4 complex plays a key role in TGN-mediated secretion of pectin and hemicellulose to the cell wall in dark-grown hypocotyls and in secretory cells of the seed coat. In keeping with these observations, Fourier transform infrared microspectroscopy analysis revealed that the ech and yip4a yip4b mutants exhibit changes in their cell wall composition. Overall, our results reveal a TGN subdomain defined by ECH/YIP4 that is required for the secretion of pectin and hemicellulose and distinguishes the role of the TGN in secretion from its roles in endocytic and vacuolar trafficking. PMID:23832588

  14. S-Layer Homology Domain Proteins Csac_0678 and Csac_2722 Are Implicated in Plant Polysaccharide Deconstruction by the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus

    PubMed Central

    Ozdemir, Inci; Blumer-Schuette, Sara E.

    2012-01-01

    The genus Caldicellulosiruptor contains extremely thermophilic bacteria that grow on plant polysaccharides. The genomes of Caldicellulosiruptor species reveal certain surface layer homology (SLH) domain proteins that have distinguishing features, pointing to a role in lignocellulose deconstruction. Two of these proteins in Caldicellulosiruptor saccharolyticus (Csac_0678 and Csac_2722) were examined from this perspective. In addition to three contiguous SLH domains, the Csac_0678 gene encodes a glycoside hydrolase family 5 (GH5) catalytic domain and a family 28 carbohydrate-binding module (CBM); orthologs to Csac_0678 could be identified in all genome-sequenced Caldicellulosiruptor species. Recombinant Csac_0678 was optimally active at 75°C and pH 5.0, exhibiting both endoglucanase and xylanase activities. SLH domain removal did not impact Csac_0678 GH activity, but deletion of the CBM28 domain eliminated binding to crystalline cellulose and rendered the enzyme inactive on this substrate. Csac_2722 is the largest open reading frame (ORF) in the C. saccharolyticus genome (predicted molecular mass of 286,516 kDa) and contains two putative sugar-binding domains, two Big4 domains (bacterial domains with an immunoglobulin [Ig]-like fold), and a cadherin-like (Cd) domain. Recombinant Csac_2722, lacking the SLH and Cd domains, bound to cellulose and had detectable carboxymethylcellulose (CMC) hydrolytic activity. Antibodies directed against Csac_0678 and Csac_2722 confirmed that these proteins bound to the C. saccharolyticus S-layer. Their cellular localization and functional biochemical properties indicate roles for Csac_0678 and Csac_2722 in recruitment and hydrolysis of complex polysaccharides and the deconstruction of lignocellulosic biomass. Furthermore, these results suggest that related SLH domain proteins in other Caldicellulosiruptor genomes may also be important contributors to plant biomass utilization. PMID:22138994

  15. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections.

    PubMed

    Rohde, Holger; Burandt, Eike C; Siemssen, Nicolaus; Frommelt, Lars; Burdelski, Christoph; Wurster, Sabine; Scherpe, Stefanie; Davies, Angharad P; Harris, Llinos G; Horstkotte, Matthias A; Knobloch, Johannes K-M; Ragunath, Chandran; Kaplan, Jeffrey B; Mack, Dietrich

    2007-03-01

    Nosocomial staphylococcal foreign-body infections related to biofilm formation are a serious threat, demanding new therapeutic and preventive strategies. As the use of biofilm-associated factors as vaccines is critically restricted by their prevalence in natural staphylococcal populations we studied the distribution of genes involved in biofilm formation, the biofilm phenotype and production of polysaccharide intercellular adhesin (PIA) in clonally independent Staphylococcus aureus and Staphylococcus epidermidis strains isolated from prosthetic joint infections after total hip or total knee arthroplasty. Biofilm formation was detected in all S. aureus and 69.2% of S. epidermidis strains. Importantly, 27% of biofilm-positive S. epidermidis produced PIA-independent biofilms, in part mediated by the accumulation associated protein (Aap). Protein-dependent biofilms were exclusively found in S. epidermidis strains from total hip arthroplasty (THA). In S. aureus PIA and proteins act cooperatively in biofilm formation regardless of the infection site. PIA and protein factors like Aap are of differential importance for the pathogenesis of S. epidermidis in prosthetic joint infections (PJI) after THA and total knee arthroplasty (TKA), implicating that icaADBC cannot serve as a general virulence marker in this species. In S. aureus biofilm formation proteins are of overall importance and future work should focus on the identification of functionally active molecules. PMID:17187854

  16. The combination of oligo- and polysaccharides and reticulated protein for the control of symptoms in patients with irritable bowel syndrome: Results of a randomised, placebo-controlled, double-blind, parallel group, multicentre clinical trial

    PubMed Central

    Alexea, Octavian; Bacarea, Vlad

    2015-01-01

    Background A medical device containing the film-forming agent reticulated protein and a prebiotic mixture of vegetable oligo- and polysaccharides has been developed, recently receiving European approval as MED class III for the treatment of chronic/functional or recidivant diarrhoea due to different causes including irritable bowel syndrome (IBS). In the present paper, we evaluate a protein preparation containing these components in comparison with placebo in adult patients with diarrhoea-predominant IBS. Methods In a randomised, placebo-controlled, double-blind, parallel group, multicentre clinical trial, patients were randomly assigned to receive the combination of oligo- and polysaccharides and reticulated protein and placebo (four oral tablets/day for 56 days). Demographic, clinical and quality of life characteristics and presence and intensity of abdominal pain and flatulence (seven-point Likert scale) were assessed at three study visits (baseline and at 28 and 56 days). Stool emissions were recorded on the diary card using the seven-point Bristol Stool Scale. Results A total of 128 patients were randomised to receive either tablets containing the combination (n = 63) or placebo (n = 65). Treatment with oligo- and polysaccharides and reticulated protein was safe and well tolerated. A significant improvement in symptoms across the study was observed in patients treated with oligo- and polysaccharides and reticulated protein between visit 2 and visit 3 in abdominal pain (p = 0.0167) and flatulence (p = 0.0373). We also detected a statistically significant increase in the quality of life of patients receiving the active treatment from baseline to visit 3 (p < 0.0001). Conclusions Treatment with oligo- and polysaccharides and reticulated protein is safe, improving IBS symptoms and quality of life of patients with diarrhoea-predominant IBS. PMID:27403313

  17. Conjugation of Polysaccharide 6B from Streptococcus pneumoniae with Pneumococcal Surface Protein A: PspA Conformation and Its Effect on the Immune Response

    PubMed Central

    Perciani, Catia T.; Barazzone, Giovana C.; Goulart, Cibelly; Carvalho, Eneas; Cabrera-Crespo, Joaquin; Gonçalves, Viviane M.; Leite, Luciana C. C.

    2013-01-01

    Despite the substantial beneficial effects of incorporating the 7-valent pneumococcal conjugate vaccine (PCV7) into immunization programs, serotype replacement has been observed after its widespread use. As there are many serotypes currently documented, the use of a conjugate vaccine relying on protective pneumococcal proteins as active carriers is a promising alternative to expand PCV coverage. In this study, capsular polysaccharide serotype 6B (PS6B) and recombinant pneumococcal surface protein A (rPspA), a well-known protective antigen from Streptococcus pneumoniae, were covalently attached by two conjugation methods. The conjugation methodology developed by our laboratory, employing 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as an activating agent through carboxamide formation, was compared with reductive amination, a classical methodology. DMT-MM-mediated conjugation was shown to be more efficient in coupling PS6B to rPspA clade 1 (rPspA1): 55.0% of PS6B was in the conjugate fraction, whereas 24% was observed in the conjugate fraction with reductive amination. The influence of the conjugation process on the rPspA1 structure was assessed by circular dichroism. According to our results, both conjugation processes reduced the alpha-helical content of rPspA; reduction was more pronounced when the reaction between the polysaccharide capsule and rPspA1 was promoted between the carboxyl groups than the amine groups (46% and 13%, respectively). Regarding the immune response, both conjugates induced functional anti-rPspA1 and anti-PS6B antibodies. These results suggest that the secondary structure of PspA1, as well as its reactive groups (amine or carboxyl) involved in the linkage to PS6B, may not play an important role in eliciting a protective immune response to the antigens. PMID:23554468

  18. The HD-GYP Domain Protein RpfG of Xanthomonas oryzae pv. oryzicola Regulates Synthesis of Extracellular Polysaccharides that Contribute to Biofilm Formation and Virulence on Rice

    PubMed Central

    Zhang, Yuanbao; Wei, Chao; Jiang, Wendi; Wang, Lei; Li, Churui; Wang, Yunyue; Dow, John Maxwell; Sun, Wenxian

    2013-01-01

    Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important diseases in rice. However, little is known about the pathogenicity mechanisms of Xoc. Here we have investigated the function of three HD-GYP domain regulatory proteins in biofilm formation, the synthesis of virulence factors and virulence of Xoc. Deletion of rpfG resulted in altered production of extracellular polysaccharides (EPS), abolished virulence on rice and enhanced biofilm formation, but had little effect on the secretion of proteases and motility. In contrast, mutational analysis showed that the other two HD-GYP domain proteins had no effect on virulence factor synthesis and tested phenotypes. Mutation of rpfG led to up-regulation of the type III secretion system and altered expression of three putative glycosyltransferase genes gumD, pgaC and xagB, which are part of operons directing the synthesis of different extracellular polysaccharides. The pgaABCD and xagABCD operons were greatly up-regulated in the Xoc ΔrpfG mutant, whereas the expression of the gum genes was unaltered or slightly enhanced. The elevated biofilm formation of the Xoc ΔrpfG mutant was dramatically reduced upon deletion of gumD, xagA and xagB, but not when pgaA and pgaC were deleted. Interestingly, only the ΔgumD mutant, among these single gene mutants, exhibits multiple phenotype alterations including reduced biofilm and EPS production and attenuated virulence on rice. These data indicate that RpfG is a global regulator that controls biofilm formation, EPS production and bacterial virulence in Xoc and that both gumD- and xagB-dependent EPS contribute to biofilm formation under different conditions. PMID:23544067

  19. Structural characterization of low molecular weight polysaccharide from Astragalus membranaceus and its immunologic enhancement in recombinant protein vaccine against systemic candidiasis.

    PubMed

    Yang, Fan; Xiao, Chunyu; Qu, Jing; Wang, Guiyun

    2016-07-10

    Structure and immunologic enhancement of low molecular weight polysaccharide (LMW-ASP) isolated from the root of Astragalus membranaceus (Fisch) Bge. Were detected in recombinant protein vaccine. Structure analysis of LMW-ASP revealed that LMW-ASP (Mw=5.6kDa) was an acid heteropolysaccharide, which consisted of Glc, Gal, Ara, Xyl and GalA in ratio of 10.0:1.3:1.7:1.0:0.9. Recombinant protein (rP-HSP90C) contained epitope C (LKVIRK) from heat shock protein 90 (HSP90) of Candida albicans was used as a vaccine. The results indicated that LMW-ASP significantly promoted specific antibody titers IgG, IgG1, IgG2b, and IL-2, IL-4, IL-10, IL-12 in sera of mice immunized with rP-HSP90C (p<0.05). It was also found LMW-ASP improved DTH response in HSP90C-injceted mice. More importantly, the mice immunized with rP-HSP90C/LMW-ASP had fewer CFU (colony forming unites) in the kidneys compared to the mice immunized with rP-HSP90C (p<0.05). Therefore, LMW-ASP could be exploited into the novel adjuvant to enhance the efficacy of recombinant protein vaccine. PMID:27106150

  20. Polysaccharide-based nanoparticles for theranostic nanomedicine.

    PubMed

    Swierczewska, M; Han, H S; Kim, K; Park, J H; Lee, S

    2016-04-01

    Polysaccharides are natural biological molecules that have numerous advantages for theranostics, the integrated approach of therapeutics and diagnostics. Their derivable reactive groups can be leveraged for functionalization with a nanoparticle-enabling conjugate, therapeutics (small molecules, proteins, peptides, photosensitizers) and/or diagnostic agents (imaging agents, sensors). In addition, polysaccharides are diverse in size and charge, biodegradable and abundant and show low toxicity in vivo. Polysaccharide-based nanoparticles are increasingly being used as platforms for simultaneous drug delivery and imaging and are therefore becoming popular theranostic nanoparticles. The review focuses on the method of nanoparticle formation (self-assembled, physical or chemical cross-linked) when engineering polysaccharide-based nanoparticles for theranostic nanomedicine. We highlight recent examples of polysaccharide-based theranostic systems from literature and their potential for use in the clinic, particularly chitosan- and hyaluronic acid-based NPs. PMID:26639578

  1. Long-term Comparative Immunogenicity of Protein Conjugate and Free Polysaccharide Pneumococcal Vaccines in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Dransfield, Mark T.; Harnden, Sarah; Burton, Robert L.; Albert, Richard K.; Bailey, William C.; Casaburi, Richard; Connett, John; Cooper, J. Allen D.; Criner, Gerard J.; Curtis, Jeffrey L.; Han, MeiLan K.; Make, Barry; Marchetti, Nathaniel; Martinez, Fernando J.; McEvoy, Charlene; Nahm, Moon H.; Niewoehner, Dennis E.; Porszasz, Janos; Reilly, John; Scanlon, Paul D.; Scharf, Steven M.; Sciurba, Frank C.; Washko, George R.; Woodruff, Prescott G.; Lazarus, Stephen C.

    2012-01-01

    Background. Although the 23-valent pneumococcal polysaccharide vaccine (PPSV23) protects against invasive disease in young healthy persons, randomized controlled trials in chronic obstructive pulmonary disease (COPD) have demonstrated no benefit in the intention-to-treat population. We previously reported that the 7-valent diphtheria-conjugated pneumococcal polysaccharide vaccine (PCV7) is safe and induced greater serotype-specific immunoglobulin G (IgG) and functional antibody than did PPSV23 1 month after vaccination. We hypothesized that these advantages would persist at 1 and 2 years. Methods. One hundred eighty-one patients with moderate to severe COPD were randomized to receive PPSV23 (n = 90) or PCV7 (1.0 mL; n = 91). We measured IgG by enzyme-linked immunosorbent assay and assessed functional antibody activity by a standardized opsonophagocytosis assay, reported as a killing index (OPK). We determined differences in IgG and OPK between vaccine groups at 1 and 2 years. Results. Relative to PPSV23, PCV7 induced greater OPK at both 1 and 2 years for 6 of 7 serotypes (not 19F). This response was statistically greater for 5 of 7 serotypes at 1 year and 4 of 7 at 2 years. Comparable differences in IgG were observed but were less often statistically significant. Despite meeting Centers for Disease Control and Prevention criteria for PPSV23 administration, almost 50% of individuals had never been vaccinated. No differences in the frequency of acute exacerbations, pneumonia, or hospitalization were observed. Conclusions. PCV7 induces a greater functional antibody response than PPSV23 in patients with COPD that persists for 2 years after vaccination. This superior functional response supports testing of conjugate vaccination in studies examining clinical end points. Clinical Trials Registration: NCT00457977. PMID:22652582

  2. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide

    PubMed Central

    Ares, Miguel A.; Fernández-Vázquez, José L.; Rosales-Reyes, Roberto; Jarillo-Quijada, Ma. Dolores; von Bargen, Kristine; Torres, Javier; González-y-Merchand, Jorge A.; Alcántar-Curiel, María D.; De la Cruz, Miguel A.

    2016-01-01

    Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae. PMID:26904512

  3. Pneumococcal Polysaccharide Vaccine

    MedlinePlus

    Pneumococcal polysaccharide vaccine (PPSV)Treatment of pneumococcal infections with penicillin and other drugs used to be more effective. But ... the disease, through vaccination, even more important. Pneumococcal polysaccharide vaccine (PPSV) protects against 23 types of pneumococcal ...

  4. Enzymatic Modifications of Polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polysaccharides are often modified chemically in order to improve its properties or to impart specific characteristics. Indeed quite a few commercial products are based on modified polysaccharides. In this talk, I shall describe a new set of modified polysaccharides based on enzymatic reactions. ...

  5. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc.

    PubMed

    Basuvaraj, Mahendran; Fein, Jared; Liss, Steven N

    2015-10-01

    A full-scale (FS) activated sludge system treating wastewater from a meat rendering plant with a long history of sludge management problems (pin-point flocs; >80% of floc <50 μm diameter; poor settling) was the focus of a study that entailed characterization of floc properties. This was coupled with parallel well-controlled lab-scale (LS) sequencing batch reactors (SBRs) treating the same wastewater and operated continuously over 1.5 years. Distinct differences in the proportion of proteins and polysaccharides associated with extracellular polymeric substances (EPS) were observed when comparing the properties of flocs from the FS and the LB systems. Further differences in the proportion of tightly bound (TB) and loosely bound (LB) fractions of EPS were also observed for flocs derived from conditions where differences in settling and dewatering properties of flocs occurred (i.e. FS and LS systems). FS flocs contained higher levels of EPS along with a higher proportion of LB than TB EPS, and possessing characteristics associated with non-filamentous bulking (SVI >150 mL/g). Floc formed in the LS system, following inoculation from sludge taken from the FS system, was markedly larger in size (>70% of floc >300 μm diameter), spherical in shape, compact and firm, and appeared to be granular in form. Flocs formed in the LS system, when an anoxic phase was introduced into the react stage of the SBR cycle, were found to be more hydrophobic and contained more TB and less loosely bound (LB) EPS when compared to the FS floc. TB-EPS contained a greater amount of protein, whereas the polysaccharide content of LB-EPS was larger. Protein was predominantly localized in the core region of granular flocs where cells were compactly packed. When assessing the operating conditions of the FS and LS systems parameters that appear to impact the floc properties and the transition to a granular form include dissolved oxygen (DO) concentration and food to microorganism (F/M) ratio. PMID

  6. Astragalus polysaccharide upregulates hepcidin and reduces iron overload in mice via activation of p38 mitogen-activated protein kinase.

    PubMed

    Ren, Feng; Qian, Xin-Hua; Qian, Xin-Lai

    2016-03-25

    Thalassemia is a genetic disease characterized by iron overload which is a major detrimental factor contributing to mortality and organ damage. The hepcidin secreted by liver plays an essential role in orchestrating iron metabolism. Lowering iron load in thalassemia patients by means of increasing hepcidin might be a therapeutic strategy. In this study, we first found that astragalus polysaccharide (APS) significantly increased hepcidin expression in HepG2 and L-02 cell lines originating from hepatocytes and mice liver, respectively. Following treatment with APS, the iron concentrations in serum, liver, spleen, and heart were significantly reduced in comparison to saline treated control mice. In further experiments, upregulation of interleukin-6 (IL-6) and enhanced p38 MAPK phosphorylation were detected in APS treated cells and mice, and as documented in previous studies, IL-6 and P38 MAPK phosphorylation are involved in the regulation of hepcidin expression. We also found that the effects of APS on upregulating hepcidin and IL-6 expressions could be antagonized by pretreatment with SB203580, an inhibitor of p38 MAPK signaling. These findings suggest that activation of p38 MAPK and release of IL-6 might mediate induction of hepcidin by APS. It is concluded that APS might have therapeutic implications in patients with iron overload, especially for thalassemia patients. PMID:26915800

  7. Development of a conjugate vaccine against invasive pneumococcal disease based on capsular polysaccharides coupled with PspA/family 1 protein of Streptococcus pneumoniae.

