Science.gov

Sample records for polysilicon thin-film transistors

  1. Polysilicon thin film transistors fabricated on low temperature plastic substrates

    SciTech Connect

    Carey, P.G.; Smith, P.M.; Theiss, S.D.; Wickboldt, P.

    1999-07-01

    We present device results from polysilicon thin film transistors (TFTs) fabricated at a maximum temperature of 100&hthinsp;{degree}C on polyester substrates. Critical to our success has been the development of a processing cluster tool containing chambers dedicated to laser crystallization, dopant deposition, and gate oxidation. Our TFT fabrication process integrates multiple steps in this tool, and uses the laser to crystallize deposited amorphous silicon as well as create heavily doped TFT source/drain regions. By combining laser crystallization and doping, a plasma enhanced chemical vapor deposition SiO{sub 2} layer for the gate dielectric, and postfabrication annealing at 150&hthinsp;{degree}C, we have succeeded in fabricating TFTs with I{sub ON}/I{sub OFF} ratios {gt}5{times}10{sup 5} and electron mobilities {gt}40 cm{sup 2}/V&hthinsp;s on polyester substrates. {copyright} {ital 1999 American Vacuum Society.}

  2. Unified gate capacitance model of polysilicon thin-film transistors for circuit applications

    NASA Astrophysics Data System (ADS)

    Deng, W.; Zheng, X.; Chen, R.; Wu, W.; An, Z.

    2008-07-01

    The characteristics of the gate capacitance at polysilicon thin-film transistors (poly-Si TFTs) based on terms of surface potential have been described and modeled in this paper. An explicit approximate relation for surface potential as a function of terminal voltages is developed. The theory is based on an assumed exponential distribution of trap states in the energy gap. Moreover, the model has been found to give an accurate description of the unique features of poly-Si TFTs, such as rapid increase of Cgs in leakage region and Cgd in kink region. The good agreement between simulated model results and experimental data confirms the accuracy and efficiency of this model.

  3. Polysilicon thin films and interfaces

    SciTech Connect

    Kamins, T. ); Raicu, B. ); Thompson, C.V. )

    1990-01-01

    This volume contains the proceedings of a symposium on polysilicon thin films and interfaces, held as part of the 1990 Materials Research Society Spring Meeting. Topics covered include: crystal grown fo silicon and germanium wafers for photovoltaic devices, microanalysis of tungsten silicide interface, thermal processing of polysilicon thin films, and electrical and optical properties of polysilicon sheets for photovoltaic devices.

  4. Electrical characteristic analysis using low-frequency noise in low-temperature polysilicon thin film transistors.

    PubMed

    Kim, Y M; Jeong, K S; Yun, H J; Yang, S D; Lee, S Y; Kim, M J; Kwon, O S; Jeong, C W; Kim, J Y; Kim, S C; Lee, G W

    2012-07-01

    This study carried out an electrical characteristic analysis using low-frequency noise (LFN) in top gate p-type low-temperature polysilicon thin film transistors (LTPS TFTs) with different active layer thicknesses between 40 nm and 80 nm. The transfer characteristic curves show that the 40-nm device has better electrical characteristics compared with the 80-nm device. The carrier number fluctuation, with and without correlated mobility fluctuation model in both devices, has modeled well the measured noise. On the other hand, the trap density and coulomb scattering in the 40-nm device are smaller compared with the 80-nm device. To confirm the effectiveness of the LFN noise analysis, the trap densities at a grain boundary are extracted using in both devices the similar methods of Proano et al. and Levinson et al. That is, coulomb scattering, caused by the trapped charges at or near the interface, has a greater effect on the device with inferior electrical properties. Based on the LFN and the quantitative analysis of the trap density at a grain boundary, the interface traps between the active layer and the gate insulator can explain the devices' electrical degradation. PMID:22966605

  5. Investigation of the instability of low-temperature poly-silicon thin film transistors under a negative bias temperature stress

    NASA Astrophysics Data System (ADS)

    Kim, Yu-Mi; Jeong, Kwang-Seok; Yun, Ho-Jin; Yang, Seung-Dong; Lee, Sang-Youl; Lee, Hi-Deok; Lee, Ga-Won

    2013-10-01

    In this work, we analyzed and correlated the hysteresis characteristics and instability under negative bias temperature instability (NBTI) stress in p-channel low-temperature poly-silicon (LTPS) thin-film transistors (TFTs). Positive V TH shifts were observed under the NBTI stress. The hysteresis does not appear to be affected by the NBTI stress; however, when the VG stress voltage is -40 V at 100°C, the hysteresis increases as the stress time increases and V TH shifts with sub-threshold slope (SS) degradation. The hysteresis may increase under the extreme stress condition due to the generation of trap-states.

  6. Design, fabrication and characterization of a high-sensitivity pressure sensor based on nano-polysilicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Yu, Yang; Li, Dandan; Wen, Dianzhong

    2015-12-01

    Based on the nano-polysilicon thin film transistors (TFTs), a high-sensitivity pressure sensor was designed and fabricated in this paper. The pressure sensing element is composed of a Wheatstone bridge with four nano-polysilicon TFTs designed on different positions of the square silicon diaphragm. Via taking the four channel resistors of the TFTs as piezoresistors, the measurement to the external pressure can be realized according to the piezoresistive effects of channel layer. Through adopting complementary metal oxide semiconductor (CMOS) technology and micro-electromechanical system (MEMS) technology, the chips of sensor were fabricated on <100 > orientation silicon wafer with a high resistivity. At room temperature, when applying a voltage 5.0 V to the Wheatstone bridge, the full scale (100 kPa) output voltage and the sensitivity of the sensor with 35 μm-thick silicon diaphragm are 267 mV and 2.58 mV/kPa, respectively. The experimental results show that the pressure sensors can achieve a much higher sensitivity.

  7. Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls

    NASA Astrophysics Data System (ADS)

    Maiolo, L.; Mirabella, S.; Maita, F.; Alberti, A.; Minotti, A.; Strano, V.; Pecora, A.; Shacham-Diamand, Y.; Fortunato, G.

    2014-09-01

    A fully flexible pH sensor using nanoporous ZnO on extended gate thin film transistor (EGTFT) fabricated on polymeric substrate is demonstrated. The sensor adopts the Low Temperature Polycrystalline Silicon (LTPS) TFT technology for the active device, since it allows excellent electrical characteristics and good stability and opens the way towards the possibility of exploiting CMOS architectures in the future. The nanoporous ZnO sensitive film, consisting of very thin (20 nm) crystalline ZnO walls with a large surface-to-volume ratio, was chemically deposited at 90 °C, allowing simple process integration with conventional TFT micro-fabrication processes compatible with wide range of polymeric substrates. The pH sensor showed a near-ideal Nernstian response (˜59 mV/pH), indicating an ideality factor α ˜ 1 according to the conventional site binding model. The present results can pave the way to advanced flexible sensing systems, where sensors and local signal conditioning circuits will be integrated on the same flexible substrate.

  8. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  9. Highly Reliable Liquid-Phase-Deposited SiO2 with Nitrous Oxide Plasma Post-Treatment for Low-Temperature-Processed Polysilicon Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Yeh, Ching-Fa; Chen, Darren Chi-Hsiang; Lu, Cheng-Yu; Liu, Chung; Lee, Su-Tseng; Liu, Cheng-Hong; Chen, Tai-Ju

    2002-10-01

    Low-temperature (˜300°C) N2O-plasma post-treatment for liquid-phase-deposited (LPD) gate oxide has been proposed for the first time. This treatment successfully takes the place of conventional furnace annealing in O2 ambient. Results of physicochemical and electrical characteristics show that N2O-plasma post-treated LPD-SiO2 has a high electrical breakdown field and low interface state density. In addition, N2O-plasma treatment also improves the Si-rich phenomenon of LPD-SiO2. From the comparison with pure N2O-plasma oxidation film, LPD-SiO2 with its short re-oxidation time in N2O plasma plays an important role in relieving interfacial stress. Finally, the novel technology is applied to the gate oxide of low-temperature-processed (LTP) polysilicon thin film transistors (poly-Si TFTs). The device performance reveals excellent electrical characteristics, and the reliability shows a satisfactory result, as well as the gate oxide reliability. It is believed that the N2O-plasma post-treatment not only improves the oxide quality, but also effectively passivates the trap states of poly-Si TFTs.

  10. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    SciTech Connect

    Wang, Quan; Zhang, Yanmin; Hu, Ran; Ren, Naifei; Ge, Daohan

    2013-11-14

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

  11. High Performance Airbrushed Organic Thin Film Transistors

    SciTech Connect

    Chan, C.; Richter, L; Dinardo, B; Jaye, C; Conrad, B; Ro, H; Germack, D; Fischer, D; DeLongchamp, D; Gunlach, D

    2010-01-01

    Spray-deposited poly-3-hexylthiophene (P3HT) transistors were characterized using electrical and structural methods. Thin-film transistors with octyltrichlorosilane treated gate dielectrics and spray-deposited P3HT active layers exhibited a saturation regime mobility as high as 0.1 cm{sup 2} V{sup -1} s{sup -1}, which is comparable to the best mobilities observed in high molecular mass P3HT transistors prepared using other methods. Optical and atomic force microscopy showed the presence of individual droplets with an average diameter of 20 {micro}m and appreciable large-scale film inhomogeneities. Despite these inhomogeneities, near-edge x-ray absorption fine structure spectroscopy of the device-relevant channel interface indicated excellent orientation of the P3HT.

  12. Mechanisms for fatigue and wear of polysilicon structural thin films

    NASA Astrophysics Data System (ADS)

    Alsem, Daniel Henricus

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT(TM) process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo . It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ˜4-20 nm. Such results are interpreted and explained by a reaction-layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT(TM) process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (˜50-100 nm) created by fracture through the silicon grains (˜500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (˜20-200 nm) forms at worn regions. No

  13. Method for double-sided processing of thin film transistors

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  14. Organic thin film transistors: from active materials to novel applications

    NASA Astrophysics Data System (ADS)

    Torsi, L.; Cioffi, N.; Di Franco, C.; Sabbatini, L.; Zambonin, P. G.; Bleve-Zacheo, T.

    2001-08-01

    In this paper, a bird's eye view of most of the organic materials employed as n-channel and p-channel transistor active layers is given along with the relevant device performances; organic thin film transistors (OTFT) operation regimes are discussed and an interesting perspective application of OTFT as multi-parameter gas sensor is proposed.

  15. Polycrystalline organic thin film transistors for advanced chemical sensing

    NASA Astrophysics Data System (ADS)

    Torsi, Luisa; Tanese, Maria C.; Cioffi, Nicola; Sabbatini, Luigia; Zambonin, Pier G.

    2003-11-01

    Organic thin-film transistors have seen a dramatic improvement of their performance in the last decade. They have been also proposed as gas sensors. This paper deals with the interesting new aspects that polycrystalline based conducting polymer transistors present when operated as chemical sensors. Such devices are capable to deliver multi-parameter responses that are also extremely repeatable and fast at room temperature. Interesting are also the perspectives for their use as chemically selective devices in array type sensing systems.

  16. High-performance thin-film transistors fabricated using excimer laser processing and grain engineering

    SciTech Connect

    Giust, G.K.; Sigmon, T.W.

    1998-04-01

    High-performance polysilicon thin-film transistors (TFT`s) are fabricated using an excimer laser to recrystallize the undoped channel and dope the source-drain regions. Using a technique the authors call grain engineering they are able to control grain microstructure using laser parameters. Resulting polysilicon films are obtained with average grain sizes of {approximately}4--9 {micro}m in sub-100 nm thick polysilicon films without substrate heating during the laser recrystallization process. Using a simple four-mask self-aligned aluminum top-gate structure, they fabricate TFT`s in these films. By combining the grain-engineered channel polysilicon regions with laser-doped source-drain regions, TFT`s are fabricated with electron mobilities up to 260 cm{sup 2}/Vs and on/off current ratios greater than 10{sup 7} To their knowledge, these devices represent the highest performance laser-processed TFT`s reported to date fabricated without substrate heating or hydrogenation.

  17. Hysteresis free carbon nanotube thin film transistors comprising hydrophobic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefebvre, J.; Ding, J.; Li, Z.; Cheng, F.; Du, N.; Malenfant, P. R. L.

    2015-12-01

    We present two examples of carbon nanotube network thin film transistors with strongly hydrophobic dielectrics comprising either Teflon-AF or a poly(vinylphenol)/poly(methyl silsesquioxane) (PVP/pMSSQ) blend. In the absence of encapsulation, bottom gated transistors in air ambient show no hysteresis between forward and reverse gate sweep direction. Device threshold gate voltage and On-current present excellent time dependent stability even under dielectric stress. Furthermore, threshold gate voltage for hole conduction is negative upon device encapsulation with PVP/pMSSQ enabling much improved current On/Off ratio at 0 V. This work addresses two major challenges impeding solution based fabrication of relevant thin film transistors with printable single-walled carbon nanotube channels.

  18. Highly flexible electronics from scalable vertical thin film transistors.

    PubMed

    Liu, Yuan; Zhou, Hailong; Cheng, Rui; Yu, Woojong; Huang, Yu; Duan, Xiangfeng

    2014-03-12

    Flexible thin-film transistors (TFTs) are of central importance for diverse electronic and particularly macroelectronic applications. The current TFTs using organic or inorganic thin film semiconductors are usually limited by either poor electrical performance or insufficient mechanical flexibility. Here, we report a new design of highly flexible vertical TFTs (VTFTs) with superior electrical performance and mechanical robustness. By using the graphene as a work-function tunable contact for amorphous indium gallium zinc oxide (IGZO) thin film, the vertical current flow across the graphene-IGZO junction can be effectively modulated by an external gate potential to enable VTFTs with a highest on-off ratio exceeding 10(5). The unique vertical transistor architecture can readily enable ultrashort channel devices with very high delivering current and exceptional mechanical flexibility. With large area graphene and IGZO thin film available, our strategy is intrinsically scalable for large scale integration of VTFT arrays and logic circuits, opening up a new pathway to highly flexible macroelectronics. PMID:24502192

  19. Mechanical and Electronic Properties of Thin-Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications.

    PubMed

    Heremans, Paul; Tripathi, Ashutosh K; de Jamblinne de Meux, Albert; Smits, Edsger C P; Hou, Bo; Pourtois, Geoffrey; Gelinck, Gerwin H

    2016-06-01

    The increasing interest in flexible electronics and flexible displays raises questions regarding the inherent mechanical properties of the electronic materials used. Here, the mechanical behavior of thin-film transistors used in active-matrix displays is considered. The change of electrical performance of thin-film semiconductor materials under mechanical stress is studied, including amorphous oxide semiconductors. This study comprises an experimental part, in which transistor structures are characterized under different mechanical loads, as well as a theoretical part, in which the changes in energy band structures in the presence of stress and strain are investigated. The performance of amorphous oxide semiconductors are compared to reported results on organic semiconductors and covalent semiconductors, i.e., amorphous silicon and polysilicon. In order to compare the semiconductor materials, it is required to include the influence of the other transistor layers on the strain profile. The bending limits are investigated, and shown to be due to failures in the gate dielectric and/or the contacts. Design rules are proposed to minimize strain in transistor stacks and in transistor arrays. Finally, an overview of the present and future applications of flexible thin-film transistors is given, and the suitability of the different material classes for those applications is assessed. PMID:26707947

  20. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  1. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  2. Sensors employing Functionalized Conducting Polymer Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Tanese, M. C.; Torsi, L.; Cioffi, N.; Sabbatini, L.; Zambonin, P. G.

    2003-12-01

    Functionalized conducting polymers are employed as active layers in sensors with a thin film transistor (TFT) device structure. Such devices can work as multi-parameter sensors with responses that are fast, repeatable and reversible at room temperature. In this work, a strategy is proposed to enhance the chemical selectivity of organic TFT sensors, by selecting active layers that are made of conducting polymers bearing chemically different substituents. A modulation of the devices sensitivity towards analytes such as alcohols and ketones is demonstrated.

  3. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  4. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  5. Thin-film transistors based on organic conjugated semiconductors

    NASA Astrophysics Data System (ADS)

    Garnier, Francis

    1998-02-01

    The use of organic semiconductors as active layers in thin-film transistors has raised in the recent years a large interest, both for the fundamental understanding of the charge transport processes in organic materials, and also for the potential applications of these devices in the new field of flexible electronics. Short conjugated oligomers have been shown to possess much higher field-effect mobilities than their parent conjugated polymers. The origin of such increase in the efficiency of charge transport is mainly attributed to the close-packing and long-range structural organization displayed in thin films of conjugated oligomers. The various routes for controlling this organization are described, which allow to realize liquid crystal-like two-dimensional structures for these semiconductors, whose carrier mobility has now become equivalent to that of amorphous silicon. It is also shown that the effect of conjugation length on carrier mobility is not as critical as previously thought, but the associated increase of the band gap energy effects the efficiency of charge injection at the metal/semiconductor interface. This problem can be answered by realizing a local doping of the semiconductor, which allows the injection of charge to operate through an efficient tunneling mechanism. Organic-based thin-film transistors have now become viable devices.

  6. Self-Heating Effects In Polysilicon Source Gated Transistors

    PubMed Central

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  7. Self-Heating Effects In Polysilicon Source Gated Transistors.

    PubMed

    Sporea, R A; Burridge, T; Silva, S R P

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  8. Self-Heating Effects In Polysilicon Source Gated Transistors

    NASA Astrophysics Data System (ADS)

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-09-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs.

  9. Investigation of tungsten doped tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Meng, Ting; Yang, Zhao; Cui, Can; Zhang, Qun

    2015-11-01

    Tungsten doped tin oxide thin film transistors (TWO-TFTs) were fabricated by radio frequency magnetron sputtering. With TWO thin films as the channel layers, the TFTs show lower off-current and positive shift turn-on voltage than the intrinsic tin oxide TFTs, which can be explained by the reason that W doping is conducive to suppress the carrier concentration of the TWO channel layer. It is important to elect an appropriate channel thickness for improving the TFT performance. The optimum TFT performance in enhancement mode is achieved at W doping content of 2.7 at% and channel thickness of 12 nm, with the saturation mobility, turn-on voltage, subthreshold swing value and on-off current ratio of 5 cm2 V-1 s-1, 0.4 V, 0.4 V/decade and 2.4  ×  106, respectively.

  10. Organic thin-film transistors for chemical and biological sensing.

    PubMed

    Lin, Peng; Yan, Feng

    2012-01-01

    Organic thin-film transistors (OTFTs) show promising applications in various chemical and biological sensors. The advantages of OTFT-based sensors include high sensitivity, low cost, easy fabrication, flexibility and biocompatibility. In this paper, we review the chemical sensors and biosensors based on two types of OTFTs, including organic field-effect transistors (OFETs) and organic electrochemical transistors (OECTs), mainly focusing on the papers published in the past 10 years. Various types of OTFT-based sensors, including pH, ion, glucose, DNA, enzyme, antibody-antigen, cell-based sensors, dopamine sensor, etc., are classified and described in the paper in sequence. The sensing mechanisms and the detection limits of the devices are described in details. It is expected that OTFTs may have more important applications in chemical and biological sensing with the development of organic electronics. PMID:22102447

  11. Combinatorial study of zinc tin oxide thin-film transistors

    SciTech Connect

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-07

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO:SnO{sub 2} ratio of the film varies as a function of position on the sample, from pure ZnO to SnO{sub 2}, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2 to 12 cm{sup 2}/V s, with two peaks in mobility in devices at ZnO fractions of 0.80{+-}0.03 and 0.25{+-}0.05, and on/off ratios as high as 10{sup 7}. Transistors composed predominantly of SnO{sub 2} were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  12. Thin film transistors and solar cells. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations of selected patents concerning the fabrication and application methods of thin film transistors and thin film solar cells. Methods of manufacturing thin film transistors for use in electronic display devices are presented. Techniques for continuously producing durable and reliable thin film solar cells are discussed. (Contains 250 citations and includes a subject term index and title list.)

  13. Review of solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Yoon, Seokhyun; Kim, Hyun Jae

    2014-02-01

    In this review, we summarize solution-processed oxide thin-film transistors (TFTs) researches based on our fulfillments. We describe the fundamental studies of precursor composition effects at the beginning in order to figure out the role of each component in oxide semiconductors, and then present low temperature process for the adoption of flexible devices. Moreover, channel engineering for high performance and reliability of solution-processed oxide TFTs and various coating methods: spin-coating, inkjet printing, and gravure printing are also presented. The last topic of this review is an overview of multi-functional solution-processed oxide TFTs for various applications such as photodetector, biosensor, and memory.

  14. Technical Obstacles to Thin Film Transistor Circuits on Plastic

    NASA Astrophysics Data System (ADS)

    Miyasaka, Mitsutoshi; Hara, Hiroyuki; Karaki, Nobuo; Inoue, Satoshi; Kawai, Hideyuki; Nebashi, Satoshi

    2008-06-01

    Two main technical obstacles must be overcome to build a fruitful business in the nascent flexible microelectronics industry: the self-heating effect of thin film transistors (TFTs), and the thermal and mechanical durability of flexible devices. The self-heating effect is controlled through TFT shape, TFT electrical performance, dimensional reductions, and energy-efficient circuits. Plastic engineering is one of the keys to solving thermal and mechanical durability problems faced by flexible microelectronics devices. Once these obstacles are cleared, TFT circuits on plastic will spawn a new industry and markets for plastic large-scale integrations.

  15. Liquid crystals for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  16. Characterization of novel BaZnSnO thin films by solution process and applications in thin film transistors

    SciTech Connect

    Li, Jun; Huang, Chuan-Xin; Zhang, Jian-Hua; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin

    2015-08-15

    Graphical abstract: This work reports the Ba content on thin film transistor based on a novel BaZnSnO semiconductor using solution process. - Highlights: • No reports about BaZnSnO thin film using solution process. • BaZnSnO thin film transistor (TFT) was firstly fabricated. • BaZnSnO-TFT shows a acceptable performace. • Influence of Ba content on BaZnSnO-TFT. - Abstract: A novel BaZnSnO semiconductor is fabricated using solution process and the influence of Ba addition on the structure, the chemical state of oxygen and electrical performance of BaZnSnO thin films are investigated. A high performance BaZnSnO-based thin film transistor with 15 mol% Ba is obtained, showing a saturation mobility of 1.94 cm{sup 2}/V s, a threshold voltage of 3.6 V, an on/off current ratio of 6.2 × 10{sup 6}, a subthreshold swing of 0.94 V/decade, and a good bias stability. Transistors with solution processed BaZnSnO films are promising candidates for the development of future large-area, low-cost and high-performance electronic devices.

  17. Thin film transistors using PECVD-grown carbon nanotubes.

    PubMed

    Ono, Yuki; Kishimoto, Shigeru; Ohno, Yutaka; Mizutani, Takashi

    2010-05-21

    Thin film transistors with a carbon nanotube (CNT) network as a channel have been fabricated using grid-inserted plasma-enhanced chemical vapor deposition (PECVD) which has the advantage of preferential growth of the CNTs with semiconducting behavior in the I-V characteristics of CNT field effect transistors (CNT-FETs). Taking advantage of the preferential growth and suppression of bundle formation, a large ON current of 170 microA mm(-1), which is among the largest in these kinds of devices with a large ON/OFF current ratio of about 10(5), has been realized in the relatively short channel length of 10 microm. The field effect mobility of the device was 5.8 cm(2) V(-1) s(-1). PMID:20418603

  18. Thin film transistors using PECVD-grown carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ono, Yuki; Kishimoto, Shigeru; Ohno, Yutaka; Mizutani, Takashi

    2010-05-01

    Thin film transistors with a carbon nanotube (CNT) network as a channel have been fabricated using grid-inserted plasma-enhanced chemical vapor deposition (PECVD) which has the advantage of preferential growth of the CNTs with semiconducting behavior in the I-V characteristics of CNT field effect transistors (CNT-FETs). Taking advantage of the preferential growth and suppression of bundle formation, a large ON current of 170 µA mm - 1, which is among the largest in these kinds of devices with a large ON/OFF current ratio of about 105, has been realized in the relatively short channel length of 10 µm. The field effect mobility of the device was 5.8 cm2 V - 1 s - 1.

  19. Fatigue failure in thin-film polysilicon is due to subcriticalcracking within the oxide layer

    SciTech Connect

    Alsem, D.H.; Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

    2005-01-11

    structure (i.e. a resonator) or those which arise from the service environment. While the reliability of MEMS has received extensive attention, the physical mechanisms responsible for these failure modes have yet to be conclusively determined. This is particularly true for fatigue, where the mechanisms have been subject to intense debate. Recently we have proposed that the fatigue of micron-scale polysilicon is associated with stress-induced surface oxide thickening and moisture-assisted subcritical cracking in the amorphous SiO{sub 2} oxide layer (''reaction-layer'' fatigue). The mechanism of oxide thickening is as yet unknown, but is likely related to some form of stress-assisted diffusion. Allameh et al. suggest a complementary mechanism involving stress-assisted oxide thickening, caused by dissolution of the surface oxide which forms deep grooves that are sites for crack initiation. Kahn et al. have criticized these mechanisms and proposed that, instead, fatigue is caused by subcritical cracking due to contacting surface asperities in the compressive part of the cycle. To the authors' knowledge, there is no direct experimental observation of such asperity contact. Also, their model cannot explain why micron-scale silicon, and not bulk silicon, is susceptible to fatigue. Moreover, Kahn et al. do not acknowledge the role of stress-induced oxide thickening, which has been observed directly using TEM and indirectly using atomic-force microscope measurements by several investigators, and have questioned whether the materials utilized by Muhlstein et al. and Allameh et al. were representative due to the relatively thick oxide scales. Accordingly, the goal of the present research is to seek a definitive understanding of the physical mechanisms responsible for fatigue in polysilicon structural thin-films. Our approach is to combine on-chip testing methods with electron microscopy by fatiguing thin-film samples and observing them, in an unthinned condition, using high

  20. Highly stable thin film transistors using multilayer channel structure

    SciTech Connect

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO{sub 2}) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO{sub 2} layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO{sub 2} layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  1. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  2. Chemical and biological sensing with organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Mabeck, Jeffrey Todd

    Organic thin-film transistors (OTFTs) offer a great deal of promise for applications in chemical and biological sensing where there is a demand for small, portable, and inexpensive sensors. OTFTs have many advantages over other types of sensors, including low-cost fabrication, straightforward miniaturization, simple instrumentation, and inherent signal amplification. This dissertation examines two distinct types of OTFTs: organic field-effect transistors (OFETs) based on pentacene, and organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The bulk of the previous work on sensing with OFETs has focused on gas sensing, and this dissertation contributes to this body of work by briefly treating the large, reversible response of pentacene OFETs to humidity. However, there are many applications where the analyte of interest must be detected in an aqueous environment rather than a gaseous environment, and very little work has been done in this area for OFETs. Therefore, the integration of pentacene OFETs with microfluidics is treated in detail. Using poly(dimethylsiloxane) (PDMS) microfluidic channels to confine aqueous solutions over the active region of pentacene transistors, it is demonstrated that the current-voltage characteristics remain stable under aqueous flow with a decrease in mobility of ˜30% compared to its value when dry. The operation of PEDOT:PSS transistors is also treated in detail. It is demonstrated that their transistor behavior cannot be attributed solely to a field effect and that ion motion is key to the switching mechanism. It is also demonstrated that simple glucose sensors based on PEDOT:PSS OECTs are sensitive to low glucose concentrations below 1 mM, therefore showing promise for potential application in the field of noninvasive glucose monitoring for diabetic patients using saliva rather than blood samples. Furthermore, a novel microfluidic gating technique has been

  3. Solution-Processed Indium Oxide Based Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Xu, Wangying

    Oxide thin-film transistors (TFTs) have attracted considerable attention over the past decade due to their high carrier mobility and excellent uniformity. However, most of these oxide TFTs are usually fabricated using costly vacuum-based techniques. Recently, the solution processes have been developed due to the possibility of low-cost and large-area fabrication. In this thesis, we have carried out a detailed and systematic study of solution-processed oxide thin films and TFTs. At first, we demonstrated a passivation method to overcome the water susceptibility of solution-processed InZnO TFTs by utilizing octadecylphosphonic acid (ODPA) self-assembled monolayers (SAMs). The unpassivated InZnO TFTs exhibited large hysteresis in their electrical characteristics due to the adsorbed water at the semiconductor surface. Formation of a SAM of ODPA on the top of InZnO removed water molecules weakly absorbed at the back channel and prevented water diffusion from the surroundings. Therefore the passivated devices exhibited significantly reduced hysteretic characteristics. Secondly, we developed a simple spin-coating approach for high- k dielectrics (Al2O3, ZrO2, Y 2O3 and TiO2). These materials were used as gate dielectrics for solution-processed In2O3 or InZnO TFTs. Among the high-k dielectrics, the Al2O3-based devices showed the best performance, which is attributed to the smooth dielectric/semiconductor interface and the low interface trap density besides its good insulating property. Thirdly, the formation and properties of Al2O3 thin films under various annealing temperatures were intensively studied, revealing that the sol-gel-derived Al2O3 thin film undergoes the decomposition of organic residuals and nitrate groups, as well as conversion of aluminum hydroxides to form aluminum oxide. Besides, the Al2O 3 film was used as gate dielectric for solution-processed oxide TFTs, resulting in high mobility and low operating voltage. Finally, we proposed a green route for

  4. High performance small-molecule organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Chen

    The roadmap of developing microelectronics has a new branch: organic electronics. Organic electronics, which utilizes the electrical properties of organic materials in the active or passive layers, is an emerging technology that has received much attention. In conjunction with today's demands for new materials and devices, many technologies have emerged for developing organic electronics and consolidating applications and markets. An organic thin-film transistor is the essential device in this paradigm in addition to organic photodiodes and organic light emitting diodes. This thesis presents advances made in design and fabrication of organic thin-film transistors (OTFTs) using small-molecule organic semiconductors (pentacene, anthradithiophene, and their derivatives) as the active layer with record device performance. In this work OTFT test structures fabricated on oxidized silicon substrates were utilized to provide a convenient substrate, gate contact, and gate insulator for the processing and characterization of vapor-deposited organic materials and their transistors. By developing a gate dielectric treatment using silane coupling agents the performance and yield of pentacene OTFTs was improved and a field-effect mobility of larger than 2 cm2/V-s was achieved. Such device performance is comparable to a-Si:H TFTs and have the potential for electronic applications. In addition, the first direct photolithographic process for top contacts to pentacene OTFTs on oxidized silicon with an acceptable performance (a field-effect mobility of 0.3 cm2/V-s, an on/off current ratio of 10 7, and a subthreshold slope of 1 V/decade) was developed. The multiple layer photoresist process demonstrated the feasibility of creating source and drain metallic electrodes on vapor-deposited pentacene thin films with a resolution less than 10 mum. Subsequently, solution-processed OTFTs were then investigated and high performance transistors, with field-effect mobilities > 1 cm2/V-s and an

  5. Novel Low Temperature Processing for Enhanced Properties of Ion Implanted Thin Films and Amorphous Mixed Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals

  6. Printed organic thin-film transistor-based integrated circuits

    NASA Astrophysics Data System (ADS)

    Mandal, Saumen; Noh, Yong-Young

    2015-06-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.

  7. Silicon thin-film transistor backplanes on flexible substrates

    NASA Astrophysics Data System (ADS)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  8. Impact of universal mobility law on polycrystalline organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Raja, Munira; Donaghy, David; Myers, Robert; Eccleston, Bill

    2012-10-01

    We have developed novel analytical models for polycrystalline organic thin-film transistor (OTFT) by employing new concepts on the charge carrier injection to polysilicon thin-films. The models, also incorporate the effect of contact resistance associated with the poor ohmic nature of the contacts. The drain current equations of the OTFT, both in the quasi-diffusion and quasi-drift regimes, predict temperature dependencies on essential material and device parameters. Interestingly, under the drift regime, the polycrystalline OTFT model reveals similar power dependencies on the applied voltages, to those of purely disordered model developed by utilizing the universal mobility law (UML). Such similarities are not thought to be coincidental since the effect of gate voltage on surface potential is influenced by the Fermi level pinning in the grain boundary. Nonetheless, the best fits on the data of 6,13-bis(tri-isopropylsilylethynyl) OTFTs are attained with the proposed polycrystalline rather than the disordered model, particularly at low gate voltages where the diffusive component is dominant. Moreover, in order to understand the effect of grain boundaries, we devise a relationship for the dependency of the effective mobility on carrier concentration, assuming a crystalline region to be in direct contact with a disordered region. Interestingly, we find a similar dependency as the UML in purely disordered materials, which further signifies the conduction to be limited by the grain boundaries. Subsequently, an analytical model for the variation of the effective mobility with gate voltage is established. Such models are vital in assisting the development of more accurate designs of the novel organic circuits.

  9. Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies.

    PubMed

    Zhu, Weinan; Park, Saungeun; Yogeesh, Maruthi N; McNicholas, Kyle M; Bank, Seth R; Akinwande, Deji

    2016-04-13

    Black phosphorus (BP) has attracted rapidly growing attention for high speed and low power nanoelectronics owing to its compelling combination of tunable bandgap (0.3 to 2 eV) and high carrier mobility (up to ∼1000 cm(2)/V·s) at room temperature. In this work, we report the first radio frequency (RF) flexible top-gated (TG) BP thin-film transistors on highly bendable polyimide substrate for GHz nanoelectronic applications. Enhanced p-type charge transport with low-field mobility ∼233 cm(2)/V·s and current density of ∼100 μA/μm at VDS = -2 V were obtained from flexible BP transistor at a channel length L = 0.5 μm. Importantly, with optimized dielectric coating for air-stability during microfabrication, flexible BP RF transistors afforded intrinsic maximum oscillation frequency fMAX ∼ 14.5 GHz and unity current gain cutoff frequency fT ∼ 17.5 GHz at a channel length of 0.5 μm. Notably, the experimental fT achieved here is at least 45% higher than prior results on rigid substrate, which is attributed to the improved air-stability of fabricated BP devices. In addition, the high-frequency performance was investigated through mechanical bending test up to ∼1.5% tensile strain, which is ultimately limited by the inorganic dielectric film rather than the 2D material. Comparison of BP RF devices to other 2D semiconductors clearly indicates that BP offers the highest saturation velocity, an important metric for high-speed and RF flexible nanosystems. PMID:26977902

  10. Metal-semiconductor hybrid thin films in field-effect transistors

    SciTech Connect

    Okamura, Koshi Dehm, Simone; Hahn, Horst

    2013-12-16

    Metal-semiconductor hybrid thin films consisting of an amorphous oxide semiconductor and a number of aluminum dots in different diameters and arrangements are formed by electron beam lithography and employed for thin-film transistors (TFTs). Experimental and computational demonstrations systematically reveal that the field-effect mobility of the TFTs enhances but levels off as the dot density increases, which originates from variations of the effective channel length that strongly depends on the electric field distribution in a transistor channel.

  11. Role of microstructure and doping on the mechanical strength and toughness of polysilicon thin films

    SciTech Connect

    Yagnamurthy, Sivakumar; Boyce, Brad L.; Chasiotis, Ioannis

    2015-03-24

    We investigated the role of microstructure and doping on the mechanical strength of microscale tension specimens of columnar grain and laminated polysilicon doped with different concentrations of phosphorus. The average tensile strengths of undoped columnar and laminated polysilicon specimens were 1.3 ± 0.1 and 2.45 ± 0.3 GPa, respectively. Heavy doping reduced the strength of columnar polysilicon specimens to 0.9 ± 0.1 GPa. On grounds of Weibull statistics, the experimental results from specimens with gauge sections of 1000 μm × 100 μm × 1 μm predicted quite well the tensile strength of specimens with gauge sections of 150 μm × 3.75 μm × 1 μm, and vice versa. The large difference in the mechanical strength between columnar and laminated polysilicon specimens was due to sidewall flaws in columnar polysilicon, which were introduced during reactive ion etching (RIE) and were further exacerbated by phosphorus doping. Moreover, the removal of the large defect regions at the sidewalls of columnar polysilicon specimens via ion milling increased their tensile strength by 70%-100%, approaching the strength of laminated polysilicon, which implies that the two types of polysilicon films have comparable tensile strength. Measurements of the effective mode I critical stress intensity factor, KIC,eff, also showed that all types of polysilicon films had comparable resistance to fracture. Therefore, additional processing steps to eliminate the edge flaws in RIE patterned devices could result in significantly stronger microelectromechanical system components fabricated by conventional columnar polysilicon films.

  12. Role of microstructure and doping on the mechanical strength and toughness of polysilicon thin films

    DOE PAGESBeta

    Yagnamurthy, Sivakumar; Boyce, Brad L.; Chasiotis, Ioannis

    2015-03-24

    We investigated the role of microstructure and doping on the mechanical strength of microscale tension specimens of columnar grain and laminated polysilicon doped with different concentrations of phosphorus. The average tensile strengths of undoped columnar and laminated polysilicon specimens were 1.3 ± 0.1 and 2.45 ± 0.3 GPa, respectively. Heavy doping reduced the strength of columnar polysilicon specimens to 0.9 ± 0.1 GPa. On grounds of Weibull statistics, the experimental results from specimens with gauge sections of 1000 μm × 100 μm × 1 μm predicted quite well the tensile strength of specimens with gauge sections of 150 μm ×more » 3.75 μm × 1 μm, and vice versa. The large difference in the mechanical strength between columnar and laminated polysilicon specimens was due to sidewall flaws in columnar polysilicon, which were introduced during reactive ion etching (RIE) and were further exacerbated by phosphorus doping. Moreover, the removal of the large defect regions at the sidewalls of columnar polysilicon specimens via ion milling increased their tensile strength by 70%-100%, approaching the strength of laminated polysilicon, which implies that the two types of polysilicon films have comparable tensile strength. Measurements of the effective mode I critical stress intensity factor, KIC,eff, also showed that all types of polysilicon films had comparable resistance to fracture. Therefore, additional processing steps to eliminate the edge flaws in RIE patterned devices could result in significantly stronger microelectromechanical system components fabricated by conventional columnar polysilicon films.« less

  13. High field breakdown characteristics of carbon nanotube thin film transistors.

    PubMed

    Gupta, Man Prakash; Behnam, Ashkan; Lian, Feifei; Estrada, David; Pop, Eric; Kumar, Satish

    2013-10-11

    The high field properties of carbon nanotube (CNT) network thin film transistors (CN-TFTs) are important for their practical operation, and for understanding their reliability. Using a combination of experimental and computational techniques we show how the channel geometry (length L(C) and width W(C)) and network morphology (average CNT length L(t) and alignment angle distribution θ) affect heat dissipation and high field breakdown in such devices. The results suggest that when WC ≥ L(t), the breakdown voltage remains independent of W(C) but varies linearly with L(C). The breakdown power varies almost linearly with both W(C) and L(C) when WC > L(t). We also find that the breakdown power is more susceptible to the variability in the network morphology compared to the breakdown voltage. The analysis offers new insight into the tunable heat dissipation and thermal reliability of CN-TFTs, which can be significantly improved through optimization of the network morphology and device geometry. PMID:24029606

  14. Thin-films and transistors of p-ZnTe

    NASA Astrophysics Data System (ADS)

    Lastra, G.; Olivas, A.; Mejía, J. I.; Quevedo-López, M. A.

    2016-02-01

    In this article, we report (IDS-VDS) characteristics of (75 and 35 nm) p-type ZnTe thin-film transistors (TFTs) at different active channels by photolithography. In 75 nm p-ZnTe TFTs, the source and drain contacts were doped with Cu in 11, 13 and 15 mg (Cu(NO3)2-3H2O)/150 ml (H2O) for 60 s and heated at 300 °C for 10 min. TFTs immersed in 15 mg solution showed the clearest linear and saturation regions, as well as an approximate mobility from 10-2 to 10-4 cm2/V s. Also, drain- currents (IDS) from 10-8 to ∼10-7 A were shown at VG = 0 V (OFF-state). However, drain-current in the OFF-state decreased in 35 nm p-ZnTe TFTs. The films showed the cubic phase and the Cu1.44Te-like orthorhombic phase.

  15. Hysteresis in pentacene-based organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Gu, Gong; Kane, Michael G.

    2006-08-01

    Memory effects are commonly seen in organic thin-film transistor (OTFT) characteristics. In the absence of memory effects associated with the gate dielectric, the hysteresis in p-channel pentacene-based OTFTs, as measured in air and under illumination, was found to be dominated by trapped electrons, rather than trapped holes, in the semiconductor. The responsible acceptor type traps have very long lifetime. The immobile, previously stored negative charge requires extra holes to balance it, resulting in early establishment of the channel and extra drain current. This model is unique in that it discusses the majority carrier population influenced by trapped charge opposite in sign to the majority carriers in a simple electrostatic manner, to explain history dependence. The model was supported by drain current transient decay data. This memory effect is ambient and illumination sensitive. We studied the presence or absence of this effect under various ambient and illumination conditions, and found the responsible acceptor type traps mostly extrinsic and their formation reversible. Efforts were taken in the quantitative analysis to exclude the bias stress effect from the memory effect due to the charged acceptors.

  16. Electron and hole transport in ambipolar, thin film pentacene transistors

    SciTech Connect

    Saudari, Sangameshwar R.; Kagan, Cherie R.

    2015-01-21

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.

  17. Ambipolar charge transport in microcrystalline silicon thin-film transistors

    SciTech Connect

    Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut

    2011-01-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

  18. Room Temperature Oxide Deposition Approach to Fully Transparent, All-Oxide Thin-Film Transistors.

    PubMed

    Rembert, Thomas; Battaglia, Corsin; Anders, André; Javey, Ali

    2015-10-28

    A room temperature cathodic arc deposition technique is used to produce high-mobility ZnO thin films for low voltage thin-film transistors (TFTs) and digital logic inverters. All-oxide, fully transparent devices are fabricated on alkali-free glass and flexible polyimide foil, exhibiting high performance. This provides a practical materials platform for the low-temperature fabrication of all-oxide TFTs on virtually any substrate. PMID:26455916

  19. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  20. Organic ferroelectric gate field-effect transistor memory using high-mobility rubrene thin film

    NASA Astrophysics Data System (ADS)

    Kanashima, Takeshi; Katsura, Yuu; Okuyama, Masanori

    2014-01-01

    An organic ferroelectric gate field-effect transistor (FET) memory has been fabricated using an organic semiconductor of rubrene thin film with a high mobility and a gate insulating layer of poly(vinylidene fluoride-tetrafluoroethylene) [P(VDF-TeFE)] thin film. A rubrene thin-film sheet was grown by physical vapor transport (PVT), and placed onto a spin-coated P(VDF-TeFE) thin-film layer, and Au source and drain electrodes were formed on this rubrene thin film. A hysteresis loop of the drain current-gate voltage (ID-VG) characteristic has been clearly observed in the ferroelectric gate FET, and is caused by the ferroelectricity. The maximum drain current is 1.5 × 10-6 A, which is about two orders of magnitude larger than that of the P(VDF-TeFE) gate FET using a pentacene thin film. Moreover, the mobility of this organic ferroelectric gate FET using rubrene thin film is 0.71 cm2 V-1 s-1, which is 35 times larger than that of the FET with pentacene thin film.

  1. Graphene as tunable contact for high performance thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Yuan

    Graphene has been one of the most extensively studied materials due to its unique band structure, the linear dispersion at the K point. It gives rise to novel phenomena, such as the anomalous quantum Hall effect, and has opened up a new category of "Fermi-Dirac" physics. Graphene has also attracted enormous attention for future electronics because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. However, graphene has zero intrinsic band gap, thus can not be used as the active channel material for logic transistors with sufficient on/off current ratio. Previous approaches to address this challenge include the induction of a transport gap in graphene nanostructures or bilayer graphene. However, these approaches have proved successful in improving the on-- off ratio of the resulting devices, but often at a severe sacrifice of the deliverable current density. Alternatively, with a finite density of states, tunable work-function and optical transparency, graphene can function as a unique tunable contact material to create a new structure of electronic devices. In this thesis, I will present my effort toward on-off ratio of graphene based vertical thin film transistor. I will include the work form four of my first author publication. I will first present my research studies on the a dramatic enhancement of the overall quantum efficiency and spectral selectivity of graphene photodetector, by coupling with plasmonic nanostructures. It is observed that metallic plasmonic nanostructures can be integrated with graphene photodetectors to greatly enhance the photocurrent and external quantum efficiency by up to 1,500%. Plasmonic nanostructures of variable resonance frequencies selectively amplify the photoresponse of graphene to light of different wavelengths, enabling highly specific detection of multicolours. Then I will show a new design of highly flexible vertical TFTs (VTFTs) with superior electrical

  2. Graphene as tunable contact for high performance thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Yuan

    Graphene has been one of the most extensively studied materials due to its unique band structure, the linear dispersion at the K point. It gives rise to novel phenomena, such as the anomalous quantum Hall effect, and has opened up a new category of "Fermi-Dirac" physics. Graphene has also attracted enormous attention for future electronics because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. However, graphene has zero intrinsic band gap, thus can not be used as the active channel material for logic transistors with sufficient on/off current ratio. Previous approaches to address this challenge include the induction of a transport gap in graphene nanostructures or bilayer graphene. However, these approaches have proved successful in improving the on-- off ratio of the resulting devices, but often at a severe sacrifice of the deliverable current density. Alternatively, with a finite density of states, tunable work-function and optical transparency, graphene can function as a unique tunable contact material to create a new structure of electronic devices. In this thesis, I will present my effort toward on-off ratio of graphene based vertical thin film transistor. I will include the work form four of my first author publication. I will first present my research studies on the a dramatic enhancement of the overall quantum efficiency and spectral selectivity of graphene photodetector, by coupling with plasmonic nanostructures. It is observed that metallic plasmonic nanostructures can be integrated with graphene photodetectors to greatly enhance the photocurrent and external quantum efficiency by up to 1,500%. Plasmonic nanostructures of variable resonance frequencies selectively amplify the photoresponse of graphene to light of different wavelengths, enabling highly specific detection of multicolours. Then I will show a new design of highly flexible vertical TFTs (VTFTs) with superior electrical

  3. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  4. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  5. Nontraditional Amorphous Oxide Semiconductor Thin-Film Transistor Fabrication

    NASA Astrophysics Data System (ADS)

    Sundholm, Eric Steven

    Fabrication techniques and process integration considerations for amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) constitute the central theme of this dissertation. Within this theme three primary areas of focus are pursued. The first focus involves formulating a general framework for assessing passivation. Avoiding formation of an undesirable backside accumulation layer in an AOS bottom-gate TFT is accomplished by (i) choosing a passivation layer in which the charge neutrality level is aligned with (ideal case) or higher in energy than that of the semiconductor channel layer charge neutrality level, and (ii) depositing the passivation layer in such a manner that a negligible density of oxygen vacancies are present at the channel-passivation layer interface. Two AOS TFT passivation schemes are explored. Sputter-deposited zinc tin silicon oxide (ZTSO) appears promising for suppressing the effects of negative bias illumination stress (NBIS) with respect to ZTO and IGZO TFTs. Solution-deposited silicon dioxide is used as a barrier layer to subsequent PECVD silicon dioxide deposition, yielding ZTO TFT transfer curves showing that the dual-layer passivation process does not significantly alter ZTO TFT electrical characteristics. The second focus involves creating an adaptable back-end process compatible with flexible substrates. A detailed list of possible via formation techniques is presented with particular focus on non-traditional and adaptable techniques. Two of the discussed methods, “hydrophobic surface treatment”and “printed local insulator,” are demonstrated and proven effective. The third focus is printing AOS TFT channel layers in order to create an adaptable and additive front-end integrated circuit fabrication scheme. Printed zinc indium aluminum oxide (ZIAO) and indium gallium zinc oxide (IGZO) channel layers are demonstrated using a SonoPlot piezoelectric printing system. Finally, challenges associated with printing electronic

  6. A review of carbon nanotube- and graphene-based flexible thin-film transistors.

    PubMed

    Sun, Dong-Ming; Liu, Chang; Ren, Wen-Cai; Cheng, Hui-Ming

    2013-04-22

    Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics. PMID:23519953

  7. Low leakage current gate dielectrics prepared by ion beam assisted deposition for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Chang Su; Jo, Sung Jin; Kim, Jong Bok; Ryu, Seung Yoon; Noh, Joo Hyon; Baik, Hong Koo; Lee, Se Jong; Kim, Youn Sang

    2007-12-01

    This communication reports on the fabrication of low operating voltage pentacene thin-film transistors with high-k gate dielectrics by ion beam assisted deposition (IBAD). These densely packed dielectric layers by IBAD show a much lower level of leakage current than those created by e-beam evaporation. These results, from the fact that those thin films deposited with low adatom mobility, have an open structure, consisting of spherical grains with pores in between, that acts as a significant path for leakage current. By contrast, our results demonstrate the potential to limit this leakage. The field effect mobility, on/off current ratio, and subthreshold slope obtained from pentacene thin-film transistors (TFTs) were 1.14 cm2/V s, 105, and 0.41 V/dec, respectively. Thus, the high-k gate dielectrics obtained by IBAD show promise in realizing low leakage current, low voltage, and high mobility pentacene TFTs.

  8. Molybdenum as a contact material in zinc tin oxide thin film transistors

    SciTech Connect

    Hu, W.; Peterson, R. L.

