Science.gov

Sample records for ponderosa pine landscape

  1. Western juniper and ponderosa pine ecotonal climate-growth relationships across landscape gradients in southern Oregon

    USGS Publications Warehouse

    Knutson, K.C.; Pyke, D.A.

    2008-01-01

    Forecasts of climate change for the Pacific northwestern United States predict warmer temperatures, increased winter precipitation, and drier summers. Prediction of forest growth responses to these climate fluctuations requires identification of climatic variables limiting tree growth, particularly at limits of free species distributions. We addressed this problem at the pine-woodland ecotone using tree-ring data for western juniper (Juniperus occidentalis var. occidentalis Hook.) and ponderosa pine (Pinus ponderosa Dougl. ex Loud.) from southern Oregon. Annual growth chronologies for 1950-2000 were developed for each species at 17 locations. Correlation and linear regression of climate-growth relationships revealed that radial growth in both species is highly dependent on October-June precipitation events that recharge growing season soil water. Mean annual radial growth for the nine driest years suggests that annual growth in both species is more sensitive to drought at lower elevations and sites with steeper slopes and sandy or rocky soils. Future increases in winter precipitation could increase productivity in both species at the pine-woodland ecotone. Growth responses, however, will also likely vary across landscape features, and our findings suggest that heightened sensitivity to future drought periods and increased temperatures in the two species will predominantly occur at lower elevation sites with poor water-holding capacities. ?? 2008 NRC.

  2. Monoterpene emission from ponderosa pine

    NASA Technical Reports Server (NTRS)

    Lerdau, Manual; Dilts, Stephen B.; Westberg, Hal; Lamb, Brian K.; Allwine, Eugene J.

    1994-01-01

    We explore the variability in monoterpene emissions from ponderosa pine beyond that which can be explained by temperature alone. Specifically, we examine the roles that photosynthesis and needle monoterpene concentrations play in controlling emissions. We measure monoterpene concentrations and emissions, photosynthesis, temperature, and light availability in the late spring and late summer in a ponderosa pine forest in central Oregon. We use a combination of measurements from cuvettes and Teflon bag enclosures to show that photosynthesis is not correlated with emissions in the short term. We also show that needle monoterpene concentrations are highly correlated with emissions for two compounds, alpha-pinene and beta-pinene, but that Delta-carene concentrations are not correlated with emissions. We suggest that direct effects of light and photosynthesis do not need to be included in emission algorithms. Our results indicate that the role of needle concentration bears further investigation; our results for alpha-pinene and beta-pinene are explainable by a Raoult's law relationship, but we cannot yet explain the cause of our results with Delta-carene.

  3. AmeriFlux US-Vcp Valles Caldera Ponderosa Pine

    DOE Data Explorer

    Litvak, Marcy [University of New Mexico

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcp Valles Caldera Ponderosa Pine. Site Description - The Valles Caldera Ponderosa Pine site is located in the 1200km2 Jemez River basin of the Jemez Mountains in north-central New Mexico at the southern margin of the Rocky Mountain ecoregion. The Ponderosa Pine forest is the warmest and lowest (below 2700m) zone of the forests in the Valles Caldera National Preserve. Its vegetation is composed of a Ponderosa Pine (Pinus Ponderosa) overstory and a Gambel Oak (Quercus gambelii) understory.

  4. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    USGS Publications Warehouse

    Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand-replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.

  5. Differences in ponderosa pine isocupressic acid concentrations across space and time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ponderosa Pine (Pinus ponderosa) is distributed throughout the western half of North America, where it is the most widely adapted and ubiquitous conifer. Ponderosa Pine contains isocupressic acid, a diterpene acid, which has been shown to be responsible for its abortifacient activity. The objectiv...

  6. INTERACTION OF GRASS COMPETITION AND OZONE STRESS ON C/N RATIO IN PONDEROSA PINE

    EPA Science Inventory

    Individual ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings were grown with three levels of blue wild-rye grass (Elymus glaucus Buckl.) (0,32, or 88 plants m-2) to determine if the presence of a natural competitor altered ponderosa pine seedling response to ozone. Gras...

  7. ROLE OF CARBOHYDRATE SUPPLY IN WHITE AND BROWN ROOT RESPIRATION OF PONDEROSA PINE

    EPA Science Inventory

    Respiratory responses of fine ponderosa pine (Pinus ponderosa Laws) roots of differing morphology were measured to evaluate response to excision and to changes in the shoot light environment. Ponderosa pine seedlings were subject to either a 15:9 h light/dark environment over 24...

  8. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion

    SciTech Connect

    Himejima, Masaki; Hobson, K.R.; Otsuka, Toshikazu; Wood, D.L.; Kubo, Isao )

    1992-10-01

    The oleoresin of the ponderosa pine, Pinus ponderosa (Pinaceae) exhibited broad antimicrobial activity. In order to identify the active compounds, the oleoresin was steam distilled to give a distillate and residue. The distillate contained mainly monoterpenes and some sesquiterpenes, while the residue consisted chiefly of four structurally related diterpene acids. An antimicrobial assay with the pure compounds indicated that the monoterpenes were active primarily against fungi, but there was also some activity against gram-positive bacteria. The diterpene acids, in contrast, only exhibited activity against gram-positive bacteria. Although not all of the identified sesquiterpenes could be tested, longifolene showed activity only against gram-positive bacteria. Therefore, it appears that the oleoresin of P. ponderosa functions as a biochemical defense against microbial invasion.

  9. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.

    PubMed

    Garcia, Maria O; Smith, Jane E; Luoma, Daniel L; Jones, Melanie D

    2016-05-01

    Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH4), and nitrate (NO3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish

  10. Cervid forage utilization in noncommercially thinned ponderosa pine forests

    USGS Publications Warehouse

    Gibbs, M.C.; Jenks, J.A.; Deperno, C.S.; Sowell, B.F.; Jenkins, Kurt J.

    2004-01-01

    To evaluate effects of noncommercial thinning, utilization of forages consumed by elk (Cervus elaphus L.), mule deer (Odocoileus hemionus Raf.), and white-tailed deer (Odocoileus virginianus Raf.) was measured in ponderosa pine (Pinus ponderosa P. & C. Lawson) stands in Custer State Park, S. D. Treatments consisted of unthinned (control; 22 to 32 m2/ha basal area), moderately thinned (12 to 22 m2/ha basal area), and heavily thinned (3 to 13 m2/ha basal area) stands of ponderosa pine. During June, July, and August, 1991 and 1992, about 7,000 individual plants were marked along permanent transects and percent-weight-removed by grazing was ocularly estimated. Sample plots were established along transects and plants within plots were clipped to estimate standing biomass. Pellet groups were counted throughout the study area to determine summer habitat use of elk and deer. Diet composition was evaluated using microhistological analysis of fecal samples. Average percent-weight-removed from all marked plants and percent-plants-grazed were used to evaluate forage utilization. Standing biomass of graminoids, shrubs, and forbs increased (P 0.05) across treatments. Forb use averaged less than 5% within sampling periods when measured as percent-weight-removed and percent-of-plants grazed and did not differ among treatments. Results of pellet group surveys indicated that cervids were primarily using meadow habitats. When averaged over the 2 years, forbs were the major forage class in deer diets, whereas graminoids were the major forage class in diets of elk.

  11. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. PMID:26546596

  12. THE EFFECT OF CHRONIC OZONE EXPOSURE ON THE METABOLITE CONTENT OF PONDEROSA PINE SEEDLINGS

    EPA Science Inventory

    Ponderosa Pine (Pinus ponderosa Laws.) seedlings grown in field exposure chambers and fumigated with ozone at a concentration of 200 g/cu m 6 h/day; 7 days/wk for variable periods of up to 20 weeks. Pines were harvested at 4 wk intervals to determine the levels of the metabolites...

  13. Classification tree and minimum-volume ellipsoid analyses of the distribution of ponderosa pine in the western USA

    USGS Publications Warehouse

    Norris, Jodi R.; Jackson, Stephen T.; Betancourt, Julio L.

    2006-01-01

    Aim? Ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) is an economically and ecologically important conifer that has a wide geographic range in the western USA, but is mostly absent from the geographic centre of its distribution - the Great Basin and adjoining mountain ranges. Much of its modern range was achieved by migration of geographically distinct Sierra Nevada (P. ponderosa var. ponderosa) and Rocky Mountain (P. ponderosa var. scopulorum) varieties in the last 10,000 years. Previous research has confirmed genetic differences between the two varieties, and measurable genetic exchange occurs where their ranges now overlap in western Montana. A variety of approaches in bioclimatic modelling is required to explore the ecological differences between these varieties and their implications for historical biogeography and impending changes in western landscapes. Location? Western USA. Methods? We used a classification tree analysis and a minimum-volume ellipsoid as models to explain the broad patterns of distribution of ponderosa pine in modern environments using climatic and edaphic variables. Most biogeographical modelling assumes that the target group represents a single, ecologically uniform taxonomic population. Classification tree analysis does not require this assumption because it allows the creation of pathways that predict multiple positive and negative outcomes. Thus, classification tree analysis can be used to test the ecological uniformity of the species. In addition, a multidimensional ellipsoid was constructed to describe the niche of each variety of ponderosa pine, and distances from the niche were calculated and mapped on a 4-km grid for each ecological variable. Results? The resulting classification tree identified three dominant pathways predicting ponderosa pine presence. Two of these three pathways correspond roughly to the distribution of var. ponderosa, and the third pathway generally corresponds to the distribution of var

  14. Ponderosa pine resin defenses and growth: metrics matter.

    PubMed

    Hood, Sharon; Sala, Anna

    2015-11-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow

  15. Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA.

    PubMed

    Fujimura, K E; Smith, J E; Horton, T R; Weber, N S; Spatafora, J W

    2005-03-01

    Post-fire Pezizales fruit commonly in many forest types after fire. The objectives of this study were to determine which Pezizales appeared as sporocarps after a prescribed fire in the Blue Mountains of eastern Oregon, and whether species of Pezizales formed mycorrhizas on ponderosa pine, whether or not they were detected from sporocarps. Forty-two sporocarp collections in five genera (Anthracobia, Morchella, Peziza, Scutellinia, Tricharina) of post-fire Pezizales produced ten restriction fragment length polymorphism (RFLP) types. We found no root tips colonized by species of post-fire Pezizales fruiting at our site. However, 15% (6/39) of the RFLP types obtained from mycorrhizal roots within 32 soil cores were ascomycetes. Phylogenetic analyses of the 18S nuclear ribosomal DNA gene indicated that four of the six RFLP types clustered with two genera of the Pezizales, Wilcoxina and Geopora. Subsequent analyses indicated that two of these mycobionts were probably Wilcoxina rehmii, one Geopora cooperi, and one Geopora sp. The identities of two types were not successfully determined with PCR-based methods. Results contribute knowledge about the above- and below-ground ascomycete community in a ponderosa pine forest after a low intensity fire. PMID:15316884

  16. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    PubMed

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  17. Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests

    PubMed Central

    Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill, James F.

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  18. Growth, physiological and biochemical response of ponderosa pine pinus ponderosa' to ozone. Final report

    SciTech Connect

    Temple, P.J.; Bytnerowicz, A.

    1993-11-01

    In 1989 and 1990, the effects of multi-year ozone exposures on growth, foliar injury and physiological responses in ponderosa pine were examined. Two-year old seedlings were exposed to four ozone treatments in open-top chambers: clean air (subambient levels of oxidants and particles); ambient ozone; twice-ambient ozone; or ambient air. The study was performed at Shirley Meadow in the southern Sierra Nevada. In both years, ambient ozone levels were representative of other forests in the region. While ozone is the most phytotoxic air pollutant, seedlings also experienced elevated concentrations of nitric acid and ammonia. In 1990, ambient ozone significantly increased injury to previous year needles. Premature senescence and alterations in physiological responses were also noted. Exposure to twice-ambient ozone reduced seedling biomass, increased injury and caused decreases in a variety of physiological responses.

  19. Accumulation of cesium-137 and strontium-90 in ponderosa pine and monterey pine seedlings

    SciTech Connect

    Entry, J.A.; Rygiewicz, P.T.; Emmingham, W.H.

    1993-10-01

    Because ponderosa pine Pinus ponderosa and Monterey pone (P. radiata D Don) have exceptionally fast growth rates and their abscised needles are not readily dispersed by wind, these species may be valuable for removing radioisotopes from contaminated soils. Ponderosa and Monterey pine seedlings were tested for their ability to accumulate {sup 137}Cs and {sup 90}Sr-characteristic radioisotopes of nuclear fallout-from contaminated soil. Seedlings were grown for 3 mo in 165 cm{sup 3} sphagnum peat moss/perlite (1:1 V/V) in a growth chamber. In Exp. 1, seedling accumulation of {sup 137}Cs and {sup 90}Sr after 1 mo of exposure was measured. In Exp. 2, seedling accumulation of the radioisotopes during different-length exposures was measured. Seedling accumulation of {sup 137}CS and {sup 90}Sr at different concentrations of the radioisotopes in the growth medium was measured in Exp. 3. Ponderosa pine accumulated 6.3% of the {sup 137}Cs and I.5% of the {sup 90}Sr present in the growth medium after 1 mo; Monterey pine accumulated 8.3% of the {sup 137}Cs and 4.5% of the {sup 90}Sr. Accumulation of {sup 137}Cs and {sup 90}Sr by both coniferous species was curvilinearly related to duration of exposure. Accumulation of {sup 137}Cs and {sup 90}Sr by both species increased with increasing concentration in the growth medium and correlated curvilinearly with radioisotope concentration in the growth medium. Large areas throughout the world are contaminated with {sup 137}Cs and {sup 90}Sr as a result of nuclear weapons testing or atomic reactor accidents. The ability of trees to sequester and store {sup 137}Cs and {sup 90}Sr introduces the possibility of using reforestation to remediate contaminated soils.

  20. COMBINED EFFECTS OF CO2 AND O3 ON ANTIOXIDATIVE AND PHOTOPROTECTIVE DEFENSE SYSTEMS IN NEEDLES OF PONDEROSA PINE

    EPA Science Inventory

    To determine interactive effects of important environmental stresses on biochemical defense mechanisms of tree seedlings, we studied responses to elevated O3 and elevated atmospheric CO2 on antioxidative and photoprotective systems in needles of ponderosa pine (Pinus ponderosa Do...

  1. SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES

    EPA Science Inventory

    Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...

  2. FINE ROOT TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES: FIRST-YEAR RESULTS

    EPA Science Inventory

    Root minirhizotron tubs were installed in two ponderosa pine (Pinus ponderosa Laws.) Stands of different ages to examine patterns of root growth and death. The old-growth site (OS) consists of a mixture of old (>250 years) and young trees (ca.45 yrs)< and is located near clamp S...

  3. EFFECTS OF ELEVATED CO2 AND N-FERTILIZATION ON SURVIVAL OF PONDEROSA PINE FINE ROOTS

    EPA Science Inventory

    We used minihizaotrons to assess the effects of elevated CO2N and season on the life-span of ponderosa pine (Pinus ponderosa Dougl. Ex Laws.) fine roots. CO2 levels were ambient air (A), ambient air + 175 ?mol mol-1 (A+175) and ambient air + 350 ?mol mol-1 (A+350). N treatments ...

  4. Fall rates of prescribed fire-killed ponderosa pine. Forest Service research paper

    SciTech Connect

    Harrington, M.G.

    1996-05-01

    Fall rates of prescribed fire-killed ponderosa pine were evaluated relative to tree and fire damage characteristics. High crown scorch and short survival time after fire injury were factors leading to a high probability of early tree fall. The role of chemical defense mechanisms is discussed. Results apply to prescribed-fire injured, second-growth ponderosa pine less than 16 inches diameter at breast height.

  5. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  6. Quantifying post-fire ponderosa pine snags using GIS techniques on scanned aerial photographs

    NASA Astrophysics Data System (ADS)

    Kent, Kevin

    Snags are an important component of forest ecosystems because of their utility in forest-nutrient cycling and provision of critical wildlife habitat, as well as associated fuel management concerns relating to coarse woody debris (CWD). Knowledge of snag and CWD trajectories are needed for land managers to plan for long-term ecosystem change in post-fire regimes. This need will likely be exacerbated by increasingly warm and dry climatic conditions projected for the U.S. Southwest. One of the best prospects for studying fire-induced landscape change beyond the plot scale, but still at a resolution sufficient to resolve individual snags, is to utilize the available aerial photography record. Previous field-based studies of snag and CWD loads in the Southwest have relied on regional chronosequences to judge the recovery dynamic of ponderosa pine (Pinus ponderosa) burns. This previous research has been spatially and temporally restricted because of field survey extent limitations and uncertainty associated with the chronosequence approach (i.e., space-for-time substitution), which does not consider differences between specific site conditions and histories. This study develops highly automated methods for remotely quantifying and characterizing the spatial and temporal distribution of large snags associated with severe forest fires from very high resolution (VHR) landscape imagery I obtained from scans of aerial photos. Associated algorithms utilize the sharp edges, shape, shadow, and contrast characteristics of snags to enable feature recognition. Additionally, using snag shadow length, image acquisition time, and location information, heights were estimated for each identified snag. Furthermore, a novel solution was developed for extracting individual snags from areas of high snag density by overlaying parallel lines in the direction of the snag shadows and extracting local maxima lines contained by each snag polygon. Field survey data coincident to imagery coverage

  7. Unthinned slow-growing ponderosa pine (Pinus ponderosa) trees contain muted isotopic signals in tree rings as compared to thinned trees

    EPA Science Inventory

    We analysed the oxygen isotopic values of wood (δ18Ow) of 12 ponderosa pine (Pinus ponderosa) trees from control, moderately, and heavily thinned stands and compared them with existing wood-based estimates of carbon isotope discrimination (∆13C), basal area increment (BAI), and g...

  8. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    PubMed

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests. PMID:24147398

  9. Long-term benefits to the growth of ponderosa pines from controlling southwestern pine tip moth (Lepidoptera: Tortricidae) and weeds.

    PubMed

    Wagner, Michael R; Chen, Zhong

    2004-12-01

    The southwestern pine tip moth, Rhyacionia neomexicana (Dyar) (Lepidoptera: Tortricidae), is a native forest pest that attacks seedlings and saplings of ponderosa pine, Pinus ponderosa Dougl. ex Laws, in the southwestern United States. Repeated attacks can cause severe deformation of host trees and significant long-term growth loss. Alternatively, effective control of R. neomexicana, vegetative competition, or both in young pine plantations may increase survival and growth of trees for many years after treatments are applied. We test the null hypothesis that 4 yr of R. neomexicana and weed control with insecticide, weeding, and insecticide plus weeding would not have any residual effect on survival and growth of trees in ponderosa pine plantation in northern Arizona 14 yr post-treatment, when the trees were 18 yr old. Both insecticide and weeding treatment increased tree growth and reduced the incidence of southwestern pine tip moth damage compared with the control. However, weeding alone also significantly increased tree survival, whereas insecticide alone did not. The insecticide plus weeding treatment had the greatest tree growth and survival, and the lowest rate of tip moth damage. Based on these results, we rejected our null hypothesis and concluded that there were detectable increases in the survival and growth of ponderosa pines 14 yr after treatments applied to control R. neomexicana and weeds. PMID:15666752

  10. Missing Peroxy Radical Sources within a Summertime Ponderosa Pine Forest

    SciTech Connect

    Wolfe, G. M.; Cantrell, Chris; Kim, S.; Mauldin, R. L.; Karl, Thomas G.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, Frank M.; Apel, E. C.; Hornbrook, R. S.; Hall, S. R.; Ullmann, K.; Henry, S. B.; DiGangi, J. P.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Graus, M.; Nakashima, Yoshihiro; Kajii, Yoshizumi; Guenther, Alex B.; Keutsch, Frank N.

    2014-05-13

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Peroxy radical sinks are unlikely to be overestimated, suggesting missing sources. A close comparison of model results with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within the forest, and we conclude that a similar mechanism may underlie many such anomalous findings.

  11. Induction of Listeria monocytogenes infection by the consumption of ponderosa pine needles.

    PubMed Central

    Adams, C J; Neff, T E; Jackson, L L

    1979-01-01

    An infectious microorganism, identified as Listeria monocytogenes, has been isolated from the bloodstream of pregnant mice fed a diet containing Pinus ponderosa needles. When the isolate was injected into pregnant mice, reproductive dysfunction and other changes, including speckled livers, spleen atrophy, and hemorrhagic intestines, appeared to mimic the signs of the disease in pregnant mice fed pine needles. Moreover, these pathological changes are similar to those observed in cattle and other mammals experiencing abortions or toxemia, or both, attributed to the ingestion of P. ponderosa needles, suggesting that L. monocytogenes may be a part of the etiology of "pine needle abortion." PMID:113341

  12. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains.

    PubMed

    Janes, Jasmine K; Li, Yisu; Keeling, Christopher I; Yuen, Macaire M S; Boone, Celia K; Cooke, Janice E K; Bohlmann, Joerg; Huber, Dezene P W; Murray, Brent W; Coltman, David W; Sperling, Felix A H

    2014-07-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below -40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species. PMID:24803641

  13. How the Mountain Pine Beetle (Dendroctonus ponderosae) Breached the Canadian Rocky Mountains

    PubMed Central

    Janes, Jasmine K.; Li, Yisu; Keeling, Christopher I.; Yuen, Macaire M.S.; Boone, Celia K.; Cooke, Janice E.K.; Bohlmann, Joerg; Huber, Dezene P.W.; Murray, Brent W.; Coltman, David W.; Sperling, Felix A.H.

    2014-01-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below −40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species. PMID:24803641

  14. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa

  15. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa

  16. PARTITIONING OF WATER FLUX IN A SIERRA NEVADA PONDEROSA PINE PLANTATION. (R826601)

    EPA Science Inventory

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus pond...

  17. ROOT GROWTH AND TURNOVER IN DIFFERENT AGED PONDEROSA PINE STANDS IN OREGON, USA

    EPA Science Inventory

    The impacts of pollution and climate change on soil carbon dynamics are poorly understood, in part due to a lack of information regarding root production and turnover in natural ecosystems. In order to examine how root dynamics change with stand age in ponderosa pine forests (...

  18. Establishment, survival, and growth of selected browse species in a ponderosa pine forest

    USGS Publications Warehouse

    Dietz, D.R.; Uresk, D.W.; Messner, H.E.; McEwen, L.C.

    1980-01-01

    Information is presented on establishment, survival, and growth of seven selected browse species in a ponderosa pine forest over a 10-year period. Methods of establishment included hand seeding and planting bare-root and containerized stock. Success of different methods differed with shrub species.

  19. TEMPORAL ALLOCATION OF 14C TO EXTRAMATRICAL HYPHAE OF ECTOMYCORRHIZAL PONDEROSA PINE SEEDLINGS

    EPA Science Inventory

    Ponderosa pine seedlings were inoculated with Hebeloma crustuliniforme either in growth pouches before they were transplanted to root-mycocosms (P seedlings), or at the time of transfer to root-mycocosms (V seedlings). ninoculated seedlings served as controls (U seedlings). he us...

  20. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    EPA Science Inventory

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  1. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Baker, William L.; DellaSala, Dominick A.; Williams, Mark A.

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper. PMID:27195808

  2. Genetically improved ponderosa pine seedlings outgrow nursery-run seedlings with and without competition -- Early findings

    SciTech Connect

    McDonald, P.M.; Fiddler, G.O. ); Kitzmiller, J.H. . Chico Tree Improvement Center)

    1994-04-01

    Three classes of ponderosa pine (Pinus ponderosa) seedlings (nursery-run, wind-pollinated, control-pollinated) were evaluated for stem height and diameter at the USDA Forest Service's Placerville Nursery and the Georgetown Range District in northern California. Pines in all three classes were grown with competing vegetation or maintained in a free-to-grow condition. Control-pollinated seedlings were statistically taller than nursery-run counterparts when outplanted, and after 1 and 2 growing seasons in the field with and without competition. They also had significantly larger diameters when outplanted and after 2 growing seasons in the field when free to grow. Wind-pollinated seedlings grew taller than nursery-run seedlings when free to grow. A large amount of competing vegetation [bearclover (Chamaebatia foliolosa)--29,490 plants per acre; herbaceous vegetation--11,500; hardwood sprouts--233; and whiteleaf manzanita (Arctostaphylos viscida) seedlings--100] ensure that future pine development will be tested rigorously.

  3. INTERACTIVE EFFECTS OF CO2 AND O3 ON A PONDEROSA PINE PLANT/LITTER/SOIL MESOCOSM

    EPA Science Inventory

    To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a four-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April, 1998. Th...

  4. Exploring climate niches of ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western United States: Implications for evolutionary history and conservation

    USGS Publications Warehouse

    Shinneman, Douglas; Means, Robert E.; Potter, Kevin M.; Hipkins, Valerie D.

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with

  5. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation.

    PubMed

    Shinneman, Douglas J; Means, Robert E; Potter, Kevin M; Hipkins, Valerie D

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete

  6. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation

    PubMed Central

    Shinneman, Douglas J.; Potter, Kevin M.; Hipkins, Valerie D.

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete

  7. Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests

    PubMed Central

    Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID

  8. Differences between loblolly pine and ponderosa pine responses to elevated CO[sub 2] partitioned between biological and environmental factors

    SciTech Connect

    Winner, W.E. ); Griffin, K.L.; Thomas, R.B.; Strain, B. ); Ball, T. )

    1994-06-01

    Loblolly pine raised at the North Carolina field site and Ponderosa pine raised at the California field site show differences in their capacity to grown and sequester carbon. The contrast in CO[sub 2] responses between species is related to both environmental differences between the field sites as well as biological differences between Loblolly and Ponderosa pine. We designed an experiment to isolate the biological differences between CO[sub 2] responses of the 2 test species by raising them in common environments at the Duke University Phytotron. Both pine species were raised for 160 days in either 35 Pa or 70 Pa CO[sub 2]. Plants were also raised at 3 levels of N since N is known to affect CO[sub 2] responses of plants. Seedlings were raised in 3.3 1 pots filled with sand irrigated each morning with 1/2 strength Hoaglands solution made with N supplied at NH[sub 4] at either 1 mm. 3.5 mm. or 7 mm. Root, stem, and foliar biomass, whole plant biomass, and leaf area were similar for both species across all CO[sub 2] and N treatments at the final harvest. Thus biological differences between pine species seem to be small and N is not the environmental factor accounting for differences in CO[sub 2] responses observed at the 2 field sites. Small biological differences between Loblolly and Ponderosa pine may be difficult to detect in experiments with seedlings, but scale to important differences between species as trees mature or when forest stands are considered.

  9. Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA

    PubMed Central

    Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T

    2013-01-01

    A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860–2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20–30 years, at which point the visually healthy populations had consistently higher BAI values (22–34%) than the MPB-infected trees. These results suggest that growth rates two–three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955–59 for the visually healthy trees and 1960–64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies. PMID:23762502

  10. ACCUMULATION OF CESIUM-137 AND STRONTIUM-90 IN PONDEROSA PINE AND MONTEREY PINE SEEDLINGS

    EPA Science Inventory

    Because Pinus ponderosa (Dougl.ex Laws) and P. radiate (ID.Don) have exceptionally fast growth rates and their abscised needles are not readily dispersed by wind, these species may be valuable for removing radioisotopes from contaminated soils. . ponderosa and P. radiata seedling...

  11. A comparison of the metabolism of the abortifacient compounds from Ponderosa Pine needles in conditioned versus naive cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isocupressic acid (ICA) is the abortifacient compound in ponderosa pine needles, which can cause late term abortions in cattle. However, cattle rapidly metabolize ICA to agathic acid and subsequent metabolites. When pine needles are dosed orally to cattle, no ICA is detected in their serum while a...

  12. Effect of dietary protein level and quebracho tannin on consumption of pine needles (Pinus ponderosa) by beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ponderosa pine trees occupy over 15 million hectares of rangeland in western North America. Pregnant cows often consume pine needles (PN), and subsequently abort. The protein-to-energy ratio may be important in the ability of cattle to tolerate dietary terpenes. Tannins often co-occur with terpenes ...