    PubMed

    Lin, Haiying; Peng, Yonghui; Lin, ZiLin; Zhang, Shuangling; Guo, Yanghao

    2015-01-01

    The efforts were focused on exploring alternative pneumococcal vaccine strategies, aimed at addressing the shortcomings of existing formulations, without compromising efficacy. Our strategy involved the use of the carrier protein, pneumococcal surface protein A (PspA), conjugated with capsular polysaccharides (CPS), to provide effective and non-serotype-dependent protection. In this study, we generated a stable Escherichia coli construct expressing functional PspA from a capsular serotype 6B strain and confirmed it belonging to family 1, which was conjugated with CPS. The distribution of anti-CPS antibody response was almost completely of IgG2a subclass followed by IgG3 and low level of IgG1 subclass, but that of anti-PspA IgG subclass antibodies was almost equal IgG1 and IgG2a subclasses. Though PspA was less conspicuous on the surface of pneumococci than the capsule, the antibodies induced with CPS-rPspA conjugate possessed more accessibility to the surface of Streptococcus pneumoniae serotype 6B and 19F (the same family 1 PspA). By survival experiment, the result suggested that the level of cross-protection after immunized with the conjugate was more measurable within the same family 1. The CPS-rPspA conjugate not only induced CPS-specific protection but also provided PspA specific cross-protection. PMID:25959527

  8. Protein-bound Polysaccharide-K Inhibits Hedgehog Signaling Through Down-regulation of MAML3 and RBPJ Transcription Under Hypoxia, Suppressing the Malignant Phenotype in Pancreatic Cancer.

    PubMed

    Yamasaki, Akio; Onishi, Hideya; Imaizumi, Akira; Kawamoto, Makoto; Fujimura, Akiko; Oyama, Yasuhiro; Katano, Mitsuo

    2016-08-01

    Hedgehog signaling is activated in pancreatic cancer and could be a therapeutic target. We previously demonstrated that recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and mastermind-like 3 (MAML3) contribute to the hypoxia-induced up-regulation of Smoothened (SMO) transcription. We have also shown that protein-bound polysaccharide-K (PSK) could be effective for refractory pancreatic cancer that down-regulates SMO transcription under hypoxia. In this study, we evaluated whether the anticancer mechanism of PSK involves inhibiting RBPJ and MAML3 expression under hypoxia. PSK reduced SMO, MAML3 and RBPJ expression in pancreatic cancer cells under hypoxia. PSK also blocked RBPJ-induced invasiveness under hypoxia by inhibiting matrix metalloproteinase expression. Lastly, we showed that PSK attenuated RBPJ-induced proliferation both in vitro and in vivo. These results suggest that PSK suppresses Hedgehog signaling through down-regulation of MAML3 and RBPJ transcription under hypoxia, inhibiting the induction of a malignant phenotype in pancreatic cancer. Our results may lead to development of new treatments for refractory pancreatic cancer using PSK as a Hedgehog inhibitor. PMID:27466498

  9. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions

    PubMed Central

    Aachmann, Finn L.; Sørlie, Morten; Skjåk-Bræk, Gudmund; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2012-01-01

    Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu2+ (Kd = 55 nM; from isothermal titration calorimetry) and higher preference for Cu1+ (Kd ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu2+ of 275 mV using a thermodynamic cycle). Strong binding of Cu1+ was also reflected in a reduction in the pKa values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a 2H/1H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. PMID:23112164

  10. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions.

    PubMed

    Aachmann, Finn L; Sørlie, Morten; Skjåk-Bræk, Gudmund; Eijsink, Vincent G H; Vaaje-Kolstad, Gustav

    2012-11-13

    Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu(2+) (K(d) = 55 nM; from isothermal titration calorimetry) and higher preference for Cu(1+) (K(d) ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu(2+) of 275 mV using a thermodynamic cycle). Strong binding of Cu(1+) was also reflected in a reduction in the pK(a) values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a (2)H/(1)H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. PMID:23112164

  11. Bactericidal antibody responses of juvenile rhesus monkeys immunized with group B Neisseria meningitidis capsular polysaccharide-protein conjugate vaccines.

    PubMed

    Zollinger, W D; Moran, E E; Devi, S J; Frasch, C E

    1997-03-01

    Reports on the bactericidal activities of antibodies to group B Neisseria meningitidis capsular polysaccharide (B PS) are conflicting. Using three different complement sources, we analyzed the bactericidal activities of sera of juvenile rhesus monkeys immunized with five conjugate vaccines of B PS synthesized by different schemes, an Escherichia coli K92 conjugate, and a noncovalent complex of B PS with group B meningococcal outer membrane vesicles (B+OMV) (S. J. N. Devi, W. D. Zollinger, P. J. Snoy, J. Y. Tai, P. Costantini, F. Norelli, R. Rappuoli, and C. E. Frasch, Infect. Immun. 65:1045-1052, 1997). With rabbit complement, nearly all preimmune sera showed relatively high bactericidal titers, and all vaccines, except the K92 conjugate, induced a fourfold or greater increase in bactericidal titers in most of the monkeys vaccinated. In contrast, with human complement, most prevaccination sera showed no bactericidal activity and in most of the vaccine groups, little or no increase in bactericidal titer was observed. However, the covalent conjugation of P BS and OMV (B-OMV) administered with and without the Ribi adjuvant induced relatively high bactericidal titers which persisted up to 30 weeks. An analysis of the specificities of bactericidal antibodies revealed that absorption with E. coli K1 cells did not change the bactericidal titer with human complement but reduced the titers observed with the rabbit and monkey complements. A significant increase in anti-lipopolysaccharide (LPS) antibodies was elicited by the B-OMV conjugates, and nearly all of the bactericidal activity with human complement could be inhibited with the purified group B meningococcal L3,7,8 LPS. B-OMV covalently coupled via adipic acid dihydrazide elicited significantly elevated levels (P < or = 0.02) of anti-OMV antibodies compared to those of the noncovalently complexed B+OMV. An initial small-scale evaluation of B PS conjugates in adult human males appears feasible, with careful monitoring

  12. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  13. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    PubMed

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives. PMID:27243766

  14. Protective effect of a protein-bound polysaccharide, PSK, on CLP-induced sepsis in mice transplanted orthotopically with colon tumor.

    PubMed

    Ohmura, Yoshio; Matsunaga, Kenichi; Suzuki, Tatsuo

    2006-01-01

    We investigated the effects of a protein-bound polysaccharide, PSK, on the resistance of tumor-bearing mice against sepsis induced by cecal ligation and puncture (CLP). (a) In BALB/c mice that had received intracecal transplantation of colon 26 (C26) tumor, CLP with a 21-gauge needle significantly shortened the survival time, compared with that of non-tumor-bearing mice. Oral administration of PSK to such mice resulted in a significant prolongation of the survival time and increase of the survival rates. The effects were dependent on the timing of PSK administration and the dose. (b) CLP significantly increased the IL-10 level in serum, the IL-10 gene expression by spleen cells, the number of IL-10-producing CD4-positive T cells, and the productivity of IL-10 by spleen of tumor-bearing mice compared with that of non-tumor-bearing mice. PSK administration to such mice suppressed the increase. Further, PSK prevented the reduction of gene expression of IFN-gamma and the number of IFN-gamma-producing CD4-positive T cells and IFN-gamma productivity by spleen cells of tumor-bearing CLP-treated mice. (c) Treatment with anti-IFN-gamma monoclonal antibody before CLP significantly reduced the effects of PSK. These findings suggest that the protective effect of PSK on the CLP-induced sepsis in mice transplanted orthotopically with C26 tumor is possibly mediated by suppression of IL-10 and promotion of IFN-gamma. PMID:16369184

  15. A Synthetic Disaccharide Analogue from Neisseria meningitidis A Capsular Polysaccharide Stimulates Immune Cell Responses and Induces Immunoglobulin G (IgG) Production in Mice When Protein-Conjugated.

    PubMed

    Fallarini, Silvia; Buzzi, Benedetta; Giovarruscio, Sara; Polito, Laura; Brogioni, Giulia; Tontini, Marta; Berti, Francesco; Adamo, Roberto; Lay, Luigi; Lombardi, Grazia

    2015-10-01

    Some new phosphonoester-linked oligomers, stabilized analogues of the corresponding phosphate-bridged oligomers of Neisseria meningitidis A (MenA) capsular polysaccharide (CPS), were conjugated to human serum albumin (HSA), as a protein carrier model, and studied for immunological activities. We determined (i) in vitro, their biocompatibility (CAM test) and activity in inducing both T cell proliferation (CFSE method) and IL-2 release (ELISA), and (ii) in vivo, their ability to stimulate specific IgG antibody production (ELISA). All HSA-conjugated compounds induce T cell proliferation (40% of proliferation at 10(2) μM), whereas only the phosphonodisaccharide was effective (28% of proliferation at 10(2) μM) among the unconjugated forms. IL-2 release confirmed these results. In addition, the HSA-conjugated showed in vivo the capacity of eliciting the production of specific IgG antibodies. In conclusion, we obtained novel biocompatible, water-stable, and immunoactive MenA CPS analogues. A short disaccharide fragment showed the unusual behavior of triggering T cell proliferation in vitro. PMID:27623315

  16. Ultrasonic disruption of fungal mycelia for efficient recovery of polysaccharide-protein complexes from viscous fermentation broth of a medicinal fungus.

    PubMed

    Cheung, Yi-Ching; Liu, Xing-Xun; Wang, Wing-Qiang; Wu, Jian-Yong

    2015-01-01

    High-intensity ultrasound (US) was applied to facilitate the extraction of intracellular and extracellular polysaccharide-protein complexes (PSPs) from the viscous mycelial fermentation broth of a medicinal fungus Cordyceps sinensis Cs-HK1. The US treatment caused the disruption of fungal mycelia, a dramatic reduction of the apparent broth viscosity, and the release of intracellular products into the liquid medium. The degree of mycelium disruption and the rate of intracellular product release were dependent on US power intensity, treatment period and biomass concentration of broth. The extraction or release kinetics of total water-soluble products and PSPs (yield Y versus time t) under the effect of US was fitted closely to the Elovich model Y=Yo+Y1 lnt and parabolic model Y=Yo+Y1t(½), respectively. Another interesting effect of the US treatment was a notable increase in the antioxidant cytoprotective activity of PSP against H2O2 induced cell death. PMID:24889549

  17. Whey protein/polysaccharide-stabilized oil powders for topical application-release and transdermal delivery of salicylic acid from oil powders compared to redispersed powders.

    PubMed

    Kotzé, Magdalena; Otto, Anja; Jordaan, Anine; du Plessis, Jeanetta

    2015-08-01

    Oil-in-water (o/w) emulsions are commonly converted into solid-like powders in order to improve their physical and chemical stabilities. The aim of this study was to investigate whether whey protein/polysaccharide-stabilized o/w emulsions could be converted into stable oil powders by means of freeze-drying. Moreover, during this study, the effects of pH and polymer type on release and trans(dermal) delivery of salicylic acid, a model drug, from these oil powders were investigated and compared to those of the respective template emulsions and redispersed oil powders. Physical characterization of the various formulations was performed, such as droplet size analysis and oil leakage, and relationships drawn with regards to release and trans(dermal) delivery. The experimental outcomes revealed that the oil powders could be redispersed in water without changing the release characteristics of salicylic acid. pH and polymer type affected the release of salicylic acid from the oil powders, template emulsions, and redispersed powders similarly. Contrary, the transdermal delivery from the oil powders and from their respective redispersed oil powders was differently affected by pH and polymer type. It was hypothesized that the release had been influenced by the electrostatic interactions between salicylic acid and emulsifiers, whereas the transdermal performance could have been determined by the particle or aggregate sizes of the formulations. PMID:25573437

  18. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  19. Antitumor activity of mushroom polysaccharides: a review.

    PubMed

    Ren, Lu; Perera, Conrad; Hemar, Yacine

    2012-11-01

    Mushrooms were considered as a special delicacy by early civilizations and valued as a credible source of nutrients including considerable amounts of dietary fiber, minerals, and vitamins (in particularly, vitamin D). Mushrooms are also recognized as functional foods for their bioactive compounds offer huge beneficial impacts on human health. One of those potent bioactives is β-glucan, comprising a backbone of glucose residues linked by β-(1→3)-glycosidic bonds with attached β-(1→6) branch points, which exhibits antitumor and immunostimulating properties. The commercial pharmaceutical products from this polysaccharide source, such as schizophyllan, lentinan, grifolan, PSP (polysaccharide-peptide complex) and PSK (polysaccharide-protein complex), have shown evident clinical results. The immunomodulating action of mushroom polysaccharides is to stimulate natural killer cells, T-cells, B-cells, neutrophils, and macrophage dependent immune system responses via differing receptors involving dectin-1, the toll-like receptor-2 (a class of proteins that play a role in the immune system), scavengers and lactosylceramides. β-Glucans with various structures present distinct affinities toward these receptors to trigger different host responses. Basically, their antitumor abilities are influenced by the molecular mass, branching configuration, conformation, and chemical modification of the polysaccharides. This review aims to integrate the information regarding nutritional, chemical and biological aspects of polysaccharides in mushrooms, which will possibly be employed to elucidate the correlation between their structural features and biological functions. PMID:22865023

  20. Polysaccharides and Proteins Added to Flowing Drinking Water at Microgram-per-Liter Levels Promote the Formation of Biofilms Predominated by Bacteroidetes and Proteobacteria

    PubMed Central

    Sack, Eveline L. W.; van der Kooij, Dick

    2014-01-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter−1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter−1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm−2 day−1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm−2 day−1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might

  1. The TLR2 agonist in polysaccharide-K is a structurally distinct lipid which acts synergistically with the protein-bound β-glucan.

    PubMed

    Quayle, Kenneth; Coy, Catherine; Standish, Leanna; Lu, Hailing

    2015-04-01

    Protein-bound polysaccharide-K (Krestin; PSK) is a hot-water extract of Trametes versicolor with immune stimulatory activity. It has been used for the past 30 years and has demonstrated anti-tumor efficacy in multiple types of cancer. The ability of PSK to activate dendritic cells and T cells is dependent on its ability to stimulate Toll-like receptor 2 (TLR2), yet it remains unknown which structural component within PSK activates TLR2. The purpose of this study was to identify the TLR2 agonist within PSK and understand its role in the overall mechanism of PSK's immunogenic activity. TLR2 activity was eliminated by treatment with lipoprotein lipase but not by trypsin or lyticase. Rapid centrifugation of PSK can separate the fraction with TLR2 agonist activity from the soluble β-glucan fraction. To study the potential interaction between the β-glucan component and the lipid component, we labeled the soluble β-glucan with fluorescein. Uptake of the labeled β-glucan by J774A macrophages and JAWSII dendritic cells was inhibited by anti-Dectin-1 antibody but not by anti-TLR2 antibody, confirming that Dectin-1 is the receptor for β-glucan. Interestingly, pre-treatment of JAWSII cells with the TLR2-active lipid fraction significantly enhanced the uptake of the soluble β-glucan, indicating the synergy between the TLR2 agonist component and the β-glucan component. Altogether, these results present evidence that PSK has two active components-the well-characterized protein-bound β-glucan and a previously unreported lipid-which work synergistically via the Dectin-1 and TLR2 receptors. PMID:25510899

  2. Immunochemical studies of Shigella flexneri 2a and 6, and Shigella dysenteriae type 1 O-specific polysaccharide-core fragments and their protein conjugates as vaccine candidates

    PubMed Central

    Kubler-Kielb, Joanna; Vinogradov, Evgeny; Mocca, Christopher; Pozsgay, Vince; Coxon, Bruce; Robbins, John B.; Schneerson, Rachel

    2010-01-01

    There is no licensed vaccine for the prevention of shigellosis. Our approach to the development of Shigella vaccine is based on inducing serum IgG antibodies to the O-specific polysaccharide (O-SP) domain of their lipopolysaccharides (LPS). We have shown that low molecular mass O-SP-core (O-SPC) fragments isolated from Shigella sonnei LPS conjugated to proteins induced significantly higher antibody levels in mice than the full length O-SP conjugates. This finding is now extended to the O-SPC of S. flexneri 2a and 6, and S. dysenteriae type 1. The structures of O-SPC, containing core plus 1–4 O-SP repeat units (RU), were analyzed by NMR and mass spectroscopy. The first RUs attached to the cores of S. flexneri 2a and 6 LPS were different from the following RUs in their O-acetylation and/or glucosylation. Conjugates of core plus more than 1 RUs were necessary to induce LPS antibodies in mice. The resulting antibody levels were comparable to those induced by the full length O-SP conjugates. In S. dysenteriae type 1, the first RU was identical to the following RUs, with the exception that the GlcNAc was bound to the core in the β-configuration, while in all other RUs the GlcNAc was present in the α-configuration. In spite of this difference, conjugates of S. dysenteriae type 1 core with 1, 2, or 3 RUs induced LPS antibodies in mice with levels statistically higher than those of the full size O-SP conjugates. O-SPC conjugates are easy to prepare, characterize, and standardize, and their clinical evaluation is planned. PMID:20542498

  3. Rheological properties of binary and ternary protein-polysaccharide co-hydrogels and comparative release kinetics of salbutamol sulphate from their matrices.

    PubMed

    Saxena, Anita; Kaloti, Mandeep; Bohidar, H B

    2011-03-01

    Rheological properties of binary (AgarGelA and AgarGelB) and ternary (AgarGelAB and GelABAgar) co-hydrogels of agar (polysaccharide) with gelatin A and gelatin B (proteins) were studied to investigate their differential viscoelastic behavior. Two sets of rheological experiments, isochronal temperature and isothermal frequency sweep, were performed and the storage modulii, G' was measured which could be correlated to the gel strengths. Two separate peaks at 70°C and 35°C, corresponding to melting temperatures of agar and gelatin gels respectively, were obtained when derivative of G' with respect to temperature, dG'/dT was plotted against temperature which clearly showed the presence of two separate networks of gelatin and agar interconnected to each other. The results revealed that AgarGelAB was the strongest and AgarGelA was the weakest gel among all the gels studied. In order to see the effect of gel microstructure on drug encapsulation and release behavior, a model drug salbutamol was encapsulated in various gel matrices and the release of the same was seen in phosphate buffer pH 7.4, in simulated gastric fluid pH 1.2 (SGF) and in simulated intestinal fluid pH 6.8 (SIF) media. The drug release behavior universally followed sigmoidal kinetics invariant of gel composition. It is concluded that the hydrogel microstructure influenced the release behavior and best release, in all the three media, could be found with binary gel, AgarGelB, and ternary gel, AgarGelAB. Finally, microstructure of these gels is proposed. PMID:21108963

  4. Protein-bound polysaccharide-K augments the anticancer effect of fluoropyrimidine derivatives possibly by lowering dihydropyrimidine dehydrogenase expression in gastrointestinal cancers.

    PubMed

    Mekata, Eiji; Murata, Satoshi; Sonoda, Hiromichi; Shimizu, Tomoharu; Umeda, Tomoko; Shiomi, Hisanori; Naka, Shigeyuki; Yamamoto, Hiroshi; Abe, Hajime; Edamatsu, Takeo; Fujieda, Ayako; Fujioka, Masaki; Wada, Tsutomu; Tani, Tohru

    2013-12-01

    Protein-bound polysaccharide-K (PSK) enhances the antitumor effect of anticancer drug when used clinically in combination with such drugs. PSK is known to act by immune-mediated mechanisms; however, the relationship between PSK and metabolic enzymes of anticancer drugs is unknown. We used the collagen gel droplet-embedded culture drug sensitivity test (CD-DST) clinically to evaluate the sensitivity of anticancer drugs. In the present study, we modified the CD-DST by adding peripheral blood mononuclear cells (PBMCs) (immuno-CD-DST) and examined the antitumor effect of PSK in combination with anticancer drugs. First, HCT116 human colon cancer cells were cultured with PSK and 5-fluorouracil (5-FU) or 5'-deoxy-5-fluorouridine (5'-DFUR) in the presence or absence of PBMCs, and the antiproliferative effects were compared. In the presence of PBMCs, PSK augmented the inhibitory effects of 5-FU and 5'-DFUR on HCT116 cell proliferation. Next, using human gastric cancer and colon cancer cell lines, the effects of PSK on mRNA expression of various metabolic enzymes of fluoropyrimidines: dihydropyrimidine dehydrogenase (DPD), thymidylate synthase, thymidine phosphorylase and orotate phosphoribosyl transferase, were examined by real-time PCR. PSK significantly enhanced DPD mRNA expression in all of the cancer cell lines tested, but not those of the other enzymes. Addition of IFN-α and TRAIL, cytokines known to inhibit DPD expression, to the cultures reduced DPD mRNA expression in the cancer cells. When PBMC samples collected from healthy volunteers were cultured with PSK, IFN-α mRNA expression increased in 3 of the 5 PBMC samples, while TRAIL mRNA expression was unchanged. The present results propose the possibility that PSK induces PBMCs to express IFN-α which inhibits DPD expression, and consequently augments the antitumor effect of 5-FU or 5'-DFUR. Immuno-CD-DST is useful for evaluating drugs with immunological mechanisms of action. PMID:24100378

  5. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models.