    2014-05-12

    Amorphous oxide semiconductors are of increasing interest for a variety of thin film electronics applications. Here, the contact properties of different source/drain electrode materials to solution-processed amorphous zinc tin oxide (ZTO) thin-film transistors are studied using the transmission line method. The width-normalized contact resistance between ZTO and sputtered molybdenum is measured to be 8.7 Ω-cm, which is 10, 20, and 600 times smaller than that of gold/titanium, indium tin oxide, and evaporated molybdenum electrodes, respectively. The superior contact formed using sputtered molybdenum is due to a favorable work function lineup, an insulator-free interface, bombardment of ZTO during molybdenum sputtering, and trap-assisted tunneling. The transfer length of the sputtered molybdenum/ZTO contact is 0.34 μm, opening the door to future radio-frequency sub-micron molybdenum/ZTO thin film transistors.

  9. Synthesis of ZnO nanowires for thin film network transistors

    NASA Astrophysics Data System (ADS)

    Dalal, S. H.; Unalan, H. E.; Zhang, Y.; Hiralal, Pritesh; Gangloff, L.; Flewitt, Andrew J.; Amaratunga, Gehan A. J.; Milne, William I.

    2008-08-01

    Zinc oxide nanowire networks are attractive as alternatives to organic and amorphous semiconductors due to their wide bandgap, flexibility and transparency. We demonstrate the fabrication of thin film transistors (TFT)s which utilize ZnO nanowires as the semiconducting channel. These thin film transistors can be transparent and flexible and processed at low temperatures on to a variety of substrates. The nanowire networks are created using a simple contact transfer method that is easily scalable. Apparent nanowire network mobility values can be as high as 3.8 cm2/Vs (effective thin film mobility: 0.03 cm2/Vs) in devices with 20μm channel lengths and ON/OFF ratios of up to 104.

  10. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    SciTech Connect

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Lee, Cheol Jin; Shim, Joon Hyung

    2015-03-09

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  11. Characteristics of a Field-Effect Transistor Fabricated with Electropolymerized Thin Film

    NASA Astrophysics Data System (ADS)

    Oyama, Noboru; Yoshimura, Fumihiro; Ohsaka, Takeo; Koezuka, Hiroshi; Ando, Torahiko

    1988-03-01

    The preparation and characteristics of the solid-state field-effect transistor (FET) based on poly(p,p'-biphenol)(PBP) thin film prepared by electropolymerization of p,p'-biphenol are presented. The PBP-based FET displayed excellent drain current (ID)-drain voltage (VD) characteristics for various gate voltages. The ID-VD characteristics were analyzed as in a conventional MOS transistor.

  12. Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits

    NASA Astrophysics Data System (ADS)

    Sporea, R. A.; Trainor, M. J.; Young, N. D.; Shannon, J. M.; Silva, S. R. P.

    2014-03-01

    Ultra-large-scale integrated (ULSI) circuits have benefited from successive refinements in device architecture for enormous improvements in speed, power efficiency and areal density. In large-area electronics (LAE), however, the basic building-block, the thin-film field-effect transistor (TFT) has largely remained static. Now, a device concept with fundamentally different operation, the source-gated transistor (SGT) opens the possibility of unprecedented functionality in future low-cost LAE. With its simple structure and operational characteristics of low saturation voltage, stability under electrical stress and large intrinsic gain, the SGT is ideally suited for LAE analog applications. Here, we show using measurements on polysilicon devices that these characteristics lead to substantial improvements in gain, noise margin, power-delay product and overall circuit robustness in digital SGT-based designs. These findings have far-reaching consequences, as LAE will form the technological basis for a variety of future developments in the biomedical, civil engineering, remote sensing, artificial skin areas, as well as wearable and ubiquitous computing, or lightweight applications for space exploration.

  13. Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits.

    PubMed

    Sporea, R A; Trainor, M J; Young, N D; Shannon, J M; Silva, S R P

    2014-01-01

    Ultra-large-scale integrated (ULSI) circuits have benefited from successive refinements in device architecture for enormous improvements in speed, power efficiency and areal density. In large-area electronics (LAE), however, the basic building-block, the thin-film field-effect transistor (TFT) has largely remained static. Now, a device concept with fundamentally different operation, the source-gated transistor (SGT) opens the possibility of unprecedented functionality in future low-cost LAE. With its simple structure and operational characteristics of low saturation voltage, stability under electrical stress and large intrinsic gain, the SGT is ideally suited for LAE analog applications. Here, we show using measurements on polysilicon devices that these characteristics lead to substantial improvements in gain, noise margin, power-delay product and overall circuit robustness in digital SGT-based designs. These findings have far-reaching consequences, as LAE will form the technological basis for a variety of future developments in the biomedical, civil engineering, remote sensing, artificial skin areas, as well as wearable and ubiquitous computing, or lightweight applications for space exploration. PMID:24599023

  14. Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits

    PubMed Central

    Sporea, R. A.; Trainor, M. J.; Young, N. D.; Shannon, J. M.; Silva, S. R. P.

    2014-01-01

    Ultra-large-scale integrated (ULSI) circuits have benefited from successive refinements in device architecture for enormous improvements in speed, power efficiency and areal density. In large-area electronics (LAE), however, the basic building-block, the thin-film field-effect transistor (TFT) has largely remained static. Now, a device concept with fundamentally different operation, the source-gated transistor (SGT) opens the possibility of unprecedented functionality in future low-cost LAE. With its simple structure and operational characteristics of low saturation voltage, stability under electrical stress and large intrinsic gain, the SGT is ideally suited for LAE analog applications. Here, we show using measurements on polysilicon devices that these characteristics lead to substantial improvements in gain, noise margin, power-delay product and overall circuit robustness in digital SGT-based designs. These findings have far-reaching consequences, as LAE will form the technological basis for a variety of future developments in the biomedical, civil engineering, remote sensing, artificial skin areas, as well as wearable and ubiquitous computing, or lightweight applications for space exploration. PMID:24599023

  15. A new drain current model for amorphous IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Qiang, Lei; Yao, Ruo-He

    2015-04-01

    Based on the conduction mechanisms of amorphous InGaZnO (a-IGZO) thin film transistors, generalized equations are derived which permit the determination of drain current characteristics. A geometry-independent definition for field effect mobility considering the ratio of free-to-trapped carriers is introduced, which conveys the properties of the active semiconducting layer. It is suggested that a drain current model that includes different charge transports gives a consistent and accurate description of the electrical behavior. The good agreement between measured and calculated results confirms the efficiency of this model for the design of integrated large-area thin-film circuits.

  16. An asymmetric oligomer based on thienoacene for solution processed crystal organic thin-film transistors.

    PubMed

    Tian, Hongkun; Han, Yang; Bao, Cheng; Yan, Donghang; Geng, Yanhou; Wang, Fosong

    2012-04-11

    A novel thienoacene-based conjugated oligomer, i.e.BTTT-T-C12, was designed and synthesized. Its highly asymmetric structural feature enables the preparation of two-dimensional single-crystalline thin films in millimetre size and ~100 nm thick by a solution processing method directly on the Si/SiO(2) substrate. Single crystal organic thin film transistors exhibit a mobility of 0.70 cm(2) V(-1) s(-1) and an on/off ratio of 5.7 × 10(4). PMID:22389169

  17. Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors

    SciTech Connect

    Gao, Xu E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Mitoma, Nobuhiko; Lin, Meng-Fang; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-07-14

    Oxide thin film transistor employing copper source/drain electrodes shows a small turn on voltage and reduced hysteresis. Cross-sectional high-resolution transmission electron microscopy image confirmed the formation of ∼4 nm CuO{sub x} related interlayer. The lower bond-dissociation energy of Cu-O compared to Si-O and In-O suggests that the interlayer was formed by adsorbing oxygen molecules from surrounding environment instead of getting oxygen atoms from the semiconductor film. The formation of CuO{sub x} interlayer acting as an acceptor could suppress the carrier concentration in the transistor channel, which would be utilized to control the turn on voltage shifts in oxide thin film transistors.

  18. High-mobility ambipolar ZnO-graphene hybrid thin film transistors

    PubMed Central

    Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok

    2014-01-01

    In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm2/V·s, and a high on-off ratio of 105. The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs. PMID:24513629

  19. Morphological impact of zinc oxide layers on the device performance in thin-film transistors.

    PubMed

    Faber, Hendrik; Klaumünzer, Martin; Voigt, Michael; Galli, Diana; Vieweg, Benito F; Peukert, Wolfgang; Spiecker, Erdmann; Halik, Marcus

    2011-03-01

    Zinc oxide thin-films are prepared either by spin coating of an ethanolic dispersion of nanoparticles (NP, diameter 5 nm) or by spray pyrolysis of a zinc acetate dihydrate precursor. High-resolution electron microscopy studies reveal a monolayer of particles for the low temperature spin coating approach and larger crystalline domains of more than 30 nm for the spray pyrolysis technique. Thin-film transistor devices (TFTs) based on spray pyrolysis films exhibit higher electron mobilities of up to 24 cm2 V(-1) s(-1) compared to 0.6 cm2 V(-1) s(-1) for NP based TFTs. These observations were dedicated to a reduced number of grain boundaries within the transistor channel. PMID:21116548

  20. Solution-processed hybrid organic-inorganic complementary thin-film transistor inverter

    NASA Astrophysics Data System (ADS)

    Cheong, Heajeong; Kuribara, Kazunori; Ogura, Shintaro; Fukuda, Nobuko; Yoshida, Manabu; Ushijima, Hirobumi; Uemura, Sei

    2016-04-01

    We investigated hybrid organic-inorganic complementary inverters with a solution-processed indium-gallium-zinc-oxide (IGZO) n-channel thin-film transistor (TFT) and p-channel TFTs using the high-uniformity polymer poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrolo-1,4(2H,5H)-dione-alt-5,5-di(thiophene-2-yl)-2,2-(E)-2-(2-(thiophen-2-yl)vinyl)thiophene] (PDVT-10). The IGZO TFT was fabricated at 150 °C for 1 min. It showed a high field-effect mobility of 0.9 cm2·V-1·s-1 and a high on/off current ratio of 107. A hybrid complementary inverter was fabricated by combining IGZO with a PDVT-10 thin-film transistor and its operation was confirmed.

  1. Conductance simulation in an a-Si:H thin-film transistor with Schottky barriers

    SciTech Connect

    Vishnyakov, A. V. Efremov, M. D.

    2010-09-15

    It is shown by numerical simulation that the drain-source Schottky contacts substantially control the conductance of a thin-film transistor in the above-barrier region. At a barrier height in excess of 0.75 eV, the effect of crowding manifests itself; this effect is caused by an increase in electric field at the edge of the source electrode as the pulling voltage is increased, which brings about a local lowering of the barrier and an increase in the current through the reverse-biased Schottky barrier. The effective mobility in the thin-film transistor is controlled by the film and is independent of the barrier height.

  2. All diamond self-aligned thin film transistor

    DOEpatents

    Gerbi, Jennifer

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  3. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickbold, Paul

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  4. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  5. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    DOEpatents

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  6. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  7. Molecular orientation dependence of hole-injection barrier in pentacene thin film on the Au surface in organic thin film transistor

    NASA Astrophysics Data System (ADS)

    Ihm, Kyuwook; Kim, Bongsoo; Kang, Tai-Hee; Kim, Ki-Jeong; Joo, Min Ho; Kim, Tae Hyeong; Yoon, Sang Soo; Chung, Sukmin

    2006-07-01

    We have investigated the effects of a buffer layer insertion on the performance of the pentacene based thin film transistor with a bottom contact structure. When the pentacene molecules have a standing up coordination on the Au surface that is modified by the benzenethiol or methanethiol, the transition region in the pentacene thin film is removed along the boundary between the Au and silicon oxide region, and the hole-injection barrier decreases by 0.4eV. Pentacene on various surfaces showed that the highly occupied molecular level is 0.2-0.4eV lower in the standing up coordination than in the lying down coordination.

  8. Detection of saliva-range glucose concentrations using organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-07-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  9. Detection of saliva-range glucose concentrations using organic thin-film transistors

    SciTech Connect

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  10. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    SciTech Connect

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.; Hussain, A. M.; Hussain, M. M.

    2013-11-25

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  11. Field-induced macroscopic barrier model for persistent photoconductivity in nanocrystalline oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Sik; Jeon, Sanghun

    2014-03-01

    Persistent photoconductivity (PPC) in nanocrystalline InZnO thin-film transistors (TFTs) was studied using carrier fluctuation measurements and transient analysis. Low-frequency noise measurements and decay kinetics indicate that the band bending by the external field together with the ionized oxygen vacancy (Vo++) generated during the light exposure is the main cause of the PPC phenomenon. Based on these observations, a field-induced macroscopic barrier model is proposed as the origin of PPC for InZnO TFTs. In particular, this model explains that the carrier separation between e and Vo++ is induced by the external field applied to the three electrodes inside the transistor.

  12. High-performance organic thin-film transistors of J-stacked squaraine dyes.

    PubMed

    Gsänger, Marcel; Kirchner, Eva; Stolte, Matthias; Burschka, Christian; Stepanenko, Vladimir; Pflaum, Jens; Würthner, Frank

    2014-02-12

    We have synthesized a series of dipolar squaraine dyes that contain dicyanovinyl groups as acceptor and benzannulated five-membered ring heterocycles with alkyl chains of varied length as donor moieties. Based on these squaraines, thin-film transistors (TFT) were fabricated by spin coating and solution shearing. Moreover, with one of these squaraine derivatives vacuum-deposited TFTs were prepared as well. Our detailed studies revealed that the transistor performance of the present series of squaraines is strongly dependent on their structural features as well as on the processing method of thin films. Thus, solution-sheared OTFTs of selenium squaraine bearing dodecyl substituents (denoted as Se-SQ-C12) performed best with a maximum hole mobility of 0.45 cm(2) V(-1) s(-1), which is by far the highest value yet reported for OTFTs based on squaraines. This value was even surpassed by vacuum-deposited thin films of n-butyl-substituted selenium squaraine Se-SQ-C4, the only sublimable compound in this series, exhibiting a record hole mobility of 1.3 cm(2) V(-1) s(-1). Furthermore, we have investigated the morphology of the thin films and the molecular packing of these squaraine dyes by optical spectroscopy, atomic force microscopy, and X-ray diffraction. These studies revealed a relationship between the molecular structure, packing motif, thin-film morphology, and transistor performance of the squaraine dyes. From the supramolecular point of view two packing features discovered in the single crystal structure of Se-SQ-C8 are of particular interest with regard to the structure-functionality relationship: The first is the slipped and antiparallel π-stacking motif which ensures cancellation of the molecules' dipole moments and J-type absorption band formation in thin films. The second is the presence of CN···Se noncovalent bonds which show similarities to the more common halogen-bonding interactions and which interconnect the individual one-dimensional slipped

  13. Ferroelectric memory element based on thin film field effect transistor

    NASA Astrophysics Data System (ADS)

    Poghosyan, A. R.; Aghamalyan, N. R.; Elbakyan, E. Y.; Guo, R.; Hovsepyan, R. K.

    2013-09-01

    We report the preparation and investigation of ferroelectric field effect transistors (FET) using ZnO:Li films with high field mobility of the charge carriers as a FET channel and as a ferroelectric active element simultaneously. The possibility for using of ferroelectric FET based on the ZnO:Li films in the ZnO:Li/LaB6 heterostructure as a bi-stable memory element for information recording is shown. The proposed ferroelectric memory structure does not manifest a fatigue after multiple readout of once recorded information.

  14. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  15. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    SciTech Connect

    Cho, Byungsu; Choi, Yonghyuk; Shin, Seokyoon; Jeon, Heeyoung; Seo, Hyungtak; Jeon, Hyeongtag

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  16. Germanium and Silicon Nanocrystal Thin-Film Field-Effect Transistors from Solution

    SciTech Connect

    Holman, Zachary C.; Liu, Chin-Yi; Kortshagen, Uwe R.

    2010-07-09

    Germanium and silicon have lagged behind more popular II-VI and IV-VI semiconductor materials in the emerging field of semiconductor nanocrystal thin film devices. We report germanium and silicon nanocrystal field-effect transistors fabricated by synthesizing nanocrystals in a plasma, transferring them into solution, and casting thin films. Germanium devices show n-type, ambipolar, or p-type behavior depending on annealing temperature with electron and hole mobilities as large as 0.02 and 0.006 cm2 V-1 s-1, respectively. Silicon devices exhibit n-type behavior without any postdeposition treatment, but are plagued by poor film morphology.

  17. The effect of thermal annealing on pentacene thin film transistor with micro contact printing.

    PubMed

    Shin, Hong-Sik; Yun, Ho-Jin; Baek, Kyu-Ha; Ham, Yong-Hyun; Park, Kun-Sik; Kim, Dong-Pyo; Lee, Ga-Won; Lee, Hi-Deok; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing. PMID:22966565

  18. Ordering of pentacene in organic thin film transistors induced by irradiation of infrared light

    SciTech Connect

    Wang, C. H.; Chen, S. W.; Hwang, J.

    2009-09-07

    The device performances of pentacene-based organic thin film transistors (OTFTs) were greatly improved by irradiation of infrared light. The field effect mobility and maximum drain current increase from 0.20{+-}0.01 to 0.57{+-}0.02 cm{sup 2}/V s and 1.14x10{sup -5} to 4.91x10{sup -5} A, respectively. The (001) peak of the pentacene 'thin film' phase increases in intensity by 4.5 times after infrared irradiation at 50 W for 2 h. Two types of crystal orientations, i.e., 'crystal I' (2{theta}=5.91 deg.) and 'crystal II' (2{theta}=5.84 deg.), coexist in the pentacene. The improvement of the characteristics of OTFTs is attributed to crystallization and crystal reorientation induced by infrared light.

  19. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition

    NASA Astrophysics Data System (ADS)

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~108, a field-effect mobility of ~22 cm2 V‑1 s‑1, and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors.

  20. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition.

    PubMed

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-01-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~10(8), a field-effect mobility of ~22 cm(2) V(-1) s(-1), and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors. PMID:27383148

  1. Dual Gate Thin Film Transistors Based on Indium Oxide Active Layers

    SciTech Connect

    Kekuda, Dhananjaya; Rao, K. Mohan; Tolpadi, Amita; Chu, C. W.

    2011-07-15

    Polycrystalline Indium Oxide (In{sub 2}O{sub 3}) thin films were employed as an active channel layer for the fabrication of bottom and top gate thin film transistors. While conventional SiO{sub 2} served as a bottom gate dielectric, cross-linked poly-4-vinylphenol (PVP) was used a top gate dielectric. These nano-crystalline TFTs exhibited n-channel behavior with their transport behavior highly dependent on the thickness of the channel. The correlation between the thickness of the active layer and TFT parameters such as on/off ratio, field-effect mobility, threshold voltage were carried out. The optical spectra revealed a high transmittance in the entire visible region, thus making them promising candidates for the display technology.

  2. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition

    PubMed Central

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-01-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~108, a field-effect mobility of ~22 cm2 V−1 s−1, and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors. PMID:27383148

  3. Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors

    SciTech Connect

    Yang, Jyun-Bao; Chen, Yu-Ting; Chu, Ann-Kuo; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Tseng, Hsueh-Chih; Sze, Simon M.

    2014-04-14

    In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.

  4. A water-gated organic thin film transistor as a sensor for water-borne amines.

    PubMed

    Algarni, Saud A; Althagafi, Talal M; Naim, Abdullah Al; Grell, Martin

    2016-06-01

    The p-type semiconducting polymer Poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) displays innate sensitivity to water-borne amines. We demonstrate this with the help of water-gated PBTTT thin film transistors (TFTs). When octylamine is added to the gating water, TFTs respond with a significantly reduced saturated drain current. Underlying TFT drift is minimised by initial conditioning, and remaining drift can be accounted for by normalising current response to the current level under purge immediately before exposure. Normalised current response vs. amine concentration is reproducible between different transistors, and can be modelled by a Langmuir surface adsorption isotherm, which suggests physisorption of analyte at the PBTTT surface, rather than bulk penetration. Same PBTTT transistors do not respond to 1- octanol, confirming the specific affinity between amines and thiophene- based organic semiconductors. PMID:27130096

  5. Conduction Threshold in Accumulation-Mode InGaZnO Thin Film Transistors

    PubMed Central

    Lee, Sungsik; Nathan, Arokia

    2016-01-01

    The onset of inversion in the metal-oxide-semiconductor field-effect transistor (MOSFET) takes place when the surface potential is approximately twice the bulk potential. In contrast, the conduction threshold in accumulation mode transistors, such as the oxide thin film transistor (TFT), has remained ambiguous in view of the complex density of states distribution in the mobility gap. This paper quantitatively describes the conduction threshold of accumulation-mode InGaZnO TFTs as the transition of the Fermi level from deep to tail states, which can be defined as the juxtaposition of linear and exponential dependencies of the accumulated carrier density on energy. Indeed, this permits direct extraction and visualization of the threshold voltage in terms of the second derivative of the drain current with respect to gate voltage. PMID:26932790

  6. Conduction Threshold in Accumulation-Mode InGaZnO Thin Film Transistors.

    PubMed

    Lee, Sungsik; Nathan, Arokia

    2016-01-01

    The onset of inversion in the metal-oxide-semiconductor field-effect transistor (MOSFET) takes place when the surface potential is approximately twice the bulk potential. In contrast, the conduction threshold in accumulation mode transistors, such as the oxide thin film transistor (TFT), has remained ambiguous in view of the complex density of states distribution in the mobility gap. This paper quantitatively describes the conduction threshold of accumulation-mode InGaZnO TFTs as the transition of the Fermi level from deep to tail states, which can be defined as the juxtaposition of linear and exponential dependencies of the accumulated carrier density on energy. Indeed, this permits direct extraction and visualization of the threshold voltage in terms of the second derivative of the drain current with respect to gate voltage. PMID:26932790

  7. Conduction Threshold in Accumulation-Mode InGaZnO Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia

    2016-03-01

    The onset of inversion in the metal-oxide-semiconductor field-effect transistor (MOSFET) takes place when the surface potential is approximately twice the bulk potential. In contrast, the conduction threshold in accumulation mode transistors, such as the oxide thin film transistor (TFT), has remained ambiguous in view of the complex density of states distribution in the mobility gap. This paper quantitatively describes the conduction threshold of accumulation-mode InGaZnO TFTs as the transition of the Fermi level from deep to tail states, which can be defined as the juxtaposition of linear and exponential dependencies of the accumulated carrier density on energy. Indeed, this permits direct extraction and visualization of the threshold voltage in terms of the second derivative of the drain current with respect to gate voltage.

  8. Low-temperature, solution-processed ZrO2:B thin film: a bifunctional inorganic/organic interfacial glue for flexible thin-film transistors.

    PubMed

    Park, Jee Ho; Oh, Jin Young; Han, Sun Woong; Lee, Tae Il; Baik, Hong Koo

    2015-03-01

    A solution-processed boron-doped peroxo-zirconium oxide (ZrO2:B) thin film has been found to have multifunctional characteristics, providing both hydrophobic surface modification and a chemical glue layer. Specifically, a ZrO2:B thin film deposited on a hydrophobic layer becomes superhydrophilic following ultraviolet-ozone (UVO) treatment, whereas the same treatment has no effect on the hydrophobicity of the hydrophobic layer alone. Investigation of the ZrO2:B/hydrophobic interface layer using angle-resolved X-ray photoelectron spectroscopy (AR XPS) confirmed it to be chemically bonded like glue. Using the multifunctional nature of the ZrO2:B thin film, flexible amorphous indium oxide (In2O3) thin-film transistors (TFTs) were subsequently fabricated on a polyimide substrate along with a ZrO2:B/poly-4-vinylphenol (PVP) dielectric. An aqueous In2O3 solution was successfully coated onto the ZrO2:B/PVP dielectric, and the surface and chemical properties of the PVP and ZrO2:B thin films were analyzed by contact angle measurement, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The surface-engineered PVP dielectric was found to have a lower leakage current density (Jleak) of 4.38 × 10(-8) A/cm(2) at 1 MV/cm, with no breakdown behavior observed up to a bending radius of 5 mm. In contrast, the electrical characteristics of the flexible amorphous In2O3 TFT such as on/off current ratio (Ion/off) and electron mobility remained similar up to 10 mm of bending without degradation, with the device being nonactivated at a bending radius of 5 mm. These results suggest that ZrO2:B thin films could be used for low-temperature, solution-processed surface-modified flexible devices. PMID:25664940

  9. Effects of Ta Addition Through Co-Sputtering on the Electrical Characteristics of Indium Tin Oxide Thin Film Transistors.

    PubMed

    Park, Si-Nae; Son, Dae-Ho; Sung, Shi-Joon; Kang, Jin-Kyu; Kim, Dae-Hwan

    2015-01-01

    We have investigated the effects of adding (Ta) ions to InSnO thin films by co-sputtering on the performance of InSnO thin film transistors (TFTs). TaInSnO TFTs exhibited significantly lower off currents and higher on/off current ratios. Ta ions, owing to their strong affinity to oxygen suppress the formation of free electron carriers in thin films; and hence, play an important role in enhancing the electrical characteristics of the TFTs. The optimized TaInSnO TFTs showed high on/off ratios and low subthreshold swings. PMID:26328366

  10. Geometric Effect of Channel on Device Performance in Pentacene Thin-Film Transistor

    NASA Astrophysics Data System (ADS)

    Kang, Seong Jun; Noh, Myungkeun; Park, Dae Sik; Kim, Hui Jung; Kim, Sang Yeol; Koo, Bon Won; Kang, In Nam; Whang, Chung Nam

    2004-11-01

    We fabricated pentacene thin film-transistors on a glass substrate with a SiO2 layer via thermal evaporation in ultrahigh vacuum. We investigated the influence of channel length, channel width, and the deposition rate of a pentacene layer on organic thin film transistors (OTFTs) performance. Field-effect mobility of the transistors markedly increased as channel width decreased and channel length increased. The maximum drain current of OTFTs increased as channel length decreased. These observations indicate that the grain boundary scattering of charge carriers in the pentacene layer is a major hurdle in charge conduction, similarly to the observation in poly-Si TFTs. The maximum field-effect mobility was 0.69 cm2/Vs for a device prepared at 0.1 Å/s with a 50 μm channel length and a 20 μm channel width. Channel width/length ratio (W/L) as well as the deposition rate of the pentacene layer should be carefully chosen to increase field-effect mobility and maximum drain current in OTFTs.

  11. Scanning gate study of organic thin-film field-effect transistor

    NASA Astrophysics Data System (ADS)

    Aoki, N.; Sudou, K.; Matsusaki, K.; Okamoto, K.; Ochiai, Y.

    2008-03-01

    Scanning gate microscopy (SGM) has been applied for a study of organic thin-film field effect transistor (OFET). In contrast to one-dimensional nano-material such a carbon nanonube or nano-structure such a quantum point contact, visualization a transport characteristic of OFET channel is basically rather difficult since the channel width is much larger than the size of the SGM tip. Nevertheless, Schottky barriers are successfully visualized at the boundary between the metal electrodes and the OFET channel at ambient atmosphere.

  12. All solution processed organic thin film transistor-backplane with printing technology for electrophoretic display

    USGS Publications Warehouse

    Lee, Myung W.; Song, C.K.

    2012-01-01

    In this study, solution processes were developed for backplane using an organic thin film transistor (OTFT) as a driving device for an electrophoretic display (EPD) panel. The processes covered not only the key device of OTFTs but also interlayer and pixel electrodes. The various materials and printing processes were adopted to achieve the requirements of devices and functioning layers. The performance of OTFT of the backplane was sufficient to drive EPD sheet by producing a mobility of 0.12 cm2/v x sec and on/off current ratio of 10(5).

  13. Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Cheng, Horng-Long; Mai, Yu-Shen; Chou, Wei-Yang; Chang, Li-Ren

    2007-04-01

    The authors have fabricated the pentacene thin films on polymethylmethacrylate (PMMA) and on silicon dioxide dielectric surfaces featuring similar surface energy and surface roughness. On both surfaces the pentacene films displayed high crystal quality from x-ray diffraction scans, although the film on PMMA had significantly smaller grain size. The pentacene transistors with PMMA exhibited excellent electrical characteristics, including high mobility of above 1.1cm2/Vs, on/off ratio above 106, and sharp subthreshold slope below 1V/decade. The analysis of molecular microstructure of the pentacene films provided a reasonable explanation for the high performance using resonance micro-Raman spectroscopy.

  14. Technological Innovation of Thin-Film Transistors: Technology Development, History, and Future

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshitaka

    2012-06-01

    The scale of the liquid crystal display industry has expanded rapidly, driven by technological innovations for thin-film transistors (TFTs). The TFT technology, which started from amorphous silicon (a-Si), has produced large TVs, and low-temperature polycrystalline silicon (poly-Si) has become a core technology for small displays, such as mobile phones. Recently, various TFT technological seeds have been realized, indicating that new information appliances that match new lifestyles and information infrastructures will be available in the near future. In this article, I review the history of TFT technology and discuss the future of TFT technological development from the technological innovation viewpoint.

  15. Electric field modulation of thermopower for transparent amorphous oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Koide, Hirotaka; Nagao, Yuki; Koumoto, Kunihito; Takasaki, Yuka; Umemura, Tomonari; Kato, Takeharu; Ikuhara, Yuichi; Ohta, Hiromichi

    2010-11-01

    To clarify the electronic density of states (DOS) around the conduction band bottom for state of the art transparent amorphous oxide semiconductors (TAOSs), InGaZnO4 and In2MgO4, we fabricated TAOS-based transparent thin film transistors (TTFTs) and measured their gate voltage dependence of thermopower (S). TAOS-based TTFTs exhibit an unusual S behavior. The |S|-value abruptly increases but then gradually decreases as Vg increases, clearly suggesting the antiparabolic shaped DOS is hybridized with the original parabolic shaped DOS around the conduction band bottom.

  16. Critical invisible defect detection system of thin film transistor panels using Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Park, Yonmook; Heo, Keun

    2016-07-01

    In this paper, a novel method that can perform measurements of the contact potential difference (CPD) between a tip and a thin film transistor (TFT) panel using the Kelvin probe force microscopy (KPFM) is proposed for inspection of critical invisible defects on TFT panels. In this application, the surface potential of a TFT panel is inferred from the electrostatic interaction force between a tip and a TFT panel induced by the electric field. The experimental results are given to illustrate that the KPFM provides a novel and feasible way to detect the most critical invisible defects on TFT panels.

  17. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    SciTech Connect

    Han, Jinhua; Wang, Wei Ying, Jun; Xie, Wenfa

    2014-01-06

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  18. Investigation of Nonvolatile Memory Effect of Organic Thin-Film Transistors with Triple Dielectric Layers

    NASA Astrophysics Data System (ADS)

    Yu, Hsin-Chieh; Chen, Ying-Chih; Huang, Chun-Yuan; Su, Yan-Kuin

    2012-03-01

    Pentacene thin-film transistor (TFT) memory using poly(2-hydroxyethyl methacrylate) (PHEMA)-based polymer dielectric layers has been developed. The electric performance and memory behaviors of memory TFTs can be significantly improved by using triple polymer dielectric layers consisting of PHEMA/poly(methyl methacrylate) (PMMA)/PHEMA. This can be attributed to the improvement of the channel/dielectric interface. This memory effect is due to the charge storage of the dipolar group or molecules in the dielectric. The devices exhibit a wide memory window (ΔVth, >20 V), switchable channel current, and long retention time.

  19. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.

    PubMed

    Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2003-05-23

    We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of approximately 106 and a field-effect mobility of approximately 80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics. PMID:12764192

  20. Enhanced Performance Consistency in Nanoparticle/TIPS Pentacene-Based Organic Thin Film Transistors

    SciTech Connect

    He, Zhengran; Xiao, Kai; Durant, William Mark; Anthony, John E.; Kilbey, II, S Michael; Chen, Jihua; Li, Dawen

    2011-01-01

    In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS pentacene) thin films and the performance of solution-processed organic thin-film transistors (OTFTs). This approach is taken to control crystal anisotropy, which is the origin of poor consistency in TIPS pentacene based OTFT devices. Thin film active layers are produced by drop-casting mixtures of SiO{sub 2} nanoparticles and TIPS pentacene. The resultant drop-cast films yield improved morphological uniformity at {approx}10% SiO{sub 2} loading, which also leads to a 3-fold increase in average mobility and nearly 4 times reduction in the ratio of measured mobility standard deviation ({mu}{sub Stdev}) to average mobility ({mu}{sub Avg}). Grazing-incidence X-ray diffraction, scanning and transmission electron microscopy as well as polarized optical microscopy are used to investigate the nanoparticle-mediated TIPS pentacene crystallization. The experimental results suggest that the SiO{sub 2} nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity.

  1. Fabrication of high performance thin-film transistors via pressure-induced nucleation

    PubMed Central

    Kang, Myung-Koo; Kim, Si Joon; Kim, Hyun Jae

    2014-01-01

    We report a method to improve the performance of polycrystalline Si (poly-Si) thin-film transistors (TFTs) via pressure-induced nucleation (PIN). During the PIN process, spatial variation in the local solidification temperature occurs because of a non-uniform pressure distribution during laser irradiation of the amorphous Si layer, which is capped with an SiO2 layer. This leads to a four-fold increase in the grain size of the poly-Si thin-films formed using the PIN process, compared with those formed using conventional excimer laser annealing. We find that thin films with optimal electrical properties can be achieved with a reduction in the number of laser irradiations from 20 to 6, as well as the preservation of the interface between the poly-Si and the SiO2 gate insulator. This interface preservation becomes possible to remove the cleaning process prior to gate insulator deposition, and we report devices with a field-effect mobility greater than 160 cm2/Vs. PMID:25358809

  2. Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors.

    PubMed

    Nguyen, Ky V; Payne, Marcia M; Anthony, John E; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung

    2016-01-01

    Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs. PMID:27615358

  3. Performance of Indium Gallium Zinc Oxide Thin-Film Transistors in Saline Solution

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Lacour, S. P.

    2016-06-01

    Transistors are often envisioned as alternative transducing devices to microelectrodes to communicate with the nervous system. Independently of the selected technology, the transistors should have reliable performance when exposed to physiological conditions (37°C, 5% CO2). Here, we report on the reliable performance of parylene encapsulated indium gallium zinc oxide (IGZO) based thin-film transistors (TFTs) after prolonged exposure to phosphate buffer saline solution in an incubator. The encapsulated IGZO TFTs (W/L = 500 μm/20 μm) have an ON/OFF current ratio of 107 and field effect mobility of 8.05 ± 0.78 cm2/Vs. The transistors operate within 4 V; their threshold voltages and subthreshold slope are ~1.9 V and 200 mV/decade, respectively. After weeks immersed in saline solution and at 37°C, we did not observe any significant deterioration in the transistors' performance. The long-term stability of IGZO transistors at physiological conditions is a promising result in the direction of metal oxide bioelectronics.

  4. Performance of Indium Gallium Zinc Oxide Thin-Film Transistors in Saline Solution

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Lacour, S. P.

    2016-03-01

    Transistors are often envisioned as alternative transducing devices to microelectrodes to communicate with the nervous system. Independently of the selected technology, the transistors should have reliable performance when exposed to physiological conditions (37°C, 5% CO2). Here, we report on the reliable performance of parylene encapsulated indium gallium zinc oxide (IGZO) based thin-film transistors (TFTs) after prolonged exposure to phosphate buffer saline solution in an incubator. The encapsulated IGZO TFTs (W/L = 500 μm/20 μm) have an ON/OFF current ratio of 107 and field effect mobility of 8.05 ± 0.78 cm2/Vs. The transistors operate within 4 V; their threshold voltages and subthreshold slope are ~1.9 V and 200 mV/decade, respectively. After weeks immersed in saline solution and at 37°C, we did not observe any significant deterioration in the transistors' performance. The long-term stability of IGZO transistors at physiological conditions is a promising result in the direction of metal oxide bioelectronics.

  5. Controlling the dimensionality of charge transport in organic thin-film transistors

    PubMed Central

    Laiho, Ari; Herlogsson, Lars; Forchheimer, Robert; Crispin, Xavier; Berggren, Magnus

    2011-01-01

    Electrolyte-gated organic thin-film transistors (OTFTs) can offer a feasible platform for future flexible, large-area and low-cost electronic applications. These transistors can be divided into two groups on the basis of their operation mechanism: (i) field-effect transistors that switch fast but carry much less current than (ii) the electrochemical transistors which, on the contrary, switch slowly. An attractive approach would be to combine the benefits of the field-effect and the electrochemical transistors into one transistor that would both switch fast and carry high current densities. Here we report the development of a polyelectrolyte-gated OTFT based on conjugated polyelectrolytes, and we demonstrate that the OTFTs can be controllably operated either in the field-effect or the electrochemical regime. Moreover, we show that the extent of electrochemical doping can be restricted to a few monolayers of the conjugated polyelectrolyte film, which allows both high current densities and fast switching speeds at the same time. We propose an operation mechanism based on self-doping of the conjugated polyelectrolyte backbone by its ionic side groups. PMID:21876143

  6. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    NASA Astrophysics Data System (ADS)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  7. The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers

    NASA Astrophysics Data System (ADS)

    Hsu, Yu-Jen

    Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by

  8. Conduction mechanism in amorphous InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Bhoolokam, Ajay; Nag, Manoj; Steudel, Soeren; Genoe, Jan; Gelinck, Gerwin; Kadashchuk, Andrey; Groeseneken, Guido; Heremans, Paul

    2016-01-01

    We validate a model which is a combination of multiple trapping and release and percolation model for describing the conduction mechanism in amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFT). We show that using just multiple trapping and release or percolation model is insufficient to explain TFT behavior as a function of temperature. We also show the intrinsic mobility is dependent on temperature due to scattering by ionic impurities or lattice. In solving the Poisson equation to find the surface potential and back potential as a function of gate voltage, we explicitly allow for the back surface to be floating, as is the case for a-IGZO transistors. The parameters for gap states, percolation barriers and intrinsic mobility at room temperature that we extract with this comprehensive model are in good agreement with those extracted in literature with partially-complete models.

  9. Influence of underneath pentacene thickness on performance of p-n heterojunction organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlin; Jiang, Yuyu; Wang, Zhen; Hu, Shengdong; Gan, Ping; Shen, Xiaoqing

    2016-02-01

    Organic thin film transistors (OTFTs) with heterojunction semiconducting layers composed of p-type pentacene and n-type fluorinated copper phthalocyanine (F16CuPc) have been fabricated. The influence of pentacene film thickness on performance of transistors is carefully investigated. It has been found that, with the increase of pentacene film thickness, the electron mobility increases at first and then decreases intensely. But the shift of VT is opposite comparing with electron mobility. The performance improvement can be attributed to the increase of free electron carriers by band bending at the pentacene/F16CuPc interface, and better F16CuPc film quality grown upon pentacene. Comparing with island growth-mode, layer-by-layer growth-mode of pentacene facilitates the growth of the upper F16CuPc film.

  10. Thin-Film Transistor and Ultra-Large Scale Integrated Circuit: Competition or Collaboration

    NASA Astrophysics Data System (ADS)

    Kuo, Yue

    2008-03-01

    Thin-film transistor (TFT) and ultra-large scale integrated circuit (ULSIC) have been compared and discussed with respect to the development history, technology trends, and applications. Detailed issues on materials, processes, and devices in the large-area TFT array fabrication and nano-size metal-oxide-semiconductor field effect transistors (MOSFETs) composed ULSIC on large wafers were also examined. The TFT fabrication processes were originally derived from ULSIC. However, there are many unique large-area processes and theories developed during the study of the TFT array fabrication, which can greatly benefit the future large wafer ULSIC production process. Although their future applications will be in different areas, there are opportunities that TFTs can be integrated into ULSIC products to enhance the functions and performance.

  11. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    SciTech Connect

    Aïssa, B.; Nedil, M.; Kroeger, J.; Haddad, T.; Rosei, F.

    2015-09-28

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 10{sup 4} and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 10{sup 4} s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices.

  12. Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Hu, Yongsheng; Lin, Jie; Li, Yantao; Liu, Xingyuan

    2016-08-01

    A fabrication method for transparent ambipolar organic thin film transistors with transparent Sb2O3/Ag/Sb2O3 (SAS) source and drain electrodes has been developed. A pentacene/N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide (PTCDI-C13) bilayer heterojunction is used as the active semiconductor. The electrodes are deposited by room temperature electron beam evaporation. The devices are fabricated without damaging the active layers. The SAS electrodes have high transmittance (82.5%) and low sheet resistance (8 Ω/sq). High performance devices with hole and electron mobilities of 0.3 cm2/V s and 0.027 cm2/V s, respectively, and average visible range transmittance of 72% were obtained. These transistors have potential for transparent logic integrated circuit applications.

  13. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  14. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Kizu, Takio; Mitoma, Nobuhiko; Miyanaga, Miki; Awata, Hideaki; Nabatame, Toshihide; Tsukagoshi, Kazuhito

    2015-09-01

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm2/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  15. Effect of Annealing Temperature on the Performance of SnO2 Thin Film Transistors Prepared by Spray Pyrolysis.

    PubMed

    Zhang, XinAn; Zhai, JunXia; Yu, XianKun; Zhu, RuiJuan; Zhang, WeiFeng

    2015-08-01

    We fabricated SnO2 thin film transistors on thermally oxidized p-type silicon substrates by low-cost spray pyrolysis. The effect of annealing temperatures on electrical characteristics of SnO2 thin film transistors were investigated. Thermal annealing at higher temperatures induced a negative shift of the threshold voltage (VT) and an increase in the saturation mobility. It was found that the device annealed at 450 °C exhibited a good electrical performance with the field-effect mobility of 0.19 cm2/Vs, the threshold voltage of 2.5 V, and the on/off current ratio of 10(3). PMID:26369222

  16. Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors.

    PubMed

    Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials. PMID:27451607

  17. Photo-Patterned Ion Gel Electrolyte-Gated Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Gu, Yuanyan; Hong, Kihyun; Frisbie, C. Daniel; Lodge, Timothy P.

    2014-03-01

    We have developed a novel fabrication route to pattern electrolyte thin films in electrolyte-gated transistors (EGTs) using a chemically crosslinkable ABA-triblock copolymer ion gel. In the self-assembly of poly[(styrene-r-vinylbenzylazide)-b-ethylene oxide-b-(styrene-r-vinylbenzylazide)] (SOS-N3) triblock copolymer and the ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]), the azide groups of poly(styrene-r-vinylbenzylazide) (PS-N3) end-blocks in the cores can be chemically cross-linked via UV irradiation (λ = 254 nm). Impedance spectroscopy and small-angle X-ray scattering confirmed that ion transport and microstructure of the ion gel are not affected by UV cross-linking. Using this chemical cross-linking strategy, we demonstrate a photo-patterning of ion gels through a patterned mask and the fabricated electrolyte-gated thin film transistors with photo-patterned ion gels as high-capacitance gate insulators exhibited high device performance (low operation voltages and high on/off current ratios).

  18. In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Hollerer, M.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode. PMID:25814770

  19. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    PubMed Central

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications. PMID:27000419

  20. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-03-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications.

  1. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays.

    PubMed

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V; Powell, David A; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications. PMID:27000419

  2. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins. PMID:26738152

  3. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    SciTech Connect

    Ou-Yang, Wei E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  4. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.

    PubMed

    Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M

    2015-09-30

    Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors. PMID:26381613

  5. Fabrication of water-stable organic transistors using crystalline rubrene thin-film and polymer-treated dielectric (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kim, Jaejoon; Lee, Hyoek Moo; Cho, Sung Oh

    2015-10-01

    For the real application of organic electronics, stable operation of electronic devices in humid or aqueous condition is essential and desirable. However, most of organic semiconductors were very weak to the oxygen or water and especially, cannot be operated well in aqueous condition without an encapsulation. Here, we present water-stable organic thin-film transistors with highly crystallized rubrene and polymer-treated dielectrics. These high water-stability could be achieved by two factors. First, rubrene, a well-known p-type semiconducting material, showed high air and water stability after the crystallization of `abrupt heating'. By the fabrication and aqueous operation of rubrene thin film transistor, we could show the water stability of crystallized thin-film rubrene. Such high environmental stability is attributed to the fact that rubrene has comparatively low HOMO level of -5.4 eV and large bandgap energy of 3.2 eV and that the rubrene thin-film is composed of well-interconnected orthorhombic rubrene crystals. Second, the polymer-treatment of dielectrics can enhance long-term water stability of fabricated rubrene thin-film transistor. By the complete immersion test of transistors, we could characterize the increase of water-stability after the treatment of dielectrics with cross-linked polymer. For this purpose, polystyrene is cross-linked by electron irradiation and the water penetration into semiconductor/dielectric interface was decreased due to the decreased surface energy of polymer dielectric compared to the SiO₂. The fabricated rubrene thin-film transistors showed a field-effect mobility of ~0.5 cm2V-1s-1 and long-term stability under ambient and aqueous conditions. Also, we investigated their potential applications in chemical or bio sensors.

  6. Electronic properties of organic thin film transistors with nanoscale tapered electrodes

    NASA Astrophysics Data System (ADS)

    Park, Jeongwon

    2008-10-01

    Organic thin-film transistors (OTFTs) have received increasing attention because of their potential applications in displays, optoelectronics, logic circuits, and sensors. Ultrathin OTFTs are of technical interest as a possible route toward reduced bias stress in standard OTFTs and enhanced sensitivity in chemical field-effect transistors (ChemFETs). ChemFETs are OTFTs whose output characteristics are sensitive to the presence of analytes via changes in the channel mobility and/or threshold voltage induced by analyte chemisorption onto the channel materials. The fundamental understanding of charge transport properties of organic thin-films is critical for the applications. OTFT has been demonstrated by many groups; however, there has been much less progress towards more reliable contact structure between organic materials and electrodes. This thesis investigates the electrical properties of metal phthalocyanine thin-film devices. In chapter 1, the basic electrical properties in OTFTs are reviewed. In chapter 2, we have investigated the microfabrication process of OTFTs to control the contact morphology and the charge transport properties of phthalocyanine thin-film devices. In chapter 3, the channel thickness dependence of the mobility was investigated in bottom-contact copper phthalocyanine (CuPc) OTFTs. The current-voltage characteristics of bottom contact CuPc OTFTs with low contact resistance fabricated by the bilayer photoresist lift-off process were analyzed to determine the mobility, threshold voltage and contact resistance. The independence of measured electronic properties from channel thickness is due to the contact resistance being negligible for all channel thicknesses. For practical applications, the aging and recovery process in CuPc OTFTs were investigated in chapter 4. An origin of the aging process on CuPc OTFTs has been investigated based on the responses of thick 1000ML CuPc OTFTs under a controlled atmosphere. The recovery process under 30

  7. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic.

    PubMed

    Cho, Jeong Ho; Lee, Jiyoul; Xia, Yu; Kim, BongSoo; He, Yiyong; Renn, Michael J; Lodge, Timothy P; Frisbie, C Daniel

    2008-11-01

    An important strategy for realizing flexible electronics is to use solution-processable materials that can be directly printed and integrated into high-performance electronic components on plastic. Although examples of functional inks based on metallic, semiconducting and insulating materials have been developed, enhanced printability and performance is still a challenge. Printable high-capacitance dielectrics that serve as gate insulators in organic thin-film transistors are a particular priority. Solid polymer electrolytes (a salt dissolved in a polymer matrix) have been investigated for this purpose, but they suffer from slow polarization response, limiting transistor speed to less than 100 Hz. Here, we demonstrate that an emerging class of polymer electrolytes known as ion gels can serve as printable, high-capacitance gate insulators in organic thin-film transistors. The specific capacitance exceeds that of conventional ceramic or polymeric gate dielectrics, enabling transistor operation at low voltages with kilohertz switching frequencies. PMID:18931674

  8. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  9. Improving Contact Interfaces in Fully Printed Carbon Nanotube Thin-Film Transistors.

    PubMed

    Cao, Changyong; Andrews, Joseph B; Kumar, Abhinay; Franklin, Aaron D

    2016-05-24

    Single-walled carbon nanotubes (CNTs) printed into thin films have been shown to yield high mobility, thermal conductivity, mechanical flexibility, and chemical stability as semiconducting channels in field-effect, thin-film transistors (TFTs). Printed CNT-TFTs of many varieties have been studied; however, there has been limited effort toward improving overall CNT-TFT performance. In particular, contact resistance plays a dominant role in determining the performance and degree of variability in the TFTs, especially in fully printed devices where the contacts and channel are both printed. In this work, we have systematically investigated the contact resistance and overall performance of fully printed CNT-TFTs employing three different printed contact materials-Ag nanoparticles, Au nanoparticles, and metallic CNTs-each in the following distinct contact geometries: top, bottom, and double. The active channel for each device was printed from the dispersion of high-purity (>99%) semiconducting CNTs, and all printing was carried out using an aerosol jet printer. Hundreds of devices with different channel lengths (from 20 to 500 μm) were fabricated for extracting contact resistance and determining related contact effects. Printed bottom contacts are shown to be advantageous compared to the more common top contacts, regardless of contact material. Further, compared to single (top or bottom) contacts, double contacts offer a significant decrease (>35%) in contact resistance for all types of contact materials, with the metallic CNTs yielding the best overall performance. These findings underscore the impact of printed contact materials and structures when interfacing with CNT thin films, providing key guidance for the further development of printed nanomaterial electronics. PMID:27097302

  10. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric

    PubMed Central

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-01-01

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm2 V−1 s−1, on/off ratio of 103–104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays. PMID:26173436

  11. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric

    NASA Astrophysics Data System (ADS)

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-07-01

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ~30 cm2 V-1 s-1, on/off ratio of 103-104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays.

  12. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors

    SciTech Connect

    Mach, P.; Rodriguez, S. J.; Nortrup, R.; Wiltzius, P.; Rogers, J. A.