  13. AmeriFlux US-Me2 Metolius-intermediate aged ponderosa pine

    DOE Data Explorer

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me2 Metolius-intermediate aged ponderosa pine. Site Description - The mean stand age is 64 years old and the stand age of the oldest trees is about 100 years old. This site is one of the Metolius cluster sites with different age and disturbance classes and part of the AmeriFlux network (http://ameriflux.ornl.gov/fullsiteinfo.php?sid=88). The overstory is almost exclusively composed of ponderosa pine trees (Pinus ponderosa Doug. Ex P. Laws) with a few scattered incense cedars (Calocedrus decurrens (Torr.) Florin) and has a peak leaf area index (LAI) of 2.8 m2 m-2. Tree height is relatively homogeneous at about 16 m, and the mean tree density is approximately 325 trees ha-1 (Irvine et al., 2008). The understory is sparse with an LAI of 0.2 m2 m-2 and primarily composed of bitterbrush (Purshia tridentate (Push) DC.) and Manzanita (Arctostaphylos patula Greene). Soils at the site are sandy (69%/24%/7% sand/silt/clay at 0–0.2 m depth and 66%/27%/7% at 0.2–0.5 m depth, and 54%/ 35%/11% at 0.5–1.0 m depth), freely draining with a soil depth of approximately 1.5 m (Irvine et al., 2008; Law et al., 2001b; Schwarz et al., 2004).

  14. Biomass and nutrient distributions in central Oregon second-growth ponderosa pine ecosystems. Forest Service research paper

    SciTech Connect

    Little, S.N.; Shainsky, L.J.

    1995-03-01

    We investigated the distributioin of biomass and nurtrients in second-growth ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems in central Oregon. Destructive sampling of aboveground and belowground tree biomass was carried out at six sites in the Deschutes National Forest; three of these sites also were intensively sampled for biomass and nutrient concentrations of the soil, forest floor, residue, and shrub components. Tree biomass equations were developed that related component biomass to diameter at breast height and total tree height.

  15. Effects of CO{sub 2} and nitrogen fertilization on growth and nutrient content of juvenile ponderosa pine

    SciTech Connect

    Johnson, D.W. |; Ball, J.T.; Walker, R.F.; Cushman, R.M.

    1998-03-01

    This data set presents measured values of plant diameter and height, biomass of plant components, and nutrient (carbon, nitrogen, phosphorus, sulfur, potassium, calcium, magnesium, boron, copper, iron, manganese, and zinc) concentrations from a study of the effects of carbon dioxide and nitrogen fertilization on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) conducted in open-top chambers in Placerville, California, from 1991 through 1996. This data set contains values from 1991 through 1993.

  16. Uptake and distribution of nitrogen from acidic fog within a ponderosa pine (Pinus ponderosa Laws.)/litter/soil system

    SciTech Connect

    Fenn, M.E.; Leininger, T.D.

    1995-11-01

    The magnitude and importance of wet deposition of N in forests of the South Coast (Los Angeles) Air Basin have not been well characterized. We exposed 3-yr-old ponderosa pine (Pinus ponderosa Laws.) seedlings growing in native forest soil to acidic fog treatments (pH 3.1) simulating fog chemistry from a pine forest near Los Angeles, California. Fog solutions contained either {sup 15}NH{sub 4}{sup +}, {sup 15}NO{sub 3}{sup {minus}}, or unlabeled N. The fog treatments were applied in open-top chambers in six 5-hr exposures. Soil treatments within each of the fog exposures were bare soil, soil overlain with L- and F-litter, and soil covered with plastic during the fog events to prevent fogwater from contacting soil. Seedlings were harvested and samples were collected 15 wk after the fog treatments. Uptake of {sup 15}N by roots was by far the dominant pathway for plant assimilation of fog-deposited {sup 15}N. Deposition of N in fog supplied 9.4% and 8.7% of the total N in current-year crown biomass in the litter-overlay and bare-soil treatments, respectively. Total N concentrations in every plant fraction except current-year stems were significantly higher in the bare-soil treatment than in the plastic-covered soil treatment. Less than 5% of the {sup 15}N deposited directly to the seedling crowns was retained by the plants in the covered-soil treatment, whereas 57% of the {sup 15}N deposited to the seedling/litter/soil systems was incorporated into plant biomass. The litter layers retained {sup 15}NH{sub 4}{sup +} more effectively than {sup 15}NH{sub 4}{sup +} more effectively than {sup 15}NO{sub 3}. Data from this study suggest that N deposited from fog may be an important source of N for plant growth in forests of the SCAB where fog occurrence and pollution exposure coincide. 5 refs., 5 figs., 3 tabs.

  17. Green foliage losses from ponderosa pines induced by Abert squirrels and snowstorms: A comparison. [Sciurus aberti; Pinus pondersosa

    SciTech Connect

    Allred, W.S.; Gaud, W.S. )

    1993-01-01

    Abert squirrels (Sciurus aberti) are obligate herbivores on ponderosa pine (Pinus ponderosa). The inner bark of pine shoots is considered one of the predominant food resources obtained by foraging squirrels. As squirrels forage for this resource they induce green needle losses from chosen feed trees. Amounts of induced green needle losses appear to vary according to the availability of alternative foods and squirrel population densities. Weather also induces green needle losses to ponderosa pines. Results of this study indicate that, at least in some years, heavy snowstorms can induce greater amounts of green needle losses than squirrels. Squirrel herbivory was not indicated as a factor in any tree mortality. However, losses due to snowstorms are more severe since they may cause the actual depletion of trees in the forest because of the tree mortality they inflict.

  18. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation

    USGS Publications Warehouse

    Kurpius, M.R.; Panek, J.A.; Nikolov, N.T.; McKay, M.; Goldstein, Allen H.

    2003-01-01

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus ponderosa) in this region. To investigate how year-round water fluxes were partitioned in a young ponderosa pine ecosystem in the Sierra Nevada Mountains, water fluxes were continually measured from June 2000 to May 2001 using a combination of sap flow and eddy covariance techniques (above- and below-canopy). Water fluxes were modeled at our study site using a biophysical model, FORFLUX. During summer and fall water fluxes were equally partitioned between transpiration and soil evaporation while transpiration dominated the water fluxes in winter and spring. The trees had high rates of canopy conductance and transpiration in the early morning and mid-late afternoon and a mid-day depression during the dry season. We used a diurnal centroid analysis to show that the timing of high canopy conductance and transpiration relative to high vapor pressure deficit (D) shifted with soil moisture: during periods of low soil moisture canopy conductance and transpiration peaked early in the day when D was low. Conversely, during periods of high soil moisture canopy conductance and transpiration peaked at the same time or later in the day than D. Our observations suggest a general strategy by the pine trees in which they maximize stomatal conductance, and therefore carbon fixation, throughout the day on warm sunny days with high soil moisture (i.e. warm periods in winter and late spring) and maximize stomatal conductance and carbon fixation in the morning through the dry periods. FORFLUX model estimates of evaporation and transpiration were close to measured/calculated values during the dry period, including the drought, but underestimated transpiration and overestimated evaporation during the wet period. ?? 2003

  19. Antioxidant activity in mature branches of ponderosa pine (Pinus ponderosa) under long-term, low concentration ozone exposure

    SciTech Connect

    Benes, S.E.; Murphy, T.M.; Laeuchli, A. ); Anderson, P.D.; Houpis, J.L.J. )

    1990-05-01

    Antioxidant activity (superoxide dismutase, peroxidases and glutathione) is being examined in mature needle tissue of ponderosa pine exposed to elevated levels of ozone (O{sub 3}). Trees used in this study are 8-14 year-old clones produced from buds from a 70 year-old tree grafted onto seedling rootstock. Trees are exposed to O{sub 3} using a newly developed branch exposure chamber (BEC). Ozone treatments are charcoal-filtered, ambient and 2x ambient concentrations. A non-chambered branch will determine the effect of exposure chamber. Superoxide dismutase (SOD) activity measured in current-year needles in February via nitrobluetetrazolium (NBT) reduction was 138.5 {plus minus} 15 (SD) units mg{sup {minus}1} protein. The activity of guaiacol-oxidizing peroxidases was 89 {plus minus} 19 (SD) {Delta}A{sub 470} min{sup {minus}1} mg{sup {minus}1} protein. Ascorbate peroxidase and the ratio of oxidized to reduced glutathione (GSSG/GSH) are also being monitored. Antioxidant activity will be measured monthly across the ozone season (March to November) and during natural ozone episodes. Cellular antioxidant activity will be related to needle photosynthesis, respiration and stomatal conductance measured using a Licor 6200 portable photosynthesis apparatus.

  20. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.

  1. Product recovery of ponderosa pine in Arizona and New Mexico. Forest Service research paper

    SciTech Connect

    Fahey, T.D.; Ayer Sachet, J.K.

    1993-11-01

    A mill recovery of ponderosa pine in Arizona and New Mexico showed wide variation in quality within the resource. Lumber grade ranged widely by log grade and diameter, with a major difference within grade 5 logs between old growth and young growth. Old growth produced mostly Shop and Selects grades of lumber while young growth produced mostly Dimension grades of lumber; small-diameter young growth developed severe problems of warpage. Log grades separated logs into distinct value classes, and separating young-growth timber (as an additional grade) allowed better segregation of logs by product type and expected value.

  2. Genetic variation and seed transfer guidelines for ponderosa pine in central Oregon. Forest Service research paper

    SciTech Connect

    Sorensen, F.C.

    1994-07-01

    The report includes an adaptive genetic variation in seed and seedling traits for ponderosa pine from the east slopes of the Cascade Range in Oregon which was analyzed by using 307 families from 227 locations. Factor scores from three principal components based on seed and seedling traits were related by multiple regression to latitude, distance from the Cascade crest, elevation, slope, and aspect of the seed sources and by classification analysis to seed zone and 300-meter elevation band within zone. A provisional transfer risk equation and tentative new seed zones were delineated to guide seed transfer in artificial regeneration.

  3. Geographic variation in speed of seed germination in central Oregon ponderosa pine ( pinus ponderosa' dougl. ex laws). Forest Service research paper

    SciTech Connect

    Weber, J.C.; Sorensen, F.C.

    1992-03-01

    Variation in speed of seed germination was investigated among ponderosa pine trees representing 225 locations in central Oregon. Results suggested that at least some of the geographic variation is related to the severity of summer drought. In general, germination speed was greater in locations with short, drought-limited growing seasons. Levels of geographic variation were highest in the region having the steepest precipitation gradients. Most of the variation occurred, however, within locations.

  4. Simulating cumulative fire effects in ponderosa pine/Douglas-fir forests

    SciTech Connect

    Keane, R.E.; Arno, S.F.; Brown, J.K. )

    1990-02-01

    A successional process model has been adapted for use with species from ponderosa pine/Douglas-fir (Pinus ponderosa var. ponderosa)/(Pseudotsuga menziesii var. glacua) forests of the inland Northwest. Its design allows modification for application to other forest types. This model, FIRESUM, simulates tree establishment, growth, and mortality, along with live and dead fuel accumulation, fire behavior, and fuel reduction on a 400-m{sup 2} plot. The modeling contains algorithms for influences on tree establishment and growth including temperature, water stress, light tolerance, and site quality. The model was used to predict 200 yr of forest succession for five different disturbance regimes. This allowed comparison of patterns of basal area by species, of duff and fuel accumulation, and of fire intensities among the following scenarios: (1) no fires (fire suppression), (2) consistent fire intervals of 10, 20, and 50 yr, and (3) a natural fire regime of variable intervals reconstructed from fire scarred trees. These five scenarios resulted in a differential survival of species determining dominance in the understory and eventually in the overstory. A test of the model showed predictions to be within 19% of field observations, and a sensitivity analysis of FIRESUM showed parameters associated with the growth algorithm to be most critical for predicting successional trends.

  5. Response of young ponderosa pines, shrubs, and grasses to two release treatments. Forest Service research note

    SciTech Connect

    McDonald, P.M.; Everest, G.A.

    1996-07-01

    To release a young pine plantation on a medium site in central California, herbicides and mulches were applied soon after planting to study their effectiveness. Bearclover is an aggressive shrub species that resprouts from rhizomes after disturbance, and must be controlled if young conifer seedlings are to become established. After 4 years, resprouting bearclover plants numbered 282,000 per acre in the control, but less than 4,000 per acre in the plots treated by herbicides. Mean foliar cover was 63 percent versus 1 percent for control and herbicide plots, respectively. Ponderosa pine seedlings were significantly taller, had larger mean diameters, and survived better in the herbicide treatment than counterparts in mulched plots and control. The 5-foot square mulches were ineffective for controlling bearclover. Cheatgrass invaded the plantation in the second year, and after 2 more years became abundant in herbicide plots and plentiful in the control.

  6. Variation in photosynthesis and stomatal conductance in an ozone-stressed Ponderosa pine stand: light response

    SciTech Connect

    Cooyne, P.I,; Bingham, G.E.

    1982-06-01

    The seasonal course (May to October 1977) of gross photosynthesis (from /sup 14/CO/sub 2/ uptake and stomatal conductance) in a stand of ponderosa pine (Pinus ponderosa Laws.) in the San Bernardino National Forest was characterized as a function of light. Nine sapling trees, classified for comparative studies into three chronic injury classes (slight, moderate, severe) had experienced oxidant fumigations from California's South Coast Air Basin for approximately 18 years, since their establishment following fire. The CO/sub 2/-transfer pathway was partitioned into its stomatal and residual (mesophyll, carboxylation, excitation) resistance components, for conditions of light saturation and 20/sup 0/C. Light-saturated gross photosynthetic rates and photochemical conversion efficiencies were highest in the current-year needles and decreased with increasing needle age and oxidant injury. Maximum stomatal conductance and stomatal sensitivity to increasing light during stomatal opening followed a trend similar to that of photosynthesis, except for current-year needles, where conductance parameters were highest in the severely injured trees. This higher conductance may contribute to observed differential ozone sensitivity in ponderosa pine. Premature senesence and abscission of the 1-year (severely injured trees) and 2-year (slight to moderate injury) needles occurred at about the time CO/sub 2/ uptake dropped to 10 percent of the potential for current needles of slightly injured trees without foliar injury symptoms. The ratio of the stomatal CO/sub 2/ resistance to the total CO/sub 2/ resistance decreased with increasing oxidant injury and needle age, suggesting that loss of photosynthetic capacity was primarily related to the loss of chloroplast function rather than to increased resistance of CO/sub 2/ diffusion through the stomata.

  7. Variation in photosynthesis and stomatal conductance in an ozone-stressed ponderosa pine stand: light response

    SciTech Connect

    Coyne, P.I.; Bingham, G.E.

    1982-01-01

    The seasonal course (May to October 1977) of gross photosynthesis (from /sup 14/CO/sub 2/ uptake and stomatal conductance) in a stand of ponderosa pine (Pinus ponderosa Laws.) in the San Bernardino National Forest was characterized as a function of light. Nine sapling trees, classified for comparative studies into three chronic injury classes (slight, moderate, severe) had experienced oxidant fumigations from California's South Coast Air Basin for approximately 18 years, since their establishment following fire. The CO/sub 2/-transfer pathway was partitioned into its stomatal and residual (mesophyll, carboxylation, excitation) resistance components, for conditions of light saturation and 20/sup 0/C. Light-saturated gross photosynthetic rates and photochemical conversion efficiencies were highest in the current-year needles and decreased with increasing needle age and oxidant injury. Maximum stomatal conductance and stomatal sensitivity to increasing light during stomatal opening followed a trend similar to that of photosynthesis, except for current-year needles, where conductance parameters were highest in the severely injured trees. This higher conductance may contribute to observed differential ozone sensitivity in ponderosa pine. Premature senesence and abscission of the 1-year (severely injured trees) and 2-year (slight to moderate injury) needles occurred at about the time CO/sub 2/ uptake dropped to 10% of the potential for current needles of slightly injured trees without foliar injury symptoms. The ratio of stomatal CO/sub 2/ resistance to the total CO/sub 2/ resistance decreased with increasing oxidant injury and needle age, suggesting that loss of photosynthetic capacity was primarily related to the loss of chloroplast function rather than to increased resistance of CO/sub 2/ diffusion through the stomata.

  8. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests.

    PubMed

    Pierce, Jennifer L; Meyer, Grant A; Jull, A J Timothy

    2004-11-01

    Western US ponderosa pine forests have recently suffered extensive stand-replacing fires followed by hillslope erosion and sedimentation. These fires are usually attributed to increased stand density as a result of fire suppression, grazing and other land use, and are often considered uncharacteristic or unprecedented. Tree-ring records from the past 500 years indicate that before Euro-American settlement, frequent, low-severity fires maintained open stands. However, the pre-settlement period between about ad 1500 and ad 1900 was also generally colder than present, raising the possibility that rapid twentieth-century warming promoted recent catastrophic fires. Here we date fire-related sediment deposits in alluvial fans in central Idaho to reconstruct Holocene fire history in xeric ponderosa pine forests and examine links to climate. We find that colder periods experienced frequent low-severity fires, probably fuelled by increased understory growth. Warmer periods experienced severe droughts, stand-replacing fires and large debris-flow events that comprise a large component of long-term erosion and coincide with similar events in sub-alpine forests of Yellowstone National Park. Our results suggest that given the powerful influence of climate, restoration of processes typical of pre-settlement times may be difficult in a warmer future that promotes severe fires. PMID:15525985

  9. An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem.

    PubMed

    Panek, Jeanne A; Kurpius, Meredith R; Goldstein, Allen H

    2002-01-01

    Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at all times of the growing season. This may be inaccurate in regions with a Mediterranean climate, such as California and the Pacific Northwest, where peak physiological activity occurs early in the season to take advantage of high soil moisture and does not correspond to peak ozone concentrations. It may also misrepresent ecosystems experiencing non-average climate conditions such as drought years. We compared direct measurements of ozone flux into a ponderosa pine canopy with a suite of the most common ozone exposure metrics to determine which best correlated with actual ozone uptake by the forest. Of the metrics we assessed, SUM0 (the sum of all daytime ozone concentrations > 0) best corresponded to ozone uptake by ponderosa pine, however the correlation was only strong at times when the stomata were unconstrained by site moisture conditions. In the early growing season (May and June). SUM0 was an adequate metric for forest ozone exposure. Later in the season, when stomatal conductance was limited by drought. SUM0 overestimated ozone uptake. A better metric for seasonally drought-stressed forests would be one that incorporates forest physiological activity, either through mechanistic modeling, by weighting ozone concentrations by stomatal conductance, or by weighting concentrations by site moisture conditions. PMID:11843543

  10. Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest

    SciTech Connect

    Hart, Stephen C; Classen, Aimee T; Robert, Wright J.

    2005-01-01

    1. Plant roots and their mycorrhizal symbionts are critical components of forest eco- systems, being largely responsible for soil resource acquisition by plants and the main- tenance of soil structure, as well as influencing soil nutrient cycling. Silvicultural treatments should be guided by knowledge of how these below-ground components respond to different forest management practices. 2. We examined the cumulative effects of 20 years of prescribed burning at 2-year inter- vals. We measured fine root length density and fine root and mycorrhizal root biomass in the upper 15 cm of mineral soil in a south-western ponderosa pine forest over a com- plete burn cycle. 3. Repeated burning reduced fine root length, fine root biomass and mycorrhizal root biomass, as well as the amount of nitrogen and phosphorus stored in these below- ground pools. 4. Estimates of fine root production, fine root decomposition and nutrient dynamics were similar in burned and control plots. 5. Synthesis and applications . Although repeated-prescribed fire may be an effective, low-cost approach for reducing fuel loads and lessening the chance of a catastrophic wildfire in ponderosa pine forests, our results suggest that this strategy may negatively affect below-ground biomass pools and nutrient cycling processes in the long term. We recommend that mechanical reductions in fuel loads be conducted in these and similar forests that have not experienced fire for decades, before fire is reintroduced as a man- agement tool.

  11. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks.

    PubMed

    Song, Yuan Yuan; Simard, Suzanne W; Carroll, Allan; Mohn, William W; Zeng, Ren Sen

    2015-01-01

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF 'donor' and ponderosa pine 'receiver' seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance. PMID:25683155

  12. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks

    PubMed Central

    Song, Yuan Yuan; Simard, Suzanne W.; Carroll, Allan; Mohn, William W.; Zeng, Ren Sen

    2015-01-01

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF ‘donor’ and ponderosa pine ‘receiver’ seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance. PMID:25683155

  13. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    PubMed

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-01

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices. PMID:27153402

  14. Nitrogen limitation and growth response to CO{sub 2} in ponderosa pine

    SciTech Connect

    Johnson, D.W.; Henderson, P.; Walker, R.F.

    1995-09-01

    Ponderosa pine (Pinus ponderosa) was grown from seed and subjected to three levels of CO{sub 2} (370,525, and 700 {mu}l/ l{sup {minus}1}) and three levels of N (0, 10, and 20 g N m{sup {minus}2} yr{sup {minus}1}) for three years in open top chambers. Both N and CO{sub 2} produced a positive growth response, and there was a growth response to CO{sub 2} without fertilization. This growth increase was accompanied by increased N uptake with elevated CO{sub 2}; the commonly-observed reduction in tissue N concentration was insufficient to allow a significant growth response without additional N uptake. Detailed and exhaustive analyses of both bulk soil and rhizosphere soil revealed no growth response without additional N uptake. Detailed and exhaustive analyses of both bulk soil and rhizosphere soil revealed no effect of elevated CO{sub 2} on soil N mineralization rate. Thus, the growth response to elevated CO{sub 2} with suboptimal N was facilitated by greater root biomass and exploration of the soil for available N supplies. Root biomass was disproportionately greater in trees treated with elevated CO{sub 2}. Results of this in combination with previous pot studies show that N limitation is a continuum rather than an on/off situation, and thus N limitation constraints upon CO{sub 2} response varies continuously from complete limitation at very low N to no limitation at high N.

  15. Seasonal changes in above- and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient.

    PubMed

    Grulke, N E; Andersen, C P; Hogsett, W E

    2001-02-01

    Seasonal patterns of carbohydrate concentration in coarse and fine roots, stem or bole, and foliage of ponderosa pine (Pinus ponderosa Laws) were described across five tree-age classes from seedlings to mature trees at an atmospherically clean site. Relative to all other tree-age classes, seedlings exhibited greater tissue carbohydrate concentration in stems and foliage, and greater shifts in the time at which maximum and minimum carbohydrate concentration occurred. To determine the effect of environmental stressors on tissue carbohydrate concentration, two tree-age classes (40-year-old and mature) were compared at three sites along a well-established, long-term O3 and N deposition gradient in the San Bernardino Mountains, California. Maximum carbohydrate concentration of 1-year-old needles declined with increasing pollution exposure in both tree-age classes. Maximum fine root monosaccharide concentration was depressed for both 40-year-old and mature trees at the most polluted site. Maximum coarse and fine root starch concentrations were significantly depressed at the most polluted site in mature trees. Maximum bole carbohydrate concentration of 40-year-old trees was greater for the two most polluted sites relative to the cleanest site: the bole appeared to be a storage organ at sites where high O3 and high N deposition decreased root biomass. PMID:11303648

  16. exo-Brevicomin biosynthetic pathway enzymes from the Mountain Pine Beetle, Dendroctonus ponderosae.

    PubMed

    Song, Minmin; Delaplain, Patrick; Nguyen, Trang T; Liu, Xibei; Wickenberg, Leah; Jeffrey, Christopher; Blomquist, Gary J; Tittiger, Claus

    2014-10-01

    exoBrevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive Mountain Pine Beetle (Dendroctonus ponderosae). It is also found in other insects and the African elephant. Despite its significance, very little is known about its biosynthesis. A recent microarray analysis implicated a small cluster of three D. ponderosae genes in exo-brevicomin biosynthesis, two of which had identifiable open reading frames (Aw et al., 2010; BMC Genomics 11:215). Here we report further expression profiling of two genes in that cluster and functional analysis of their recombinantly-produced enzymes. One encodes a short-chain dehydrogenase that used NAD(P)(+) as a co-factor to catalyze the oxidation of (Z)-6-nonen-2-ol to (Z)-6-nonen-2-one. We therefore named the enzyme (Z)-6-nonen-2-ol dehydrogenase (ZnoDH). The other encodes the cytochrome P450, CYP6CR1, which epoxidized (Z)-6-nonen-2-one to 6,7-epoxynonan-2-one with very high specificity and substrate selectivity. Both the substrates and products of the two enzymes are intermediates in the exo-brevicomin biosynthetic pathway. Thus, ZnoDH and CYP6CR1 are enzymes that apparently catalyze the antepenultimate and penultimate steps in the exo-brevicomin biosynthetic pathway, respectively. PMID:25138711

  17. exo-Brevicomin biosynthesis in the fat body of the mountain pine beetle, Dendroctonus ponderosae.

    PubMed

    Song, Minmin; Gorzalski, Andrew; Nguyen, Trang T; Liu, Xibei; Jeffrey, Christopher; Blomquist, Gary J; Tittiger, Claus

    2014-02-01

    exo-Brevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive mountain pine beetle, Dendroctonus ponderosae. It also has been found in other insects and even in the African elephant. Despite its significance, little is known about its biosynthesis. In order to fill this gap and to identify new molecular targets for potential pest management methods, we performed gas chromatography-mass spectrometry analyses of cell cultures and in vitro assays of various D. ponderosae tissues with exo-brevicomin intermediates, analogs, and inhibitors. We confirmed that exo-brevicomin was synthesized by "unfed" males after emerging from the brood tree. Furthermore, in contrast to the paradigm established for biosynthesis of monoterpenoid pheromone components in bark beetles, exo-brevicomin was produced in the fat body, and not in the anterior midgut. The first committed step involves decarboxylation or decarbonylation of ω-3-decenoic acid, which is derived from a longer-chain precursor via β-oxidation, to (Z)-6-nonen-2-ol. This secondary alcohol is converted to the known precursor, (Z)-6-nonen-2-one, and further epoxidized by a cytochrome P450 to 6,7-epoxynonan-2-one. The keto-epoxide is stable at physiological pH, suggesting that its final cyclization to form exo-brevicomin is enzyme-catalyzed. exo-Brevicomin production is unusual in that tissue not derived from ectoderm apparently is involved. PMID:24532213

  18. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration

    USGS Publications Warehouse

    Petrie, Matthew; Wildeman, A.M.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.

    2016-01-01

    The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling emergence and/or establishment and one or more independent variables of air temperature, soil temperature, precipitation and moisture availability. Our review suggests that seedling emergence and establishment for both species is highest at intermediate temperatures (20 to 25 °C), and higher precipitation and higher moisture availability support a higher percentage of seedling emergence and establishment at daily, monthly and annual timescales. We found that ponderosa pine seedlings may be more sensitive to temperature fluctuations whereas lodgepole pine seedlings may be more sensitive to moisture fluctuations. In a changing climate, increasing temperatures and declining moisture availability may hinder forest persistence by limiting seedling processes. Yet, only 23 studies in our review investigated the effects of driving climate and environmental variables directly. Furthermore, 74 studies occurred in a laboratory or greenhouse, which do not often replicate the conditions experienced by tree seedlings in a field setting. It is therefore difficult to provide strong conclusions on how sensitive emergence and establishment in ponderosa and lodgepole pine are to these specific driving variables, or to investigate their potential aggregate effects. Thus, the effects of many driving variables on seedling processes remain largely inconclusive. Our review stresses the need for additional field and laboratory studies to better elucidate the effects of driving climate and environmental variables on seedling emergence and establishment for ponderosa and lodgepole pine.

  19. AmeriFlux US-Me4 Metolius-old aged ponderosa pine

    SciTech Connect

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me4 Metolius-old aged ponderosa pine. Site Description - The site is located on land designated as a Research Natural Area (RNA). The site is very open, with even-aged stands of old-growth trees, young trees and mixed aged stands. The eddy-flux tower footprint was classified as ~ 48% mixed aged, ~27% pure old growth and ~25% young aged stands. The data in this workbook describes the mixed aged component. A separate workbook describes the pure old growth component. Law et al (2001) Global Change Biology 7, 755-777; Law et al (2001) Agricultural and Forest Meteorology 110, 27-43; Anthoni et al (2002) Agricultural and Forest Meteorology 111, 203-222; Irvine & Law (2002) Global Change biology 8,1183-1194, Irivne et al (2004) Tree Physiology 24,753-763.