    PubMed

    Zhang, Xiaorui; Qi, Chunhui; Guo, Yan; Zhou, Wenxia; Zhang, Yongxiang

    2016-09-20

    Toll-like receptor (TLR) 4 is an important polysaccharide receptor; however, the relationships between the structures and biological activities of TLR4 and polysaccharides remain unknown. Many recent findings have revealed the primary structure of TLR4/MD-2-related polysaccharides, and several three-dimensional structure models of polysaccharide-binding proteins have been reported; and these models provide insights into the mechanisms through which polysaccharides interact with TLR4. In this review, we first discuss the origins of polysaccharides related to TLR4, including polysaccharides from higher plants, fungi, bacteria, algae, and animals. We then briefly describe the glucosidic bond types of TLR4-related heteroglycans and homoglycans and describe the typical molecular weights of TLR4-related polysaccharides. The primary structures and activity relationships of polysaccharides with TLR4/MD-2 are also discussed. Finally, based on the existing interaction models of LPS with TLR4/MD-2 and linear polysaccharides with proteins, we provide insights into the possible interaction models of polysaccharide ligands with TLR4/MD-2. To our knowledge, this review is the first to summarize the primary structures and activity relationships of TLR4-related polysaccharides and the possible mechanisms of interaction for TLR4 and TLR4-related polysaccharides. PMID:27261743

  6. Facile synthesis of multilayered polysaccharidic vesicles.

    PubMed

    Kwag, Dong Sup; Oh, Kyung Taek; Lee, Eun Seong

    2014-08-10

    In this study, we developed facile synthesis method of multilayered polysaccharidic vesicles (hereafter termed 'mPSVs') using polysaccharides such as starch, hyaluronate (HA), and glycol chitosan (GC) via simple chemistry and using enzymatic reactions among polysaccharides. The enzymatic degradation of the HA shell by hyaluronidase (HYAL) enzyme contributed to accelerate the release of protein/peptide from the mPSVs. The mPSVs containing folate ligand and apoptotic cell death-inducing D-(KLAKLAK)2 peptide were effectively accumulated in in vivo KB tumor cells, primarily owing to passive tumor penetration via the enhanced permeability and retention (EPR) effect and active targeting via specific binding to folate receptors expressed on KB tumor cells. These mPSVs resulted in a significant increase in the in vivo tumor inhibition. This vesicle system is expected to exhibit great potential as an advanced platform technology for biomedical applications involving small molecular drugs with protein/gene targets. PMID:24878178

  7. Comparative immunogenicity of conjugates composed of the Staphylococcus aureus type 8 capsular polysaccharide bound to carrier proteins by adipic acid dihydrazide or N-succinimidyl-3-(2-pyridyldithio)propionate.

    PubMed Central

    Fattom, A; Shiloach, J; Bryla, D; Fitzgerald, D; Pastan, I; Karakawa, W W; Robbins, J B; Schneerson, R

    1992-01-01

    Staphylococcus aureus type 8 capsular polysaccharide (CP) was conjugated either to diphtheria toxoid or to Pseudomonas aeruginosa recombinant exoprotein A by using adipic acid dihydrazide (ADH) or N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) as the joining reagent. The polysaccharide/protein ratios of these two pairs of conjugates were similar. The two synthetic schemes bound the linker to the carboxyls of the type 8 CP by carbodiimide-mediated condensation. ADH was bound to the carboxyls of the protein, whereas SPDP reacted with the amino groups of the protein. Intermolecular linking of the carrier protein, caused by the carbodiimide during the conjugation reaction with the type 8 CP derivative, probably accounts for the larger size of the conjugates formed with ADH compared with those formed with SPDP. Both conjugates synthesized with ADH elicited higher levels of CP antibodies, especially after the first immunization, than did those prepared with SPDP. Similar levels of exoprotein A antibodies were elicited by both conjugates. Higher levels of diphtheria toxoid antibodies were elicited by the conjugate prepared with SPDP than by the one prepared with ADH. The basis for the differences in the immunogenicities of these two pairs of S. aureus type 8 CP conjugates is discussed. PMID:1730492

  8. Comparative immunogenicity of conjugates composed of the Staphylococcus aureus type 8 capsular polysaccharide bound to carrier proteins by adipic acid dihydrazide or N-succinimidyl-3-(2-pyridyldithio)propionate.

    PubMed

    Fattom, A; Shiloach, J; Bryla, D; Fitzgerald, D; Pastan, I; Karakawa, W W; Robbins, J B; Schneerson, R

    1992-02-01

    Staphylococcus aureus type 8 capsular polysaccharide (CP) was conjugated either to diphtheria toxoid or to Pseudomonas aeruginosa recombinant exoprotein A by using adipic acid dihydrazide (ADH) or N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) as the joining reagent. The polysaccharide/protein ratios of these two pairs of conjugates were similar. The two synthetic schemes bound the linker to the carboxyls of the type 8 CP by carbodiimide-mediated condensation. ADH was bound to the carboxyls of the protein, whereas SPDP reacted with the amino groups of the protein. Intermolecular linking of the carrier protein, caused by the carbodiimide during the conjugation reaction with the type 8 CP derivative, probably accounts for the larger size of the conjugates formed with ADH compared with those formed with SPDP. Both conjugates synthesized with ADH elicited higher levels of CP antibodies, especially after the first immunization, than did those prepared with SPDP. Similar levels of exoprotein A antibodies were elicited by both conjugates. Higher levels of diphtheria toxoid antibodies were elicited by the conjugate prepared with SPDP than by the one prepared with ADH. The basis for the differences in the immunogenicities of these two pairs of S. aureus type 8 CP conjugates is discussed. PMID:1730492

  9. Tumor necrosis factor-alpha and acute phase proteins in early pregnant ewes after challenge with peptidoglycan-polysaccharide (PG-PS).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial infection shortly after breeding interferes with establishment and progression of pregnancy. This is particularly relevant in cases of Gram-positive bacterial infection wherein it can be demonstrated that the injection of peptidoglycan-polysaccharide (PG-PS), a component of Gram-positive ...

  10. Escherichia hermannii (ATCC 33651) polysaccharide-protein conjugates: comparison of two conjugation methods for the induction of humoral responses in mice.

    PubMed

    Jacques, I; Dubray, G

    1991-08-01

    Escherichia hermannii (ATCC 33651) LPS O-polysaccharide was covalently linked to a carrier (bovine serum albumin) to form conjugates either directly or with a spacer arm (adipic acid dihydrazide). The immunogenicity of both conjugates at three different doses was tested in mice. Antibodies to the conjugate were produced and were shown to react with free lipopolysaccharide. The directly-coupled conjugate was found to be more immunogenic than the indirect one (i.e. lower dose necessary for a similar response). The antibody response elicited by the directly coupled conjugate (1 microgram/animal) began at 21 days and was sustained for at least 4 months. The mouse model described here may be applicable to the testing of other conjugates composed of bacterial cell wall polysaccharides and LPS O-chains. PMID:1771969

  11. Epitope specificity of rabbit immunoglobulin G (IgG) elicited by pneumococcal type 23F synthetic oligosaccharide- and native polysaccharide-protein conjugate vaccines: comparison with human anti-polysaccharide 23F IgG.

    PubMed Central

    Alonso de Velasco, E; Verheul, A F; van Steijn, A M; Dekker, H A; Feldman, R G; Fernández, I M; Kamerling, J P; Vliegenthart, J F; Verhoef, J; Snippe, H

    1994-01-01

    Streptococcus pneumoniae type 23F capsular polysaccharide (PS23F) consitss of a repeating glycerol-phosphorylated branched tetrasaccharide. The immunogenicities of the following related antigens were investigated: (i) a synthetic trisaccharide comprising the backbone of one repeating unit, (ii) a synthetic tetrasaccharide comprising the complete repeating unit, and (iii) native PS23F (all three conjugated to keyhole limpet hemocyanin [KLH]) and (iv) formalin-killed S. pneumoniae 23F. All antigens except the trisaccharide-KLH conjugate induced relatively high anti-PS23F antibody levels in rabbits. The epitope specificity of such antibodies was then studied by means of an inhibition immunoassay. The alpha(1-->2)-linked L-rhamnose branch was shown to be immunodominant for immunoglobulin G (IgG) induced by tetrasaccharide-KLH, PS23F-KLH, and killed S. pneumoniae 23F: in most sera L-rhamnose totally inhibited the binding of IgG to PS23F. Thus, there appears to be no major difference in epitope specificity between IgG induced by tetrasaccharide-KLH and that induced by antigens containing the polymeric form of PS23F. Human anti-PS23F IgG (either vaccine induced or naturally acquired) had a different epitope specificity: none of the inhibitors used, including L-rhamnose and tetrasaccharide-KLH, exhibited substantial inhibition. These observations suggest that the epitope recognized by human IgG on PS23F is larger than the epitope recognized by rabbit IgG. Both human and rabbit antisera efficiently opsonized type 23F pneumococci, as measured in a phagocytosis assay using human polymorphonuclear leukocytes. PMID:7509318

  12. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.

    PubMed

    Limoli, Dominique H; Jones, Christopher J; Wozniak, Daniel J

    2015-06-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074

  13. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

    PubMed Central

    Limoli, Dominique H.; Jones, Christopher J.; Wozniak, Daniel J.

    2015-01-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074

  14. Use of fluorescent ANTS to examine the BBB-permeability of polysaccharide

    PubMed Central

    Christopher, Kevin; Makani, Vishruti; Judy, Wesley; Lee, Erica; Chiaia, Nicolas; Kim, Dong Shik; Park, Joshua

    2015-01-01

    Recently, some polysaccharides showed therapeutic potentials for the treatment of neurodegenerative diseases while the most important property, their permeability to the blood brain barrier (BBB) that sheathes the brain and spinal cord, is not yet determined. The determination has been delayed by the difficulty in tracking a target polysaccharide among endogenous polysaccharides in animal. We developed an easy way to examine the BBB-permeability and, possibly, tissue distribution of a target polysaccharide in animal. We tagged a polysaccharide with fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt (ANTS) for tracking. We also developed a simple method to separate ANTS-tagged polysaccharide from unconjugated free ANTS using 75% ethanol. After ANTS-polysaccharide was intra-nasally administered into animals, we could quantify the amounts of ANTS-polysaccharide in the brain and the serum by fluorocytometry. We could also separate free ANTS-polysaccharide from serum proteins using trichloroacetic acid (TCA) and 75% ethanol. Our method will help to track a polysaccharide in animal easily. • ANTS-labeling is less tedious than but as powerful as radiolabeling for tracking a target polysaccharide in animal. • Our simple method can separate structurally intact ANTS-polysaccharide from animal serum and tissues. • This method is good for the fluorometry-based measurement of ANTS-conjugated macromolecules in tissues. PMID:25914873

  15. Synthetic trimer and tetramer of 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys.

    PubMed Central

    Peeters, C C; Evenberg, D; Hoogerhout, P; Käyhty, H; Saarinen, L; van Boeckel, C A; van der Marel, G A; van Boom, J H; Poolman, J T

    1992-01-01

    Synthetic oligosaccharides derived from the capsular polysaccharide (PRP) of Haemophilus influenzae type b were conjugated to carrier proteins via a thioether linkage. Conjugates were made of trimeric and tetrameric ribose-ribitol-phosphate and tetanus toxoid or diphtheria toxin. All conjugates elicited anti-PRP antibody responses with an increasing immunoglobulin G/immunoglobulin M ratio in adult mice and monkeys. Trimer conjugates elicited lower anti-PRP antibody responses compared with tetramer conjugates. Adult monkeys responded equally well to the tetrameric oligosaccharide-tetanus toxoid conjugate as to the oligosaccharide-CRM197 conjugate (HbOC), which elicits protective levels of serum antibodies in human infants after two or three injections. PMID:1563770

  16. Immunogenicity of meningococcal B polysaccharide conjugated to tetanus toxoid or CRM197 via adipic acid dihydrazide.

    PubMed

    Bartoloni, A; Norelli, F; Ceccarini, C; Rappuoli, R; Costantino, P

    1995-04-01

    Vaccine development against Group B Neisseria meningitidis is complicated by the nature of the capsular polysaccharide, which is alpha 2-8-linked poly-sialic acid, identical in structure to the poly-sialic acid found in many mammalian tissues during development. To test the feasibility of a vaccine based on this polysaccharide, we synthesized several conjugates of meningococcal B polysaccharide linked to a carrier protein (tetanus toxoid or diphtheria CRM197), via an adipic acid dihydrazide (ADH) spacer. All conjugates induced a strong immune response. However, most of the antibodies were not directed against the Meningococcus B polysaccharide and could not be inhibited by the purified polysaccharide alone. Further investigations showed that the antibodies recognized an epitope composed by the junction between the spacer and the polysaccharide and protein, that is not present in the native polysaccharide and is generated during the coupling reaction. This epitope becomes immunodominant with respect to the poorly immunogenic polysaccharide. While the majority of the immune response is directed against the above epitope, the conjugates induced also an immune response against the Meningococcus B polysaccharide. The anti-Meningococcus B antibodies elicited are of the IgM and IgG class and are inhibitable by the polysaccharide. Moreover, they are bactericidal, thus suggesting that they would induce protection against disease. PMID:7543714

  17. Antioxidant activities of five polysaccharides from Inonotus obliquus.

    PubMed

    Huang, Sheng-quan; Ding, Shaodong; Fan, Liuping

    2012-06-01

    Five polysaccharides (IOP1b, IOP2a, IOP2c, IOP3a and IOP4) were isolated and purified from Inonotus obliquus by DEAE-Sepharose fast flow and SepharoseCL-6B column chromatography. Their chemical and physical characteristics were determined and antioxidant activities were investigated on the basis of hydroxyl radical assay, superoxide radical assay and ferric-reducing antioxidant power assay. The results showed that five polysaccharides exhibited antioxidant activities, and the higher content of uronic acid and proteinous substances, the stronger antioxidant activities of polysaccharides. Besides, molecular weights of polysaccharides also influence their antioxidant activities. IOP3a and IOP4 showed higher antioxidant properties than IOP1b, IOP2a and IOP2c. PMID:22484729

  18. AMP-activated protein kinase mediates insulin-like and lipo-mobilising effects of β-glucan-rich polysaccharides isolated from Pleurotus sajor-caju (Fr.), Singer mushroom, in 3T3-L1 cells.

    PubMed

    Kanagasabapathy, G; Chua, K H; Malek, S N A; Vikineswary, S; Kuppusamy, U R

    2014-02-15

    Mushrooms have been used to treat various diseases for thousands of years. In the present study, the effects of Pleurotus sajor-caju mushroom on lipogenesis, lipolysis and oxidative stress in 3T3-L1 cells were investigated. The β-glucan-rich polysaccharides (GE) from P. sajor-caju stimulated lipogenesis and lipolysis but attenuated protein carbonyl and lipid hydroperoxide levels in 3T3-L1 cells. This extract caused an increase in the expression of 5'-AMP-activated protein kinase subunit γ-2 (PKRAG2) and 5'-AMP-activated protein kinase subunit γ-3 (PKRAG3) when compared to control (untreated) cells. Moreover, GE induced the expressions of hormone-sensitive lipase, adipose triglyceride lipase enzymes, leptin, adiponectin and glucose transporter-4 in 3T3-L1 cells which may have contributed to the lipolytic and insulin-like activities observed in this study. These findings suggest that GE is a novel AMPK activator that may be valuable in the formulation of nutraceuticals and functional food for the prevention and treatment of diabetes mellitus. PMID:24128468

  19. Amine treatment of polysaccharide solution

    SciTech Connect

    Shay, L. K.; Reiter, S. E.

    1984-11-27

    A thermostable, viscous xanthan polysaccharide solution prepared by the process of heating a xanthan polysaccharide solution in the presence of at least one C/sub 1/ to C/sub 10/ alkyl or C/sub 3/ to C/sub 10/ cycloalkyl substituted primary or secondary mono- or diamine having an upper limit of a total of 15 carbon atoms under conditions sufficient to form a thermostable, viscous xanthan polysaccharide solution. The thermostable, viscous xanthan polysaccharide solution may be used as a mobility buffer in a process for the enhanced recovery of oil.

  20. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS

    SciTech Connect

    KELLY, ROBERT M.

    2008-12-22

    This project focused on the microbial physiology and biochemistry of heterotrophic hyperthermophiles with respect to mechanisms by which these organisms process polypeptides and polysaccharides under normal and stressed conditions. Emphasis is on two model organisms, for which completed genome sequences are available: Pyrococcus furiosus (growth Topt of 98°C), an archaeon, and Thermotoga maritima (growth Topt of 80°C), a bacterium. Both organisms are obligately anaerobic heterotrophs that reduce sulfur facultatively. Whole genome cDNA spotted microarrays were used to follow transcriptional response to a variety of environmental conditions in order to identify genes encoding proteins involved in the acquisition, synthesis, processing and utilization of polypeptides and polysaccharides. This project provided new insights into the physiological aspects of hyperthermophiles as these relate to microbial biochemistry and biological function in high temperature habitats. The capacity of these microorganisms to produce biohydrogen from renewable feedstocks makes them important for future efforts to develop biofuels.

  1. Effect of brefeldin A on the structure of the Golgi apparatus and on the synthesis and secretion of proteins and polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells.

    PubMed Central

    Driouich, A; Zhang, G F; Staehelin, L A

    1993-01-01

    Brefeldin A (BFA), a specific inhibitor of Golgi-mediated secretion in animal cells, has been used to study the organization of the secretory pathway and the function of the Golgi apparatus in plant cells. To this end, we have employed a combination of electron microscopical, immunocytochemical, and biochemical techniques to investigate the effects of this drug on the architecture of the Golgi apparatus as well as on the secretion of proteins and complex cell wall polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. We have used 2.5 and 7.5 micrograms/mL of BFA, which is comparable to the 1 to 10 micrograms/mL used in experiments with animal cells. Electron micrographs of high-pressure frozen and freeze-substituted cells show that although BFA causes swelling of the endoplasmic reticulum cisternae, unlike in animal cells, it does not induce the disassembly of sycamore maple Golgi stacks. Instead, BFA induces the formation of large clusters of Golgi stacks, an increase in the number of trans-like Golgi cisternae, and the accumulation in the cytoplasm of very dense vesicles that appear to be derived from trans Golgi cisternae. These vesicles contain large amounts of xyloglucan (XG), the major hemicellulosic cell wall polysaccharide, as shown by immunocytochemical labeling with anti-XG antibodies. All of these structural changes disappear within 120 min after removal of the drug. In vivo labeling experiments using [3H]leucine demonstrate that protein secretion into the culture medium, but not protein synthesis, is inhibited by approximately 80% in the presence of BFA. In contrast, the incorporation of [3H]fucose into N-linked glycoproteins, which occurs in trans-Golgi cisternae, appears to be affected to a greater extent than the incorporation of [3H]xylose, which has been localized to medial Golgi cisternae. BFA also affects secretion of complex polysaccharides as evidenced by the approximate 50% drop in incorporation of [3H]xylose and

  2. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities.