    2001-06-04

    This letter describes the monolithic integration of rubber-stamped thin-film organic transistors with polymer-dispersed liquid crystals (PDLCs) to create a multipixel, flexible display with plastic substrates. We report the electro-optic switching behavior of the PDLCs as driven by the organic transistors, and we show that our displays operate robustly under flexing and have a contrast comparable to that of newsprint. {copyright} 2001 American Institute of Physics.

  13. High-mobility thin film transistors with neodymium-substituted indium oxide active layer

    SciTech Connect

    Lin, Zhenguo; Lan, Linfeng Xiao, Peng; Sun, Sheng; Li, Yuzhi; Song, Wei; Gao, Peixiong; Wang, Lei; Ning, Honglong; Peng, Junbiao

    2015-09-14

    Thin-film transistors (TFTs) with neodymium-substituted indium oxide (InNdO) channel layer were demonstrated. The structural properties of the InNdO films as a function of annealing temperature have been analyzed using X-ray diffraction and transmission electron microscopy. The InNdO thin films showed polycrystalline nature when annealed at 450 °C with a lattice parameter (cubic cell) of 10.255 Å, which is larger than the cubic In{sub 2}O{sub 3} film (10.117 Å). The high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy showed that no Nd{sub 2}O{sub 3} clusters were found in the InNdO film, implying that Nd was incorporated into the In{sub 2}O{sub 3} lattice. The InNdO TFTs annealed at 450 °C exhibited more excellent electrical properties with a high mobility of 20.4 cm{sup 2} V{sup −1} s{sup −1} and better electric bias stability compared to those annealed at 300 °C, which was attributed to the reduction of the scattering centers and/or charge traps due to the decrease of the |Nd3d{sub 5/2}{sup 5}4f{sup 4}O2p{sup −1}〉 electron configuration.

  14. Studies of polycrystalline pentacene thin-film transistors at the microscopic level

    NASA Astrophysics Data System (ADS)

    Cheng, Horng-Long; Chou, Wei-Yang; Kuo, Chia-Wei; Mai, Yu-Shen; Tang, Fu-Ching; Lai, Szu-Hao

    2006-08-01

    The electronic transport properties of polycrystalline pentacene-based thin film transistors (TFTs) were investigated at the microscopic level using microRaman spectroscopy. All the pentacene film, which were thermally evaporated as a layer with thickness of 70 nm, featured polycrystalline structure with only "thin film" phase polymorph and grain morphology as verified by x-ray diffraction (XRD) measurements. We have investigated the molecular vibrational modes of pentacene in the active channel during operations the organic TFT devices using in-situ Raman spectroscopy. Extra vibrational modes resulting from vibrational coupling effect in pentacene film were studied. The interlayer and intralayer intermolecular vibrational coupling energy was calculated from the Davydov splitting using a simple coupled-oscillator model. The results suggest that the C-H in-plane bending vibrational coupling energy of pentacene molecules in solid film is affected by operating device. Additionally, the aromatic C-C stretching vibrational modes also were investigated. However, it is rather difficult to obtain the variations of lattice parameters of pentacene film in a very small active channel by using electron diffraction and XRD. At the same time, MicroRaman technique provides the capability to explore the intermolecular coupling and molecular structure modifications.

  15. Air-stable solution-processed n-channel organic thin film transistors with polymerenhanced morphology

    DOE PAGESBeta

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Chen, Jihua; Li, Dawen

    2015-05-04

    N,N0-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN2 film is much lower than the value of PDIF-CN2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PaMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PaMS or PMMA polymers, the morphologymore » of the PDIF-CN2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm2/V s has been achieved from OTFTs based on the PDIF-CN2 film with the pre-deposition of PaMS polymer.« less

  16. Air-stable solution-processed n-channel organic thin film transistors with polymerenhanced morphology

    SciTech Connect

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Chen, Jihua; Li, Dawen

    2015-05-04

    N,N0-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN2 film is much lower than the value of PDIF-CN2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PaMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PaMS or PMMA polymers, the morphology of the PDIF-CN2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm2/V s has been achieved from OTFTs based on the PDIF-CN2 film with the pre-deposition of PaMS polymer.

  17. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors.

    PubMed

    Chen, Haitian; Cao, Yu; Zhang, Jialu; Zhou, Chongwu

    2014-01-01

    Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates). PMID:24923382

  18. Transparent Flexible Zinc-Indium-Tin Oxide Thin-Film Transistors Fabricated on Polyarylate Films

    NASA Astrophysics Data System (ADS)

    Cheong, Woo-Seok; Bak, Jun-Yong; Kim, Hong Seung

    2010-05-01

    Transparent flexible displays can be realized using active matrix organic light emitting device (AMOLED) with transparent electrodes on transparent plastic substrates. In this study, we developed low-temperature, high-performance [ZITO, ZnO:In2O3:SnO2=3:1:1 molar ratio] thin-film transistors (TFTs) on polyarylate films. After optimizing the sputtering condition, the ZITO TFT with an ITO electrode had a high mobility of 16.93 cm2 V-1 s-1, and an SS of 0.39, while the ZITO TFT with a ZTO:B electrode showed no hysteresis on sweeping, a mobility of 2.29 cm2 V-1 s-1 and an SS of 0.18.

  19. Effect of curing temperature on nano-silver paste ink for organic thin-film transistors.

    PubMed

    Kim, Minseok; Koo, Jae Bon; Baeg, Kang-Jun; Noh, Yong-Young; Yang, Yong Suk; Jung, Soon-Won; Ju, Byeong-Kwon; You, In-Kyu

    2012-04-01

    Silver (Ag) metal electrode having 20 microm channel length was printed by reverse offset printing (ROP) using nano-silver paste ink for the source/drain of organic thin-film transistors (OTFT). Specific resistance and surface roughness of printed Ag electrodes with increasing curing temperature were investigated, and surface morphology and grain growth mechanism were systematically verified using a scanning electron microscope (SEM) and atomic force microscope (AFM) in order to obtain an optimized ROP Ag electrode. The Ag electrode was applied to fabricate top-gate/bottom-contact poly(3-hexylthiophene) OTFT devices, which showed reproducible OTFT characteristics such as the field-effect mobility, threshold voltage, and an on/off-current ratio of -10(-3) cm2/Vs, 0.36 V, and -10(2), respectively. PMID:22849104

  20. Operational stability in pentacene thin-film transistors with threshold voltages tuned by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshinari; Kitamura, Masatoshi; Kitani, Asahi; Arakawa, Yasuhiko

    2016-02-01

    Pentacene-based organic thin-film transistors (TFTs) having a SiO2 gate dielectric treated with oxygen plasma have been investigated for control of the threshold voltage. The threshold voltage changed in the wide range from -15 to 80 V, depending on plasma treatment time, AC power for plasma generation, and gate dielectric thickness. The threshold voltage change was attributed to negative charges induced on and/or near the surface of the gate dielectric. The threshold voltage change on the order of 1 V was particularly proportional to plasma treatment time. The predictable change enables the control of threshold voltage in this range. In addition, the effect of gate bias stress on threshold voltage was examined. The results suggested that gate bias stress does not negate the threshold voltage change induced by plasma treatment.

  1. Molecular doping for control of gate bias stress in organic thin film transistors

    SciTech Connect

    Hein, Moritz P. Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K.; Zakhidov, Alexander A.; Leo, Karl; Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden

    2014-01-06

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  2. Ultraviolet-enhanced device properties in pentacene-based thin-film transistors

    SciTech Connect

    Choi, Jeong-M.; Hwang, D. K.; Hwang, Jung Min; Kim, Jae Hoon; Im, Seongil

    2007-03-12

    The authors report on the ultraviolet (UV)-enhanced device properties in pentacene-based thin-film transistors (TFTs). Pentacene TFTs showed a degraded mobility and lowered saturation current after illumination by a high energy UV with 254 nm wavelength. However, under 364 nm UV these devices surprisingly displayed enhanced saturation current and also showed threshold voltage shift toward lower values, maintaining their mobilities. The saturation current increase and threshold voltage shift were further related to the negative fixed charges excessively formed at the pentacene/dielectric interface by the low energy UV. The authors thus conclude that a low energy UV could rather enhance the pentacene TFT performances and also control the threshold voltage of the device.

  3. Performance enhancement of amorphous indium-zinc-oxide thin film transistors by microwave annealing

    NASA Astrophysics Data System (ADS)

    Xu, Rui; He, Jian; Li, Wei; Paine, David C.

    2015-12-01

    The effect of microwave annealing on the field effect mobility and threshold voltage of amorphous indium zinc oxide (a-IZO) thin film transistors (TFTs) is reported. A control device with traditional hotplate annealing at 200 °C for 1 h was applied for comparison. The results show that both microwave annealing and low-temperature hotplate annealing increase the field effect mobility from 12.3 cm2/V s in as-deposited state to ∼19 cm2/V s in annealed state. However, the negative shift in threshold voltage with microwave annealing (from 0.23 V to -2.86 V) is smaller than that with low-temperature hotplate annealing (to -9 V). A mechanism related with the electrical properties of a-IZO material is proposed. This rapid low-temperature annealing technology makes a-IZO TFTs promising for use in flexible, transparent electronics.

  4. Interface location-controlled indium gallium zinc oxide thin-film transistors using a solution process

    NASA Astrophysics Data System (ADS)

    Na, Jae Won; Kim, Yeong-gyu; Jung, Tae Soo; Tak, Young Jun; Park, Sung Pyo; Park, Jeong Woo; Kim, Si Joon; Kim, Hyun Jae

    2016-03-01

    The role of an interface as an electron-trapping layer in double-stacked indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) was investigated and interface location-controlled (ILC) IGZO TFTs were introduced. In the ILC TFTs, the thickness of the top and bottom IGZO layers is controlled to change the location of the interface layer. The system exhibited improved electrical characteristics as the location of the interface layer moved further from the gate insulator: field-effect mobility increased from 0.36 to 2.17 cm2 V-1 s-1, and the on-current increased from 2.43  ×  10-5 to 1.33  ×  10-4 A. The enhanced electrical characteristics are attributed to the absence of an electron-trapping interface layer in the effective channel layer where electrons are accumulated under positive gate bias voltage.

  5. Contact resistance improvement using interfacial silver nanoparticles in amorphous indium-zinc-oxide thin film transistors

    SciTech Connect

    Xu, Rui; He, Jian; Song, Yang; Li, Wei; Zaslavsky, A.; Paine, D. C.

    2014-09-01

    We describe an approach to reduce the contact resistance at compositional conducting/semiconducting indium-zinc-oxide (IZO) homojunctions used for contacts in thin film transistors (TFTs). By introducing silver nanoparticles (Ag NPs) at the homojunction interface between the conducting IZO electrodes and the amorphous IZO channel, we reduce the specific contact resistance, obtained by transmission line model measurements, down to ∼10{sup −2 }Ω cm{sup 2}, ∼3 orders of magnitude lower than either NP-free homojunction contacts or solid Ag metal contacts. The resulting back-gated TFTs with Ag NP contacts exhibit good field effect mobility of ∼27 cm{sup 2}/V s and an on/off ratio >10{sup 7}. We attribute the improved contact resistance to electric field concentration by the Ag NPs.

  6. Restorative effect of oxygen annealing on device performance in HfIZO thin-film transistors

    SciTech Connect

    Ha, Tae-Jun

    2015-03-15

    Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.

  7. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    PubMed Central

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240

  8. Contact resistance improvement using interfacial silver nanoparticles in amorphous indium-zinc-oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; He, Jian; Song, Yang; Li, Wei; Zaslavsky, A.; Paine, D. C.

    2014-09-01

    We describe an approach to reduce the contact resistance at compositional conducting/semiconducting indium-zinc-oxide (IZO) homojunctions used for contacts in thin film transistors (TFTs). By introducing silver nanoparticles (Ag NPs) at the homojunction interface between the conducting IZO electrodes and the amorphous IZO channel, we reduce the specific contact resistance, obtained by transmission line model measurements, down to ˜10-2 Ω cm2, ˜3 orders of magnitude lower than either NP-free homojunction contacts or solid Ag metal contacts. The resulting back-gated TFTs with Ag NP contacts exhibit good field effect mobility of ˜27 cm2/V s and an on/off ratio >107. We attribute the improved contact resistance to electric field concentration by the Ag NPs.

  9. DC sputtered amorphous In-Sn-Zn-O thin-film transistors: Electrical properties and stability

    NASA Astrophysics Data System (ADS)

    Nakata, Mitsuru; Zhao, Chumin; Kanicki, Jerzy

    2016-02-01

    In this study, we investigated the electrical properties of DC sputtered amorphous In-Sn-Zn-O (a-ITZO) thin-film transistors (TFTs) fabricated under various process conditions. Fabricated a-ITZO TFTs achieved a threshold voltage (VT) of 1.0 V, subthreshold swing (SS) of 0.38 V/dec and field-effect mobility (μeff) of around 30 cm2/V s. An analytical field-effect mobility model is proposed for a-ITZO TFTs with key parameters extracted using different methods. The impacts of a-ITZO channel thickness and oxygen gas flow ratio on device performance were evaluated. Finally, the a-ITZO TFT bias-temperature stress (BTS) induced electrical instability was studied. In comparison to amorphous In-Ga-Zn-O (a-IGZO) TFTs, improved electrical stability was observed for a-ITZO TFTs using exactly the same BTS conditions.

  10. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    NASA Astrophysics Data System (ADS)

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.

  11. Suppression of excess oxygen for environmentally stable amorphous In-Si-O thin-film transistors

    SciTech Connect

    Aikawa, Shinya E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2015-05-11

    We discuss the environmental instability of amorphous indium oxide (InO{sub x})-based thin-film transistors (TFTs) in terms of the excess oxygen in the semiconductor films. A comparison between amorphous InO{sub x} doped with low and high concentrations of oxygen binder (SiO{sub 2}) showed that out-diffusion of oxygen molecules causes drastic changes in the film conductivity and TFT turn-on voltages. Incorporation of sufficient SiO{sub 2} could suppress fluctuations in excess oxygen because of the high oxygen bond-dissociation energy and low Gibbs free energy. Consequently, the TFT operation became rather stable. The results would be useful for the design of reliable oxide TFTs with stable electrical properties.

  12. Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  13. Gate bias stress effects due to polymer gate dielectrics in organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ng, Tse Nga; Daniel, Jürgen H.; Sambandan, Sanjiv; Arias, Ana-Claudia; Chabinyc, Michael L.; Street, Robert A.

    2008-02-01

    The operational stability of organic thin-film transistors (OTFTs) comprising bilayer polymer dielectric of poly(methylsilsesquioxane) (pMSSQ) and either the epoxy resin SU-8 or poly(4-vinyl phenol) was examined. Although not in direct contact with the semiconductor materials, the bottom dielectric layer did affect OTFT stability through water ion movement or charge injection inside the bottom dielectrics. In the comparison between our best polymer dielectric pMSSQ/SU-8 to the silicon oxide dielectric, the result emphasized that, at equal initial charge concentration, polymer dielectrics did not alleviate threshold-voltage shift but did maintain more stable current due to the lower gate capacitance than silicon oxide.

  14. Electrical mobility in organic thin-film transistors determined by noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Bonavolontà, C.; Albonetti, C.; Barra, M.; Valentino, M.

    2011-11-01

    Organic field-effect transistors (OFET) based on both n-type (perylene derivative) and p-type (α-sexithiophene and pentacene) organic thin films are characterized using low-frequency noise spectroscopy to estimate the charge carrier mobility. The power spectral density shows that the exposure of OFET to air affects the thermal noise fluctuations and that the thermal noise RMS value depends on gate voltage. The power spectral density noise proves that the carrier mobility is gate-voltage dependent. Unlike the I-V measurements, the noise spectroscopy analysis demonstrates the dependence of the mobility on the carrier polarity. We discuss the charge mobility and transport mechanism of a pentacene device with and without electrodes functionalized by an octanethiol chain. The results show that in the functionalized device the carrier mobility is improved and does not depend on the high gate voltage.

  15. High performance organic thin film transistor with phenyltrimethoxysilane-modified dielectrics

    NASA Astrophysics Data System (ADS)

    Yuan, Guang Cai; Xu, Zheng; Gong, Cheng; Cai, Qin Jia; Lu, Zhi Song; Shi, Jing Sheng; Zhang, Fu Jun; Zhao, Su Ling; Xu, Na; Li, Chang Ming

    2009-04-01

    In this work, fabrication of organic thin film transistors (OTFTs) using a phenyltrimethoxysilane (PhTMS) modified SiO2 insulator greatly improves the device electrical properties over those with plain or octadecyltrichlorosilane (OTS) modified SiO2, particularly improves the carrier mobility, the subthreshold slope, and channel resistance resulted from reduced density of charge trapping states at the semiconductor/insulator interface. The pentacene OTFTs with modification from PhTMS (3.5‰ v/v) achieves carrier mobility of 1.03 cm2/V s, on/off current ratio of 1.98×105, and subthreshold slope of 0.20 V/decade. This work renders a new, simple approach to significantly improve the OTFT performance.

  16. Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors Using Molecular Passivation

    SciTech Connect

    Rajachidambaram, Meena Suhanya; Pandey, Archana; Vilayur Ganapathy, Subramanian; Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2013-10-21

    The role of back channel surface chemistry on amorphous zinc tin oxide (ZTO) bottom gate thin film transistors (TFT) have been characterized by positive bias-stress measurements and x-ray photoelectron spectroscopy. Positive bias-stress turn-on voltage shifts for ZTO-TFTs were significantly reduced by passivation of back channel surfaces with self-assembled monolayers of n-hexylphosphonic acid (n-HPA) when compared to ZTO-TFTs with no passivation. These results indicate that adsorption of molecular species on exposed back channel of ZTO-TFTs strongly influence observed turn-on voltage shifts, as opposed to charge injection into the dielectric or trapping due to oxygen vacancies.

  17. Influence of inserting a thin fullerene layer on pentacene organic thin-film transistor

    NASA Astrophysics Data System (ADS)

    Li, Yu-Chang; Lin, Yu-Ju; Wei, Chia-Yu; Chou, Dei-Wei; Tsao, Chun-Ho; Wang, Yeong-Her

    2012-03-01

    The performance of organic thin-film transistors (TFTs) with a pentacene/fullerene(C60)/pentacene (PCP) sandwich structure is presented. Using a 3.5 nm-thick C60 layer inserted between the pentacene films, the obtained hole mobility is improved by more than six times. By applying atomic force microscopy, x-ray diffraction, Raman spectrum, and transmission line method analysis, one can reasonably infer that the smoother surface of the pentacene film covered with thin C60 layer delays the phase transformation of the upper pentacene film, resulting in stronger intermolecular coupling and the reduction of channel resistance of the PCP TFTs from 3.03 to 1.72 MΩ, and, therefore, improving the device performance.

  18. Enhancing the performance of organic thin film transistors using a novel photoalignment method

    NASA Astrophysics Data System (ADS)

    Chou, Wei-Yang; Kuo, Chia-Wei; Mai, Yu-Shen; Lin, Shih-Ting; Cheng, Hong-Long; Liao, Chi-Chang; Shu, Dun-Ying

    2004-10-01

    This study first demonstrated the feasibility of using the photoalignment method to adequately control the structural anisotropy of pentacene films, which are active semiconducting layers, in thin-film transistors (TFTs) with conspicuous anisotropic electrical characteristics. The photoaligned pentacene films were characterized with respect to structure and morphology using x-ray diffraction, atomic force microscopy and Raman scattering. Compared to the uncontrolled pentacene films, a maximum 25-times increase in field-effect mobility (up to 0.82 cm2/Vs) is achieved in the photoaligned pentacene-based TFTs by aligning pentacene orientation parallel to the current flow direction using a photoaligned polyimide layer. Mobility anisotropic ratios ranging between 2.7-8.3 for the current flow parallel and perpendicular to the alignment of the photoaligned pentacene films have been observed for photoaligned pentacene-based TFTs.

  19. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals.

    PubMed

    Shih, Chen Wei; Chin, Albert; Lu, Chun Fu; Su, Wei Fang

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm(2)/Vs field-effect mobility, high ION/IOFF of 2.3 × 10(7), small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240

  20. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    SciTech Connect

    Hanyu, Yuichiro Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kamiya, Toshio; Kumomi, Hideya; Hosono, Hideo

    2013-11-11

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested.

  1. Numerical Analysis on the Mechanical Properties of Organic Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Lee, D. K.; Seol, Y. G.; Ahn, J. H.; Lee, N. E.; Kim, Y. J.

    The organic thin film transistor (OTFT) on flexible substrate electroplated electrodes has many advantages as in the fabrication of low cost sensors, e-paper, smart cards, and flexible displays. In this study, we simulated the mechanical and electrical characteristics of the OTFT with various voltage conditions by using COMSOL. The model consisting of a channel, source and drain was employed to investigate the temperature distribution and thermal stress concentration. The channel length is 40 µm and the voltage ranged between -20V and -40V. The OTFT was fabricated using pentacene as a semiconducting layer and electroplated Ni as a gate electrode. Mechanical properties of the fabricated OTFT were characterized by thermal stress which was predicted with the result of stress distribution.

  2. All-printed and transparent single walled carbon nanotube thin film transistor devices

    NASA Astrophysics Data System (ADS)

    Sajed, Farzam; Rutherglen, Christopher

    2013-09-01

    We present fully transparent single-walled all-carbon nanotube thin film transistors (SWCNT TFT) fabricated using low-cost inkjet printing methods. Such a demonstration provides a platform towards low cost fully printed transparent electronics. The SWCNT TFTs were printed with metallic and semiconducting SWCNT using a room temperature printing process, without the requirement of expensive cleanroom facilities. The unoptimized SWCNT TFTs fabricated exhibited an Ion/off ratio of 92 and mobility of 2.27 cm2V-1s-1 and transmissivity of 82%. The combination of both high electrical performance and high transparency make all-SWCNT TFTs desirable for next generation transparent display backplanes and products such as Google Glass.

  3. Influence of curvature on the device physics of thin film transistors on flexible substrates

    SciTech Connect

    Amalraj, Rex; Sambandan, Sanjiv

    2014-10-28

    Thin film transistors (TFTs) on elastomers promise flexible electronics with stretching and bending. Recently, there have been several experimental studies reporting the behavior of TFTs under bending and buckling. In the presence of stress, the insulator capacitance is influenced due to two reasons. The first is the variation in insulator thickness depending on the Poisson ratio and strain. The second is the geometric influence of the curvature of the insulator-semiconductor interface during bending or buckling. This paper models the role of curvature on TFT performance and brings to light an elegant result wherein the TFT characteristics is dependent on the area under the capacitance-distance curve. The paper compares models with simulations and explains several experimental findings reported in literature.

  4. Self-heating induced instability of oxide thin film transistors under dynamic stress

    NASA Astrophysics Data System (ADS)

    Kise, Kahori; Fujii, Mami N.; Urakawa, Satoshi; Yamazaki, Haruka; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Wang, Dapeng; Furuta, Mamoru; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2016-01-01

    Degradation caused by Joule heating of transparent amorphous oxide semiconductor thin-film transistors (TFTs) is an important issue for display technology. Deep understanding of the mechanism of self-heating degradation generated by driving pulse voltage will pave the way for the development of highly reliable flexible displays. In this work, by using a pseudo interval measurement method, we examined the relationship of the highest and the lowest heating temperature in pulse 1 cycle and frequency. These self-heating converged to a constant temperature under pulse voltage applied at 1 kHz. Moreover, the long-term reliability under positive-bias stress voltage at 1 kHz of low converged temperature condition was improved relative to that of the stress voltage at 10 Hz of dynamic temperature change condition. We discussed the degradation mechanism of oxide TFTs generated by pulse voltage, and clarified that the degradation was accelerated by thermionic emission which occurred at low frequency.

  5. A high-k ferroelectric relaxor terpolymer as a gate dielectric for orgnaic thin film transistors

    SciTech Connect

    Wu, Shan; Shao, Ming; Burlingame, Quinn; Chen, Xiangzhong; Lin, Minren; Xiao, Kai; Zhang, Qiming

    2013-01-01

    Poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) is a ferroelectric terpolymer relaxor with a static dielectric constant of 50, which was developed using defect modification to eliminate remnant polarization in the normal ferroelectric PVDF. In this work, this solution processable terpolymer was used as the gate insulator in bottom gated organic thin-film transistors with a pentacene semiconductor layer. Due to the high dielectric constant of P(VDF-TrFE- CFE), a large capacitive coupling between the gate and channel can be achieved which causes a high charge concentration at the interface of the semiconductor and dielectric layers. In this device, an on/ off ratio of 104 and a low minimum operation gate voltage (5-10 V) were attained

  6. A numerical study on the mechanical characteristics of zinc oxide-based transparent thin film transistors.

    PubMed

    Lee, D-K; Park, K; Ahn, J-H; Lee, N-E; Kim, Y-J

    2011-07-01

    Zinc Oxide (ZnO) based Thin Film Transistors (TFTs) have been fabricated and analyzed to investigate mechanical characteristics regarding the stress, strain and deformation of electro circuits using the Finite Element Method (FEM). As the best compromise between the stretching and bending abilities, the coating thickness of SU-8 can be as important for bendability as a neutral mechanical plane. The neutral mechanical plane in electro circuits was designed for obtaining flexibility, e.g., bendability, in a previous numerical study. After that, through experimental validation, we observed what degree of SU-8 thickness was attributable for improved mechanical stability. The results suggest that not only numerical but also experimental measurements of the deformation and SU-8 coating thickness in electro circuits are useful for enhancing structural stability. PMID:22121623

  7. Restorative effect of oxygen annealing on device performance in HfIZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun

    2015-03-01

    Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.

  8. Review on thin-film transistor technology, its applications, and possible new applications to biological cells

    NASA Astrophysics Data System (ADS)

    Tixier-Mita, Agnès; Ihida, Satoshi; Ségard, Bertrand-David; Cathcart, Grant A.; Takahashi, Takuya; Fujita, Hiroyuki; Toshiyoshi, Hiroshi

    2016-04-01

    This paper presents a review on state-of-the-art of thin-film transistor (TFT) technology and its wide range of applications, not only in liquid crystal displays (TFT-LCDs), but also in sensing devices. The history of the evolution of the technology is first given. Then the standard applications of TFT-LCDs, and X-ray detectors, followed by state-of-the-art applications in the field of chemical and biochemical sensing are presented. TFT technology allows the fabrication of dense arrays of independent and transparent microelectrodes on large glass substrates. The potential of these devices as electrical substrates for biological cell applications is then described. The possibility of using TFT array substrates as new tools for electrical experiments on biological cells has been investigated for the first time by our group. Dielectrophoresis experiments and impedance measurements on yeast cells are presented here. Their promising results open the door towards new applications of TFT technology.

  9. Origin of mobility enhancement by chemical treatment of gate-dielectric surface in organic thin-film transistors: Quantitative analyses of various limiting factors in pentacene thin films

    NASA Astrophysics Data System (ADS)

    Matsubara, R.; Sakai, Y.; Nomura, T.; Sakai, M.; Kudo, K.; Majima, Y.; Knipp, D.; Nakamura, M.

    2015-11-01

    For the better performance of organic thin-film transistors (TFTs), gate-insulator surface treatments are often applied. However, the origin of mobility increase has not been well understood because mobility-limiting factors have not been compared quantitatively. In this work, we clarify the influence of gate-insulator surface treatments in pentacene thin-film transistors on the limiting factors of mobility, i.e., size of crystal-growth domain, crystallite size, HOMO-band-edge fluctuation, and carrier transport barrier at domain boundary. We quantitatively investigated these factors for pentacene TFTs with bare, hexamethyldisilazane-treated, and polyimide-coated SiO2 layers as gate dielectrics. By applying these surface treatments, size of crystal-growth domain increases but both crystallite size and HOMO-band-edge fluctuation remain unchanged. Analyzing the experimental results, we also show that the barrier height at the boundary between crystal-growth domains is not sensitive to the treatments. The results imply that the essential increase in mobility by these surface treatments is only due to the increase in size of crystal-growth domain or the decrease in the number of energy barriers at domain boundaries in the TFT channel.

  10. Radiation sensitivity of graphene field effect transistors and other thin film architectures

    NASA Astrophysics Data System (ADS)

    Cazalas, Edward

    An important contemporary motivation for advancing radiation detection science and technology is the need for interdiction of nuclear and radiological materials, which may be used to fabricate weapons of mass destruction. The detection of such materials by nuclear techniques relies on achieving high sensitivity and selectivity to X-rays, gamma-rays, and neutrons. To be attractive in field deployable instruments, it is desirable for detectors to be lightweight, inexpensive, operate at low voltage, and consume low power. To address the relatively low particle flux in most passive measurements for nuclear security applications, detectors scalable to large areas that can meet the high absolute detection efficiency requirements are needed. Graphene-based and thin-film-based radiation detectors represent attractive technologies that could meet the need for inexpensive, low-power, size-scalable detection architectures, which are sensitive to X-rays, gamma-rays, and neutrons. The utilization of graphene to detect ionizing radiation relies on the modulation of graphene charge carrier density by changes in local electric field, i.e. the field effect in graphene. Built on the principle of a conventional field effect transistor, the graphene-based field effect transistor (GFET) utilizes graphene as a channel and a semiconducting substrate as an absorber medium with which the ionizing radiation interacts. A radiation interaction event that deposits energy within the substrate creates electron-hole pairs, which modify the electric field and modulate graphene charge carrier density. A detection event in a GFET is therefore measured as a change in graphene resistance or current. Thin (micron-scale) films can also be utilized for radiation detection of thermal neutrons provided nuclides with high neutron absorption cross section are present with appreciable density. Detection in thin-film detectors could be realized through the collection of charge carriers generated within the

  11. Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors.

    PubMed

    Faber, Hendrik; Hirschmann, Johannes; Klaumünzer, Martin; Braunschweig, Björn; Peukert, Wolfgang; Halik, Marcus

    2012-03-01

    Thin-films of zinc oxide nanoparticles were investigated by photoluminescence spectroscopy and a broad defect-related yellow-green emission was observed. Oxygen plasma treatment was applied in order to reduce the number of defects, and the emission intensity was quenched to 4% of the initial value. Thin-film transistors that incorporate the nanoparticles as active semiconducting layers show an improved device performance after oxygen plasma treatment. The maximum drain current and the charge carrier mobility increased more than 1 order of magnitude up to a nominal value of 23 cm(2) V(-1) s(-1) and the threshold voltage was lowered. PMID:22391057

  12. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    SciTech Connect

    Perez-Mendez, V.; Drewery, J.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.

    1994-10-01

    We describe the characteristics of thin (1 {mu}m) and thick (>30 {mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. Deposition techniques using helium dilution, which produce samples with low stress are described. Pixel arrays for flux exposures can be readout by transistor, single diode or two diode switches. Polysilicon charge sensitive pixel amplifiers for single event detection are described. Various applications in nuclear, particle physics, x-ray medical imaging, neutron crystallography, and radionuclide chromatography are discussed.

  13. High-performance p-channel polycrystalline-germanium thin-film transistors via excimer laser crystallization and counter doping

    NASA Astrophysics Data System (ADS)

    Liao, Chan-Yu; Huang, Ching-Yu; Huang, Ming-Hui; Chou, Chia-Hsin; Cheng, Huang-Chung

    2016-04-01

    High-quality polycrystalline-germanium (poly-Ge) thin films have been successfully fabricated by excimer laser crystallization (ELC). Grains as large as 1 µm were achieved by ELC at 300 mJ/cm2. Meanwhile, the defect-generated hole concentrations in Ge thin films were significantly reduced. Furthermore, the majority carriers could then be converted to n-type by counter doping (CD) with a suitable dose. Then, high-performance p-channel Ge thin-film transistors (TFTs) with a high on/off current ratio of up to 1.7 × 103 and a high field-effect mobility of up to 208 cm2 V-1 s-1 were demonstrated for a channel width and length both of 0.5 µm. It was revealed that ELC combined with CD is effective for attaining high-performance p-channel poly-Ge TFTs.

  14. Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel.

    PubMed

    Xu, Wei; Hu, Zhanhao; Liu, Huimin; Lan, Linfeng; Peng, Junbiao; Wang, Jian; Cao, Yong

    2016-01-01

    Shrinking the device dimension has long been the pursuit of the semiconductor industry to increase the device density and operation speed. In the application of thin film transistors (TFTs), all-organic TFT arrays made by all-solution process are desired for low cost and flexible electronics. One of the greatest challenges is how to achieve ultrashort channel through a cost-effective method. In our study, ultrashort-channel devices are demonstrated by direct inkjet printing conducting polymer as source/drain and gate electrodes without any complicated substrate's pre-patterning process. By modifying the substrate's wettability, the conducting polymer's contact line is pinned during drying process which makes the channel length well-controlled. An organic TFT array of 200 devices with 2 μm channel length is fabricated on flexible substrate through all-solution process. The simple and scalable process to fabricate high resolution organic transistor array offers a low cost approach in the development of flexible and wearable electronics. PMID:27378163

  15. α,ω-dihexyl-sexithiophene thin films for solution-gated organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Schamoni, Hannah; Noever, Simon; Nickel, Bert; Stutzmann, Martin; Garrido, Jose A.

    2016-02-01

    While organic semiconductors are being widely investigated for chemical and biochemical sensing applications, major drawbacks such as the poor device stability and low charge carrier mobility in aqueous electrolytes have not yet been solved to complete satisfaction. In this work, solution-gated organic field-effect transistors (SGOFETs) based on the molecule α,ω-dihexyl-sexithiophene (DH6T) are presented as promising platforms for in-electrolyte sensing. Thin films of DH6T were investigated with regard to the influence of the substrate temperature during deposition on the grain size and structural order. The performance of SGOFETs can be improved by choosing suitable growth parameters that lead to a two-dimensional film morphology and a high degree of structural order. Furthermore, the capability of the SGOFETs to detect changes in the pH or ionic strength of the gate electrolyte is demonstrated and simulated. Finally, excellent transistor stability is confirmed by continuously operating the device over a period of several days, which is a consequence of the low threshold voltage of DH6T-based SGOFETs. Altogether, our results demonstrate the feasibility of high performance and highly stable organic semiconductor devices for chemical or biochemical applications.

  16. Transparent Thin Film Transistors based on Pristine and Doped Indium Oxide Nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chiang; Shen, Guozhen; Sukcharoenchoke, Saowalak; Zhou, Chongwu

    2009-03-01

    The key to the realization of transparent electronics is the development of transparent thin film transistors (TTFT) with good device performance, in terms of high device mobility, low temperature fabrication, and optical transparency. We present our work on the fabrication of high performance TTFTs using both pristine In2O3 nanowires and doped In2O3 nanowires. In2O3 nanowire TTFTs were made on glass and PET substrates with Al2O3 as gate insulator and ITO source/drain electrodes. These devices showed a transparency of about 80% and n-type transistor performance. The device characteristics exhibit a subthreshold slope of 0.2 V/dec, a current on/off ratio of 10^6, and a field-effect mobility of 514 cm^2V-1S-1. We also fabricated TTFTs wbuilt on Arsenic-doped In2O3 nanowires with a field-effect mobility of 1,183.8 cm^2V-1S-1 without any post-treatments. In addition, we integrated TTFTs with organic light emitting diode (OLED) to make an active matrix organic light emitting diode (AMOLED) display, and thus made an animation by controlling the OLED light output.

  17. Compositional tuning of atomic layer deposited MgZnO for thin film transistors

    SciTech Connect

    Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S.

    2014-11-17

    Thin film transistors (TFTs) have been fabricated using magnesium zinc oxide (MgZnO) layers deposited by atomic layer deposition at 200 °C. The composition of the MgZnO is systematically modified by varying the ratio of MgO and ZnO deposition cycles. A blue-shift of the near band-edge photoluminescence after post-deposition annealing at 300 °C indicates significant activation of the Mg dopant. A 7:1 ratio of ZnO:MgO deposition cycles was used to fabricate a device with a TFT channel width of 2000 μm and a channel length of 60 μm. This transistor yielded an effective saturation mobility of 4 cm{sup 2}/V s and a threshold voltage of 7.1 V, respectively. The on/off ratio was 1.6×10{sup 6} and the maximum interface state density at the ZnO/SiO{sub 2} interface is ∼6.5×10{sup 12} cm{sup −2}.

  18. Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel

    PubMed Central

    Xu, Wei; Hu, Zhanhao; Liu, Huimin; Lan, Linfeng; Peng, Junbiao; Wang, Jian; Cao, Yong

    2016-01-01

    Shrinking the device dimension has long been the pursuit of the semiconductor industry to increase the device density and operation speed. In the application of thin film transistors (TFTs), all-organic TFT arrays made by all-solution process are desired for low cost and flexible electronics. One of the greatest challenges is how to achieve ultrashort channel through a cost-effective method. In our study, ultrashort-channel devices are demonstrated by direct inkjet printing conducting polymer as source/drain and gate electrodes without any complicated substrate’s pre-patterning process. By modifying the substrate’s wettability, the conducting polymer’s contact line is pinned during drying process which makes the channel length well-controlled. An organic TFT array of 200 devices with 2 μm channel length is fabricated on flexible substrate through all-solution process. The simple and scalable process to fabricate high resolution organic transistor array offers a low cost approach in the development of flexible and wearable electronics. PMID:27378163

  19. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors.

    PubMed

    Xia, Jiye; Dong, Guodong; Tian, Boyuan; Yan, Qiuping; Zhang, Han; Liang, Xuelei; Peng, Lianmao

    2016-05-21

    Metal-tube contact is known to play an important role in carbon nanotube field-effect transistors (CNT-FETs) which are fabricated on individual CNTs. Less attention has been paid to the contact effect in network type carbon nanotube thin film transistors (CNT-TFTs). In this study, we demonstrate that contact plays an even more important role in CNT-TFTs than in CNT-FETs. Although the Schottky barrier height at the metal-tube contact can be tuned by the work function of the metal, similar to the case in CNT-FETs, the contact resistance (Rc) forms a much higher proportion of the total resistance in CNT-TFTs. Interestingly, the contact resistivity was found to increase with channel length, which is a consequence of the percolating nature of the transport in CNT films, and this behavior does not exist in CNT-FETs and normal 2D Ohmic conductors. Electrical transport in CNT-TFTs has been predicted to scale with channel length by stick percolation theory. However, the scaling behavior is also impacted, or even covered up by the effect of Rc. Once the contact effect is excluded, the covered scaling behavior can be revealed correctly. A possible way of reducing Rc in CNT-TFTs was proposed. We believe the findings in this paper will strengthen our understanding of CNT-TFTs, and even accelerate the commercialization of CNT-TFT technology. PMID:27121370

  20. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors

    PubMed Central

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm2/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers. PMID:24061388

  1. Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Hu, Zhanhao; Liu, Huimin; Lan, Linfeng; Peng, Junbiao; Wang, Jian; Cao, Yong

    2016-07-01

    Shrinking the device dimension has long been the pursuit of the semiconductor industry to increase the device density and operation speed. In the application of thin film transistors (TFTs), all-organic TFT arrays made by all-solution process are desired for low cost and flexible electronics. One of the greatest challenges is how to achieve ultrashort channel through a cost-effective method. In our study, ultrashort-channel devices are demonstrated by direct inkjet printing conducting polymer as source/drain and gate electrodes without any complicated substrate’s pre-patterning process. By modifying the substrate’s wettability, the conducting polymer’s contact line is pinned during drying process which makes the channel length well-controlled. An organic TFT array of 200 devices with 2 μm channel length is fabricated on flexible substrate through all-solution process. The simple and scalable process to fabricate high resolution organic transistor array offers a low cost approach in the development of flexible and wearable electronics.

  2. Light-Modulation of the Charge Injection in a Polymer Thin-Film Transistor by Functionalizing the Electrodes with Bistable Photochromic Self-Assembled Monolayers.

    PubMed

    Mosciatti, Thomas; Del Rosso, Maria G; Herder, Martin; Frisch, Johannes; Koch, Norbert; Hecht, Stefan; Orgiu, Emanuele; Samorì, Paolo

    2016-08-01

    High fatigue resistance, bistability, and drastic property changes among isomers allow efficient modulation of the current output of organic thin-film transistors (OTFTs) to be obtained by a photogating of the charge-injection mechanism. PMID:27184349

  3. Low-voltage polymer/small-molecule blend organic thin-film transistors and circuits fabricated via spray deposition

    SciTech Connect

    Hunter, By Simon; Anthopoulos, Thomas D.; Ward, Jeremy W.; Jurchescu, Oana D.; Payne, Marcia M.; Anthony, John E.

    2015-06-01

    Organic thin-film electronics have long been considered an enticing candidate in achieving high-throughput manufacturing of low-power ubiquitous electronics. However, to achieve this goal, more work is required to reduce operating voltages and develop suitable mass-manufacture techniques. Here, we demonstrate low-voltage spray-cast organic thin-film transistors based on a semiconductor blend of 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene and poly(triarylamine). Both semiconductor and dielectric films are deposited via successive spray deposition in ambient conditions (air with 40%–60% relative humidity) without any special precautions. Despite the simplicity of the deposition method, p-channel transistors with hole mobilities of >1 cm{sup 2}/Vs are realized at −4 V operation, and unipolar inverters operating at −6 V are demonstrated.

  4. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    SciTech Connect

    Kizu, Takio E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Miyanaga, Miki; Awata, Hideaki; Nabatame, Toshihide

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  5. High-mobility BaSnO3 thin-film transistor with HfO2 gate insulator

    NASA Astrophysics Data System (ADS)

    Kim, Young Mo; Park, Chulkwon; Kim, Useong; Ju, Chanjong; Char, Kookrin

    2016-01-01

    Thin-film transistors have been fabricated using La-doped BaSnO3 as n-type channels and (In,Sn)2O3 as source, drain, and gate electrodes. HfO2 was grown as gate insulators by atomic layer deposition. The field-effect mobility, Ion/Ioff ratio, and subthreshold swing of the device are 24.9 cm2 V-1 s-1, 6.0 × 106, and 0.42 V dec-1, respectively. The interface trap density, evaluated to be higher than 1013 cm-2 eV-1, was found to be slightly lower than that of the thin-film transistor with an Al2O3 gate insulator. We attribute the much smaller subthreshold swing values to the higher dielectric constant of HfO2.

  6. Improvement in the Positive Bias Temperature Stability of SnOx-Based Thin Film Transistors by Hf and Zn Doping.

    PubMed

    Han, Dongsuk; Park, Jaehyung; Kang, Minsoo; Jeon, Hyeongtag; Park, Jongwan

    2015-10-01

    We investigated the performance of tin oxide thin film transistors (TFTs) using DC magnetron sputtering. A remarkable improvement in the transfer characteristics was obtained for the Hf-doped tin oxide (HTO) TFT. We also developed amorphous hafnium-zinc-tin oxide (HZTO) thin film transistors and investigated the effects of hafnium doping on the electrical characteristics of the HTO TFTs. Doping with hafnium resulted in a reduced defect density in the tin oxide channel layer related to oxygen vacancies, which may result from increased field effect mobility. Zinc atoms have relatively higher oxidation potential compared to tin atoms, so more oxygen molecules can be absorbed and more electrons are trapped in the HZTO films. The HZTO TFTs exhibited good electrical characteristics with a field effect mobility of 10.98 cm2/Vs, and a high ION/IOFF ratio over 10(8). PMID:26726382

  7. Polysilicon TFT fabrication on plastic substrates

    SciTech Connect

    Carey, P.G.; Smith, P.M.; Wickboldt, P.W.; Thompson, M.O.; Sigmon, T.W.

    1997-08-06

    Processing techniques utilizing low temperature depositions and pulsed lasers allow the fabrication of polysilicon thin film transistors (TFT`s) on plastic substrates. By limiting the silicon, SiO2, and aluminum deposition temperatures to 100(degrees)C, and by using pulsed laser crystallization and doping of the silicon, we have demonstrated functioning polysilicon TFT`s fabricated on polyester substrates with channel mobilities of up to 7.5 cm2/V-sec and Ion/Ioff current ratios of up to 1x10(to the 6th power).

  8. Temperature and layer thickness dependent in situ investigations on epindolidione organic thin-film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Jones, A.O.F.; Scherwitzl, B.; Fian, A.; Głowacl, E.D.; Stadlober, B.; Winkler, A.

    2016-01-01

    We report on in situ performance evaluations as a function of layer thickness and substrate temperature for bottom-gate, bottom-gold contact epindolidione organic thin-film transistors on various gate dielectrics. Experiments were carried out under ultra-high vacuum conditions, enabling quasi-simultaneous electrical and surface analysis. Auger electron spectroscopy and thermal desorption spectroscopy (TDS) were applied to characterize the quality of the substrate surface and the thermal stability of the organic films. Ex situ atomic force microscopy (AFM) was used to gain additional information on the layer formation and surface morphology of the hydrogen-bonded organic pigment. The examined gate dielectrics included SiO2, in its untreated and sputtered forms, as well as the spin-coated organic capping layers poly(vinyl-cinnamate) (PVCi) and poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE, from the class of polynorbornenes). TDS and AFM revealed Volmer-Weber island growth dominated film formation with no evidence of a subjacent wetting layer. This growth mode is responsible for the comparably high coverage required for transistor behavior at 90–95% of a monolayer composed of standing molecules. Surface sputtering and an increased sample temperature during epindolidione deposition augmented the surface diffusion of adsorbing molecules and therefore led to a lower number of better-ordered islands. Consequently, while the onset of charge transport was delayed, higher saturation mobility was obtained. The highest, bottom-contact configuration, mobilities of approximately 2.5 × 10−3cm2/Vs were found for high coverages (50 nm) on sputtered samples. The coverage dependence of the mobility showed very different characteristics for the different gate dielectrics, while the change of the threshold voltage with coverage was approximately the same for all systems. An apparent decrease of the mobility with increasing coverage on the

  9. Characteristics of flexographic printed indium-zinc-oxide thin films as an active semiconductor layer in thin film field-effect transistors

    NASA Astrophysics Data System (ADS)

    Dilfer, Stefan; Hoffmann, Rudolf C.; Dörsam, Edgar

    2014-11-01

    Characteristics of oxide semiconductor thin film transistors prepared by flexographic printing technique have been studied. The device was a field-effect transistor substrate (15 mm × 15 mm, n-doped silicon, 90 nm SiO2 layer) with pre-structured gold electrodes and a printed active layer. The active layer was printed with a indium-zinc-oxide precursor solution and then annealed at 450 °C for 4 min on a hotplate. Influences of typographical parameters, i.e. printing pressure, anilox roller pressure, ink supply rate, printing velocity and printing plate (cliché) properties were studied. Reference active layers were produced by spin coating. The printed IZO ceramic layer with a dry film thickness between 3 and 8 nm, deposited onto the substrate for field-effect transistors provided a good performance with charge carrier mobilities (μ) up to 2.4 cm2 V-1 s-1, on/off current ratios (Ion/off ratio) up to 5.2 × 107 and mean threshold voltages (Vth) of +4 V. The characterization of the printed and annealed IZO layer by AFM revealed the amorphous nature of the printed active layer films with a root-mean square roughness of 0.8 nm.

  10. Green processing of metal oxide core-shell nanoparticles as low-temperature dielectrics in organic thin-film transistors.