  20. Lessons from the fires of 2000: Post-fire heterogeneity in ponderosa pine forests

    USGS Publications Warehouse

    Kotliar, Natasha B.; Haire, Sandra L.; Key, Carl H.

    2003-01-01

    We evaluate burn-severity patterns for six burns that occurred in the southern Rocky Mountains and the Colorado Plateau in 2000. We compare the results of two data sources: Burned Area Rehabilitations Teams (BAER) and a spatial burnseverity model derived from satellite imagery (the Normalized Burn Ratio; NBR). BAER maps tended to overestimate area of severe burns and underestimate area of moderate-severity burns relative to NBR maps. Low elevation and more southern ponderosa pine burns were predominantly understory burns, whereas burns at higher elevations and farther north had a greater component of high-severity burns. Thus, much, if not most, of the area covered by these burns appears to be consistent with historic burns and contributes to healthy functioning ecosystems.

  1. Nitrogen oxide fluxes over a ponderosa pine plantation during BEARPEX-2009

    NASA Astrophysics Data System (ADS)

    Min, K.; Lafranchi, B. W.; Pusede, S. E.; Browne, E. C.; Wooldridge, P. J.; Cohen, R. C.

    2009-12-01

    The biosphere-atmosphere exchange of reactive nitrogen oxides affects atmospheric oxidative capacity and ecosystem nutrient cycling. During the Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX-2009), eddy covariance fluxes of NO2, sum of peroxy nitrates (∑PNs), sum of alkyl nitrates (∑ANs), and nitric acid (HNO3) were monitored from July 4 to July 26 above a ponderosa pine plantation in the Sierra Nevada Mountains of California using thermal dissociation - laser induced fluorescence (TD-LIF). NO2 fluxes are found to be positive and ∑AN fluxes negative supporting previous research (Farmer and Cohen, 2006). In contrast, we report downward ∑PN and HNO3 fluxes. We present these results and interpret the relationship between our flux observations and concurrent NO2, ∑PN, ∑AN, and HNO3 gradient measurements.

  2. Ponderosa pine snag densities following multiple fires in the Gila Wilderness, New Mexico

    USGS Publications Warehouse

    Holden, Z.A.; Morgan, P.; Rollins, M.G.; Wright, R.G.

    2006-01-01

    Fires create and consume snags (standing dead trees), an important structural and ecological component of ponderosa pine forests. The effects of repeated fires on snag densities in ponderosa pine forests of the southwestern USA have not been studied. Line intercept sampling was used to estimate snag densities in areas of the Gila Wilderness that had burned one to three times under Wildland Fire Use for Resource Benefit (WFU), a fire management policy implemented since 1974 aimed at restoring natural fire regimes. Twenty randomly located transects were measured in areas burned since 1946; six in once-burned areas, six in twice-burned areas and eight in thrice-burned areas. The mean density ?? standard errors of large (>47.5 cm dbh) snags for areas that burned once, twice and thrice was 7.0 ?? 2.7, 4.4 ?? 1.1 and 4.1 ?? 1.3 snags/ha, respectively. Differences in snag densities between once- and multiple-burned areas were significant (F-test; p < 0.05). There was no significant difference in density of large snags between twice- and thrice-burned areas. Proportions of type 1 snags (recently created) were higher in once- and twice-burned areas than in areas that burned three times, likely reflecting high tree mortality and snag recruitment resulting from an initial entry fire. Type 3 snags (charred by previous fire) were more abundant in areas that burned multiple times. The lack of differences in snag densities between areas that burned two and three times suggests that repeated fires leave many snags standing. The increasing proportion of type 3 snags with repeated fires supports this conclusion. ?? 2005 Elsevier B.V. All rights reserved.

  3. Carbon fluxes from ponderosa pine forests disturbed by wildfire and thinning

    NASA Astrophysics Data System (ADS)

    Dore, S.; Kolb, T.; Montes-Helu, M.; Eckert, S.; Sullivan, B. W.; Hungate, B.; Kaye, J. P.; Hart, S.; Koch, G.

    2009-12-01

    We compared the impact of two types of disturbances on ecosystem carbon uptake and storage of ponderosa pine forests in the southwestern U. S.: 1) high-intensity burning, and 2) thinning. High severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. The intense fire, ten years after burning, reduced carbon stock by 50% compared with an undisturbed site. Eddy covariance measurements showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP) at the burned site was 90-210 g C m-2yr-1 less than at the undisturbed site, depending on the year. In contrast, thinning decreased carbon stocks by 18%, changed the site from a carbon sink to a source in the first post-treatment year, increased NPP, decreased the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning) and increased the contribution of soil CO2 efflux to TER. Dependence of TER on temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both, large disturbances, such as intense burning, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that forest thinning is a desirable alternative to stand-replacing wildfires in the effort to maintain carbon stored in dense, dry forests of ponderosa pine in southwestern United States.

  4. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    PubMed

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear. PMID:27209781

  5. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  6. Non-native plant invasions in managed and protected ponderosa pine/Douglas-fir forests of the Colorado Front Range

    USGS Publications Warehouse

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stoker, J.M.; Stohlgren, T.J.

    2003-01-01

    We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not. Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At both Cheesman Lake and Turkey Creek, low/riparian plots had highest native and non-native species richness and cover; upland plots (especially east/west-facing, south-facing and flat, high plots) had the lowest. However, there were no significant differences between Cheesman Lake and Turkey Creek for native species richness, native species cover, non-native species richness, or non-native species cover for any topographic category. In general, non-native species richness and cover were highly positively correlated with native species richness and/or cover (among other variables). In total, 16 non-native species were recorded at Cheesman Lake and Turkey Creek; none of the 16 non-native species were more common at one site than another. These findings suggest that: (1) areas that are high in native species diversity also contain more non-native species; (2) both protected and managed areas can be invaded by non-native plant species, and at similar intensities; and (3) logging, grazing, and other similar disturbances may have less of an impact on non-native species establishment and growth than topographic position (i.e., in lowland and riparian zones versus upland zones).

  7. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico

    USGS Publications Warehouse

    Reynolds, Amanda C.; Betancourt, Julio L.; Quade, Jay; Patchett, P. Jonathan; Dean, Jeffery S.; Stein, John

    2005-01-01

    Previous analysis of 87Sr/86Sr ratios shows that 10th through 12th century Chaco Canyon was provisioned with plant materials that came from more than 75 km away. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, and (2) spruce (Picea sp.) and fir (Abies sp.) beams from the crest of the Chuska and San Mateo Mountains to the west and south. Here, we extend 87Sr/86Sr analysis to ponderosa pine (Pinus ponderosa) prevalent in the architectural timber at three of the Chacoan great houses (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo). Like the architectural spruce and fir, much of the ponderosa matches the 87Sr/86Sr ratios of living trees in the Chuska Mountains. Many of the architectural ponderosa, however, have similar ratios to living trees in the La Plata and San Juan Mountains to the north and Lobo Mesa/Hosta Butte to the south. There are no systematic patterns in spruce/fir or ponderosa provenance by great house or time, suggesting the use of stockpiles from a few preferred sources. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic scope of the larger Chacoan system. The complexity of this procurement warns against simple generalizations based on just one species, a single class of botanical artifact, or a few isotopic values.

  8. Effects of nursery fertilizer and irrigation on ponderosa and lodgepole pine seedling size. Forest Service research note

    SciTech Connect

    Sloan, J.P.

    1992-12-01

    Eight fertilizer treatments combined with three irrigation regimes were used when growing lodgepole and ponderosa pine seedlings on two soil types at Lucky Peak Nursery near Biose, ID. Seedlings of both species were larger on the sandy loam than the clay loam soil. Milorganite, an organic fertilizer derived from sewage sludge, reduced initial seedbeed densities but had no further effects. Ammonium nitrate increased seedling size on the clay loam, but not on the sandy loam soil. Increased irrigation was more effective in increasing seedling size on the sandy loam than on the clay loam soil. However, ponderosa pine receiving the least irrigation in the nursery grew the fastest for 3 years after being transplanted in the field, possibly because of drought conditioning.

  9. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae)

    PubMed Central

    Pitt, Caitlin; Carroll, Allan L.; Lindgren, B. Staffan; Huber, Dezene P.W.

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to

  10. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    PubMed

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability. PMID:15519986

  11. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  12. Vegetation trends in a 31-year-old ponderosa pine plantation: Effect of different shrub densities. Forest Service research paper

    SciTech Connect

    McDonald, P.M.; Abbott, C.S.

    1997-04-01

    On a poor site in northern California, a brushfield community was treated in various ways which left initial densities of no shrubs, light, medium, and heavy shrubs. Density and development (height, foliar cover, crown volume) for three shrub species (alone and combined), one grass, and planted ponderosa pine in these categories were quantified from 1966 to 1992. Successional trends (ascendance and decline) are presented for these species and for forbs from 1962 (the date pines were planted) through 1992. Regression equations that model density and development are presented for the shrubs and pine. In general, greenleaf manzanita prospered during the study; snowbrush initially developed well, but then declined; Sierra plum endured, but was relegated to the understory; needlegrass invaded rapdily, peaked early, and was mostly gone by the end of the study. Only a trace of forb species remained by study end. Needlegrass displayed strong environmental preference, becoming dense and developing well in shrub-free areas, but was scarcely present in heavy shrubs. Ponderosa pine grew well in no-shrub plots, farily well in light-shrub plots, and poorly in medium- and heavy-shrub plots. Extensive testing showed that shrub foliar cover and crown volume per acre explained more variation in several pine parameters than shrub height or density.

  13. Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.

    PubMed

    Hungate, Bruce A; Hart, Stephen C; Selmants, Paul C; Boyle, Sarah I; Gehring, Catherine A

    2007-07-01

    Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased

  14. Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings

    SciTech Connect

    Norton, J.M.; Firestone, M.K. )

    1991-04-01

    The authors determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types.

  15. Initial Decomposition and Humification Dynamics of Ponderosa Pine Fine Roots and Needles

    NASA Astrophysics Data System (ADS)

    Bird, J. A.; Torn, M. S.

    2002-12-01

    To understand the influence of litter chemistry and microclimate on the long-term stabilization of plant inputs, it is essential to better understand biological and chemical regulation of the conversion of litter to stable soil organic matter (SOM). We present first-year results from a 3-year field study examining the fate of 13C- and 15N- labeled Pinus ponderosa in an 80-year-old conifer forest in the Sierra Nevada, CA on an Ultic Haploxeralf. Our objectives are to assess the effects of litter type (fine roots vs. needles) and substrate placement depth (O vs. A horizon) on rates of C and N mineralization, immobilization into microbial biomass and specific microbial groups, and stabilization into SOM fractions. Data will be presented on recovery of 13C and 15N in soil microbial, mineral and SOM fractions after 152 d and C respiration over the initial 300 d. In situ litter decomposition, as estimated by 13C respiration, of needles exceeded that of roots by 270% at 61 d, by 140% at 152 d and was similar for the two substrates at 221 d. Comparing the effect of soil depth, pine needles had greater 13C respiration in the O horizon than in the A horizon through 152 d, while the rate of fine root decay was not significantly different between soil depths through 221 d.

  16. A statistical approach to estimate O3 uptake of ponderosa pine in a mediterranean climate.

    PubMed

    Grulke, N E; Preisler, H K; Fan, C C; Retzlaff, W A

    2002-01-01

    In highly polluted sites, stomatal behavior is sluggish with respect to light, vapor pressure deficit, and internal CO2 concentration (Ci) and poorly described by existing models. Statistical models were developed to estimate stomatal conductance (gs) of 40-year-old ponderosa pine at three sites differing in pollutant exposure for the purpose of calculating O3 uptake. Gs was estimated using julian day, hour of day, pre-dawn xylem potential and photosynthetic photon flux density (PPFD). The median difference between estimated and observed field gs did not exceed 10 mmol H2O m(-2) s(-1), and estimated gs within 95% confidence intervals. 03 uptake was calculated from hourly estimated gs, hourly O3 concentration, and a constant to correct for the difference in diffusivity between water vapor and 03. The simulation model TREGRO was also used to calculate the cumulative 03 uptake at all three sites. 03 uptake estimated by the statistical model was higher than that simulated by TREGRO because gas exchange rates were proportionally higher. O3 exposure and uptake were significantly correlated (r2>0.92), because O3 exposure and gs were highly correlated in both statistical and simulation models. PMID:12152824

  17. Modeling responses of ponderosa pine to interacting stresses of ozone and drought

    SciTech Connect

    Chen, C.W.; Tasi, W.T.; Gomez, L.E. )

    1994-05-01

    Plant-Growth-Stress Model (PGSM) is a physiologically based process model that integrates the effects of ozone, acid deposition, elevated carbon dioxide, temperature, drought, and nutrient deficiency. The model uses an hourly time step for photosynthesis and a daily time step for all other plant and soil processes. It can be set up to run for as many years as needed. The model was applied to simulate the growth pattern of ponderosa pine seedlings under the experimental conditions of ozone and drought stresses. The simulated diameter and biomass of canopy, roots, and stem were comparable to the measured. Major effect of drought stress was root mortality; however, its sublethal effect on stomata opening caused significant reductions of photosynthesis, canopy, roots, and stem. Ozone stress increased litterfall and decreased canopy. Trees compensated by growing more new needles. The canopy photosynthesis was not reduced to the extent of an across-the-board decrease of roots and stem. Ozone and drought stresses had an antagonistic effect, in which the biomass reductions due to the combined stresses were less than the sum of reductions from individual stresses. However, the observed data indicated a protective effect, not simulated by the model.

  18. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack

  19. An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine

    USGS Publications Warehouse

    van Mantgem, P.; Schwartz, M.

    2004-01-01

    We subjected 159 small ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) to treatments designed to test the relative importance of stem damage as a predictor of postfire mortality. The treatments consisted of a group with the basal bark artificially thinned, a second group with fuels removed from the base of the stem, and an untreated control. Following prescribed burning, crown scorch severity was equivalent among the groups. Postfire mortality was significantly less frequent in the fuels removal group than in the bark removal and control groups. No model of mortality for the fuels removal group was possible, because dead trees constituted <4% of subject trees. Mortality in the bark removal group was best predicted by crown scorch and stem scorch severity, whereas death in the control group was predicted by crown scorch severity and bark thickness. The relative lack of mortality in the fuels removal group and the increased sensitivity to stem damage in the bark removal group suggest that stem damage is a critical determinant of postfire mortality for small ponderosa pine.

  20. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    USGS Publications Warehouse

    Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.

  1. Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics.

    PubMed

    Grulke, N E; Alonso, R; Nguyen, T; Cascio, C; Dobrowolski, W

    2004-09-01

    Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) is widely distributed in the western USA. We report the lack of stomatal closure at night in early summer for ponderosa pine at two of three sites investigated. Trees at a third site with lower nitrogen dioxide and nitric acid exposure, but greater drought stress, had slightly open stomata at night in early summer but closed stomata at night for the rest of the summer. The three sites had similar background ozone exposure during the summer of measurement (2001). Nighttime stomatal conductance (gs) ranged from one tenth to one fifth that of maximum daytime values. In general, pole-sized trees (< 40 years old) had greater nighttime gs than mature trees (> 250 years old). In late summer, nighttime gs was low (< 3.0 mmol H2O m(-2) s(-1)) for both tree size classes at all sites. Measurable nighttime gs has also been reported in other conifers, but the values we observed were higher. In June, nighttime ozone (O3) uptake accounted for 9, 5 and 3% of the total daily O3 uptake of pole-sized trees from west to east across the San Bernardino Mountains. In late summer, O3 uptake at night was < 2% of diel uptake at all sites. Nocturnal O3 uptake may contribute to greater oxidant injury development, especially in pole-sized trees in early summer. PMID:15234897

  2. An investigation of the effects of simulated acid rain and elevated ozone on the physiology of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings and mature trees

    SciTech Connect

    Momen, B.

    1993-12-31

    This study investigated the combined effects of simulated acid rain and ozone on foliar water relations, carbon and nitrogen contents, gas exchange, and respiration of ponderosa pine seedlings and mature trees grown in the field at the USDA Forest Service Tree Improvement Center in Chico, California. Acid rain levels (pH 5.1 and 3) were applied weekly on foliage only, from January to April, 1992. Plants were exposed to ozone levels (ambient and twice ambient) during the day only, from August to December, 1990, and from September to November, 1992. Results suggested that elevated ozone, particularly in combination with strong acid, caused osmotic adjustment that may benefit plants during drought. The observed effects of pollutants are similar to the reported effects of drought on plant water relations. Elevated ozone decreased foliar nitrogen content and thus increased the C:N ratio, particularly in seedlings. Stomatal conductance was not affected by pollutants but net photosynthesis was decreased by elevated ozone, especially in mature trees. The greater sensitivity of net photosynthesis of mature trees to elevated ozone was contrary to all other plant characteristics investigated. Elevated ozone increased seedling respiration. Under controlled, temperature, light, and vapor pressure deficit conditions, net photosynthesis responded positively to increases in plant age, light intensity, and rain pH, but negatively to increases in tissue age, heat, and ozone concentration. Overall results indicated that acid rain and elevated ozone declined the carbon pool of ponderosa pine due to increased respiration and decreased net photosynthesis. Pollutant effects were more profound in mid-summer when ozone concentrations were highest. On many occasions the effects of acid rain and ozone levels interacted. Seedlings were more sensitive to pollutants than mature trees.

  3. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes.

    PubMed

    McDowell, Nate G; Adams, Henry D; Bailey, John D; Hess, Marcey; Kolb, Thomas E

    2006-06-01

    Homeostatic maintenance of gas exchange optimizes carbon gain per water loss. Homeostasis is regulated by short-term physiological and long-term structural mechanisms, both of which may respond to changes in resource availability associated with competition. Therefore, stand density regulation via silvicultural manipulations may facilitate growth and survival through mechanisms operating at both short and long timescales. We investigated the responses of ponderosa pine (Pinus ponderosa) to stand basal area manipulations in Arizona, USA. Stand basal area was manipulated to seven replicated levels in 1962 and was maintained for four decades by decadal thinning. We measured basal area increment (BAI) to assess the response and sustainability of wood growth, carbon isotope discrimination (A) inferred from annual rings to assess the response of crown gas exchange, and ratios of leaf area to sapwood area (A(l):A(s)) to assess longer term structural acclimation. Basal area treatments increased soil water potential (r2 = 0.99) but did not affect photosynthetic capacity. BAI increased within two years of thinning, and the 40-year mean BAI was negatively correlated with stand basal area (r2 = 0.98). delta was negatively correlated with stand basal area for years 5 through 12 after thinning (r2 = 0.90). However, delta was relatively invariant with basal area for the period 13-40 years after initial thinning despite maintenance of treatment basal areas via repeated decadal thinnings. Independent gas exchange measurements verified that the ratio of photosynthesis to stomatal conductance was invariant with basal area, but absolute values of both were elevated at lower basal areas. A(l):A(s) was negatively correlated with basal area (r2 = 0.93). We hypothesize that increased A(l):A(s) is a homeostatic response to increased water availability that maximizes water-use efficiency and whole-tree carbon uptake. Elevated A(l):A(s) of trees at low basal areas was associated with greater

  4. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Schnitzhofer, R.; Graus, M.; Herdlinger-Blatt, I. S.; DiGangi, J. P.; Sive, B.; Turnipseed, A.; Hornbrook, R. S.; Zheng, W.; Flocke, F. M.; Guenther, A.; Keutsch, F. N.; Apel, E.; Hansel, A.

    2012-10-01

    Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK+MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK+MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and likely

  5. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Schnitzhofer, R.; Graus, M.; Herdlinger-Blatt, I. S.; DiGangi, J. P.; Sive, B.; Turnipseed, A.; Hornbrook, R. S.; Zheng, W.; Flocke, F. M.; Guenther, A.; Keutsch, F. N.; Apel, E.; Hansel, A.

    2013-03-01

    Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and

  6. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico

    USGS Publications Warehouse

    Reynolds, A.C.; Betancourt, J.L.; Quade, Jay; Patchett, P.J.; Dean, J.S.; Stein, J.

    2005-01-01

    Previous analysis of 87Sr/86Sr ratios shows that 10th through 12th century Chaco Canyon was provisioned with plant materials that came from more than 75 km away. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, and (2) spruce (Picea sp.) and fir (Abies sp.) beams from the crest of the Chuska and San Mateo Mountains to the west and south. Here, we extend 87Sr/86Sr analysis to ponderosa pine (Pinus ponderosa) prevalent in the architectural timber at three of the Chacoan great houses (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo). Like the architectural spruce and fir, much of the ponderosa matches the 87Sr/86Sr ratios of living trees in the Chuska Mountains. Many of the architectural ponderosa, however, have similar ratios to living trees in the La Plata and San Juan Mountains to the north and Lobo Mesa/Hosta Butte to the south. There are no systematic patterns in spruce/fir or ponderosa provenance by great house or time, suggesting the use of stockpiles from a few preferred sources. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic scope of the larger Chacoan system. The complexity of this procurement warns against simple generalizations based on just one species, a single class of botanical artifact, or a few isotopic values. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Development of a mixed shrub-ponderosa pine community in a natural and treated condition. Forest Service research paper (Final)

    SciTech Connect

    McDonald, P.M.; Fiddler, G.O.

    1995-05-01

    On a medium site in northern California, a mostly shrub community was treated by two manual release techniques and by two herbicides, to study its development in both a natural (control) and treated condition. Survival and growth of planted ponderosa pine seedlings were quantified for 8 to 11 years after initial treatment applications. Treatments included manual release in a 4-foot radius around pine seedlings one, two, and three times; grubbing the entire one-seventh acre plot two times; applying 2,4-D and Velpar herbicides to the entire plot one time; and a control. Data are presented for the most abundant species (greenleaf manzanita), second most abundant species (snowbrush), by the two species combined, and by all 10 shrub species combined. At the end of the study in 1990, manzanita was the most abundant species with 15,267 plants per acre, cover of 24,800 ft, and height of 5.4 feet. Ponderosa pine developed best in plots where the entire area was grubbed twice (mean height of 14.2 feet).

  8. Mechanical and chemical release in a 12-year-old ponderosa pine plantation. Forest Service research paper

    SciTech Connect

    Fiddler, G.O.; McDonald, P.M.

    1997-04-01

    A 12-year-old ponderosa pine plantation on the Tahoe National Forest in northern California was mechanically treated with a Hydro-Ax in an attempt to increase the survival and growth of the planted seedlings. Other release methods were not feasible because the shrubs in the mixed-shrub community (greenleaf manzanita, mountain whitethorn, bittercherry, coffeberry) were too large (3 to 5 feet tall) and well developed. Additional treatments were a chemical treatment, in which 2,4-D was applied to a portion of the study site that had been treated with the Hydro-Ax 1 year previously, and control. Eleven growing seasons after treatment (1993), average pine crown cover was statistically higher in the mechanical treatment (Hydro-Ax alone) than in the control. This was the only significant enhancement of pine growth by the Hydro-Ax alone. Mean pine diameter and height did not differ statistically from the control after 11 years. In contrast, the Hydro-Ax plus herbicide (chemical) treatment statistically increased pine crown cover, height, and diameter over the Hydro-Ax alone and the control. Mean crown cover was 104 percent greater in the treated trees than for pines in the control, height was 45 percent greater, and diameter was 47 percent greater. Relative costs were $225 per acre for the Hydro-Ax alone (mechanical) and $273 per acre for the Hydro-Ax + herbicide (chemical). Altogether, the most cost-effective treatment was Hydro-Ax + herbicide (chemical).

  9. Effects of feeding ponderosa pine needles during pregnancy: comparative studies with bison, cattle, goats, and sheep.

    PubMed

    Short, R E; James, L F; Panter, K E; Staigmiller, R B; Bellows, R A; Malcolm, J; Ford, S P

    1992-11-01

    Four experiments were conducted to determine the effect of feeding dried pine needles (Pinus ponderosa; PN) on the abortion rate of ruminants. In Exp. 1, cattle were fed 5.4 kg of PN daily for 21 d starting at 116, 167, 215, or 254 d of pregnancy. The PN did not cause abortions when started at 116 d; thereafter, the percentage of cows that aborted increased linearly, and the interval to abortion decreased linearly (both P < .01); all cows fed PN beginning at 254 d aborted. In Exp. 2, cattle were fed .7, 1.4, or 2.7 kg of PN for 21 d or 2.7 kg for 1 or 3 d. Sheep and goats were fed .8 and .5 kg of PN, respectively, starting at 121 d of pregnancy. The PN induced some abortions in cattle when fed for 1 (11%) or 3 (30%) d, but the abortion rate was greater (P < .01) when the PN were fed for longer periods of time (80, 90, and 100% aborted in 19, 17, and 10 d for .7-, 1.4-, and 2.7-kg doses, respectively). No goats or sheep aborted in response to PN feeding. Pregnancy rates during the next breeding season for cows that aborted in response to the PN were slightly higher than rates for control cows (94 vs 87%). In Exp. 3, buffalo (Bison bison) and cattle were fed 2.25 kg of PN from the same collection. Abortions were induced in all buffalo and cattle that were fed PN.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1459912

  10. Metabolic Status of Bacteria and Fungi in the Rhizosphere of Ponderosa Pine Seedlings

    PubMed Central

    Norton, Jeanette M.; Firestone, Mary K.

    1991-01-01

    We determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types. Determination of total and INT-active biomass has increased our understanding of the role of spatial compartmentalization of bacteria and fungi in rhizosphere carbon flow. PMID:16348461

  11. Distribution of black carbon in Ponderosa pine litter and soils following the High Park wildfire

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2014-12-01

    Black carbon (BC), the heterogeneous product of burned biomass, is a critical component in the global carbon cycle, yet timescales and mechanisms for incorporation into the soil profile are not well understood. The High Park Fire, which took place in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire intenstiy and geomorphology on properties of carbon (C), nitrogen (N), and BC in the Cache La Poudre River drainage. We sampled montane Ponderosa pine litter, 0-5 cm soils, and 5-15 cm soils four months post-fire in order to examine the effects of slope and burn intensity on %C, C stocks, %N and black carbon (g kg-1 C, and g m-2). We developed and implemented the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes, but that there was no difference in black carbon content or stocks. BC content was greatest in the litter in burned sites (19 g kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g m-2). At the time of sampling, none of the BC deposited on the land surface post-fire had been incorporated into to either the 0-5 cm or 5-15 cm soil layers. The ratio of B5CA : B6CA (less condensed to more condensed BC) indicated there was significantly more older, more processed BC at depth. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely transported off the surface through erosion events. Future work examining mechanisms for BC transport will be required for understanding the role BC plays in the global carbon cycle.

  12. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attackingPinus ponderosa, with special emphasis on the western pine beetle,Dendroctonus brevicomis.