    PubMed

    Meng, Xin; Liang, Hebin; Luo, Lixin

    2016-04-01

    Mushrooms are popular folk medicines that have attracted considerable attention because of their efficient antitumor activities. This review covers existing research achievements on the mechanisms of isolated mushroom polysaccharides, particularly (1→3)-β-D-glucans. Our review also describes the function in modulating the immune system and potential tumor-inhibitory effects of polysaccharides. The antitumor mechanisms of mushroom polysaccharides are mediated by stimulated T cells or other immune cells. These polysaccharides are able to trigger various cellular responses, such as the expression of cytokines and nitric oxide. Most polysaccharides could bind other conjugate molecules, such as polypeptides and proteins, whose conjugation always possess strong antitumor activities. The purpose of this review is to summarize available information, and to reflect the present situation of polysaccharide research filed with a view for future direction. PMID:26974354

  3. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu.

    PubMed

    Zhang, Tian-Tian; Lu, Chuan-Li; Jiang, Jian-Guo; Wang, Min; Wang, Dong-Mei; Zhu, Wei

    2015-10-01

    Polysaccharides of Rubus chingii Hu fruit and leaf were extracted to compare their antioxidant, anti-inflammatory, and anticancer activities against breast cancer cells MCF-7 and liver cancer cells Bel-7402. Results showed that all the tested bioactivities of polysaccharides from leaf (L-Ps) were better than those of polysaccharides from fruit (F-Ps). Response surface methodology was then used to optimize the extraction conditions of polysaccharides from leaf. Additionally, polysaccharides from fruit and leaf were characterized and their contents of total sugars, proteins and uronic acid were compared. It was found that polysaccharides from fruit and leaf were similar in IR and UV absorption, but significantly different in contents of total sugars, protein and uronic acid. Their elution profiles of DEAE-Sepharose fast flow column were different too. The main peak of polysaccharides from fruit was eluted with 0.3 mol/l NaCl solution and the main peak of polysaccharides from leaf was eluted with deionized water. The differences between the two polysaccharides may be responsible for their differences in bioactivities. Further studies are required to explore their complete structural characteristics, structure-activity relationship and the mechanism of their activities. PMID:26076631

  4. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  5. Characterization of Brucella polysaccharide B.

    PubMed Central

    Bundle, D R; Cherwonogrodzky, J W; Perry, M B

    1988-01-01

    Polysaccharide B was extracted from Brucella melitensis 16M and from a rough strain of Brucella abortus 45/20 by autoclaving or trichloroacetic acid extraction of whole cells and by a new method involving mild leaching of cells. The material obtained by either of the established procedures was contaminated by O polysaccharide. The new leaching protocol eliminated this impurity and provided a pure glucan, which was regarded as polysaccharide B. This polysaccharide was found by high-performance liquid chromatography separations, chemical composition, methylation, and two-dimensional homo- and heteronuclear magnetic resonance experiments to be a family of nonreducing cyclic 1,2-linked polymers of beta-D-glucopyranosyl residues. The degree of polymerization varied between 17 and 24. Polysaccharide B was essentially identical to cyclic D-glucans produced by Rhizobia, Agrobacteria, and other bacterial species. Pure polysaccharide B did not precipitate with Brucella anti-A or anti-M serum and did not inhibit the serological reaction of Brucella A or M antigen with either bovine or murine monoclonal Brucella anti-A or anti-M serum. Previously described serological reactions of polysaccharide B preparations with Brucella anti-A and anti-M sera are related in this study to the presence in crude extracts of contaminants with the antigenic properties of Brucella lipopolysaccharide O polysaccharides. PMID:3356461

  6. Polysaccharides of Type 6 Klebsiella

    PubMed Central

    Gormus, B. J.; Wheat, R. W.

    1971-01-01

    Water-extractable type 6 Klebsiella antigens were separated into a type 6-specific acidic polysaccharide and a neutral polysaccharide. The neutral polymer was devoid of type 6 activity although it was serologically active. The type 6-specific polymer contained fucose, glucose, and mannose, and pyruvic, galacturonic, and possibly glucuronic acids. The neutral polymer contained glucose, galactose, and mannose. PMID:5003178

  7. Synthesis of the Repeating Unit of Capsular Polysaccharide Staphylococcus aureus Type 5 To Study Chemical Activation and Conjugation of Native CP5.

    PubMed

    Yasomanee, Jagodige P; Visansirikul, Satsawat; Pornsuriyasak, Papapida; Thompson, Melissa; Kolodziej, Stephen A; Demchenko, Alexei V

    2016-07-15

    The chemical synthesis of the repeating unit of S. aureus capsular polysaccharide type 5 equipped with capping methyl groups at the points of propagation of the polysaccharide sequence is described. This model compound was designed to study activation of the full length polysaccharide for conjugation to a carrier protein. PMID:27305525

  8. Polysaccharides and bacterial plugging

    SciTech Connect

    Fogler, H.S.

    1991-11-01

    Before any successful application of Microbial Enhanced Oil Recovery process can be realized, an understanding of the cells' transport and retentive mechanisms in porous media is needed. Cell transport differs from particle transport in their ability to produce polysaccharides, which are used by cells to adhere to surfaces. Cell injection experiments have been conducted using Leuconostoc cells to illustrate the importance of cellular polysaccharide production as a transport mechanism that hinders cell movement and plugs porous media. Kinetic studies of the Leuconostoc cells, carried out to further understand the plugging rates of porous media, have shown that the cells' growth rates are approximately equal when provided with monosaccharide (glucose and fructose) or sucrose. The only difference in cell metabolism is the production of dextran when sucrose is supplied as a carbon source. Experimentally it has also been shown that the cells' growth rate is weakly dependent upon the sucrose concentration in the media, and strongly dependent upon the concentration of yeast extract. The synthesis of cellular dextran has been found to lag behind cell generation, thus indicating that the cells need to reach maturity before they are capable of expressing the detransucrase enzyme and synthesizing insoluble dextran. Dextran yields were found to be dependent upon the sucrose concentration in the media. 10 refs., 9 figs., 9 tabs.

  9. Why Were Polysaccharides Necessary?

    NASA Astrophysics Data System (ADS)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  10. Xylanase inhibitors bind to nonstarch polysaccharides.

    PubMed

    Fierens, Ellen; Gebruers, Kurt; Courtin, Christophe M; Delcour, Jan A

    2008-01-23

    This study is an in-depth investigation of the interaction between polysaccharides and the proteinaceous xylanase inhibitors, Triticum aestivum xylanase inhibitor (TAXI), xylanase inhibitor protein (XIP), and thaumatin-like xylanase inhibitor (TLXI). The binding affinities of all three known types of xylanase inhibitors from wheat are studied by measuring the residual xylanase inhibition activity after incubation of the inhibitors in the presence of different polysaccharides, such as beta-glucans and (arabino)xylans. The binding affinities of all three xylanase inhibitors for (arabino)xylans increased with a decreasing arabinose/xylose ratio (A/X ratio). This phenomenon was observed both with water-extractable and water-unextractable (arabino)xylans. The inhibitors also interacted with different soluble and insoluble beta-glucans. None of the inhibitors tested had the ability to hydrolyze the polysaccharides investigated. The present findings contribute to the unraveling of the function of xylanase inhibitors in nature and to the prediction of the effect of added xylanases in cereal-based biotechnological processes, such as bread making and gluten-starch separation. PMID:18092758

  11. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.

    PubMed

    Frandsen, Kristian E H; Simmons, Thomas J; Dupree, Paul; Poulsen, Jens-Christian N; Hemsworth, Glyn R; Ciano, Luisa; Johnston, Esther M; Tovborg, Morten; Johansen, Katja S; von Freiesleben, Pernille; Marmuse, Laurence; Fort, Sébastien; Cottaz, Sylvain; Driguez, Hugues; Henrissat, Bernard; Lenfant, Nicolas; Tuna, Floriana; Baldansuren, Amgalanbaatar; Davies, Gideon J; Lo Leggio, Leila; Walton, Paul H

    2016-04-01

    Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains. PMID:26928935

  12. [Effect of cultivation parameters on the composition of extracellular polysaccharide containing substances in bacterium Azospirillum brasilense].

    PubMed

    Konnova, S A; Fedonenko, Iu P; Makarov, O E; Ignatov, V V

    2003-01-01

    Maintenance of pH 7.0 during the fermentation period favors accumulation of high-molecular polysaccharide-containing components, the so-called lipopolysaccharide-protein and polysaccharide-lipid complexes, in the capsules and culture medium. Increased pH of the culture medium to 8.0 reduced the period of exponential growth and the yield of polysaccharide-containing complexes as compared to the optimal conditions. Maintenance of pH 5.5 suppressed the culture growth and polysaccharide production. The polysaccharide-lipid complexes obtained when pH was stabilized at the level of 7.0-8.0 had a relatively low molecular weight and contained only acidic polysaccharides. The use of potassium gluconate instead of sodium malate as a source of carbon in the culture medium changed the polysaccharide composition and increased the content of glucosamine, which increased the attraction of polysaccharides to wheat germ agglutinin. Prolongation of Azospirillum cultivation to five days introduced new glucose-containing polysaccharide components in the capsule. PMID:12942749

  13. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions.

    PubMed

    Thangam, Ramar; Sathuvan, Malairaj; Poongodi, Arasu; Suresh, Veeraperumal; Pazhanichamy, Kalailingam; Sivasubramanian, Srinivasan; Kanipandian, Nagarajan; Ganesan, Nalini; Rengasamy, Ramasamy; Thirumurugan, Ramasamy; Kannan, Soundarapandian

    2014-07-17

    Essential oils of Cymbopogon citratus were already reported to have wide ranging medical and industrial applications. However, information on polysaccharides from the plant and their anticancer activities are limited. In the present study, polysaccharides from C. citratus were extracted and fractionated by anion exchange and gel filtration chromatography. Two different polysaccharide fractions such as F1 and F2 were obtained, and these fractions were found to have distinct acidic polysaccharides as characterized by their molecular weight and sugar content. NMR spectral analysis revealed the presence of (1→4) linked b-d-Xylofuranose moiety in these polysaccharides. Using these polysaccharide fractions F1 and F2, anti-inflammatory and anticancer activities were evaluated against cancer cells in vitro and the mechanism of action of the polysaccharides in inducing apoptosis in cancer cells via intrinsic pathway was also proposed. Two different reproductive cancer cells such as Siha and LNCap were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation, changes in mitochondrial membrane potential, and profiles of gene and protein expression in response to treatment of cells by the polysaccharide fractions. These polysaccharide fractions exhibited potential cytotoxic and apoptotic effects on carcinoma cells, and they induced apoptosis in these cells through the events of up-regulation of caspase 3, down-regulation of bcl-2 family genes followed by cytochrome c release. PMID:24702929

  14. Induction of apoptosis and cell cycle arrest in A549 human lung adenocarcinoma cells by surface-capping selenium nanoparticles: an effect enhanced by polysaccharide-protein complexes from Polyporus rhinocerus.

    PubMed

    Wu, Hualian; Zhu, Huili; Li, Xiaoling; Liu, Zumei; Zheng, Wenjie; Chen, Tianfeng; Yu, Bo; Wong, Ka-Hing

    2013-10-16

    Surface-capping agents play key roles in cellular uptake and biological activity of functional nanomaterials. In the present study, functionalized selenium nanoparticles (SeNPs) have been successfully synthesized using Polyporus rhinocerus water-soluble polysaccharide-protein complexes (PRW) as the capping agent during the reduction of selenium salts. The acquired monodisperse, spherical PRW-SeNPs presented desirable size distribution and stability in the solution. Moreover, PRW surface decoration significantly enhanced the cellular uptake of SeNPs via endocytosis. Exposure to PRW-SeNPs significantly inhibited the growth of A549 cells through induction of apoptosis and G2/M phase arrest (IC50 = 4.06 ± 0.25 μM) supported by an increase of sub-G1 and G2/M phase cell populations, DNA fragmentation, and chromatin condensation. Caspase-3/8 activation induced by PRW-SeNPs indicated that the activation of death receptors was the main cause of PRW-SeNP-induced apoptosis. Collectively, the results suggest that it is highly efficient to use PRW as a surface decorator of SeNPs to enhance cellular uptake and anticancer efficacy, and the PRW-SeNPs are potential chemopreventive agents for lung cancer therapy. PMID:24053442

  15. A threading receptor for polysaccharides

    NASA Astrophysics Data System (ADS)

    Mooibroek, Tiddo J.; Casas-Solvas, Juan M.; Harniman, Robert L.; Renney, Charles M.; Carter, Tom S.; Crump, Matthew P.; Davis, Anthony P.

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (Ka up to 19,000 M-1), and is shown—by nuclear Overhauser effect spectroscopy—to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules.

  16. A threading receptor for polysaccharides.

    PubMed

    Mooibroek, Tiddo J; Casas-Solvas, Juan M; Harniman, Robert L; Renney, Charles M; Carter, Tom S; Crump, Matthew P; Davis, Anthony P

    2016-01-01

    Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (K(a) up to 19,000 M(-1)), and is shown--by nuclear Overhauser effect spectroscopy--to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules. PMID:26673266

  17. Quantitative high throughput analytics to support polysaccharide production process development.

    PubMed

    Noyes, Aaron; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Mukhopadhyay, Tarit

    2014-05-19

    The rapid development of purification processes for polysaccharide vaccines is constrained by a lack of analytical tools current technologies for the measurement of polysaccharide recovery and process-related impurity clearance are complex, time-consuming, and generally not amenable to high throughput process development (HTPD). HTPD is envisioned to be central to the improvement of existing polysaccharide manufacturing processes through the identification of critical process parameters that potentially impact the quality attributes of the vaccine and to the development of de novo processes for clinical candidates, across the spectrum of downstream processing. The availability of a fast and automated analytics platform will expand the scope, robustness, and evolution of Design of Experiment (DOE) studies. This paper details recent advances in improving the speed, throughput, and success of in-process analytics at the micro-scale. Two methods, based on modifications of existing procedures, are described for the rapid measurement of polysaccharide titre in microplates without the need for heating steps. A simplification of a commercial endotoxin assay is also described that features a single measurement at room temperature. These assays, along with existing assays for protein and nucleic acids are qualified for deployment in the high throughput screening of polysaccharide feedstreams. Assay accuracy, precision, robustness, interference, and ease of use are assessed and described. In combination, these assays are capable of measuring the product concentration and impurity profile of a microplate of 96 samples in less than one day. This body of work relies on the evaluation of a combination of commercially available and clinically relevant polysaccharides to ensure maximum versatility and reactivity of the final assay suite. Together, these advancements reduce overall process time by up to 30-fold and significantly reduce sample volume over current practices. The

  18. Depletion of complement has distinct effects on the primary and secondary antibody responses to a conjugate of pneumococcal serotype 14 capsular polysaccharide and a T-cell-dependent protein carrier.

    PubMed

    Test, Samuel T; Mitsuyoshi, Joyce K; Hu, Yong

    2005-01-01

    Complement activation plays a critical role in the immune response to T-cell-dependent and T-cell-independent antigens. However, the effect of conjugation of T-cell-dependent protein carriers to T-cell-independent type 2 antigens on the requirement for complement in the humoral immune response to such antigens remains unknown. We studied the role of complement activation on the antibody response of BALB/c mice immunized with the T-cell-independent type 2 antigen serotype 14 pneumococcal capsular polysaccharide (PPS14), either in unmodified form or conjugated to ovalbumin (OVA). In mice immunized with either PPS14 or PPS14-OVA, depletion of endogenous complement at the time of primary immunization by treatment with cobra venom factor (CVF) diminished serum anti-PPS14 concentrations after primary immunization but enhanced antibody responses after secondary immunization. The secondary immunoglobulin G (IgG) anti-PPS14 antibody response after immunization with PPS14-OVA was especially enhanced by complement depletion, was observed at doses as low as 0.2 mug of antigen, and was maximal when CVF was administered within 2 days of immunization. The avidity and opsonophagocytic functions of IgG anti-PPS14 antibodies were comparable in mice immunized with PPS14-OVA with or without complement depletion. Serum anti-PPS14 antibody concentrations were near normal, and the enhancing effects of CVF treatment on the secondary anti-PPS14 antibody response were also apparent in splenectomized mice immunized with PPS14-OVA. These results demonstrate that complement activation can have distinct effects on the primary and secondary antibody responses to a T-cell-independent type 2 antigen, either unmodified or conjugated to a T-cell-dependent protein carrier. These differences should be taken into consideration when using complement to modulate the immune response to vaccines. PMID:15618164

  19. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    NASA Astrophysics Data System (ADS)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  20. [Purification and composition analysis of polysaccharide RCPS from Rhodiola crenulata].

    PubMed

    Song, Xue-Wei; Ren, Lei; Han, Yong-Ping; Cui, Zhi-Bin; Huang, Jia-Kun

    2008-03-01

    Hot water extracting and ethanol precipitating method was employed to isolate polysaccharides. RCP (Rhodiola crenulata polysaccharide) was fractionally precipitated with EtOH. RCP3 (Rhodiola crenulata polysaccharide 3) was one of the three fractions. RCPS was obtained after RCP3 was purified by deproteination; decolourization and gel chromatography on Sephadex G-100. The homogeneity and molecular masses of RCPS were proved by HLGPC. The amount of total carbohydrates of RCPS was measured with phenol-sulfuric acid method. IR spectrometry and UV-spectrophotometer were used to determine the characteristic absorption of RCPS. The monosaccharides contained in the RCPS were analyzed by GC. The amount of total carbohydrates in RCPS is 99.11%. The molecular weight was 27 876. IR spectrometry analysis indicated that RCPS showed typical signals of acid polysaccharide, including signals at 3 424.83, 2 934.10, 1 742.11, 1 438.96, 1 261.40, 1 103.54 and 832.86 cm(-1); UV-spectrophotometer analysis indicated that RCPS showed a signal of polysaccharide at 195 nm and no signals of protein, nucleic acid at 260 and 280 nm. The monosaccharide constituents of RCPS were Rha, Ara, Xyl, Man, Glu, Gal and GalA, and their molar proportions were 1 : 2.96 : 0.21 : 0.26 : 0.08 : 0.58 and 0.15, respectively. PMID:18536432

  1. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  2. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  3. Split of chiral degeneracy in mechanical and structural properties of oligopeptide-polysaccharide biomaterials.

    PubMed

    Taraban, Marc B; Hyland, Laura L; Yu, Y Bruce

    2013-09-01

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy--identical structural characteristics and bulk material properties. The addition of another chiral component, D-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of L-peptides and D-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative D-peptide and D-polysaccharide combination. Chemical modifications of the OH-groups in α-D-glucose units in D-polysaccharides weaken such splitting of chiral degeneracy. These findings form a basis to design novel biomaterials and provide additional insight on why proteins and polysaccharides have oppoiste chirality in the biological world. PMID:23879188

  4. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  5. Split of Chiral Degeneracy in Mechanical and Structural Properties of Oligopeptide-Polysaccharide Biomaterials

    SciTech Connect

    Taraban, Marc B.; Hyland, Laura L.; Yu, Y. Bruce

    2013-09-23

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy—identical structural characteristics and bulk material properties. The addition of another chiral component, d-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of l-peptides and d-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative d-peptide and d-polysaccharide combination. Chemical modifications of the OH-groups in α-d-glucose units in d-polysaccharides weaken such splitting of chiral degeneracy. These findings form a basis to design novel biomaterials and provide additional insight on why proteins and polysaccharides have oppoiste chirality in the biological world.