    PubMed

    Portilla, Luis; Etschel, Sebastian H; Tykwinski, Rik R; Halik, Marcus

    2015-10-21

    TiO2 , Fe3 O4, AlOx , ITO (indium tin oxide), and CeO2 nanoparticles are tailored to exhibit excellent dispersability in deionized water and alcohols. The latter provides an ecofriendly solution for processing metal oxide nanoparticles at a neutral pH. Water-processed dielectrics from the metal oxide nanoparticles are incorporated into organic thin-film transistors fabricated on rigid and flexible substrates. PMID:26308740

  11. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors

    NASA Astrophysics Data System (ADS)

    Xia, Jiye; Dong, Guodong; Tian, Boyuan; Yan, Qiuping; Zhang, Han; Liang, Xuelei; Peng, Lianmao

    2016-05-01

    Metal-tube contact is known to play an important role in carbon nanotube field-effect transistors (CNT-FETs) which are fabricated on individual CNTs. Less attention has been paid to the contact effect in network type carbon nanotube thin film transistors (CNT-TFTs). In this study, we demonstrate that contact plays an even more important role in CNT-TFTs than in CNT-FETs. Although the Schottky barrier height at the metal-tube contact can be tuned by the work function of the metal, similar to the case in CNT-FETs, the contact resistance (Rc) forms a much higher proportion of the total resistance in CNT-TFTs. Interestingly, the contact resistivity was found to increase with channel length, which is a consequence of the percolating nature of the transport in CNT films, and this behavior does not exist in CNT-FETs and normal 2D Ohmic conductors. Electrical transport in CNT-TFTs has been predicted to scale with channel length by stick percolation theory. However, the scaling behavior is also impacted, or even covered up by the effect of Rc. Once the contact effect is excluded, the covered scaling behavior can be revealed correctly. A possible way of reducing Rc in CNT-TFTs was proposed. We believe the findings in this paper will strengthen our understanding of CNT-TFTs, and even accelerate the commercialization of CNT-TFT technology.Metal-tube contact is known to play an important role in carbon nanotube field-effect transistors (CNT-FETs) which are fabricated on individual CNTs. Less attention has been paid to the contact effect in network type carbon nanotube thin film transistors (CNT-TFTs). In this study, we demonstrate that contact plays an even more important role in CNT-TFTs than in CNT-FETs. Although the Schottky barrier height at the metal-tube contact can be tuned by the work function of the metal, similar to the case in CNT-FETs, the contact resistance (Rc) forms a much higher proportion of the total resistance in CNT-TFTs. Interestingly, the contact

  12. Impact of glycerol on zinc-oxide-based thin film transistors with indium molybdenum oxide transparent electrodes

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Flores, Raquel; Viegas, Jaime

    2016-02-01

    We report the fabrication of thin film transistors with ZnO channel and indium molybdenum oxide electrodes by sputtering. The fabricated transistors were then exposed to glycerol. We observe a temporary change in device performance after immersion of the FET in glycerol. Control structures without channel material are also used for demonstrating that the effect of saturation current increase is not due to glycerol alone as sugar alcohol is a low conductive medium. Various electrical and optical parameters are extracted. The presented results are useful for further integration of photonics and electronics in sensing applications

  13. Quasi one-dimensional transport in doped polythiophene and polythiophene thin film transistors

    NASA Astrophysics Data System (ADS)

    Yuen, Jonathan Dsu-Bei

    Conducting and semiconducting polymers are important materials in the development of printed, mechanically flexible, large area electronics for various applications, such as flat panel displays and photovoltaic cells. The development of conjugated polymers of high mobility for thin-film transistor active layers, in particular, has been very rapid, starting with early mobilities of around 10-4cm2/Vs to a recent report of 1cm 2/Vs in transistors with an active layer of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Metallic behavior has a long history in the field of conjugated polymers and recently, even "true" metallic transport has been observed with drho/dT > 0. Thus, development of such high-mobility polymers also raises the possibility that similar behavior will also occur in such materials. A suitable candidate is PBTTT, which is a high performance, rigid-rod conjugated polymer that possesses a thermally-induced liquid crystalline phase where the polymer chains pack into stacked structures, forming two-dimensional layered terraces which extend laterally over hundreds of nanometers, contributing greatly to its high mobility. In this work, the electrical properties of PBTTT are studied under high charge densities both as the active layer in transistors and in electrochemically doped films, in order to determine the mechanism that governs its transport. This thesis will first describe the process of experimental setup and optimization required to produce high performance transistors and doped films; data derived from this is analyzed and correlated to suitable models that may describe charge behavior in these samples. We show that the data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in a systems with electronic structure described by the Luttinger Liquid model, a one-dimensional "metallic" system where

  14. Mechanical Flexibility of Zinc Oxide Thin-Film Transistors Prepared by Transfer Printing Method

    NASA Astrophysics Data System (ADS)

    Eun, K. T.; Hwang, W. J.; Sharma, B. K.; Ahn, J. H.; Lee, Y. K.; Choa, S. H.

    In the present study, we demonstrate the performance of Zinc oxide thin film transistors (ZnO TFTs) array subjected to the strain under high bending test and the reliability of TFTs was confirmed for the bending fatigue test of 2000 cycles. Initially, ZnO TFTs were fabricated on Si substrate and subsequently transferred on flexible PET substrate using transfer printing process. It was observed that when the bending radius reached ≥ 11 mm then cracks start to initiate first at SiO2 bridges, acting as interconnecting layers among individual TFT. Whatever the strain is applied to the devices, it is almost equivalently adopted by the SiO2 bridges, as they are relatively weak compared to rest of the part. The initial cracking of destructed SiO2 bridge leads to the secondary cracks to the ITO electrodes upon further increment of bending radius. Numerical simulation suggested that the strain of SiO2 layer reached to fracture level of 0.55% which was concentrated at the edge of SiO2 bridge layer. It also suggests that the round shape of SiO2 bridge can be more fruitful to compensate the stress concentration and to prevent failure of device.

  15. Fully Solution-Processed Flexible Organic Thin Film Transistor Arrays with High Mobility and Exceptional Uniformity

    PubMed Central

    Fukuda, Kenjiro; Takeda, Yasunori; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo

    2014-01-01

    Printing fully solution-processed organic electronic devices may potentially revolutionize production of flexible electronics for various applications. However, difficulties in forming thin, flat, uniform films through printing techniques have been responsible for poor device performance and low yields. Here, we report on fully solution-processed organic thin-film transistor (TFT) arrays with greatly improved performance and yields, achieved by layering solution-processable materials such as silver nanoparticle inks, organic semiconductors, and insulating polymers on thin plastic films. A treatment layer improves carrier injection between the source/drain electrodes and the semiconducting layer and dramatically reduces contact resistance. Furthermore, an organic semiconductor with large-crystal grains results in TFT devices with shorter channel lengths and higher field-effect mobilities. We obtained mobilities of over 1.2 cm2 V−1 s−1 in TFT devices with channel lengths shorter than 20 μm. By combining these fabrication techniques, we built highly uniform organic TFT arrays with average mobility levels as high as 0.80 cm2 V−1 s−1 and ideal threshold voltages of 0 V. These results represent major progress in the fabrication of fully solution-processed organic TFT device arrays. PMID:24492785

  16. Temperature-dependent charge injection and transport in pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Shin, Hyunji; Park, Ji-Ho; Park, Jaehoon; Choi, Jong Sun

    2015-11-01

    The electrical characteristics of p-channel pentacene thin-film transistors (TFTs) were analyzed at different operating temperatures ranging from 253 to 353 K. An improvement in the drain current and field-effect mobility of the pentacene TFTs is observed with increasing temperature. From the Arrhenius plots of field-effect mobility extracted at various temperatures, a lower activation energy of 99.34 meV was obtained when the device is operating in the saturation region. Such observation is ascribed to the thermally activated hole transport through the pentacene grain boundaries. On the other hand, it was found that the Au/pentacene contact significantly affects the TFTs electrical characteristics in the linear region, which resulted in a higher activation energy. The activation energy based on the linear field-effect mobility, which increased from 344.61 to 444.70 meV with decreasing temperature, implies the charge-injection-limited electrical behavior of pentacene TFTs at low temperatures. The thermally induced electrical characteristic variations in pentacene TFTs can thus be studied through the temperature dependence of the charge injection and transport processes.

  17. Roll-printed organic thin-film transistor using patterned poly(dimethylsiloxane) (PDMS) stamp.

    PubMed

    Jo, Jeongdai; Yu, Jong-Su; Lee, Taik-Min; Kim, Dong-Soo; Kim, Kwang-Young

    2010-05-01

    The roll-printed gate, source, and drain electrodes of organic thin-film transistors (OTFTs) were fabricated by gravure printing or gravure-offset printing using patterned poly(dimethylsiloxane) (PDMS) stamp with various channel lengths and low-resistance silver (Ag) pastes on flexible 150 x 150 mm2 plastic substrates. Bottom-contact roll-printed OTFTs used polyvinylphenol (PVP) as polymeric dielectric and bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) as organic semiconductor; they were formed by spin coating or ink-jetting. Depending on the choice of roll-printing method, the printed OTFTs obtained had a field-effect mobility of between 0.08 and 0.1 cm2/Vs, an on/off current ratio of between 10(4) and 10(5), and a subthreshold slope of between 1.96 and 2.32 V/decade. The roll-printing using patterned PDMS stamp and soluble processes made it possible to fabricate a printed OTFT with a channel length of between 12 to 74 microm on a plastic substrate; this was not previously possible using traditional printing techniques. The proposed fabrication process was 20 steps shorted than conventional fabrication techniques. PMID:20359007

  18. Vapor-phase-processed fluorinated self-assembled monolayer for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Roh, Jeongkyun; Lee, Changhee; Kwak, Jeonghun; Jung, Byung Jun; Kim, Hyeok

    2015-09-01

    A vapor-phase-processed fluorinated silazane self-assembled monolayer (SAM), 1,3-bis(trifluoropropyl)-1,1,3,3-tetramethyldisilazane (FPDS), was introduced as a surface modifier for pentacene-based organic thin-film transistors (OTFTs). A remarkable improvement in the field effect mobility from 0.25 cm2/Vs (without SAM-treatment) to 0.42 cm2/Vs (with FPDS-treatment) was observed, which was attributed to the better pentacene growth on a hydrophobic surface. A significant reduction in the contact resistance was also observed by FPDS treatment due to the improved bulk conductivity and diminished charge trapping at the gate dielectric surface by the SAM treatment. In addition, FPDS treatment efficiently improved the bias stability of the OTFTs; the drain-to-source current degradation by the bias stress was greatly reduced from 80% to 50% by FPDS treatment, and the characteristic time for charge trapping of the FPDS treated OTFTs was approximately one order of magnitude larger than that of the OTFTs without SAM treatment.

  19. Effects of Au source/drain thickness on electrical characteristics of pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jin-Hyuk; Hahn, Joonku; Bae, Jin-Hyuk; Ham, Youngjin; Park, Jaehoon; Baang, Sungkeun

    2015-11-01

    We investigate the electrical characteristics of top-contact pentacene thin-film transistors (TFTs) fabricated with various thicknesses of the Au source and the drain (S/D) electrodes, i.e., 20, 30, 50, 70, and 105 nm. Pentacene TFTs exhibit enhancements in the drain current and the fieldeffect mobility with increasing thickness of Au S/D electrodes up to 50 nm, after which the TFT performance degrades with increasing Au thickness. A transmission line method is used to analyze the contact resistance between the Au electrode and the pentacene layer in the TFTs, and ultraviolet photoemission spectroscopy measurements are performed to determine the work function of the Au films. The lowest contact resistance, 73 kΩ·cm, is obtained for the 50-nm-thick Au case and is ascribed to the high work function (4.67 eV) of the film. Consequently, the effects of the Au S/D thickness on the performance of top-contact pentacene TFTs can be understood through the behavior of the charge injection at the Au electrode/pentacene interface.

  20. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    DOE PAGESBeta

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. Themore » typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.« less

  1. High mobility amorphous zinc oxynitride semiconductor material for thin film transistors

    SciTech Connect

    Ye Yan; Lim, Rodney; White, John M.

    2009-10-01

    Zinc oxynitride semiconductor material is produced through a reactive sputtering process in which competition between reactions responsible for the growth of hexagonal zinc oxide (ZnO) and for the growth of cubic zinc nitride (Zn{sub 3}N{sub 2}) is promoted. In contrast to processes in which the reaction for either the oxide or the nitride is dominant, the multireaction process yields a substantially amorphous or a highly disordered nanocrystalline film with higher Hall mobility, 47 cm{sup 2} V{sup -1} s{sup -1} for the as-deposited film produced at 50 deg. C and 110 cm{sup 2} V{sup -1} s{sup -1} after annealing at 400 deg. C. In addition, it has been observed that the Hall mobility of the material increases as the carrier concentration decreases in a carrier concentration range where a multicomponent metal oxide semiconductor, indium-gallium-zinc oxide, follows the opposite trend. This indicates that the carrier transports in the single-metal compound and the multimetal compound are probably dominated by different mechanisms. Film stability and thin film transistor performance of the material have also been tested, and results are presented herein.

  2. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    PubMed

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants. PMID:25805699

  3. Wireless thin film transistor based on micro magnetic induction coupling antenna

    NASA Astrophysics Data System (ADS)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  4. Effective contact resistance of zinc-tin oxide-based thin film transistors.

    PubMed

    Kang, Youjin; Han, Dongsuk; Park, Jaehyung; Shin, Sora; Choi, Duckkyun; Park, Jongwan

    2014-11-01

    We investigated different source/drain (S/D) electrode materials in thin-film transistors (TFTs) based on amorphous zinc-tin oxide (ZTO) semiconductors. The transfer length, channel conductance, and effective contact resistance between the S/D electrodes and the a-ZTO channel layer were examined. Total ON resistance (R(T)), transfer length (L(T)) and effective contact resistance (R(c-eff)) were extracted by the well-known transmission-line method (TLM) using a series of TFTs with different channel lengths. When the width of ZTO channel layer was fixed as 50 μm, the lengths were varying from 10 to 50 μm. The channel layer and S/D electrode were defined by lift-off process and for the S/D electrodes, indium-tin oxide (ITO), Cu, and Mo were used. The resistivity and work function values of electrode materials were considered when selected as candidates for S/D electrodes of ZTO-TFTs. The results showed that the ZTO-TFTs with Mo S/D electrodes had the lowest effective contact resistance indicating that ZTO-TFTs with Mo electrodes have better electrical performance compared to others. PMID:25958489

  5. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. The typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.

  6. Fabrication and Characteristics of High Mobility InSnZnO Thin Film Transistors.

    PubMed

    Choi, Pyungho; Lee, Junki; Park, Hyoungsun; Baek, Dohyun; Lee, Jaehyeong; Yi, Junsin; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    In this paper, we describe the fabrication of thin film transistors (TFTs) with amorphous indium-tin-zinc-oxide (ITZO) as the active material. A transparent ITZO channel layer was formed under an optimized oxygen partial pressure (OPP (%) = O2/(Ar + O2)) and subsequent annealing process. The electrical properties exhibited by this device include field-effect mobility (μ(eff)), sub-threshold swing (SS), and on/off current ratio (I(ON/OFF)) values of 28.97 cm2/V x s, 0.2 V/decade, and 2.64 x 10(7), respectively. The average transmittance values for each OPP condition in the visible range were greater than 80%. The positive gate bias stress resulted in a positive threshold voltage (V(th)) shift in the transfer curves and degraded the parameters μ(eff) and SS. These phenomena originated from electron trapping from the ITZO channel layer into the oxide/ITZO interface trap sites. PMID:27483823

  7. Wireless thin film transistor based on micro magnetic induction coupling antenna

    PubMed Central

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-01-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT). PMID:26691929

  8. Thin film transistor based on TiOx prepared by DC magnetron sputtering.

    PubMed

    Chung, Sung Mook; Shin, Jae-Heon; Hong, Chan-Hwa; Cheong, Woo-Seok

    2012-07-01

    This paper reports on the thin film transistor (TFT) based on TiOx prepared by direct current (DC) magnetron sputtering for the application of n-type channel transparent TFTs. A ceramic TiOx target was prepared for the sputtering of the TiO2 films. The structural, optical, and electrical properties of the TiO2 films were investigated after their heat treatment. It is observed from XRD measurement that the TiO2 films show anatase structure having (101), (004), and (105) planes after heat treatment. The anatase-structure TiO2 films show a band-gap energy of approximately 3.20 eV and a transmittance of approximately 91% (@550 nm). The bottom-gate TFTs fabricated with the TiO2 film as an n-type channel layer. These devices exhibit the on-off ratio, the field-effect mobility, and the threshold voltage of about 10(4), 0.002 cm2/Vs, and 6 V, respectively. These results indicate the possibility of applying TiO2 films depositied by DC magnetron sputtering to TiO2-based opto-electronic devices. PMID:22966586

  9. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors

    PubMed Central

    2013-01-01

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  10. Universal diffusion-limited injection and the hook effect in organic thin-film transistors.

    PubMed

    Liu, Chuan; Huseynova, Gunel; Xu, Yong; Long, Dang Xuan; Park, Won-Tae; Liu, Xuying; Minari, Takeo; Noh, Yong-Young

    2016-01-01

    The general form of interfacial contact resistance was derived for organic thin-film transistors (OTFTs) covering various injection mechanisms. Devices with a broad range of materials for contacts, semiconductors, and dielectrics were investigated and the charge injections in staggered OTFTs was found to universally follow the proposed form in the diffusion-limited case, which is signified by the mobility-dependent injection at the metal-semiconductor interfaces. Hence, real ohmic contact can hardly ever be achieved in OTFTs with low carrier concentrations and mobility, and the injection mechanisms include thermionic emission, diffusion, and surface recombination. The non-ohmic injection in OTFTs is manifested by the generally observed hook shape of the output conductance as a function of the drain field. The combined theoretical and experimental results show that interfacial contact resistance generally decreases with carrier mobility, and the injection current is probably determined by the surface recombination rate, which can be promoted by bulk-doping, contact modifications with charge injection layers and dopant layers, and dielectric engineering with high-k dielectric materials. PMID:27440253

  11. Evaluation of interface trap densities and quantum capacitance in carbon nanotube network thin-film transistors.

    PubMed

    Yoon, J; Choi, B; Choi, S; Lee, J; Lee, J; Jeon, M; Lee, Y; Han, J; Lee, J; Kim, D M; Kim, D H; Kim, S; Choi, S-J

    2016-07-22

    The interface trap density in single-walled carbon nanotube (SWNT) network thin-film transistors (TFTs) is a fundamental and important parameter for assessing the electronic performance of TFTs. However, the number of studies on the extraction of interface trap densities, particularly in SWNT TFTs, has been insufficient. In this work, we propose an efficient technique for extracting the energy-dependent interface traps in SWNT TFTs. From the measured dispersive, frequency-dependent capacitance-voltage (C-V) characteristics, the dispersive-free, frequency-independent C-V curve was obtained, thus enabling the extraction and analysis of the interface trap density, which was found to be approximately 8.2 × 10(11) eV(-1) cm(-2) at the valence band edge. The frequency-independent C-V curve also allows further extraction of the quantum capacitance in the SWNT network without introducing any additional fitting process or parameters. We found that the extracted value of the quantum capacitance in SWNT networks is lower than the theoretical value in aligned SWNTs due to the cross point of SWNTs on the SWNT network. Therefore, the method proposed in this work indicates that the C-V measurement is a powerful tool for obtaining deep physical insights regarding the electrical performance of SWNT TFTs. PMID:27285674

  12. Analytical and T-CAD modeling of pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Chen, Yet-Min; Chen, Yu-Sheng; Huang, Jian-Jang; Lee, Jiun-Haw; Wang, Yu-Wu; Wang, Yi-Kai

    2006-08-01

    Many researches report that the mobility in organic material is dependent on not only the gate field but also the grain size. There is also some evidence to prove that the gate length is strongly related to the carrier mobility. We construct both the analytical model of organic thin film transistor and the large signal circuit model designed by T-CAD to fit the measured I DS - V DS curves. We first apply basic I DS - V DS equations in both triode and saturation regions with mobility μ best fitted to measured I-V curves. The "best-fitted" μ increases with the gate length, and is related to the increase of total channel resistance due to the presence of small grains size of pentacene next to source/drain electrodes. We then use the Advanced Design System software to design the large signal circuit model. Similar to the MOSFET, we add the additional parameters to fit the I DS - V DS curves, ex: Rgd, Rgs, and Rp. Here, Rgd. With the circuit simulation, we find that Rgd presents the leakage current from gate to source, and it affects the slope of curves in the saturation region in the I DS - V DS curves. The equivalent circuit can fit the I DS - V DS curves very well with the proper parameter set.

  13. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    NASA Astrophysics Data System (ADS)

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  14. Photosensor application of amorphous InZnO-based thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chou, Yi-Teh; Teng, Li-Feng

    2010-03-01

    Thin film transistor (TFT) device structure with transparent conductive oxide semiconductor is proposed for the photosensor application. The adoption of TFT-based photosensor device also is promising to be integrated with pixel-array circuits in a flat panel display and realize the system-on-panel (SoP) concept. The photosensitive TFT device can be applied to sense the ambient light brightness and then give the feedback to the backlight system adjusting the backlight intensity for the power-saving green displays. In this work, we studied the photosensitivity of amorphous indium zinc oxide (a-IZO) TFT to ultraviolet light. The a-IZO-based semiconductors have been paid much attention due to their uniform amorphous phase and high field-effect carrier mobility characteristics. The obvious threshold voltage shift was observed after light illumination, and exhibited slow recovery while returning to initial status after removing the light source. This mechanism for the photoreaction is well explained by the dynamic equilibrium of charge exchange reaction between O2(g) and O2- in the backchannel region of IZO-based films. An electrical trigger using charge pumping method is used to confirm the proposed mechanism and accelerate photoreaction recoverability for the first time. Using knowledge of photoreaction behavior, an operation scheme of photosensing elements consist of a-IZO TFTs is also demonstrated in this paper.

  15. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    SciTech Connect

    Esro, M.; Adamopoulos, G.; Mazzocco, R.; Kolosov, O.; Krier, A.; Vourlias, G.; Milne, W. I.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currents (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.

  16. Evaluation of interface trap densities and quantum capacitance in carbon nanotube network thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Choi, B.; Choi, S.; Lee, J.; Lee, J.; Jeon, M.; Lee, Y.; Han, J.; Lee, J.; Kim, D. M.; Kim, D. H.; Kim, S.; Choi, S.-J.

    2016-07-01

    The interface trap density in single-walled carbon nanotube (SWNT) network thin-film transistors (TFTs) is a fundamental and important parameter for assessing the electronic performance of TFTs. However, the number of studies on the extraction of interface trap densities, particularly in SWNT TFTs, has been insufficient. In this work, we propose an efficient technique for extracting the energy-dependent interface traps in SWNT TFTs. From the measured dispersive, frequency-dependent capacitance–voltage (C–V) characteristics, the dispersive-free, frequency-independent C–V curve was obtained, thus enabling the extraction and analysis of the interface trap density, which was found to be approximately 8.2 × 1011 eV‑1 cm‑2 at the valence band edge. The frequency-independent C–V curve also allows further extraction of the quantum capacitance in the SWNT network without introducing any additional fitting process or parameters. We found that the extracted value of the quantum capacitance in SWNT networks is lower than the theoretical value in aligned SWNTs due to the cross point of SWNTs on the SWNT network. Therefore, the method proposed in this work indicates that the C–V measurement is a powerful tool for obtaining deep physical insights regarding the electrical performance of SWNT TFTs.

  17. A hybrid mask mould lithography scheme and its application in nanoscale organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Cheng, Xing; Li, Dawen; Guo, L. Jay

    2006-02-01

    Nanoimprint lithography (NIL) has stimulated great interest in both academic research and industrial development due to its high resolution, high throughput and low cost advantages. Though NIL has been demonstrated to be very successful in replicating nanoscale features, it also has its limitations as a general lithography technique. Its fundamental moulding characteristics (i.e. physically displacing polymer materials) frequently lead to pattern defects when replicating arbitrary patterns, especially patterns with broad size distribution. To solve this problem, we have developed a combined nanoimprint and photolithography technique that uses a hybrid mould to achieve good pattern definitions. In this work, we applied this technique to fabricate finger-shaped nanoelectrodes, and demonstrated nanoscale pentacene organic thin film transistors (OTFTs). Methods of the hybrid mask-mould (HMM) fabrication and results on the device electrical characteristics are provided. With combined advantages of both photolithography and NIL, and the applicability to general nanoscale device and system fabrication, this method can become a valuable choice for low cost mass production of micro- and nanoscale structures, devices and systems.

  18. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  19. Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors.

    PubMed

    Li, Yuzhi; Lan, Linfeng; Xiao, Peng; Sun, Sheng; Lin, Zhenguo; Song, Wei; Song, Erlong; Gao, Peixiong; Wu, Weijing; Peng, Junbiao

    2016-08-01

    Short-channel electronic devices several micrometers in length are difficult to implement by direct inkjet printing due to the limitation of position accuracy of the common inkjet printer system and the spread of functional ink on substrates. In this report, metal oxide thin-film transistors (TFTs) with channel lengths of 3.5 ± 0.7 μm were successfully fabricated with a common inkjet printer without any photolithography steps. Hydrophobic CYTOP coffee stripes, made by inkjet-printing and plasma-treating processes, were utilized to define the channel area of TFTs with channel lengths as short as ∼3.5 μm by dewetting the inks of the source/drain (S/D) precursors. Furthermore, by introduction of an ultrathin layer of PVA to modify the S/D surfaces, the spreading of precursor ink of the InOx semiconductor layer was well-controlled. The inkjet-printed short-channel TFTs exhibited a maximum mobility of 4.9 cm(2) V(-1) s(-1) and an on/off ratio of larger than 10(9). This approach of fabricating short-channel TFTs by inkjet printing will promote the large-area fabrication of short-channel TFTs in a cost-effective manner. PMID:27420373

  20. Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture.

    PubMed

    Yu, Xinge; Zhou, Nanjia; Smith, Jeremy; Lin, Hui; Stallings, Katie; Yu, Junsheng; Marks, Tobin J; Facchetti, Antonio

    2013-08-28

    We report here a bilayer metal oxide thin film transistor concept (bMO TFT) where the channel has the structure: dielectric/semiconducting indium oxide (In2O3) layer/semiconducting indium gallium oxide (IGO) layer. Both semiconducting layers are grown from solution via a low-temperature combustion process. The TFT mobilities of bottom-gate/top-contact bMO TFTs processed at T = 250 °C are ~5tmex larger (~2.6 cm(2)/(V s)) than those of single-layer IGO TFTs (~0.5 cm(2)/(V s)), reaching values comparable to single-layer combustion-processed In2O3 TFTs (~3.2 cm(2)/(V s)). More importantly, and unlike single-layer In2O3 TFTs, the threshold voltage of the bMO TFTs is ~0.0 V, and the current on/off ratio is significantly enhanced to ~1 × 10(8) (vs ~1 × 10(4) for In2O3). The microstructure and morphology of the In2O3/IGO bilayers are analyzed by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, revealing the polycrystalline nature of the In2O3 layer and the amorphous nature of the IGO layer. This work demonstrates that solution-processed metal oxides can be implemented in bilayer TFT architectures with significantly enhanced performance. PMID:23876148

  1. Universal diffusion-limited injection and the hook effect in organic thin-film transistors

    PubMed Central

    Liu, Chuan; Huseynova, Gunel; Xu, Yong; Long, Dang Xuan; Park, Won-Tae; Liu, Xuying; Minari, Takeo; Noh, Yong-Young

    2016-01-01

    The general form of interfacial contact resistance was derived for organic thin-film transistors (OTFTs) covering various injection mechanisms. Devices with a broad range of materials for contacts, semiconductors, and dielectrics were investigated and the charge injections in staggered OTFTs was found to universally follow the proposed form in the diffusion-limited case, which is signified by the mobility-dependent injection at the metal-semiconductor interfaces. Hence, real ohmic contact can hardly ever be achieved in OTFTs with low carrier concentrations and mobility, and the injection mechanisms include thermionic emission, diffusion, and surface recombination. The non-ohmic injection in OTFTs is manifested by the generally observed hook shape of the output conductance as a function of the drain field. The combined theoretical and experimental results show that interfacial contact resistance generally decreases with carrier mobility, and the injection current is probably determined by the surface recombination rate, which can be promoted by bulk-doping, contact modifications with charge injection layers and dopant layers, and dielectric engineering with high-k dielectric materials. PMID:27440253

  2. Wafer scale fabrication of carbon nanotube thin film transistors with high yield

    NASA Astrophysics Data System (ADS)

    Tian, Boyuan; Liang, Xuelei; Yan, Qiuping; Zhang, Han; Xia, Jiye; Dong, Guodong; Peng, Lianmao; Xie, Sishen

    2016-07-01

    Carbon nanotube thin film transistors (CNT-TFTs) are promising candidates for future high performance and low cost macro-electronics. However, most of the reported CNT-TFTs are fabricated in small quantities on a relatively small size substrate. The yield of large scale fabrication and the performance uniformity of devices on large size substrates should be improved before the CNT-TFTs reach real products. In this paper, 25 200 devices, with various geometries (channel width and channel length), were fabricated on 4-in. size ridged and flexible substrates. Almost 100% device yield were obtained on a rigid substrate with high out-put current (>8 μA/μm), high on/off current ratio (>105), and high mobility (>30 cm2/V.s). More importantly, uniform performance in 4-in. area was achieved, and the fabrication process can be scaled up. The results give us more confidence for the real application of the CNT-TFT technology in the near future.

  3. Ar plasma treated ZnON transistor for future thin film electronics

    NASA Astrophysics Data System (ADS)

    Lee, Eunha; Kim, Taeho; Benayad, Anass; Kim, HeeGoo; Jeon, Sanghun; Park, Gyeong-Su

    2015-09-01

    To achieve high-mobility and high-reliability oxide thin film transistors (TFTs), ZnON has been investigated following an anion control strategy based on the substitution of oxygen with nitrogen in ZnO. However, as nitrogen possesses, compared to oxygen, a low reactivity with Zn, the chemical composition of ZnON changes easily, causing in turn a degradation of both the performance and the stability. Here, we have solved the issues of long-time stability and composition non-uniformity while maintaining a high channel mobility by adopting the argon plasma process, which can delay the reaction of oxygen with Zn-O-N; as a result, owing to the formation of very fine nano-crystalline structure in stable glassy phase without changes in the chemical composition, the material properties and stability under e-radiation have significantly improved. In particular, the channel mobility of the ZnON TFTs extracted from the pulsed I-V method was measured to be 138 cm2/V s.

  4. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors.

    PubMed

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-12

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current-voltage and transient current-time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm(2) v(-1) s(-1)), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability. PMID:27363543

  5. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors.

    PubMed

    Banger, Kulbinder K; Peterson, Rebecca L; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning

    2014-01-28

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm(2) V(-1) s(-1). We show that it is possible to solution-process these materials at low process temperature (225-200 °C yielding mobilities up to 4.4 cm(2) V(-1) s(-1)) and demonstrate a facile "ink-on-demand" process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  6. Low-voltage indium gallium zinc oxide thin film transistors on paper substrates

    NASA Astrophysics Data System (ADS)

    Lim, Wantae; Douglas, E. A.; Norton, D. P.; Pearton, S. J.; Ren, F.; Heo, Young-Woo; Son, S. Y.; Yuh, J. H.

    2010-02-01

    We have fabricated bottom-gate amorphous (α-) indium-gallium-zinc-oxide (InGaZnO4) thin film transistors (TFTs) on both paper and glass substrates at low processing temperature (≤100 °C). As a water and solvent barrier layer, cyclotene (BCB 3022-35 from Dow Chemical) was spin-coated on the entire paper substrate. TFTs on the paper substrates exhibited saturation mobility (μsat) of 1.2 cm2 V-1 s-1, threshold voltage (VTH) of 1.9 V, subthreshold gate-voltage swing (S ) of 0.65 V decade-1, and drain current on-to-off ratio (ION/IOFF) of ˜104. These values were only slightly inferior to those obtained from devices on glass substrates (μsat˜2.1 cm2 V-1 s-1, VTH˜0 V, S ˜0.74 V decade-1, and ION/IOFF=105-106). The uneven surface of the paper sheet led to relatively poor contact resistance between source-drain electrodes and channel layer. The ability to achieve InGaZnO TFTs on cyclotene-coated paper substrates demonstrates the enormous potential for applications such as low-cost and large area electronics.

  7. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene.

    PubMed

    Basu, Sarbani; Lee, Mu Chen; Wang, Yeong-Her

    2014-08-21

    This paper presents 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and pentacene-based organic thin film transistors (OTFTs) with monolayer graphene source-drain (S-D) electrodes. The electrodes are patterned using conventional photolithographic techniques combined with reactive ion etching. The monolayer graphene film grown by chemical vapor deposition on Cu foil was transferred on a Si dioxide surface using a polymer-supported transfer method to fabricate bottom-gate, bottom-contact OTFTs. The pentacene OTFTs with graphene S-D contacts exhibited superior performance with a mobility of 0.1 cm(2) V(-1) s(-1) and an on-off ratio of 10(5) compared with OTFTs with Au-based S-D contacts, which had a mobility of 0.01 cm(2) V(-1) s(-1) and an on-off ratio of 10(3). The crystallinity, grain size, and microscopic defects (or the number of layers of graphene films) of the TIPS-pentacene/pentacene films were analyzed by X-ray diffraction spectroscopy, atomic force microscopy, and Raman spectroscopy, respectively. The feasibility of using graphene as an S-D electrode in OTFTs provides an alternative material with high carrier injection efficiency, chemical stability, and excellent interface properties with organic semiconductors, thus exhibiting improved device performance of C-based electronic OTFTs at a reduced cost. PMID:25000388

  8. Sensitivity of the threshold voltage of organic thin-film transistors to light and water

    SciTech Connect

    Feng, Cong; Marinov, Ognian; Deen, M. Jamal; Selvaganapathy, Ponnambalam Ravi; Wu, Yiliang

    2015-05-14

    Analyses of extensive experiments with organic thin-film transistors (OTFTs) indicate that the threshold voltage V{sub T} of an OTFT has a temporal differential sensitivity. In particular, V{sub T} changes initially by changing the light illumination intensity or making/removing a contact of water with the organic semiconductor. Keeping the conditions stationary, then the initial shift of V{sub T} diminishes, since the time dependence of V{sub T} gradually recovers the OTFT to the state before applying the change in the environmental conditions. While still causing a differential and time-variant shift of V{sub T}, the deionized water does not have a dramatic impact on OTFTs that use the polymer DKPP-βT (diketopyrrolopyrrole β-unsubstituted quaterthiophene) as the active semiconductor material. Observations for the impact of water are made from experiments with an OTFT that has a microfluidic channel on the top the electrical channel, with the water in the microfluidic channel in direct contact with the electrical channel of the OTFT. This arrangement of electrical and microfluidic channels is a novel structure of the microfluidic OTFT, suitable for sensing applications of liquid analytes by means of organic electronics.

  9. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-01

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current‑voltage and transient current‑time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm2 v‑1 s‑1), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability.

  10. Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots

    SciTech Connect

    Lee, Sang Moo; Park, Si Jin; Kang, Seong Jun; Lee, Kwang Ho; Park, Jin-Seong; Park, Soohyung; Yi, Yeonjin

    2015-01-19

    The photocurrent of germanium-doped indium-gallium oxide (GIGO) thin film transistors (TFTs) can be observed when the device is exposed to a ultra-violet light because GIGO is a wide band gap semiconducting material. Therefore, we decorated cadmium selenide (CdSe) quantum-dots (QDs) on the surface of GIGO to increase the photocurrent for low-energy light, i.e., visible light. A 10 nm GIGO film was deposited on the SiO{sub 2}/Si substrate by a radio frequency sputter system. Also, we prepared CdSe QDs with sizes of ∼6.3 nm, which can absorb red visible light. QDs were spin-coated onto the GIGO film, and post-annealing was done to provide cross-linking between QDs. The prepared devices showed a 231% increase in photocurrent when exposed to 650 nm light due to the QDs on the GIGO surface. Measurements to construct an energy level diagram were made using ultraviolet photoelectron spectroscopy to determine the origin of the photocurrent, and we found that the small band gap of CdSe QDs enables the increase in photocurrent in the GIGO TFTs. This result is relevant for developing highly transparent photosensors based on oxide semiconductors and QDs.

  11. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  12. Universal diffusion-limited injection and the hook effect in organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chuan; Huseynova, Gunel; Xu, Yong; Long, Dang Xuan; Park, Won-Tae; Liu, Xuying; Minari, Takeo; Noh, Yong-Young

    2016-07-01

    The general form of interfacial contact resistance was derived for organic thin-film transistors (OTFTs) covering various injection mechanisms. Devices with a broad range of materials for contacts, semiconductors, and dielectrics were investigated and the charge injections in staggered OTFTs was found to universally follow the proposed form in the diffusion-limited case, which is signified by the mobility-dependent injection at the metal-semiconductor interfaces. Hence, real ohmic contact can hardly ever be achieved in OTFTs with low carrier concentrations and mobility, and the injection mechanisms include thermionic emission, diffusion, and surface recombination. The non-ohmic injection in OTFTs is manifested by the generally observed hook shape of the output conductance as a function of the drain field. The combined theoretical and experimental results show that interfacial contact resistance generally decreases with carrier mobility, and the injection current is probably determined by the surface recombination rate, which can be promoted by bulk-doping, contact modifications with charge injection layers and dopant layers, and dielectric engineering with high-k dielectric materials.

  13. Wireless thin film transistor based on micro magnetic induction coupling antenna.

    PubMed

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-01-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT). PMID:26691929

  14. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  15. Ar plasma treated ZnON transistor for future thin film electronics

    SciTech Connect

    Lee, Eunha E-mail: jeonsh@korea.ac.kr; Benayad, Anass; Kim, HeeGoo; Park, Gyeong-Su; Kim, Taeho; Jeon, Sanghun E-mail: jeonsh@korea.ac.kr

    2015-09-21

    To achieve high-mobility and high-reliability oxide thin film transistors (TFTs), ZnON has been investigated following an anion control strategy based on the substitution of oxygen with nitrogen in ZnO. However, as nitrogen possesses, compared to oxygen, a low reactivity with Zn, the chemical composition of ZnON changes easily, causing in turn a degradation of both the performance and the stability. Here, we have solved the issues of long-time stability and composition non-uniformity while maintaining a high channel mobility by adopting the argon plasma process, which can delay the reaction of oxygen with Zn–O–N; as a result, owing to the formation of very fine nano-crystalline structure in stable glassy phase without changes in the chemical composition, the material properties and stability under e-radiation have significantly improved. In particular, the channel mobility of the ZnON TFTs extracted from the pulsed I−V method was measured to be 138 cm{sup 2}/V s.

  16. Fully Solution-Processed and Foldable Metal-Oxide Thin-Film Transistor.

    PubMed

    Lee, Su Jeong; Ko, Jieun; Nam, Ki-Ho; Kim, Taehee; Lee, Sang Hoon; Kim, Jung Han; Chae, Gee Sung; Han, Hs; Kim, Youn Sang; Myoung, Jae-Min

    2016-05-25

    Flexible and foldable thin-film transistors (TFTs) have been widely studied with the objective of achieving high-performance and low-cost flexible TFTs for next-generation displays. In this study, we introduced the fabrication of foldable TFT devices with excellent mechanical stability, high transparency, and high performance by a fully solution process including PI, YOx, In2O3, SWCNTs, IL-PVP, and Ag NWs. The fabricated fully solution-processed TFTs showed a higher transmittance above 86% in the visible range. Additionally, the charge-carrier mobility and Ion/Ioff ratio of them were 7.12 ± 0.43 cm(2)/V·s and 5.53 ± 0.82 × 10(5) at a 3 V low voltage operating, respectively. In particular, the fully solution-processed TFTs showed good electrical characteristics under tensile strain with 1 mm bending and even extreme folding up to a strain of 26.79%. Due to the good compatibility of each component layer, it maintained the charge-carrier mobility over 79% of initial devices after 5,000 cycles of folding test in both the parallel and perpendicular direction with a bending radius of 1 mm. These results show the potential of the fully solution-processed TFTs as flexible TFTs for a next generation devices because of the robust mechanical flexibility, transparency, and high electrical performance of it. PMID:27120010

  17. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    PubMed Central

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben

    2015-01-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157

  18. Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization

    NASA Astrophysics Data System (ADS)

    Hong, Won-Eui; Ro, Jae-Sang

    2015-01-01

    Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.

  19. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Esro, M.; Mazzocco, R.; Vourlias, G.; Kolosov, O.; Krier, A.; Milne, W. I.; Adamopoulos, G.

    2015-05-01

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (LaxAl1-xOy) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the LaxAl1-xOy films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlOy dielectrics exhibit a wide band gap (˜6.18 eV), high dielectric constant (k ˜ 16), low roughness (˜1.9 nm), and very low leakage currents (<3 nA/cm2). TFTs employing solution processed LaAlOy gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (˜10 V), high on/off current modulation ratio of >106, subthreshold swing of ˜650 mV dec-1, and electron mobility of ˜12 cm2 V-1 s-1.

  20. Nonvolatile organic thin film transistor memory devices based on hybrid nanocomposites of semiconducting polymers: gold nanoparticles.

    PubMed

    Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2013-12-26

    We report the facile fabrication and characteristics of organic thin film transistor (OTFT)-based nonvolatile memory devices using the hybrid nanocomposites of semiconducting poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) and ligand-capped Au nanoparticles (NPs), thereby serving as a charge storage medium. Electrical bias sweep/excitation effectively modulates the current response of hybrid memory devices through the charge transfer between F8T2 channel and functionalized Au NPs trapping sites. The electrical performance of the hybrid memory devices can be effectively controlled though the loading concentrations (0-9 %) of Au NPs and organic thiolate ligands on Au NP surfaces with different carbon chain lengths (Au-L6, Au-L10, and Au-L18). The memory window induced by voltage sweep is considerably increased by the high content of Au NPs or short carbon chain on the ligand. The hybrid nanocomposite of F8T2:9% Au-L6 provides the OTFT memories with a memory window of ~41 V operated at ± 30 V and memory ratio of ~1 × 10(3) maintained for 1 × 10(4) s. The experimental results suggest that the hybrid materials of the functionalized Au NPs in F8T2 matrix have the potential applications for low voltage-driven high performance nonvolatile memory devices. PMID:24224739

  1. Ultraviolet-Patternable Polymer Insulator for Organic Thin-Film Transistors on Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Ming; Su, Shui-Hsiang; Wang, Hong-Tai; Yokoyama, Meiso; Fu, Shen-Li

    2011-04-01

    In this work, we describe the fabrication of pentacene-based organic thin-film transistors (OTFTs) on a flexible substrate using a UV-patternable polymer material, mr-UVCur06, as the gate insulator. The device structure is poly(ethylene terephthalate) (PET)/indium-tin oxide (ITO)/mr-UVCur06/pentacene/Au (source/drain). In addition to its solution-processable capability, mr-UVCur06 is directly patternable by UV light in a low-temperature process. The OTFT has an on-off ratio that approaches 105, and its pattern resolution can reach 5 µm. Additionally, UV/ozone post-treatment of the patterned mr-UVCur06 can illuminate the organic contaminants from its surface and significantly improve the performance of OTFTs. Moreover, the effect of UV/ozone post-treatment on the polymer dielectric is confirmed using a Fourier transform infrared (FT-IR) spectrometer. Owing to its highly desired characteristics such as photopatternability and low-temperature process, mr-UVCur06 is feasible for low-cost, large-area flexible device applications.

  2. Fully Solution-Processed Flexible Organic Thin Film Transistor Arrays with High Mobility and Exceptional Uniformity

    NASA Astrophysics Data System (ADS)

    Fukuda, Kenjiro; Takeda, Yasunori; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo

    2014-02-01

    Printing fully solution-processed organic electronic devices may potentially revolutionize production of flexible electronics for various applications. However, difficulties in forming thin, flat, uniform films through printing techniques have been responsible for poor device performance and low yields. Here, we report on fully solution-processed organic thin-film transistor (TFT) arrays with greatly improved performance and yields, achieved by layering solution-processable materials such as silver nanoparticle inks, organic semiconductors, and insulating polymers on thin plastic films. A treatment layer improves carrier injection between the source/drain electrodes and the semiconducting layer and dramatically reduces contact resistance. Furthermore, an organic semiconductor with large-crystal grains results in TFT devices with shorter channel lengths and higher field-effect mobilities. We obtained mobilities of over 1.2 cm2 V-1 s-1 in TFT devices with channel lengths shorter than 20 μm. By combining these fabrication techniques, we built highly uniform organic TFT arrays with average mobility levels as high as 0.80 cm2 V-1 s-1 and ideal threshold voltages of 0 V. These results represent major progress in the fabrication of fully solution-processed organic TFT device arrays.

  3. Localized Tail States and Electron Mobility in Amorphous ZnON Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia; Ye, Yan; Guo, Yuzheng; Robertson, John

    2015-08-01

    The density of localized tail states in amorphous ZnON (a-ZnON) thin film transistors (TFTs) is deduced from the measured current-voltage characteristics. The extracted values of tail state density at the conduction band minima (Ntc) and its characteristic energy (kTt) are about 2 × 1020 cm-3eV-1 and 29 meV, respectively, suggesting trap-limited conduction prevails at room temperature. Based on trap-limited conduction theory where these tail state parameters are considered, electron mobility is accurately retrieved using a self-consistent extraction method along with the scaling factor ‘1/(α + 1)’ associated with trapping events at the localized tail states. Additionally, it is found that defects, e.g. oxygen and/or nitrogen vacancies, can be ionized under illumination with hv ≫ Eg, leading to very mild persistent photoconductivity (PPC) in a-ZnON TFTs.

  4. High performance p-type NiOx thin-film transistor by Sn doping

    NASA Astrophysics Data System (ADS)

    Lin, Tengda; Li, Xiuling; Jang, Jin

    2016-06-01

    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  5. Apoptotic self-organized electronic device using thin-film transistors for artificial neural networks with unsupervised learning functions

    NASA Astrophysics Data System (ADS)

    Kimura, Mutsumi; Miyatani, Tomoaki; Fujita, Yusuke; Kasakawa, Tomohiro

    2015-03-01

    Artificial neural networks are promising systems for information processing with many advantages, such as self-teaching and parallel distributed computing. However, conventional networks consist of extremely intricate circuits to guarantee accurate behaviors of the neurons and synapses. We demonstrate an apoptotic self-organized electronic device using thin-film transistors for artificial neural networks with unsupervised learning functions. First, we formed a “neuron” from only eight transistors and reduced a “synapse” to only one transistor by employing the characteristic degradations of the synapse transistors to adjust the synaptic connection strength. Second, we classified the synapses into two types, “concordant” and “discordant” synapses, and composed a local interconnective network optimized for integrated electronic circuits. Finally, we confirmed that the device is feasible and can learn multiple logical operations, including AND, OR, and XOR.

  6. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea; Park, Young Ran; Choi, Woong; Lee, Cheol Jin

    2016-06-01

    We investigated the dependence of electron mobility on the thickness of MoS2 nanosheets by fabricating bottom-gate single and few-layer MoS2 thin-film transistors with SiO2 gate dielectrics and Au electrodes. All the fabricated MoS2 transistors showed on/off-current ratio of ˜107 and saturated output characteristics without high-k capping layers. As the MoS2 thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS2 transistors increased from ˜10 to ˜18 cm2V-1s-1. The increased subthreshold swing of the fabricated transistors with MoS2 thickness suggests that the increase of MoS2 mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS2 layer on its thickness.

  7. Testing of flexible InGaZnO-based thin-film transistors under mechanical strain

    NASA Astrophysics Data System (ADS)

    Münzenrieder, N. S.; Cherenack, K. H.; Tröster, G.

    2011-08-01

    Thin-film transistors (TFTs) fabricated on flexible plastic substrates are an integral part of future flexible large-area electronic devices like displays and smart textiles. Devices for such applications require stable electrical performance under electrical stress and also during applied mechanical stress induced by bending of the flexible substrate. Mechanical stress can be tensile or compressive strain depending on whether the TFT is located outside or inside of the bending plane. Especially the impact of compressive bending on TFT performance is hard to measure, because the device is covered with the substrate in this case. We present a method which allows us to continuously measure the electrical performance parameters of amorphous Indium-Gallium-Zinc Oxide (a-IGZO) based TFTs exposed to arbitrary compressive and tensile bending radii. To measure the influence of strain on a TFT it is attached and electrically connected to a flexible carrier foil, which afterwards is fastened to two plates in our bending tester. The bending radius can be adjusted by changing the distance between these plates. Thus it is possible to apply bending radii in the range between a totally flat substrate and ≈1 mm, corresponding to a strain of ≈3.5%. The tested bottom-gate TFTs are especially designed for use with our bending tester and fabricated on 50 μm thick flexible Kapton® E polyimide substrates. To show the different application areas of our bending method we characterized our TFTs while they are bent to different tensile and compressive bending radii. These measurements show that the field effect mobilities and threshold voltages of the tested a-IGZO TFTs are nearly, but not absolutely, stable under applied strain, compared to the initial values the mobilities shift by ≈3.5% in the tensile case and ≈-1.5% in the compressive one, at a bending radius of 8 mm. We also measured the influence of repeated bending (2500 cycles over ≈70 h), where a shift of the

  8. Two-Dimensional Van der Waals Materials for Thin Film Transistor Applications

    NASA Astrophysics Data System (ADS)

    George, Aaron Scott

    Research on two-dimensional nanomaterials has become a topic of considerable interest since the pioneering work experimentally introducing the two-dimensional carbon allotrope of graphene in 2004. The atomically thin hexagonally arranged carbon crystal structure has offered the opportunity for numerous studies in condensed matter physics and materials science, revealing new phenomenon and remarkable properties. Graphene has excellent chemical and mechanical stability, allowing researchers to probe the properties of graphene in a wide variety of applications and in contact with a wide variety of materials. Ballistic transport of graphene at room temperature suggests that graphene would be poised to enter in to a wide variety of microelectronic application; vii however, synthesis methods and surface effects have so far limited the widespread use of graphene. Additionally, the absence of electronic band gap in graphene, classifying it as a "semi-metal", limits the use of graphene to areas other than logic applications. In this work, fabrication methods for the improved synthesis graphene and selected two-dimensional transition metal dichalcogenides, molybdenum disulfide and tungsten disulfide, are presented for thin film transistor applications. First, the introduction of thin film zwitterionic polymer interlayers in graphene devices is outlined as a means to reduce the contact resistance between metal contacts and the underlying graphene layer. Second, a self-assembly nanoscale lithography process utilizing diblock copolymer templates as an etching mask directly on the surface of graphene is shown as a method to introduce a band gap in graphene due to quantum confinement effects. The third chapter applies to another class of two-dimensional materials, transition metal dichalcogenides, which, unlike graphene, can exhibit suitable electronic band structures for logic applications. When the thickness of these transition metal dichalcogenides is reduced to a single

  9. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  10. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics.

    PubMed

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-11-14

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors. PMID:26451806

  11. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chang, Chih-Hsiang; Chang, Chih-Jui

    2016-06-01

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO2 backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  12. Enhanced electrical properties of pentacene-based organic thin-film transistors by modifying the gate insulator surface

    NASA Astrophysics Data System (ADS)

    Tang, J. X.; Lee, C. S.; Chan, M. Y.; Lee, S. T.