    PubMed

    Moeck, H A; Wood, D L; Lindahl, K Q

    1981-01-01

    Detection of weakened hosts from a distance by bark beetles through olfaction was investigated in field experiments. No significant numbers of Scolytidae were attracted to anaerobically treated pine bolts, stem disks, or sugar and ponderosa pine bark including phloem. Treatment of living trees with cacodylic acid induced attacks byDendroctonus brevicomis, D. ponderosae, Ips latidens, Gnathotrichus retusus, andPityophthorus scalptor, beginning two weeks after treatment. There was no significant difference between landing rates ofD. brevicomis andD. ponderosae on screened treated trees and screened controls. There was a significant increase in landing rates ofG. retusus andI. latidens, because both species had penetrated the screen and produced pheromones. Tree frilling alone did not increase the landing rate of bark beetles. Freezing of the lower trunk with dry ice did not increase significantly the landing rate ofD. brevicomis, D. ponderosae, G. retusus, orI. latidens on screened trees, whereas unscreened frozen trees were attacked by all four species. There was no significantly higher landing rate byD. brevicomis, D. ponderosae, I. paraconfusus, I. latidens, G. retusus, orHylurgops subcostulatus on screened trees evidencing symptoms of severe infection by the root pathogenVerticicladiella wagenerii, than on symptornless trees. These experiments show thatD. brevicomis, D. ponderosae, I. paraconfusus, I. latidens, andG. retusus land, apparently indiscriminately, on healthy and stressed hosts. Thus, in these species host discrimination must occur after landing and prior to sustained feeding. PMID:24420427

  13. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    USGS Publications Warehouse

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas

  14. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  15. EFFECTS OF PHOTOCHEMICAL OXIDANT INJURY OF PONDEROSA AND JEFFREY PINE ON SUSCEPTIBILITY OF SAPWOOD AND FRESHLY CUT STUMPS TO FOMES ANNOSUS

    EPA Science Inventory

    Ponderosa and Jeffrey pine sapwood samples and freshly cut stumps from trees with different amounts of oxidant injury were inoculated with Fomes annosus. With stumps, percentage of surface cross-section area infected and extent of vertical colonization were determined 1 mo and 6-...

  16. EFFECTS OF CLIMATE VARIABILITY ON THE CARBON DIOXIDE, WATER, AND SENSIBLE HEAT FLUXES ABOVE A PONDEROSA PINE PLANTATION IN THE SIERRA NEVADA, CA. (R826601)

    EPA Science Inventory

    Abstract

    Fluxes of CO2, water vapor, and sensible heat were measured by the eddy covariance method above a young ponderosa pine plantation in the Sierra Nevada Mountains (CA) over two growing seasons (1 June¯10 September 1997 and 1 May&#...

  17. Effects of CO[sub 2] on apparent dark respiration in loblolly and ponderosa pine seedlings grown in sub-optimal, optimal or supra-optimal nitrogen

    SciTech Connect

    Griffin, K.L.; Strain, B.R. ); Winner, W.E. )

    1994-06-01

    Differences in the response of apparent dark respiration to elevated CO[sub 2] and nitrogen were studied in loblolly (Pinus taeda) and ponderosa (P. ponderosa) pine seedlings. Seedlings of both species were grown for 160 days in two CO[sub 2] partial pressures (35 or 70 Pa) and three levels of soil nitrogen (1, 3.5 or 7 mM NH[sub 4]) in sterilized sand culture. Ponderosa pine had higher apparent respiration rates (CO[sub 2] efflux in the dark) than loblolly pine across all CO[sub 2] and nitrogen treatments. Loblolly poine grown in elevated CO[sub 2] had lower apparent respiration rates than seedlings grown in low CO[sub 2]. Apparent respiration for ponderosa pine was similar at both CO[sub 2] partial pressures. Apparent respiration increased with nitrogen in both species. The direct effects of ambient CO[sub 2] environment surrounding isolated leaves or whole seedlings. Short term increases in CO[sub 2] partial pressures consistently resulted in significant decreases in CO[sub 2] efflux across the growth treatments and measurement scales. Leaf level decreases in CO[sub 2] efflux were as large as 90% when CO[sub 2] partial pressures were increased form 0 to 100 Pa Species level differences in apparent respiration, and its response to nitrogen availability, may influence the potential of these two species to grow and sequester carbon as atmospheric CO[sub 2] increases.

  18. FOLIAR N RESPONSE OF PONDEROSA PINE SEEDLINGS TO ELEVATED CO2 AND O3

    EPA Science Inventory

    Interactions between needle N status and exposure to combined CO2 and O3 stresses were studied in Pinus ponderosa seedlings. The seedlings were grown for three years (April 1998 through March 2001) in outdoor chambers in native soils from eastern Oregon, and exposed to ambient ...

  19. Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases

    PubMed Central

    Keeling, Christopher I.; Chiu, Christine C.; Aw, Tidiane; Li, Maria; Henderson, Hannah; Tittiger, Claus; Weng, Hong-Biao; Blomquist, Gary J.; Bohlmann, Joerg

    2013-01-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive pest of western North American pine forests. Adult males produce frontalin, an eight-carbon antiaggregation pheromone, via the mevalonate pathway, as part of several pheromones that initiate and modulate the mass attack of host trees. Frontalin acts as a pheromone, attractant, or kairomone in most Dendroctonus species, other insects, and even elephants. 6-Methylhept-6-en-2-one, a frontalin precursor, is hypothesized to originate from 10-carbon geranyl diphosphate (GPP), 15-carbon farnesyl diphosphate (FPP), or 20-carbon geranylgeranyl diphosphate (GGPP) via a dioxygenase- or cytochrome P450-mediated carbon–carbon bond cleavage. To investigate the role of isoprenyl diphosphate synthases in pheromone biosynthesis, we characterized a bifunctional GPP/FPP synthase and a GGPP synthase in the mountain pine beetle. The ratio of GPP to FPP produced by the GPP/FPP synthase was highly dependent on the ratio of the substrates isopentenyl diphosphate and dimethylallyl diphosphate used in the assay. Transcript levels in various tissues and life stages suggested that GGPP rather than GPP or FPP is used as a precursor to frontalin. Reduction of transcript levels by RNA interference of the isoprenyl diphosphate synthases identified GGPP synthase as having the largest effect on frontalin production, suggesting that frontalin is derived from a 20-carbon isoprenoid precursor rather than from the 10- or 15-carbon precursors. PMID:24167290

  20. Stemwood production patterns in ponderosa pine: Effects of stand dynamics and other factors. Forest Service research paper

    SciTech Connect

    Arbaugh, M.J.; Peterson, D.L.

    1993-05-01

    The growth patterns of vertical stems in nine ponderosa pines from a stand in the southern Sierra Nevada were analyzed for recent changes due to stand dominance position, age, climate, and ozone exposure. Large positive correlations were found between increments in volume growth and basal area at d.b.h. The results indicated that patterns of wood distribution along the bole were associated with age, competitive position, and release from competition. A multiple regression model using winter and spring precipitation adequately explained short-term growth fluctuations during 1920-1955 and predicted growth during 1956-1985 for the trees as a group. A prominent feature of all volume, basal area, and ring width series was a growth response to a selective harvest in 1965. Increments in gross volume increased througout the bole of all trees but declined for thinning. This increasing trend continued for young and dominant trees but declined for older nondominant trees.

  1. Use of a simulation model and ecosystem flux data to examine carbon-water interactions in ponderosa pine.

    PubMed

    Williams, M; Law, B E; Anthoni, P M; Unsworth, M H

    2001-03-01

    Drought stress plays an important role in determining both the structure and function of forest ecosystems, because of the close association between the carbon (C) and hydrological cycles. We used a detailed model of the soil-plant-atmosphere continuum to investigate the links between carbon uptake and the hydrological cycle in a mature, open stand of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at the Metolius river in eastern Oregon over a 2-year period (1996-1997). The model was parameterized from local measurements of vegetation structure, soil properties and meteorology, and tested against independent measurements of ecosystem latent energy (LE) and carbon fluxes and soil water content. Although the 2 years had very different precipitation regimes, annual uptake of C and total transpiration were similar in both years, according to both direct observation and simulations. There were important differences in ratios of evaporation to transpiration, and in the patterns of water abstraction from the soil profile, depending on the frequency of summer storms. Simulations showed that, during periods of maximum water limitation in late summer, plants maintained a remarkably constant evapotranspirative flux because of deep rooting, whereas changes in rates of C accumulation were determined by interactions between atmospheric vapor pressure deficit and stomatal conductance. Sensitivity analyses with the model suggest a highly conservative allocation strategy in the vegetation, focused belowground on accessing a soil volume large enough to buffer summer droughts, and optimized to account for interannual variability in precipitation. The model suggests that increased allocation to leaf area would greatly increase productivity, but with the associated risk of greater soil water depletion and drought stress in some years. By constructing sparse canopies and deep rooting systems, these stands balance reduced productivity in the short term with risk avoidance over the long

  2. Genotypic variability in ponderosa pine responses to combined ozone and drought stresses

    SciTech Connect

    Temple, P.J.

    1995-06-01

    Five-year-old ponderosa (Pinus ponderosa Laws.) seedlings from 18 half-sib and one full-sib families obtained from the California Tree Improvement Program were harvested after 1, 2, and 3 growing seasons of exposure to three levels of ozone (O{sub 3}) and two levels of available soil water (ASW) in open-top chambers in the California Sierras. Seedlings were evaluated for O{sub 3} injury symptoms, biomass, and radial growth in response to these stresses. Ozone injury responses were highly variable across families, but family rankings for O{sub 3} injury were consistent across years. Family rankings for O{sub 3} injury were highly correlated with those for reductions in biomass and radial growth for trees in the high ASW treatment, but drought-stressed trees showed no consistent relation between foliar 03 injury and reductions in growth. After three seasons of exposure to 88 ppb O{sub 3}, foliar biomass of the three most susceptible families averaged 60% less than trees in the low-O{sub 3} control, while O{sub 3} had no effect on growth of the three most resistant families. Variability across families of growth responses to drought was significantly less than the variability in seedling responses to O{sub 3}.

  3. Predicted response of stem respiration in ponderosa pine to global climate change

    SciTech Connect

    Carey, E.V.; DeLucia, E.H.; Callaway, R.M. )

    1994-06-01

    We measured woody tissue respiration on boles of desert and montane populations of Pinus ponderosa growing in the Great Basin Desert and on the east-slope of the Sierra Nevada as part of a study of responses of P. ponderosa to global climate change. The differences in temperature and precipitation between desert and montane populations match changes in climate predicted from a doubling of atmospheric CO[sub 2]; therefore, these naturally occurring populations represent the difference between present and future climatic conditions for these trees. Allometric relationships derived previously, indicate that for trees of equal diameter, desert trees predicted that desert trees would have lower Q[sub 10] responses for respiration (increase in respiration with a 10[degrees] increase in temperature) volume was not different between populations (Desert: 3.24; Montane: 3.13 moles m[sup [minus]3] sec[sup [minus]1]). Moreover, between population differences in Q[sub 10] for respiration were not statistically significant (Desert: 2.27; Montane: 2.39). Results suggest that under predicted future climatic conditions increased respiratory losses from woody tissue resulting from increased allocation to sapwood may offset increases in carbon uptake due to enhanced photosynthesis from elevated CO[sub 2].

  4. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests.

    PubMed

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Yuen, Mack; Clark, Erin L; Fraser, Jordie D; Huber, Dezene P W; Liao, Nancy Y; Docking, T Roderick; Birol, Inanc; Chan, Simon K; Taylor, Greg A; Palmquist, Diana; Jones, Steven J M; Bohlmann, Joerg

    2012-08-01

    Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera. PMID:22516182

  5. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  6. Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest

    USGS Publications Warehouse

    Keeley, J.E.; McGinnis, T.W.

    2007-01-01

    Following the reintroduction of fire Bromus tectorum has invaded the low elevation ponderosa pine forests in parts of Kings Canyon National Park, California. We used prescribed burns, other field manipulations, germination studies, and structural equation modelling, to investigate how fire and other factors affect the persistence of cheatgrass in these forests. Our studies show that altering burning season to coincide with seed maturation is not likely to control cheatgrass because sparse fuel loads generate low fire intensity. Increasing time between prescribed fires may inhibit cheatgrass by increasing surface fuels (both herbaceous and litter), which directly inhibit cheatgrass establishment, and by creating higher intensity fires capable of killing a much greater fraction of the seed bank. Using structural equation modelling, postfire cheatgrass dominance was shown to be most strongly controlled by the prefire cheatgrass seedbank; other factors include soil moisture, fire intensity, soil N, and duration of direct sunlight. Current fire management goals in western conifer forests are focused on restoring historical fire regimes; however, these frequent fire regimes may enhance alien plant invasion in some forest types. Where feasible, fire managers should consider the option of an appropriate compromise between reducing serious fire hazards and exacerbating alien plant invasions. ?? IAWF 2007.

  7. Observations of BVOC (Biogenic Volatile Organic Compound) Fluxes and Vertical Gradients in a Ponderosa Pine Forest during BEARPEX 2009

    NASA Astrophysics Data System (ADS)

    Park, J.; Fares, S.; Weber, R.; Goldstein, A.

    2010-12-01

    During summer 2009 an intensive field campaign (Biosphere Effects on AeRosols and Photochemistry EXperiment - BEARPEX) took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada Mountains of California. The campaign aimed to investigate biosphere-atmosphere interactions during a period of intense photochemical activity, to elucidate the fate BVOC (Biogenic Volatile Organic Compounds) in the atmosphere, and explore the processes of secondary organic aerosol formation. In this study, a PTR-MS (Proton Transfer Reaction - Mass Spectrometry) was used to measure 19 compounds (masses) including methanol, isoprene + MBO (2-Methyl-3-butene-2-ol), monoterpenes, sesquiterpenes, and some oxygenated BVOCs at 5 heights of a vertical gradient from the forest floor to above the canopy. Fluxes of the 4 dominant BVOCs were measured above the canopy with the Eddy covariance technique. In parallel with BVOC measurements, ozone fluxes and gradients, and meteorological parameters (PAR, temperature, relative humidity, wind speed, and wind direction) were recorded in order to investigate the dependence of BVOC emissions and chemistry on meteorological conditions and to test the hypothesis that BVOC remove atmospheric ozone through gas-phase reactions. BVOCs which are directly emitted from pine trees generally have the highest concentration at the lowest measurement height and the lowest concentration above the canopy. Sesquiterpenes were observed at lower concentration than monoterpenes, but with very similar vertical gradient patterns, indicating their emission patterns are similar. The observed MBO flux was approximately twice the Monoterpene flux. Measured monoterpene canopy scale flux was consistent with modeled emissions based on scaling up from branch enclosure measurements at this site (basal emission rate F30= 0.61 ±0.14 mgC m-2 hr-1 and temperature response β= 0.15 ±0.09 °C-1). We find that m/z 113, an unidentified OVOCs (oxygenated volatile organic compounds

  8. Climate Effects on Carbon and Water Exchange of Young and Intermediate-growth Ponderosa Pine Ecosystems in Central Oregon

    NASA Astrophysics Data System (ADS)

    Kurpius, M. R.; Irvine, J.; Law, B. E.; Unsworth, M. H.

    2002-12-01

    Carbon and water fluxes were measured continuously by eddy covariance above young- and intermediate-aged ponderosa pine (Pinus ponderosa Dougl. Ex P. and C. Laws.) stands in a seasonally semiarid environment in central Oregon. Ecophysiological measurements of processes contributing to fluxes were also made (soil CO2 effluxes, transpiration). The young stand (YS) is ~17 years old, and has a total LAI of 1.5, with 40% of the leaf area in understory shrubs. The intermediate stand (IS), ~1.5 km from the YS, is ~56 years old, with total LAI ~3.1 (5% in understory shrubs). Our goal was to examine how seasonal weather patterns and age-related site characteristics affect CO2 and H2O exchange at these sites. Throughout the measurement period, water vapor exchange for both sites was similar in magnitude and trend. Net ecosystem exchange (NEE) was similar in magnitude (-1 to +1 mmol m-2 s-1) for both sites from January 2002 through March. As the rainy season ended, carbon uptake at both sites increased in April, and reached a maximum in early June. Early summer daytime mean NEE was greater at the IS (-6 to -8 mmol m-2 s-1) than at the YS (-3 to -4 mmol m-2 s-1). While the YS had higher summer soil CO2 efflux during this period, NEE remained higher at the IS due to higher GEP. Air temperature, vapor pressure deficit (VPD), and incident PAR were similar at both sites, but greater snow cover at the IS resulted in twice the soil moisture of the YS until July, when both sites reached low values (12% and 9%, respectively). A combination of higher leaf area and soil moisture likely accounts for higher early summer carbon uptake at the IS. NEE became strongly correlated with VPD in June as soil moisture levels were rapidly declining. VPD caused lowered NEE at both sites but the IS decreased more substantially than the YS and by mid-July NEE at both sites was -2 to -4 mmol m-2 s-1. Even with the diminished carbon uptake at the IS due to the strong coupling between VPD and NEE, we

  9. Response of brown-headed cowbirds and three host species to thinning treatments in low-elevation ponderosa pine forests along the northern Colorado Front Range

    USGS Publications Warehouse

    Keeley, W.H.; Germaine, Stephen; Stanley, Thomas R.; Spaulding, Sarah A.; Wanner, C.E.

    2013-01-01

    Thinning ponderosa pine (Pinus ponderosa) forests to achieve desired ecological conditions remains a priority in the North American west. In addition to reducing the risk of high-severity wildfires in unwanted areas, stand thinning may increase wildlife and plant diversity and provide increased opportunity for seedling recruitment. We initiated conservative (i.e. minimal removal of trees) ponderosa stand thinning treatments with the goals of reducing fire risk and improving habitat conditions for native wildlife and flora. We then compared site occupancy of brown-headed cowbirds (Molothrus ater), chipping sparrows (Spizella passerina), plumbeous vireos (Vireo plumbeus), and western wood-pewees (Contopus sordidulus) in thinned and unthinned (i.e., control) forest stands from 2007 to 2009. Survey stations located in thinned stands had 64% fewer trees/ha, 25% less canopy cover, and 23% less basal area than stations in control stands. Occupancy by all three host species was negatively associated with tree density, suggesting that these species respond favorably to forest thinning treatments in ponderosa pine forests. We also encountered plumbeous vireos more frequently in plots closer to an ecotonal (forest/grassland) edge, an association that may increase their susceptibility to edge-specialist, brood parasites like brown-headed cowbirds. Occupancy of brown-headed cowbirds was not related to forest metrics but was related to occupancy by plumbeous vireos and the other host species in aggregate, supporting previous reports on the affiliation between these species. Forest management practices that promote heterogeneity in forest stand structure may benefit songbird populations in our area, but these treatments may also confer costs associated with increased cowbird occupancy. Further research is required to understand more on the complex relationships between occupancy of cowbirds and host species, and between cowbird occupancy and realized rates of nest parasitism.

  10. Acid composition of particles and gases in a ponderosa pine forest during the BEACHON-RoMBAS campaign

    NASA Astrophysics Data System (ADS)

    Stark, H.; Yatavelli, L.; Thompson, S.; Kimmel, J. R.; Palm, B. B.; Day, D. A.; Campuzano-Jost, P.; Cubison, M. J.; Jayne, J.; Worsnop, D. R.; Thornton, J. A.; Jimenez, J. L.

    2012-12-01

    We present results from the high mass-resolution analysis of gas-phase and aerosol spectra collected with a chemical ionization high-resolution time-of-flight mass spectrometer, equipped with a micro-orifice volatilization impactor ("MOVI-HRToF-CIMS", Yatavelli and Thornton AS&T, 2010; Yatavelli et al., AS&T, 2012) during the 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study ("BEACHON-RoMBAS"). The study was conducted during July - August 2011 in a ponderosa pine forest in Colorado. Choosing acetate (CH3C(O)O-) as the reagent ion and developing analysis tools for formula identification and elemental analysis allowed us to identify hundreds of individual acids in aerosol spectra. Positive Matrix Factorization (PMF) analysis of the ion time series is useful to account for backgrounds in the different modes of operation and to separate several gas-phase and particulate factors with different volatility and composition. Results on aerosol composition, including nitrogen- and sulfur-containing species as well as information about elemental ratios (e.g. O:C, H:C) and average carbon oxidation state are presented. Most of the acids detected have between 1 and 10 carbons and average carbon oxidation states (OsC) between -1 and 1. This suggests the importance of monoterpenes and MBO as precursors of the measured acids. We will discuss these results with special consideration of fragmentation on the heated surfaces of the instrument.

  11. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests

    USGS Publications Warehouse

    Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.

    2005-01-01

    The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important

  12. In situ measurements of C2-C10 volatile organic compounds above a Sierra Nevada ponderosa pine plantation

    NASA Astrophysics Data System (ADS)

    Lamanna, Mark S.; Goldstein, Allen H.

    1999-09-01

    A fully automated gas chromatograph-flame ionization detector system was designed and built to measure ambient concentrations of C2-C10 volatile organic compounds, including many oxygenated compounds, without using liquid cryogen. It was deployed at Blodgett Forest Research Station in Georgetown, California, 38°53'42.9″N, 120°37'57.9″W, 1315 m elevation. More than 900 in situ measurements were made above a ponderosa pine canopy at 40-min intervals, continuously from July 2 through August 1, 1997. Factor analysis and observed temporal patterns were used to categorize sources for measured compounds as biogenic or anthropogenic or both. Compounds that were clearly biogenic included methylbutenol, isoprene and its oxidation products (methacrolein and methyl vinyl ketone), and terpenes (α-pinene, 3-carene, d-limonene). Other compounds were partially biogenic, including acetone, ethene, propene, hexanal, acetaldehyde, and methanol. Hydroxyl radical (OH) loss rates were dominated by the clearly biogenic compounds, accounting for 70% of the loss under mean midday conditions. The most important single compounds were isoprene (33%) and methylbutenol (21%). These two compounds were dominant under all conditions, including the coldest and most polluted days. Under the most polluted conditions, acetaldehyde became very important, accounting for 13% of the total. Total OH loss rates were highly correlated with temperature because emissions of biogenic compounds, which dominate OH loss, are strongly temperature dependent. Much of the research on biogenic volatile organic compounds has focused on isoprene and terpenes. Our results suggest that quantifying and understanding factors controlling biogenic emissions of other compounds such as methylbutenol, acetone, hexanal, methanol, and acetaldehyde are critical for improving our understanding of regional photochemistry.

  13. Effects of CO{sub 2} and nitrogen fertilization on soils planted with ponderosa pine

    SciTech Connect

    Johnson, D.W.

    1996-12-01

    The effects of elevated CO{sub 2} (ambient, 525, and 700 {micro}l l{sup -1})and N fertilization (0, 10, and 20 g N m{sup 2} yr{sup -1}) on soil pCO{sub 2}, CO{sub 2} efflux, soil solution chemistry, and soil C and nutrients in an open-top chamber study with Pinus ponderosa are described. Soil pCO{sub 2} and CO{sub 2} efflux were significantly greater with elevated CO{sub 2}, at first (second growing season) in the 525 {micro}l l{sup -1} and later (fourth and fifth growing seasons) in the 700 {micro}l l{sup -1} CO{sub 2} treatments. Soil solution HCO{sub 3}{sup -} concentrations were temporarily elevated in the 525 {micro}l l{sup -1} CO{sub 2} treatment during the second growing season, consistent with the elevated pCO{sub 2}. Nitrogen fertilization had no consistent effect on soil pCO{sub 2} or CO{sub 2} efflux, but did have the expected negative effect on exchangeable Ca{sup 2+}, K{sup +}, and Mg{sup 2+}, presumed to be caused by increased nitrate leaching. Elevated CO{sub 2} had no consistent effects on exchangeable Ca{sup 2+}, K{sup +}, and Mg{sup 2+}, but did cause temporary reductions in soil NO{sup 3{sup -}} (second growing season). Statistically significant negative effects of elevated CO{sub 2} on soil extractable P were noted in the third and sixth growing seasons. However, these patterns in extractable P reflected pre-treatment differences, which, while not statistically significant, followed the same pattern. Statistically significant effects of elevated CO{sub 2} on total C and N in soils were noted in the third and sixth growing seasons, but these effects were inconsistent among N treatments and years. The clearest effect of elevated CO{sub 2} was in the case of C/N ratio in year 6, where there was a consistent, positive effect. The increases in C/N ratio with elevated CO{sub 2} in year six were largely a result of reductions in soil N rather than increases in soil C. Future papers will assess whether this apparent reduction in soil N could have been

  14. Organic aerosol formation from biogenic compounds over the Ponderosa pine forest in Colorado

    NASA Astrophysics Data System (ADS)

    Roux, Alma Hodzic; Lee-Taylor, Julia; Cui, Yuyan; Madronich, Sasha

    2013-05-01

    The secondary organic aerosol (SOA) formation and regional growth from biogenic precursors is of particular interest given their abundance in the atmosphere, and has been investigated during the Rocky Mountain Biogenic Aerosol field Study in 2011 in the pine forest canopy (dominated by terpene emissions) using both WRF/Chem 4km simulations and the GECKO-A explicit chemistry box-model runs. We have quantified the relative contribution of different biogenic precursors to SOA levels that were measured by the aerosol mass spectrometer at the site, and investigated the relative contribution of OH, O3 and NO3 chemistry to the formed SOA mass during day-and nighttime. Although, the local production and mass concentrations of submicron organic aerosols at the site seem relatively modest ˜1-2 ug/m3, we show that the optically active regional mass is increased as the SOA formation continues for several days in the background forest air. We investigate whether the simplified SOA parameterizations used in 3D models can capture this growth. In addition, preliminary comparisons of the number concentrations and the composition of ultrafine particles (8 - 30nm) from WRF/Chem simulations and TD-CIMS measurements are also discussed, and the contribution of organic aerosols to CCN formation is quantified.

  15. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.

    PubMed

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K

    2014-09-01

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene. PMID:25015120

  16. Measurement of BVOCs by PTR-ToF-MS in a ponderosa pine forest during the BEACHON-ROCS campaign

    NASA Astrophysics Data System (ADS)

    Su, L.; Evans, T.; Knopf, D. A.; Mak, J. E.

    2012-12-01

    We present measurements of biogenic volatile organic compounds (BVOCs) using Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) during the 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Organic Carbon Study (BEACHON-ROCS) campaign in a ponderosa pine forest near Woodland Park, Colorado. BVOCs were continuously measured through the gradient sampling lines mounted at 1.8 m, 5.0 m, 8.5 m, 12.0 m, 17.7 m, and 25.3 m, respectively, of the Manitou Forest Observatory Chemistry Tower. 2-methyl-3-butene-2-ol (MBO) and the monoterpenes (MT) were identified as the major BVOCs emitted from the forest. The 5-minute averaged mixing ratios of MBO ranged from 0.03 to 3.9 ppbv, while mixing ratios of MT ranged from 0.02 to 3.8 ppbv, with an analytical precision of ±15%. The mixing ratios of MBO were highest during the daytime, with the maximum concentrations occurred right under the canopy top, decreasing towards the ground and above the canopy. The diurnal variations of MT mixing ratios showed an opposite pattern compared to MBO, with nighttime values significantly higher than during the daytime. The high nighttime mixing ratios of MT could be due to the sufficient temperature-dependent emission together with lack of oxidation and small vertical transport. MT usually accumulated near the ground level and decreased vertically towards the canopy top. Soil enclosure measurements were performed to characterize the needle litter emission of BVOCs. The flux of MT from needle litter were quantified and showed a clear temperature dependency. The highest flux of MT from needle litter occurred in the morning (09:00-12:00 MST), while during the nighttime the flux was significantly reduced. Measurements of BVOCs gradients throughout the canopy together with ground needle litter emissions could provide a better understanding of the contribution to above-canopy emission of BVOCs from different sources.

  17. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; Keutsch, F. N.; Hansel, A.

    2013-12-01

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration compounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks, including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters, showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1 mg compound m-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50%), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10%). The total MBO + isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light- and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site-specific leaf cuvette measurements. While the modeled and measured MBO + isoprene fluxes agree well, the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to

  18. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; Keutsch, F. N.; Hansel, A.

    2013-06-01

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOF-MS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration compounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1 mg compound m-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50%), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10%). The total MBO + isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO + isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms

  19. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    SciTech Connect

    Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; Keutsch, F. N.; Hansel, A.

    2013-01-01

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOFMS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration ompounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1mgcompoundm-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50 %), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10 %). The total MBO+isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of 20 monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO+isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms, are

  20. Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection.

    PubMed

    Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir

    2016-09-01

    Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores. PMID:26820567

  1. CO2 AND N-FERTILIZATION EFFECTS ON FINE ROOT LENGTH, PRODUCTION, AND MORTALITY: A 4-YEAR PONDEROSA PINE STUDY

    EPA Science Inventory

    We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...

  2. Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis.