  6. Split of Chiral Degeneracy in Mechanical and Structural Properties of Oligopeptide-Polysaccharide Biomaterials

    PubMed Central

    Taraban, Marc B.; Hyland, Laura L.; Yu, Y. Bruce

    2013-01-01

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy—identical structural characteristics and bulk material properties. The addition of another chiral component, D-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of L-peptides and D-polysaccharides assembles faster, has higher elastic moduli (G′), and is structurally more beneficial as opposed to D-peptide and D-polysaccharide combination. Chemical modifications of the OH-groups in α-D-glucose units in D-polysaccharides weaken such splitting of chiral degeneracy. All these findings form a basis to design the approaches to novel biomaterials and provide additional insight on the opposite chirality of proteins and polysaccharides in biological world. PMID:23879188

  7. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  8. Sulfated Escherichia coli K5 Polysaccharide Derivatives Inhibit Dengue Virus Infection of Human Microvascular Endothelial Cells by Interacting with the Viral Envelope Protein E Domain III

    PubMed Central

    Vervaeke, Peter; Alen, Marijke; Noppen, Sam; Schols, Dominique; Oreste, Pasqua; Liekens, Sandra

    2013-01-01

    Dengue virus (DENV) is an emerging mosquito-borne pathogen that causes cytokine-mediated alterations in the barrier function of the microvascular endothelium, leading to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We observed that DENV (serotype 2) productively infects primary (HMVEC-d) and immortalized (HMEC-1) human dermal microvascular endothelial cells, despite the absence of well-described DENV receptors, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) or the mannose receptor on the cell surface. However, heparan sulfate proteoglycans (HSPGs) were highly expressed on these cells and pre-treatment of HMEC-1 cells with heparinase II or with glycosaminoglycans reduced DENV infectivity up to 90%, suggesting that DENV uses HSPGs as attachment receptor on microvascular endothelial cells. Sulfated Escherichia coli K5 derivatives, which are structurally similar to heparin/heparan sulfate but lack anticoagulant activity, were able to block DENV infection of HMEC-1 and HMVEC-d cells in the nanomolar range. The highly sulfated K5-OS(H) and K5-N,OS(H) inhibited virus attachment and subsequent entry into microvascular endothelial cells by interacting with the viral envelope (E) protein, as shown by surface plasmon resonance (SPR) analysis using the receptor-binding domain III of the E protein. PMID:24015314

  9. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor.

    PubMed

    Zamze, Susanne; Martinez-Pomares, Luisa; Jones, Hannah; Taylor, Philip R; Stillion, Richard J; Gordon, Siamon; Wong, Simon Y C

    2002-11-01

    The in vitro binding of the macrophage mannose receptor to a range of different bacterial polysaccharides was investigated. The receptor was shown to bind to purified capsular polysaccharides from Streptococcus pneumoniae and to the lipopolysaccharides, but not capsular polysaccharides, from Klebsiella pneumoniae. Binding was Ca(2+)-dependent and inhibitable with d-mannose. A fusion protein of the mannose receptor containing carbohydrate recognition domains 4-7 and a full-length soluble form of the mannose receptor containing all domains external to the transmembrane region both displayed very similar binding specificities toward bacterial polysaccharides, suggesting that domains 4-7 are sufficient for recognition of these structures. Surprisingly, no direct correlation could be made between polysaccharide structure and binding to the mannose receptor, suggesting that polysaccharide conformation may play an important role in recognition. The full-length soluble form of the mannose receptor was able to bind simultaneously both polysaccharide via the carbohydrate recognition domains and sulfated oligosaccharide via the cysteine-rich domain. The possible involvement of the mannose receptor, either cell surface or soluble, in the innate and adaptive immune responses to bacterial polysaccharides is discussed. PMID:12196537

  10. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson, 1831).

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annian

    2016-04-01

    Sulfated polysaccharide was extracted from the internal shell (gladius) of Sepioteuthis lessoniana. The sulfated polysaccharide contained 61.3% of carbohydrate, 0.8% of protein, 28.2% of ash and 1.33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 66 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, galactose, xylose and glucose. The structural features of sulfated polysaccharide were analyzed by FT-IR and NMR spectroscopy. Further the sulfated polysaccharide was evaluated for its antibacterial activity against selected human clinical pathogens, namely Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Vibrio cholerae, Klebsiella oxytoca, Escherichia coli, Salmonella paratyphi, Proteus mirabilis, Vibrio parahaemolyticus and Streptococcus pyogenes using agar well diffusion method. The polysaccharide has showed good antibacterial activity and MIC and MBC have also been evaluated. The anticancer activity was tested against HeLa cell line by MTT assay. The Cytotoxic Concentration (CC50) was observed as 700 μg/ml and the maximum anticancer activity of 62.89% was recorded at 200 μg/ml; whereas, the lowest of 9.87% was observed at 25 μg/ml. In conclusion, the sulfated polysaccharide is an alternate, non-toxic and cheap source of substance that showed good antibacterial and anticancer acitivity. PMID:26724686

  11. Effects of solution conditions on characteristics and size exclusion chromatography of pneumococcal polysaccharides and conjugate vaccines.

    PubMed

    Hadidi, Mahsa; Buckley, John J; Zydney, Andrew L

    2016-11-01

    Molecular properties of bacterial polysaccharides and protein-polysaccharide conjugates play an important role in the efficiency and immunogenicity of the final vaccine product. Size exclusion chromatography (SEC) is commonly used to analyze and characterize biopolymers, including capsular polysaccharides. The objective of this work was to determine the effects of solution ionic strength and pH on the SEC retention of several capsular polysaccharides from S. pneumoniae bacteria in their native and conjugated forms. The retention time of the charged polysaccharides increased with increasing ionic strength and decreasing pH due to compaction of the polysaccharides associated with a reduction in the intramolecular electrostatic interactions. The calculated radius of gyration was in good agreement with model calculations based on the worm-like chain model accounting for the increase in chain stiffness and excluded volume of the charged polysaccharide at low ionic strength. These results provide important insights into the effects of solution ionic strength on physical properties and SEC behavior of capsular polysaccharides and their corresponding conjugates. PMID:27516244

  12. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid.

    PubMed

    Combrinck, Johann; Otto, Anja; du Plessis, Jeanetta

    2014-06-01

    Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active. PMID:24550100

  13. Cell wall polysaccharides are mislocalized to the Vacuole in echidna mutants.

    PubMed

    McFarlane, Heather E; Watanabe, Yoichiro; Gendre, Delphine; Carruthers, Kimberley; Levesque-Tremblay, Gabriel; Haughn, George W; Bhalerao, Rishikesh P; Samuels, Lacey

    2013-11-01

    During cell wall biosynthesis, the Golgi apparatus is the platform for cell wall matrix biosynthesis and the site of packaging, of both matrix polysaccharides and proteins, into secretory vesicles with the correct targeting information. The objective of this study was to dissect the post-Golgi trafficking of cell wall polysaccharides using echidna as a vesicle traffic mutant of Arabidopsis thaliana and the pectin-secreting cells of the seed coat as a model system. ECHIDNA encodes a trans-Golgi network (TGN)-localized protein, which was previously shown to be required for proper structure and function of the secretory pathway. In echidna mutants, some cell wall matrix polysaccharides accumulate inside cells, rather than being secreted to the apoplast. In this study, live cell imaging of fluorescent protein markers as well as transmission electron microscopy (TEM)/immunoTEM of cryofixed seed coat cells were used to examine the consequences of TGN disorganization in echidna mutants under conditions of high polysaccharide production and secretion. While in wild-type seed coat cells, pectin is secreted to the apical surface, in echidna, polysaccharides accumulate in post-Golgi vesicles, the central lytic vacuole and endoplasmic reticulum-derived bodies. In contrast, proteins were partially mistargeted to internal multilamellar membranes in echidna. These results suggest that while secretion of both cell wall polysaccharides and proteins at the TGN requires ECHIDNA, different vesicle trafficking components may mediate downstream events in their secretion from the TGN. PMID:24058145

  14. Effects of Pectic Polysaccharides Isolated from Leek on the Production of Reactive Oxygen and Nitrogen Species by Phagocytes

    PubMed Central

    Nikolova, Mariana; Ambrozova, Gabriela; Kratchanova, Maria; Denev, Petko; Kussovski, Veselin; Ciz, Milan

    2013-01-01

    Abstract The current survey investigates the effect of four polysaccharides isolated from fresh leek or alcohol insoluble substances (AIS) of leek on the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) from phagocytes. The ability of the polysaccharides to activate serum complement was also investigated. Despite the lack of antioxidant activity, the pectic polysaccharides significantly decreased the production of ROS by human neutrophils. Polysaccharides isolated from AIS markedly activated RAW 264.7 macrophages for RNS production in a concentration-dependent manner. The Western blot analysis revealed that this effect was due to the stimulation of the inducible nitric oxide synthase protein expression of macrophages. The polysaccharides extracted from AIS with water showed the ability to fix serum complement, especially through the alternative pathway. It was found that the polysaccharide that has the highest complement-fixing effect is characterized by the highest content of uronic acids and the highest molecular weight. PMID:23905651

  15. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  16. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  17. Physical characteristics and antioxidant effect of polysaccharides extracted by boiling water and enzymolysis from Grifola frondosa.

    PubMed

    Fan, Yina; Wu, Xiangyang; Zhang, Min; Zhao, Ting; Zhou, Ye; Han, Liang; Yang, Liuqing

    2011-06-01

    Grifola frondosa has been widely consumed in China and other Asian countries. Recent studies on G. frondosa have focused on the activities of polysaccharides extracted by water, and the activities of polysaccharides extracted by enzymolysis have not been studied. In this work, the relationship between the physical properties and antioxidant activity of polysaccharides extracted from G. frondosa by boiling water and enzymolysis was studied. Five polysaccharide extracts from the fruit body of G. frondosa were prepared by different extracting methods including boiling water, single enzyme enzymolysis with three different single enzymes (cellulose, pectinase, and pancreatin), and combined enzyme enzymolysis (cellulose:pectinase:pancreatin; 2:2:1). Characteristics such as the viscosity, Mw, polysaccharide content, protein content, infrared spectra, and antioxidant activities of the extracts were evaluated. The highest antioxidant activity was exhibited by the extracts prepared by combined enzyme extraction. The correlation analysis between antioxidant activity and polysaccharide content, protein content, Mw or viscosity indicated that the Mw had a more important role in antioxidant activity. Overall, the results indicate that the combined enzyme polysaccharide extracts can be developed as a new potential natural antioxidant. PMID:21458482

  18. Polysaccharide-modified synthetic polymeric biomaterials.

    PubMed

    Baldwin, Aaron D; Kiick, Kristi L

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  19. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  20. Polysaccharides templates for assembly of nanosilver.

    PubMed

    Emam, Hossam E; Ahmed, Hanan B

    2016-01-01

    Polysaccharides are particularly attractive in biomedical applications due to its biodegradability and biocompatibility. In addition to its ecofriendly effects and easy processing into different hydrogel shapes, made polysaccharides used on a large scale as suitable media for preparation of silver nanoparticles (AgNPs). In spite of, most of polysaccharides are water insoluble, but it has shown to be quite efficient capping agents and/or nanoreactor matrices for production of AgNPs. Several methods have been developed to get the benefit of multi-functionality for polysaccharides' macromolecules in preparation of AgNPs. Therefore, recently, preparation of nanosilver using different polysaccharides have been the focus of an exponentially increasing number of works devoted to develop nanocomposites by blending AgNPs with different polysaccharides matrices. The current review represents a wide survey for the published studies which interested in using of polysaccharides in nanosilver preparations. PMID:26453881

  1. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  2. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes 'Gramella forsetii' KT0803.

    PubMed

    Kabisch, Antje; Otto, Andreas; König, Sten; Becher, Dörte; Albrecht, Dirk; Schüler, Margarete; Teeling, Hanno; Amann, Rudolf I; Schweder, Thomas

    2014-07-01

    Members of the phylum Bacteroidetes are abundant in many marine ecosystems and are known to have a pivotal role in the mineralization of complex organic substrates such as polysaccharides and proteins. We studied the decomposition of the algal glycans laminarin and alginate by 'Gramella forsetii' KT0803, a bacteroidetal isolate from North Sea surface waters. A combined application of isotope labeling, subcellular protein fractionation and quantitative proteomics revealed two large polysaccharide utilization loci (PULs) that were specifically induced, one by alginate and the other by laminarin. These regulons comprised genes of surface-exposed proteins such as oligomer transporters, substrate-binding proteins, carbohydrate-active enzymes and hypothetical proteins. Besides, several glycan-specific TonB-dependent receptors and SusD-like substrate-binding proteins were expressed also in the absence of polysaccharide substrates, suggesting an anticipatory sensing function. Genes for the utilization of the beta-1,3-glucan laminarin were found to be co-regulated with genes for glucose and alpha-1,4-glucan utilization, which was not the case for the non-glucan alginate. Strong syntenies of the PULs of 'G. forsetii' with similar loci in other Bacteroidetes indicate that the specific response mechanisms of 'G. forsetii' to changes in polysaccharide availability likely apply to other Bacteroidetes. Our results can thus contribute to an improved understanding of the ecological niches of marine Bacteroidetes and their roles in the polysaccharide decomposition part of carbon cycling in marine ecosystems. PMID:24522261

  3. The pretreatment effects on the antioxidant activity of jujube polysaccharides

    NASA Astrophysics Data System (ADS)

    Qu, Chenling; Yu, Songcheng; Jin, Huali; Wang, Jinshui; Luo, Li

    2013-10-01

    Pretreatment is vital to keep the bioactivities of polysaccharides. In this paper, the effects of hot water, ultrasonic and microwave extraction, as well as the effects of protein and pigment removal steps, on the antioxidant activity of water soluble polysaccharides in jujube (WSPJ) were studied. Hydroxyl free radical (rad OH) scavenging activity was adopted to determine the antioxidant activity of WSPJ. The results showed that rad OH scavenging activity of WSPJ extracted by ultrasonic wave was higher than that extracted by hot water and by microwave. Furthermore, power parameter in both ultrasonic and microwave extraction affected the rad OH scavenging activity dramatically. On the other hand, Sevag reagent was better than trichloroacetic acid (TCA), TCA with 1-butanol (TCA-B) and hydrochloric acid for protein removal, and H2O2 was better than active carbon for pigment removal to keep the antioxidant activity of WSPJ.

  4. Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal).

    PubMed

    Sudharsan, Sadhasivam; Subhapradha, Namasivayam; Seedevi, Palaniappan; Shanmugam, Vairamani; Madeswaran, Perumal; Shanmugam, Annaian; Srinivasan, Alagiri

    2015-11-01

    Sulfated polysaccharide was isolated from Gracilaria debilis and purified through gel chromatography and their molecular weight was determined through AGE and PAGE. The total sugars in the crude, fractionated and purified polysaccharide were estimated as 52.65%, 59.70% and 67.60%, respectively. The ash and moisture content of crude and purified polysaccharide was found to be 14.2% and 23.5% and the polysaccharide was free from protein contamination. The sulfate and uronic acid contents in the crude, fractionated and purified were estimated as 14.08%, 15.33% and 16.01% and 10.12%, 13.56%, 16.70%. The elemental composition including carbon (crude - 23.12%, purified - 21.05%), hydrogen (crude - 3.4%, purified - 4.13%) and nitrogen (crude - 1.22%, purified - 0.56%) were also analyzed. The anticoagulant activity of the sulfated polysaccharide through APTT and PT was estimated at 14.11 and 8.23IU/mg. The purified polysaccharide with the molecular mass of 20kDa showed highest antioxidant activity (38.57%, 43.48% and 38.88%) in all the assays tested such as DPPH hydroxyl radical, superoxide radical, hydroxyl radical scavenging activities and the structural property was analyzed through FT-IR and (1)H NMR spectrum. The results together suggest that the isolated low molecular weight sulfated polysaccharide will demonstrate as a enormously available alternative natural source of antioxidant for industrial uses. PMID:26424206

  5. Cations modulate polysaccharide structure to determine FGF-FGFR signaling: a comparison of signaling and inhibitory polysaccharide interactions with FGF-1 in solution.

    PubMed

    Guimond, Scott E; Rudd, Timothy R; Skidmore, Mark A; Ori, Alessandro; Gaudesi, Davide; Cosentino, Cesare; Guerrini, Marco; Edge, Ruth; Collison, David; McInnes, Eric; Torri, Giangiacomo; Turnbull, Jeremy E; Fernig, David G; Yates, Edwin A

    2009-06-01

    For heparan sulfate (HS) to bind and regulate the activity of proteins, the polysaccharide must present an appropriate sequence and adopt a suitable conformation. The conformations of heparin derivatives, as models of HS, are altered via a change in the associated cations, and this can drastically modify their FGF signaling activities. Here, we report that changing the cations associated with an N-acetyl-enriched heparin polysaccharide, from sodium to copper(II), converted it from supporting signaling through the fibroblast growth factor receptor (FGF-1-FGFR1c) tyrosine kinase signaling system to being inhibitory in a cell-based BaF3 assay. Nuclear magnetic resonance and synchrotron radiation circular dichroism (SRCD) spectroscopy demonstrated that the polysaccharide conformation differed in the presence of sodium or copper(II) cations. Electron paramagnetic resonance confirmed the environment of the copper(II) ion on the N-acetyl-enriched polysaccharide was distinct from that previously observed with intact heparin, which supported signaling. Secondary structures in solution complexes of polysaccharides with FGF-1 (which either supported signaling through FGFR1c or were inhibitory) were determined by SRCD. This allowed direct comparison of the two FGF-1-polysaccharide complexes in solution, containing identical molecular components and differing only in their cation content. Subtle structural differences were revealed, including a reduction in the level of disordered structure in the inhibitory complex. PMID:19400583

  6. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  7. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  8. Cellulose degradation by polysaccharide monooxygenases.

    PubMed

    Beeson, William T; Vu, Van V; Span, Elise A; Phillips, Christopher M; Marletta, Michael A

    2015-01-01

    Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity. PMID:25784051

  9. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment.

    PubMed

    Pierce, Brian C; Wichmann, Jesper; Tran, Tam H; Cheetamun, Roshan; Bacic, Antony; Meyer, Anne S

    2016-06-25

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation of soluble soy polysaccharides and opens a new range of opportunities for this abundant and underutilized material in future research and industrial applications. PMID:27083842

  10. Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro.

    PubMed

    Wang, Xiao; Huang, Meiying; Yang, Fan; Sun, Hanju; Zhou, Xianxuan; Guo, Ying; Wang, Xiaoli; Zhang, Manli

    2015-07-10

    In vitro digestibility, prebiotic activity and chemical composition of polysaccharides from rapeseed were deliberately studied in this paper. After preliminary treatments, two fractions of polysaccharides (RP1 and RP2) were obtained after purification by DEAE-cellulose and Sephadex G-100. Their primary structural feature and molecule weights were characterized. Furthermore, their digestibility was also evaluated by artificial gastric juice and α-amylase. Finally, their proliferative effect on bifidobacteria and lactobacilli and acid production of the resulting probiotics in vitro were investigated. The results showed that RP1 and RP2 were homogeneously protein-bound polysaccharides with molecular weights of 28.51 and 6.55 kDa, respectively. They were resistant to hydrolysis by artificial gastric juice and α-amylase. Moreover, they could also significantly stimulate the tested probiotics to proliferate and produce organic acids. These findings clearly suggest the polysaccharides from rapeseed are potential to be exploited as novel prebiotics. PMID:25857979

  11. Marine Polysaccharides in Pharmaceutical Applications: An Overview

    PubMed Central

    Laurienzo, Paola

    2010-01-01

    The enormous variety of polysaccharides that can be extracted from marine plants and animal organisms or produced by marine bacteria means that the field of marine polysaccharides is constantly evolving. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of micro-organisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. Following an overview of the current knowledge on marine polysaccharides, with special attention to potential pharmaceutical applications and to more recent progress on the discovering of new polysaccharides with biological appealing characteristics, this review will focus on possible strategies for chemical or physical modification aimed to tailor the final properties of interest. PMID:20948899

  12. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  13. Advances on Bioactive Polysaccharides from Medicinal Plants.

    PubMed

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents. PMID:26463231

  14. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli.

    PubMed

    Kay, Emily J; Yates, Laura E; Terra, Vanessa S; Cuccui, Jon; Wren, Brendan W

    2016-04-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  15. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli

    PubMed Central

    Kay, Emily J.; Yates, Laura E.; Terra, Vanessa S.; Cuccui, Jon; Wren, Brendan W.

    2016-01-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  16. Engineering of routes to heparin and related polysaccharides

    PubMed Central

    Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S.; Linhardt, Robert J.