    2008-09-01

    A reliable surface treatment for the pentacene/gate dielectric interface was developed to enhance the electrical transport properties of organic thin-film transistors (OTFTs). Plasma-polymerized fluorocarbon (CFx) film was deposited onto the SiO 2 gate dielectric prior to pentacene deposition, resulting in a dramatic increase of the field-effect mobility from 0.015 cm 2/(V s) to 0.22 cm 2/(V s), and a threshold voltage reduction from -14.0 V to -9.9 V. The observed carrier mobility increase by a factor of 10 in the resulting OTFTs is associated with various growth behaviors of polycrystalline pentacene thin films on different substrates, where a pronounced morphological change occurs in the first few molecular layers but the similar morphologies in the upper layers. The accompanying threshold voltage variation suggests that hole accumulation in the conduction channel-induced weak charge transfer between pentacene and CFx.

  13. Channel layer thickness dependence of In-Ti-Zn-O thin-film transistors fabricated using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Shan, F. K.; Liu, G. X.; Liu, A.; Lee, W. J.; Shin, B. C.

    2014-05-01

    Amorphous indium-titanium-zinc-oxide (ITZO) thin-film transistors (TFTs) with various channel thicknesses were fabricated at room temperature by using pulsed laser deposition. The channel layer thickness (CLT) dependence of the TFTs was investigated. All the ITZO thin films were amorphous, and the surface roughnesses decreased slightly first and then increased with increasing CLT. With increasing CLT from 35 to 140 nm, the on/off current ratio and the field-effect mobility increased, and the subthreshold swing decreased. The TFT with a CLT of 210 nm exhibited the worst performance, while the ITZO TFT with a CLT of 140 nm exhibited the best performance with a subthreshold voltage of 2.86 V, a mobility of 53.9 cm2V-1s-1, a subthreshold swing of 0.29 V/decade and an on/off current ratio of 109.

  14. Study on contact and channel resistance of pentacene-based ambipolar organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ho, Tsung-Jun; Yan, Guo-En; Cheng, Horng-Long

    2015-08-01

    In this work, we investigated the electrical characteristics of pentacene-based ambipolar organic thin-film transistors (OTFTs) by modifying the channel length. We fabricated a top contact device structure with sliver as the source and drain electrodes and heavy doped p-type silicon wafer as the gate electrode. The channel length of the pentacene-based ambipolar OTFTs are 50, 100, 250, and 400 μm; the channel width is fixed. The output current of the n-channel and p-channel decreases with increasing channel length. The saturated mobility and threshold voltage of both channels increase with the increase in channel length. The increase rate of saturated mobility and threshold voltage of the n-channel is larger than that of the p-channel. The influence of channel length on the electrical properties of the p-channel and n-channel is different. We utilized the gated-transfer length method to study the contact resistance between sliver and pentacene and the channel resistance of pentacene. Contact and channel resistance decrease with the increase in gate voltage in the saturation region. The total resistance of pentacene-based ambipolar OTFTs increases with channel length at a fixed gate voltage. However, n-channel total resistance has stronger gate voltage and channel length dependence than p-channel total resistance. This result reveals that electron transport in the device channel requires a larger driving voltage than in the hole. Selecting a suitable channel length is critical to obtain a well-balanced performance of the dual carriers that transport ambipolar OTFTs and to avoid a large loss in injection barrier.

  15. The effect of annealing temperature on the stability of gallium tin zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc; McCall, Briana; Alston, Robert; Collis, Ward; Iyer, Shanthi

    2015-10-01

    With the growing need for large area display technology and the push for a faster and cheaper alternative to the current amorphous indium gallium zinc oxide (a-IGZO) as the active channel layer for pixel-driven thin film transistors (TFTs) display applications, gallium tin zinc oxide (GSZO) has shown to be a promising candidate due to the similar electronic configuration of Sn4+ and In3+. In this work TFTs of GSZO sputtered films with only a few atomic % of Ga and Sn have been fabricated. A systematic and detailed comparison has been made of the properties of the GSZO films annealed at two temperatures: 140 °C and 450 °C. The electrical and optical stabilities of the respective devices have been studied to gain more insight into the degradation mechanism and are correlated with the initial TFT performance prior to the application of stress. Post deposition annealing at 450 °C of the films in air was found to lead to a higher atomic concentration of Sn4+ in these films and a superior quality of the film, as attested by the higher film density and less surface and interface roughness in comparison to the lower annealed temperature device. These result in significantly reduced shallow and deep interface traps with improved performance of the device exhibiting VON of -3.5 V, ION/IOFF of 108, field-effect mobility (μFE) of 4.46 cm2 V-1s-1, and sub-threshold swing of 0.38 V dec-1. The device is stable under both electrical and optical bias for wavelengths of 550 nm and above. Thus, this work demonstrates GSZO-based TFTs as a promising viable option to the IGZO TFTs by further tailoring the film composition and relevant processing temperatures.

  16. High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor

    NASA Astrophysics Data System (ADS)

    Chung, Chen-Yang; Zhu, Bin; Greene, Raymond G.; Thompson, Michael O.; Ast, Dieter G.

    2015-11-01

    We demonstrate a dual layer IGZO thin film transistor (TFT) consisting of a 310 °C deposited c-axis aligned crystal (CAAC) 20 nm thick channel layer capped by a second, 30 nm thick, 260 °C deposited amorphous IGZO layer. The TFT exhibits a saturation field-effect mobility of ˜20 cm2/V s, exceeding the mobility of 50 nm thick single layer reference TFTs fabricated with either material. The deposition temperature of the second layer influences the mobility of the underlying transport layer. When the cap layer is deposited at room temperature (RT), the mobility in the 310 °C deposited CAAC layer is initially low (6.7 cm2/V s), but rises continuously with time over 58 days to 20.5 cm2/V s, i.e., to the same value as when the second layer is deposited at 260 °C. This observation indicates that the two layers equilibrate at RT with a time constant on the order of 5 × 106 s. An analysis based on diffusive transport indicates that the room temperature diffusivity must be of the order of 1 × 10-18 cm2 s-1 with an activation enthalpy EA < 0.2 eV for the mobility limiting species. The findings are consistent with a hypothesis that the amorphous layer deposited on top of the CAAC has a higher solubility for impurities and/or structural defects than the underlying nanocrystalline transport layer, and that the equilibration of the mobility limiting species is rate limited by hydrogen diffusion, whose known diffusivity fits these estimates.

  17. Proton induced multilevel storage capability in self-assembled indium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Guo, Li Qiang; Jin Wan, Chang; Qiang Zhu, Li; Wan, Qing

    2013-09-01

    Multilevel memory capability of self-assembled indium-zinc-oxide (IZO) electric-double-layer (EDL) thin-film transistors gated by nanogranular SiO2 proton conducting electrolytes is investigated. More than four distinct memory states are obtained by programming gate voltage. The observed multilevel storage behavior is mainly due to the controlled interfacial electrochemical doping of IZO channel by penetrated protons under programmed gate voltages. In addition, such IZO-based EDL transistor multilevel memory exhibits good characteristics of programming/erasing endurance and data retention. Such oxide-based EDL transistors with proton-induced multilevel memory behavior are interesting for low-cost memory and neuromorphic system applications after further properties and size optimization.

  18. Electrochemical characterization of thin film electrodes toward developing a DNA transistor.

    PubMed

    Harrer, Stefan; Ahmed, Shafaat; Afzali-Ardakani, Ali; Luan, Binquan; Waggoner, Philip S; Shao, Xiaoyan; Peng, Hongbo; Goldfarb, Dario L; Martyna, Glenn J; Rossnagel, Stephen M; Deligianni, Lili; Stolovitzky, Gustavo A

    2010-12-21

    The DNA-Transistor is a device designed to control the translocation of single-stranded DNA through a solid-state nanopore. Functionality of the device is enabled by three electrodes exposed to the DNA-containing electrolyte solution within the pore and the application of a dynamic electrostatic potential well between the electrodes to temporarily trap a DNA molecule. Optimizing the surface chemistry and electrochemical behavior of the device is a necessary (but by no means sufficient) step toward the development of a functional device. In particular, effects to be eliminated are (i) electrochemically induced surface alteration through corrosion or reduction of the electrode surface and (ii) formation of hydrogen or oxygen bubbles inside the pore through water decomposition. Even though our motivation is to solve problems encountered in DNA transistor technology, in this paper we report on generic surface chemistry results. We investigated a variety of electrode-electrolyte-solvent systems with respect to their capability of suppressing water decomposition and maintaining surface integrity. We employed cyclic voltammetry and long-term amperometry as electrochemical test schemes, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning, as well as transmission electron microscopy as analytical tools. Characterized electrode materials include thin films of Ru, Pt, nonstoichiometric TiN, and nonstoichiometric TiN carrying a custom-developed titanium oxide layer, as well as custom-oxidized nonstoichiometric TiN coated with a monolayer of hexadecylphosphonic acid (HDPA). We used distilled water as well as aqueous solutions of poly(ethylene glycol) (PEG-300) and glycerol as solvents. One millimolar KCl was employed as electrolyte in all solutions. Our results show that the HDPA-coated custom-developed titanium oxide layer effectively passivates the underlying TiN layer, eliminating any surface alterations through corrosion or reduction within a voltage

  19. Oxide semiconductor thin-film transistors: a review of recent advances.

    PubMed

    Fortunato, E; Barquinha, P; Martins, R

    2012-06-12

    Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which

  20. Improving yield and performance in ZnO thin-film transistors made using selective area deposition.

    PubMed

    Nelson, Shelby F; Ellinger, Carolyn R; Levy, David H

    2015-02-01

    We describe improvements in both yield and performance for thin-film transistors (TFTs) fabricated by spatial atomic layer deposition (SALD). These improvements are shown to be critical in forming high-quality devices using selective area deposition (SAD) as the patterning method. Selective area deposition occurs when the precursors for the deposition are prevented from reacting with some areas of the substrate surface. Controlling individual layer quality and the interfaces between layers is essential for obtaining good-quality thin-film transistors and capacitors. The integrity of the gate insulator layer is particularly critical, and we describe a method for forming a multilayer dielectric using an oxygen plasma treatment between layers that improves crossover yield. We also describe a method to achieve improved mobility at the important interface between the semiconductor and the gate insulator by, conversely, avoiding oxygen plasma treatment. Integration of the best designs results in wide design flexibility, transistors with mobility above 15 cm(2)/(V s), and good yield of circuits. PMID:25562441

  1. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.

    PubMed

    Lim, Chul; Oh, Ji Young; Koo, Jae Bon; Park, Chan Woo; Jung, Soon-Won; Na, Bock Soon; Chu, Hye Yong

    2014-11-01

    Flexible oxide thin-film transistors (Oxide-TFTs) have emerged as next generation transistors because of their applicability in electronic device. In particular, the major driving force behind solution-processed zinc oxide film research is its prospective use in printing for electronics. A low-temperature process to improve the performance of solution-processed n-channel ZnO thin-film transistors (TFTs) fabricated via spin-coating and inkjet-printing is introduced here. ZnO nanoparticles were synthesized using a facile sonochemical method that was slightly modified based on a previously reported method. The influence of the annealing atmosphere on both nanoparticle-based TFT devices fabricated via spin-coating and those created via inkjet printing was investigated. For the inkjet-printed TFTs, the characteristics were improved significantly at an annealing temperature of 150 degrees C. The field effect mobility, V(th), and the on/off current ratios were 3.03 cm2/Vs, -3.3 V, and 10(4), respectively. These results indicate that annealing at 150 degrees C 1 h is sufficient to obtain a mobility (μ(sat)) as high as 3.03 cm2/Vs. Also, the active layer of the solution-based ZnO nanoparticles allowed the production of high-performance TFTs for low-cost, large-area electronics and flexible devices. PMID:25958581

  2. Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Ishihara, Ryoichi; van der Cingel, Johan; Mofrad, Mohammad R. T.; Bermundo, Juan Paolo Soria; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Uraoka, Yukiharu

    2016-06-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In2O3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  3. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition.

    PubMed

    Kim, Lae Ho; Kim, Kyunghun; Park, Seonuk; Jeong, Yong Jin; Kim, Haekyoung; Chung, Dae Sung; Kim, Se Hyun; Park, Chan Eon

    2014-05-14

    Organic electronic devices require a passivation layer that protects the active layers from moisture and oxygen because most organic materials are very sensitive to such gases. Passivation films for the encapsulation of organic electronic devices need excellent stability and mechanical properties. Although Al2O3 films obtained with plasma enhanced atomic layer deposition (PEALD) have been tested as passivation layers because of their excellent gas barrier properties, amorphous Al2O3 films are significantly corroded by water. In this study, we examined the deformation of PEALD Al2O3 films when immersed in water and attempted to fabricate a corrosion-resistant passivation film by using a PEALD-based Al2O3/TiO2 nanolamination (NL) technique. Our Al2O3/TiO2 NL films were found to exhibit excellent water anticorrosion and low gas permeation and require only low-temperature processing (<100 °C). Organic thin film transistors with excellent air-stability (52 days under high humidity (a relative humidity of 90% and a temperature of 38 °C)) were fabricated. PMID:24712401

  4. Low-Voltage InGaZnO Thin Film Transistors with Small Sub-Threshold Swing.

    PubMed

    Cheng, C H; Chou, K I; Hsu, H H

    2015-02-01

    We demonstrate a low-voltage driven, indium-gallium-zinc oxide thin-film transistor using high-κ LaAlO3 gate dielectric. A low VT of 0.42 V, very small sub-threshold swing of 68 mV/dec, field-effect mobility of 4.1 cm2/Ns and low operation voltage of 1.4 V were reached simultaneously in LaAlO3/IGZO TFT device. This low-power and small SS TFT has the potential for fast switching speed and low power applications. PMID:26353677

  5. InN thin-film transistors fabricated on polymer sheets using pulsed sputtering deposition at room temperature

    NASA Astrophysics Data System (ADS)

    Lye, Khe Shin; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    Indium nitride (InN) is potentially suitable for the fabrication of high performance thin-film transistors (TFTs) because of its high electron mobility and peak electron velocity. However, InN is usually grown using a high temperature growth process, which is incompatible with large-area and lightweight TFT substrates. In this study, we report on the room temperature growth of InN films on flexible polyimide sheets using pulsed sputtering deposition. In addition, we report on the fabrication of InN-based TFTs on flexible polyimide sheets and the operation of these devices.

  6. Observation of electric potential in organic thin-film transistor by bias-applied hard X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Tada, Keisuke; Yasuno, Satoshi; Oji, Hiroshi; Yoshimoto, Noriyuki; Hirosawa, Ichiro

    2016-03-01

    The effect of gate voltage on electric potential in a pentacene (PEN) layer was studied by hard X-ray photoelectron spectroscopy under a bias voltage. It was observed that applying a negative gate voltage substantially increases the width of a C 1s peak. This suggested that injected and accumulated carriers in an organic thin film transistor channel modified the potential depth profile in PEN. It was also observed that the C 1s kinetic energy tends to increase monotonically with threshold voltage.

  7. Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi

    2013-05-01

    We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.

  8. The influence of the SiO{sub 2} interlayer on transfer characteristic in tin oxide thin film transistor

    SciTech Connect

    Kim, Woong-Sun; Moon, Yeon-Keon; Kim, Kyung-Taek; Park, Jong-Wan

    2011-12-23

    In this article, we report the fabrication on SnO{sub 2} thin film transistors (TFTs) fabricated by DC sputtering system. SnO{sub 2} based TFTs have been reported previously, and all the TFTs operate depletion-mode, requiring the application of a gate voltage to turn it off. In contrast to previously reports, the SnO{sub 2} TFT reported herein operates as an enhancement-mode device, requiring the application of a gate voltage to turn the device on. Furthermore, we introduce an hafnium-tin oxide (HfSnO) semiconductor materials that have been developed for use as p-channel TFTs.

  9. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  10. Effects of post thermal annealing on the electrical properties of vertical type organic thin film transistors using poly(3-hexylthiophene) and its application in organic light emitting transistor.

    PubMed

    Oh, Se Young; Hwang, Sun Kak; Kim, Young Do; Park, Jong Wook; Kang, In Nam

    2008-09-01

    We have fabricated the vertical type organic thin film transistor (OTFT) using electrically conductive poly(3-hexylthiophene) (P3HT) as a p-type organic material. Effects of post thermal annealing and thickness of active layer on the performance of vertical type transistors were investigated. Especially, the correlation between carrier mobility of P3HT after post thermal annealing and static characteristics of the transistor was studied. Carrier mobility was calculated by space charge limited current (SCLC) model from the I-V curves of the prepared device. The vertical type OTFT after post thermal annealing at 120 degrees C (Tg) showed high current of 0.383 mA and on-off ratio of 22.5 at a low gate voltage of +2.0 V. Additionally, we report on emission characteristics from the vertical type transistor using P3HT. PMID:19049130

  11. Effect of the gate metal work function on water-gated ZnO thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Yusuf Mulla, Mohammad; Vittoria Santacroce, Maria; Magliulo, Maria; Di Franco, Cinzia; Manoli, Kyriaki; Altamura, Davide; Giannini, Cinzia; Cioffi, Nicola; Palazzo, Gerardo; Scamarcio, Gaetano; Torsi, Luisa

    2016-07-01

    ZnO thin films, prepared using a printing-compatible sol–gel method involving a thermal treatment below 400 °C, are proposed as active layers in water-gated thin-film transistors (WG-TFTs). The thin-film structure and surface morphology reveal the presence of contiguous ZnO crystalline (hexagonal wurtzite) with isotropic nano-grains as large as 10 nm characterized by a preferential orientation along the a-axis. The TFT devices are gated through a droplet of deionized water by means of electrodes characterized by different work functions. The high capacitance of the electrolyte allowed operation below 0.5 V. While the Ni, Pd, Au and Pt gate electrodes are electrochemically stable in the inspected potential range, electrochemical activity is revealed for the W one. Such an occurrence leads to an increase of capacitance (and current), which is ascribed to a high output current from the dissolution of a lower capacitance W-oxide layer. The environmental stability of the ZnO WG-TFTs is quite good over a period of five months.

  12. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric

    NASA Astrophysics Data System (ADS)

    Liu, Ao; Liu, Guoxia; Zhu, Huihui; Shin, Byoungchul; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2016-06-01

    Solution-processed p-type oxide semiconductors have recently attracted increasing interests for the applications in low-cost optoelectronic devices and low-power consumption complementary metal-oxide-semiconductor circuits. In this work, p-type nickel oxide (NiOx) thin films were prepared using low-temperature solution process and integrated as the channel layer in thin-film transistors (TFTs). The electrical properties of NiOx TFTs, together with the characteristics of NiOx thin films, were systematically investigated as a function of annealing temperature. By introducing aqueous high-k aluminum oxide (Al2O3) gate dielectric, the electrical performance of NiOx TFT was improved significantly compared with those based on SiO2 dielectric. Particularly, the hole mobility was found to be 60 times enhancement, quantitatively from 0.07 to 4.4 cm2/V s, which is mainly beneficial from the high areal capacitance of the Al2O3 dielectric and high-quality NiOx/Al2O3 interface. This simple solution-based method for producing p-type oxide TFTs is promising for next-generation oxide-based electronic applications.

  13. Fabrication and characterization of thin-film transistor materials and devices

    NASA Astrophysics Data System (ADS)

    Hong, David

    A class of inorganic thin-film transistor (TFT) semiconductor materials has emerged involving oxides composed of post-transitional cations with (n-1)d 10ns0 (n≥4) electronic configurations. This thesis is devoted to the pursuit of topics involving the development of these materials for TFT applications: Deposition of zinc oxide and zinc tin oxide semiconductor layers via reactive sputtering from a metal target, and the characterization of indium gallium zinc oxide (IGZO)-based TFTs utilizing various insulator materials as the gate dielectric. The first topic involves the deposition of oxide semiconductor layers via reactive sputtering from a metal target. Two oxide semiconductors are utilized for fabricating TFTs via reactive sputtering from a metal target: zinc oxide and zinc tin oxide. With optimized processing parameters, zinc oxide and zinc tin oxide via this deposition method exhibit similar characteristics to TFTs fabricated via sputtering from a ceramic target. Additionally the effects of gate capacitance density and gate dielectric material are explored utilizing TFTs with IGZO as the semiconductor layers. IGZO-based TFTs exhibit ideal behavior with improved TFT performance such as higher current drive at a given overvoltage, a decrease in the subthreshold swing, and a decrease in the magnitude of the turn-on voltage. Additionally it is shown that silicon dioxide is the preferred dielectric material, with silicon nitride a poor choice for oxide-based TFTs. Finally a simple method to characterize the band tail state distribution near the conduction band minimum of a semiconductor by analyzing two-terminal current-voltage characteristics of a TFT with a floating gate is presented. The characteristics trap energy (ET) as a function of post-deposition annealing temperature is shown to correlate very well with IGZO TFT performance, with a lower value of E T, corresponding to a more abrupt distribution of band tail states, correlating with improved TFT mobility

  14. High-performance n-channel organic thin-film transistor based on naphthalene diimide.

    PubMed

    Dey, Anamika; Kalita, Anamika; Krishnan Iyer, Parameswar

    2014-08-13

    A conjugated molecule comprising 1,4,5,8-naphthalene diimide (NDI) substituted with two octadecylamine (OD) chains has been synthesized (NDI-OD2) in a single step from commercial materials, and its organic thin-film transistor (OTFT) devices on glass substrate have been studied using poly(vinyl alcohol) (PVA) gate dielectric material. Although we utilized the PVA dielectric without any intermediate buffer layer or PVA cross-linkers, excellent electron mobility as high as ∼1.0 cm(2)V(-1) s(-1) are obtained. This NDI-OD2 molecule exhibits comparable optical (Eg(UV) ∼3.1 eV) and electrochemical band gaps (Eg(CV) ∼3.02 eV) with a lowest unoccupied molecular orbital (LUMO) energy levels of ∼3.3 eV. When processed by solution method, this material forms rod-shaped crystalline microstructures, whereas, when thermally deposited, it assumes the formation of smooth 2D films. The chemical as well as physical properties and theoretical calculations of NDI-OD2 have been studied and the effect of the C-18 alkyl chain unit has been discussed. The OTFT consisting of NDI-OD2 exhibits excellent performance parameters such as high electron mobility (μe) and Ion-to-Ioff ratio. After demonstrating the high performance of NDI-OD2-based TFT devices fabricated with biocompatible PVA dielectric, we have also demonstrated that these devices can be degraded because of the presence of this PVA dielectric when exposed to a high-moisture environment. The systematic degradation of the device activity in a controlled way within 10 days of exposure (>80% moisture) is also presented here. In this study, a conceptually important feature and futuristic aspect that the n-channel TFT devices can also be biodegraded irreversibly is demonstrated. This concept of developing a low cost and biodegradable OTFT device with biocompatible PVA dielectric with excellent electron mobility is expected to have diverse applications in disposable electronic tags, biomedical devices, and food industry packing

  15. Device and material characterization and analytic modeling of amorphous silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Slade, Holly Claudia

    Hydrogenated amorphous silicon thin film transistors (TFTs) are now well-established as switching elements for a variety of applications in the lucrative electronics market, such as active matrix liquid crystal displays, two-dimensional imagers, and position-sensitive radiation detectors. These applications necessitate the development of accurate characterization and simulation tools. The main goal of this work is the development of a semi- empirical, analytical model for the DC and AC operation of an amorphous silicon TFT for use in a manufacturing facility to improve yield and maintain process control. The model is physically-based, in order that the parameters scale with gate length and can be easily related back to the material and device properties. To accomplish this, extensive experimental data and 2D simulations are used to observe and quantify non- crystalline effects in the TFTs. In particular, due to the disorder in the amorphous network, localized energy states exist throughout the band gap and affect all regimes of TFT operation. These localized states trap most of the free charge, causing a gate-bias-dependent field effect mobility above threshold, a power-law dependence of the current on gate bias below threshold, very low leakage currents, and severe frequency dispersion of the TFT gate capacitance. Additional investigations of TFT instabilities reveal the importance of changes in the density of states and/or back channel conduction due to bias and thermal stress. In the above threshold regime, the model is similar to the crystalline MOSFET model, considering the drift component of free charge. This approach uses the field effect mobility to take into account the trap states and must utilize the correct definition of threshold voltage. In the below threshold regime, the density of deep states is taken into account. The leakage current is modeled empirically, and the parameters are temperature dependent to 150oC. The capacitance of the TFT can be

  16. Device characteristics of amorphous ZnSnLiO thin film transistors with various channel layer thicknesses

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Li, Bin; Zhang, Wenqi; Wu, Huaihao; Zhou, Dongzhan; Yao, Zhigang; Yi, Lixin; Zhang, Xiqing; Wang, Yongsheng

    2016-08-01

    The preparation and characteristics of ZnSnLiO thin film transistors were studied in this work. The ZnSnLiO films, as the channel layers with thickness varied from 20 to 60 nm, were deposited on SiO2/p-type Si substrates by radio frequency magnetron sputtering. The effect of channel layer thickness on the device characteristics of ZnSnLiO TFTs has been investigated to establish optimal channel layer thickness. The transistor with 40-nm-thick ZnSnLiO film shows the best performance with a field-effect mobility of 47 cm2/V s, a threshold voltage of 4.9 V, and an on/off ratio of 7.2 × 106.

  17. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics

    NASA Astrophysics Data System (ADS)

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-10-01

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors.Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed

  18. Fabrication and Electrical Characterization of InZnO:N Thin Film Transistors Prepared by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Peng, Yunfei; Wang, Hailong; Zhang, Wenqi; Li, Bin; Zhou, Dongzhan; Zhang, Xiqing; Wang, Yongsheng

    2016-07-01

    The fabrication and electrical characterization of InZnO:N thin film transistors (TFTs) were investigated in this work. The InZnO:N film was deposited on SiO2/ p-type Si substrates by radio frequency magnetron sputtering as the active layer of the TFTs at room temperature. In order to optimize the performance of the InZnO:N TFTs, the effect of the oxygen contents in the preparation of the active layer is investigated. We found that an appropriate O2/Ar gas flow ratio is very beneficial for the InZnO:N TFTs, and when the O2/Ar gas flow ratio is at 1/30, the transistor exhibited a high field-effect mobility of 39.3 cm2/Vs, a threshold voltage of 2.4 V and a I ON/OFF ratio of 1.1 × 107.

  19. Characterization of the pentacene thin-film transistors with an epoxy resin-based polymeric gate insulator

    NASA Astrophysics Data System (ADS)

    Kim, C. H.; Tondelier, D.; Geffroy, B.; Bonnassieux, Y.; Horowitz, G.

    2012-02-01

    The organic thin-film transistors (OTFTs) incorporating pentacene/SU-8 interface were fabricated and characterized. SU-8, a reliable epoxy-based photoresist, is tested as a potential highly-stable polymeric gate dielectric for OTFTs. The fabricated devices showed promising electrical performance with on-off ratio up to 107 and field-effect mobility up to 0.56 cm2/V s. Several device characteristics are further analyzed. There existed a leakage current path due to the uncontrolled pentacene coverage and we revealed that precise alignment of the evaporation mask of pentacene is critical for eliminating this problem. Pentacene grain formation largely depended on the growth condition on the SU-8 surface and small-grain films offered outstanding performance possibly owing to enhanced inter-domain connections. Natural degradation of the OTFTs is also discussed in terms of environmental stability and the pentacene/SU-8 transistor operated with noticeable air stability under ambient conditions.

  20. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    SciTech Connect

    Chiarella, F. Barra, M.; Ciccullo, F.; Cassinese, A.; Toccoli, T.; Aversa, L.; Tatti, R.; Verucchi, R.

    2014-04-07

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  1. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  2. Fabrication and Electrical Characterization of InZnO:N Thin Film Transistors Prepared by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Peng, Yunfei; Wang, Hailong; Zhang, Wenqi; Li, Bin; Zhou, Dongzhan; Zhang, Xiqing; Wang, Yongsheng

    2016-04-01

    The fabrication and electrical characterization of InZnO:N thin film transistors (TFTs) were investigated in this work. The InZnO:N film was deposited on SiO2/p-type Si substrates by radio frequency magnetron sputtering as the active layer of the TFTs at room temperature. In order to optimize the performance of the InZnO:N TFTs, the effect of the oxygen contents in the preparation of the active layer is investigated. We found that an appropriate O2/Ar gas flow ratio is very beneficial for the InZnO:N TFTs, and when the O2/Ar gas flow ratio is at 1/30, the transistor exhibited a high field-effect mobility of 39.3 cm2/Vs, a threshold voltage of 2.4 V and a I ON/OFF ratio of 1.1 × 107.

  3. Toward Active-Matrix Lab-On-A-Chip: Programmable Electrofluidic control Enaled by Arrayed Oxide Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-01

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm{sup 2} V{sup -1} s{sup -1}, low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 {mu}m and mobility of 6.3 cm{sup 2} V{sup -1} s{sup -1}. Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  4. Effect of Ta addition of co-sputtered amorphous tantalum indium zinc oxide thin film transistors with bias stability.

    PubMed

    Son, Dae-Ho; Kim, Dae-Hwan; Park, Si-Nae; Sung, Shi-Joon; Kang, Jin-Kyu

    2014-11-01

    In this work, we have fabricated thin film transistors (TFTs) using amorphous tantalum indium zinc oxide (a-TaInZnO) channels by the co-sputtering process. The effects of incorporating tantalum on the InZnO material were investigated using Hall-effect measurement results, and electrical characteristics. We also found that the carrier densities of thin films and the transistor on-off currents were greatly influenced by the composition of tantalum addition. Ta ions have strong affinity to oxygen and so suppress the formation of free electron carriers inthin films; they play an important role in enhancing the electrical characteristic due to their high oxygen bonding ability. The electrical characteristics of the optimized TFTs shows a field effect mobility of 3.67 cm2 V(-1) s(-1), a threshold voltage of 1.28 V, an on/off ratio of 1.1 x 10(8), and a subthreshold swing of 480 mV/dec. Under gate bias stress conditions, the TaInZnO TFTs showed lower shift in threshold voltage shifts. PMID:25958492

  5. High-performance calcium-doped zinc oxide thin-film transistors fabricated on glass at low temperature

    NASA Astrophysics Data System (ADS)

    Yu, Wen; Han, Dedong; Cui, Guodong; Cong, Yingying; Dong, Junchen; Zhang, Xiaomi; Zhang, Xing; Wang, Yi; Zhang, Shengdong

    2016-04-01

    High-performance calcium-doped zinc oxide thin-film transistors (Ca-ZnO TFTs) have been successfully fabricated on transparent glass at low temperature by RF magnetron sputtering. To study the effects of calcium doping on zinc oxide thin-film transistors, the characteristics of Ca-ZnO TFTs and ZnO TFTs are compared and analyzed in detail from different perspectives, including electrical performance, surface morphology, and crystal structure of the material. The results suggest that the incorporation of calcium element can decrease the root-mean-square roughness of the material, suppress growth of a columnar structure, and improve device performance. The TFTs with Ca-ZnO active layer exhibit excellent electrical properties with the saturation mobility (μsat) of 147.1 cm2 V-1 s-1, threshold voltage (V t) of 2.91 V, subthreshold slope (SS) of 0.271 V/dec, and I on/I off ratio of 2.34 × 108. In addition, we also study the uniformity of the devices. The experimental results show that the Ca-ZnO TFTs possess good uniformity, which is important for large-area application.

  6. Impact of the Capacitance of the Dielectric on the Contact Resistance of Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Zojer, K.; Zojer, E.; Fernandez, A. F.; Gruber, M.

    2015-10-01

    As the operation of organic thin-film transistors relies exclusively on injected charge carriers, the gate-induced field assumes a dual role: It is responsible for charge-carrier accumulation and, provided that an injection barrier at the contact-semiconductor interface is present, aids charge-carrier injection across this barrier. Besides the gate-source bias, the thickness of the insulator and its dielectric constant influence the gate field. Here, we explore the impact of the capacitance of the gate dielectric on the performance of organic thin-film transistors utilizing drift-diffusion-based simulations comprising a self-consistent consideration of injection. Upon varying the capacitance of the insulating layer, we observe a conceptually different behavior for top-contact and bottom-contact architectures. Top-contact devices possess a nearly constant contact voltage in the linear regime leading to an apparent mobility lowering. In strong contrast, bottom-contact architectures possess non-Ohmic contact resistances in the linear regime due to a contact voltage whose value depends strongly on both the gate-source bias and the capacitance. Counterintuitively, this is accompanied by a mobility being apparently unaffected by the substantial contact resistance. Additionally, threshold-voltage shifts appear due to gate-limited injection. The latter is particularly dominant in bottom-contact architectures, where the threshold voltages steeply increase with the thickness of the insulating layer.

  7. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process

    SciTech Connect

    Lin, Meng-Fang E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Gao, Xu; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Nabatame, Toshihide

    2015-01-15

    The stable operation of transistors under a positive bias stress (PBS) is achieved using Hf incorporated into InO{sub x}-based thin films processed at relatively low temperatures (150 to 250 °C). The mobilities of the Hf-InO{sub x} thin-film transistors (TFTs) are higher than 8 cm{sup 2}/Vs. The TFTs not only have negligible degradation in the mobility and a small shift in the threshold voltage under PBS for 60 h, but they are also thermally stable at 85 °C in air, without the need for a passivation layer. The Hf-InO{sub x} TFT can be stable even annealed at 150 °C for positive bias temperature stability (PBTS). A higher stability is achieved by annealing the TFTs at 250 °C, originating from a reduction in the trap density at the Hf-InO{sub x}/gate insulator interface. The knowledge obtained here will aid in the realization of stable TFTs processed at low temperatures.

  8. Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface

    SciTech Connect

    Liu, Xiang; Yang, Xiaoxia; Liu, Mingju; Tao, Zhi; Wei, Lei Li, Chi Zhang, Xiaobing; Wang, Baoping; Dai, Qing; Nathan, Arokia

    2014-03-17

    The temporal development of next-generation photo-induced transistor across semiconductor quantum dots and Zn-related oxide thin film is reported in this paper. Through the dynamic charge transfer in the interface between these two key components, the responsibility of photocurrent can be amplified for scales of times (∼10{sup 4} A/W 450 nm) by the electron injection from excited quantum dots to InGaZnO thin film. And this photo-transistor has a broader waveband (from ultraviolet to visible light) optical sensitivity compared with other Zn-related oxide photoelectric device. Moreover, persistent photoconductivity effect can be diminished in visible waveband which lead to a significant improvement in the device's relaxation time from visible illuminated to dark state due to the ultrafast quenching of quantum dots. With other inherent properties such as integrated circuit compatible, low off-state current and high external quantum efficiency resolution, it has a great potential in the photoelectric device application, such as photodetector, phototransistor, and sensor array.

  9. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Fang; Gao, Xu; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Aikawa, Shinya; Nabatame, Toshihide; Tsukagoshi, Kazuhito

    2015-01-01

    The stable operation of transistors under a positive bias stress (PBS) is achieved using Hf incorporated into InOx-based thin films processed at relatively low temperatures (150 to 250 °C). The mobilities of the Hf-InOx thin-film transistors (TFTs) are higher than 8 cm2/Vs. The TFTs not only have negligible degradation in the mobility and a small shift in the threshold voltage under PBS for 60 h, but they are also thermally stable at 85 °C in air, without the need for a passivation layer. The Hf-InOx TFT can be stable even annealed at 150 °C for positive bias temperature stability (PBTS). A higher stability is achieved by annealing the TFTs at 250 °C, originating from a reduction in the trap density at the Hf-InOx/gate insulator interface. The knowledge obtained here will aid in the realization of stable TFTs processed at low temperatures.

  10. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors

    NASA Astrophysics Data System (ADS)

    Park, Ick-Joon; Jeong, Chan-Yong; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok; Song, Sang-Hun; Kwon, Hyuck-In

    2012-10-01

    In this work, we present the results concerning the use of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments.

  11. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    SciTech Connect

    Jiang, C.; Samnakay, R.; Balandin, A. A.; Rumyantsev, S. L.; Shur, M. S.

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  12. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits

    SciTech Connect

    Petti, Luisa; Faber, Hendrik; Anthopoulos, Thomas D.; Münzenrieder, Niko; Cantarella, Giuseppe; Tröster, Gerhard; Patsalas, Panos A.

    2015-03-02

    Indium oxide (In{sub 2}O{sub 3}) films were deposited by ultrasonic spray pyrolysis in ambient air and incorporated into bottom-gate coplanar and staggered thin-film transistors. As-fabricated devices exhibited electron-transporting characteristics with mobility values of 1 cm{sup 2}V{sup −1}s{sup −1} and 16 cm{sup 2}V{sup −1}s{sup −1} for coplanar and staggered architectures, respectively. Integration of In{sub 2}O{sub 3} transistors enabled realization of unipolar inverters with high gain (5.3 V/V) and low-voltage operation. The low temperature deposition (≤250 °C) of In{sub 2}O{sub 3} also allowed transistor fabrication on free-standing 50 μm-thick polyimide foils. The resulting flexible In{sub 2}O{sub 3} transistors exhibit good characteristics and remain fully functional even when bent to tensile radii of 4 mm.

  13. High voltage surface potential measurements in ambient conditions: Application to organic thin-film transistor injection and transport characterization

    NASA Astrophysics Data System (ADS)

    de Tournadre, Grégoire; Reisdorffer, Frédéric; Rödel, Reinhold; Simonetti, Olivier; Klauk, Hagen; Giraudet, Louis

    2016-03-01

    A scanning surface potential measurement technique suited for thin-film devices operating under high voltages is reported. A commercial atomic force microscope has been customized to enable a feedback-controlled and secure surface potential measurement based on phase-shift detection under ambient conditions. Measurements of the local potential profile along the channel of bottom-gate organic thin-film transistors (TFTs) are shown to be useful to disentangle the contributions from the channel and contacts to the device performance. Intrinsic contact current-voltage characteristics have been measured on bottom-gate, top-contact (staggered) TFTs based on the small-molecule semiconductor dinaphtho[2,3-b:2',3-f]thieno[3,2-b]thiophene (DNTT) and on bottom-gate, bottom-contact (coplanar) TFTs based on the semiconducting polymer polytriarylamine (PTAA). Injection has been found to be linear in the staggered DNTT TFTs and nonlinear in the coplanar PTAA TFTs. In both types of TFT, the injection efficiency has been found to improve with increasing gate bias in the accumulation regime. Contact resistances as low as 130 Ω cm have been measured in the DNTT TFTs. A method that eliminates the influence of bias-stress-induced threshold-voltage shifts when measuring the local charge-carrier mobility in the channel is also introduced, and intrinsic channel mobilities of 1.5 cm2 V-1 s-1 and 1.1 × 10-3 cm2 V-1 s-1 have been determined for DNTT and PTAA. In both semiconductors, the mobility has been found to be constant with respect to the gate bias. Despite its simplicity, the Kelvin probe force microscopy method reported here provides robust and accurate surface potential measurements on thin-film devices under operation and thus paves the way towards more extensive studies of particular interest in emerging fields of solid-state electronics.

  14. Organic Ferroelectric Field-Effect Transistor Memory Using Flat Poly(vinylidene fluoride-tetrafluoroethylene) and Pentacene Thin Films

    NASA Astrophysics Data System (ADS)

    Kanashima, Takeshi; Yabe, Kazuki; Okuyama, Masanori

    2012-02-01

    Organic ferroelectric field-effect transistor (FET) memories have been fabricated using pentacene as the semiconductor and a flat poly(vinylidene fluoride-tetrafluoroethylene) [P(VDF-TeFE)] thin film as the ferroelectric gate. The P(VDF-TeFE) film is prepared by spin coating, and it was cooled slowly with a flattening process after annealing. The polarization-electric field (P-E) hysteresis of the P(VDF-TeFE) thin film prepared by slow cooling is larger than that in the case of quick cooling. Moreover, the flattening process does not have a negative effect on ferroelectric properties. The obtained remanent polarization (Pr) of 5.2 µC/cm2 is sufficient for controlling the pentacene surface potential. Good memory characteristics are obtained in the P(VDF-TeFE) gate FET with pentacene deposited on the flat P(VDF-TeFE). The maximum drain current is about twice larger than that deposited on the rough P(VDF-TeFE) prepared by quick cooling, and the memory retention is over 1 week.

  15. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    NASA Astrophysics Data System (ADS)

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Chen, Jihua; Li, Dawen

    2015-05-01

    N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN2 film is much lower than the value of PDIF-CN2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm2/V s has been achieved from OTFTs based on the PDIF-CN2 film with the pre-deposition of PαMS polymer.

  16. Improved AMOLED with aligned poly-Si thin-film transistors by laser annealing and chemical solution treatments

    NASA Astrophysics Data System (ADS)

    Wu, G. M.; Chen, C. N.; Feng, W. S.; Lu, H. C.

    2009-12-01

    Low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFT) were prepared for the active-matrix organic light-emitting displays (AMOLED). The excimer laser annealing (ELA) recrystallization technique was employed with a chemical solution treatment process to improve the TFT characteristic uniformity and the AMOLED display image quality. The characteristics of the poly-Si array thin films were influenced by XeCl ELA optic module design, TFT device channel direction, and laser irradiation overlap ratio. The ELA system module provided aligned poly-Si grain size of 0.3 μm by the homogenization lens design. The chemical solution treatment process included a dilute HF solution (DHF), ozone (O 3) water, and buffer oxide etching solution (BOE). The PMOS TFT showed better field effect mobility of 87.6 cm 2/V s, and the threshold voltage was -1.35 V. The off current ( Ioff) was 1.25×10 -11 A, and the on/off current ratio was 6.27×10 6. In addition, the image quality of the AMOLED display was highly improved using the 2T1C structure design without any compensation circuit.

  17. Effect of Pentacene-dielectric Affinity on Pentacene Thin Film Growth Morphology in Organic Field-effect Transistors

    SciTech Connect

    S Kim; M Jang; H Yang; C Park

    2011-12-31

    Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, were characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.

  18. ZnO thin film transistors and electronic connections for adjustable x-ray mirrors: SMART-X telescope

    NASA Astrophysics Data System (ADS)

    Johnson-Wilke, R. L.; Wilke, R. H. T.; Wallace, M.; Ramirez, J. I.; Prieskorn, Z.; Nikoleyczik, J.; Cotroneo, V.; Allured, R.; Schwartz, D. A.; McMuldroch, S.; Reid, P. B.; Burrows, D. N.; Jackson, T. N.; Trolier-McKinstry, S.

    2014-09-01

    The proposed SMART-X telescope consists of a pixelated array of a piezoelectric lead zirconate titanate (PZT) thin film deposited on flexible glass substrates. These cells or pixels are used to actively control the overall shape of the mirror surface. It is anticipated that the telescope will consist of 8,000 mirror panels with 400-800 cells on each panel. This creates an enormous number (6.4 million) of traces and contacts needed to address the PZT. In order to simplify the design, a row/column addressing scheme using ZnO thin film transistors (TFTs) is proposed. In addition, connection of the gate and drain lines on the mirror segment to an external supply via a flexible cable was investigated through use of an anisotropic conductive film (ACF). This paper outlines the design of the ZnO TFTs, use of ACF for bonding, and describes a specially designed electronics box with associated software to address the desired cells.

  19. Water-Mediated Photochemical Treatments for Low-Temperature Passivation of Metal-Oxide Thin-Film Transistors.

    PubMed

    Heo, Jae Sang; Jo, Jeong-Wan; Kang, Jingu; Jeong, Chan-Yong; Jeong, Hu Young; Kim, Sung Kyu; Kim, Kwanpyo; Kwon, Hyuck-In; Kim, Jaekyun; Kim, Yong-Hoon; Kim, Myung-Gil; Park, Sung Kyu

    2016-04-27

    The low-temperature electrical passivation of an amorphous oxide semiconductor (AOS) thin-film transistor (TFT) is achieved by a deep ultraviolet (DUV) light irradiation-water treatment-DUV irradiation (DWD) method. The water treatment of the first DUV-annealed amorphous indium-gallium-zinc-oxide (a-IGZO) thin film is likely to induce the preferred adsorption of water molecules at the oxygen vacancies and leads to subsequent hydroxide formation in the bulk a-IGZO films. Although the water treatment initially degraded the electrical performance of the a-IGZO TFTs, the second DUV irradiation on the water-treated devices may enable a more complete metal-oxygen-metal lattice formation while maintaining low oxygen vacancies in the oxide films. Overall, the stable and dense metal-oxygen-metal (M-O-M) network formation could be easily achieved at low temperatures (below 150 °C). The successful passivation of structural imperfections in the a-IGZO TFTs, such as hydroxyl group (OH-) and oxygen vacancies, mainly results in the enhanced electrical performances of the DWD-processed a-IGZO TFTs (on/off current ratio of 8.65 × 10(9), subthreshold slope of 0.16 V/decade, an average mobility of >6.94 cm(2) V(-1) s(-1), and a bias stability of ΔVTH < 2.5 V), which show more than a 30% improvement over the simple DUV-treated a-IGZO TFTs. PMID:27035796

  20. High performance organic thin film transistors with solution processed TTF-TCNQ charge transfer salt as electrodes.

    PubMed

    Mukherjee, Biswanath; Mukherjee, Moumita

    2011-09-01

    Fabrication of high-performance organic thin film transistors (OTFTs) with solution processed organic charge transfer complex (TTF-TCNQ) film as bottom contact source-drain electrodes is reported. A novel capillary based method was used to deposit the source-drain electrodes from solution and to create the channel between the electrodes. Both p- and n-type OTFTs have been fabricated with solution deposited organic charge transfer film as contact electrodes. Comparison of the device performances between OTFTs with TTF-TCNQ as source-drain electrodes and those with Au electrodes (both top and bottom contact) indicate that better results have been obtained in organic complex film contacted OTFT. The high mobility, low threshold voltage, and efficient carrier injection in both types of OTFTs implies the potential use of the TTF-TCNQ based complex material as low-cost contact electrodes. The lower work function of the TTF-TCNQ electrode and better contact of the complex film with the organic thin film owing to the organic-organic interface results in efficient charge transfer into the semiconductor yielding high device performance. The present method having organic metal as contact materials promises great potential for the fabrication of all-organics and plastic electronics devices with high throughput and low-cost processing. PMID:21812432

  1. Studies on fully transparent Al-Sn-Zn-O thin-film transistors fabricated on glass at low temperature

    NASA Astrophysics Data System (ADS)

    Cong, Yingying; Han, Dedong; Wu, Jing; Zhao, Nannan; Chen, Zhuofa; Zhao, Feilong; Dong, Junchen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2015-04-01

    High-performance fully transparent Al-Sn-Zn-O thin-film transistors (ATZO TFTs) with excellent electrical performance have been successfully fabricated by RF magnetron sputtering on glass at low temperatures. Two kinds of appropriate ATZO compositions are compared from several perspectives, including film material characteristics, device electrical performances, and fabrication process conditions. Finally, we achieve two excellent ATZO TFTs with competitive advantages. The ATZO TFT with larger amounts of dopants exhibits a superior field effect mobility μFE of 102.38 cm2 V-1 s-1, an ON/OFF current ratio (Ion/Ioff) of 1.18 × 107, and a threshold voltage VT of 1.35 V. The device with smaller amounts of dopants demonstrates better crystal quality and an excellent subthreshold swing SS of 155 mV/dec. Furthermore, it is less affected by oxygen partial pressure. The ATZO thin films display a high transmittance of over 80% in the visible light range.

  2. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic–inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V‑1 s‑1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from ‑3 to 9 V). This work demonstrates an organic–inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  3. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    SciTech Connect

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Li, Dawen; Chen, Jihua

    2015-05-04

    N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN{sub 2}) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN{sub 2} film is much lower than the value of PDIF-CN{sub 2} single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN{sub 2} thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN{sub 2} polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm{sup 2}/V s has been achieved from OTFTs based on the PDIF-CN{sub 2} film with the pre-deposition of PαMS polymer.

  4. Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors.

    PubMed

    Abliz, Ablat; Huang, Chun-Wei; Wang, Jingli; Xu, Lei; Liao, Lei; Xiao, Xiangheng; Wu, Wen-Wei; Fan, Zhiyong; Jiang, Changzhong; Li, Jinchai; Guo, Shishang; Liu, Chuansheng; Guo, Tailiang

    2016-03-01

    The intriguing properties of zinc oxide-based semiconductors are being extensively studied as they are attractive alternatives to current silicon-based semiconductors for applications in transparent and flexible electronics. Although they have promising properties, significant improvements on performance and electrical reliability of ZnO-based thin film transistors (TFTs) should be achieved before they can be applied widely in practical applications. This work demonstrates a rational and elegant design of TFT, composed of poly crystalline ZnO:H/ZnO bilayer structure without using other metal elements for doping. The field-effect mobility and gate bias stability of the bilayer structured devices have been improved. In this device structure, the hydrogenated ultrathin ZnO:H active layer (∼3 nm) could provide suitable carrier concentration and decrease the interface trap density, while thick pure-ZnO layer could control channel conductance. Based on this novel structure, a high field-effect mobility of 42.6 cm(2) V(-1) s(-1), a high on/off current ratio of 10(8) and a small subthreshold swing of 0.13 V dec(-1) have been achieved. Additionally, the bias stress stability of the bilayer structured devices is enhanced compared to the simple single channel layer ZnO device. These results suggest that the bilayer ZnO:H/ZnO TFTs have a great potential for low-cost thin-film electronics. PMID:26977526

  5. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications

    PubMed Central

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-01-01

    The electronic structure of low temperature, solution-processed indium–zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V−1 s−1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels. PMID:26190964

  6. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

    PubMed

    Noda, Kei; Wada, Yasuo; Toyabe, Toru

    2015-10-28

    Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors. PMID:24922359

  7. Thin film three-dimensional topological insulator metal-oxide-semiconductor field-effect-transistors: A candidate for sub-10 nm devices

    SciTech Connect

    Akhavan, N. D. Jolley, G.; Umana-Membreno, G. A.; Antoszewski, J.; Faraone, L.