    PubMed

    Keeling, Christopher I; Li, Maria; Sandhu, Harpreet K; Henderson, Hannah; Yuen, Macaire Man Saint; Bohlmann, Jörg

    2016-03-01

    Bark beetles (Coleoptera: Scolytinae) are pests of many forests around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant pest of western North American pine forests. The MPB is able to overcome the defences of pine trees through pheromone-assisted aggregation that results in a mass attack of host trees. These pheromones, both male and female produced, are believed to be biosynthesized in the midgut and/or fat bodies of these insects. We used metabolite analysis, quantitative proteomics (iTRAQ) and transcriptomics (RNA-seq) to identify proteins and transcripts differentially expressed between sexes and between tissues when treated with juvenile hormone III. Juvenile hormone III induced frontalin biosynthesis in males and trans-verbenol biosynthesis in females, as well as affected the expression of many proteins and transcripts in sex- and tissue-specific ways. Based on these analyses, we identified candidate genes involved in the biosynthesis of frontalin, exo-brevicomin, and trans-verbenol pheromones. PMID:26792242

  3. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

    SciTech Connect

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K.

    2014-07-12

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  4. Deconvolution of Soil CO2 Efflux from Root, Litter, and SOM Components in a Ponderosa Pine Mesocosm Experiment Exposed to Elevated CO2 and O3

    NASA Astrophysics Data System (ADS)

    Gregg, J. W.; Rygiewicz, P. T.; Johnson, M. G.; Andersen, C. P.

    2001-12-01

    Stable isotopes have become an important tool for determining the relative importance of CO2 sources and sinks contributing to the global carbon budget. Of particular importance is estimating the terrestrial CO2 flux which is difficult to decipher without determining the relative importance of autotrophic and heterotrophic respiration from below-ground sources. Whereas increased SOM respiration could indicate reduced C storage ultimately creating a stronger terrestrial CO2 source, increased autotrophic respiration could indicate greater NPP and therefore an overall stronger terrestrial sink. Here, we used the dual isotope, three equation mixing model approach of Lin et al. 1999 to determine the relative importance of root, litter, and SOM respiration in a `closed' chamber Ponderosa pine (Pinus ponderosa, Doug. Ex Laws.) mesocosm experiment exposed to elevated CO2 and ozone. This approach uses the δ 13C and δ 18O signatures of surface CO2 efflux and the component litter, root and SOM fluxes to provide a system of three equations to solve for the three unknown source fluxes. To enhance our ability to determine the relative contribution of the different sources: 1) Keeling plots were used to measure δ 13C and δ 18O signatures of surface CO2 efflux, 2) mininert vials were used to measure signatures of root, soil, and litter respiration, and 3) the biomass-, volume- and respiration- weighted mean δ 18O signatures were calculated for roots versus soils across the evaporative gradient. Our results indicate that root and SOM respiration made up the bulk of CO2 flux, root respiration was higher under elevated CO2, and there was no effect of elevated ozone. Future experiments will determine the potential for using the dual isotope, three equation mixing model approach to determine the relative importance of root, litter, and SOM respiration under ambient CO2 conditions.

  5. Aboveground biomass allocation of ponderosa pine along an elevational gradient: An analog for response to climate change

    SciTech Connect

    Callaway, R.M.; DeLucia, E.H.; Schlesinger, W.H. Duke Univ., Durham, NC )

    1993-06-01

    Predictions of CO[sub 2]-enhanced growth for adult trees are primarily based on leaf-level assimilation responses and improved growth rates of seedlings and saplings. Plant growth may be more dependent on biomass allocation than on rates of assimilation, but predictions have not incorporated the effects of temperature on biomass reallocation among autotrophic and heterotrophic tissues and whole-plant carbon balance. We measured biomass allocation of Pinus ponderosa on hydrothermally altered andesite in montane and desert climates, thus substrate was held constant while climate varied. Trees from montane climates supported higher leaf mass per cross-sectional sapwood area (functional conducting xylem) than trees from desert climates, suggesting that a functional response to climate had occurred. Our results also indicate that sapwood mass:leaf mass ratios of P. ponderosa may increase [approx] 50% with a 5[degrees]C change. in mean growing season temperature, approximately the difference between our montane and desert sites. Such an increase in sapwood:leaf ratio may partially offset predicted CO[sub 2]-enhancement effects and substantially reduce whole-plant carbon balance. Biomass allocation responses must be incorporated into growth-response models used to predict fluctuations in forest productivity with changes in climate and atmospheric CO[sub 2] concentration.

  6. Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements

    SciTech Connect

    Beverly E. Law; Larry Mahrt

    2007-01-05

    The goal is to quantify and understand the influence of climate and disturbance on ecosystem processes and thus net carbon uptake by forests. The objective is to combine tower and ground-based observations to quantify the effects of disturbance on processes controlling carbon storage and CO{sub 2} and energy exchange in varying climatic conditions. Specific objectives are: (1) Investigate the effects of logging and fire on carbon storage and carbon dioxide and energy exchange in chronosequences of ponderosa pine, using consistent methodology; (2) Determine key environmental factors controlling carbon storage and carbon dioxide and energy exchange in these forests through a combination of measurements and process modeling; and (3) Assess spatial variation of the concentrations and transport in complex terrain. The eddy covariance method is used for measurements of CO2, water vapor, and energy exchanges in a chronosequence of ponderosa pine forests (burned in 2002 wildfire, 10 year-old stand, 90 year-old mature stand). The mature stand has been an AmeriFlux site since 2000 (following previous flux sites in young and old stands initiated in 1996). In addition to the eddy covariance measurements, a large suite of biological processes and ecosystem properties are determined for the purpose of developing independent forest carbon budgets and NEP estimates; these include photosynthesis, stand respiration, soil CO{sub 2} fluxes, annual litterfall, foliar chemistry, and bole increment, and soil organic matter among other parameters. The measurements are being integrated and evaluated with two ecosystem models (BIOME-BGC and SPA). Such analyses are needed to assess regional terrestrial ecosystem carbon budgets. The results will contribute scientific understanding of carbon processes, and will provide comprehensive data sets for forest managers and those preparing national carbon inventories to use in assessments of carbon sequestration in relation to interannual climate

  7. Southern pine beetle regional outbreaks modeled on landscape, climate and infestation history

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southern pine beetle (Dendroctonus fromtalis, SPB) is the major insect pest of pine species in the southeastern United States. It attains outbreak population levels across the landscape at scales ranging from a single forest stand to interstate epidemics. This county level analysis selected and ...

  8. Proteomics Indicators of the Rapidly Shifting Physiology from Whole Mountain Pine Beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), Adults during Early Host Colonization

    PubMed Central

    Pitt, Caitlin; Robert, Jeanne A.; Bonnett, Tiffany R.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2014-01-01

    We developed proteome profiles for host colonizing mountain pine beetle adults, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Adult insects were fed in pairs on fresh host lodgepole pine, Pinus contorta Dougl. ex Loud, phloem tissue. The proteomes of fed individuals were monitored using iTRAQ and compared to those of starved beetles, revealing 757 and 739 expressed proteins in females and males, respectively, for which quantitative information was obtained. Overall functional category distributions were similar for males and females, with the majority of proteins falling under carbohydrate metabolism (glycolysis, gluconeogenesis, citric acid cycle), structure (cuticle, muscle, cytoskeleton), and protein and amino acid metabolism. Females had 23 proteins with levels that changed significantly with feeding (p<0.05, FDR<0.20), including chaperones and enzymes required for vitellogenesis. In males, levels of 29 proteins changed significantly with feeding (p<0.05, FDR<0.20), including chaperones as well as motor proteins. Only two proteins, both chaperones, exhibited a significant change in both females and males with feeding. Proteins with differential accumulation patterns in females exhibited higher fold changes with feeding than did those in males. This difference may be due to major and rapid physiological changes occurring in females upon finding a host tree during the physiological shift from dispersal to reproduction. The significant accumulation of chaperone proteins, a cytochrome P450, and a glutathione S-transferase, indicate secondary metabolite-induced stress physiology related to chemical detoxification during early host colonization. The females' activation of vitellogenin only after encountering a host indicates deliberate partitioning of resources and a balancing of the needs of dispersal and reproduction. PMID:25360753

  9. Overshoot in Leaf Development of Ponderosa Pine in Wet Years Leads to Bark Beetle Outbreaks on Fine-Textured Soils in Drier Years

    NASA Astrophysics Data System (ADS)

    Peterman, W. L.; Waring, R. H.

    2014-12-01

    Frequent outbreaks of insects and diseases have been recorded in forests of western North America during the past few decades, but the distribution of these outbreaks has not been uniform. In some cases, recent climatic variations along with the age and density of forests may explain some spatial variation. Forest managers and policy makers would benefit if areas prone to disturbance could be recognized so that mitigating actions could be taken. In this paper, we used two ponderosa pine-dominated sites in western Montana, U.S.A. to apply a modelling approach that couples information from remote sensing, soil surveys, and local weather stations to assess where bark beetle outbreaks might first occur and why. There was a slight downward trend in precipitation for both sites over the period between 1998 and 2010, and, interannual variability was high. Some years showed large increases followed by sharp decreases. Both sites had similar topography and fire histories, but bark beetle activity occurred earlier and more severely on one site than the other. The initial canopy density of the two sites was also similar, with leaf area indices derived via Landsat imagery ranging between 1.6- 2.0 m2 m-2. We wondered if the difference in bark beetle activity might be related to soils that were fine-textured at site I and coarse-textured at site II. We applied a process-based stand growth model (3-PG) to analyze the data and evaluate the hypotheses.

  10. Accounting for age Structure in Ponderosa Pine Ecosystem Analyses: Integrating Management, Disturbance Histories and Observations with the BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Law, B.; Thornton, P.

    2003-12-01

    Disturbance and management regimes in forested ecosystems have been recently highlighted as important factors contributing to quantification of carbon stocks and fluxes. Disturbance events, such as stand-replacing fires and current management regimes that emphasize understory and tree thinning are primary suspects influencing ecosystem processes, including net ecosystem productivity (NEP) in forests of the Pacific Northwest. Several recent analyses have compared simulated to measured component stocks and fluxes of carbon in Ponderosa Pine (Pinus ponderosa var. Laws) at 12 sites ranging from 9 to 300 years in central Oregon (Law et al. 2001, Law et al. 2003) using the BIOME-BGC model. Major emphases on ecosystem model developments include improving allocation logic, integrating ecosystem processes with disturbance such as fire and including nitrogen in biogeochemical cycling. In Law et al. (2001, 2003), field observations prompted BIOME-BGC improvements including dynamic allocation of carbon to fine root mass through the life of a stand. A sequence of simulations was also designed to represent both management and disturbance histories for each site, however, current age structure of each sites wasn't addressed. Age structure, or cohort management has largely been ignored by ecosystem models, however, some studies have sought to incorporate stand age with disturbance and management (e.g. Hibbard et al. 2003). In this analyses, we regressed tree ages against height (R2 = 0.67) to develop a proportional distribution of age structure for each site. To preserve the integrity of the comparison between Law et al. (2003) and this study, we maintained the same timing of harvest, however, based on the distribution of age structures, we manipulated the amount of removal. Harvest by Law et al. (2003) was set at stand-replacement (99%) levels to simulate clear-cutting and reflecting the average top 10% of the age in each plot. For the young sites, we set removal at 73%, 51% and

  11. A Comparison of Landsat TM and ASTER for Equivalent Water Thickness Derivation in a Ponderosa Pine Ecosystem

    NASA Astrophysics Data System (ADS)

    Toomey, M.; Vierling, L.

    2004-12-01

    Landsat TM and ASTER satellite data can be used to make physically-based estimates of equivalent water thickness (EWT) in a Pinus ponderosa ecosystem. EWT is a measure of ecosystem water status and is an important parameter for studying ecosystem dynamics, fire potential, and biological responses to climate change. Near infrared (NIR) and shortwave infrared (SWIR) reflectances were simulated using the LIBERTY and GeoSAIL leaf and canopy reflectance models; the results were used to calculate a NIR/SWIR ratio and a normalized NIR/SWIR index. Index-EWT relationships were modeled and inverted for EWT derivation. Landsat and ASTER were used to make reasonably accurate estimates of EWT (± 17.3% and 19.4% mean error, respectively); TM band 5 and ASTER band 4 produced the best results. Exclusion of plots with dense understory vegetation reduced point scatter substantially, especially with Landsat (r2 = 0.847, ±13%), indicating that this method can provide robust EWT quantification in homogeneous conifer ecosystems.

  12. Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal.

    PubMed

    Gayathri Samarasekera, G D N; Bartell, Nicholas V; Lindgren, B Staffan; Cooke, Janice E K; Davis, Corey S; James, Patrick M A; Coltman, David W; Mock, Karen E; Murray, Brent W

    2012-06-01

    Environmental change has a wide range of ecological consequences, including species extinction and range expansion. Many studies have shown that insect species respond rapidly to climatic change. A mountain pine beetle epidemic of record size in North America has led to unprecedented mortality of lodgepole pine, and a significant range expansion to the northeast of its historic range. Our goal was to determine the spatial genetic variation found among outbreak population from which genetic structure, and dispersal patterns may be inferred. Beetles from 49 sampling locations throughout the outbreak area in western Canada were analysed at 13 microsatellite loci. We found significant north-south population structure as evidenced by: (i) Bayesian-based analyses, (ii) north-south genetic relationships and diversity gradients; and (iii) a lack of isolation-by-distance in the northernmost cluster. The north-south structure is proposed to have arisen from the processes of postglacial colonization as well as recent climate-driven changes in population dynamics. Our data support the hypothesis of multiple sources of origin for the outbreak and point to the need for population specific information to improve our understanding and management of outbreaks. The recent range expansion across the Rocky Mountains into the jack/lodgepole hybrid and pure jack pine zones of northern Alberta is consistent with a northern British Columbia origin. We detected no loss of genetic variability in these populations, indicating that the evolutionary potential of mountain pine beetle to adapt has not been reduced by founder events. This study illustrates a rapid range-wide response to the removal of climatic constraints, and the potential for range expansion of a regional population. PMID:22554298

  13. Effects of elevated CO{sub 2} and N fertilization on ponderosa pine fine root turn-over

    SciTech Connect

    Tingey, D.T.; Phillips, D.L.; Johnson, M.G.

    1995-06-01

    The rapid increase in atmospheric CO{sub 2} may alter patterns of C assimilation, allocation and sequestration; effects on roots being particularly important because they are a primary point of resource acquisition and uptake. The effects of elevated CO{sub 2} and nitrogen treatments on Pinus ponderosa fine roots and associated fungal structures were monitored for a two year period using a minirhizotron camera system The trees were grown in native soil in open-top field-exposure chambers at Placerville, CA and exposed to ambient air or ambient air plus either 175 or 350 {mu}mol mol{sup -1} CO{sub 2} and 3 levels of nitrogen addition (0, 100 and 200 kg ha{sup -1}). The majority (>90 %) of roots observed were smaller than 2 mm and the mean diameter decreased during the study. Root production was greatest in June and least in February. Root turnover was greater in summer than in winter, with very fine roots (<0.5 mm) disappearing most rapidly. Trees growing under elevated CO{sub 2} produced more roots in late summer as compared to trees under ambient CO{sub 2}. Roots receiving 0 and 200 kg N/ha survived longer than those receiving 100 kg N/ha. Roots produced under elevated CO{sub 2} live longer than those produced under ambient CO{sub 2}. The occurrence of mycorrhizae and fungal hyphae increased in response to CO{sub 2} treatment but not the nitrogen with the highest levels of occurrence were during the summer.

  14. Characterization of vegetation properties: Canopy modeling of pinyon-juniper and ponderosa pine woodlands; Final report. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX model

    SciTech Connect

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1994-12-31

    This report is comprised of two studies. The first study focuses on plant canopies in pinyon-juniper woodland, ponderosa pine woodland, and waste sites at Los Alamos National Laboratory which involved five basic areas of research: (1) application of hemispherical photography and other gap fraction techniques to study solar radiation regimes and canopy architecture, coupled with application of time-domain reflectometry to study soil moisture; (2) detailed characterization of canopy architecture using stand mapping and allometry; (3) development of an integrated geographical information system (GIS) database for relating canopy architecture with ecological, hydrological, and system modeling approaches; (4) development of geometric models that simulate complex sky obstruction, incoming solar radiation for complex topographic surfaces, and the coupling of incoming solar radiation with energy and water balance, with simulations of incoming solar radiation for selected native vegetation and experimental waste cover design sites; and (5) evaluation of the strengths and limitations of the various field sampling techniques. The second study describes an approach to develop software that takes advantage of new generation computers to model insolation on complex topographic surfaces. SOLARFLUX is a GIS-based (ARC/INFO, GRID) computer program that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modelling insolation on complex surfaces, the theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modelling.

  15. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  16. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    PubMed

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  17. The use of multispectral sensing techniques to detect ponderosa pines trees under stress from insects or diseases

    NASA Technical Reports Server (NTRS)

    Heller, R. C.; Weber, F. P.; Zealear, K. A.

    1970-01-01

    The detection of stress induced by bark beetles in conifers is reviewed in two sections: (1) the analysis of very small scale aerial photographs taken by NASA's RB-57F aircraft on August 10, 1969, and (2) the analysis of multispectral imagery obtained by the optical-mechanical line scanner. Underexposure of all films taken from the RB-57 aircraft and inadequate flight coverage prevented drawing definitive conclusions regarding optimum scales and film combinations to detect the discolored infestations. Preprocessing of the scanner signals by both analog and digital computers improved the accuracy of target recognition. Selection and ranking of the best channels for signature recognition was the greatest contribution of digital processing. Improvements were made in separating hardwoods from conifers and old-kill pine trees from recent discolored trees and from healthy trees, but accuracy of detecting the green infested trees is still not acceptable on either the SPARC or thermal-contouring processor. From six years of experience in processing line scan data it is clear that the greatest gain in previsual detection of stress will occur when registered multispectral data from a single aperture or common instantaneous field of view scanner system can be collected and processed.

  18. The Fate of Ozone at a Ponderosa Pine Plantation: Partitioning Between Stomatal and Non-stomatal Deposition Using Sap Flow and Eddy Covariance Techniques

    NASA Astrophysics Data System (ADS)

    Kurpius, M. R.; McKay, M. M.; Goldstein, A. H.

    2001-12-01

    Major advances in quantifying ozone deposition to vegetated ecosystems have been made using above-canopy techniques -- such as eddy covariance -- that allow for the direct measure of ozone flux into natural systems. However, from above-canopy flux measurements alone, it is impossible to differentiate between deposition through stomatal openings of trees versus non-stomatal surfaces or within canopy chemical loss. Therefore, there is a need to partition ozone fluxes into plant stomatal and non-stomatal components. Sap flow measurements provide a direct measurement of stomatal conductance from which we can infer ozone uptake by trees: this represents a novel way to determine pollutant loading on stomatal surfaces of trees that is inexpensive, reliable, and can be deployed in a multitude of environments. Sap flow measurements were used to determine ozone uptake by ponderosa pine trees in the Sierra Nevada Mountains year-round starting in June 2000 at Blodgett Forest, an Ameriflux site located ~75 miles downwind of Sacramento, CA. Concurrently, total ecosystem ozone flux was measured using eddy covariance. Mean total ozone flux to the ecosystem was 46.6 μ mol m-2 h-1 (+/-15.1) in summer 2000, 27.6 μ mol m-2 h-1 (+/-14.2) in fall 2000, 8.2 μ mol m-2 h-1 (+/-5.1) in winter 2001, and 21.1 μ mol m-2 h-1 (+/-11.6) in spring 2001. Mean ozone flux through the stomata was 14.6 μ mol m-2 h-1 (+/-4.1) during summer 2000, 12.9 μ mol m-2 h-1 (+/-5.8) during fall 2000, 5.6 μ mol m-2 h-1 (+/-2.8) during winter 2001, and 12.7 μ mol m-2 h-1 (+/-3.7) during spring 2001. The percentage of total ozone deposition which occurred through the stomata was 31% in summer, 47% in fall, 69% but highly variable in winter, and 60% in spring. The difference between total ozone flux to the ecosystem and stomatal ozone flux to the trees varied exponentially with air temperature, suggesting that much of the non-stomatal deposition was actually due to chemical loss either on surfaces or within

  19. Impact of mountain pine beetle outbreaks on forest albedo and radiative forcing, as derived from Moderate Resolution Imaging Spectroradiometer, Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.

    2013-12-01

    pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.

  20. Forest structure and landscape patterns in the subalpine lodgepole pine type: A procedure for quantifying past and present conditions. Forest Service general technical report

    SciTech Connect

    Arno, S.F.; Reinhardt, E.D.; Scott, J.H.

    1993-02-01

    The report presents a method of quantitatively representing the mosaic of stand types on a small landscape in the subalpine lodgepole pine forest type. The method utilizes macroplots placed systematically on a transect grid. Structure and composition of both current and past stands are inventoried. Procedures for data analysis and interpretation are illustrated for a lodgepole pine landscape in Montana.

  1. Insights on carbon budgets for Ponderosa pine systems growing at three levels of CO[sub 2] and of nitrogen from leaf to whole open-top chamber flux measurements

    SciTech Connect

    Ball, J.T.; Picone, J.B.; Ross, P.D.; Ross, G.N.; Johnson, D.W. )

    1994-06-01

    At any scale of integration carbon accumulation in the biosphere is a small difference between large input and output terms and is proportional to resource levels. This can result in the impression that growth and carbon accumulation have little to do with either the input or output rates. Our measurements show that rising concentration of CO[sub 2] in the atmosphere results in biospheric influx and efflux of carbon increasing and the proportionality between carbon left and nitrogen in the system changing. A gap exists between the carbon balance inferred from gas-exchange and measured changes in pool sizes. The rhizosphere is the likely harbor for much of this [open quotes]missing carbon[close quotes]. These measurements were made on ponderosa pine saplings growing near Placerville, California USA. The chambers are set at ambient, 525 ppm, 700 ppm CO[sub 2]. Soil nitrogen levels are at the background level, plus 10 g/m[sup [minus]2] or plus 20 g/m[sup [minus]2].

  2. CARBON ISOTOPE DISCRIMINATION AND GROWTH RESPONSE OF OLD PINUS PONDEROSA TREES TO STAND DENSITY REDUCTIONS

    EPA Science Inventory

    Stand density reductions have been proposed as a method by which old-growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre-1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing product...

  3. Modeling Landscape-Level Spatial Variation in Sex Ratio Skew in the Mountain Pine Beetle (Coleoptera: Curculionidae).

    PubMed

    James, Patrick M A; Janes, Jasmine K; Roe, Amanda D; Cooke, Barry J

    2016-08-01

    Through their influence on effective population sizes, sex ratio skew affects population dynamics. We examined spatial variation in female-biased sex ratios in the mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in western Canada to better understand how environmental context affects sex ratio skew. Our specific objectives were to: 1) characterize spatial variation in mountain pine beetle sex ratio; 2) test previously asserted hypotheses that beetle sex ratio varies with tree diameter and year in outbreak; and 3) develop predictive models of sex ratio skew for larval and adult populations. Using logistic regression, we modeled the probability that an individual beetle (n = 2,369) was female as a function of multiple environmental variables across 34 stands in British Columbia and Alberta, Canada. We identified a consistent female-biased sex ratio with significantly greater skew in adults (2:1, n = 713) than in larvae (1.76:1, n = 1,643). We found that the proportion of larval females increased with decreasing tree size and with outbreak age. However, adults did not respond to tree size and larvae did not respond to outbreak age. Predictive models differed between larvae and adults. All identified models perform well and included predictors related to weather, tree diameter, and year in outbreak. Female-biased sex ratios appear to originate from differential male mortality during development rather than from sex-biased oviposition, suggesting sex ratio skew is not the cause of outbreaks, but rather a consequence. PMID:27209334

  4. SEASONAL PATTERNS AND VERTICAL PROFILE OF SOIL WATER UPTAKE AND UTILIZATION BY YOUNG AND OLD DOUGLAS-FIR AND PONDEROSA PINE FORESTS

    EPA Science Inventory

    Water availability has a strong influence on the distribution of forest tree species across the landscape. However, we do not understand how seasonal patterns of water utilization by tree species are related to their drought tolerance. In the Pacific Northwest, Douglas-fir occu...

  5. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    NASA Astrophysics Data System (ADS)

    Bright, B. C.; Hicke, J. A.; Hudak, A. T.

    2012-12-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40-50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75-89% of the study area had >25% AGC in killed trees and 3-6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale.

  6. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats.

    PubMed

    Stout, Deborah H; Sala, Anna

    2003-01-01

    In the Rocky Mountains, ponderosa pine (Pinus ponderosa (ssp.) ponderosa Dougl. ex P. Laws. & C. Laws) often co-occurs with Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco). Despite previous reports showing higher shoot vulnerability to water-stress-induced cavitation in ponderosa pine, this species extends into drier habitats than Douglas-fir. We examined: (1) whether roots and shoots of ponderosa pine in riparian and slope habitats are more vulnerable to water-stress-induced cavitation than those of Douglas-fir; (2) whether species-specific differences in vulnerability translate into differences in specific conductivity in the field; and (3) whether the ability of ponderosa pine to extend into drier sites is a result of (a) greater plasticity in hydraulic properties or (b) functional or structural adjustments. Roots and shoots of ponderosa pine were significantly more vulnerable to water-stress-induced cavitation (overall mean cavitation pressure, Psi(50%) +/- SE = -3.11 +/- 0.32 MPa for shoots and -0.99 +/- 0.16 MPa for roots) than those of Douglas-fir (Psi(50%) +/- SE = -4.83 +/- 0.40 MPa for shoots and -2.12 +/- 0.35 MPa for roots). However, shoot specific conductivity did not differ between species in the field. For both species, roots were more vulnerable to cavitation than shoots. Overall, changes in vulnerability from riparian to slope habitats were small for both species. Greater declines in stomatal conductance as the summer proceeded, combined with higher allocation to sapwood and greater sapwood water storage, appeared to contribute to the ability of ponderosa pine to thrive in dry habitats despite relatively high vulnerability to water-stress-induced cavitation. PMID:12511303

  7. Climate Change Effects on Multiple Disturbance Interactions: Wildland Fire, Mountain Pine Beetles, and Blister Rust Simulations on a Yellowstone National Park Landscape

    NASA Astrophysics Data System (ADS)

    Keane, R. E.; Loehman, R.; Smithwick, E. A.

    2011-12-01

    Complex interactions between disturbance, climate, and vegetation will dramatically alter spatial patterns and ecosystem processes in the future, but the interactions between multiple disturbances may ultimately determine vegetation response and landscape dynamics. The frequency and extent of wildland fire, mountain pine beetles, and blister rust are predicted to increase with global warming, but the interactions and reciprocal feedbacks between these three disturbances could also alter landscape trajectories. We used the mechanistic, spatially explicit, landscape FireBGCv2 model parameterized for Yellowstone National Park to determine the extent to which climate altered ecosystem carbon storage, landscape composition and structure, and interacting disturbance regimes that include wildland fire, mountain pine beetles, and white pine blister rust for lodgepole and whitebark pine forests. Under two simulated future climate scenarios (B2 and A2) and three disturbance scenarios (fire only, fire and beetles/rust, beetles/rust only), it appears fire and bark beetle disturbance events interacted to moderate burn area and decrease insect/disease mortality. Landscape composition and structure was roughly the same across disturbance scenarios except whitebark pine disappears when rust is present in the simulation. Overall, we conclude that disturbance interactions are important to landscape dynamics under future climates and these interactions may overwhelm the direct effects of climate or single disturbances.