    2011-01-01

    Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery, and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby, eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry. PMID:22048616

  17. Incorporation of bacterial extracellular polysaccharide by black fly larvae (Simuliidae)

    USGS Publications Warehouse

    Couch, C.A.; Meyer, J.L.; Hall, R.O., Jr.

    1996-01-01

    Black fly larvae (Simulium) assimilated, with high efficiency (80-90%), bacterial extracellular polysaccharide (EPS) extracted from laboratory cultures of a pseudomonad isolated from the Ogeechee River. Incorporation was traced using 13C-labelled EPS offered to larvae as a coating on a mixture of 1-??m latex beads and kaolin particles. These EPS-coated particles were used to simulate natural particles, both living and dead. Solubility, protein, and nitrogen content of the EPS suggested it was a slime rather than a capsular polysaccharide. Glycosyl composition of the EPS was glucose and galactose in ?? and ?? linkages, with pyruvate, succinate, and possibly malonate constituent groups. To evaluate the incorporation of C derived from protein associated with the EPS matrix, feeding experiments were conducted using EPS with and without proteins extracted. Black fly larvae incorporated 7.2 ??g EPS C larva-1 d-1 from EPS that did not have proteins extracted, and 19.5 ??g EPS C larva-1 d-1 from EPS with proteins extracted. Carbon in protein that is typically associated with EPS was not solely or selectively incorporated. EPS incorporation rates are similar to rates of cellular bacterial carbon incorporation previously estimated for Ogeechee River black fly larvae. If EPS is generally available as a food resource, the importance of bacteria in detrital food webs may be underestimated by studies that examine only the consumption of bacterial cells.

  18. Serological, chemical, and structural analyses of the Escherichia coli cross-reactive capsular polysaccharides K13, K20, and K23.

    PubMed Central

    Vann, W F; Soderstrom, T; Egan, W; Tsui, F P; Schneerson, R; Orskov, I; Orskov, F

    1983-01-01

    The Escherichia coli K13, K20, and K23 capsular polysaccharide antigens are serologically related. All of these polysaccharides contain ribose and 2-keto-3-deoxyoctonate in equimolar quantities. The K13 and K20 polysaccharides are partially O-acetylated. A comparison of these polysaccharides after O-deacetylation, by nuclear magnetic resonance and permethylation analysis, showed that these polysaccharides contained the disaccharide repeat unit leads to)-beta-ribofuranosyl-(1 leads to 7)-beta-2-keto-3-deoxyoctonate. They differed in the presence and location of an acetyl moiety. The K13 polysaccharide was O-acetylated at C-4 of the 2-keto-3-deoxyoctonate. The K20 antigen was O-acetylated at C-5 of the ribose moiety. The K23 polymer was nonacetylated. The cross-reactivity of these antigens was demonstrated by tandem-crossed immunoelectrophoresis. Antibodies to K23 could be completely absorbed from OK K23 serum by K13, K20, and K23 antigenic extracts. The K13 and K20 antibodies could be completely absorbed from their respective antisera only by homologous antigenic extracts. Monoclonal antibodies were prepared against a protein conjugate of the K13 polysaccharide. Analyses of the reactions of these antibodies with the three polysaccharides suggest that the K13 polysaccharide has at least three antigenic sites, one of which is common to the K13, K20, and K23 polysaccharides. PMID:6187684

  19. Starch-degrading polysaccharide monooxygenases.

    PubMed

    Vu, Van V; Marletta, Michael A

    2016-07-01

    Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted. PMID:27170366

  20. Solution NMR spectroscopy of food polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many polysaccharides are allowed for direct food use, where they serve a number of useful functions. In addition to possibly being a source of calories, a food polysaccharide may be a dietary fiber, bulking agent, crystallization inhibitor, thickener, encapsulant, gelling agent, foam and emulsion s...

  1. Polysaccharide Based Hydrogels for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Leone, Gemma; Barbucci, Rolando

    Polysaccharide based hydrogels for their physico-chemical and biological properties can be used as scaffolds for soft tissue regneration and as vehicles for drug controlled release. For both these applications, Hyaluronan shows optimal characteristics even though its quick enzymatic degradability makes this natural polysaccharide unsuitable for applications which require prolonged presence in the human organism.

  2. Bioactive polysaccharides and gut microbiome (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  3. Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato.

    PubMed

    Wu, Qiongying; Qu, Hongsen; Jia, Junqiang; Kuang, Cong; Wen, Yan; Yan, Hui; Gui, Zhongzheng

    2015-11-01

    Three polysaccharides, PSPP1-1, PSPP2-1 and PSPP3-1, were isolated from purple sweet potato. The three polysaccharides belonged to β-type polysaccharides and contained low proportions of proteins and uronic acids. PSPP1-1 and PSPP3-1 with molecular weights of 33.3 and 75.3 kDa, respectively, were composed of rhamnose, xylose, glucose and galactose, whereas PSPP2-1 with molecular weight of 17.8 kDa was composed of rhamnose and galactose. The three polysaccharides possessed in vitro antioxidant (scavenging DPPH radicals, chelating ferrous ions and reducing power) and antitumor activities (against SGC7901 and SW620 cells) in a dose-dependent manner. Among the three polysaccharides, PSPP2-1 exhibited the strongest reducing power, scavenging activity on DPPH radicals and chelating capability on ferrous ions. PSPP1-1 showed the strongest inhibitory activities on the growth of SGC7901 and SW620 cells. In addition, flow cytometry results showed that PSPP1-1 could induce apoptosis in SGC7901 and SW620 cells. These results suggest that polysaccharides from purple sweet potato are potential natural antioxidant and antitumor agents that can be used as drugs or functional food ingredients. PMID:26256321

  4. Immunochemical characterization of polysaccharide antigens from six clinical strains of Enterococci

    PubMed Central

    Hsu, Carolyn T; Ganong, Amanda L; Reinap, Barbara; Mourelatos, Zafiria; Huebner, Johannes; Wang, Julia Y

    2006-01-01

    Background Enterococci have become major nosocomial pathogens due to their intrinsic and acquired resistance to a broad spectrum of antibiotics. Their increasing drug resistance prompts us to search for prominent antigens to develop vaccines against enterococci. Given the success of polysaccharide-based vaccines against various bacterial pathogens, we isolated and characterized the immunochemical properties of polysaccharide antigens from five strains of Enterococcus faecalis and one strain of vancomycin-resistant E. faecium. Results We cultured large batches of each strain, isolated sufficient quantities of polysaccharides, analyzed their chemical structures, and compared their antigenic specificity. Three classes of polysaccharides were isolated from each strain, including a polyglucan, a teichoic acid, and a heteroglycan composed of rhamnose, glucose, galactose, mannosamine, and glucosamine. The polyglucans from all six strains are identical and appear to be dextran. Yields of the teichoic acids were generally low. The most abundant polysaccharides are the heteroglycans. The six heteroglycans are structurally different as evidenced by NMR spectroscopy. They also differ in their antigenic specificities as revealed by competitive ELISA. The heteroglycans are not immunogenic by themselves but conjugation to protein carriers significantly enhanced their ability to induce antibodies. Conclusion The six clinical strains of enterococci express abundant, strain-specific cell-surface heteroglycans. These polysaccharides may provide a molecular basis for serological typing of enterococcal strains and antigens for the development of vaccines against multi-drug resistant enterococci. PMID:16836754

  5. Corn pollen polysaccharides: composition of radiation-resistant nutrients and bioactivity

    NASA Astrophysics Data System (ADS)

    Lu, Weihong; Wenxin, Gao; Sun, Yeqing

    Corn pollen contains significant levels of free amino acids and protein, which greatly contribute to the biological function of corn pollen. However, to date there is no report in either China or abroad on research regarding the specific radiation-resistant composition in corn pollen includ-ing pollen polysaccharide. Reports on corn pollen polysaccharide have been mostly focused on immunological competence and anti-tumor functions. This study emphasized the optimization of the technical conditions for the extraction of corn pollen polysaccharide and the analysis of the corn pollen polysaccharide's structure. On that basis, we have developed in vitro experi-ments with corn pollen polysaccharide and report on its antioxidant functional activity. Our innovation lies in defining the specific composition of the radiation-resistant nutrients and active compounds as well as identifying the structure of the active compounds. We have successfully separated the active radiation-resistant functional factors, which are of great significance for astronauts and other special groups. Our results lay the groundwork for further research and development of corn pollen polysaccharide and ingredient technology.

  6. Chemical compositions and antioxidant activities of polysaccharides from the sporophores and cultured products of Armillaria mellea.

    PubMed

    Zhang, Shanshan; Liu, Xiaoqian; Yan, Lihua; Zhang, Qiwei; Zhu, Jingjing; Huang, Na; Wang, Zhimin

    2015-01-01

    Armillaria mellea is a traditional Chinese medicinal and edible mushroom. Many cultured products of A. mellea have been used to develop commercial medicines in recent years. The chemical composition and activities of the major bioactive chemical components-polysaccharides-may be different because of differences in the raw materials used. Four polysaccharides (SP, CMP, CFBP and CFMP) were obtained from wild sporophores and cultured products (including mycelia, fermentation broth and fermentation mixture) of A. mellea. Their yields, carbohydrate contents, monosaccharide compositions, FT-IR spectra, NMR spectroscopy and antioxidant activities were investigated. All of the polysaccharides were composed of xylose, glucose and galactose without protein. Glucose was the dominant monosaccharide in SP, CMP and CFMP, whereas galactose was the dominant monosaccharide in CFBP. SP and CMP showed higher scavenging DPPH• and ABTS•+ activities and reducing power among four polysaccharides. The carbohydrate content and corresponding glucose percentage were positive influences on the antioxidant activities, whereas the corresponding xylose and galactose percentage were negative influences. A. mellea polysaccharides are potential natural antioxidants. Polysaccharides from cultured products, especially mycelia, are good substitutes for SP and are also potential sources for both dietary supplements and food industries. PMID:25838171

  7. Isolation and antiviral activity of water-soluble Cynomorium songaricum Rupr. polysaccharides.

    PubMed

    Tuvaanjav, Suvdmaa; Shuqin, Han; Komata, Masashi; Ma, Chunjie; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2016-01-01

    The plant, Cynomorium songaricum Rupr., is used as a traditional medicine in China and Mongolia. In the present study, two new water-soluble polysaccharides isolated from C. songaricum Rupr. were purified by successive Sephadex G-75 and G-50 column chromatographies and then characterized by high resolution NMR and IR spectroscopies. The molecular weights of two polysaccharides were determined by an aqueous GPC to be [Formula: see text] = 3.7 × 10(4) and 1.0 × 10(4), respectively. In addition, it was found that the polysaccharide with the larger molecular weight was an acidic polysaccharide. It was found that the iodine-starch reaction of both isolated polysaccharides was negative and the methylation analysis gave 2, 4, 6-tri-O-methyl alditol acetate as a main product. NMR and IR measurements and sugar analysis revealed that both polysaccharides had a (1 → 3)-α-d-glucopyranosidic main chain with a small number of branches. After sulfation, the sulfated C. songaricum Rupr. polysaccharides were found to have a potent inhibitory effect on HIV infection of MT-4 cells at a 50% effective concentration of 0.3-0.4 μg/ml, a concentration that has almost the same high activity as standard dextran and curdlan sulfates, EC50 = 0.35 and 0.14 μg/ml, respectively. The 50% cytotoxic concentration was low, CC50>1000 μg/ml. In addition, the interaction between the sulfated polysaccharides and poly-l-lysine as a model protein compound was investigated by a surface plasmon resonance to reveal the anti-HIV mechanism. PMID:26838028

  8. Thin film of biocompatible polysaccharides

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Lavalle, Philippe; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2003-03-01

    The layer-by-layer deposition method proposed by Decher et al. (1991) is a very simple and versatile method used to build thin films. These films are of interest for bioengineering because of their unique properties and of the possible insertion of bioactive molecules. We present here the peculiar properties of a new kind of film formed with natural biopolymers, namely hyaluronan (HA)and chitosan (CHI). The films may be used as biomimetic substrates to control bacterial and cell adhesion. These polysaccharides are of particular interest because they are biodegradable, non toxic, and can be found in various tissues. Hyaluronan is also a natural ligand for a numerous type of cells through the CD44 receptor. Chitosan has already largely been used for its biological and anti-microbial properties. (CHI/HA) films were built in acidic pH at different ionic strength. The buildup was followed in situ by optical waveguide lightmode spectroscopy (OWLS), quartz crystal microbalance, streaming potential measurements and atomic force microscopy. The kinetics of adsorption and desorption of the polyelectrolytes depended on the ionic strength. Small islands were initially present on the surface which grew by mutual coalescence until becoming a flat film. The films were around 200 nm in thickness. These results suggest that different types of thin films constituted of polysaccharides can be built on any type of surface. These films are currently investigated toward their cell adhesion and bacterial adhesion properties.

  9. Components and activity of polysaccharides from coarse tea.

    PubMed

    Wang Dongfeng, W; Wang Chenghong, W; Li Jun, L; Zhao Guiwen, Z

    2001-01-01

    Coarse tea contained a high content of polysaccharide complex. Composed of polysaccharide and protein, the polysaccharide complex from tea (TPS) belonged to glycoprotein with the molecular weight () of (10.7-11.0) x 10(4). When mice (7 weeks old, C57BL/8) were injected with TPS, the levels of blood glucose (BG) in normal mice and model mice with high BG were decreased significantly by averages of 13.54 and 22.18%, respectively. The antibody concentration (OD(413 nm)) in the mice injected with 2.4 mg/mL TPS was increased evidently by 44.93% (p < 0.01). TPS treatment was beneficial not only for the subsequent production of interleukin (IL) 2 in spleen cells of adjuvant arthritis (AA) rats but also because it prohibited the body from producing too much IL-1 in AA rats. Treatment of diabetes with coarse tea in both China and Japan may be related to TPS and the content of TPS in coarse tea. PMID:11170619

  10. Antioxidative Properties of Crude Polysaccharides from Inonotus obliquus

    PubMed Central

    Mu, Haibo; Zhang, Amin; Zhang, Wuxia; Cui, Guoting; Wang, Shunchun; Duan, Jinyou

    2012-01-01

    The mushroom Inonotus obliquus has been widely used as a folk medicine in Russia, Poland and most of the Baltic countries. In this study, water-soluble and alkali-soluble crude polysaccharides (IOW and IOA) were isolated from I. obliquus, and the carbohydrate-rich fractions IOW-1 and IOA-1 were obtained respectively after deproteination and depigmentation. Their contents, such as neutral carbohydrate, uronic acid and protein, were measured. Their antioxidant properties against chemicals-induced reactive species (ROS) including 1,1′-Diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical and superoxide anion radical, as well as their protective effects on H2O2-induced PC12 cell death were investigated. Results showed that I. obliquus polysaccharides can scavenge all ROS tested above in a dose-dependent manner. IOA and its product IOA-1 could rescue PC12 cell viability from 38.6% to 79.8% and 83.0% at a concentration of 20μg/mL. Similarly, IOW and its product IOW-1 at the same dose, can also increase cell viability to 84.9% and 88.6% respectively. The antioxidative activities of water-soluble and alkali-soluble polysaccharide constituents from I. obliquus might contribute to diverse medicinal and nutritional values of this mushroom. PMID:22942760

  11. Carbohydrate-binding modules: fine-tuning polysaccharide recognition

    PubMed Central

    2004-01-01

    The enzymic degradation of insoluble polysaccharides is one of the most important reactions on earth. Despite this, glycoside hydrolases attack such polysaccharides relatively inefficiently as their target glycosidic bonds are often inaccessible to the active site of the appropriate enzymes. In order to overcome these problems, many of the glycoside hydrolases that utilize insoluble substrates are modular, comprising catalytic modules appended to one or more non-catalytic CBMs (carbohydrate-binding modules). CBMs promote the association of the enzyme with the substrate. In view of the central role that CBMs play in the enzymic hydrolysis of plant structural and storage polysaccharides, the ligand specificity displayed by these protein modules and the mechanism by which they recognize their target carbohydrates have received considerable attention since their discovery almost 20 years ago. In the last few years, CBM research has harnessed structural, functional and bioinformatic approaches to elucidate the molecular determinants that drive CBM–carbohydrate recognition. The present review summarizes the impact structural biology has had on our understanding of the mechanisms by which CBMs bind to their target ligands. PMID:15214846

  12. Antioxidative properties of crude polysaccharides from Inonotus obliquus.

    PubMed

    Mu, Haibo; Zhang, Amin; Zhang, Wuxia; Cui, Guoting; Wang, Shunchun; Duan, Jinyou

    2012-01-01

    The mushroom Inonotus obliquus has been widely used as a folk medicine in Russia, Poland and most of the Baltic countries. In this study, water-soluble and alkali-soluble crude polysaccharides (IOW and IOA) were isolated from I. obliquus, and the carbohydrate-rich fractions IOW-1 and IOA-1 were obtained respectively after deproteination and depigmentation. Their contents, such as neutral carbohydrate, uronic acid and protein, were measured. Their antioxidant properties against chemicals-induced reactive species (ROS) including 1,1'-Diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical and superoxide anion radical, as well as their protective effects on H(2)O(2)-induced PC12 cell death were investigated. Results showed that I. obliquus polysaccharides can scavenge all ROS tested above in a dose-dependent manner. IOA and its product IOA-1 could rescue PC12 cell viability from 38.6% to 79.8% and 83.0% at a concentration of 20μg/mL. Similarly, IOW and its product IOW-1 at the same dose, can also increase cell viability to 84.9% and 88.6% respectively. The antioxidative activities of water-soluble and alkali-soluble polysaccharide constituents from I. obliquus might contribute to diverse medicinal and nutritional values of this mushroom. PMID:22942760

  13. Enzymatic method for improving the injectability of polysaccharides

    DOEpatents

    Griffith, William L.; Compere, Alicia L.; Holleman, James W.

    1982-01-01

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  14. Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics.

    PubMed

    Zárate-Ramírez, L S; Romero, A; Bengoechea, C; Partal, P; Guerrero, A

    2014-11-01

    The influence of adding different polysaccharides (locust bean gum, LBG; methyl cellulose, MC; and carboxymethyl cellulose, CMC) to gluten-based biodegradable polymeric materials was assessed in this work. Gluten/polysaccharide/plasticiser bioplastics were prepared at different polysaccharide concentrations (0-4.5%) and pH values by mixing in a two-blade counter-rotating batch mixer (at 25 °C under adiabatic conditions) and thermomoulding at 9MPa and 130 °C. Bioplastic probes were evaluated through dynamic mechanical thermal analysis, tensile strength and water absorption capacity tests. Results pointed out that a moderate enhancement of the network structure may be achieved by adding polysaccharide at a pH close to the protein isoelectric point (pH 6), which also conferred a further thermosetting capacity to the system. Moreover, the addition of MC and CMC was found to significantly enhance material elongation properties. However, the presence of charges induced by pH leaded to a higher incompatibility between the polysaccharide and protein domains forming the composite. The pH value played a relevant role in the material water absorption, which significantly increased under acidic or basic conditions (particularly at pH 3). PMID:25129712

  15. Immunologically active polysaccharide from Cetraria islandica.

    PubMed

    Ingolfsdottir, K; Jurcic, K; Fischer, B; Wagner, H

    1994-12-01

    A new alkali-soluble polysaccharide has been isolated from Iceland moss, Cetraria islandica (L.) Ach., by ethanol fractionation, ion-exchange chromatography, and gel filtration. The mean M(r) was estimated to be 18,000. Sugar and methylation analysis, partial hydrolysis, and 13C-NMR spectroscopy showed the polysaccharide to be a branched galactomannan with a backbone composed of two structural elements; (1-->6)-linked alpha-D-mannopyranosyl and alpha-D-(1-->6)-galactopyranosyl units. The polysaccharide showed pronounced immunostimulating activity in an in vitro phagocytosis assay and in the in in vivo carbon clearance assay. PMID:7809205

  16. Extracellular polysaccharide production by thraustochytrid protists.

    PubMed

    Jain, Ruchi; Raghukumar, Seshagiri; Tharanathan, R; Bhosle, N B

    2005-01-01

    Four strains of marine stramenopilan protists, the thraustochytrids, were studied for their ability to produce extracellular polysaccharides (EPSs). Observations by light and scanning electron microscopy revealed the production of a matrix of EPS around groups of cells in stationary cultures. EPS in shake culture filtrates ranged from 0.3 to 1.1 g/L. EPS production, which was studied in greater detail in 2 isolates, SC-1 and CW1, increased with age of cultures, reaching a peak in the stationary phase. Anion exchange chromatography yielded a single fraction of the EPS of both species. The EPS contained 39% to 53% sugars, besides proteins, lipids, uronic acids, and sulfates. Molecular weight of the EPS produced by SC-1 was approximately 94 kDa, and that of CW1, 320 kDa. Glucose formed the major component in the EPS of both isolates-galactose, mannose, and arabinose being the other components. Cultures of both isolates survived air-drying up to a period of 96 hours, suggesting a role for EPS in preventing desiccation of cells. PMID:15909227

  17. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom.