    2014-08-28

    Three-dimensional (3D) topological insulators (TI) are a new state of quantum matter in which surface states reside in the bulk insulating energy bandgap and are protected by time-reversal symmetry. It is possible to create an energy bandgap as a consequence of the interaction between the conduction band and valence band surface states from the opposite surfaces of a TI thin film, and the width of the bandgap can be controlled by the thin film thickness. The formation of an energy bandgap raises the possibility of thin-film TI-based metal-oxide-semiconductor field-effect-transistors (MOSFETs). In this paper, we explore the performance of MOSFETs based on thin film 3D-TI structures by employing quantum ballistic transport simulations using the effective continuous Hamiltonian with fitting parameters extracted from ab-initio calculations. We demonstrate that thin film transistors based on a 3D-TI structure provide similar electrical characteristics compared to a Si-MOSFET for gate lengths down to 10 nm. Thus, such a device can be a potential candidate to replace Si-based MOSFETs in the sub-10 nm regime.

  8. Static induction transistor using TaN thin film as gate electrode for high-performance application

    NASA Astrophysics Data System (ADS)

    Zheng, Z. W.; Chen, Y. C.

    2014-03-01

    In this study, static induction transistor (SIT) using TaN thin film as gate electrode was fabricated and the characteristics of this device were investigated. The electrical characteristics showed that the drain-source current was controlled by the bias voltage that applied to the TaN gate electrode. The typical SIT operations with non-saturation property and a transition from linear to nonlinear behavior were observed in the drainsource I-V characteristics. Furthermore, compared with the traditional devices, this SIT device can obtain a high working current (˜5 mA) at a low driving voltage (˜3 V) with a small threshold voltage (˜1 V), showing its high potential for high current and low voltage application.

  9. Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs).

    PubMed

    Kim, Choong-Ki; Kim, Eungtaek; Lee, Myung Keun; Park, Jun-Young; Seol, Myeong-Lok; Bae, Hagyoul; Bang, Tewook; Jeon, Seung-Bae; Jun, Sungwoo; Park, Sang-Hee K; Choi, Kyung Cheol; Choi, Yang-Kyu

    2016-09-14

    An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized. PMID:27552134

  10. Dual Input AND Gate Fabricated From a Single Channel Poly (3-Hexylthiophene) Thin Film Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Perez, R.; Mueller, C. H.; Theofylaktos, N.; Miranda, F. A.

    2006-01-01

    A regio-regular poly (3-hexylthiophene) (RRP3HT) thin film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. This device demonstrates AND logic functionality. The device functionality was controlled by applying either 0 or -10 V to each of the gate electrodes. When -10 V was simultaneously applied to both gates, the device was conductive (ON), while any other combination of gate voltages rendered the device resistive (OFF). The p-type carrier charge mobility was about 5x10(exp -4) per square centimeter per V-sec. The low mobility is attributed to the sharp contours of the RRP3HT film due to substrate non-planarity. A significant advantage of this architecture is that AND logic devices with multiple inputs can be fabricated using a single RRP3HT channel with multiple gates.

  11. Low-temperature processable amorphous In-W-O thin-film transistors with high mobility and stability

    SciTech Connect

    Kizu, Takio; Aikawa, Shinya; Mitoma, Nobuhiko; Shimizu, Maki; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito; Nabatame, Toshihide

    2014-04-14

    Thin-film transistors (TFTs) with a high stability and a high field-effect mobility have been achieved using W-doped indium oxide semiconductors in a low-temperature process (∼150 °C). By incorporating WO{sub 3} into indium oxide, TFTs that were highly stable under a negative bias stress were reproducibly achieved without high-temperature annealing, and the degradation of the field-effect mobility was not pronounced. This may be due to the efficient suppression of the excess oxygen vacancies in the film by the high dissociation energy of the bond between oxygen and W atoms and to the different charge states of W ions.

  12. Photoresist-Free Fully Self-Patterned Transparent Amorphous Oxide Thin-Film Transistors Obtained by Sol-Gel Process

    PubMed Central

    Lim, Hyun Soo; Rim, You Seung; Kim, Hyun Jae

    2014-01-01

    We demonstrated self-patterned solution-processed amorphous oxide semiconductor thin-film transistors (TFTs) using photosensitive sol-gels. The photosensitive sol-gels were synthesized by adding β-diketone compounds, i.e., benzoylacetone and acetylacetone, to sol-gels. The chemically modified photosensitive sol-gels showed a high optical absorption at specific wavelengths due to the formation of metal chelate bonds. Photoreactions of the modified solutions enabled a photoresist-free process. Moreover, Zn–Sn–O with a high Sn ratio, which is hard to wet-etch using conventional photolithography due to its chemical durability, was easily patterned via the self-patterning process. Finally, we fabricated a solution-processed oxide TFT that included fully self-patterned electrodes and an active layer. PMID:24686314

  13. Origin of Degradation Phenomenon under Drain Bias Stress for Oxide Thin Film Transistors using IGZO and IGO Channel Layers

    PubMed Central

    Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min

    2015-01-01

    Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of VTH shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate VTH shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion. PMID:25601183

  14. Correlation between carrier mobility of pentacene thin-film transistor and surface passivation of its gate dielectric

    SciTech Connect

    Cheng, Kam Ho; Tang, Wing Man; Deng, L. F.; Leung, C. H.; Lai, P. T.; Che Chiming

    2008-12-01

    The carrier mobility of pentacene thin-film transistor is studied by passivating the surface of its SiO{sub 2} gate dielectric in NH{sub 3} at different temperatures, namely, 900, 1000, 1100, and 1150 deg. C. Measurements demonstrate that the higher the annealing temperature, the higher the carrier mobility of the OTFT is. The device annealed at 1150 deg. C has a field-effect mobility of 0.74 cm{sup 2}/V s, which is 35% higher than that of the device annealed at 900 deg. C. Energy-dispersive x-ray analysis, scanning-electron microscopy, and atomic-force microscopy show that the higher carrier mobility should be due to more nitrogen incorporated at the gate-dielectric surface which results in more passivated dielectric surface and larger pentacene grains for carrier transport.

  15. Recovery from ultraviolet-induced threshold voltage shift in indium gallium zinc oxide thin film transistors by positive gate bias

    SciTech Connect

    Liu, P.; Chen, T. P.; Li, X. D.; Wong, J. I.; Liu, Z.; Liu, Y.; Leong, K. C.

    2013-11-11

    The effect of short-duration ultraviolet (UV) exposure on the threshold voltage (V{sub th}) of amorphous indium gallium zinc oxide thin film transistors (TFTs) and its recovery characteristics were investigated. The V{sub th} exhibited a significant negative shift after UV exposure. The V{sub th} instability caused by UV illumination is attributed to the positive charge trapping in the dielectric layer and/or at the channel/dielectric interface. The illuminated devices showed a slow recovery in threshold voltage without external bias. However, an instant recovery can be achieved by the application of positive gate pulses, which is due to the elimination of the positive trapped charges as a result of the presence of a large amount of field-induced electrons in the interface region.

  16. Combustion-process derived comparable performances of Zn-(In:Sn)-O thin-film transistors with a complete miscibility

    SciTech Connect

    Jiang, Qingjun; Lu, Jianguo Cheng, Jipeng; Sun, Rujie; Feng, Lisha; Dai, Wen; Yan, Weichao; Ye, Zhizhen; Li, Xifeng

    2014-09-29

    Amorphous zinc-indium-tin oxide (a-ZITO) thin-film transistors (TFTs) have been prepared using a low-temperature combustion process, with an emphasis on complete miscibility of In and Sn contents. The a-ZITO TFTs were comparatively studied in detail, especially for the working stability. The a-ZITO TFTs all exhibited acceptable and excellent behaviors from Sn-free TFTs to In-free TFTs. The obtained a-ZTO TFTs presented a field-effect mobility of 1.20 cm{sup 2} V{sup −1} s{sup −1}, an on/off current ratio of 4.89 × 10{sup 6}, and a long-term stability under positive bias stress, which are comparable with those of the a-ZIO TFTs. The In-free a-ZTO TFTs are very potential for electrical applications with a low cost.

  17. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    SciTech Connect

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-04

    Tungsten oxide (WO{sub x}) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 Multiplication-Sign 10{sup -4} S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO{sub x}-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 Multiplication-Sign 10{sup 6}, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm{sup 2}/V s was realized. Our results demonstrated that WO{sub x}-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  18. Defect generation in amorphous-indium-gallium-zinc-oxide thin-film transistors by positive bias stress at elevated temperature

    SciTech Connect

    Um, Jae Gwang; Mativenga, Mallory; Jang, Jin; Migliorato, Piero

    2014-04-07

    We report on the generation and characterization of a hump in the transfer characteristics of amorphous indium gallium zinc-oxide thin-film transistors by positive bias temperature stress. The hump depends strongly on the gate bias stress at 100 °C. Due to the hump, the positive shift of the transfer characteristic in deep depletion is always smaller that in accumulation. Since, the latter shift is twice the former, with very good correlation, we conclude that the effect is due to creation of a double acceptor, likely to be a cation vacancy. Our results indicate that these defects are located near the gate insulator/active layer interface, rather than in the bulk. Migration of donor defects from the interface towards the bulk may also occur under PBST at 100 °C.

  19. Electrical stress-induced instability of amorphous indium-gallium-zinc oxide thin-film transistors under bipolar ac stress

    SciTech Connect

    Lee, Sangwon; Jeon, Kichan; Park, Jun-Hyun; Kim, Sungchul; Kong, Dongsik; Kim, Dong Myong; Kim, Dae Hwan; Kim, Sangwook; Kim, Sunil; Hur, Jihyun; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Park, Youngsoo; Jung, U-In

    2009-09-28

    Bipolar ac stress-induced instability of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors is comparatively investigated with that under a positive dc gate bias stress. While the positive dc gate bias stress-induced threshold voltage shift ({delta}V{sub T}) is caused by the charge trapping into the interface/gate dielectric as reported in previous works, the dominant mechanism of the ac stress-induced {delta}V{sub T} is observed to be due to the increase in the acceptorlike deep states of the density of states (DOS) in the a-IGZO active layer. Furthermore, it is found that the variation of deep states in the DOS makes a parallel shift in the I{sub DS}-V{sub GS} curve with an insignificant change in the subthreshold slope, as well as the deformation of the C{sub G}-V{sub G} curves.

  20. Thermal Characteristics of Amorphous Indium-Gallium-Zinc-Oxide and Graphite in Display Panel Based Thin Film Transistors.

    PubMed

    Kim, Hak-Jun; Kim, Youn-Jea

    2015-11-01

    One of the important design factors in the smart electronic industry is proper heat treatment of the display panel. In order to improve the heat transfer performance of display panels, we analyzed a three-dimensional model of multi-stack layers of the thin film transistors (TFTs). In particular, we numerically investigated the thermal barrier effects of active layers having different material properties of a-IGZO (isotropy) and graphite (anisotropy). We calculated the temperature distribution on the display panel with each active layer, using the commercial code, COMSOL Multiphysics. We graphically depict comparative results of the thermal characteristics between a-IGZO and graphite with the stacked structure of the TFTs. PMID:26726627

  1. Thickness dependent low-frequency noise characteristics of a-InZnO thin-film transistors under light illumination

    SciTech Connect

    Choi, Hyun-Sik; Jeon, Sanghun

    2014-01-13

    The influence of illumination on the electrical characteristics of amorphous indium–zinc oxide (a-IZO) thin-film transistors (TFTs) has been investigated. The electrical properties are found to depend significantly on the active thickness (T{sub IZO}) of the a-IZO TFT. The active thickness is seen to play a major role in the carrier transport mechanism. Based on the carrier fluctuation model, the low-frequency noise (LFN) characteristics of a-IZO devices of varying thicknesses were evaluated before as well as after illumination. Similar to the results of DC and capacitance–voltage (C–V) measurements, the LFN characteristics too show that the light-induced carrier transport becomes significantly enhanced for relatively thick (T{sub IZO} ≥ 60 nm) a-IZO devices.

  2. Investigation of channel width-dependent threshold voltage variation in a-InGaZnO thin-film transistors

    SciTech Connect

    Liu, Kuan-Hsien; Chou, Wu-Ching; Chang, Ting-Chang; Wu, Ming-Siou; Hung, Yi-Syuan; Sze, Simon M.; Hung, Pei-Hua; Chu, Ann-Kuo; Hsieh, Tien-Yu; Yeh, Bo-Liang

    2014-03-31

    This Letter investigates abnormal channel width-dependent threshold voltage variation in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Unlike drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, the wider the channel, the larger the threshold voltage observed. Because of the surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider channel devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast IV measurement is utilized to demonstrate the self-heating induced anomalous channel width-dependent threshold voltage variation.

  3. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    PubMed

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices. PMID:26677773

  4. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  5. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-02-01

    Tungsten oxide (WOx) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10-4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WOx-based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 106, a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm2/V s was realized. Our results demonstrated that WOx-based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  6. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tari, Alireza; Lee, Czang-Ho; Wong, William S.

    2015-07-01

    Bottom-gate thin-film transistors were fabricated by depositing a 50 nm InGaZnO (IGZO) channel layer at 150 °C on three separate gate dielectric films: (1) thermal SiO2, (2) plasma-enhanced chemical-vapor deposition (PECVD) SiNx, and (3) a PECVD SiOx/SiNx dual-dielectric. X-ray photoelectron and photoluminescence spectroscopy showed the Vo concentration was dependent on the hydrogen concentration of the underlying dielectric film. IGZO films on SiNx (high Vo) and SiO2 (low Vo) had the highest and lowest conductivity, respectively. A PECVD SiOx/SiNx dual-dielectric layer was effective in suppressing hydrogen diffusion from the nitride layer into the IGZO and resulted in higher resistivity films.

  7. Investigation of channel width-dependent threshold voltage variation in a-InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Kuan-Hsien; Chang, Ting-Chang; Wu, Ming-Siou; Hung, Yi-Syuan; Hung, Pei-Hua; Hsieh, Tien-Yu; Chou, Wu-Ching; Chu, Ann-Kuo; Sze, Simon M.; Yeh, Bo-Liang

    2014-03-01

    This Letter investigates abnormal channel width-dependent threshold voltage variation in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Unlike drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, the wider the channel, the larger the threshold voltage observed. Because of the surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider channel devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast IV measurement is utilized to demonstrate the self-heating induced anomalous channel width-dependent threshold voltage variation.

  8. Subgap states in p-channel tin monoxide thin-film transistors from temperature-dependent field-effect characteristics

    NASA Astrophysics Data System (ADS)

    Jeong, Chan-Yong; Lee, Daeun; Han, Young-Joon; Choi, Yong-Jin; Kwon, Hyuck-In

    2015-08-01

    This paper experimentally investigates the subgap density of states (DOS) in p-type tin monoxide (SnO) thin-film transistors (TFTs) for the first time by using temperature-dependent field-effect measurements. As the temperature increases, the turn-on voltage moves in the positive direction, and the off-current and subthreshold slope continuously increase. We found that the conductivity of the SnO TFT obeys the Meyer-Neldel (MN) rule with a characteristic MN parameter of 28.6 eV-1 in the subthreshold region, from which we successfully extracted the subgap DOS by combing the field-effect method and the MN relation. The extracted subgap DOS from fabricated p-type SnO TFTs are exponentially distributed in energy, and exhibit around two orders of magnitude higher values compared to those of the n-type amorphous indium-gallium-zinc oxide TFTs.

  9. Effects of thermomechanical properties of polarizer components on light leakage in thin-film transistor liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Lin, Taiy-In; Chen, Alexander; Chen, Shou-I.; Leu, Jihperng

    2015-07-01

    In this paper, we present static thermal analysis of stress and strain on a thin-film transistor liquid-crystal display (TFT-LCD) panel and their correlation with light leakage phenomena under high-temperature durability test. Three-dimensional (3D) finite element analysis (FEA) is coupled with experimental parameters of key components of the TFT-LCD panel for the analysis. A strong correlation exists between light leakage and retardation difference induced by stress on triacetyl cellulose (TAC) films. Moreover, shrinkage in stretched poly(vinyl alcohol) (PVA) film and modulus of the adhesive layer are key factors affecting stress distribution and displacement of polarizer stack. An increase in Young’s modulus (E) of the adhesive layer effectively reduces polarizer shrinkage and light leakage at the center of the panel. A TAC film with lower Young’s modulus and/or coefficient of thermal expansion (CTE) is also an effective solution.

  10. Origin of instability by positive bias stress in amorphous Si-In-Zn-O thin film transistor

    SciTech Connect

    Hyung Kim, Do; Youn Yoo, Dong; Kwang Jung, Hyun; Hwan Kim, Dae; Yeol Lee, Sang

    2011-10-24

    The origin of instability under positive bias stress (PBS) in amorphous Si-In-Zn-O (SIZO) thin film transistor (TFT) with different Si concentration has been investigated by x-ray photoelectron spectroscopy (XPS) and density of states (DOSs) analysis. It is found that stability of SIZO-TFT with 3 wt. % Si under PBS became more deteriorated than that of 1 wt. % Si incorporated SIZO-TFT due to the increased oxygen related trap distributed in energy range from conduction band to {approx}0.3 eV below the conduction band. The origin of instability under PBS was discussed in terms of oxygen related trap derived from DOSs and XPS analysis.

  11. Photoinduced top-gate effect in amorphous InGaZnO4 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Takechi, Kazushige; Tanabe, Hiroshi

    2016-04-01

    In this paper, we will discuss the top-gate effect under illumination in amorphous InGaZnO4 thin-film transistors (a-InGaZnO TFTs) having a transparent top-gate electrode. The dependence of bottom-gate transfer characteristics on top-gate voltage (V tg) shows a specific behavior under 425 nm light illumination, which we call the “photoinduced top-gate effect”. The subthreshold current under 425 nm light illumination, whose photon energy is smaller than the optical bandgap of a-InGaZnO, increases with increasing magnitude of negative V tg. Measurements at various temperatures support the idea that the photoinduced top-gate effect arises from a tunneling mechanism due to a negative V tg.

  12. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGESBeta

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is themore » highest mobility from SMDPPEH ever reported.« less

  13. Thin-film transistors using DNA-wrapped semiconducting single-wall carbon nanotubes with selected chiralities

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuki; Nihey, Fumiyuki; Ohmori, Shigekazu; Saito, Takeshi

    2015-10-01

    Selected semiconducting chiralities, (7,5), (7,6), and (8,4), of DNA-wrapped single-wall carbon nanotubes (DNA-SWCNTs) were used for thin-film transistors (TFTs). Chirality separation was carried out by ion exchange chromatography (IEX) with the ssDNA of the (TAT)4 sequence. An on/off ratio of 3.8 × 106 with a carrier mobility of 11 cm2/(V·s) was successfully achieved in the fabricated SWCNT-TFTs. The comparison between the on/off ratios obtained before (101-102) and after IEX (104-107) indicated that the IEX separation process sufficiently improves the performance of SWCNT-TFTs because of the reducing metallic SWCNT pathways in the TFT channel.

  14. Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fakhri, M.; Görrn, P.; Weimann, T.; Hinze, P.; Riedl, T.

    2011-09-01

    Transparent zinc-tin-oxide (ZTO) thin film transistors (TFTs) have been prepared by DC magnetron sputtering. Compared to reference devices with a channel deposited at room temperature and subsequently annealing at 400 °C, a substantially enhanced stability against bias stress is evidenced for devices with in-situ substrate heating during deposition (400 °C). A reduced density of sub-gap defect states in TFT channels prepared with in-situ substrate heating is found. Concomitantly, a reduced sensitivity to the adsorption of ambient gases is evidenced for the in-situ heated devices. This finding is of particular importance for an application as driver electronics for organic light emitting diode displays.

  15. Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability

    NASA Astrophysics Data System (ADS)

    Fakhri, M.; Theisen, M.; Behrendt, A.; Görrn, P.; Riedl, T.

    2014-06-01

    Top gated metal-oxide thin-film transistors (TFTs) provide two benefits compared to their conventional bottom-gate counterparts: (i) The gate dielectric may concomitantly serve as encapsulation layer for the TFT channel. (ii) Damage of the dielectric due to high-energetic particles during channel deposition can be avoided. In our work, the top-gate dielectric is prepared by ozone based atomic layer deposition at low temperatures. For ultra-low gas permeation rates, we introduce nano-laminates of Al2O3/ZrO2 as dielectrics. The resulting TFTs show a superior environmental stability even at elevated temperatures. Their outstanding stability vs. bias stress is benchmarked against bottom-gate devices with encapsulation.

  16. Effect of etching stop layer on characteristics of amorphous IGZO thin film transistor fabricated at low temperature

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Xin, Enlong; Chen, Longlong; Shi, Jifeng; Zhang, Jianhua

    2013-03-01

    Transparent bottom-gate amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistors (TFTs) had been successfully fabricated at relative low temperature. The influence of reaction gas ratio of N2O and SiH4 during the growth of etching stop layer (SiOx) on the characteristics of a-IGZO TFTs was investigated. The transfer characteristics of the TFTs were changed markedly because active layer of a-IGZO films was modified by plasma in the growth process of SiOx. By optimizing the deposition parameters of etching stop layer process, a-IGZO TFTs were manufactured and exhibited good performance with a field-effect mobility of 8.5 cm2V-1s-1, a threshold voltage of 1.3 V, and good stability under gate bias stress of 20 V for 10000 s.

  17. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature

    NASA Astrophysics Data System (ADS)

    Huang, Lingling; Han, Dedong; Chen, Zhuofa; Cong, Yingying; Wu, Jing; Zhao, Nannan; Dong, Junchen; Zhao, Feilong; Liu, Lifeng; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2015-04-01

    High-performance nickel (Ni)-doped zinc oxide thin-film transistors (NZO TFTs) have been successfully fabricated on transparent flexible plastic substrates at a low temperature. The effect of different oxygen partial pressures during channel deposition on the electrical properties of NZO TFTs was studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant influence on the performance of NZO TFTs. Finally, it was demonstrated that a NZO film with 100% Ar sputtering gas during channel deposition exhibited the best electrical properties, with a drain current on/off ratio of 108, a positive threshold voltage of 2.59 V, a subthreshold swing of 233 mV/decade, and a saturation mobility of 118.9 cm2·V-1·s-1. The results show that Ni-doped ZnO is a promising candidate for flexible fully transparent displays.

  18. Low-voltage and hysteresis-free organic thin-film transistors employing solution-processed hybrid bilayer gate dielectrics

    SciTech Connect

    Ha, Tae-Jun

    2014-07-28

    This study presents a promising approach to realize low-voltage (<3 V) organic thin-film transistors (OTFTs) exhibiting improved electrical and optical stability. Such device performance results from the use of solution-processed hybrid bilayer gate dielectrics consisting of zirconium dioxide (high-k dielectric) and amorphous fluoropolymer, CYTOP{sup ®} (low-k dielectric). Employing a very thin amorphous fluoropolymer film reduces interfacial defect-states by repelling water molecules and other aqueous chemicals from an organic semiconductor active layer due to the hydrophobic surface-property. The chemically clean interface, stemming from decrease in density of trap states improves all the key device properties such as field-effect mobility, threshold voltage, and sub-threshold swing. Furthermore, degradation by electrical bias-stress and photo-induced hysteresis were suppressed in OTFTs employing hybrid bilayer gate dielectrics.

  19. Fabrication and characterization of Cu(In,Ga)Se{sub 2} p-channel thin film transistors

    SciTech Connect

    Zhu, Xiaobo; Liu, C. W.

    2014-10-06

    Cu(In,Ga)Se{sub 2} thin film transistors are demonstrated with the on-off ratio of ∼10{sup 3} and the saturation hole mobility of 1.8 cm{sup 2}/V-s. Due to the high hole concentration (∼5 × 10{sup 17 }cm{sup −3}), the channel needs to be etched to turn off for the accumulation mode operation. The Cu(In,Ga)Se{sub 2} film after etching reveals a larger mobility, and a narrower (112) X-ray diffraction line than the original thick layer, indicating the better crystallinity of the initial growth as compared to the subsequent Cu(In,Ga)Se{sub 2} layer. Both the hole concentration and the saturation mobility increase with the decreasing Cu/(In + Ga) ratio probably due to the effect of Cu vacancies.

  20. Compositional changes in the channel layer of an amorphous In-Ga-Zn-O thin film transistor after thermal annealing

    NASA Astrophysics Data System (ADS)

    Kang, Jiyeon; Lee, Su Jeong; Kim, Chul-Hong; Chae, Gee Sung; Jun, Myungchul; Hwang, Yong Kee; Lee, Woong; Myoung, Jae-Min

    2012-06-01

    In order to investigate the possible reason for the improved device performances of amorphous In-Ga-Zn-O (a-IGZO) thin film transistors after thermal annealing, changes in the elemental concentrations in the a-IGZO channel regions and related device performances due to thermal annealing were observed. It was found that thermal annealing introduces a substantial level of oxygen deficiencies in the channel layer accompanying significantly enhanced device performances. The improved device performances are attributed to the oxygen deficiency which is believed to be averaged over the entire structure to function as shallow donors increasing the carrier concentrations. Such a deduction was supported by the changes in the absorption spectra of the a-IGZO films with various thermal histories.

  1. The effect of Ta doping in polycrystalline TiO{sub x} and the associated thin film transistor properties

    SciTech Connect

    Ok, Kyung-Chul Park, Yoseb Park, Jin-Seong E-mail: jsparklime@hanyang.ac.kr; Chung, Kwun-Bum E-mail: jsparklime@hanyang.ac.kr

    2013-11-18

    Tantalum (Ta) is suggested to act as an electron donor and crystal phase stabilizer in titanium oxide (TiO{sub x}). A transition occurs from an amorphous state to a crystalline phase at an annealing temperature above 300 °C in a vacuum ambient. As the annealing temperature increases from 300 °C to 450 °C, the mobility increases drastically from 0.07 cm{sup 2}/Vs to 0.61 cm{sup 2}/Vs. The remarkable enhancement of thin film transistor performance is suggested to be due to the splitting of Ti 3d band orbitals as well as the increase in Ta{sup 5+} ions that can act as electron donors.

  2. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    PubMed

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%. PMID:25399759

  3. Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability

    SciTech Connect

    Fakhri, M.; Theisen, M.; Behrendt, A.; Görrn, P.; Riedl, T.

    2014-06-23

    Top gated metal-oxide thin-film transistors (TFTs) provide two benefits compared to their conventional bottom-gate counterparts: (i) The gate dielectric may concomitantly serve as encapsulation layer for the TFT channel. (ii) Damage of the dielectric due to high-energetic particles during channel deposition can be avoided. In our work, the top-gate dielectric is prepared by ozone based atomic layer deposition at low temperatures. For ultra-low gas permeation rates, we introduce nano-laminates of Al{sub 2}O{sub 3}/ZrO{sub 2} as dielectrics. The resulting TFTs show a superior environmental stability even at elevated temperatures. Their outstanding stability vs. bias stress is benchmarked against bottom-gate devices with encapsulation.

  4. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    SciTech Connect

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is the highest mobility from SMDPPEH ever reported.

  5. Low power low temperature poly-Si thin-film transistor shift register with DC-type output driver

    NASA Astrophysics Data System (ADS)

    Song, Seok-Jeong; Kim, Byung Hoon; Jang, Jin; Nam, Hyoungsik

    2015-09-01

    This paper demonstrates a low power DC-type low temperature poly-Si (LTPS) thin-film transistor (TFT) shift register that consists of nine TFTs and one bootstrapping capacitor. The proposed circuit connects large size pull-up TFTs of output drivers to positive supply instead of alternating clock signals in order to reduce substantially the power consumption of clock drivers. The SPICE simulation ensures that the variable overlap intervals can be programmed by the delay between clock signals and the overall power consumption of a DC-type circuit can be reduced to 45% of an AC-type one for a full-HD display. The operation of a proposed structure is also verified with a fabricated 16-stage gate driver.

  6. Enhanced mobility of Li-doped ZnO thin film transistors fabricated by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jeon, Hye-ji; Lee, Seul-Gi; Kim, H.; Park, Jin-Seong

    2014-05-01

    Mist chemical vapor deposition (mist-CVD)-processed, lithium (Li)-doped ZnO thin film transistors (TFTs) are investigated. Li doping significantly increases the field-effect mobility in TFTs up to ˜100 times greater than that of undoped ZnO. The addition of Li into mist-CVD-grown ZnO semiconductors leads to improved film quality, which results from the enhanced crystallinity and reduced defect states, including oxygen vacancies. Our results suggest that Li doping of ZnO-based oxide semiconductors could serve as an effective strategy for high-performance, mist-CVD-processed oxide TFTs with low-cost and low-temperature fabrication.

  7. Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Jang, Jongsu; Lee, Changhee; Hong, Yongtaek

    2009-11-01

    We report the effects of lithium (Li) doping on the performance and environmental stability of solution processed zinc oxide (ZnO) thin film transistors (TFTs). It was found that appropriate amount of Li doping significantly reduced the background conductivity of ZnO films and also improved the orientation of ZnO crystallites along the c-axis. A highest field-effect mobility of 3.07 cm2/V s was found for the 5 at. % Li-doped ZnO TFTs. However, 15 and 25 at. % Li-doped ZnO TFTs showed good environmental stability of Ion/Ioff ratio with reasonable field-effect mobility.

  8. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    SciTech Connect

    Jo, Jeong-Wan; Park, Sung Kyu E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon E-mail: skpark@cau.ac.kr

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  9. Low-voltage and hysteresis-free organic thin-film transistors employing solution-processed hybrid bilayer gate dielectrics

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun

    2014-07-01

    This study presents a promising approach to realize low-voltage (<3 V) organic thin-film transistors (OTFTs) exhibiting improved electrical and optical stability. Such device performance results from the use of solution-processed hybrid bilayer gate dielectrics consisting of zirconium dioxide (high-k dielectric) and amorphous fluoropolymer, CYTOP® (low-k dielectric). Employing a very thin amorphous fluoropolymer film reduces interfacial defect-states by repelling water molecules and other aqueous chemicals from an organic semiconductor active layer due to the hydrophobic surface-property. The chemically clean interface, stemming from decrease in density of trap states improves all the key device properties such as field-effect mobility, threshold voltage, and sub-threshold swing. Furthermore, degradation by electrical bias-stress and photo-induced hysteresis were suppressed in OTFTs employing hybrid bilayer gate dielectrics.

  10. Atmospheric Pressure Micro-Thermal-Plasma-Jet Crystallization of Amorphous Silicon Strips for High-Performance Thin Film Transistor Fabrication

    NASA Astrophysics Data System (ADS)

    Morisaki, Seiji; Nakatani, Taichi; Shin, Ryota; Higashi, Seiichiro

    2015-09-01

    Zone melting recrystallization (ZMR) of amorphous silicon (a-Si) strips by micro-thermal-plasma-jet (u-TPJ) irradiation is quite effective to suppress grain boundaries (GBs) except sigma 3 coincidence site lattice (CSL). Intra-grain defects in 1 μm wide strips were significantly reduced by suppressing the agglomeration of molten Si with low temperature condition around melting point of crystalline Si. Thin film transistors (TFTs), using optimized ZMR condition by scanning speed of 1500 mm/s demonstrated extremely high performance with field effect mobility (uFE) of 443 cm2/Vs and swing factor (S) of 210 mV/dec. Part of this work was supported by the Research Institute for Nanodevice and Bio Systems (RNBS), Hiroshima University.

  11. Air-stable n-type organic thin-film transistor array and high gain complementary inverter on flexible substrate

    NASA Astrophysics Data System (ADS)

    Fujisaki, Yoshihide; Nakajima, Yoshiki; Kumaki, Daisuke; Yamamoto, Toshihiro; Tokito, Shizuo; Kono, Takahiro; Nishida, Jun-ichi; Yamashita, Yoshiro

    2010-09-01

    Air-stable n-type organic thin-film transistor (TFT) arrays and a complementary inverter circuit were fabricated on a flexible substrate. A benzobis(thiadiazole) (BBT) derivative-based TFT showed excellent air- stability and performances such as an electron mobility of over 0.1 cm2/V s, a large ON/OFF ratio over 108 when combined with a cross-linkable olefin-type polymer gate dielectric. In addition, an organic complementary inverter that combined the BBT derivative and a pentacene TFT demonstrated a sharp switching behavior and a high gain of over 150. We attribute these excellent characteristics to a combination of the low-lying lowest unoccupied molecular orbital level of n-type semiconductor material and the low interface trap of the gate dielectric.

  12. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  13. Leakage Current Suppression on Metal-Induced Laterally Crystallized Polycrystalline Silicon Thin-Film Transistors by Asymmetrically Deposited Nickel

    NASA Astrophysics Data System (ADS)

    Byun, Chang Woo; Son, Se Wan; Lee, Yong Woo; Hyo Park, Jae; Vakilipour Takaloo, Ashkan; Joo, Seung Ki

    2013-10-01

    The electrical performance of low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) fabricated by metal-induced lateral crystallization (MILC) is greatly affected by metal catalyst contaminations, such as Ni and Ni silicide trapped in the channel, since they concentrate in front of laterally grown crystallites. In the present work, the effect of the MILC/MILC boundary (MMB) on MILC polycrystalline silicon (poly-Si) TFTs is investigated by the comparison of MILC poly-Si TFTs with MMB at the center of the channel, and equivalent TFTs with MMB at a position ejected from the channel. The MMB location was controlled by the Ni catalyst position. Both a low off-state leakage current and a free from short channel effect (kink effect) were observed in high electric-field conditions. Furthermore, the field-effect mobility and drain current noise were drastically improved by ejecting the MILC boundary in the source direction.

  14. Physical/chemical properties of tin oxide thin film transistors prepared using plasma-enhanced atomic layer deposition

    SciTech Connect

    Lee, Byung Kook; Jung, Eunae; Kim, Seok Hwan; Moon, Dae Chul; Lee, Sun Sook; Park, Bo Keun; Hwang, Jin Ha; Chung, Taek-Mo; Kim, Chang Gyoun; An, Ki-Seok

    2012-10-15

    Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO{sub 2}. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 10{sup 6} while the device mobility values were increased from 2.31 cm{sup 2}/V s to 6.24 cm{sup 2}/V s upon increasing the deposition temperature of the tin oxide films.

  15. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hwang, Ah Young; Kim, Sang Tae; Ji, Hyuk; Shin, Yeonwoo; Jeong, Jae Kyeong

    2016-04-01

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm2/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (VTH) of 1.5 V, and ION/OFF ratio of ˜107. A significant improvement in the field-effect mobility (up to ˜33.5 cm2/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, VTH, or ION/OFF ratio due to the presence of a highly ordered microstructure.

  16. Transparent, high-performance thin-film transistors with an InGaZnO/aligned-SnO2 -nanowire composite and their application in photodetectors.

    PubMed

    Liu, Xingqiang; Liu, Xi; Wang, Jingli; Liao, Chongnan; Xiao, Xiangheng; Guo, Shishang; Jiang, Changzhong; Fan, Zhiyong; Wang, Ti; Chen, Xiaoshuang; Lu, Wei; Hu, Weida; Liao, Lei

    2014-11-19

    A high mobility of 109.0 cm(2) V(-1) s(-1) is obtained by thin-film transistors (TFTs) comprising a composite made by aligning SnO2 nanowires (NWs) in amorphous InGaZnO (a-IGZO) thin films. This composite TFT reaches an on-current density of 61.4 μA μm(-1) with a 10 μm channel length. Its performance surpasses that of single-crystalline InGaZnO and is comparable with that of polycrystalline silicon. PMID:25236580

  17. Thermally deposited Ag-doped CdS thin film transistors with high-k rare-earth oxide Nd{sub 2}O{sub 3} as gate dielectric

    SciTech Connect

    Gogoi, P.

    2013-03-15

    The performance of thermally deposited CdS thin film transistors doped with Ag has been reported. Ag-doped CdS thin films have been prepared using chemical method. High dielectric constant rare earth oxide Nd{sub 2}O{sub 3} has been used as gate insulator. The thin film trasistors are fabricated in coplanar electrode structure on ultrasonically cleaned glass substrates with a channel length of 50 {mu}m. The thin film transistors exhibit a high mobility of 4.3 cm{sup 2} V{sup -1} s{sup -1} and low threshold voltage of 1 V. The ON-OFF ratio of the thin film transistors is found as 10{sup 5}. The TFTs also exhibit good transconductance and gain band-width product of 1.15 Multiplication-Sign 10{sup -3} mho and 71 kHz respectively.

  18. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-01

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge

  19. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  20. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer.

    PubMed

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-28

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (±2 V) and subthreshold swing (SS) (122-161 mV dec(-1)), high effective mobility (up to 17.6-37.7 cm(2) V(-1) s(-1)) and high on/off ratio (10(4)-10(7)). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption. PMID:26847814

  1. A Soluble Dynamic Complex Strategy for the Solution-Processed Fabrication of Organic Thin-Film Transistors of a Boron-Containing Polycyclic Aromatic Hydrocarbon.

    PubMed

    Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro

    2016-09-19

    The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. PMID:27576306

  2. Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Qian, Hui-Min; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Tang, Lan-Feng; Zhou, Dong; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Liao; Huang, Xiao-Ming

    2015-07-01

    The time and temperature dependence of threshold voltage shift under positive-bias stress (PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτstress = 0.72 eV for the PBS process and an average effective energy barrier Eτrecovery = 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

  3. High mobility bottom gate InGaZnO thin film transistors with SiO{sub x} etch stopper

    SciTech Connect

    Kim, Minkyu; Jeong, Jong Han; Lee, Hun Jung; Ahn, Tae Kyung; Shin, Hyun Soo; Park, Jin-Seong; Jeong, Jae Kyeong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-05-21

    The authors report on the fabrication of thin film transistors (TFTs), which use an amorphous indium gallium zinc oxide (a-IGZO) channel, by rf sputtering at room temperature and for which the channel length and width are patterned by photolithography and dry etching. To prevent plasma damage to the active channel, a 100-nm-thick SiO{sub x} layer deposited by plasma enhanced chemical vapor deposition was adopted as an etch stopper structure. The a-IGZO TFT (W/L=10 {mu}m/50 {mu}m) fabricated on glass exhibited a high field-effect mobility of 35.8 cm{sup 2}/V s, a subthreshold gate swing value of 0.59 V/decade, a thrseshold voltage of 5.9 V, and an I{sub on/off} ratio of 4.9x10{sup 6}, which is acceptable for use as the switching transistor of an active-matrix TFT backplane.

  4. The influence of interfacial defects on fast charge trapping in nanocrystalline oxide-semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2016-05-01

    Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.

  5. Characterizing p-channel thin film transistors using ZnO/hydrated polyvinyl alcohol as the conducting channel

    SciTech Connect

    Liau, Leo Chau-Kuang Hsu, Tzu-Hsien; Lo, Pei-Hsuan

    2014-08-11

    We report the characteristics of p-channel thin film transistors (p-TFTs) with ZnO/hydrated polyvinyl alcohol (PVA) (ZnO/PVA) conducting channels. The metal-oxide-semiconductor structure of the p-TFTs was composed of indium tin oxide (ITO)/SiO{sub 2}/ZnO/PVA layers. The TFT was assembled using PVA gel, which was glued to ITO substrates patterned to form source and drain electrodes. The ZnO/PVA composite film acted as an effective conducting film because of the chemisorption reaction at the film interface where free electrons can be generated. The formation of the conducting channel was also affected by V{sub G} applied to the TFT. The ZnO/PVA-based TFTs demonstrated p-channel transistor performance, shown by current-voltage (I-V) data analysis. The electrical parameters of the device were evaluated, including the on/off ratio (∼10{sup 3}), threshold voltage (V{sub th}, −1 V), and subthreshold swing (−2.2 V/dec). The PVA/ZnO-based p-TFTs were fabricated using simple and cost-effective approaches instead of doping methods.

  6. Pulsed laser processing of poly(3,3‴-didodecyl quarter thiophene) semiconductor for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Constantinescu, C.; Rapp, L.; Rotaru, P.; Delaporte, P.; Alloncle, A. P.

    2015-04-01

    We report on the growth of thin solid layers of poly(3,3‴ didodecyl quater thiophene) (PQT-12) by matrix-assisted pulsed laser evaporation (MAPLE), on silicon and quartz substrates. The effects of PQT-12 solubilization in toluene, anisole, 1,2-dichlorobenzene, and a mixture of chlorobenzene and 1,2-dichlorobenzene, are discussed with respect to the MAPLE technique. Different film thicknesses have been grown, and their morphology and optical properties are presented. Thermal analysis studies have been realized to understand and explain the laser-induced photo-thermal effects on the organic semiconductor. Subsequently, micrometric-sized pixels of PQT-12 have been printed by laser-induced forward transfer (LIFT), with the goal to fabricate organic thin-film transistors (OTFT) devices. The influence of the donor films thickness and morphology, in LIFT experiments, is discussed. Electrical characterizations supplement this study, the resulting printed transistors are fully functional and provide field-effect mobility up to 5 × 10-3 cm2 · V-1 · s-1 together with current modulation of 106.

  7. Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring

    PubMed Central

    Cavallari, Marco R.; Izquierdo, José E. E.; Braga, Guilherme S.; Dirani, Ely A. T.; Pereira-da-Silva, Marcelo A.; Rodríguez, Estrella F. G.; Fonseca, Fernando J.

    2015-01-01

    Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1–10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries. PMID:25912354

  8. Addition of ferrocene controls polymorphism and enhances charge mobilities in poly(3-hexylthiophene) thin-film transistors

    NASA Astrophysics Data System (ADS)

    Smith, Brandon; Clark, Michael; Grieco, Christopher; Larsen, Alec; Asbury, John; Gomez, Enrique

    2015-03-01

    Crystalline organic molecules often exhibit the ability to form multiple crystal structures depending on the processing conditions. Exploiting this polymorphism to optimize molecular orbital overlap between adjacent molecules within the unit lattice of conjugated polymers is an approach to enhance charge transport within the material. We have demonstrated the formation of tighter π- π stacking poly(3-hexylthiophene-2,5-diyl) polymorphs in films spin coated from ferrocene-containing solutions using grazing incident X-ray diffraction. As a result, we found that the addition of ferrocene to casting solutions yields thin-film transistors which exhibit significantly higher source-drain current and charge mobilities than neat polymer devices. Insights gleaned from ferrocene/poly(3-hexylthiophene) mixtures can serve as a template for selection and optimization of next generation small molecule/polymer systems possessing greater baseline charge mobilities. Ultimately, the development of such techniques to enhance the characteristics of organic transistors without imparting high costs or loss of advantageous properties will be a critical factor determining the future of organic components within the electronics market.

  9. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbo; Giri, Gaurav; Ayzner, Alexander L.; Zoombelt, Arjan P.; Mannsfeld, Stefan C. B.; Chen, Jihua; Nordlund, Dennis; Toney, Michael F.; Huang, Jinsong; Bao, Zhenan

    2014-01-01

    Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm2 Vs-1 (25 cm2 Vs-1 on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.

  10. Nonvolatile memory characteristics of organic thin film transistors using poly(2-hydroxyethyl methacrylate)-based polymer multilayer dielectric

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chih; Su, Yan-Kuin; Yu, Hsin-Chieh; Huang, Chun-Yuan; Huang, Tsung-Syun

    2011-10-01

    A wide hysteresis width characteristic (memory window) was observed in the organic thin film transistors (OTFTs) using poly(2-hydroxyethyl methacrylate) (PHEMA)-based polymer multilayers. In this study, a strong memory effect was also found in the pentacene-based OTFTs and the electric characteristics were improved by introducing PHEMA/poly(methyl methacrylate) (PMMA)/PHEMA trilayer to replace the conventional PHEMA monolayer or PMMA/PHEMA and PHEMA/PMMA bilayer as the dielectric layers of OTFTs. The memory effect was originated from the electron trapping and slow polarization of the dielectrics. The hydroxyl (-OH) groups inside the polymer dielectric were the main charge storage sites of the electrons. This charge-storage phenomenon could lead to a wide flat-band voltage shift (memory window, △VFB = 22 V) which is essential for the OTFTs' memory-related applications. Moreover, the fabricated transistors also exhibited significant switchable channel current due to the charge-storage and slow charge relaxation.

  11. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs. PMID:9571621

  12. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    PubMed

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications. PMID:26039187

  13. Integrating Epitaxial-Like Pb(Zr,Ti)O3 Thin-Film into Silicon for Next-Generation Ferroelectric Field-Effect Transistor

    PubMed Central

    Park, Jae Hyo; Kim, Hyung Yoon; Jang, Gil Su; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Kiaee, Zohreh; Joo, Seung Ki

    2016-01-01

    The development of ferroelectric random-access memory (FeRAM) technology with control of grain boundaries would result in a breakthrough for new nonvolatile memory devices. The excellent piezoelectric and electrical properties of bulk ferroelectrics are degraded when the ferroelectric is processed into thin films because the grain boundaries then form randomly. Controlling the nature of nucleation and growth are the keys to achieving a good crystalline thin-film. However, the sought after high-quality ferroelectric thin-film has so far been thought to be impossible to make, and research has been restricted to atomic-layer deposition which is extremely expensive and has poor reproducibility. Here we demonstrate a novel epitaxial-like growth technique to achieve extremely uniform and large rectangular-shaped grains in thin-film ferroelectrics by dividing the nucleation and growth phases. With this technique, it is possible to achieve 100-μm large uniform grains, even made available on Si, which is large enough to fabricate a field-effect transistor in each grain. The electrical and reliability test results, including endurance and retention test results, were superior to other FeRAMs reported so far and thus the results presented here constitute the first step toward the development of FeRAM using epitaxial-like ferroelectric thin-films. PMID:27005886

  14. Integrating Epitaxial-Like Pb(Zr,Ti)O3 Thin-Film into Silicon for Next-Generation Ferroelectric Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Kim, Hyung Yoon; Jang, Gil Su; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Kiaee, Zohreh; Joo, Seung Ki

    2016-03-01

    The development of ferroelectric random-access memory (FeRAM) technology with control of grain boundaries would result in a breakthrough for new nonvolatile memory devices. The excellent piezoelectric and electrical properties of bulk ferroelectrics are degraded when the ferroelectric is processed into thin films because the grain boundaries then form randomly. Controlling the nature of nucleation and growth are the keys to achieving a good crystalline thin-film. However, the sought after high-quality ferroelectric thin-film has so far been thought to be impossible to make, and research has been restricted to atomic-layer deposition which is extremely expensive and has poor reproducibility. Here we demonstrate a novel epitaxial-like growth technique to achieve extremely uniform and large rectangular-shaped grains in thin-film ferroelectrics by dividing the nucleation and growth phases. With this technique, it is possible to achieve 100-μm large uniform grains, even made available on Si, which is large enough to fabricate a field-effect transistor in each grain. The electrical and reliability test results, including endurance and retention test results, were superior to other FeRAMs reported so far and thus the results presented here constitute the first step toward the development of FeRAM using epitaxial-like ferroelectric thin-films.

  15. Furan Substituted Diketopyrrolopyrrole and Thienylenevinylene Based Low Band Gap Copolymer for High Mobility Organic Thin Film Transistors

    SciTech Connect

    Sonar, Prashant; Zhuo, Jing-Mei; Zhao, Li-Hong; Lim, Kai-Ming; Chen, Jihua; Rondinone, Adam Justin; Singh, Samarendra; Chua, Lay-Lay; Ho, Peter; Dodabalapur, Ananth

    2012-01-01

    A novel solution processable donor-acceptor (D-A) based low band gap polymer semiconductor poly{l_brace}3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-thienylenevinylene{r_brace} (PDPPF-TVT), was designed and synthesized by a Pd-catalyzed Stille coupling route. An electron deficient furan based diketopyrrolopyrrole (DPP) block and electron rich thienylenevinylene (TVT) donor moiety were attached alternately in the polymer backbone. The polymer exhibited good solubility, film forming ability and thermal stability. The polymer exhibits wide absorption bands from 400 nm to 950 nm (UV-vis-NIR region) with absorption maximum centered at 782 nm in thin film. The optical band gap (E{sub g}{sup opt}) calculated from the polymer film absorption onset is around 1.37 eV. The {pi}-energy band level (ionization potential) calculated by photoelectron spectroscopy in air (PESA) for PDPPF-TVT is around 5.22 eV. AFM and TEM analyses of the polymer reveal nodular terrace morphology with optimized crystallinity after 200 C thermal annealing. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The highest hole mobility of 0.13 cm{sup 2} V{sup -1} s{sup -1} is achieved in bottom gate and top-contact OTFT devices with on/off ratios in the range of 10{sup 6}-10{sup 7}. This work reveals that the replacement of thiophene by furan in DPP copolymers exhibits such a high mobility, which makes DPP furan a promising block for making a wide range of promising polymer semiconductors for broad applications in organic electronics.