  8. Pine as Fast Food: Foraging Ecology of an Endangered Cockatoo in a Forestry Landscape

    PubMed Central

    Stock, William D.; Finn, Hugh; Parker, Jackson; Dods, Ken

    2013-01-01

    Pine plantations near Perth, Western Australia have provided an important food source for endangered Carnaby’s Cockatoos (Calyptorhynchus latirostris) since the 1940s. Plans to harvest these plantations without re-planting will remove this food source by 2031 or earlier. To assess the impact of pine removal, we studied the ecological association between Carnaby’s Cockatoos and pine using behavioural, nutritional, and phenological data. Pine plantations provided high densities of seed (158 025 seeds ha−1) over a large area (c. 15 000 ha). Carnaby’s Cockatoos fed throughout these plantations and removed almost the entire annual crop of pine cones. Peak cockatoo abundance coincided with pine seed maturation. Pine seed had energy and protein contents equivalent to native food sources and, critically, is available in summer when breeding pairs have young offspring to feed. This strong and enduring ecological association clearly suggests that removing pine will have a significant impact on this endangered species unless restoration strategies, to establish alternative food sources, are implemented. PMID:23593413

  9. Detection of bromacil herbicide in ponderosa pine

    SciTech Connect

    Ferenbaugh, R.W.; Spall, W.D.; LaCombe, D.M.

    1981-08-01

    Bromacil is a substituted uracil herbicide, 5-bromo-3-sec-butyl-6-methyluracil. Because it is readily absorbed through the root system of plants, bromacil usually is applied to the soil as an aqueous solution or suspension during or just before periods of active plnt growth. Until recently, bromacil was used as part of a vegetation control program along roadways at the Los Alamos National Laboratory. The prescribed method of application was to spray a four-foot wide strip of bromacil solution along the edges of roadways with a spray-bar. During the late spring and early summer of 1978, bromacil was determined to be the proximate cause of damage to numerous trees at substantial distances away from roadways at Los Alamos. This paper describes the investigation that was undertaken to determine the cause of the tree mortality.

  10. Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands.

    PubMed

    Balestrieri, Alessandro; Bogliani, Giuseppe; Boano, Giovanni; Ruiz-González, Aritz; Saino, Nicola; Costa, Stefano; Milanesi, Pietro

    2016-01-01

    In recent years, the "forest-specialist" pine marten Martes martes has been reported to also occur also in largely fragmented, lowland landscapes of north-western Italy. The colonization of such an apparently unsuitable area provided the opportunity for investigating pine marten ecological requirements and predicting its potential south- and eastwards expansion. We collected available pine marten occurrence data in the flood plain of the River Po (N Italy) and relate them to 11 environmental variables by developing nine Species Distribution Models. To account for inter-model variability we used average ensemble predictions (EP). EP predicted a total of 482 suitable patches (8.31% of the total study area) for the pine marten. The main factors driving pine marten occurrence in the western River Po plain were the distance from watercourses and the distance from woods. EP suggested that the pine marten may further expand in the western lowland, whilst the negligible residual wood cover of large areas in the central and eastern plain makes the habitat unsuitable for the pine marten, except for some riparian corridors and the pine wood patches bordering the Adriatic coast. Based on our results, conservation strategies should seek to preserve remnant forest patches and enhance the functional connectivity provided by riparian corridors. PMID:27368056

  11. Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands

    PubMed Central

    Balestrieri, Alessandro; Bogliani, Giuseppe; Boano, Giovanni; Ruiz-González, Aritz; Saino, Nicola; Costa, Stefano; Milanesi, Pietro

    2016-01-01

    In recent years, the “forest-specialist” pine marten Martes martes has been reported to also occur also in largely fragmented, lowland landscapes of north-western Italy. The colonization of such an apparently unsuitable area provided the opportunity for investigating pine marten ecological requirements and predicting its potential south- and eastwards expansion. We collected available pine marten occurrence data in the flood plain of the River Po (N Italy) and relate them to 11 environmental variables by developing nine Species Distribution Models. To account for inter-model variability we used average ensemble predictions (EP). EP predicted a total of 482 suitable patches (8.31% of the total study area) for the pine marten. The main factors driving pine marten occurrence in the western River Po plain were the distance from watercourses and the distance from woods. EP suggested that the pine marten may further expand in the western lowland, whilst the negligible residual wood cover of large areas in the central and eastern plain makes the habitat unsuitable for the pine marten, except for some riparian corridors and the pine wood patches bordering the Adriatic coast. Based on our results, conservation strategies should seek to preserve remnant forest patches and enhance the functional connectivity provided by riparian corridors. PMID:27368056

  12. PONDEROSA-C/S: client-server based software package for automated protein 3D structure determination.

    PubMed

    Lee, Woonghee; Stark, Jaime L; Markley, John L

    2014-11-01

    Peak-picking Of Noe Data Enabled by Restriction Of Shift Assignments-Client Server (PONDEROSA-C/S) builds on the original PONDEROSA software (Lee et al. in Bioinformatics 27:1727-1728. doi: 10.1093/bioinformatics/btr200, 2011) and includes improved features for structure calculation and refinement. PONDEROSA-C/S consists of three programs: Ponderosa Server, Ponderosa Client, and Ponderosa Analyzer. PONDEROSA-C/S takes as input the protein sequence, a list of assigned chemical shifts, and nuclear Overhauser data sets ((13)C- and/or (15)N-NOESY). The output is a set of assigned NOEs and 3D structural models for the protein. Ponderosa Analyzer supports the visualization, validation, and refinement of the results from Ponderosa Server. These tools enable semi-automated NMR-based structure determination of proteins in a rapid and robust fashion. We present examples showing the use of PONDEROSA-C/S in solving structures of four proteins: two that enable comparison with the original PONDEROSA package, and two from the Critical Assessment of automated Structure Determination by NMR (Rosato et al. in Nat Methods 6:625-626. doi: 10.1038/nmeth0909-625 , 2009) competition. The software package can be downloaded freely in binary format from http://pine.nmrfam.wisc.edu/download_packages.html. Registered users of the National Magnetic Resonance Facility at Madison can submit jobs to the PONDEROSA-C/S server at http://ponderosa.nmrfam.wisc.edu, where instructions, tutorials, and instructions can be found. Structures are normally returned within 1-2 days. PMID:25190042

  13. Mountain pine beetle-caused mortality over eight years in two pine hosts in mixed conifer stands of the southern Rocky Mountains

    USGS Publications Warehouse

    West, Daniel R.; Briggs, Jennifer S.; Jacobi, William R.; Negrón, José F.

    2014-01-01

    Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that originated in lodgepole pine expanded into mixed-conifer stands containing ponderosa pine, a related host. We evaluated the susceptibility of both hosts to successful MPB colonization in a survey of 19 sites in pine-dominated mixed-conifer stands spanning 140 km of the Front Range, CO, USA. In each of three 0.2-ha plots at each site, we (1) assessed trees in the annual flights of 2008–2011 to compare MPB-caused mortality between lodgepole and ponderosa pine; (2) recorded previous MPB-caused tree mortality from 2004–2007 to establish baseline mortality levels; and (3) measured characteristics of the stands (e.g. tree basal area) and sites (e.g. elevation, aspect) that might be correlated with MPB colonization. Uninfested average live basal area of lodgepole and ponderosa pine was 74% of total basal area before 2004. We found that for both species, annual percent basal area of attacked trees was greatest in one year (2009), and was lower in all other years (2004–2007, 2008, 2010, and 2011). Both pine species had similar average total mortality of 38–39% by 2011. Significant predictors of ponderosa pine mortality in a given year were basal area of uninfested ponderosa pine and the previous year’s mortality levels in both ponderosa and lodgepole pine. Lodgepole pine mortality was predicted by uninfested basal areas of both lodgepole and ponderosa pine, and the previous year’s lodgepole pine mortality. These results indicate host selection by MPB from lodgepole pine natal hosts into ponderosa pine the following year, but not the reverse. In both species, diameters of attacked trees within each year

  14. Pine needle abortion in cattle update: Metabolite detection in sera and fetal fluids from abortion case samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle abortions associated with consumption of pine needles during late gestation are a serious poisonous plant problem in the Western US. Most cases of abortion have been associated with consumption of ponderosa pine (Pinus ponderosa) and the causative agent was identified as the labdane diterpen...

  15. Landscape Genetics for the Empirical Assessment of Resistance Surfaces: The European Pine Marten (Martes martes) as a Target-Species of a Regional Ecological Network

    PubMed Central

    Ruiz-González, Aritz; Gurrutxaga, Mikel; Cushman, Samuel A.; Madeira, María José; Randi, Ettore; Gómez-Moliner, Benjamin J.

    2014-01-01

    Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2) evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species at regional scale. PMID:25329047

  16. ANALYSIS OF THE RELATIONSHIPS AMONG OZONE UPTAKE, CONDUCTANCE, AND PHOTOSYNTHESIS IN NEEDLES OF PINUS PONDEROSA

    EPA Science Inventory

    Determination of the relationships of conductance and photosynthesis to ozone uptake is important for the prediction of the long-term response of trees to ozone exposure. e studied the effects of O3 uptake on conductance (gwv) and photosynthesis (A) in needles of ponderosa pine (...

  17. Effects of Dwarf Mistletoe on Stand Structure of Lodgepole Pine Forests 21-28 Years Post-Mountain Pine Beetle Epidemic in Central Oregon

    PubMed Central

    Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  18. Monitoring forest structure at landscape level: a case study of Scots pine forest in NE Turkey.

    PubMed

    Terzioğlu, Salih; Başkent, Emin Zeki; Kadioğullari, Ali Ihsan

    2009-05-01

    This study aims to investigate the change in spatial-temporal configuration of secondary forest succession and generate measurements for monitoring the changes in structural plant diversity in Yalnizçam Scots pine forest in NE Turkey from 1972 to 2005. The successional stages were mapped using the combination of Geographic Information System (GIS), Global Positioning System (GPS), aerial photos and high resolution satellite images (IKONOS). Forest structure and its relationship with structural plant diversity along with its changes over time were characterized using FRAGSTATS. In terms of spatial configuration of seral stages, the total number of fragments increased from 572 to 735, and mean size of patch (MPS) decreased from 154.97 ha to 120.60 ha over 33 years. The situation resulted in forestation serving appropriate conditions for plant diversity in the area. As an overall change in study area, there was a net increase of 1823.3 ha forest during the period with an average annual forestation rate of 55.25 ha year(-1) (0.4% per year). In conclusion, the study revealed that stand type maps of forest management plans in Turkey provide a great chance to monitor the changes in structural plant diversity over time. The study further contributes to the development of a framework for effective integration of biodiversity conservation into Multiple Use Forest Management (MUFM) plans using the successional stages as a critical mechanism. PMID:18553149

  19. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation

    USGS Publications Warehouse

    Allen, C.D.; Breshears, D.D.

    1998-01-01

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects - particularly those caused by mortality - largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and pinon-juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change.

  20. Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation

    PubMed Central

    Allen, Craig D.; Breshears, David D.

    1998-01-01

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects—particularly those caused by mortality—largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and piñon–juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change. PMID:9843976

  1. Colonization History, Host Distribution, Anthropogenic Influence and Landscape Features Shape Populations of White Pine Blister Rust, an Invasive Alien Tree Pathogen

    PubMed Central

    Brar, Simren; Tsui, Clement K. M.; Dhillon, Braham; Bergeron, Marie-Josée; Joly, David L.; Zambino, P. J.; El-Kassaby, Yousry A.; Hamelin, Richard C.

    2015-01-01

    White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales). This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs) and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur. PMID:26010250

  2. Understanding the role of wildland fire, insects, and disease in predicting climate change effects on whitebark pine: Simulating vegetation, disturbance, and climate dynamics in a northern Rocky Mountain landscape

    NASA Astrophysics Data System (ADS)

    Keane, R. E.; Loehman, R.

    2010-12-01

    Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be particularly sensitive to climatic change, and are likely to experience significant impacts under predicted future climate change conditions. Whitebark pine (Pinus albicaulis), a high-elevation five-needle pine species that is important for snowpack retention, resource provision, and other ecosystem services in alpine environments in the northern Rocky Mountains, is particularly sensitive to an interacting complex of disturbances - climatic change, altered fire regimes, white-pine blister rust, and mountain pine beetles - that have already caused major changes in species distribution and density. Further changes in abiotic and biotic conditions will likely pose additional threats to the success of this keystone alpine tree species. We used the mechanistic simulation model Fire-BGCv2 to assess potential interacting effects of climate changes, pathogens, and wildfire on the distribution and density of whitebark pine in a high-elevation watershed in Glacier National Park, Montana, USA. The FireBGCv2 modeling platform is uniquely structured to address questions of future species distribution in response to interacting disturbance agents; further, we integrated a range of potential future climate conditions derived from downscaled Global Circulation Models to examine multiple potential future climatic contexts. Our results show that the distribution of whitebark pine is severely reduced under potential future climates, and that increased fire frequency and severity resulting from warmer, drier conditions further reduces the presence of the species on the simulation landscape. Simulation model results

  3. Mountain Pine Beetles Use Volatile Cues to Locate Host Limber Pine and Avoid Non-Host Great Basin Bristlecone Pine

    PubMed Central

    Gray, Curtis A.; Runyon, Justin B.; Jenkins, Michael J.; Giunta, Andrew D.

    2015-01-01

    The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species. PMID:26332317

  4. Evaluating Predators and Competitors in Wisconsin Red Pine Forests for Attraction to Mountain Pine Beetle Pheromones for Anticipatory Biological Control.

    PubMed

    Pfammatter, Jesse A; Krause, Adam; Raffa, Kenneth F

    2015-08-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), is an irruptive tree-killing species native to pine forests of western North America. Two potential pathways of spread to eastern forests have recently been identified. First, warming temperatures have driven range expansion from British Columbia into Albertan jack pine forests that are contiguous with the Great Lakes region. Second, high temperatures and drought have fostered largescale outbreaks within the historical range, creating economic incentives to salvage killed timber by transporting logs to midwestern markets, which risks accidental introduction. We evaluated the extent to which local predators and competitors that exploit bark beetle semiochemicals would respond to D. ponderosae in Wisconsin. We emulated D. ponderosae attack by deploying lures containing synthetic aggregation pheromones with and without host tree compounds and blank control traps in six red pine plantations over 2 yr. Predator populations were high in these stands, as evidenced by catches in positive control traps, baited with pheromones of local bark beetles and were deployed distant from behavioral choice plots. Only one predator, Thanasimus dubius F. (Coleoptera: Cleridae) was attracted to D. ponderosae's aggregation pheromones relative to blank controls, and its attraction was relatively weak. The most common bark beetles attracted to these pheromones were lower stem and root colonizers, which likely would facilitate rather than compete with D. ponderosae. There was some, but weak, attraction of potentially competing Ips species. Other factors that might influence natural enemy impacts on D. ponderosae in midwestern forests, such as phenological synchrony and exploitation of male-produced pheromones, are discussed. PMID:26314062

  5. Model for detection and assessment of abiotic stress caused by uranium mining in European Black Pine landscapes

    NASA Astrophysics Data System (ADS)

    Filchev, Lachezar; Roumenina, Eugenia

    2013-10-01

    The article presents the results obtained from a study for detection and assessment of abiotic stress through pollution with heavy metals, metalloids, and natural radionuclides in European Black Pine (Pinus nigra L.) forests caused by uranium mining using ground-based biogeochemical, biophysical, and field spectrometry data. The forests are located on a territory subject to underground and open uranium mining. An operational model of the study is proposed. The areas subject to technogeochemical load are outlined based on the aggregate pollution index Zc. Laboratory and field spectrometry data were used to detect the signals of abiotic stress at pixel level. The methods used for determination of stressed and unstressed black pine forests are: four vegetation indices (TCARI, MCARI, MTVI 2, and PRI 1) for stress detection, and the position, depth, asymmetry, and shift of the red-edge. Based on the "blue shift" and the depth and position of the red-edge, registered by the laboratory analysis and field spectral reflectance, it is established that coniferous forests subject to abiotic stress show an increase in total chlorophyll content and carotene. It has been found that the vegetation indices MTVI 2 and PRI 1, as well as the combination of vegetation indices and pigments may be used as a direct indicator of abiotic stress in coniferous forests caused by uranium mining.

  6. Mineralization of soil organic matter in biochar amended agricultural landscape

    NASA Astrophysics Data System (ADS)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  7. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis

    USGS Publications Warehouse

    Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.

    2007-01-01

    Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.

  8. Severe White Pine Blister Rust Infection in Whitebark Pine Alters Mountain Pine Beetle (Coleoptera: Curculionidae) Attack Density, Emergence Rate, and Body Size.

    PubMed

    Dooley, Edith M; Six, Diana L

    2015-10-01

    Exotic tree pathogens can cause devastating ecological effects on forests that can be exacerbated when infections increase the likelihood of attack by insects. Current high rates of mortality of whitebark pine (Pinus albicaulis Engelm.) are due to white pine blister rust caused by the exotic fungus, Cronartium ribicola J.C. Fisch, and the native mountain pine beetle (Dendroctonus ponderosae Hopkins). These two mortality agents interact in whitebark pine; mountain pine beetle preferentially selects white pine blister rust-infected whitebark pine over healthy trees, and likelihood of attack has been observed to increase with infection severity. We examined attack and emergence rates, and size and sex ratio of mountain pine beetle in whitebark pines exhibiting varying white pine blister rust infection severities. Mountain pine beetle attack density was lowest on the most severely infected trees, but emergence rates and size of beetles from these trees were greater than those from uninfected and less severely infected trees. Low attack rates on severely infected whitebark pine may indicate these trees have lower defenses and that fewer beetle attacks are needed to kill them. Higher beetle emergence rates from severely infected trees may be due to low intraspecific competition resulting from low attack rates or differences in nutrient quality. PMID:26314009

  9. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    PubMed Central

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  10. Incidence of the pine wood nematode in green coniferous sawn wood in Oregon and California. Forest Service research note

    SciTech Connect

    Dwinell, L.D.

    1993-05-01

    Samples of green sawn Douglas-fir, redwood, ponderosa pine, and white fir were collected in August and September 1992 from seven mills in Oregon and California, and assayed for the pine wood nematode, Bursaphelenchus xylophilus. The mills produced about 108 million board feet during the survey period. The pine wood nematode was not found in any of the 424 samples of Douglas-fir, the 192 of redwood, or the 3 of white fir. The nematode was recovered from 8 of 105 samples of green ponderosa pine lumber from a mill in Oregon. These eight samples contained an average of 54 pine wood nematodes per gram of dry weight. This is the first report of the pine wood nematode in Oregon.

  11. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However

  12. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern Rocky Mountains

    USGS Publications Warehouse

    Tague, Christina L.; McDowell, Nathan G.; Allen, Craig D.

    2013-01-01

    Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities.

  13. An Integrated Model of Environmental Effects on Growth, Carbohydrate Balance, and Mortality of Pinus ponderosa Forests in the Southern Rocky Mountains

    PubMed Central

    Tague, Christina L.; McDowell, Nathan G.; Allen, Craig D.

    2013-01-01

    Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities. PMID:24282532

  14. Modeling the response of mature Pinus ponderosa Laws. to tropospheric ozone: Effects of genotypic variability

    SciTech Connect

    Constable, J.V.H.; Taylor, G.E. Jr. ); Weinstein, D.A.; Laurence, J.A. )

    1994-06-01

    Regionally distributed pollutants (e.g., tropospheric ozone and CO[sub 2]) can influence the growth of terrestrial plants. The mosaic of genotypes in natural populations makes it difficult to predict the ecological consequences of pollutants throughout a species' distribution. We simulated the response of Pinus ponderosa Laws to ambient, sub-ambient and above-ambient troposopheric O[sub 3] for 3 years using TREGRO, a physiologically based three growth model. Parameters controlling growth and carbon allocation were obtained from the literature and were varied to simulate intravarietal and intervarietal genotypes (western var. Ponderosa and eastern var. Scopulorum) of Ponderosa Pine. Parameter differences between the varieties include physiology, carbon allocation and phenoloy. Ozone altered 3 year biomass gain (+6% to 61%) and fine root to leaf mass ratio ([minus]8% to [minus]14%) in spite of a small effect on photosynthesis ([<=] 10%). Overall, O[sub 3] caused growth differences between varieties to be reduced. The reduction in growth differences between genotypes due to ozone has consequences for regional identification of populations sensitive to the effects of tropospheric ozone.

  15. Holocene disturbance dynamics from a pine-dominated forest in central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Hebda, N.; Condor, N.; Hebda, R.; Hawkes, B.

    2013-12-01

    A lake sediment record was retrieved from the Sub-Boreal Pine-Spruce biogeoclimatic zone on the Chilcotin Plateau in central British Columbia, Canada. The record is being analyzed for charcoal, pollen, and magnetic susceptibility, as well as insect and mollusc content. The oldest radiocarbon age is 9.2 cal BP, illustrating that the record spans most of the Holocene. Regarding fire disturbance, charcoal fragments are persistent throughout the core, revealing that fire disturbance has characterized the site for millennia. In total, 74 fire events were recognized. During the warm dry early Holocene, fire frequency was 12-15 fires 2000 yr-1 and peak magnitudes were low, possibly in response to a more open landscape. A change in fire regime occurred at ca. 5000 cal BP, as fire frequency increased, peaking at ca. 20 fires 2000 yr-1 by 3000 cal BP. Peak magnitude likewise increased notably, possibly in response to the development of denser forest cover. On-going analysis of pollen will better constrain the vegetation history in this poorly sampled region. In contrast to charcoal, which was pervasive, Dendroctonus ponderosae (mountain pine beetle) remains were absent in both modern and paleo samples. Given that several insect outbreaks have occurred in the region in the last 100 years, the scarcity of remains is likely related to taphonomic issues.

  16. Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle

    PubMed Central

    Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir

    2015-01-01

    The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (−):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest. PMID:26042134

  17. Progress report for the project: Comparison of the response of mature branches and seedlings of Pinus ponderosa to atmospheric pollution

    SciTech Connect

    Houpis, J.L.J.; Anderson, P.D.; Benes, S.E.; Phelps, S.P.; Loeffler, A.T.

    1990-09-01

    This progress report details Lawrence Livermore National Laboratory's (LLNL) performance regarding the projects Comparison of the Response of Mature Branches and Seedlings of Pinus ponderosa to Atmospheric Pollution'' and Effects of Ozone, acid Precipitation, and Their Interactions on Mature Branches and Seedlings of Ponderosa Pine'' for the months of November 1989 to June 1990. During the last eight months, we have initiated ozone and acid precipitation exposures, and we began intensive growth, morphological, and physiological measurements. During these major physiological measurement periods, we measured photosynthesis, transpiration, stomatal conductance, respiration, antioxidant activity, pigmentation, and foliar nutrient concentration. We have also concluded the analysis of our branch autonomy experiment, which we conducted in the fall. We determined that virtually no carbon is exported among branches in close proximity to one another. This conclusion assists in validating the approach of using branches and branch exposure chambers as a means of assessing the effects of air pollution on mature trees of Ponderosa pine. 6 refs., 4 figs., 3 tabs.

  18. Phosphorus acquisition and growth of Pinus ponderosa under different climate regimes

    SciTech Connect

    DeLucia, E.H.; Callaway, R.M.; Thomas, E.M.

    1995-06-01

    Ponderosa pine seedlings were grown with an organic P fertilizer in a factorial 2 temp (25 & 30 C) and 2 CO{sub 2} (350 & 700 {mu}l/l) design. Elevated CO{sub 2} stimulated growth and elevated CO{sub 2} and temp increased the specific absorption rate of P by ca. 30%. The percent infection by mycorrhizae increased with elevated CO{sub 2} but decreased with elevated temp. In contrast, the activity of root phosphatases was depressed in seedlings grown under elevated CO{sub 2} and temperature. Thus, there appears to be a functional tradeoff in the mechanisms of P acquisition in different climate regimes. Under current conditions root phosphatase activity is high and mycorrhizal infection is low. This reverses under simulated future conditions of elevated temp and CO{sub 2}. The concentration of soil oxalate also increased under elevated CO{sub 2}. This small organic acid, released by roots and fungi, chelates Ca, Fe, and Al in the soil thereby increasing the availability of inorganic P. Enhanced P acquisition and utilization under elevated CO{sub 2} and temp contributed to higher growth rates suggesting that ponderosa pine may overcome P limitations under future climate conditions.

  19. Using pheromones to protect heat-injured lodgepole pine from mountain pine beetle infestation. Forest Service research note

    SciTech Connect

    Amman, G.D.; Ryan, K.C.

    1994-01-01

    The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the basal circumference of lodgepole pines. When the peat moss was ignited, it simulated the smoldering of natural duff, generating temperatures that killed the cambium. The four treatments tested were uninjured tree, heat-injured tree, heat-injured tree treated with verbenone, and heat-injured tree treated with verbenone plus ipsdienol. Treatments were replicated 20 times. Mountain pine beetles were attracted into treatment blocks by placing mountain pine beetle tree baits on metal posts 3 to 5 meters from treated trees. Fisher's Extract Test showed that treatment and beetle infestation were not independent (P < 0.015). Check treatments contained more unattacked and mass-attacked trees, whereas pheromone treatments contained more unsuccessfully attacked trees.

  20. Localized spatial and temporal attack dynamics of the mountain pine beetle in lodgepole pine. Forest Service research paper

    SciTech Connect

    Bentz, B.J.; Powell, J.A.; Logan, J.A.

    1996-12-01

    Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and that verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.

  1. Effect of phloem thickness on heterozygosity in laboratory-reared mountain pine beetles. Forest Service research note

    SciTech Connect

    Amman, G.D.; Stock, M.W.

    1995-02-01

    Mountain pine beetles (Dendrocotonus ponderosae Hopkins) were collected from naturally infested trees of lodgepole pine (Pinus contorta Dougl.) in northern Utah. Bettles were reared in logs through six generations in a laboratory, and heterozygosity measured. Heterozygosity levels initially decreased when individual pairs of beetles were reared. However, when beetles were allowed to selected mates at random, heterozygosity rose to levels higher than those in the starting population. Heterozygosity was higher in bettles reared in thin than those in thick phloem.

  2. Growth response of Pinus ponderosa seedlings and mature tree branches to acid rain and ozone exposure

    SciTech Connect

    Anderson, P.D.; Houpis, J.L.J.; Helms, J.A.

    1994-10-01

    Forests of the central and southern Sierra Nevada in California have been subjected to chronic damage by ozone and other atmospheric pollutants for the past several decades. Until recently, pollutant exposure of northern Sierra Nevada forests has been mild but increasing population and changes in land use throughout the Sacramento Valley and Sierra Nevada foothills may lead to increased pollutant damage in these forests. Although, better documented in other regions of the United States, little is known regarding the potential for acidic precipitation damage to Sierra Nevada forests. Only recently have studies directed towards understanding the potential interactive effects of ozone and acidic precipitation been undertaken. A key issue in resolving potential regional impacts of pollutants on forests is the extent to which research results can be scaled across genotypes and life-stages. Most of the pollution research to date has been performed using seedlings with varying degrees of genetic control. It is important to determine if the results obtained in such studies can be extrapolated to mature trees and to different genetic sources. In this paper, we present results from a one-year study examining the interactive effects of foliar exposure to acidic rain and ozone on the growth of ponderosa pine (Pinus ponderosa), a conifer known to be sensitive to ozone. The response to pollutants is characterized for both seedlings and mature tree branches of three genotypes grown in a common environment.

  3. Effects of long-term elevated atmospheric CO{sub 2} concentrations on Pinus ponderosa

    SciTech Connect

    Surano, K.A.; Kercher, J.R.

    1993-10-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO{sub 2} concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO{sub 2} responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO{sub 2} responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO{sub 2} responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO{sub 2} exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO{sub 2} scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases.

  4. Analysis of the relationships among O3 uptake, conductance, and photosynthesis in needles of pinus ponderosa

    SciTech Connect

    Weber, J.A.; Clark, C.S.; Hogsett, W.E.

    1993-01-01

    The determination of conductance and photosynthesis to ozone uptake is important for the prediction of the long-term response of trees to ozone exposure. The authors studied the effects of O3 uptake on conductance (gwv) and photosynthesis (A) in needles of ponderosa pine (Pinus ponderosa) seedlings exposed for 70 days to one of three O3 regimes -- Low-O3, High-O3, and Low/High-O3. Seedlings exposed to charcoal-filtered air served as controls. Total O3 exposures, expressed as ppm-h (the sum of the average hourly concentration to ppm over the exposure period), were 77, 135, 105, and 4 for the Low-O3, High-O3, Low/High-O3, and control treatments, respectively. Conductance declined to about 60% of the value in control seedlings by Day 6 in seedlings in the High-O3 treatment and by Day 37 in seedlings in the Low/High-O3 treatment, but did not decline at all in seedlings in the Low-O3 treatment.