    PubMed

    Xing, Peng; Hahnke, Richard L; Unfried, Frank; Markert, Stephanie; Huang, Sixing; Barbeyron, Tristan; Harder, Jens; Becher, Dörte; Schweder, Thomas; Glöckner, Frank Oliver; Amann, Rudolf I; Teeling, Hanno

    2015-06-01

    Members of the flavobacterial genus Polaribacter thrive in response to North Sea spring phytoplankton blooms. We analyzed two respective Polaribacter species by whole genome sequencing, comparative genomics, substrate tests and proteomics. Both can degrade algal polysaccharides but occupy distinct niches. The liquid culture isolate Polaribacter sp. strain Hel1_33_49 has a 3.0-Mbp genome with an overall peptidase:CAZyme ratio of 1.37, four putative polysaccharide utilization loci (PULs) and features proteorhodopsin, whereas the agar plate isolate Polaribacter sp. strain Hel1_85 has a 3.9-Mbp genome with an even peptidase:CAZyme ratio, eight PULs, a mannitol dehydrogenase for decomposing algal mannitol-capped polysaccharides but no proteorhodopsin. Unlike other sequenced Polaribacter species, both isolates have larger sulfatase-rich PULs, supporting earlier assumptions that Polaribacter take part in the decomposition of sulfated polysaccharides. Both strains grow on algal laminarin and the sulfated polysaccharide chondroitin sulfate. For strain Hel1_33_49, we identified by proteomics (i) a laminarin-induced PUL, (ii) chondroitin sulfate-induced CAZymes and (iii) a chondroitin-induced operon that likely enables chondroitin sulfate recognition. These and other data suggest that strain Hel1_33_49 is a planktonic flavobacterium feeding on proteins and a small subset of algal polysaccharides, while the more versatile strain Hel1_85 can decompose a broader spectrum of polysaccharides and likely associates with algae. PMID:25478683

  18. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom

    PubMed Central

    Xing, Peng; Hahnke, Richard L; Unfried, Frank; Markert, Stephanie; Huang, Sixing; Barbeyron, Tristan; Harder, Jens; Becher, Dörte; Schweder, Thomas; Glöckner, Frank Oliver; Amann, Rudolf I; Teeling, Hanno

    2015-01-01

    Members of the flavobacterial genus Polaribacter thrive in response to North Sea spring phytoplankton blooms. We analyzed two respective Polaribacter species by whole genome sequencing, comparative genomics, substrate tests and proteomics. Both can degrade algal polysaccharides but occupy distinct niches. The liquid culture isolate Polaribacter sp. strain Hel1_33_49 has a 3.0-Mbp genome with an overall peptidase:CAZyme ratio of 1.37, four putative polysaccharide utilization loci (PULs) and features proteorhodopsin, whereas the agar plate isolate Polaribacter sp. strain Hel1_85 has a 3.9-Mbp genome with an even peptidase:CAZyme ratio, eight PULs, a mannitol dehydrogenase for decomposing algal mannitol-capped polysaccharides but no proteorhodopsin. Unlike other sequenced Polaribacter species, both isolates have larger sulfatase-rich PULs, supporting earlier assumptions that Polaribacter take part in the decomposition of sulfated polysaccharides. Both strains grow on algal laminarin and the sulfated polysaccharide chondroitin sulfate. For strain Hel1_33_49, we identified by proteomics (i) a laminarin-induced PUL, (ii) chondroitin sulfate-induced CAZymes and (iii) a chondroitin-induced operon that likely enables chondroitin sulfate recognition. These and other data suggest that strain Hel1_33_49 is a planktonic flavobacterium feeding on proteins and a small subset of algal polysaccharides, while the more versatile strain Hel1_85 can decompose a broader spectrum of polysaccharides and likely associates with algae. PMID:25478683

  19. Effect of nutrient and stress factors on polysaccharides synthesis in Proteus mirabilis biofilm.

    PubMed

    Moryl, Magdalena; Kaleta, Aleksandra; Strzelecki, Kacper; Różalska, Sylwia; Różalski, Antoni

    2014-01-01

    The extracellular matrix in biofilm consists of water, proteins, polysaccharides, nucleic acids and phospholipids. Synthesis of these components is influenced by many factors, e.g. environment conditions or carbon source. The aim of the study was to analyse polysaccharides levels in Proteus mirabilis biofilms after exposure to stress and nutritional conditions. Biofilms of 22 P. mirabilis strains were cultivated for 24, 48, 72 hours, 1 and 2 weeks in tryptone soya broth or in modified media containing an additional amount of nutrients (glucose, albumin) or stress factors (cefotaxime, pH 4, nutrient depletion). Proteins and total polysaccharides levels were studied by Lowry and the phenol-sulphuric acid methods, respectively. Glycoproteins levels were calculated by ELLA with the use of selected lectins (WGA and HPA). For CLSM analysis dual fluorescent staining was applied with SYTO 13 and WGA-TRITC. In optimal conditions the levels of polysaccharides were from 0 to 442 μg/mg of protein and differed depending on the strains and cultivation time. The agents used in this study had a significant impact on the polysaccharides synthesis in the P. mirabilis biofilm. Among all studied components (depending on tested methods), glucose and cefotaxime stimulated the greatest production of polysaccharides by P. mirabilis strains (more than a twofold increase). For most tested strains the highest amounts of sugars were detected after one week of incubation. CLSM analysis confirmed the overproduction of N-acetyloglucosamine in biofilms after cultivation in nutrient and stress conditions, with the level 111-1134%, which varied depending on the P. mirabilis strain and the test factor. PMID:24644556

  20. Water-extractable nonstarch polysaccharide distribution in pilot milling analysis of soft winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial wheat (Triticum aestivum em. Thell) flour milling produces flour streams that differ for water absorption due to variability in protein concentration, starch damaged by milling, and non-starch polysaccharides. This study characterized the distribution of water-extractable non-starch poly...

  1. Drilling fluid containing crosslinked polysaccharide derivative

    SciTech Connect

    Demott, D.N.; Kucera, C.H.

    1981-03-24

    A drilling fluid having extremely desirable physical properties which comprises an aqueous solution of a hydroxyalkyl polysaccharide derivative and a water soluble ionic aluminum crosslinking agent, preferably sodium aluminate.

  2. Suppression of cell adhesion through specific integrin crosstalk on mixed peptide-polysaccharide matrices.

    PubMed

    Hozumi, Kentaro; Fujimori, Chikara; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2015-01-01

    Crosstalk of different integrins, which bind to distinct types of extracellular matrix proteins, promotes specific functions. This crosstalk has not been investigated in depth. Previously, we demonstrated that integrin-syndecan crosstalk accelerated cell adhesion. Here, we evaluated the crosstalk of two different integrins using mixed peptide-polysaccharide (chitosan or alginate) matrices. Two different integrin binding peptides, FIB1 (integrin αvβ3), EF1zz (integrin α2β1), and 531 (integrin α3β1), were mixed in various molar ratios (9:1, 4:1, 1:1) and conjugated on a polysaccharide matrix. The mixture of FIB1/EF1zz- and FIB1/531-polysaccharide matrices did not show any difference in human dermal fibroblast (HDF) adhesion against the mono polysaccharide matrices. Interestingly, the EF1zz/531-polysaccharide matrix (molar ratio = 1:4) exhibited significantly decreased cell adhesion, but other EF1zz/531-polysaccharide matrices did not show any difference. When we examined the signal transduction of the EF1zz/531(1:4), Y397 phosphorylation of FAK significantly decreased but Y514 phosphorylation of Src did not exhibit any differences. Further investigation revealed that this suppression was mediated by PI3K signaling through the activation of integrin, and PKA signaling modulated suppression of HDF attachment. These findings suggest that a mixed peptide-polysaccharide matrix using receptor specific ligands can regulate cellular functions through receptor-specific crosstalk and is a useful approach to understand receptor specific crosstalk. PMID:25453939

  3. [Neuroprotective effects of sulfated polysaccharides from seaweed].

    PubMed

    Besednova, N N; Somova, L M; Guliaev, S A; Zaporozhets, T S

    2013-01-01

    Currently, neurodegenerative diseases (NDD) occupy a significant place in the structure of disease of the elderly, which dictates the need to find new and effective treatment and prevention of this pathology. At the heart of NDD development is a violation of the metabolism and the conformational change of cellular proteins with subsequent accumulation and aggregation of their in certain groups of neurons. The immediate cause of the death of the affected neurons in NDD is initiated by intracellular proteins apoptosis, during which a large number ofneurotransmitter glutamate is released. The consequence of an imbalance in the synthesis and release of neurotransmitters are related the memory impairment, motor coordination and cognitive abilities of human. Based on the analysis of the extensive literature domestic and predominantly foreign authors of the last decade the modern data on the effect of sulfated polysaccharides (SPS) of algae in vivo and in vitro in degenerative processes of the nervous system. Found that due to its multi-point impact, SPS have on the body antioxidant, anti-inflammatory, antiapoptotic, antihyperlipidemic, anti-toxic effects. Consequently, SPS can arrest a number of secondary pathological effects observed in neurodegenerative diseases (oxidative stress, inflammation, the phenomenon of increased neuronal apoptosis, toxic effects etc.). Varieties of pathogenic mechanisms underlying NDD makes possible the combined use of neuroprotective compounds acting sequentially in different stages of a pathological process. Accumulated a lot of experimental evidence to assume that the SPS may be the basis for the creation of next-generation drugs for the treatment of neurodegenerative diseases. PMID:24000668

  4. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases.

    PubMed

    Beeson, William T; Phillips, Christopher M; Cate, Jamie H D; Marletta, Michael A

    2012-01-18

    Fungal-derived, copper-dependent polysaccharide monooxygenases (PMOs), formerly known as GH61 proteins, have recently been shown to catalyze the O(2)-dependent oxidative cleavage of recalcitrant polysaccharides. Different PMOs isolated from Neurospora crassa were found to generate oxidized cellodextrins modified at the reducing or nonreducing ends upon incubation with cellulose and cellobiose dehydrogenase. Here we show that the nonreducing end product formed by an N. crassa PMO is a 4-ketoaldose. Together with isotope labeling experiments, further support is provided for a mechanism involving oxygen insertion and subsequent elimination to break glycosidic bonds in crystalline cellulose. PMID:22188218

  5. Genomic Potential for Polysaccharide Deconstruction in Bacteria

    PubMed Central

    Martiny, Adam C.

    2014-01-01

    Glycoside hydrolases are important enzymes that support bacterial growth by enabling the degradation of polysaccharides (e.g., starch, cellulose, xylan, and chitin) in the environment. Presently, little is known about the overall phylogenetic distribution of the genomic potential to degrade these polysaccharides in bacteria. However, knowing the phylogenetic breadth of these traits may help us predict the overall polysaccharide processing in environmental microbial communities. In order to address this, we identified and analyzed the distribution of 392,166 enzyme genes derived from 53 glycoside hydrolase families in 8,133 sequenced bacterial genomes. Enzymes for oligosaccharides and starch/glycogen were observed in most taxonomic groups, whereas glycoside hydrolases for structural polymers (i.e., cellulose, xylan, and chitin) were observed in clusters of relatives at taxonomic levels ranging from species to genus as determined by consenTRAIT. The potential for starch and glycogen processing, as well as oligosaccharide processing, was observed in 85% of the strains, whereas 65% possessed enzymes to degrade some structural polysaccharides (i.e., cellulose, xylan, or chitin). Potential degraders targeting one, two, and three structural polysaccharides accounted for 22.6, 32.9, and 9.3% of genomes analyzed, respectively. Finally, potential degraders targeting multiple structural polysaccharides displayed increased potential for oligosaccharide deconstruction. This study provides a framework for linking the potential for polymer deconstruction with phylogeny in complex microbial assemblages. PMID:25527556

  6. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  7. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells

    PubMed Central

    Chai, Yangyang; Wang, Guibin; Fan, Lili; Zhao, Min

    2016-01-01

    The anti-tumor properties of fungal polysaccharides have gained significant recognition in Asia and tropical America. In this study, the differential expression of proteins in normal HepG2 cells and those treated with polysaccharides that had been isolated from Phellinus linteus (PL), Ganoderma lucidum (GL) and Auricularia auricula (AA) was investigated. Using two-dimensional electrophoresis (2DE), a total of 104 protein spots were determined to be overexpressed in these cells compared with noncancerous regions. A total of 59 differentially expressed proteins were identified through MALDI-TOF-MS. In addition, 400 biological processes (BP), 133 cell components (CC) and 146 molecular functions (MF) were enriched by Gene Ontology (GO) analysis, and 78 KEGG pathways were enriched by pathway enrichment. Protein-Protein Interaction (PPI) analysis demonstrated the interaction networks affected by polysaccharides in HepG2 cells. Then, DJ-1 and 14-3-3 were identified as the key proteins in the networks, and the expression of the mRNA and proteins were evaluated using Real-time quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results were in agreement with the 2DE. These results provided information on significant proteins of hepatocellular carcinoma (HCC) and form an important basis for the future development of valuable medicinal mushroom resources. PMID:27020667

  8. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells.

    PubMed

    Chai, Yangyang; Wang, Guibin; Fan, Lili; Zhao, Min

    2016-01-01

    The anti-tumor properties of fungal polysaccharides have gained significant recognition in Asia and tropical America. In this study, the differential expression of proteins in normal HepG2 cells and those treated with polysaccharides that had been isolated from Phellinus linteus (PL), Ganoderma lucidum (GL) and Auricularia auricula (AA) was investigated. Using two-dimensional electrophoresis (2DE), a total of 104 protein spots were determined to be overexpressed in these cells compared with noncancerous regions. A total of 59 differentially expressed proteins were identified through MALDI-TOF-MS. In addition, 400 biological processes (BP), 133 cell components (CC) and 146 molecular functions (MF) were enriched by Gene Ontology (GO) analysis, and 78 KEGG pathways were enriched by pathway enrichment. Protein-Protein Interaction (PPI) analysis demonstrated the interaction networks affected by polysaccharides in HepG2 cells. Then, DJ-1 and 14-3-3 were identified as the key proteins in the networks, and the expression of the mRNA and proteins were evaluated using Real-time quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results were in agreement with the 2DE. These results provided information on significant proteins of hepatocellular carcinoma (HCC) and form an important basis for the future development of valuable medicinal mushroom resources. PMID:27020667

  9. Structural Characterization of Arabidopsis Leaf Arabinogalactan Polysaccharides1[W

    PubMed Central

    Tryfona, Theodora; Liang, Hui-Chung; Kotake, Toshihisa; Tsumuraya, Yoichi; Stephens, Elaine; Dupree, Paul

    2012-01-01

    Proteins decorated with arabinogalactan (AG) have important roles in cell wall structure and plant development, yet the structure and biosynthesis of this polysaccharide are poorly understood. To facilitate the analysis of biosynthetic mutants, water-extractable arabinogalactan proteins (AGPs) were isolated from the leaves of Arabidopsis (Arabidopsis thaliana) plants and the structure of the AG carbohydrate component was studied. Enzymes able to hydrolyze specifically AG were utilized to release AG oligosaccharides. The released oligosaccharides were characterized by high-energy matrix-assisted laser desorption ionization-collision-induced dissociation mass spectrometry and polysaccharide analysis by carbohydrate gel electrophoresis. The Arabidopsis AG is composed of a β-(1→3)-galactan backbone with β-(1→6)-d-galactan side chains. The β-(1→6)-galactan side chains vary in length from one to over 20 galactosyl residues, and they are partly substituted with single α-(1→3)-l-arabinofuranosyl residues. Additionally, a substantial proportion of the β-(1→6)-galactan side chain oligosaccharides are substituted at the nonreducing termini with single 4-O-methyl-glucuronosyl residues via β-(1→6)-linkages. The β-(1→6)-galactan side chains are occasionally substituted with α-l-fucosyl. In the fucose-deficient murus1 mutant, AGPs lack these fucose modifications. This work demonstrates that Arabidopsis mutants in AGP structure can be identified and characterized. The detailed structural elucidation of the AG polysaccharides from the leaves of Arabidopsis is essential for insights into the structure-function relationships of these molecules and will assist studies on their biosynthesis. PMID:22891237

  10. Polysaccharides from Medicinal Herbs As Potential Therapeutics for Aging and Age-Related Neurodegeneration

    PubMed Central

    Li, Haifeng; Ma, Fangli; Hu, Minghua; Xiao, Lingyun; Zhang, Ju; Xiang, Yanxia

    2014-01-01

    Abstract Recent studies have uncovered important aging clues, including free radicals, inflammation, telomeres, and life span pathways. Strategies to regulate aging-associated signaling pathways are expected to be effective in the delay and prevention of age-related disorders. For example, herbal polysaccharides with considerable anti-oxidant and anti-inflammation capacities have been shown to be beneficial in aging and age-related neurodegenerative diseases. Polysaccharides capable of reducing cellular senescence and modulating life span via telomere and insulin pathways have also been found to have the potential to inhibit protein aggregation and aggregation-associated neurodegeneration. Here we present the current status of polysaccharides in anti-aging and anti-neurodegenerative studies. PMID:24125569

  11. Synthesis and characterization of Escherichia coli O18 O-polysaccharide conjugate vaccines.

    PubMed Central

    Cryz, S J; Cross, A S; Sadoff, J C; Fürer, E

    1990-01-01

    Nontoxic, serologically reactive O polysaccharide was derived from Escherichia coli O18 lipopolysaccharide by acid hydrolysis, extraction with organic solvents, and gel filtration chromatography. Oxidized O polysaccharide was covalently coupled to either Pseudomonas aeruginosa toxin A or cholera toxin by using adipic acid dihydrazide as a spacer molecule in the presence of carbodiimide. The resulting conjugates were composed of approximately equal amounts of O polysaccharide and protein and were nontoxic and nonpyrogenic. Both conjugates engendered an immunoglobulin G antibody response in rabbits that recognized native O18 lipopolysaccharide. Such antibody was able to promote the uptake and killing of an E. coli O18 strain bearing the K1 capsule by human polymorphonuclear leukocytes. Immunoglobulin G isolated from the sera of rabbits immunized with either conjugate afforded protection against an E. coli O18 challenge when passively transferred to mice. PMID:2105272

  12. Chemical analysis and antioxidant activity of polysaccharides extracted from Inonotus obliquus sclerotia.

    PubMed

    Du, XiuJu; Mu, HongMei; Zhou, Shuai; Zhang, Yang; Zhu, XiaoLi

    2013-11-01

    Three water-soluble polysaccharide fractions (IOP40, IOP60 and IOP80) were isolated by using different concentrations of alcohol precipitation from Inonotus obliquus sclerotia. Their physicochemical properties, including total sugar content, protein content, monosaccharide composition and percentage were analyzed. And their in vitro antioxidant capacities were investigated in terms of reducing power assay and scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, hydroxyl radicals, superoxide anion radicals and hydrogen peroxide (H2O2). In general, three polysaccharide fractions exhibited increasing antioxidant activity with increasing concentration at the ranges of tested dosage. The orders of reducing power, DPPH-scavenging capacity, H2O2-scavenging capacity, and hydroxyl-scavenging activity were all IOP60>IOP40>IOP80. These findings demonstrated that three polysaccharide fractions extracted from I. obliquus, especially IOP60, could be employed as natural ingredients in functional food and pharmaceutical industry to alleviate the oxidative stress. PMID:24145301