  16. Microscopic hole-transfer efficiency in organic thin-film transistors studied with charge-modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyata, Kiyoshi; Tanaka, Shunsuke; Ishino, Yuuta; Watanabe, Kazuya; Uemura, Takafumi; Takeya, Jun; Sugimoto, Toshiki; Matsumoto, Yoshiyasu

    2015-05-01

    While the microscopic transfer properties of carriers are of primary importance for carrier transport of organic semiconductors, the mesoscopic features including the morphologies of grains and the structure of grain boundaries limit the overall carrier transport particularly in polycrystalline organic thin films. Thus the conventional evaluation methods of carrier mobility that rely on macroscopic properties such as I -V curves of devices are not capable to determine carrier transfer probability at the molecular level. Here, we present a method for evaluating the relative strengths of transfer integrals using charge-modulation spectroscopy on thin-film transistors of dinaphtho[2 ,3 -b :2',3'-f ]thieno[3 ,2 -b ]thiophene (DNTT) and its alkylated derivatives (Cn-DNTT, n =8 , 10, and 12). The band edges of absorption spectra of holes at around 1.9 eV show bathochromic shifts with increasing length of alkyl chains introduced at both ends of a DNTT chromophore. Applying a two-dimensional model with Holstein-type Hamiltonians to electronic transitions of holes, we have been able to simulate the features of the absorption band edges observed. The simulations indicate that the bathochromic shifts are due to an increase in the transfer integrals of holes with increasing length of alkyl chains. Thus this analysis confirmed that the subtle changes in the mutual orientations between adjacent DNTT chromophores induced by alkyl chains enhance the microscopic hole transfer rate. Although this fastener effect has been suggested by hole mobility measurements by I -V curves, the spectral analysis in this study gives clear evidence of this effect at the molecular level.

  17. High-performance poly-Si thin film transistors with highly biaxially oriented poly-Si thin films using double line beam continuous-wave laser lateral crystallization

    NASA Astrophysics Data System (ADS)

    Yamano, Masayuki; Kuroki, Shin-Ichiro; Sato, Tadashi; Kotani, Koji

    2014-01-01

    Highly biaxially oriented poly-Si thin films were formed by double-line beam continuous-wave laser lateral crystallization (DLB-CLC). The crystallinities of the DLB-CLC poly-Si thin films were (110), (111), and (211) for the laser scan, transverse, and surface directions, respectively, and an energetically stable Σ3 grain boundary was observed to be dominant. All silicon grains were elongated in the laser scan direction and one-dimensionally very large silicon grains with lengths of more than 100 µm were fabricated. Using these biaxially oriented polycrystalline silicon (poly-Si) films, low-temperature poly-Si TFTs (LTPS-TFTs) were fabricated at low temperatures (≦550 °C) by a metal gate self-aligned process. As a result, a TFT with a high electron field effect mobility of μFE = 450 cm2 V-1 s-1 in a linear region was realized.

  18. High Performance Bottom-Gate-Type Amorphous InGaZnO Flexible Transparent Thin-Film Transistors Deposited on PET Substrates at Low Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Ying; Ye, Wan-Yi; Lin, Yung-Hao; Lou, Li-Ren; Lee, Ching-Ting

    2014-01-01

    The InGaZnO channel layer of bottom-gate-type flexible transparent thin-film transistors was deposited on polyethylene terephthalate substrates using a magnetron radio frequency cosputter system with a single InGaZnO target. The composition of the InGaZnO channel layer was controlled by sputtering at various Ar/O2 gas ratios. A 15-nm-thick SiO y insulator film was used to passivate the InGaZnO channel layer. Much better performances of the passivated devices were obtained, which verified the passivation function. To study the bending stability of the resulting flexible transparent thin-film transistors, a stress test with a bending radius of 1.17 cm for 1,500 s was carried out, which showed a variation in the effective filed-effect mobility and the threshold voltage of the unpassivated and passivated devices being maintained within 10 and 8%, respectively.

  19. Effect of hafnium doping on density of states in dual-target magnetron co-sputtering HfZnSnO thin film transistors

    SciTech Connect

    Huang, Chuan-Xin; Li, Jun Fu, Yi-Zhou; Jiang, Xue-Yin; Zhang, Jian-Hua; Zhang, Zhi-Lin

    2015-11-23

    This study investigates the effect of hafnium doping on the density of states (DOSs) in HfZnSnO thin film transistors fabricated by dual-target magnetron co-sputtering system. The DOSs is extracted by temperature-dependent field-effect measurements, and they decrease from 1.1 × 10{sup 17} to 4.6 × 10{sup 16 }eV/cm{sup 3} with increasing the hafnium concentrations. The behavior of DOSs for the increasing hafnium concentration HfZnSnO thin film transistors can be confirmed by both the reduction of ΔV{sub T} under bias stress and the trapping charges calculated by capacitance voltage measurements. It suggests that the reduction in DOSs due to the hafnium doping is closely related with the bias stability and thermal stability.

  20. Mechanics of silicon nitride thin-film stressors on a transistor-like geometry

    NASA Astrophysics Data System (ADS)

    Reboh, S.; Morin, P.; Hytch, M. J.; Houdellier, F.; Claverie, A.

    2013-10-01

    To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate can reach much higher values than the full sheet reference. This is an important insight for advanced technology nodes where the vertical contribution of such liners is predominant over the horizontal part.

  1. Electron Mobility Exceeding 10 cm(2) V(-1) s(-1) and Band-Like Charge Transport in Solution-Processed n-Channel Organic Thin-Film Transistors.

    PubMed

    Xu, Xiaomin; Yao, Yifan; Shan, Bowen; Gu, Xiao; Liu, Danqing; Liu, Jinyu; Xu, Jianbin; Zhao, Ni; Hu, Wenping; Miao, Qian

    2016-07-01

    Solution-processed n-channel organic thin-film transistors (OTFTs) that exhibit a field-effect mobility as high as 11 cm(2) V(-1) s(-1) at room temperature and a band-like temperature dependence of electron mobility are reported. By comparison of solution-processed OTFTs with vacuum-deposited OTFTs of the same organic semiconductor, it is found that grain boundaries are a key factor inhibiting band-like charge transport. PMID:27151777

  2. Improving the Performance of Organic Thin-Film Transistors by Ion Doping of Ethylene-Glycol-Based Self-Assembled Monolayer Hybrid Dielectrics.

    PubMed

    Dietrich, Hanno; Scheiner, Simon; Portilla, Luis; Zahn, Dirk; Halik, Marcus

    2015-12-22

    Tuning the electrostatics of ethylene-glycol-based self-assembled monolayers (SAMs) by doping with ions is shown. Molecular dynamics simulations unravel binding mechanisms and predict dipole strengths of the doped layers. Additionally, by applying such layers as dielectrics in organic thin-film transistors, the incorporated ions are proven to enhance device performance by lowering the threshold voltage and increasing conductivity. PMID:26524344

  3. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors.

    PubMed

    Liang, Jiajie; Tong, Kwing; Pei, Qibing

    2016-07-01

    A water-based silver-nanowire (AgNW) ink is formulated for screen printing. Screen-printed AgNW patterns have uniform sharp edges, ≈50 μm resolution, and electrical conductivity as high as 4.67 × 10(4) S cm(-1) . The screen-printed AgNW patterns are used to fabricate a stretchable composite conductor, and a fully printed and intrinsically stretchable thin-film transistor array is also realized. PMID:27159406

  4. Small-dose-sensitive X-ray image pixel with HgI2 photoconductor and amorphous oxide thin-film transistor.

    PubMed

    Park, Jae Chul; Jeon, Pyo Jin; Kim, Jin Sung; Im, Seongil

    2015-01-01

    A new X-ray image sensor is demonstrated with an oxide thin-film transistor backplane and HgI2 sensing material. It displays outstanding image quality under a low X-ray exposure and a low electric field. It is promising as a state-of-the-art device to realize highly resolved images at a low X-ray dose for a variety of medical X-ray imaging applications. PMID:24753443

  5. Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor

    NASA Technical Reports Server (NTRS)

    Brown, G. A.; Harrap, V.

    1971-01-01

    Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.

  6. A NOVEL LOW THERMAL BUDGET THIN-FILM POLYSILICON FABRICATION PROCESS FOR LARGE-AREA, HIGH-THROUGHPUT SOLAR CELL PRODUCTION

    SciTech Connect

    Yue Kuo

    2010-08-15

    A novel thin-film poly-Si fabrication process has been demonstrated. This low thermal budget process transforms the single- and multi-layer amorphous silicon thin films into a poly-Si structure in one simple step over a pulsed rapid thermal annealing process with the enhancement of an ultrathin Ni layer. The complete poly-Si solar cell was fabricated in a short period of time without deteriorating the underneath glass substrate. The unique vertical crystallization process including the mechanism is discussed. Influences of the dopant type and process parameters on crystal structure will be revealed. The poly-Si film structure has been proved using TEM, XRD, Raman, and XPS methods. The poly-Si solar cell structure and the performance have been examined. In principle, the new process is potentially applicable to produce large-area thin-film poly-Si solar cells at a high throughput and low cost. A critical issue in this process is to prevent the excessive dopant diffusion during crystallization. Process parameters and the cell structure have to be optimized to achieve the production goal.

  7. Towards solution-processed ambipolar hybrid thin-film transistors based on ZnO nanoparticles and P3HT polymer

    NASA Astrophysics Data System (ADS)

    Diallo, Abdou Karim; Gaceur, Meriem; Berton, Nicolas; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine

    2013-06-01

    Solution-processed n-channel oxide semiconductor thin-film transistors (TFTs) were fabricated using zinc oxide (ZnO) nanoparticles. Polycrystalline fused-ZnO nanoparticle films were produced by spin-coating ZnO nanosphere dispersions following by a subsequent heat treatment. The solution-processable semiconductor ink based on ZnO was prepared by dispersing the synthesized ZnO nanospheres in isopropanol mixed with ethanolamine to various concentrations from 20 to 80 mg/mL. Such concentration dependence on morphology and microstructure of thin films was studied on spin-coated ZnO films by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Spin-coated ZnO films involved as active layers in transistor configuration delivered an almost ideal output characteristic (Id-Vd) with an electron mobility up to 3 × 10-2 cm2/V s. As a p-channel semiconductor, a poly(3-hexylthiophene) (P3HT) solution-processable ink was deposited by spin-coating on top of closely packed ZnO nanoparticles-based films to form an uniform overlying layer. A hybrid (inorganic-organic) interface was formed by the direct contact between ZnO and P3HT leading to carrier redistribution. Such solution-processed hybrid thin-film transistors delivered in air well balanced electron and hole mobilities as 3.9 × 10-5 and 2 × 10-5 cm2/V s, respectively.

  8. Intense pulsed light induced crystallization of a liquid-crystalline polymer semiconductor for efficient production of flexible thin-film transistors.

    PubMed

    Yang, Hee Yeon; Park, Han-Wool; Kim, Soo Jin; Hong, Jae-Min; Kim, Tae Whan; Kim, Do Hwan; Lim, Jung Ah

    2016-02-14

    Here we demonstrated the split-second crystallization of a liquid-crystalline conjugated polymer semiconductor induced by irradiation with intense pulsed white light (IPWL) for the efficient improvement of electrical properties of flexible thin film transistors. A few seconds of IPWL irradiation of poly(didodecylquaterthiophene-alt-didodecylbithiazole) (PQTBTz-C12) thin films generated heat energy through the photo-thermal effect, leading to the crystallization of PQTBTz-C12 and formation of nodule-like nanostructures. The IPWL-induced crystallization of PQTBTz-C12 resulted in a threefold improvement in the field-effect mobility of thin film transistors compared to as-prepared devices. The conformational change of the PQTBTz-C12 chains was found to be strongly related to the irradiation fluence. As a proof-of-concept, the IPWL treatment was successfully applied to the PQTBTz-C12 layer in flexible transistors based on plastic substrates. The performance of these flexible devices was significantly improved after only 0.6 s of IPWL treatment, without deformation of the plastic substrate. PMID:26795202

  9. Plasmon-enhanced photocurrent of Ge-doped InGaO thin film transistors using silver nanoparticles

    SciTech Connect

    Park, Si Jin; Lee, Sang Moo; Kang, Seong Jun; Lee, Kwang-Ho; Park, Jin-Seong

    2015-03-15

    Germanium-doped indium-gallium oxide (GIGO) thin film transistors (TFTs) decorated with silver (Ag) nanoparticles (NPs) were prepared to study the plasmon effect. GIGO films of various thicknesses were deposited on SiO{sub 2}/Si substrates, and Ag NPs (∼25 nm in diameter) were formed using a thermal evaporator and a postannealing process. The Ag NPs effectively absorbed light in the wavelength range of 500 and 600 nm, which corresponds to the plasmonic effect. Due to the plasmon resonance of Ag NPs, a significantly enhanced photocurrent was observed on the devices. The current increased by 348% with exposure to light when the Ag NPs were formed at the interface between the 10-nm-thick GIGO film and SiO{sub 2} substrate. The increased photocurrent revealed the presence of strong coupling between the localized plasmon and electrical carrier of the devices. The results show that the photocurrent of GIGO TFTs can be greatly enhanced when the plasmonic Ag NPs are located in the channel region of the devices.

  10. Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element

    NASA Astrophysics Data System (ADS)

    Elkington, D.; Wasson, M.; Belcher, W.; Dastoor, P. C.; Zhou, X.

    2015-06-01

    The effect of device architecture upon the response of printable enzymatic glucose sensors based on poly(3-hexythiophene) (P3HT) organic thin film transistors is presented. The change in drain current is used as the basis for glucose detection and we show that significant improvements in drain current response time can be achieved by modifying the design of the sensor structure. In particular, we show that eliminating the dielectric layer and reducing the thickness of the active layer reduce the device response time considerably. The results are in good agreement with a diffusion based model of device operation, where an initial rapid dedoping process is followed by a slower doping of the P3HT layer from protons that are enzymatically generated by glucose oxidase (GOX) at the Nafion gate electrode. The fitted diffusion data are consistent with a P3HT doping region that is close to the source-drain electrodes rather than located at the P3HT:[Nafion:GOX] interface. Finally, we demonstrate that further improvements in sensor structure and morphology can be achieved by inkjet-printing the GOX layer, offering a pathway to low-cost printed biosensors for the detection of glucose in saliva.

  11. Investigation of the Gate Bias Stress Instability in ZnO Thin Film Transistors by Low-Frequency Noise Analysis

    NASA Astrophysics Data System (ADS)

    Jeong, Kwang-Seok; Yun, Ho-Jin; Kim, Yu-Mi; Yang, Seung-Dong; Lee, Sang-Youl; Kim, Young-Su; Lee, Hi-Deok; Lee, Ga-Won

    2013-04-01

    To investigate the electrical instability mechanism under the application of gate bias stress and relaxation, the 1/f noise spectra of two different ZnO thin-film transistors (TFTs) were analyzed. In terms of gate bias dependence (SIDS/IDS), both devices followed a mobility fluctuation model based on the traps in their channel layers prior to and after stress. Device A (channel thickness: 20 nm), recovered its initial noise parameter (αapp) after relaxation, in exact agreement with the current-voltage (I-V) measurement results; this shows that in device A, the dominant phenomenon under the application of stress was temporary charge trapping at grain boundary traps. However, in device B (channel thickness: 80 nm), αapp did not recover its initial values after relaxation, and transfer parameters, such as VTH, mobility, SS, and Nt, degraded after the gate bias stress. Moreover, after the stress, device B showed a reduced gate insulator breakdown voltage. The electrical degradation seen in device B can be explained by trap creation and/or charge injection near channel/gate oxide interfaces, including those within the channel layer.

  12. Design of an Auto-zeroed, Differential, Organic Thin-film Field-effect Transistor Amplifier for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Binkley, David M.; Verma, Nikhil; Crawford, Robert L.; Brandon, Erik; Jackson, Thomas N.

    2004-01-01

    Organic strain gauge and other sensors require high-gain, precision dc amplification to process their low-level output signals. Ideally, amplifiers would be fabricated using organic thin-film field-effect transistors (OTFT's) adjacent to the sensors. However, OTFT amplifiers exhibit low gain and high input-referred dc offsets that must be effectively managed. This paper presents a four-stage, cascaded differential OTFT amplifier utilizing switched capacitor auto-zeroing. Each stage provides a nominal voltage gain of four through a differential pair driving low-impedance active loads, which provide common-mode output voltage control. p-type pentacence OTFT's are used for the amplifier devices and auto-zero switches. Simulations indicate the amplifier provides a nominal voltage gain of 280 V/V and effectively amplifies a 1-mV dc signal in the presence of 500-mV amplifier input-referred dc offset voltages. Future work could include the addition of digital gain calibration and offset correction of residual offsets associated with charge injection imbalance in the differential circuits.

  13. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times). PMID:26436832

  14. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  15. Performance Enhancement of ZITO Thin-Film Transistors via Graphene Bridge Layer by Sol-Gel Combustion Process.

    PubMed

    Zhang, Jianhua; Dong, Panpan; Gao, Yana; Sheng, Chenhang; Li, Xifeng

    2015-11-01

    In this article, we reported the stacked structure zinc-indium-tin oxide (ZITO) thin-film transistors (TFTs) with graphene nanosheets (GNSs) prepared by solution process. GNSs were used as bridge layer between dual-ZITO layers. The transmission of stacked ZITO/GNSs/ZITO films are more than 80% in the visible region and the resistivity of ZITO films with GNSs bridge layer decreased from 502.9 to 13.4 Ω cm. The solution-processed TFT devices with GNSs bridge layer exhibited a desirable characteristic with a subthreshold slope of 0.25 V/dec and current on-off ratio of 1 × 10(7), and the saturation filed effect mobility is improved to 45.9 cm(2)V(-1)s(-1), which exceeds the mobility values of the pristine ZITO TFTs by one order. These results demonstrate the solution-processed ZITO/GNSs/ZITO TFTs maybe make a further step to achieve high-performance TFTs and show the potential for next-generation applications. PMID:26473579

  16. Influence of an anomalous dimension effect on thermal instability in amorphous-InGaZnO thin-film transistors

    SciTech Connect

    Liu, Kuan-Hsien; Chou, Wu-Ching E-mail: wuchingchou@mail.nctu.edu.tw; Chang, Ting-Chang E-mail: wuchingchou@mail.nctu.edu.tw; Chen, Hua-Mao; Tai, Ya-Hsiang; Tsai, Ming-Yen; Hung, Pei-Hua; Chu, Ann-Kuo; Wu, Ming-Siou; Hung, Yi-Syuan; Hsieh, Tien-Yu; Yeh, Bo-Liang

    2014-10-21

    This paper investigates abnormal dimension-dependent thermal instability in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Device dimension should theoretically have no effects on threshold voltage, except for in short channel devices. Unlike short channel drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, for devices with either a relatively large channel width or a short channel length, the output drain current decreases instead of saturating with an increase in drain voltage. Moreover, the wider the channel and the shorter the channel length, the larger the threshold voltage and output on-state current degradation that is observed. Because of the surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider/shorter channel length devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast I{sub D}-V{sub G} and modulated peak/base pulse time I{sub D}-V{sub D} measurements are utilized to demonstrate the self-heating induced anomalous dimension-dependent threshold voltage variation and on-state current degradation.

  17. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    SciTech Connect

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  18. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    SciTech Connect

    Jo, Kwang-Won; Cho, Won-Ju

    2014-11-24

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV{sub ON}) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress.

  19. Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo

    2016-03-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.

  20. Facile Routes To Improve Performance of Solution-Processed Amorphous Metal Oxide Thin Film Transistors by Water Vapor Annealing.

    PubMed

    Park, Won-Tae; Son, Inyoung; Park, Hyun-Woo; Chung, Kwun-Bum; Xu, Yong; Lee, Taegweon; Noh, Yong-Young

    2015-06-24

    Here, we report on a simple and high-rate oxidization method for producing solution-based compound mixtures of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) metal-oxide semiconductors (MOS) for thin-film transistor (TFT) applications. One of the issues for solution-based MOS fabrication is how to sufficiently oxidize the precursor in order to achieve high performance. As the oxidation rate of solution processing is lower than vacuum-based deposition such as sputtering, devices using solution-processed MOS exhibit relatively poorer performance. Therefore, we propose a method to prepare the metal-oxide precursor upon exposure to saturated water vapor in a closed volume for increasing the oxidization efficiency without requiring additional oxidizing agent. We found that the hydroxide rate of the MOS film exposed to water vapor is lower than when unexposed (≤18%). Hence, we successfully fabricated oxide TFTs with high electron mobility (27.9 cm(2)/V·s) and established a rapid process (annealing at 400 °C for 5 min) that is much shorter than the conventional as-deposited long-duration annealing (at 400 °C for 1 h) whose corresponding mobility is even lower (19.2 cm(2)/V·s). PMID:26043206

  1. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors

    SciTech Connect

    Tari, Alireza Lee, Czang-Ho; Wong, William S.

    2015-07-13

    Bottom-gate thin-film transistors were fabricated by depositing a 50 nm InGaZnO (IGZO) channel layer at 150 °C on three separate gate dielectric films: (1) thermal SiO{sub 2}, (2) plasma-enhanced chemical-vapor deposition (PECVD) SiN{sub x}, and (3) a PECVD SiO{sub x}/SiN{sub x} dual-dielectric. X-ray photoelectron and photoluminescence spectroscopy showed the V{sub o} concentration was dependent on the hydrogen concentration of the underlying dielectric film. IGZO films on SiN{sub x} (high V{sub o}) and SiO{sub 2} (low V{sub o}) had the highest and lowest conductivity, respectively. A PECVD SiO{sub x}/SiN{sub x} dual-dielectric layer was effective in suppressing hydrogen diffusion from the nitride layer into the IGZO and resulted in higher resistivity films.

  2. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    SciTech Connect

    Lee, Ching-Ting Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  3. Contact resistance asymmetry of amorphous indium–gallium–zinc–oxide thin-film transistors by scanning Kelvin probe microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium–gallium–zinc–oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  4. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    PubMed

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition. PMID:26716230

  5. An Investigation of Gate Pulse Induced Degradation in a-InGaZnO Thin Film Transistors.

    PubMed

    Kim, Byeong-Jun; Seo, Jong-Hyun; Choe, Heehwan; Jeon, Jae-Hong

    2015-10-01

    We investigated the effects of pulsed gate bias on degradation of amorphous indium gallium zinc oxide (a-InGaZnO) thin film transistors (TFTs). The waveform composed of 0 V and 20 V produced little degradation, but the waveform composed of -20 V and 0 V produced a considerable degradation on the turn-on current in the transfer characteristics. Those instabilities were found mostly in TFTs of which the concentration of Zn is higher than the other metallic components (In, Ga). In order to explain the anomalous degradation behaviors, we propose a possible degradation model which is different from the conventional model of charge trapping. Our proposed model is related to an increase of acceptor-like states in a-InGaZnO near the source and drain electrodes. More electrons can be trapped there, and the increased potential barrier hinders current flow in the channel. The proposed model can also account for the increased frequency dispersion in C-V characteristics of our a-InGaZnO TFTs after the waveform stress. PMID:26726371

  6. Channel length dependence of negative-bias-illumination-stress in amorphous-indium-gallium-zinc-oxide thin-film transistors

    SciTech Connect

    Um, Jae Gwang; Mativenga, Mallory; Jang, Jin; Migliorato, Piero

    2015-06-21

    We have investigated the dependence of Negative-Bias-illumination-Stress (NBIS) upon channel length, in amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The negative shift of the transfer characteristic associated with NBIS decreases for increasing channel length and is practically suppressed in devices with L = 100-μm. The effect is consistent with creation of donor defects, mainly in the channel regions adjacent to source and drain contacts. Excellent agreement with experiment has been obtained by an analytical treatment, approximating the distribution of donors in the active layer by a double exponential with characteristic length L{sub D} ∼ L{sub n} ∼ 10-μm, the latter being the electron diffusion length. The model also shows that a device with a non-uniform doping distribution along the active layer is in all equivalent, at low drain voltages, to a device with the same doping averaged over the active layer length. These results highlight a new aspect of the NBIS mechanism, that is, the dependence of the effect upon the relative magnitude of photogenerated holes and electrons, which is controlled by the device potential/band profile. They may also provide the basis for device design solutions to minimize NBIS.

  7. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    SciTech Connect

    Jeong, Ho-young; Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong; Mativenga, Mallory; Jang, Jin

    2014-01-13

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.

  8. Influence of an anomalous dimension effect on thermal instability in amorphous-InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Kuan-Hsien; Chang, Ting-Chang; Chou, Wu-Ching; Chen, Hua-Mao; Tsai, Ming-Yen; Wu, Ming-Siou; Hung, Yi-Syuan; Hung, Pei-Hua; Hsieh, Tien-Yu; Tai, Ya-Hsiang; Chu, Ann-Kuo; Yeh, Bo-Liang

    2014-10-01

    This paper investigates abnormal dimension-dependent thermal instability in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Device dimension should theoretically have no effects on threshold voltage, except for in short channel devices. Unlike short channel drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, for devices with either a relatively large channel width or a short channel length, the output drain current decreases instead of saturating with an increase in drain voltage. Moreover, the wider the channel and the shorter the channel length, the larger the threshold voltage and output on-state current degradation that is observed. Because of the surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider/shorter channel length devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast ID-VG and modulated peak/base pulse time ID-VD measurements are utilized to demonstrate the self-heating induced anomalous dimension-dependent threshold voltage variation and on-state current degradation.

  9. Self-Assembled in-Plane-Gate Thin-Film Transistors Gated by WOx Solid-State Electrolytes

    NASA Astrophysics Data System (ADS)

    Zhu, De-Ming; Men, Chuan-Ling; Wan, Xiang; Deng, Chuang; Li, Zhen-Peng

    2013-08-01

    Low-voltage WOx gated indium-zinc-oxide thin-film transistors (TFTs) with in-plane-gate structures are fabricated by using an extremely simplified one-shadow mask method at room temperature. The proton conductive WOx solid-state electrolyte is demonstrated to form an electric-double-layer (EDL) effect associated with a huge capacitance of 0.51 μF/cm2. The special EDL capacitance of the WOx electrolyte is also extended to novel in-plane-gate structure TFTs as the gate dielectric, reducing the operating voltage to 1.8 V. Such TFTs operate at n-type depletion mode with a threshold voltage of -0.5 V, saturation electron mobility of 13.2 cm2/V·s, ON/OFF ratio of 1.7 × 106, subthreshold swing of 110 mV/dec, and low leakage current less than 7 nA. The hysteresis window of the transfer curves is also explained by an unique reaction within the WOx electrolyte.

  10. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance gm change, threshold voltage VT change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  11. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors

    PubMed Central

    Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam

    2013-01-01

    Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a “dream” display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays. PMID:23492854

  12. Nanowire-organic thin film transistor integration and scale up towards developing sensor array for biomedical sensing applications

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Hankins, Phillip T.; Rai, Pratyush; Varadan, Vijay K.

    2010-04-01

    Exploratory research works have demonstrated the capability of conducting nanowire arrays in enhancing the sensitivity and selectivity of bio-electrodes in sensing applications. With the help of different surface manipulation techniques, a wide range of biomolecules have been successfully immobilized on these nanowires. Flexible organic electronics, thin film transistor (TFT) fabricated on flexible substrate, was a breakthrough that enabled development of logic circuits on flexible substrate. In many health monitoring scenarios, a series of biomarkers, physical properties and vital signals need to be observed. Since the nano-bio-electrodes are capable of measuring all or most of them, it has been aptly suggested that a series of electrode (array) on single substrate shall be an excellent point of care tool. This requires an efficient control system for signal acquisition and telemetry. An array of flexible TFTs has been designed that acts as active matrix for controlled switching of or scanning by the sensor array. This array is a scale up of the flexible organic TFT that has been fabricated and rigorously tested in previous studies. The integration of nanowire electrodes to the organic electronics was approached by growing nanowires on the same substrate as TFTs and fl ip chip packaging, where the nanowires and TFTs are made on separate substrates. As a proof of concept, its application has been explored in various multi-focal biomedical sensing applications, such as neural probes for monitoring neurite growth, dopamine, and neuron activity; myocardial ischemia for spatial monitoring of myocardium.

  13. Fabrication and characterization of p+-i-p+ type organic thin film transistors with electrodes of highly doped polymer

    NASA Astrophysics Data System (ADS)

    Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Rosenberg, Richard A.; Niwano, Michio

    2016-04-01

    Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p+-i-p+ type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p+) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) was used as the p-type dopant. A fabricating method of p+-i-p+ OTFTs has been developed by using SiO2 and aluminum films as capping layers for micro-scaled patterning of the p+-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p+-i-p+ OTFTs work with carrier injection through a built-in potential at p+/i interfaces. We found that the p+-i-p+ OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p+-P3HT layers.

  14. Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates

    NASA Astrophysics Data System (ADS)

    Wu, Guodong; Wan, Xiang; Yang, Yi; Jiang, Shuanghe

    2014-11-01

    For conventional thin-film transistors (TFTs), bottom-gate or top-gate configuration is always adopted because the channel current is generally controlled by vertical capacitive coupling. In this article, depending on huge lateral electric-double-layer (EDL) capacitor induced by spatial movement of protons in phosphosilicate glass (PSG) solid electrolyte dielectrics, coplanar-gate indium-zinc-oxide (IZO)-TFTs based on the lateral capacitive coupling were fabricated on bare paper substrates. The PSG solid electrolyte films here were used at the same time as gate dielectrics and smooth buffer layers. These TFTs showed a low-voltage operation of only 1 V with a large field-effect mobility of 13.4 cm2 V-1·s, a high current on/off ratio of 6  ×  106 and a small subthreshold swing of 75 mV/decade. Furthermore, with introducing another coplanar gate, AND logic operation was also demonstrated on the coplanar dual-gate TFTs. These simple lateral-coupling coplanar-gate IZO-TFTs on bare paper substrates are very promising for low-cost portable sensors and bio-electronics.

  15. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V. PMID:24256403

  16. Amorphous silicon thin film transistor active-matrix organic light-emitting diode displays fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan A.

    Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.

  17. Improving the performance of organic thin film transistors formed on a vacuum flash-evaporated acrylate insulator

    SciTech Connect

    Ding, Z. Abbas, G. A.; Assender, H. E.; Morrison, J. J.; Sanchez-Romaguera, V.; Yeates, S. G.; Taylor, D. M.

    2013-12-02

    A systematic investigation has been undertaken, in which thin polymer buffer layers with different ester content have been spin-coated onto a flash-evaporated, cross-linked diacrylate gate-insulator to form bottom-gate, top-contact organic thin-film transistors. The highest device mobilities, ∼0.65 cm{sup 2}/V s and ∼1.00 cm{sup 2}/V s for pentacene and dinaphtho[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene (DNTT), respectively, were only observed for a combination of large-grain (∼1–2 μm) semiconductor morphology coupled with a non-polar dielectric surface. No correlation was found between semiconductor grain size and dielectric surface chemistry. The threshold voltage of pentacene devices shifted from −10 V to −25 V with decreasing surface ester content, but remained close to 0 V for DNTT.

  18. Investigation of the impedance modulation of thin films with a chemically-sensitive field-effect transistor

    NASA Astrophysics Data System (ADS)

    Wiseman, John M.

    1988-12-01

    This study resulted in the design and fabrication of a Chemically-Sensitive Field-Effect Transistor (CHEMFET) with an interdigitated gate electrode structure. The electrical performance of the CHEMFET, both in the time-domain and frequency domain, was evaluated for detecting changes in the molecular structure and chemical composition in three thin films: an epoxy, copper phthalocyanine (CuPc), and acetylcholinesterase (ACHE). The change in the chemical state of a film was manifested as a change in the electrical impedance of the interdigitated gate electrode structure. For the epoxy, its molecular structure changed as a result of the curing reaction. To induce a change in the chemical state of the CuPc and ACHE films they were exposed to part-per billion concentrations of a challenge gas, either nitrogen dioxide (NO2) or the the organophosphorus compound, diisopropyl methylphosphonate (DIMP). The results clearly show that the CHEMFET can detect chemical and structural changes in an epoxy and CuPc film. The sensitivity of the ACHE film was not unequivocally determined due to long term drift in the ACHE film's electrical properties. The most remarkable result of this effort was the demonstration of a unique selectivity feature in the CHEMFET's frequency dependent response to a challenge gas. The examination of the relative changes in the electrical properties of the CHEMFET at different frequencies showed that the CHEMFET can be used to distinguish between NO2 and Dimp EXPOSURE.

  19. Field-induced polymorphous disorder and bias-stress instability of pentacene organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ando, Masahiko; Duffy, Claudia; Winfield, Jessica; Minakata, Takashi; Sirringhaus, Henning

    2008-03-01

    We propose a field-induced polymorphous disorder model to explain bias-stress instability in pentacene organic thin-film transistors Field-effect mobility at 0.7 cm^2/Vs and threshold voltage, Vth, at 0 V were obtained by using highly crystalline zone-casted pentacene semiconductor on benzocyclobutene insulator. Vth shifted up to +25V with positive gate bias-stress at +40 V for 15 hours and recovered after gate bias removal. Vth recovery was drastically accelerated by direct photo-excitation of pentacene and it indicated electrons were trapped in pentacene and not in BCB. After annealing at 130 C in N2, the initial electrical performance were recovered. Micro-Raman spectroscopy of pentacene at the channel revealed that shape of the C-H vibrational peaks at around 1160 cm-2 changed reversibly in accordance with the positive shift and recovery of Vth. Our pentacene films with average d-spacing at 14.3 A were considered to be composed of a mixture (mosaic) of two kind of polymorphs with d-spacing at 14.1 A and 14.5 A. The polymorphous mixture should be disordered by electric field to create electron traps and induce Vth shift.

  20. Rational Hydrogenation for Enhanced Mobility and High Reliability on ZnO-based Thin Film Transistors: From Simulation to Experiment.

    PubMed

    Xu, Lei; Chen, Qian; Liao, Lei; Liu, Xingqiang; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Jiang, Changzhong; Wang, Jinlan; Li, Jinchai

    2016-03-01

    Hydrogenation is one of the effective methods for improving the performance of ZnO thin film transistors (TFTs), which originate from the fact that hydrogen (H) acts as a defect passivator and a shallow n-type dopant in ZnO materials. However, passivation accompanied by an excessive H doping of the channel region of a ZnO TFT is undesirable because high carrier density leads to negative threshold voltages. Herein, we report that Mg/H codoping could overcome the trade-off between performance and reliability in the ZnO TFTs. The theoretical calculation suggests that the incorporation of Mg in hydrogenated ZnO decrease the formation energy of interstitial H and increase formation energy of O-vacancy (VO). The experimental results demonstrate that the existence of the diluted Mg in hydrogenated ZnO TFTs could be sufficient to boost up mobility from 10 to 32.2 cm(2)/(V s) at a low carrier density (∼2.0 × 10(18) cm(-3)), which can be attributed to the decreased electron effective mass by surface band bending. The all results verified that the Mg/H codoping can significantly passivate the VO to improve device reliability and enhance mobility. Thus, this finding clearly points the way to realize high-performance metal oxide TFTs for low-cost, large-volume, flexible electronics. PMID:26856932

  1. High switching speed copper phthalocyanine thin film transistors with cut-off frequency up to 25 kHz

    NASA Astrophysics Data System (ADS)

    Wang, Zeying; Wang, Dong Xing; Zhang, Yongshuang; Wang, Yueyue

    2015-12-01

    The characteristics of high frequency and high speed are demonstrated in vertical structure organic thin film transistors (VOTFTs) fabricated by DC magnetron sputtering and vacuum evaporation. The saturated current-voltage characteristics can be determined by drain-source negative bias voltage. Responsive frequency of the device is as high as 20 kHz when rectangular wave dynamic signal is applied to the gate-source electrode, and switch characteristic time reaches the microsecond. The unsaturated current-voltage characteristics are observed when the drain-source bias voltage is positive. In the condition of VDS = 3 V and VGS = 0 V, the drain-source current IDS is 2.986 × 10-5 A, and the current density is 1.194 mA/cm2. Cut-off frequency fc is 25 kHz when a small sine wave dynamic signal is applied to the gate-source electrode. The volt-ampere characteristic of VOTFTs transfers from linear to nonlinear with increasing of drain-source bias voltage.

  2. Combined photocatalysis and membrane bioreactor for the treatment of feedwater containing thin film transistor-liquid crystal display discharge.

    PubMed

    You, Sheng-Jie; Semblante, Galilee Uy; Chen, Yu-Pu; Chang, Tien-Chin

    2015-01-01

    The nitrogen content of waste water generated by the thin film transistor-liquid crystal display (TFT-LCD) industry is not satisfactorily removed through the conventional aerobic-activated sludge process. In this study, the performance of three reactors – suspended type TiO2 membrane photoreactor (MPR), anoxic/oxic membrane bioreactor (AOMBR), and their combination (MPR-AOMBR) – was evaluated using feedwater containing TFT-LCD discharge. The parameters that maximized monoethanolamine (MEA) removal in the MPR were continuous ultraviolet (UV) irradiation and pH 11. Among the tested loadings, 0.1 g/l of TiO2 promoted MEA removal but degradation rate may further increase with photocatalyst concentration. The nitrified sludge recycle ratio R of the AOMBR was adjusted to 1.5 to minimize the amount of nitrate in the effluent. The AOMBR greatly decreased chemical oxygen demand and MEA, but removed only 32.7% of tetramethyl ammonium hydroxide (TMAH). The MPR was configured as the pre-treatment unit for AOMBR, and the combined MPR-AOMBR has improved TMAH removal by 80.1%. The MPR bolstered performance by decomposing slowly biodegradable compounds, and had no negative effects on denitrification and carbon removal. PMID:25952015

  3. Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors.

    PubMed

    Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam

    2013-01-01

    Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a "dream" display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays. PMID:23492854

  4. Amorphous ZnAlSnO thin-film transistors by a combustion solution process for future displays

    SciTech Connect

    Jiang, Qingjun; Feng, Lisha; Wu, Chuanjia; Sun, Rujie; Lu, Bin; Ye, Zhizhen; Lu, Jianguo; Li, Xifeng

    2015-02-02

    A combustion solution method was developed to fabricate amorphous ZnAlSnO (a-ZATO) for thin-film transistors (TFTs). The properties of a-ZATO films and behaviors of a-ZATO TFTs were studied in detail. An appropriate Al content in the matrix could suppress the formation of oxygen vacancies efficiently and achieve densely amorphous films. The a-ZATO TFTs exhibited acceptable performances, with an on/off current ratio of ∼10{sup 6}, field-effect mobility of 2.33 cm{sup 2}·V{sup −1}·S{sup −1}, threshold voltage of 2.39 V, and subthreshold swing of 0.52 V/decade at an optimal Al content (0.5). The relation between on- and off-resistance of the ZATO TFT was also within the range expected for fast switching devices. More importantly, the introduced Al with an appropriate content had the ability to evidently enhance the device long-term stability under working bias stress and storage durations. The obtained indium- and gallium-free a-ZATO TFTs are very promising for the next-generation displays.

  5. Electrolysis-induced protonation of VO2 thin film transistor for the metal-insulator phase modulation

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2016-02-01

    Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.

  6. Determination of carrier mobility in phenylamine by time-of-flight, dark-injection, and thin film transistor techniques

    NASA Astrophysics Data System (ADS)

    Cheung, C. H.; Kwok, K. C.; Tse, S. C.; So, S. K.

    2008-05-01

    The hole transport property of a phenylamine-based compound, 4, 4',4″-tris(n- (2-naphthyl)-n-phenyl-amino)-triphenylamine, was independently studied by time-of-flight (TOF), dark-injection space-charged-limited-current (DI-SCLC), and thin film transistor (TFT) techniques. With UV-ozone treated gold as the injecting anode, clear DI-SCLC transient peaks were observed over a wide range of electric fields. The hole mobilities evaluated by DI-SCLC experiment were in excellent agreement with the mobilities obtained from the TOF technique. The injection contact was demonstrated to be Ohmic by an independent current-voltage (J-V) experiment. However, with the same injecting electrode, the mobility deduced from the TFT method was found to be 9.8×10-7 cm2/V s, which was about one order of magnitude smaller than the TOF mobility (˜1.2 ×10-5 cm2/V s). The origin of the discrepancy is discussed.

  7. Exposure to volatile organic compounds and kidney dysfunction in thin film transistor liquid crystal display (TFT-LCD) workers.

    PubMed

    Chang, Ta-Yuan; Huang, Kuei-Hung; Liu, Chiu-Shong; Shie, Ruei-Hao; Chao, Keh-Ping; Hsu, Wen-Hsin; Bao, Bo-Ying

    2010-06-15

    Many volatile organic compounds (VOCs) are emitted during the manufacturing of thin film transistor liquid crystal displays (TFT-LCDs), exposure to some of which has been reported to be associated with kidney dysfunction, but whether such an effect exists in TFT-LCD industry workers is unknown. This cross-sectional study aimed to investigate the association between exposure to VOCs and kidney dysfunction among TFT-LCD workers. The results showed that ethanol (1811.0+/-1740.4 ppb), acetone (669.0+/-561.0 ppb), isopropyl alcohol (187.0+/-205.3 ppb) and propylene glycol monomethyl ether acetate (PGMEA) (102.9+/-102.0 ppb) were the four dominant VOCs present in the workplace. The 63 array workers studied had a risk of kidney dysfunction 3.21-fold and 3.84-fold that of 61 cell workers and 18 module workers, respectively. Workers cumulatively exposed to a total level of isopropyl alcohol, PGMEA and propylene glycol monomethyl ether> or =324 ppb-year had a significantly higher risk of kidney dysfunction (adjusted OR=3.41, 95% CI=1.14-10.17) compared with those exposed to <25 ppb-year after adjustment for potential confounding factors. These findings indicated that array workers might be the group at greatest risk of kidney dysfunction within the TFT-LCD industry, and cumulative exposure to specific VOCs might be associated with kidney dysfunction. PMID:20227824

  8. Organic thin film transistor with poly(4-vinylbiphenyl) blended 6,13-bis(triisopropylsilylethynyl)pentacene on propyleneglycolmonomethyletheracetate dielectric surface.

    PubMed

    Kwon, Jae-Hong; Shin, Sang-Il; Choi, Jinnil; Chung, Myung-Ho; Oh, Tae-Yeon; Kim, Kyung-Hwan; Choi, Dong Hoon; Ju, Byeong-Kwon

    2010-05-01

    This paper presents the latest results in the use of soluble materials, such as organic semiconductors (OSCs) and gate-dielectrics, for simplified processing of organic thin film transistors (OTFTs). In this work, the fabrication of a solution-processed OTFT, with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and TIPS-pentacene mixed with poly(4-vinylbiphenyl) (PVBP) as the OSC, and propyleneglycolmonomethyletheracetate (PGMEA) as the gate-dielectric, is described. From electrical measurements, we observed exemplary I-V characteristics for these TFTs. Device performance characteristics have been obtained, including the charge carrier mobility (micro) of 1.47 x 10(-2) cm2Ns, threshold voltage (V(T)) of -11.36 V, current on/off ratio (I(ON/OFF)) of 1.08 x 10(4), sub-threshold swing (SS) of 2.13 V/decade for an OTFT with PVBP blended TIPS-pentacene and micro of 1.39 x 10(-4) cm2/Vs, V(T) of 0.7 V, I(ON/OFF) of 1.64 x 10(3), SS of 4.21 V/decade for an OTFT without polymer binder, individually. PMID:20358921

  9. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  10. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    PubMed

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system. PMID:27455702

  11. Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors.

    PubMed

    Park, Minsuk; Kim, Somin; Kwon, Hyeokjae; Hong, Sukhyun; Im, Seongil; Ju, Sang-Yong

    2016-09-01

    Scalable and simple methods for selective extraction of pure, semiconducting (s) single-walled carbon nanotubes (SWNTs) is of profound importance for electronic and photovoltaic applications. We report a new, one-step procedure to obtain respective large-diameter s- and metallic (m)-SWNT enrichment purity in excess of 99% and 78%, respectively, via interaction between the aromatic dispersing agent and SWNTs. The approach utilizes N-dodecyl isoalloxazine (FC12) as a surfactant in conjunction with sonication and benchtop centrifugation methods. After centrifugation, the supernatant is enriched in s-SWNTs with less carbonaceous impurities, whereas precipitate is enhanced in m-SWNTs. In addition, the use of an increased centrifugal force enhances both the purity and population of larger diameter s-SWNTs. Photoinduced energy transfer from FC12 to SWNTs is facilitated by respective electronic level alignment. Owing to its peculiar photoreduction capability, FC12 can be employed to precipitate SWNTs upon UV irradiation and observe absorption of higher optical transitions of SWNTs. A thin-film transistor prepared from a dispersion of enriched s-SWNTs was fabricated to verify electrical performance of the sorted sample and was observed to display p-type conductance with an average on/off ratio over 10(6) and an average mobility over 10 cm(2)/V·s. PMID:27538495

  12. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    NASA Astrophysics Data System (ADS)

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-05-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V‑1 sec‑1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.

  13. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric.

    PubMed

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-01-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm(2) V(-1) sec(-)1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 10(4)), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121

  14. Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element

    SciTech Connect

    Elkington, D. Wasson, M.; Belcher, W.; Dastoor, P. C.; Zhou, X.

    2015-06-29

    The effect of device architecture upon the response of printable enzymatic glucose sensors based on poly(3-hexythiophene) (P3HT) organic thin film transistors is presented. The change in drain current is used as the basis for glucose detection and we show that significant improvements in drain current response time can be achieved by modifying the design of the sensor structure. In particular, we show that eliminating the dielectric layer and reducing the thickness of the active layer reduce the device response time considerably. The results are in good agreement with a diffusion based model of device operation, where an initial rapid dedoping process is followed by a slower doping of the P3HT layer from protons that are enzymatically generated by glucose oxidase (GOX) at the Nafion gate electrode. The fitted diffusion data are consistent with a P3HT doping region that is close to the source-drain electrodes rather than located at the P3HT:[Nafion:GOX] interface. Finally, we demonstrate that further improvements in sensor structure and morphology can be achieved by inkjet-printing the GOX layer, offering a pathway to low-cost printed biosensors for the detection of glucose in saliva.

  15. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors.

    PubMed

    Swisher, Sarah L; Volkman, Steven K; Subramanian, Vivek

    2015-05-20

    Semiconducting metal oxides (ZnO, SnO2, In2O3, and combinations thereof) are a uniquely interesting family of materials because of their high carrier mobilities in the amorphous and generally disordered states, and solution-processed routes to these materials are of particular interest to the printed electronics community. Colloidal nanocrystal routes to these materials are particularly interesting, because nanocrystals may be formulated with tunable surface properties into stable inks, and printed to form devices in an additive manner. We report our investigation of an In2O3 nanocrystal synthesis for high-performance solution-deposited semiconductor layers for thin-film transistors (TFTs). We studied the effects of various synthesis parameters on the nanocrystals themselves, and how those changes ultimately impacted the performance of TFTs. Using a sintered film of solution-deposited In2O3 nanocrystals as the TFT channel material, we fabricated devices that exhibit field effect mobility of 10 cm(2)/(V s) and an on/off current ratio greater than 1 × 10(6). These results outperform previous air-stable nanocrystal TFTs, and demonstrate the suitability of colloidal nanocrystal inks for high-performance printed electronics. PMID:25915094

  16. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    PubMed Central

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-01-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V−1 sec−1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121

  17. Adopting Novel Strategies in Achieving High-Performance Single-Layer Network Structured ZnO Nanorods Thin Film Transistors.

    PubMed

    Park, Ji-Hyeon; Park, Jee Ho; Biswas, Pranab; Kwon, Do Kyun; Han, Sun Woong; Baik, Hong Koo; Myoung, Jae-Min

    2016-05-11

    High-performance, solution-processed transparent and flexible zinc oxide (ZnO) nanorods (NRs)-based single layer network structured thin film transistors (TFTs) were developed on polyethylene terephthalate (PET) substrate at 100 °C. Keeping the process-temperature under 100 °C, we have improved the device performance by introducing three low temperature-based techniques; regrowing ZnO to fill the void spaces in a single layer network of ZnO NRs, passivating the back channel with polymer, and adopting ZrO2 as the high-k dielectric. Notably, high-k amorphous ZrO2 was synthesized and deposited using a novel method at an unprecedented temperature of 100 °C. Using these methods, the TFTs exhibited a high mobility of 1.77 cm(2)/V·s. An insignificant reduction of 2.18% in mobility value after 3000 cycles of dynamic bending at a radius of curvature of 20 mm indicated the robust mechanical nature of the flexible ZnO NRs SLNS TFTs. PMID:27096706

  18. AFM, ellipsometry, XPS and TEM on ultra-thin oxide/polymer nanocomposite layers in organic thin film transistors.

    PubMed

    Fian, A; Haase, A; Stadlober, B; Jakopic, G; Matsko, N B; Grogger, W; Leising, G

    2008-03-01

    Here we report on the fabrication and characterization of ultra-thin nanocomposite layers used as gate dielectric in low-voltage and high-performance flexible organic thin film transistors (oTFTs). Reactive sputtered zirconia layers were deposited with low thermal exposure of the substrate and the resulting porous oxide films with high leakage currents were spin-coated with an additional layer of poly-alpha-methylstyrene (P alphaMS). After this treatment a strong improvement of the oTFT performance could be observed; leakage currents could be eliminated almost completely. In ellipsometric studies a higher refractive index of the ZrO(2)/P alphaMS layers compared to the "as sputtered" zirconia films could be detected without a significant enhancement of the film thickness. Atomic force microscopy (AFM) measurements of the surface topography clearly showed a surface smoothing after the P alphaMS coating. Further studies with X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) also indicated that the polymer definitely did not form an extra layer. The polymer chains rather (self-)assemble in the nano-scaled interspaces of the porous oxide film giving an oxide-polymer "nanocomposite" with a high oxide filling grade resulting in high dielectric constants larger than 15. The dielectric strength of more than 1 MV cm(-1) is in good accordance with the polymer-filled interspaces. PMID:17952415

  19. Molds and Resists Studies for Nanoimprint Lithography of Electrodes in Low-Voltage Polymer Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Cavallari, Marco Roberto; Zanchin, Vinicius Ramos; Pojar, Mariana; Seabra, Antonio Carlos; de Assumpção Pereira-da-Silva, Marcelo; Fonseca, Fernando Josepetti; de Andrade, Adnei Melges

    2014-05-01

    A low-cost patterning of electrodes was investigated looking forward to replacing conventional photolithography for the processing of low-operating voltage polymeric thin-film transistors. Hard silicon, etched by sulfur hexafluoride and oxygen gas mixture, and flexible polydimethylsiloxane imprinting molds were studied through atomic force microscopy (AFM) and field emission gun scanning electron microscopy. The higher the concentration of oxygen in reactive ion etching, the lower the etch rate, sidewall angle, and surface roughness. A concentration around 30 % at 100 mTorr, 65 W and 70 sccm was demonstrated as adequate for submicrometric channels, presenting a reduced etch rate of 176 nm/min. Imprinting with positive photoresist AZ1518 was compared to negative SU-8 2002 by optical microscopy and AFM. Conformal results were obtained only with the last resist by hot embossing at 120 °C and 1 kgf/cm2 for 2 min, followed by a 10 min post-baking at 100 °C. The patterning procedure was applied to define gold source and drain electrodes on oxide-covered substrates to produce bottom-gate bottom-contact transistors. Poly(3-hexylthiophene) (P3HT) devices were processed on high-κ titanium oxynitride (TiO x N y ) deposited by radiofrequency magnetron sputtering over indium tin oxide-covered glass to achieve low-voltage operation. Hole mobility on micrometric imprinted channels may approach amorphous silicon (˜0.01 cm2/V s) and, since these devices operated at less than 5 V, they are not only suitable for electronic applications but also as sensors in aqueous media.