  5. Resource selection by elk in an agro-forested landscape of northwestern Nebraska.

    PubMed

    Baasch, David M; Fischer, Justin W; Hygnstrom, Scott E; VerCauteren, Kurt C; Tyre, Andrew J; Millspaugh, Joshua J; Merchant, James W; Volesky, Jerry D

    2010-11-01

    In recent years, elk have begun recolonizing areas east of the Rocky Mountains that are largely agro-forested ecosystems composed of privately owned land where management of elk is an increasing concern due to crop and forage depredation and interspecific disease transmission. We used a Geographic Information System, elk use locations (n = 5013), random locations (n = 25,065), discrete-choice models, and information-theoretic methods to test hypotheses about elk resource selection in an agro-forested landscape located in the Pine Ridge region of northwestern Nebraska, USA. Our objectives were to determine landscape characteristics selected by female elk and identify publicly owned land within the Pine Ridge for potential redistribution of elk. We found distance to edge of cover influenced selection of resources by female elk most and that in areas with light hunting pressure, such as ours, this selection was not driven by an avoidance of roads. Female elk selected resources positioned near ponderosa pine cover types during all seasons, exhibited a slight avoidance of roads during spring and fall, selected areas with increased slope during winter and spring, and selected north- and east-facing aspects over flat areas and areas with south-facing slopes during winter months. We used our models to identified a potential elk redistribution area that had a higher proportion of landcover with characteristics selected by elk in our study area than the current herd areas and more landcover that was publicly owned. With appropriate management plans, we believe elk within the Potential Elk Redistribution Area would predominantly occupy publicly owned land, which would help minimize crop and forage damage on privately owned lands. PMID:20872141

  6. SEASONAL CHANGES IN ROOT AND SOIL RESPIRATION OF OZONE-EXPOSED PONDEROSA PINE (PINUS PONDEROSA) GROWN IN DIFFERENT SUBSTRATES

    EPA Science Inventory

    Exposure to(ozone 0-3)has been shown to decrease the allocation of carbon to tree roots. Decreased allocation of carbon to roots might disrupt root metabolism and rhizosphere organisms. The effects of soil type and shoot 0, exposure on below-ground respiration and soil microbial ...

  7. Changes In Snowmelt Timing In Response To Pine Beetle Infestation In Lodgepole Pines In The Colorado Rockies

    NASA Astrophysics Data System (ADS)

    Pugh, E.; Tilton, E. S.

    2008-12-01

    Since 1996, roughly 1.5 million acres of lodgepole pine forest in Colorado have been infested by mountain pine beetles (Dendroctonus ponderosae). We measured physical snowpack properties (depth, density, and temperature) under stands of both living and dead lodgepole pines in the Colorado Rockies. This data allowed us to investigate the effect of increased forest canopy transmittance due to tree death on potential advances in the annual hydrograph. We compared snow accumulation and melt on north-facing and south- facing slopes at an elevation of approximately 3000m. As expected, topography-dominated solar forcing is the chief factor in snowmelt: snow on south-facing slopes melted earlier in the season than north-facing slopes. Comparing stands of dead and live trees within topographic zones revealed a few dramatic differences: snow water equivalent was lower and mean snowpack temperature was warmer in dead lodgepole pine stands. Temperature timeseries from within the snowpack suggest that snow in dead tree stands became isothermal sooner than snow in living tree stands. Together these show that there was indeed earlier snowmelt in lodgepole pine forest regions infested with mountain pine beetle. Earlier snowmelt will likely cause peak snowmelt discharge to occur sooner.

  8. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect

    USGS Publications Warehouse

    McDowell, N.G.; Allen, C.D.; Marshall, L.

    2010-01-01

    Drought- and insect-associated tree mortality at low-elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low-elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole-crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa-pc) derived from tree ring carbon isotope ratios (??13C), corrected for temporal trends in atmospheric CO2 and ??13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa-pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa-pc to climate, and a steep relationship between pa-pc and BAI/BA. The pa-pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought - i.e., chronic water stress. It appears that chronic water stress predisposed low-elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in

  9. AmeriFlux US-Me5 Metolius-first young aged pine

    DOE Data Explorer

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me5 Metolius-first young aged pine. Site Description - Previously old-growth ponderosa pine, clearcut in 1978 and allowed to regenerate naturally. Law et al (2001) Global Change Biology 7, 755-777; Law et al (2001) Agricultural and Forest Meteorology 110, 27-43; Anthoni et al (2002) Agricultural and Forest Meteorology 111, 203-222; Irvine & Law (2002) Global Change biology 8,1183-1194, Irivne et al (2004) Tree Physiology 24,753-763.

  10. Effect of water stress on chlorophyll and carotenoid contents on seedlings from three seed sources of Pinus ponderosa

    SciTech Connect

    Benes, S.E.; Houpis, J.L.J. )

    1989-04-01

    The effect of water stress on pigmentation was studied on seedlings from three seed sources of ponderosa pine (Pinus ponderosa Dougl.) selected from similar latitudes but along a gradient of decreasing water availability from the California coast to the western and eastern sides of the Sierra Nevada Mountains. All plants were grown in a common garden for 18 months. Water was withheld from the two-year old potted seedlings and weekly needle samples were taken for the 10 week drought period and for a two week recovery period. Pigments were passively extracted in dimethylformamide and quantified spectrophotometrically. The seedlings from the more mesic seed zone exhibited water stress earlier (Week 8) and to a greater extent (-1.53 Mpa predawn water potential) than seedlings from the other two seed zones. However, chlorophyll and carotenoid concentrations did not correspond to increasing level of water stress. There were differences in pigmentation among the seedlings from the three seed zones, with those seedlings from the west side of the Sierra Nevada having less chlorophyll a and b, and carotenoids than those from the other two regions. Analysis of the chlorophyll a and b, and carotenoids than those from the other two regions. Analysis of the chlorophyll a/b ratio indicated that although there were differences in pigmentation, the relative abundance of chlorophyll a to be was consistent among seedlings from all three seed zones.

  11. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers

    PubMed Central

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666

  12. Contrasting cascades: insectivorous birds increase pine but not parasitic mistletoe growth.

    PubMed

    Mooney, Kailen A; Linhart, Yan B

    2006-03-01

    1. Intraguild predation occurs when top predators feed upon both intermediate predators and herbivores. Intraguild predators may thus have little net impact on herbivore abundance. Variation among communities in the strength of trophic cascades (the indirect effects of predators on plants) may be due to differing frequencies of intraguild predation. Less is known about the influence of variation within communities in predator-predator interactions upon trophic cascade strength. 2. We compared the effects of a single predator community between two sympatric plants and two herbivore guilds. We excluded insectivorous birds with cages from ponderosa pine Pinus ponderosa trees parasitized by dwarf mistletoe Arceuthobium vaginatum. For 3 years we monitored caged and control trees for predatory arthropods that moved between the two plants, foliage-feeding caterpillars and sap-feeding hemipterans that were host-specific, and plant damage and growth. 3. Excluding birds increased the abundance of ant-tended aphids on pine and resulted in an 11% reduction in pine woody growth. Mutualist ants protected pine-feeding aphids from predatory arthropods, allowing aphid populations to burgeon in cages even though predatory arthropods also increased in cages. By protecting pine-feeding aphids from predatory arthropods but not birds, mutualist ants created a three-tiered linear food chain where bird effects cascaded to pine growth via aphids. 4. In contrast to the results for tended aphids on pine, bird exclusion had no net effects on untended pine herbivores, the proportion of pine foliage damaged by pine-feeding caterpillars, or the proportion of mistletoe plants damaged by mistletoe-feeding caterpillars. These results suggest that arthropod predators, which were more abundant in cages as compared with control trees, compensated for bird predation of untended pine and mistletoe herbivores. 5. These contrasting effects of bird exclusion support food web theory: where birds were

  13. Chloroplast diversity in a putative hybrid swarm of Ponderosae (Pinaceae).

    PubMed

    Epperson, Bryan K; Telewski, Frank W; Willyard, Ann

    2009-03-01

    The Ponderosae subsection of the genus Pinus contains numerous taxa in disjunct mountain ranges of southern Arizona and New Mexico, differing for several leaf and cone traits, key among which is the number of leaf needles per fascicle. Trees with three needles are often found together with trees having five needles and mixed numbers. One taxonomic hypothesis is that there are swarms of hybrids between P. ponderosa and P. arizonica. A second hypothesis is that there are spatial mixtures of two separate taxa, five-needle P. arizonica and a "taxon X" containing three needle and mixed needle trees. We genotyped chloroplasts in one putative hybrid swarm on Mt. Lemmon using microsatellite markers and show that cpDNA is almost completely differentiated between two separate morphotypes corresponding to P. arizonica and "taxon X." Little if any introgression has occurred on Mt. Lemmon, and the simplest explanation is that little or no effective hybridization has occurred. Further results indicate that not only is taxon X not of hybrid origin, it is more closely related to nonregional Ponderosae other than P. ponderosa and P. arizonica. The results further suggest that other putative hybrid swarms in the region are also spatial mixtures of distinct taxa. PMID:21628225

  14. Modeling mountain pine beetle habitat suitability within Sequoia National Park

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    Understanding significant changes in climate and their effects on timber resources can help forest managers make better decisions regarding the preservation of natural resources and land management. These changes may to alter natural ecosystems dependent on historical and current climate conditions. Increasing mountain pine beetle (MBP) outbreaks within the southern Sierra Nevada are the result of these alterations. This study better understands MPB behavior within Sequoia National Park (SNP) and model its current and future habitat distribution. Variables contributing to MPB spread are vegetation stress, soil moisture, temperature, precipitation, disturbance, and presence of Ponderosa (Pinus ponderosa) and Lodgepole (Pinus contorta) pine trees. These variables were obtained using various modeled, insitu, and remotely sensed sources. The generalized additive model (GAM) was used to calculate the statistical significance of each variable contributing to MPB spread and also created maps identifying habitat suitability. Results indicate vegetation stress and forest disturbance to be variables most indicative of MPB spread. Additionally, the model was able to detect habitat suitability of MPB with a 45% accuracy concluding that a geospatial driven modeling approach can be used to delineate potential MPB spread within SNP.

  15. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    NASA Astrophysics Data System (ADS)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  16. Uptake of trifluoroacetate by Pinus ponderosa via atmospheric pathway

    NASA Astrophysics Data System (ADS)

    Benesch, J. A.; Gustin, M. S.

    Trifluoroacetate (TFA, CF 3COO -), a break down product of hydro(chloro)-fluorocarbons (HFC/HCFCs), has been suggested to contribute to forest decline syndrome. To investigate the possible effects, Pinus ponderosa was exposed to TFA applied as mist (150 and 10,000 ng l -1) to foliar surfaces. Needles accumulated TFA as a function of concentration and time. However, no adverse physiological responses, as plant morphology, photosynthetic and conductance rates, were observed at the TFA concentrations used in this study.

  17. AN EVALUATION OF OZONE EXPOSURE METRICS FOR A SEASONALLY DROUGHT STRESSED PONDEROSA PINE ECOSYSTEM. (R826601)

    EPA Science Inventory

    Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at ...

  18. PATTERNS OF ROOT GROWTH, TURNOVER, AND DISTRIBUTION IN DIFFERENT AGED PONDEROSA PINE STANDS

    EPA Science Inventory

    The objectives of this study are to examine the spatial distribution of roots in relation to canopy size and tree distribution, and to determine if rates of fine root production and turnover are similar in the different aged stands. During the fall of 1998, 54 clear plexiglass t...

  19. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochars, a by-product of pyrolysis conversion of a wide array of plant biomass to biofuels, are being considered as soil amendments that may provide nutrients and increase soil water holding capacity. However, there may be unintended consequences to other crop management practices. We examined her...

  20. ELEVATED CO2 AND O3 EFFECTS ON FINE-ROOT SURVIVORSHIP IN PONDEROSA PINE MESOCOSMS

    EPA Science Inventory

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograph...

  1. Elevated CO2 or O3 effects on fine-root survivorship in ponderosa pine

    EPA Science Inventory

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograp...

  2. OZONE AMBIENT AIR QUALITY STANDARD HAS BENEFICIAL EFFECT ON PONDEROSA PINE IN CALIFORNIA

    EPA Science Inventory

    Ambient air quality standards and control strategies are implemented to protect humans and vegetation from adverse effects. However, to date there has not been a simple and objective method to determine if the standards and resultant control strategies have reduced O3 impacts on ...

  3. EFFECTS OF CARBON DIOXIDE AND OZONE ON NITROGEN RETRANSLOCATION IN PONDEROSA PINE NEEDLES

    EPA Science Inventory

    Changes in leaf N concentration can be an important response to air pollutants in trees, with implications both for tree growth and N cycling through forest ecosystems. Ozone causes premature leaf senescence, which may be associated with a shift in N from the senescing leaves to...

  4. CHANGES IN CARBON STORAGE AND FLUXES IN A CHRONOSEQUENCE OF PONDEROSA PINE. (R828309)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. O3, CO2 and chemical fractionation in ponderosa pine saplings

    EPA Science Inventory

    Environmental factors can affect plant tissue quality which is important for quality of organic matter inputs into soil food webs and decomposition of soil organic matter. Thus the effects of increases in CO2 and O3 and their interactions were determined for various chemical fra...

  6. OZONE DECREASES SPRING ROOT GROWTH AND ROOT CARBOHYDRATE CONTENT IN PONDEROSA PINE THE YEAR FOLLOWING EXPOSURE

    EPA Science Inventory

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. he hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. eedling...

  7. CARRY-OVER EFFECTS OF OZONE ON ROOT GROWTH AND CARBOHYDRATE CONCENTRATIONS OF PONDEROSA PINE SEEDLINGS

    EPA Science Inventory

    Ozone exposure decreases belowground carbon allocation and root growth of plants;however,the extent to which these effects persist and the cumulative impact of ozone stress on plant growth are poorly understood.To evaluate the potential for plant compensation,we followed the prog...

  8. Monitoring direct and indirect climate effects on whitebark pine ecosystems at Crater Lake National park

    USGS Publications Warehouse

    Smith, S.B.; Odion, D.C.; Sarr, D.A.; Irvine, K.M.

    2011-01-01

    Whitebark pine (Pinus albicaulis) is the distinctive, often stunted, and picturesque tree line species in the American West. As a result of climate change, mountain pine beetles (Dendroctonus ponderosae) have moved up in elevation, adding to nonnative blister rust (Cronartium ribicola) disease as a major cause of mortality in whitebark pine. At Crater Lake National Park, Oregon, whitebark pine is declining at the rate of 1% per year. The Klamath Network, National Park Service, has elected to monitor whitebark pine and associated high-elevation vegetation. This program is designed to sample whitebark pine throughout the park to look for geographic patterns in its exposure to and mortality from disease and beetles. First-year monitoring has uncovered interesting patterns in blister rust distribution. Incidence of rust disease was higher on the west side of the park, where conditions are wetter and more humid than on the east side. However, correlating climate alone with rust disease is not straightforward. On the east side of the park, the odds of blister rust infection were much greater in plots having Ribes spp., shrubs that act as the alternate host for a portion of the rust's life cycle. However, on the park's west side, there was not a statistically significant increase in blister rust in plots with Ribes. This suggests that different species of Ribes associated with whitebark pine can increase pine exposure to blister rust disease. There is also convincing evidence of an association between total tree density and the incidence of blister rust. Warmer temperatures and possibly increased precipitation will affect both whitebark pine and Ribes physiology as well as tree density and mountain pine beetle numbers, all of which may interact with blister rust to cause future changes in tree line communities at Crater Lake. The Klamath Network monitoring program plans to document and study these ongoing changes.

  9. Modeling the Effects of Climate Change on Whitebark Pine Along the Pacific Crest Trail

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Nguyen, A.; Gill, N.; Kannan, S.; Patadia, N.; Meyer, M.; Schmidt, C.

    2012-12-01

    The Pacific Crest Trail (PCT), one of eight National Scenic Trails, stretches 2,650 miles from Mexico to the Canadian border. At high elevations along this trail, within Inyo and Sierra National Forests, populations of whitebark pine (Pinus albicaulis) have been diminishing due to infestation of the mountain pine beetle (Dendroctonus ponderosae) and are threatened due to a changing climate. Understanding the current and future condition of whitebark pine is a primary goal of forest managers due to its high ecological and economic importance, and it is currently a candidate for protection under the Endangered Species Act (ESA). Using satellite imagery, we analyzed the rate and spatial extent of whitebark pine tree mortality from 1984 to 2011 using the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) program. Climate data, soil properties, and biological features of the whitebark pine were incorporated in the Physiological Principles to Predict Growth (3-PG) model to predict future rates of growth and assess its applicability in modeling natural whitebark pine processes. Finally, the Random Forest algorithm was used with topographic data alongside recent and future climate data from the IPCC A2 and B1 climate scenarios for the years 2030, 2060, and 2090 to model the future distribution of whitebark pine. LandTrendr results indicate beetle related mortality covering 14,940 km2 of forest, 2,880 km2 of which are within whitebark pine forest. By 2090, our results show that under the A2 climate scenario, whitebark pine suitable habitat may be reduced by as much as 99.97% by the year 2090 within our study area. Under the B1 climate scenario, which has decreased CO2 emissions, 13.54% more habitat would be preserved in 2090.

  10. Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department of Agriculture, Forest Service, Region 5. L. Glenn Hall, landscape engineer. 11-5-35. - Pine Hills Station, Barracks, West Side of Boulder Creek Road at Engineers Road, Julian, San Diego County, CA

  11. Mountain pine beetle impacts on vegetation and carbon stocks

    USGS Publications Warehouse

    Hawbaker, Todd J.; Briggs, Jennifer S.; Caldwell, Megan K.; Stitt, Susan

    2013-01-01

    In the Southern Rocky Mountains, an epidemic outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality unprecedented in recorded history. The impacts of this mortality on vegetation composition, forest structure, and carbon stocks have only recently received attention, although the impacts of other disturbances such as fires and land-use/land-cover change are much better known. This study, initiated in 2010, aims to increase our understanding of MPB outbreaks and their impacts. We have integrated field-collected data with vegetation simulation models to assess and quantify how long-term patterns of vegetation and carbon stocks have and may change in response to MPB outbreaks and other disturbances.

  12. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.

    PubMed

    Teste, François P; Lieffers, Victor J; Landhausser, Simon M

    2011-01-01

    burial; cone opening; Dendroctonus ponderosae; ground-foraging vertebrates; mountain pine beetle; natural regeneration; Pinus contorta var. latifolia; Rocky Mountain lodgepole pine; seed banks; serotiny (canopy seed storage); Tamiasciurus hudsonicus. PMID:21516894

  13. Cruise survey of oxidant air pollution injury to Pinus ponderosa and Pinus jeffreyi in Saguaro National Monument, Yosemite National Park, and Sequoia and Kings Canyon National Parks. Final report

    SciTech Connect

    Duriscoe, D.M.

    1990-08-01

    The yellow pine populations in Saguaro National Monument, Yosemite National Park, and Sequoia and Kings Canyon National Parks were surveyed in 1986 to evaluate and quantify the extent and severity of ozone injury (chlorotic mottle) to foliage of ponderosa and Jeffrey pines. A total of 3780 trees were observed. Severity of ozone injury was quantified, using an approximate square root transformation of the percentage of foliage exhibiting chlorotic mottle in branches pruned from each tree. Foliage of different ages was examined separately. Of all trees examined at Saguaro National Monument, 15% had visible chlorotic mottle; at Yosemite, 28%; and at Sequoia and Kings Canyon, 39%. Severity of injury averaged very slight for all three parks, with least injury at Saguaro and greatest at Sequoia and Kings Canyon.

  14. Pine Island Bay

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Birth of a Large Iceberg in Pine Island Bay, Antarctica     View ... iceberg (42 kilometers x 17 kilometers) broke off Pine Island Glacier, West Antarctica (75°S latitude, 102°W longitude) sometime ...

  15. Running Title: C and N Allocation in Pine

    SciTech Connect

    Ball, J. Timothy

    1996-12-01

    uptake, and the dynamics of nutrient use were all seen to be influenced by the interplay between previous N supply, previous C supply, and the concentration of CO{sub 2} in the atmosphere. The data suggest that in an elevated CO{sub 2} atmosphere ponderosa pine seedlings will have higher root biomass and be likely to capture more N compared to seedlings today. Further, the combined growth and allocation responses of Ponderosa pine at elevated CO{sub 2} resulted in higher growth per unit N (nitrogen productivity) and lower N per gram of tissue (all tissues not just leaves) when nitrogen was not in abundant supply.

  16. Managing pine straw harvests to minimize soil and water losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine straw is a valuable landscape mulch because it conserves soil moisture, moderates soil temperature, inhibits weed growth, and protects the soil surface against erosion, while retaining a loose structure that allows water, air, and fertilizer to easily reach the soil surface. As a result, marke...

  17. AmeriFlux US-Me6 Metolius Young Pine Burn

    SciTech Connect

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me6 Metolius Young Pine Burn. Site Description - The study site is located east of the Cascade mountains, near Sisters, Central Oregon and is part of the Metolius cluster sites with different age and disturbance classes within the AmeriFlux network. After a severe fire in 1979, the site was salvage logged, was acquired by the US Forest Service land and re-forested in 1990. The dominant overstory vegetation are 20-year old ponderosa pine trees with an average height of 5.2 +/- 1.1 m. The season maximum overstory half-sided LAI was 0.6 m2 m-2 in 2010. Tree density is low, with ca. 162 trees ha-1.

  18. A Hierarchical Approach to Forest Landscape Pattern Characterization

    NASA Astrophysics Data System (ADS)

    Wang, Jialing; Yang, Xiaojun

    2012-01-01

    Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.

  19. LIFETIME AND TEMPORAL OCCURRENCE OF ECTOMYCORRHIZAE ON PONDEROSA PINE (PINUS PONDEROSA LAWS.) SEEDLINGS GROWN UNDER VARIED ATMOSPHERIC CO-2 AND NITROGEN LEVELS

    EPA Science Inventory

    Climate change(elevated atmospheric CO-2,and altered air temperatures,precipitation amounts and seasonal patterns)may affect ecosystem processes by altering carbon allocation in plants,and carbon flux from plants to soil.Mycorrhizal fungi,as carbon sinks, are among the first soil...

  20. EFFECTS OF ELEVATED CO2 AND N FERTILIZATION ON SOIL RESPIRATION FROM PONDEROSA PINE (PINUS PONDEROSA) IN OPEN-TOP CHAMBERS

    EPA Science Inventory

    The objectives of this study were to determine treatment effects, quantify seasonal variation, and determine regulating mechanisms. rowing season soil CO2 evolution under elevated atmospheric CO2 and soil nitrogen additions were measured. cross all sample periods and treatments t...

  1. SOIL RESPIRATION RESPONSE TO THREE YEARS OF ELEVATED CO-2 AND N FERTILIZATION IN PONDEROSA PINE (PINUS PONDEROSA DOUG. EX LAWS.)

    EPA Science Inventory

    We measured growing season soil CO-2 evolution under elevated atmospheric (CO-2) and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated (CO-2) treatments were applied in op...

  2. AmeriFlux US-Wi6 Pine barrens #1 (PB1)

    DOE Data Explorer

    Chen, Jiquan [Michigan State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi6 Pine barrens #1 (PB1). Site Description - The Wisconsin Pine Barrens site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. In order to establish and maintain both natural and plantation jack pine stands, pine barrens undergo prescribed burns and harvesting rotations. Pine Barrens occupy 17% of the region in 2001.

  3. Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms

    PubMed Central

    Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726

  4. Whitebark Pine Stand Condition, Tree Abundance, and Cone Production as Predictors of Visitation by Clark's Nutcracker

    PubMed Central

    Barringer, Lauren E.; Tomback, Diana F.; Wunder, Michael B.; McKinney, Shawn T.

    2012-01-01

    Background Accurately quantifying key interactions between species is important for developing effective recovery strategies for threatened and endangered species. Whitebark pine (Pinus albicaulis), a candidate species for listing under the Endangered Species Act, depends on Clark's nutcracker (Nucifraga columbiana) for seed dispersal. As whitebark pine succumbs to exotic disease and mountain pine beetles (Dendroctonus ponderosae), cone production declines, and nutcrackers visit stands less frequently, reducing the probability of seed dispersal. Methodology/Principal Findings We quantified whitebark pine forest structure, health metrics, and the frequency of nutcracker occurrence in national parks within the Northern and Central Rocky Mountains in 2008 and 2009. Forest health characteristics varied between the two regions, with the northern region in overall poorer health. Using these data, we show that a previously published model consistently under-predicts the proportion of survey hours resulting in nutcracker observations at all cone density levels. We present a new statistical model of the relationship between whitebark pine cone production and the probability of Clark's nutcracker occurrence based on combining data from this study and the previous study. Conclusions/Significance Our model clarified earlier findings and suggested a lower cone production threshold value for predicting likely visitation by nutcrackers: Although nutcrackers do visit whitebark pine stands with few cones, the probability of visitation increases with increased cone production. We use information theoretics to show that beta regression is a more appropriate statistical framework for modeling the relationship between cone density and proportion of survey time resulting in nutcracker observations. We illustrate how resource managers may apply this model in the process of prioritizing areas for whitebark pine restoration. PMID:22662186

  5. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus.

    PubMed

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M; Erbilgin, Nadir

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle's historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  6. Spatiotemporal Dynamics of Fire in Whitebark Pine Stands on two Mountains in the Lolo National Forest, Montana, USA.

    NASA Astrophysics Data System (ADS)

    Larson, E. R.; Grissino-Mayer, H. D.

    2004-12-01

    Whitebark pine (Pinus albicaulis) is a long-lived tree species that exists throughout high elevation and treeline forest communities of western North America. It is the foundation of a diminishing ecosystem that supports Clark's nutcrackers (Nucifraga columbiana), red squirrels (Tamiasciurus hudsonicus), grizzly bears (Ursus arctos), and black bears (U. americana). Several factors are directly linked to the decline of the whitebark pine ecosystem: mortality from recent and widespread mountain pine beetle (Dendroctonus ponderosae) outbreaks, infestation by the invasive white pine blister rust (Cronartium ribicola, an exotic fungal canker that weakens and eventually kills white pines), and fire suppression that may have altered the historic fire regime and enabled fire-intolerant tree species to encroach upon whitebark pine stands. The synergistic effects of these factors have led to a dramatic decline in whitebark pine communities throughout its native range, and in response land managers and conservationists have called for research to better understand the ecological dynamics of this little studied ecosystem. My research uses dendrochronology to investigate the fire history of whitebark pine stands on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure analyses. I present here the results from the fire-scar analyses from Morrell Mountain where I obtained 40 cross sections from dead and down whitebark pines. Individual tree mean fire return intervals (MFRI) range from 33 to 119 years, with a stand MFRI of 49 years that includes fire scars dating to the 16th century. Fire events scarred multiple trees in AD 1754, 1796, and 1843, indicating a mixed-severity fire regime. The majority of the samples recorded a frost event in AD 1601, perhaps evidence of the AD 1600 eruption of Mt. Huaynapatina in the Peruvian Andes. My research not only provides an historical framework for land managers, but also provides an opportunity to examine long

  7. Pine straw harvesting effects on Vadose-zone water content of a Leadvale Silt Loam in Western Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine needles that accumulate on the forest floor help to conserve soil moisture, protect the soil surface against erosion, moderate soil temperature, inhibit weed growth, and provide soil nutrients and organic matter. These qualities make pine straw a valuable landscaping mulch that has become a mu...