  13. Biological and physicochemical properties of two polysaccharides from the mycelia of Grifola umbellate.

    PubMed

    Bi, Yunpeng; Miao, Ye; Han, Yan; Xu, Jian; Wang, Qing

    2013-06-20

    In the present study, we firstly reported the antioxidant, antitumor and immunomodulatory effects of two polysaccharides (GUMP-1-1 and GUMP-1-2) isolated from Grifola umbellata mycelia. Chemical analysis indicated that two polysaccharide fractions contained different content of neutral sugar, uronic acid and protein, as well as varying monosaccharide compositions and average molecular weight. We found that they could significantly inhibit the growth of H22 implanted tumor and enhance the spleen index and splenocyte proliferation of H22 tumor-bearing mice. In addition, GUMP-1-2 had the stronger free radicals scavenging and ferrous ion chelating abilities than GUMP-1-1 in vitro. These results indicated that antitumor activity of two purified polysaccharides might be achieved by improving immune response and the different chemical composition and average molecular weight could affect their antitumor, antioxidant and immunomodulatory activities. PMID:23648036

  14. Sulfated polysaccharides from Loligo vulgaris skin: potential biological activities and partial purification.

    PubMed

    Abdelmalek, Baha Eddine; Sila, Assaâd; Krichen, Fatma; Karoud, Wafa; Martinez-Alvarez, Oscar; Ellouz-Chaabouni, Semia; Ayadi, Mohamed Ali; Bougatef, Ali

    2015-01-01

    The characteristics, biological properties, and purification of sulfated polysaccharides extracted from squid (Loligo vulgaris) skin were investigated. Their chemical and physical characteristics were determined using X-ray diffraction and infrared spectroscopic analysis. Sulfated polysaccharides from squid skin (SPSS) contained 85.06% sugar, 2.54% protein, 1.87% ash, 8.07% sulfate, and 1.72% uronic acid. The antioxidant properties of SPSS were investigated based on DPPH radical-scavenging capacity (IC50 = 19.42 mg mL(-1)), hydrogen peroxide-scavenging activity (IC50 = 0.91 mg mL(-1)), and β-carotene bleaching inhibition (IC50 = 2.79 mg mL(-1)) assays. ACE-inhibitory activity of SPSS was also investigated (IC50 = 0.14 mg mL(-1)). Further antimicrobial activity assays indicated that SPSS exhibited marked inhibitory activity against the bacterial and fungal strains tested. Those polysaccharides did not display hemolytic activity towards bovine erythrocytes. Fractionation by DEAE-cellulose column chromatography showed three major absorbance peaks. Results of this study suggest that sulfated polysaccharides from squid skin are attractive sources of polysaccharides and promising candidates for future application as dietary ingredients. PMID:25301697

  15. Polysaccharides from the green seaweed Codium decorticatum. Structure and cell wall distribution.

    PubMed

    Fernández, Paula Virginia; Raffo, María Paula; Alberghina, Josefina; Ciancia, Marina

    2015-03-01

    The cell wall polysaccharides from Codium decorticatum and their assembly were studied and these results were compared with those obtained previously for this genus. The water soluble polysaccharides are: (i) Pyruvylated and sulfated 3- and 6-linked β-D-galactans with sulfate mainly on C-4 and also on C-6. Pyruvate ketals are linked to O-3 and O-4 of terminal β-D-galactose or O-4 and O-6 of 3-linked β-D-galactose. (ii) Sulfated 3-linked β-L-arabinans substituted on C-2 or C-2 and C-4 predominantly with sulfate, but also with single stubs of arabinose, and (iii) 4-linked β-D-mannans with a low degree of sulfation on C-2. The whole polysaccharide system comprises 6.9% of sulfated polysaccharides and 32.9% of fibrillar polysaccharides, mostly insoluble mannans. By in situ localization it was possible to detect two similar fibrillar layers separated by a zone rich in charged polymers. Besides, arabinogalactan proteins co-localized with the fibrillar components. PMID:25498707

  16. Comamonas testosteronan synthase, a bifunctional glycosyltransferase that produces a unique heparosan polysaccharide analog

    PubMed Central

    Otto, Nigel J; Solakyildirim, Kemal; Linhardt, Robert J; DeAngelis, Paul L

    2011-01-01

    Glycosaminoglycans (GAGs) are linear hexosamine-containing polysaccharides. These polysaccharides are synthesized by some pathogenic bacteria to form an extracellular coating or capsule. This strategy forms the basis of molecular camouflage since vertebrates possess naturally occurring GAGs that are essential for life. A recent sequence database search identified a putative protein from the opportunistic pathogen Comamonas testosteroni that exhibits similarity with the Pasteurella multocida GAG synthase PmHS1, which is responsible for the synthesis of a heparosan polysaccharide capsule. Initial supportive evidence included glucuronic acid (GlcUA)-containing polysaccharides extracted from C. testosteroni KF-1. We describe here the cloning and analysis of a novel Comamonas GAG synthase, CtTS. The GAG produced by CtTS in vitro consists of the sugars d-GlcUA and N-acetyl-d-glucosamine, but is insensitive to digestion by GAG digesting enzymes, thus has distinct glycosidic linkages from vertebrate GAGs. The backbone structure of the polysaccharide product [-4-d-GlcUA-α1,4-d-GlcNAc-α1-]n was confirmed by nuclear magnetic resonance. Therefore, this novel GAG, testosteronan, consists of the same sugars as the biomedically relevant GAGs heparosan (N-acetyl-heparosan) and hyaluronan but may have distinct properties useful for future medical applications. PMID:21610195

  17. Characterization, antioxidative and bifidogenic effects of polysaccharides from Pleurotus eryngii after heat treatments.

    PubMed

    Li, Siqian; Shah, Nagendra P

    2016-04-15

    Polysaccharides were extracted from freeze-dried-, oven-dried- and boiling-treated Pleurotus eryngii (FDPEPS, ODPEPS and BTPEPS). Yield of FDPEPS and its total carbohydrates, total polysaccharides, reducing sugars, phenolics and protein content were higher than ODPEPS and BTPEPS. High performance liquid chromatography (HPLC) identified that FDPEPS, ODPEPS, and BTPEPS were composed of mannose (5.75%, 5.52%, 6.97%), glucose (88.90%, 89.31%, 87.68%) and galactose (5.34%, 5.17%, 5.35%). All three polysaccharides showed typical saccharic absorption bands in FT-IR. The FDPEPS showed the highest antioxidant activities in ferric reducing antioxidant power (FRAP), ABTS, superoxide anion and hydroxyl radical scavenging tests. Denser aggregates and larger serum pores were observed in confocal micrographs of soymilk added with ODPEPS. Viability of Bifidobacterium longum in soymilk added with polysaccharides was significantly higher (p<0.01) than those without polysaccharides during fermentation. Heat treatments applied before extraction affected the properties, composition and microstructures of FDPEPS, ODPEPS and BTPEPS. PMID:26616946

  18. Chemical structure, conjugation, and cross-reactivity of Bacillus pumilus Sh18 cell wall polysaccharide.

    PubMed

    Kubler-Kielb, Joanna; Coxon, Bruce; Schneerson, Rachel

    2004-10-01

    Bacillus pumilus strain Sh18 cell wall polysaccharide (CWP), cross-reactive with the capsular polysaccharide of Haemophilus influenzae type b, was purified and its chemical structure was elucidated using fast atom bombardment mass spectrometry, nuclear magnetic resonance techniques, and sugar-specific degradation procedures. Two major structures, 1,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate), with the latter partially substituted by 2-acetamido-2-deoxy-alpha-galactopyranose (13%) and 2-acetamido-2-deoxy-alpha-glucopyranose (6%) on position O-2, were found. A minor component was established to be a polymer of -->3-O-(2-acetamido-2-deoxy-beta-glucopyranosyl)-1-->4-ribitol-1-OPO3-->. The ratios of the three components were 56, 34, and 10 mol%, respectively. The Sh18 CWP was covalently bound to carrier proteins, and the immunogenicity of the resulting conjugates was evaluated in mice. Two methods of conjugation were compared: (i) binding of 1-cyano-4-dimethylaminopyridinium tetrafluoroborate-activated hydroxyl groups of the CWP to adipic acid dihydrazide (ADH)-derivatized protein, and (ii) binding of the carbodiimide-activated terminal phosphate group of the CWP to ADH-derivatized protein. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with the homologous polysaccharide and with a number of other bacterial polysaccharides containing ribitol and glycerol phosphates, including H. influenzae types a and b and strains of Staphylococcus aureus and Staphylococcus epidermidis. PMID:15466043

  19. Viscoelastic properties of levan polysaccharides

    NASA Astrophysics Data System (ADS)

    Noll, Kenneth; Rende, Deniz; Ozisik, Rahmi; Toksoy-Oner, Ebru

    2014-03-01

    Levan is a naturally occurring polysaccharide that is composed of β-D-fructofuranose units with β(2-6) linkages between fructose rings. It is synthesized by the action of a secreted levansucrase (EC 2.4.1.10) that converts sucrose into the levan externally (exopolysaccharide). Levan is a homopolysaccharide that is non-toxic, water soluble,, and has anti-tumor activity and low immunological response. Therefore, levan presents great potential to be used as a novel functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Despite these favorable properties, levan has a moderately low mechanical properties and poor film forming capability. In the current study, the agglomeration behavior of levan in water and in saline solutions was investigated at 298 and 310 K by dynamic light scattering and transmission electron microscopy (TEM). The viscoelastic properties of neat and oxidized levan films were studied via nanoindentation experiments in the quasi-static and dynamic modes The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232.

  20. Chemical Compositions and Macrophage Activation of Polysaccharides from Leon's Mane Culinary-Medicinal Mushroom Hericium erinaceus (Higher Basidiomycetes) in Different Maturation Stages.

    PubMed

    Li, Qiao-Zhen; Wu, Di; Chen, Xia; Zhou, Shuai; Liu, Yanfang; Yang, Yan; Cui, Fengjie

    2015-01-01

    We studied the effect of the maturation stage on the chemical compositions and macrophage activation activity of polysaccharides from the culinary-medicinal mushroom Hericium erinaceus. Results showed that total polysaccharides increased, whereas protein content decreased with the maturation stage development of fruiting body. Nine polysaccharide fractions, 3 from each of the maturity stages IV (small fungal spine stage), V (mid-fungal spine stage) and VI (mature), were prepared using the gradient ethanol precipitation method. The polysaccharide fraction HP4A isolated from the maturating-stage (stage IV) fruiting body had a significant difference from the fractions HP5A (stage V) and HP6A (stage VI) in the molecular weight distribution and monosaccharide compositions. Immunostimulating tests revealed that the polysaccharide fraction HP6 isolated from the mature stage (stage VI) fruiting body presented higher macrophage activation activity. Our findings provided important information for the harvest and use of H. erinaceus with higher qualities and functional benefits. PMID:26082983

  1. Keratan sulphate--a 'reserve' polysaccharide?

    PubMed

    Scott, J E

    1994-04-01

    The early history of keratan sulphate and its proteoglycans is briefly described. Studies were overlooked that could have had a profound influence on later work. Early methods of writing the structures of keratan and chondroitin sulphates obscured the fundamental relationships between them. Both are now seen to be based on the same polymer backbone poly(Gal beta 1:4 Glc beta 1-3). Confusion over the complicated sulphation patterns in keratan sulphate was clarified by the domain structure idea by the group of Helmut Greiling. Keratan sulphate is characteristic of avascular tissues (cartilages, intervertebral discs, corneal stromas) that get their oxygen supplies by diffusion. Stockwell's early idea that the distribution of keratan sulphate in cartilages was a response to the poor supply of oxygen has been generalised, to the hypothesis that keratan sulphate is a functional substitute for chondroitin sulphate under conditions of oxygen lack. The keratan:chondroitin sulphate ratios in discs, corneas of different species, and changes therein with age can be explained on this basis. The biochemical controlling step is probably the NAD:NADH ratio. Keratan sulphate may thus be a 'reserve' polysaccharide, able to do the job of chondroitin sulphate in adverse conditions of oxygen supply. Keratan and chondroitin/dermatan sulphates have similar functions in corneal stroma, and probably in the other connective tissues in which they are found. They swell the collagenous matrix, keeping the fibrils apart. Even more importantly, they probably act as tissue organisers, orienting the fibrils vis-a-vis each other via specific interactions of their proteoglycan protein cores with the fibrils.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8038262

  2. Comparison of polysaccharides produced by Myxococcus strains.

    PubMed

    Sutherland, I W; Thomson, S

    1975-07-01

    Exopolysaccharides were prepared from cultures of four Myxococcus strains grown on solid and in liquid media, and also from the fruiting bodies. Lipopolysaccharides could be extracted with aqueous phenol from the vegetative bacteria, but were absent from microcysts. Mannose and D-glucose were present in all the exopolysaccharides and three of the lipopolysaccharides examined. Other monosaccharides identified in the exopolysaccharides were D-galactose, N-acetylglucosamine and N-acetylgalactosamine. The composition of the lipopolysaccharides was more complex than that of the exopolysaccharides and, in addition to the neutral hexoses and amino sugars, rhamnose was identified in two preparations and ribose in another. No lipopolysaccharide preparations contained O-methyl xylose or heptose. The polysaccharides secreted by the bacillary forms grown on solid or in liquid media closely resembled the polysaccharides isolated from the fruiting bodies, in which they provided a matrix surrounding the microcysts. Each pair of polysaccharides contained the same monosaccharides, although in slightly different proportions. Differences were found in preparations from different strains. These results suggest that in the development cycle of the genus Myxococcus, considerable use is made of pre-existing enzyme systems to synthesize the precursors necessary for polysaccharide synthesis. Any specific difference between the polysaccharide produced by the bacilli and that surrounding the microcysts may lie in the fine structure, rather than in the individual components. PMID:807682

  3. New Insights into Regulation of Proteome and Polysaccharide in Cell Wall of Elsholtzia splendens in Response to Copper Stress

    PubMed Central

    Liu, Tingting; Shen, Chaofeng; Wang, Yi; Huang, Canke; Shi, Jiyan

    2014-01-01

    Background and Aims Copper (Cu) is an essential micronutrient for plants. However, excess amounts of Cu are toxic and result in a wide range of harmful effects on the physiological and biochemical processes of plants. Cell wall has a crucial role in plant defense response to toxic metals. To date, the process of cell wall response to Cu and the detoxification mechanism have not been well documented at the proteomic level. Methods An recently developed 6-plex Tandem Mass Tag was used for relative and absolute quantitation methods to achieve a comprehensive understanding of Cu tolerance/detoxification molecular mechanisms in the cell wall. LC–MS/MS approach was performed to analyze the Cu-responsive cell wall proteins and polysaccharides. Key Results The majority of the 22 up-regulated proteins were involved in the antioxidant defense pathway, cell wall polysaccharide remodeling, and cell metabolism process. Changes in polysaccharide amount, composition, and distribution could offer more binding sites for Cu ions. The 33 down-regulated proteins were involved in the signal pathway, energy, and protein synthesis. Conclusions Based on the abundant changes in proteins and polysaccharides, and their putative functions, a possible protein interaction network can provide new insights into Cu stress response in root cell wall. Cu can facilitate further functional research on target proteins associated with metal response in the cell wall. PMID:25340800

  4. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  5. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    SciTech Connect

    Stephens, David S.; Gudlavalleti, Seshu K.; Tzeng, Yih-Ling; Datta, Anup K.; Carlson, Russell W.

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  6. Pneumococcal polysaccharide vaccine - what you need to know

    MedlinePlus

    ... taken in its entirety from the CDC Pneumococcal Polysaccharide Vaccine Information Statement (VIS): www.cdc.gov/vaccines/ ... statements/ppv.html CDC review information for Pneumococcal Polysaccharide VIS: Page last reviewed: April 24, 2015 Page ...

  7. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  8. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases.

    PubMed

    Vu, Van V; Beeson, William T; Phillips, Christopher M; Cate, Jamie H D; Marletta, Michael A

    2014-01-15

    The ubiquitous fungal polysaccharide monooxygenases (PMOs) (also known as GH61 proteins, LPMOs, and AA9 proteins) are structurally related but have significant variation in sequence. A heterologous expression method in Neurospora crassa was developed as a step toward connecting regioselectivity of the chemistry to PMO phylogeny. Activity assays, as well as sequence and phylogenetic analyses, showed that the majority of fungal PMOs fall into three major groups with distinctive active site surface features. PMO1s and PMO2s hydroxylate glycosidic positions C1 and C4, respectively. PMO3s hydroxylate both C1 and C4. A subgroup of PMO3s (PMO3*) hydroxylate C1. Mutagenesis studies showed that an extra subdomain of about 12 amino acids contribute to C4 oxidation in the PMO3 family. PMID:24350607

  9. Mucosal immunogenicity of polysaccharides conjugated to a peptide or multiple-antigen peptide containing T- and B-cell epitopes.

    PubMed Central

    Lett, E; Klopfenstein, C; Klein, J P; Schöller, M; Wachsmann, D

    1995-01-01

    In this study we investigated the mucosal and systemic responses to two T-cell-independent polysaccharides, a serogroup f polysaccharide (formed of rhamnose glucose polymers [RGPs]) from Streptococcus mutans OMZ 175 and a mannan from Saccharomyces cerevisiae, covalently conjugated either to a linear peptide (peptide 3) or to a multiple-antigen peptide (MAP), both derived from S. mutans protein SR, an adhesin of the I/II protein antigen family of oral streptococci. Peptide 3 and MAP, which contained at least one B- and one T-cell epitope, were tested as carriers for the polysaccharides and as protective immunogens. Intragastric intubation of rats with the conjugates (RGPs-peptide 3, RGPs-MAP, mannan-peptide 3, and mannan-MAP) associated with liposomes produced salivary immunoglobulin A (IgA) antibodies which reacted with RGPs or mannan, peptide 3 or MAP, protein SR, and S. mutans or S. cerevisiae cells. Administration of conjugate boosters to the animals showed that both carriers conjugated to the polysaccharides were able to induce, in immunized animals, a salivary antipolysaccharide IgA memory. In contrast, animals primed and challenged with unconjugated polysaccharide showed no anamnestic response. Rats orally immunized with the conjugates also developed systemic primary antipolysaccharide and antipeptide IgM antibody responses which were characterized by a switch from IgM to IgG during the course of the secondary response. Data presented here demonstrated that both peptide 3 and the MAP construct can act as good carriers for orally administered polysaccharides. Unexpectedly, the use of a MAP did not further improve the immunogenicity of polysaccharides at the mucosal level; nevertheless, such a construct should be of great interest in overcoming the problem of genetic restriction induced by linear peptides. PMID:7790080

  10. Recalcitrant polysaccharide degradation by novel oxidative biocatalysts.

    PubMed

    Dimarogona, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2013-10-01

    The classical hydrolytic mechanism for the degradation of plant polysaccharides by saprophytic microorganisms has been reconsidered after the recent landmark discovery of a new class of oxidases termed lytic polysaccharide monooxygenases (LPMOs). LPMOs are of increased biotechnological interest due to their implication in lignocellulosic biomass decomposition for the production of biofuels and high-value chemicals. They act on recalcitrant polysaccharides by a combination of hydrolytic and oxidative function, generating oxidized and non-oxidized chain ends. They are copper-dependent and require molecular oxygen and an external electron donor for their proper function. In this review, we present the recent findings concerning the mechanism of action of these oxidative enzymes and identify issues and questions to be addressed in the future. PMID:23995228