  20. Electrolyte Gated Transistors based on Solution Processed Mesoporous Tungsten Trioxide Thin Films

    NASA Astrophysics Data System (ADS)

    Santato, Clara; Isik, Dilek; Cicoira, Fabio

    2012-02-01

    Tungsten trioxide (WO3) is an important material for electrochromic displays, gas sensors, and photoelectrochemical cells. Despite intensive research efforts, the charge transport properties of nanostructured WO3 films, as well as of other metal oxide films, are still largely undiscovered. Electrolyte gating provides a powerful platform to study the charge transport properties of nanostructured WO3 films permitting to achieve high charge density regimes. In turn, this opens the possibility to improve the film transport properties for a wide range of applications. Here we report on electrolyte gated transistors making use of WO3 films as the semiconductor and H2SO4(aq) 1M as the gate dielectric. WO3 films, prepared by sol-gel method, were deposited on source and drain patterned ITO substrates. The liquid electrolyte was confined using a PDMS well. Atomic force microscopy and scanning electron microscopy images show a mesoporous film structure where the electrolyte can easily penetrate. The mesoporous structure permits an efficient electrolyte gating compared to bulk WO3 films because of the higher surface available for electrical double layers, which are the underpinning of the electrolyte gating. Upon application of gate bias in the 0-1 V range, with an applied drain voltage ranging between 0-1 V, we were able to tune the conductivity in the WO3 transistor channel: electrolyte gating of the films led to clear transistor behaviour. Electrolyte gating of WO3 electrochromism is presently under investigation.

  1. Analysis of carrier transport in quaterrylene thin film transistors formed by ultraslow vacuum deposition

    NASA Astrophysics Data System (ADS)

    Hayakawa, Ryoma; Petit, Matthieu; Chikyow, Toyohiro; Wakayama, Yutaka

    2008-07-01

    Quaterrylene field-effect transistors (FETs) with top-contact Au electrodes were formed on a SiO2 (200nm )/p-Si (001) substrate by an ultraslow vacuum deposition technique, and their carrier transport was investigated. The quaterrylene FETs showed typical p-channel transistor behavior. The dependence of carrier mobility on grain size, film thickness, and temperature was examined to gain insight into the transport mechanism. Carrier mobility increased with grain size, showing that carrier transport was limited by grain boundaries. Temperature dependence in the range from 300to60K was divided into two distinct behaviors. Above 210K, carrier mobility showed thermally activated behavior, with energies of 100-150meV required to overcome the potential barriers at grain boundaries. In contrast, the conduction mechanism became tunnel-transfer-like below 210K. In the low temperature range, tunnel transfer through potential barriers at grain boundaries predominated over the thermally activated type. The change in carrier mobility was correlated with film thickness. Carrier mobility rose sharply with increasing thickness in the two-dimensional (2D) growth region, followed by saturation at 3 or 4 ML, where the growth process changed from 2D to three-dimensional mode. This result reveals that the first few layers of 2D growth work as an effective transistor channel. Enhancement in 2D growth in the vertical direction is crucial to improving carrier transport.

  2. Microstructural control of charge transport in organic blend thin-film transistors

    SciTech Connect

    Hunter, Simon; Chen, Jihua; Anthopoulos, Thomas D.

    2014-07-17

    In this paper, the charge-transport processes in organic p-channel transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT), the polymer poly(triarylamine)(PTAA) and blends thereof are investigated. In the case of blend films, lateral conductive atomic force microscopy in combination with energy filtered transmission electron microscopy are used to study the evolution of charge transport as a function of blends composition, allowing direct correlation of the film's elemental composition and morphology with hole transport. Low-temperature transport measurements reveal that optimized blend devices exhibit lower temperature dependence of hole mobility than pristine PTAA devices while also providing a narrower bandgap trap distribution than pristine diF-TES ADT devices. These combined effects increase the mean hole mobility in optimized blends to 2.4 cm2/Vs; double the value measured for best diF-TES ADT-only devices. The bandgap trap distribution in transistors based on different diF-TES ADT:PTAA blend ratios are compared and the act of blending these semiconductors is seen to reduce the trap distribution width yet increase the average trap energy compared to pristine diF-TES ADT-based devices. In conclusion, our measurements suggest that an average trap energy of <75 meV and a trap distribution of <100 meV is needed to achieve optimum hole mobility in transistors based on diF-TES ADT:PTAA blends.

  3. Microstructural control of charge transport in organic blend thin-film transistors

    DOE PAGESBeta

    Hunter, Simon; Chen, Jihua; Anthopoulos, Thomas D.

    2014-07-17

    In this paper, the charge-transport processes in organic p-channel transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT), the polymer poly(triarylamine)(PTAA) and blends thereof are investigated. In the case of blend films, lateral conductive atomic force microscopy in combination with energy filtered transmission electron microscopy are used to study the evolution of charge transport as a function of blends composition, allowing direct correlation of the film's elemental composition and morphology with hole transport. Low-temperature transport measurements reveal that optimized blend devices exhibit lower temperature dependence of hole mobility than pristine PTAA devices while also providing a narrower bandgap trap distribution thanmore » pristine diF-TES ADT devices. These combined effects increase the mean hole mobility in optimized blends to 2.4 cm2/Vs; double the value measured for best diF-TES ADT-only devices. The bandgap trap distribution in transistors based on different diF-TES ADT:PTAA blend ratios are compared and the act of blending these semiconductors is seen to reduce the trap distribution width yet increase the average trap energy compared to pristine diF-TES ADT-based devices. In conclusion, our measurements suggest that an average trap energy of <75 meV and a trap distribution of <100 meV is needed to achieve optimum hole mobility in transistors based on diF-TES ADT:PTAA blends.« less

  4. Silicon on insulator self-aligned transistors

    DOEpatents

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  5. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  6. Improved contact resistance in ReSe2 thin film field-effect transistors

    NASA Astrophysics Data System (ADS)

    Corbet, Chris M.; Sonde, Sushant S.; Tutuc, Emanuel; Banerjee, Sanjay K.

    2016-04-01

    We report the fabrication and device characteristics of exfoliated, few-layer, ReSe2 field effect transistors (FET) and a method to improve contact resistance by up to three orders of magnitude using ultra-high-vacuum annealing (UHV). Many devices were studied in the absence of light and we found an average contact of 750 Ω . cm after UHV treatment. The median FET metrics were similar to other transition metal dichalcogenides: field effect mobility ˜6.7 cm2/V . s, subthreshold swing ˜1.2 V/decade, and Ion/Ioff ˜ 105. In devices with low Rc current saturation was observed and is attributed to injection limited transport.

  7. Study on electrical parameter to nano thin-film transistor under GPa-order stress

    NASA Astrophysics Data System (ADS)

    Ma, Tieying; Yang, Sen; Liu, Yidong; Wang, Huiquan

    2015-07-01

    Nano thinfilm transistor (TFT) is fabricated at the root of a beam, which becomes the maximum stress area when the beam is bent. In this process, a probe is used to bend the beam and produce GPa-order mechanical stress. The electrical characteristic of TFT under different GPa stress has been studied. Threshold voltage VT, relative drain current change ΔI/I, and transconductance gm present a nonlinear relationship with increasing GPa-order stress. Analyzed from experimental results, channel piezoresistivity effect below 1.82 GPa stress, energy valley splitting, large change of valence effective mass from 1.82 to 2.08 GPa, and interface effect above 2.08 GPa are the factors of nonlinear change of parameter with GPa-order mechanical stress.

  8. Indium oxide thin-film transistors processed at low temperature via ultrasonic spray pyrolysis.

    PubMed

    Faber, Hendrik; Lin, Yen-Hung; Thomas, Stuart R; Zhao, Kui; Pliatsikas, Nikos; McLachlan, Martyn A; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2015-01-14

    The use of ultrasonic spray pyrolysis is demonstrated for the growth of polycrystalline, highly uniform indium oxide films at temperatures in the range of 200-300 °C in air using an aqueous In(NO3)3 precursor solution. Electrical characterization of as-deposited films by field-effect measurements reveals a strong dependence of the electron mobility on deposition temperature. Transistors fabricated at ∼250 °C exhibit optimum performance with maximum electron mobility values in the range of 15-20 cm(2) V (-1) s(-1) and current on/off ratio in excess of 10(6). Structural and compositional analysis of as-grown films by means of X-ray diffraction, diffuse scattering, and X-ray photoelectron spectroscopy reveal that layers deposited at 250 °C are denser and contain a reduced amount of hydroxyl groups as compared to films grown at either lower or higher temperatures. Microstructural analysis of semiconducting films deposited at 250 °C by high resolution cross-sectional transmission electron microscopy reveals that as-grown layers are extremely thin (∼7 nm) and composed of laterally large (30-60 nm) highly crystalline In2O3 domains. These unique characteristics of the In2O3 films are believed to be responsible for the high electron mobilities obtained from transistors fabricated at 250 °C. Our work demonstrates the ability to grow high quality low-dimensional In2O3 films and devices via ultrasonic spray pyrolysis over large area substrates while at the same time it provides guidelines for further material and device improvements. PMID:25490965

  9. Artificial neural systems using memristive synapses and nano-crystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Cantley, Kurtis D.

    Future computer systems will not rely solely on digital processing of inputs from well-defined data sets. They will also be required to perform various computational tasks using large sets of ill-defined information from the complex environment around them. The most efficient processor of this type of information known today is the human brain. Using a large number of primitive elements (˜1010 neurons in the neocortex) with high parallel connectivity (each neuron has ˜104 synapses), brains have the remarkable ability to recognize and classify patterns, predict outcomes, and learn from and adapt to incredibly diverse sets of problems. A reasonable goal in the push to increase processing power of electronic systems would thus be to implement artificial neural networks in hardware that are compatible with today's digital processors. This work focuses on the feasibility of utilizing non-crystalline silicon devices in neuromorphic electronics. Hydrogenated amorphous silicon (a-Si:H) nanowire transistors with Schottky barrier source/drain junctions, as well as a-Si:H/Ag resistive switches are fabricated and characterized. In the transistors, it is found that the on-current scales linearly with the effective width W eff of the channel nanowire array down to at least 20 nm. The solid-state electrolyte resistive switches (memristors) are shown to exhibit the proper current-voltage hysteresis. SPICE models of similar devices are subsequently developed to investigate their performance in neural circuits. The resulting SPICE simulations demonstrate spiking properties and synaptic learning rules that are incredibly similar to those in biology. Specifically, the neuron circuits can be designed to mimic the firing characteristics of real neurons, and Hebbian learning rules are investigated. Finally, some applications are presented, including associative learning analogous to the classical conditioning experiments originally performed by Pavlov, and frequency and pattern

  10. High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature

    PubMed Central

    Xiao, Peng; Dong, Ting; Lan, Linfeng; Lin, Zhenguo; Song, Wei; Luo, Dongxiang; Xu, Miao; Peng, Junbiao

    2016-01-01

    Thin-film transistors (TFTs) with zirconium-doped indium oxide (ZrInO) semiconductor were successfully fabricated by an all-DC-sputtering method at room temperature. The ZrInO TFT without any intentionally annealing steps exhibited a high saturation mobility of 25.1 cm2V−1s−1. The threshold voltage shift was only 0.35 V for the ZrInO TFT under positive gate bias stress for 1 hour. Detailed studies showed that the room-temperature ZrInO thin film was in the amorphous state with low carrier density because of the strong bonding strength of Zr-O. The room-temperature process is attractive for its compatibility with almost all kinds of the flexible substrates, and the DC sputtering process is good for the production efficiency improvement and the fabrication cost reduction. PMID:27118177

  11. Breakdown voltage enhancement of AlGaN/GaN high electron mobility transistors by polyimide/chromium composite thin film passivation

    NASA Astrophysics Data System (ADS)

    Futong, Chu; Chao, Chen; Xingzhao, Liu

    2014-03-01

    A novel AlGaN/GaN high electric mobility transistor (HEMT) with polyimide (PI)/chromium (Cr) as the passivation layer is proposed for enhancing breakdown voltage and its DC performance is also investigated. The Cr nanoparticles firstly introduced in PI thin films by the co-evaporation can be used to increase the permittivity of PI film. The high-permittivity PI/Cr passivation acting as field plate can suppress the fringing electric field peak at the drain-side edge of the gate electrode. This mechanism is demonstrated in accord with measured results. The experimental results show that in comparison with the AlGaN/GaN HEMTs without passivation, the breakdown voltage of HEMTs with the PI/Cr composite thin films can be significantly improved, from 122 to 248 V.

  12. Surface grafting of octylamine onto poly(ethylene-alt-maleic anhydride) gate insulators for low-voltage DNTT thin-film transistors.

    PubMed

    Choe, Yun-Seo; Yi, Mi Hye; Kim, Ji-Heung; Kim, Yun Ho; Jang, Kwang-Suk

    2016-03-28

    This study investigates a spin-coating method for modifying the surface properties of a poly(ethylene-alt-maleic anhydride) (PEMA) gate insulator. The 60 nm-thick PEMA thin film exhibits excellent electrical insulating properties, and its surface properties could be easily modified by surface grafting of octylamine. Due to surface treatment via spin-coating, the surface energy of the PEMA gate insulator decreased, the crystal quality of the organic semiconductor improved, and consequently the performance of low-voltage organic thin-film transistors (TFTs) was enhanced. Our results suggest that the surface treatment of the PEMA gate insulator could be a simple and effective method for enhancing the performance of organic TFTs. PMID:26940136

  13. High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature.

    PubMed

    Xiao, Peng; Dong, Ting; Lan, Linfeng; Lin, Zhenguo; Song, Wei; Luo, Dongxiang; Xu, Miao; Peng, Junbiao

    2016-01-01

    Thin-film transistors (TFTs) with zirconium-doped indium oxide (ZrInO) semiconductor were successfully fabricated by an all-DC-sputtering method at room temperature. The ZrInO TFT without any intentionally annealing steps exhibited a high saturation mobility of 25.1 cm(2)V(-1)s(-1). The threshold voltage shift was only 0.35 V for the ZrInO TFT under positive gate bias stress for 1 hour. Detailed studies showed that the room-temperature ZrInO thin film was in the amorphous state with low carrier density because of the strong bonding strength of Zr-O. The room-temperature process is attractive for its compatibility with almost all kinds of the flexible substrates, and the DC sputtering process is good for the production efficiency improvement and the fabrication cost reduction. PMID:27118177

  14. High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Dong, Ting; Lan, Linfeng; Lin, Zhenguo; Song, Wei; Luo, Dongxiang; Xu, Miao; Peng, Junbiao

    2016-04-01

    Thin-film transistors (TFTs) with zirconium-doped indium oxide (ZrInO) semiconductor were successfully fabricated by an all-DC-sputtering method at room temperature. The ZrInO TFT without any intentionally annealing steps exhibited a high saturation mobility of 25.1 cm2V‑1s‑1. The threshold voltage shift was only 0.35 V for the ZrInO TFT under positive gate bias stress for 1 hour. Detailed studies showed that the room-temperature ZrInO thin film was in the amorphous state with low carrier density because of the strong bonding strength of Zr-O. The room-temperature process is attractive for its compatibility with almost all kinds of the flexible substrates, and the DC sputtering process is good for the production efficiency improvement and the fabrication cost reduction.

  15. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2001-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  16. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  17. ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air.

    PubMed

    Afouxenidis, Dimitrios; Mazzocco, Riccardo; Vourlias, Georgios; Livesley, Peter J; Krier, Anthony; Milne, William I; Kolosov, Oleg; Adamopoulos, George

    2015-04-01

    The replacement of SiO2 gate dielectrics with metal oxides of higher dielectric constant has led to the investigation of a wide range of materials with superior properties compared with SiO2. Despite their attractive properties, these high-k dielectrics are usually manufactured using costly vacuum-based techniques. To overcome this bottleneck, research has focused on the development of alternative deposition methods based on solution-processable metal oxides. Here we report the application of spray pyrolysis for the deposition and investigation of Al2x-1·TixOy dielectrics as a function of the [Ti(4+)]/[Ti(4+)+2·Al(3+)] ratio and their implementation in thin film transistors (TFTs) employing spray-coated ZnO as the active semiconducting channels. The films are studied by UV-visible absorption spectroscopy, spectroscopic ellipsometry, impedance spectroscopy, atomic force microscopy, X-ray diffraction and field-effect measurements. Analyses reveal amorphous Al2x-1·TixOy dielectrics that exhibit a wide band gap (∼4.5 eV), low roughness (∼0.9 nm), high dielectric constant (k ∼ 13), Schottky pinning factor S of ∼0.44 and very low leakage currents (<5 nA/cm(2)). TFTs employing stoichiometric Al2O3·TiO2 gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with low operating voltages (∼10 V), negligible hysteresis, high on/off current modulation ratio of ∼10(6), subthreshold swing (SS) of ∼550 mV/dec and electron mobility of ∼10 cm(2) V(-1) s(-1). PMID:25774574

  18. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing

    SciTech Connect

    Leppäniemi, J. Ojanperä, K.; Kololuoma, T.; Huttunen, O.-H.; Majumdar, H.; Alastalo, A.; Dahl, J.; Tuominen, M.; Laukkanen, P.

    2014-09-15

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In{sub 2}O{sub 3}) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100 °C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250 °C with FUV for 5 min yield enhancement-mode TFTs with saturation mobility of ∼1 cm{sup 2}/(V·s). Amorphous In{sub 2}O{sub 3} films annealed for 15 min with FUV at temperatures of 180 °C and 200 °C yield TFTs with low-hysteresis and saturation mobility of 3.2 cm{sup 2}/(V·s) and 7.5 cm{sup 2}/(V·s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160 nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.

  19. Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors

    SciTech Connect

    Jang, Jaeman; Kim, Dae Geun; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan E-mail: drlife@kookmin.ac.kr; Lim, Jun-Hyung; Lee, Je-Hun; Ahn, Byung Du E-mail: drlife@kookmin.ac.kr; Kim, Yong-Sung

    2014-10-13

    The quantitative analysis of mechanism on negative bias illumination stress (NBIS)-induced instability of amorphous indium-tin-zinc-oxide thin-film transistor (TFT) was suggested along with the effect of equivalent oxide thickness (EOT) of gate insulator. The analysis was implemented through combining the experimentally extracted density of subgap states and the device simulation. During NBIS, it was observed that the thicker EOT causes increase in both the shift of threshold voltage and the variation of subthreshold swing as well as the hump-like feature in a transfer curve. We found that the EOT-dependence of NBIS instability can be clearly explicated with the donor creation model, in which a larger amount of valence band tail states is transformed into either the ionized oxygen vacancy V{sub O}{sup 2+} or peroxide O{sub 2}{sup 2−} with the increase of EOT. It was also found that the V{sub O}{sup 2+}-related extrinsic factor accounts for 80%–92% of the total donor creation taking place in the valence band tail states while the rest is taken by the O{sub 2}{sup 2–} related intrinsic factor. The ratio of extrinsic factor compared to the total donor creation also increased with the increase of EOT, which could be explained by more prominent oxygen deficiency. The key founding of our work certainly represents that the established model should be considered very effective for analyzing the instability of the post-indium-gallium-zinc-oxide (IGZO) ZnO-based compound semiconductor TFTs with the mobility, which is much higher than those of a-IGZO TFTs.

  20. Influences of low temperature silicon nitride films on the electrical performances of hydrogenated amorphous silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Huang, Jung-Jie; Liu, Chan-Jui; Lin, Hung-Chien; Tsai, Cheng-Ju; Chen, Yung-Pei; Hu, Guo-Ren; Lee, Cheng-Chung

    2008-12-01

    Influences of silicon nitride (SiNx) films on the electrical performances of hydrogenated amorphous silicon thin film transistors (a-Si : H TFTs) are studied. Relatively low temperature (200 °C) SiNx films are prepared by plasma enhanced chemical vapour deposition at different radio-frequency powers. Results indicate that the SiNx films at a radio-frequency power of 340 W (Power density = 1.96 × 10-1 W cm-2) are near-stoichiometric and have better interface quality. Therefore, a-Si : H TFTs with this SiNx gate dielectric layer have a high field effect mobility and sustain the bias stress. The field effect mobility is 0.59 cm2 V-1 s-1 and the threshold voltage shift after a constant voltage stress (CVS) for 2.8 h is 3.18 V. The electrical degradation mechanism of a-Si : H TFTs is studied from the capacitance-voltage measurement. The degradation of the a-Si : H TFT after CVS is due to the defect generation in the SiNx gate dielectric and a-Si : H active layers. However, when the surface roughness of the SiNx film is poor, the degradation from the a-Si : H/SiNx interface is predominated. Therefore, if the SiNx film is used as a gate dielectric layer to fabricate a-Si : H TFTs, the surface roughness and chemical composition of the SiNx film should be considered simultaneously.

  1. A novel structure of directly patterned isolating layer for organic thin-film transistor-driven organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Kai; Lin, Tsung-Hsien; Yan, Jing-Yi; Lee, Tzu-Wei; Shen, Yu-Yuan; Yeh, Shu-Tang; Tseng, Mei-Rurng; Wu, Po-Sheng; Lin, Kuo-Tong; Chen, Chia-Hsun; Ho, Jia-Chong

    2007-09-01

    Mono-chrome phosphorescence Organic light emitting diodes (OLEDs) operated by organic thin-film transistors (OTFTs) with a 32×32 array are fabricated with a novel method, and the results reveal a fabulous demonstration. The later isolation, which segregated source/drain electrodes and an OLED cathode, was designed in our OTFT-OLED pixel. In the OTFT-OLED process; we used the polymer isolating layer which was deposited by spin coating and patterned by traditional photo-lithography before the organic semiconductor and OLED deposition. However, the residue polymer affect of OTFT electric properties which have poor mobility (5×10-4 cm2/V-s), a lower on/off ratio (~103), and a positive threshold voltage (4.5 V), and devices, have poor uniformity. Using UV-Ozone treatment could enhance OTFT mobility (2×10-2 cm2/V-s) and permit higher devices uniformity, but the threshold voltage would still have a positive 5.1 V. This threshold voltage was not a good operation mode for display application because this operation voltage was not fit for our driving systems. In order to overcome this problem, a new structure of OTFT-OLED pixel was designed and combined with a new-material isolating layer process. This new process could fabricate an OTFT-OLED array successfully and have a nice uniformity. After the isolating layer process, OTFT devices have a higher mobility (0.1×10-2 cm2/V-s), a higher on-off ratio (~107) a lower threshold voltage (-9.7 V), and a higher devices uniformity.

  2. Effect of tunneling layers on the performances of floating-gate based organic thin-film transistor nonvolatile memories

    SciTech Connect

    Wang, Wei Han, Jinhua; Ying, Jun; Xiang, Lanyi; Xie, Wenfa

    2014-09-22

    Two types of floating-gate based organic thin-film transistor nonvolatile memories (FG-OTFT-NVMs) were demonstrated, with poly(methyl methacrylate co glycidyl methacrylate) (P(MMA-GMA)) and tetratetracontane (TTC) as the tunneling layer, respectively. Their device performances were measured and compared. In the memory with a P(MMA-GMA) tunneling layer, typical unipolar hole transport was obtained with a relatively small mobility of 0.16 cm{sup 2}/V s. The unidirectional shift of turn-on voltage (V{sub on}) due to only holes trapped/detrapped in/from the floating gate resulted in a small memory window of 12.5 V at programming/erasing voltages (V{sub P}/V{sub E}) of ±100 V and a nonzero reading voltage. Benefited from the well-ordered molecule orientation and the trap-free surface of TTC layer, a considerably high hole mobility of 1.7 cm{sup 2}/V s and a visible feature of electrons accumulated in channel and trapped in floating-gate were achieved in the memory with a TTC tunneling layer. High hole mobility resulted in a high on current and a large memory on/off ratio of 600 at the V{sub P}/V{sub E} of ±100 V. Both holes and electrons were injected into floating-gate and overwritten each other, which resulted in a bidirectional V{sub on} shift. As a result, an enlarged memory window of 28.6 V at the V{sub P}/V{sub E} of ±100 V and a zero reading voltage were achieved. Based on our results, a strategy is proposed to optimize FG-OTFT-NVMs by choosing a right tunneling layer to improve the majority carrier mobility and realize ambipolar carriers injecting and trapping in the floating-gate.

  3. Solution-Processable BODIPY-Based Small Molecules for Semiconducting Microfibers in Organic Thin-Film Transistors.

    PubMed

    Ozdemir, Mehmet; Choi, Donghee; Kwon, Guhyun; Zorlu, Yunus; Cosut, Bunyemin; Kim, Hyekyoung; Facchetti, Antonio; Kim, Choongik; Usta, Hakan

    2016-06-01

    Electron-deficient π-conjugated small molecules can function as electron-transporting semiconductors in various optoelectronic applications. Despite their unique structural, optical, and electronic properties, the development of BODIPY-based organic semiconductors has lagged behind that of other π-deficient units. Here, we report the design and synthesis of two novel solution-proccessable BODIPY-based small molecules (BDY-3T-BDY and BDY-4T-BDY) for organic thin-film transistors (OTFTs). The new semiconductors were fully characterized by (1)H/(13)C NMR, mass spectrometry, cyclic voltammetry, UV-vis spectroscopy, photoluminescence, differential scanning calorimetry, and thermogravimetric analysis. The single-crystal X-ray diffraction (XRD) characterization of a key intermediate reveals crucial structural properties. Solution-sheared top-contact/bottom-gate OTFTs exhibited electron mobilities up to 0.01 cm(2)/V·s and current on/off ratios of >10(8). Film microstructural and morphological characterizations indicate the formation of relatively long (∼0.1 mm) and micrometer-sized (1-2 μm) crystalline fibers for BDY-4T-BDY-based films along the shearing direction. Fiber-alignment-induced charge-transport anisotropy (μ∥/μ⊥ ≈ 10) was observed, and higher mobilities were achieved when the microfibers were aligned along the conduction channel, which allows for efficient long-range charge-transport between source and drain electrodes. These OTFT performances are the highest reported to date for a BODIPY-based molecular semiconductor, and demonstrate that BODIPY is a promising building block for enabling solution-processed, electron-transporting semiconductor films. PMID:27182606

  4. Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors

    SciTech Connect

    Liu, Li-Chih; Chen, Jen-Sue E-mail: jsjeng@mail.nutn.edu.tw; Jeng, Jiann-Shing E-mail: jsjeng@mail.nutn.edu.tw

    2014-07-14

    Solution-processed ultra-thin (∼3 nm) zinc tin oxide (ZTO) thin film transistors (TFTs) with a mobility of 8 cm{sup 2}/Vs are obtained with post spin-coating annealing at only 350 °C. The effect of light illumination (at wavelengths of 405 nm or 532 nm) on the stability of TFT transfer characteristics under various gate bias stress conditions (zero, positive, and negative) is investigated. It is found that the ΔV{sub th} (V{sub th}{sup stress} {sup 3400} {sup s − stress} {sup 0} {sup s}) window is significantly positive when ZTO TFTs are under positive bias stress (PBS, ΔV{sub th} = 9.98 V) and positive bias illumination stress (λ = 405 nm and ΔV{sub th} = 6.96 V), but ΔV{sub th} is slightly negative under only light illumination stress (λ = 405 nm and ΔV{sub th} = −2.02 V) or negative bias stress (ΔV{sub th} = −2.27 V). However, the ΔV{sub th} of ZTO TFT under negative bias illumination stress is substantial, and it will efficiently recover the ΔV{sub th} caused by PBS. The result is attributed to the photo-ionization and subsequent transition of electronic states of oxygen vacancies (i.e., V{sub o}, V{sub o}{sup +}, and V{sub o}{sup ++}) in ZTO. A detailed mechanism is discussed to better understand the bias stress stability of solution processed ZTO TFTs.

  5. Impact of the cation composition on the electrical performance of solution-processed zinc tin oxide thin-film transistors.

    PubMed

    Kim, Yoon Jang; Oh, Seungha; Yang, Bong Seob; Han, Sang Jin; Lee, Hong Woo; Kim, Hyuk Jin; Jeong, Jae Kyeong; Hwang, Cheol Seong; Kim, Hyeong Joon

    2014-08-27

    This study examined the structural, chemical, and electrical properties of solution-processed (Zn,Sn)O3 (ZTO) films with various Sn/[Zn+Sn] ratios for potential applications to large-area flat panel displays. ZTO films with a Zn-rich composition had a polycrystalline wurtzite structure. On the other hand, the Sn-rich ZTO films exhibited a rutile structure, where the Zn atom was speculated to replace the Sn site, thereby acting as an acceptor. In the intermediate composition regions (Sn/[Zn+Sn] ratio from 0.28 to 0.48), the ZTO films had an amorphous structure, even after annealing at 450 °C. The electrical transport properties and photobias stability of ZTO thin film transistors (TFTs) were also examined according to the Sn/[Zn+Sn] ratio. The optimal transport property of ZTO TFT was observed for the device with an amorphous structure at a Sn/[Zn+Sn] ratio of 0.48. The mobility, threshold voltage, subthreshold swing, and on/off current ratio were 4.3 cm(2)/(V s), 0 V, 0.4 V/decade, and 4.1 × 10(7), respectively. In contrast, the device performance for the ZTO TFTs with either a higher or lower Sn concentration suffered from low mobility and a high off-state current, respectively. The photoelectrical stress measurements showed that the photobias stability of the ZTO TFTs was improved substantially when the ZTO semiconducting films had a lower oxygen vacancy concentration and an amorphous structure. The relevant rationale is discussed based on the phototransition and subsequent migration mechanism from neutral to positively charged oxygen vacancies. PMID:25090286

  6. Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors.

    PubMed

    Wang, Huiliang; Mei, Jianguo; Liu, Peng; Schmidt, Kristin; Jiménez-Osés, Gonzalo; Osuna, Sílvia; Fang, Lei; Tassone, Christopher J; Zoombelt, Arjan Pieter; Sokolov, Anatoliy N; Houk, Kendall N; Toney, Michael F; Bao, Zhenan

    2013-03-26

    We report a simple and scalable method to enrich large quantities of semiconducting arc-discharged single-walled carbon nanotubes (SWNTs) with diameters of 1.1-1.8 nm using dithiafulvalene/thiophene copolymers. Stable solutions of highly individualized and highly enriched semiconducting SWNTs were obtained after a simple sonication and centrifuge process. Molecular dynamics (MD) simulations of polymer backbone interactions with and without side chains indicated that the presence of long alkyl side chains gave rise to the selectivity toward semiconducting tubes, indicating the importance of the roles of the side chains to both solubilize and confer selectivity to the polymers. We found that, by increasing the ratio of thiophene to dithiafulvalene units in the polymer backbone (from pDTFF-1T to pDTFF-3T), we can slightly improve the selectivity toward semiconducting SWNTs. This is likely due to the more flexible backbone of pDTFF-3T that allows the favorable wrapping of SWNTs with certain chirality as characterized by small-angle X-ray scattering. However, the dispersion yield was reduced from pDTFF-1T to pDTFF-3T. MD simulations showed that the reduction is due to the smaller polymer/SWNT contact area, which reduces the dispersion ability of pDTFF-3T. These experimental and modeling results provide a better understanding for future rational design of polymers for sorting SWNTs. Finally, high on/off ratio solution-processed thin film transistors were fabricated from the sorted SWNTs to confirm the selective dispersion of semiconducting arc-discharge SWNTs. PMID:23402644

  7. Characterizing the sensitivity, selectivity, and reversibility of the metal-doped phthalocyanine thin-films used with the Interdigitated Gate Electrode Field-Effect Transistor (IGEFET) to detect organophosphorous compounds and nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Howe, Clayton P.

    1991-12-01

    This study investigated the sensitivity, reversibility, and selectivity of the thin film coatings used on the interdigitated gate electrode field effect transistor (IGEFET) gas microsensor. These responses were quantified based on the dc resistance changes and frequency domain responses of the microsensor. The thin film materials included: copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc), and cobalt phthalocyanine (CoPc). The challenge gases included: diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), nitrogen dioxide, ammonia, and boron trifluoride. Tests of the CuPc thin films and nitrogen dioxide challenges established the primary set of test parameters expected to maximize the selectivity, sensitivity, and reversibility of the thin film coatings. A series of experiments performed at 150 C tested the other thin film materials, on the IGEFET sensors, when challenged by listed gases. At 150 C, the nitrogen dioxide and ammonia interacted with all three film types, the boron trifluoride interacted weakly, the DIMP and DMMP show no response.

  8. Transient laser annealing of zinc oxide nanoparticle inks to fabricate zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Willemann, Michael

    Display technology, which relies exclusively on amorphous silicon as the active material for driver electronics, has reached multiple impasses that limit future progress. In order to deliver higher resolutions, higher refresh rates, new display technologies, and innovative form factors, driver electronics must transition to higher performance materials like amorphous oxide semiconductors (AOSs). Transient laser annealing offers an attractive means to maximize performance while minimizing thermal budget, making it compatible with flexible back plane materials and roll-to-roll processing. This research investigates the deposition and annealing of zinc oxide nanoparticle inks to form fully densified crystalline and amorphous zinc oxide films. Processing routes for nanoparticle annealing, including ligand removal, calcining, and excimer pulse laser sintering on the nanosecond time scale, will be introduced that minimize defect formation and suppress the anomalous n-conductivity which is a major challenge to zinc oxide processing. Resistivities as high as 6 x 107 O-cm have been demonstrated. Laser processing on longer millisecond time scales can control defect formation to produce ZnO films without extrinsic doping which have low resistivity for intrinsic oxides, in the range of 10-1 - 10-2 O-cm. Finally, a viable process for the production of backgated ZnO transistors with promising characteristics is presented and the future implications for AOSs and transient thermal processing will be discussed.

  9. Monolithic 3D-ICs with single grain Si thin film transistors

    NASA Astrophysics Data System (ADS)

    Ishihara, R.; Derakhshandeh, J.; Tajari Mofrad, M. R.; Chen, T.; Golshani, N.; Beenakker, C. I. M.

    2012-05-01

    Monolithic 3D integration is the ultimate approach in 3D-ICs as it provides high-density and submicron vertical interconnects and hence transistor level integration. Here, high-quality Si layer formation at a low temperature is a key challenge. We review our recent achievements in monolithic 3D-ICs based on single-grain Si TFTs that are fabricated inside a single-grain with a low-temperature process. With the μ-Czochralski process based on a pulsed-laser crystallization, Si grains with a diameter of 6 μm are successfully formed on predetermined positions. Single-grain (SG) Si TFTs are fabricated inside the single-grain with mobility for electron and holes of 600 cm2/V s and 200 cm2/V s, respectively. Two layers of the SG Si TFT were vertically stacked and successfully implemented into CMOS inverter, 3D 6T-SRAM and single-grain lateral PIN photo-diode with in-pixel amplifier. Those results indicate that the SG TFTs are attractive for use in monolithic 3D-ICs on an arbitrary substrate including a glass and even a plastic for applications such as ultra-high-density memories, logic-to-logic integration, CPU integrated display, and high-definition image sensor for artificial retina.

  10. One-dimensional nature in transport property of SWNT thin film electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Shimotani, Hidekazu; Tsuda, Satoshi; Yuan, Hongtao; Yomogida, Yohei; Moriya, Rieko; Takenobu, Taishi; Yanagi, Kazuhiro; Iwasa, Yoshihiro

    2012-02-01

    Recent success in isolating single-walled carbon nanotubes (SWNTs) of narrow chirality distribution enabled making pure metallic (m-) and semiconducting (s-) SWNT films. Such films are expected to reflect the nature of individual SWNTs, that is their one dimensional subband structure. Therefore, it is interesting to investigate electronic transport in m- and s-SWNT films by controlling their Fermi level (EF). Chemical doping or FET is unsuitable for the purpose because of the lack of precise and reversible EF controllability, and the narrow controllable EF range, respectively. The problems are solved by our electric double layer transistor technique,^1 where the gate voltage (VG) is applied through an electrolyte. The conductance and optical absorption spectra of the resistance of s- and m-SWNT films were measured at various VG. The conductance of the s-SWNT film showed stepwise change against VG. The absorbance spectra indicate the steps correspond to reaching of the EF to a vHs. Furthermore, even m-SWNT films showed steep increases of conductance, demonstrating that the conductance strongly depend on the subband filling. ^1 H. Shimotani et al., Appl. Phys. Lett. 88, 073104 (2006).

  11. Toward air-stable multilayer phosphorene thin-films and transistors

    PubMed Central

    Kim, Joon-Seok; Liu, Yingnan; Zhu, Weinan; Kim, Seohee; Wu, Di; Tao, Li; Dodabalapur, Ananth; Lai, Keji; Akinwande, Deji

    2015-01-01

    Few-layer black phosphorus (BP), also known as phosphorene, is poised to be the most attractive graphene analogue owing to its high mobility approaching that of graphene, and its thickness-tunable band gap that can be as large as that of molybdenum disulfide. In essence, phosphorene represents the much sought after high-mobility, large direct band gap two-dimensional layered crystal that is ideal for optoelectronics and flexible devices. However, its instability in air is of paramount concern for practical applications. Here, we demonstrate air-stable BP devices with dielectric and hydrophobic encapsulation. Microscopy, spectroscopy, and transport techniques were employed to elucidate the aging mechanism, which can initiate from the BP surface for bare samples, or edges for samples with thin dielectric coating, highlighting the ineffectiveness of conventional scaled dielectrics. Our months-long studies indicate that a double layer capping of Al2O3 and hydrophobic fluoropolymer affords BP devices and transistors with indefinite air-stability for the first time, overcoming a critical material challenge for applied research and development. PMID:25758437

  12. Toward air-stable multilayer phosphorene thin-films and transistors.

    PubMed

    Kim, Joon-Seok; Liu, Yingnan; Zhu, Weinan; Kim, Seohee; Wu, Di; Tao, Li; Dodabalapur, Ananth; Lai, Keji; Akinwande, Deji

    2015-01-01

    Few-layer black phosphorus (BP), also known as phosphorene, is poised to be the most attractive graphene analogue owing to its high mobility approaching that of graphene, and its thickness-tunable band gap that can be as large as that of molybdenum disulfide. In essence, phosphorene represents the much sought after high-mobility, large direct band gap two-dimensional layered crystal that is ideal for optoelectronics and flexible devices. However, its instability in air is of paramount concern for practical applications. Here, we demonstrate air-stable BP devices with dielectric and hydrophobic encapsulation. Microscopy, spectroscopy, and transport techniques were employed to elucidate the aging mechanism, which can initiate from the BP surface for bare samples, or edges for samples with thin dielectric coating, highlighting the ineffectiveness of conventional scaled dielectrics. Our months-long studies indicate that a double layer capping of Al2O3 and hydrophobic fluoropolymer affords BP devices and transistors with indefinite air-stability for the first time, overcoming a critical material challenge for applied research and development. PMID:25758437

  13. Toward air-stable multilayer phosphorene thin-films and transistors

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Seok; Liu, Yingnan; Zhu, Weinan; Kim, Seohee; Wu, Di; Tao, Li; Dodabalapur, Ananth; Lai, Keji; Akinwande, Deji

    2015-03-01

    Few-layer black phosphorus (BP), also known as phosphorene, is poised to be the most attractive graphene analogue owing to its high mobility approaching that of graphene, and its thickness-tunable band gap that can be as large as that of molybdenum disulfide. In essence, phosphorene represents the much sought after high-mobility, large direct band gap two-dimensional layered crystal that is ideal for optoelectronics and flexible devices. However, its instability in air is of paramount concern for practical applications. Here, we demonstrate air-stable BP devices with dielectric and hydrophobic encapsulation. Microscopy, spectroscopy, and transport techniques were employed to elucidate the aging mechanism, which can initiate from the BP surface for bare samples, or edges for samples with thin dielectric coating, highlighting the ineffectiveness of conventional scaled dielectrics. Our months-long studies indicate that a double layer capping of Al2O3 and hydrophobic fluoropolymer affords BP devices and transistors with indefinite air-stability for the first time, overcoming a critical material challenge for applied research and development.

  14. Measurement of beta-amyloid peptides in specific cells using a photo thin-film transistor

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Beom; Chae, Cheol-Joo; Shin, Hye-Rim; Song, Ki-Bong

    2012-01-01

    The existence of beta-amyloid [Aβ] peptides in the brain has been regarded as the most archetypal biomarker of Alzheimer's disease [AD]. Recently, an early clinical diagnosis has been considered a great importance in identifying people who are at high risk of AD. However, no microscale electronic sensing devices for the detection of Aβ peptides have been developed yet. In this study, we propose an effective method to evaluate a small quantity of Aβ peptides labeled with fluorescein isothiocyanate [FITC] using a photosensitive field-effect transistor [p-FET] with an on-chip single-layer optical filter. To accurately evaluate the quantity of Aβ peptides within the cells cultured on the p-FET device, we measured the photocurrents which resulted from the FITC-conjugated Aβ peptides expressed from the cells and measured the number of photons of the fluorochrome in the cells using a photomultiplier tube. Thus, we evaluated the correlation between the generated photocurrents and the number of emitted photons. We also evaluated the correlation between the number of emitted photons and the amount of FITC by measuring the FITC volume using AFM. Finally, we estimated the quantity of Aβ peptides of the cells placed on the p-FET sensing area on the basis of the binding ratio between FITC molecules and Aβ peptides.

  15. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure

    NASA Astrophysics Data System (ADS)

    Li, H. K.; Chen, T. P.; Liu, P.; Hu, S. G.; Liu, Y.; Zhang, Q.; Lee, P. S.

    2016-06-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)-aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

  16. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Un Jeong; Lee, Eun Hong; Kim, Jong Min; Min, Yo-Sep; Kim, Eunseong; Park, Wanjun

    2009-07-01

    Nearly perfect semiconducting single-walled carbon nanotube random network thin film transistors were fabricated and their reproducible transport properties were investigated. The networked single-walled carbon nanotubes were directly grown by water-assisted plasma-enhanced chemical vapor deposition. Optical analysis confirmed that the nanotubes were mostly semiconductors without clear metallic resonances in both the Raman and the UV-vis-IR spectroscopy. The transistors made by the nanotube networks whose density was much larger than the percolation threshold also showed no metallic paths. Estimation based on the conductance change of semiconducting nanotubes in the SWNT network due to applied gate voltage difference (conductance difference for on and off state) indicated a preferential growth of semiconducting nanotubes with an advantage of water-assisted PECVD. The nanotube transistors showed 10-5 of on/off ratio and ~8 cm2 V-1 s-1 of field effect mobility.

  17. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.

    PubMed

    Kim, Un Jeong; Lee, Eun Hong; Kim, Jong Min; Min, Yo-Sep; Kim, Eunseong; Park, Wanjun

    2009-07-22

    Nearly perfect semiconducting single-walled carbon nanotube random network thin film transistors were fabricated and their reproducible transport properties were investigated. The networked single-walled carbon nanotubes were directly grown by water-assisted plasma-enhanced chemical vapor deposition. Optical analysis confirmed that the nanotubes were mostly semiconductors without clear metallic resonances in both the Raman and the UV-vis-IR spectroscopy. The transistors made by the nanotube networks whose density was much larger than the percolation threshold also showed no metallic paths. Estimation based on the conductance change of semiconducting nanotubes in the SWNT network due to applied gate voltage difference (conductance difference for on and off state) indicated a preferential growth of semiconducting nanotubes with an advantage of water-assisted PECVD. The nanotube transistors showed 10(-5) of on/off ratio and approximately 8 cm2 V(-1) s(-1) of field effect mobility. PMID:19567966

  18. Low-Temperature Solution Processing of Amorphous Metal Oxide Semiconductors for High-Performance Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Hennek, Jonathan W.

    The growing field of large-area flexible electronics presents the need for amorphous materials with electrical performances superior to amorphous hydrogenated silicon (a-Si:H). Metal oxide semiconductors show great promise in thin film transistors (TFTs) due to their high electron mobility (micro, 1--100 cm2V-1s-1), mechanical flexibility, and electrical stability. However, most oxide semiconductor fabrication still relies on expensive, inflexible and energy intensive vacuum deposition methods. To overcome these limitations, my thesis work has focused on developing low-temperature solution processing routes to functional metal oxide materials. In Chapter 2, we demonstrate an optimized "ink" and printing process for inkjet patterning of amorphous indium gallium zinc oxide (a-IGZO) and investigate the effects of device structure on derived electron mobility. Bottom-gate top-contact (BGTC) TFTs are fabricated and shown to exhibit electron mobilities comparable to a-Si:H. Furthermore, a record micro of 2.5 cm 2V-1s-1 is demonstrated for bottom-gate bottom-contact (BGBC) TFTs. The mechanism underlying such impressive performance is investigated using transmission line techniques, and it is shown that the semiconductor-source/drain electrode interface contact resistance is nearly an order of magnitude lower for BGBC transistors versus BGTC devices. In Chapter 3, we report the implementation of amorphous indium yttrium oxide (a-IYO) as a TFT semiconductor for the first time. Amorphous and polycrystalline IYO films are grown via a low-temperature solution process utilizing exothermic "combustion" precursors. Precursor transformation and the IYO films are analyzed by DTA, TGA, XRD, AFM, XPS, and optical transmission, revealing efficient conversion to the metal-oxide lattice, and smooth, transparent films. a-IYO TFTs fabricated with a hybrid nanodielectric exhibit impressive electron mobilities of 7.3 cm2V-1s-1 (Tanneal = 300 °C) and 5.0 cm2V-1s -1 (Tanneal = 250 °C) for 2

  19. Self-aligned top-gate amorphous indium zinc oxide thin-film transistors exceeding low-temperature poly-Si transistor performance.

    PubMed

    Park, Jae Chul; Lee, Ho-Nyeon; Im, Seongil

    2013-08-14

    Thin-film transistor (TFT) is a key component of active-matrix flat-panel displays (AMFPDs). These days, the low-temperature poly silicon (LTPS) TFTs are to match with advanced AMFPDs such as the active matrix organic light-emitting diode (AMOLED) display, because of their high mobility for fast pixel switching. However, the manufacturing process of LTPS TFT is quite complicated, costly, and scale-limited. Amorphous oxide semiconductor (AOS) TFT technology is another candidate, which is as simple as that of conventioanl amorphous (a)-Si TFTs in fabrication but provides much superior device performances to those of a-Si TFTs. Hence, various AOSs have been compared with LTPS for active channel layer of the advanced TFTs, but have always been found to be relatively inferior to LTPS. In the present work, we clear the persistent inferiority, innovating the device performaces of a-IZO TFT by adopting a self-aligned coplanar top-gate structure and modifying the surface of a-IZO material. Herein, we demonstrate a high-performance simple-processed a-IZO TFT with mobility of ∼157 cm(2) V(-1) s(-1), SS of ∼190 mV dec(-1), and good bias/photostabilities, which overall surpass the performances of high-cost LTPS TFTs. PMID:23823486

  20. Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies.

    PubMed

    Labram, John G; Lin, Yen-Hung; Anthopoulos, Thomas D

    2015-11-01

    In the last decade, metal oxides have emerged as a fascinating class of electronic material, exhibiting a wide range of unique and technologically relevant characteristics. For example, thin-film transistors formed from amorphous or polycrystalline metal oxide semiconductors offer the promise of low-cost, large-area, and flexible electronics, exhibiting performances comparable to or in excess of incumbent silicon-based technologies. Atomically flat interfaces between otherwise insulating or semiconducting complex oxides, are also found to be highly conducting, displaying 2-dimensional (2D) charge transport properties, strong correlations, and even superconductivity. Field-effect devices employing such carefully engineered interfaces are hoped to one day compete with traditional group IV or III-V semiconductors for use in the next-generation of high-performance electronics. In this Concept article we provide an overview of the different metal oxide transistor technologies and potential future research directions. In particular, we look at the recent reports of multilayer oxide thin-film transistors and the possibility of 2D electron transport in these disordered/polycrystalline systems and discuss the potential of the technology for applications in large-area electronics. PMID:26349850