  8. HYDROLOGICAL AND CLIMATIC RESPONSES OF OLD-GROWTH PINUS ELLIOTTII VAR. DENSA IN MESIC PINE FLATWOODS FLORIDA, USA

    EPA Science Inventory

    Pinus elliottii Englem. var. densa Little & Dorman (Southern Slash Pine) is unique in that it is the only native sub-tropical pine in the USA. Once occupying much of the south Florida landscape, it is now restricted to an estimated 3% of its pre human settlement area. Land manag...

  9. Density dependence, whitebark pine, and vital rates of grizzly bears

    USGS Publications Warehouse

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  10. Mountain Pine Beetles Colonizing Historical and Naïve Host Trees Are Associated with a Bacterial Community Highly Enriched in Genes Contributing to Terpene Metabolism

    PubMed Central

    Adams, Aaron S.; Aylward, Frank O.; Adams, Sandye M.; Erbilgin, Nadir; Aukema, Brian H.; Currie, Cameron R.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment. PMID:23542624

  11. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    PubMed

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment. PMID:23542624

  12. Carbon Transformations Following Landscape Fire: Carbon Loss, Mortality, and Ecosystem Recovery Across the Metolius Watershed, Oregon

    NASA Astrophysics Data System (ADS)

    Meigs, G. W.; Law, B. E.

    2008-12-01

    Since 2002, mixed-severity wildfires have burned more than 65,000 ha in the Eastern Cascades of Oregon. This study quantifies changes in aboveground carbon pools and estimates carbon balance and ecosystem recovery 4-5 years following fire. We integrate results from 64 1-ha field plots, forest inventories, and remote sensing data and focus on four fires that burned 35% of the Metolius Watershed (115,000 ha) in 2002 and 2003. We used a stratified random factorial design across three landscape gradients: 1. forest type (ponderosa pine (PP) and mixed-conifer (MC)); 2. burn severity (unburned, low, moderate, and high overstory mortality); 3. prefire biomass (low to high). The fires created a complex mosaic of burn severity and associated overstory and understory responses. Total aboveground mass was 75% greater in MC forests than in PP forests (mean: 10.21 vs. 5.85 kg C m-2, p < 0.001), and trees dominated both live and dead C pools. Across both forest types, mean aboveground dead mass increased twofold in high severity stands compared to low severity stands. Basal area (BA) mortality was an effective ground-based metric of burn severity that validated the remotely-sensed dNBR severity map. BA mortality ranged from 14% in low severity PP stands to 100% in high severity PP stands, with parallel patterns in MC stands. Postfire conifer seedling density was negatively correlated with burn severity (median range: 10,223 seedlings ha-1 in low severity MC to zero seedlings ha-1in high severity PP), while shrub cover and biomass showed the opposite trend. These diverse understory responses demonstrate a wide range of trajectories across the mixed-severity mosaic that, coupled with overstory productivity and decomposition, will drive short- and long-term patterns of C loss and recovery. We used these field estimates of fire effects to: 1. validate a novel Landsat trajectory-based change detection that measures multiple disturbances, partial disturbance, and recovery and 2

  13. Relationships of inside and outside bark diameters for young-growth mixed-conifer species in the Sierra Nevada. Forest Service research note (final). [Firs, cedars, pines

    SciTech Connect

    Dolph, K.L.

    1984-09-01

    The linear relationship of inside to outside bark diameter at breast height provides a basis for estimating diameter inside bark from diameter outside bark. Estimates of diameter inside bark and past diameter outside bark are useful in predicting growth and yield. During field seasons 1979-1982, data were obtained from stem analysis of 931 trees in young-growth stands of the mixed-conifer type on the westside Sierra Nevada of California. Species included were coast Douglas-fir, California white fir, incense-cedar, sugar pine, ponderosa pine, and Jeffrey pine. This note provides equations for estimating inside bark diameters, double bark thickness, and past outside bark diameters for each of the species studied.

  14. Resource release in lodgepole pine across a chronosequence of mountain pine beetle disturbance

    NASA Astrophysics Data System (ADS)

    Brayden, B. H.; Trahan, N. A.; Dynes, E.; Beatty, S. W.; Monson, R. K.

    2011-12-01

    Over the past decade and a half Western North America has experienced a mountain pine beetle (Dendroctonus ponderosae) outbreak on a scale not previously recorded. Millions of hectares of lodgepole pine (Pinus contorta) in high elevation forests have been devastated. Although bark beetles are an important part of the endemic disturbance and regeneration regime in this region, the current unprecedented level of tree mortality will have a significant impact on resources and light availability to surviving trees. We established a decade-long chronosequence of mountain pine beetle disturbance, in a lodgepole stand, composed of three age classes: recent, intermediate, and longest (approximately 2-4, 5-7, 8-10 years respectively) time since initial infestation, as well as a control group. The focus of the study was a healthy tree and it's area of influence (1m radius from the bole), each located in a cluster of the respective chronosequence classes. In the 2011 growing season we have looked at rates of photosynthesis, and water potentials for the healthy trees, as well as soil respiration flux and gravimetric moisture in their areas of influence. We are also in the process of analyzing soil extractable dissolved organic carbon and nitrogen, ammonium, nitrate, and inorganic phosphorus, and plan to take hemispherical photographs and analyze tree-ring stable isotopes to determine if there is any reallocation of soil water use by the trees. Our data shows that photosynthetic rates in the youngest infestation class increase 10 percent over the control group and then falls well bellow the control by the oldest class. The mineral soil gravimetric moisture drastically increases between the control and the recent class and then maintains a consistently higher level through the remaining classes. In contrast, moisture in the organic soil significantly declines between the control and recent class before rebounding to pre-infestation levels in the two older classes. Soil

  15. Reconstruction of pre-instrumental storm track trajectories across the U.S. Pacific Northwest using circulation-based field sampling of Pinus Ponderosa

    NASA Astrophysics Data System (ADS)

    Wise, E.; Dannenberg, M. P.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean is a key influence on drought and flood regimes in western North America. Flow is typically from the west in a zonal pattern, but decadal shifts between zonal and meridional flow have been identified as key features in hydroclimatic variability over the instrumental period. In Washington and most of the Pacific Northwest, there tend to be lower-latitude storm systems that result in decreased precipitation in El Niño years. However, the Columbia Basin in central Washington behaves in opposition to the surrounding region and typically has average to above-average precipitation in El Niño years due to changing storm-track trajectories and a decreasing rain shadow effect on the leeward side of the Cascades. This direct connection between storm-track position and precipitation patterns in Washington provided an exceptional opportunity for circulation-based field sampling and chronology development. New Pinus ponderosa (Ponderosa pine) tree-ring chronologies were developed from eight sites around the Columbia Basin in Washington and used to examine year-to-year changes in moisture regimes. Results show that these sites are representative of the two distinct climate response areas. The divergence points between these two site responses allowed us to reconstruct changing precipitation patterns since the late-17th century, and to link these patterns to previously reconstructed atmospheric pressure and El Niño indices. This study highlights the potential for using synoptic climatology to inform field-based proxy collection.

  16. Carbohydrate translocation and branch autonomy of Pinus ponderosa

    SciTech Connect

    Houpis, J.L.J.; Benes, S.E.

    1989-03-01

    We are testing the degree of mature branch autonomy in P. ponderosa using {sup 14}CO{sub 2}. Determination of the level of branch autonomy involves four elements that are based on pulsing one branchlet with {sup 14}CO{sub 2}: (1) determine if the canopy position of a branch in the canopy, of which one branchlet is pulsed with {sup 14}CO{sub 2}, affects the amount of {sup 14}CO{sub 2} found in other types of tissue (stems, needles, buds) located on the same branch; (2) determine if the position (apical or lateral) of a branchlet that is pulsed with {sup 14}CO{sub 2}, affects the amount of {sup 14}CO{sub 2} found in other tissue across different branchlets located on the same branch; (3) determine if the position of a branchlet in relation to the pulsed branchlet affect the amount of {sup 14}CO{sub 2} that is traced into the target branchlet; and (4) determine if the length of time between pulsing and sampling of trace tissue affects the detection of {sup 14}CO{sub 2}. 2 refs.

  17. AmeriFlux US-Wi7 Red pine clearcut (RPCC)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi7 Red pine clearcut (RPCC). Site Description - The Wisconsin Clearcut Red Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. The red pine clearcut site is one of ten sites that collectively represent the successional stages of development in the predominant stand types of a physically homogeneous landscape. Thinned every 7 years until they reach 100 to 150 years of age, the red pine plantations or all ages occupy approximately 25% of the region.

  18. AmeriFlux US-Wi2 Intermediate red pine (IRP)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi2 Intermediate red pine (IRP). Site Description - The Wisconsin Intermediate Red Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. The intermediate red pine site is one of ten sites that collectively represent the successional stages of development in the predominant stand types of a physically homogeneous landscape. Thinned every 7 years until they reach 100 to 150 years of age, the red pine plantations of all ages occupy approximately 25% of the region.

  19. Pine Beetle Detection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.

  20. Black Pine Circle Project

    ScienceCinema

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  1. Black Pine Circle Project

    SciTech Connect

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  2. CO2 AND O3 ALTER PHOTOSYNTHESIS AND WATER VAPOR EXCHANGE FOR PINUS PONDEROSA NEEDLES

    EPA Science Inventory

    1. Effects of CO2 and O3 were determined for a key component of ecosystem carbon and water cycling: needle gas exchange (photosynthesis, conductance, transpiration and water use efficiency). The measurements were made on Pinus ponderosa seedlings grown in outdoor, sunlit, mesoc...

  3. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    EPA Science Inventory

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  4. 90SR UPTAKE BY PINUS PONDEROSA AND PINUS RADIATA SEEDLINGS INOCULATED WITH ECOTOMYCORRHIZAL FUNGI

    EPA Science Inventory

    Strontium-90 (90Sr) is a radionuclide characteristic of fallout from nuclear reactor accidents and nuclear weapons testing. rior studies have shown that Pinus ponderosa and P. radiata seedlings can remove appreciable quantities of 90Sr from soil and store it in plant tissue. n th...

  5. NATIVE ROOT XYLEM EMBOLISM AND STOMATAL CLOSURE IN STANDS OF DOUGLAS-FIR AND PONDEROSA PINE: MITIGATION BY HYDRAULIC REDISTRIBUTION

    EPA Science Inventory

    Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-...

  6. BRANCH JUNCTIONS AND THE FLOW OF WATER THROUGH XYLEM IN DOUGLAS-FIR AND PONDEROSA PINE STEMS

    EPA Science Inventory

    Water flowing through the xylem of most plants from the roots to the leaves must pass through junctions where branches have developed from the main stem. These junctions have been studied as both flow constrictions and components of a hydraulic segmentation mechanism to protect ...

  7. IN SITU MEASUREMENTS OF C2-C10 VOLATILE ORGANIC COMPOUNDS ABOVE A SIERRA NEVADA PONDEROSA PINE PLANTATION

    EPA Science Inventory

    A fully automated GC-FID system was designed and built to measure ambient concentrations of C2-C10 volatile organic compounds, including many oxygenated compounds, without using liquid cryogen. It was deployed at Blodgett Forest Research Station in Georgetown, CA USA, 38 deg 53' ...

  8. EFFECTS OF CO2 AND O3 ON CARBON FLUX FOR PONDEROSA PINE PLANT/LITTER/SOIL SYSTEM

    EPA Science Inventory

    Carbon dioxide (CO2), a main contributor to global climate change, also adds carbon to forests. In contrast, tropospheric ozone (O3) can reduce carbon uptake and increase carbon loss by forests. Thus, the net balance of carbon uptake and loss for forests can be affected by concu...

  9. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON THE RESPONSE OF PONDEROSA PINE TO OZONE: A SIMULATION ANALYSIS

    EPA Science Inventory

    Forests regulate numerous biogeochemical cycles, storing and cycling carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of increased O3 in combination wit...

  10. RESPONSE OF STOMATAL CONDUCTANCE TO DROUGHT IN PONDEROSA PINE: IMPLICATIONS FOR CARBON AND OZONE UPTAKE. (R826601)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. CO2 AND WATER VAPOR EXCHANGE BY YOUNG AND OLD PONDEROSA PINE ECOSYSTEMS DURING A DROUGHT YEAR. (R826601)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. CARBON DIOXIDE AND WATER VAPOR EXCHANGE BY YOUNG AND OLD PONDEROSA PINE ECOSYSTEMS DURING A DROUGHT YEAR. (R826601)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. EFFECTS OF CO2 AND O3 ON WATER BALANCE FOR A PONDEROSA PINE PLANT/LITTER/SOIL SYSTEM

    EPA Science Inventory

    There are numerous reports on the individual effects of CO2 and O3 alone on individual plants, but very little information on the interactive effects of these pollutants, especially on indicators of ecosystem function such as water cycling. We determined the effects of elevated C...

  14. Increase of monoterpene emissions from a pine plantation as a result of mechanical disturbances

    NASA Astrophysics Data System (ADS)

    Schade, Gunnar W.; Goldstein, Allen H.

    2003-04-01

    Mixing ratios and emission rates of monoterpenes were measured above a ponderosa pine plantation in the Sierra Nevada mountains before, during and after a pre-commercial thinning in spring 2000. The thinning removed and left onsite approximately one half of the plantations biomass. Monoterpene fluxes increased tenfold during the thinning and pinene mixing ratios in excess of 3 ppb were observed, possibly altering regional atmospheric chemistry. The increase was mostly because of higher basal emission rates, but small changes in the temperature-dependence were also found. Using an emission-model based on these responses, the additional monoterpene emissions due to the thinning were estimated to increase emissions by a factor of forty, and yearly emissions by a factor of five. Using US tables of absolute timber removal and on site residue volumes from logging and thinning activities, we calculate that current US monoterpene emissions may be underestimated by several percent.

  15. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    NASA Astrophysics Data System (ADS)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  16. Pine Island Glacier, Antarctica

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This pair of MISR images of the Pine Island Glacier in western Antarctica was acquired on December 12, 2000 during Terra orbit 5246. At left is a conventional, true-color image from the downward-looking (nadir) camera. The false-color image at right is a composite of red band data taken by the MISR forward 60-degree, nadir, and aftward 60-degree cameras, displayed in red, green, and blue colors, respectively. Color variations in the left (true-color) image highlight spectral differences. In the multi-angle composite, on the other hand, color variations act as a proxy for differences in the angular reflectance properties of the scene. In this representation, clouds show up as light purple. Blue to orange gradations on the surface indicate a transition in ice texture from smooth to rough. For example, the bright orange 'carrot-like' features are rough crevasses on the glacier's tongue. In the conventional nadir view, the blue ice labeled 'rough crevasses' and 'smooth blue ice' exhibit similar coloration, but the multi-angle composite reveals their different textures, with the smoother ice appearing dark purple instead of orange. This could be an indicator of different mechanisms by which this ice is exposed. The multi-angle view also reveals subtle roughness variations on the frozen sea ice between the glacier and the open water in Pine Island Bay.

    To the left of the 'icebergs' label are chunks of floating ice. Additionally, smaller icebergs embedded in the frozen sea ice are visible below and to the right of the label. These small icebergs are associated with dark streaks. Analysis of the illumination geometry suggests that these streaks are surface features, not shadows. Wind-driven motion and thinning of the sea ice in the vicinity of the icebergs is one possible explanation.

    Recently, Robert Bindschadler, a glaciologist at the NASA Goddard Space Flight Center discovered in Landsat 7 imagery a newly-formed crack traversing the Pine Island Glacier. This crack

  17. AmeriFlux US-Wi0 Young red pine (YRP)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi0 Young red pine (YRP). Site Description - The Wisconsin Young Red Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. Thinned every 7 years until they reach 100 to 150 years of age, the red pine plantations of all ages occupy approximately 25% of the region.

  18. AmeriFlux US-Wi4 Mature red pine (MRP)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi4 Mature red pine (MRP). Site Description - The Wisconsin Mature Red Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. Thinned every 7 years until they reach 100 to 150 years of age, the red pine plantations of all ages occupy approximately 25% of the region.

  19. AmeriFlux US-Wi9 Young Jack pine (YJP)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi9 Young Jack pine (YJP). Site Description - The Wisconsin Young Jack Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. Clearcut on 40 to 70 year intervals, jack pine stands occupy approximately 13% of the region.

  20. AmeriFlux US-Wi5 Mixed young jack pine (MYJP)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi5 Mixed young jack pine (MYJP). Site Description - The Wisconsin Mixed Young Jack Pine site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. Clearcut on 40 to 70 year intervals, jack pine stands occupy approximately 13% of the region.

  1. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development.

    PubMed

    Robert, Jeanne A; Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J; Fraser, Jordie; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2016-01-01

    Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period-early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome. PMID:27441109

  2. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development

    PubMed Central

    Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J.; Fraser, Jordie; Yuen, Macaire M.S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P.W.

    2016-01-01

    Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome. PMID:27441109

  3. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies

    PubMed Central

    Harvey, Brian J.; Donato, Daniel C.; Turner, Monica G.

    2014-01-01

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001–2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0–2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3–10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks. PMID:25267633

  4. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Turner, Monica G

    2014-10-21

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001-2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0-2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3-10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks. PMID:25267633

  5. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    PubMed Central

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  6. Photosynthetic acclimation to enriched CO{sub 2} concentrations in Pinus Ponderosa

    SciTech Connect

    Torres, M.P.

    1995-11-01

    By the middle of the 21st century earth`s ambient CO{sub 2} level is expected to increase two-fold ({approximately}350 umol/L). Higher levels of CO{sub 2} are expected to cause major changes in the morphological, physiological, and biochemical traits of the world`s vegetation. Therefore, we constructed an experiment designed to measure the long-term acclimation processes of Pinus Ponderosa. As a prominent forest conifer, Pinus Ponderosa is useful when assessing a large scale global carbon budget. Eighteen genetically variable families were exposed to 3 different levels of CO{sub 2} (350 umol/L, 525 umol/L, 700 umol/L), for three years. Acclimation responses were quantified by assays of photosynthetic rate, chlorophyll fluorescence, and chlorophyll pigment concentrations.

  7. 90sr uptake by 'pinus ponderosa' and 'pinus radiata' seedlings inoculated with ectomycorrhizal fungi

    SciTech Connect

    Entry, J.A.; Rygiewicz, P.T.; Emmingham, W.H.

    1994-01-01

    In the study, the authors inoculated P. ponderosa and P. radiata seedlings with one of five isolates of ectomycorrhizal fungi; inoculated and nonincoculated (control) seedlings were compared for their ability to remove Sr90 from an organic growth medium. Seedlings were grown for 3 months in a growth chamber in glass tubes containing 165 cu cm of sphagnum peat moss and perlite and, except in the controls, the fungal inoculum. After 3 months, 5978 Bq of Sr90 in 1 ml of sterile, distilled, deionized water was added. Seedlings were grown for an additional month and then harvested. P. ponderosa seedlings that were inoculated with ectomycorrhizal fungi accumulated 3.0-6.0% of the Sr90; bioconcentration ratios ranged from 98-162. Inoculated P. radiata seedlings accumulated 6.0-6.9% of the Sr90; bioconcentration ratios ranged from 88-133. Noninoculated P. ponderosa and P. radiata seedlings accumulated only 0.6 and 0.7% of the Sr90 and had bioconcentration ratios of 28 and 27, respectively.

  8. The Effects of the Mountain Pine Beetle on Snow Accumulation and Melt Timing in the Headwaters of the Colorado River

    NASA Astrophysics Data System (ADS)

    Pugh, E. T.; Small, E. E.

    2010-12-01

    The high-elevation forests that are a primary source for Colorado’s domestic and agricultural water needs are changing rapidly due to an infestation by the mountain pine beetle (MPB). MPB are native to Colorado’s high elevation forests. However, the frequency of MPB infestation and resulting tree death has increased dramatically over the past 15 years. In Colorado, over 8,000 km2 of Lodgepole (Pinus contorta) and Ponderosa Pine (Pinus ponderosa) forest have been infested by MPB since 1996. It is predicted that the current epidemic will kill most of the pines in these areas; MPB are very destructive to forest canopies, often killing all of the overhead trees within lodgepole pine stands. Current widespread MPB outbreaks are not limited to Colorado; they are also impacting forests in much of the Western US and British Columbia, Canada. This study is focused on quantifying the impacts of widespread tree death on Colorado’s mountain snowpack. The data were collected one to three years after beetle infestation, at various stages of tree mortality. During the winters of 2009 and 2010, snowpack and meteorological properties were measured at eight pairs of dead and living lodgepole pine stands. All stands are located at an elevation of 2720 ± 32m, in a subalpine region along the headwaters of the Colorado River. Trees in living stands were generally smaller in diameter and more densely populated than trees in dead stands. In the red phase of tree death, snowpack accumulated equally beneath living and dead tree stands. Additionally, snow under all tree stands became isothermal on the same date regardless of mortality. However, the snow was depleted as much as one week earlier beneath red phase dead stands. Canopy transmission of solar radiation was not consistently different between living and red phase dead stands. We noted more ground litter in red phase dead stands which would decrease snowpack albedo and lead to the snowmelt differences observed. We also

  9. Pine wood nematode, Bursaphelenchus xylophilus.

    PubMed

    Futai, Kazuyoshi

    2013-01-01

    After devastating vast areas of pine forests in Asian countries, the pine wilt disease spread into European forests in 1999 and is causing worldwide concern. This disease involves very complicated interactions between a pathogenic nematode, its vector beetle, host pine species, and fungi in dead hosts. Pathogenicity of the pine wood nematode is determined not only by its physical and chemical traits but also by its behavioral traits. Most life history traits of the pine wood nematode, such as its phoretic relationship with vector beetles, seem to be more effective in virulent than in avirulent isolates or species. As the pathogenicity determinants, secreted enzymes, and surface coat proteins are very important, they have therefore been studied intensively. The mechanism of quick death of a large pine tree as a result of infection by a tiny nematode could be ascribed to the dysfunction of the water-conducting system caused by the death of parenchyma cells, which must have originally evolved as an inherent resistant system. PMID:23663004

  10. Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: a combined experimental and modeling approach

    NASA Astrophysics Data System (ADS)

    Ruehr, N. K.; Law, B. E.; Quandt, D.; Williams, M.

    2014-01-01

    Increasing summer temperatures and a reduction in precipitation will enhance drought stress in Mediterranean and semi-arid ecosystems. Predicting the net effects on forests' carbon and water balance will depend on our ability to disentangle the sensitivity of component fluxes responding to increasing soil and atmospheric drought. Here we studied carbon and water dynamics in a semi-arid regenerating ponderosa pine forest using field observations and process based modeling. Field observations of two summer dry seasons were used to calibrate a soil-plant-atmosphere (SPA) model. In addition, the ecosystem's response to reduced soil drought was quantified based on a field watering experiment and evaluated with the model. Further, the SPA model was used to estimate the relative effects of increasing soil and atmospheric drought over time, by simulating temperature and precipitation scenarios for 2040 and 2080. The seasonality and drought response of ecosystem fluxes was well captured by the calibrated SPA model. Dramatic increases in summer water availability during seasonal drought had a small effect on pine physiology in both the watering experiment and the model. This clearly demonstrates that atmospheric drought induced a strong limitation on carbon uptake in young ponderosa pine due to tight regulation of stomatal conductance. Moreover, simulations showed that net ecosystem exchange (NEE) and gross primary productivity (GPP) were about three times more affected by summer heat and increased evaporative demand than by reductions in summer precipitation. Annual NEE decreased by 38% in response to extreme summer conditions as predicted to occur in 2080 (June-August: +4.5 °C), because of a strong decline in GPP (-17%) while heterotrophic respiration was relatively unaffected (-1%). Considering warming trends across all seasons (September-May: +3 °C and June-August: +4.5 °C), the negative drought effects were largely compensated by an earlier initiation of favorable

  11. Mars Landscapes

    NASA Video Gallery

    Spacecraft have studied the Martian surface for decades, giving Earthlings insights into the history, climate and geology of our nearest neighbor, Mars. These images are from "Mars Landscapes," a v...

  12. Landscape Architecture.

    ERIC Educational Resources Information Center

    American School and University, 1985

    1985-01-01

    Members of the American Society of Landscape Architects shape open spaces on the campuses of Georgetown University, District of Columbia; the University of Missouri; Auraria Higher Education Center, Colorado; and the University of Michigan. (MLF)

  13. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  14. Southern Pine Based on Biorefinery Center

    SciTech Connect

    Ragauskas, Arthur J; Singh, Preet

    2014-01-10

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: • The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; • The conversion of extracted woodchips to linerboard and bleach grade pulps; and • The efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  15. Whole System Carbon Exchange of Small Stands of Pinus Ponderosa Growing at Different CO{sub 2} concentrations in open top chambers

    SciTech Connect

    Ball, J. Timothy; Ross, Peter D.; Picone, John B.; Eichelmann, Hillar Y.; Ross, Gregory N.

    1996-12-01

    Functional understanding of the carbon cycle from the molecular to the global level is a high scientific priority requiring explanation of the relationship between fluxes at different spatial and temporal scales. We describe methods used to convert an open top chamber into both closed and open flow gas exchange systems utilized to measure such fluxes. The systems described consist of temporary modifications to an open top chamber, and are put in place for several days on one or several open top chambers. In the closed system approach, a chamber is quickly sealed for a short, predetermined time interval, the change in gas concentrations is measured, then the chamber is unsealed and ventilated. In the open flow system approach, airflow into the open top chamber is measured by trace gas injection, and the air stream concentration of CO{sub 2} and water vapor is measured before and after injection into the chamber. The closed chamber approach can resolve smaller fluxes, but causes transient increases in chamber air temperature, and has a high labor requirement. The open flow approach reduces the deviation of measuring conditions from ambient, may be semi-automated (requiring less labor), allows a more frequent sampling interval, but cannot resolve low fluxes well. Data demonstrating the capabilities of these systems show that, in open canopies of ponderosa pine, scaling fluxes from leaves to whole canopies is well approximated from summation of leaf P{sub s} rates. Flux measurements obtained from these systems can be a valuable contribution to our understanding whole system material fluxes, and challenge our understanding of ecosystem carbon budgets.

  16. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.

    PubMed

    Therrien, Janet; Mason, Charles J; Cale, Jonathan A; Adams, Aaron; Aukema, Brian H; Currie, Cameron R; Raffa, Kenneth F; Erbilgin, Nadir

    2015-10-01

    Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus-bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4-22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates. PMID:26037523

  17. 76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... fuels arrangement; enhance composition of aspen, whitebark pine, and ponderosa pine species; modify fire... composition of aspen, whitebark pine, and ponderosa pine species and their habitats. Modify fire behavior...

  18. Mismatch between herbivore behavior and demographics contributes to scale-dependence of host susceptibility in two pine species

    USGS Publications Warehouse

    Ylioja, T.; Slone, D.H.; Ayres, M.P.

    2005-01-01

    The impacts on forests of tree-killing bark beetles can depend on the species composition of potential host trees. Host susceptibility might be an intrinsic property of tree species, or it might depend on spatial patterning of alternative host species. We compared the susceptibility of loblolly pine (Pinus taeda) and Virginia pine (P. virginiana) to southern pine beetle (Dendroctonus frontalis) at two hierarchical levels of geographic scale: within beetle infestations in heterospecific stands (extent ranging from 0.28 to 0.65 ha), and across a forest landscape (extent 72,500 ha) that was dominated by monospecific stands. In the former, beetles preferentially attacked Virginia pine (tree mortality = 65-100% in Virginia pine versus 0-66% in loblolly pine), but in the latter, loblolly stands were more susceptible than Virginia stands. This hierarchical transition in host susceptibility was predicted from knowledge of (1) a behavioral preference of beetles for attacking loblolly versus Virginia pine, (2) a negative correlation between preference and performance, and (3) a mismatch in the domain of scale between demographics and host selection by individuals. There is value for forest management in understanding the processes that can produce hierarchical transitions in ecological patterns. Copyright ?? 2005 by the Society of American Foresters.

  19. Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada

    NASA Astrophysics Data System (ADS)

    Sprintsin, Michael; Chen, Jing M.; Czurylowicz, Peter

    2011-01-01

    The current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak, which began in 1999, continues to be the leading cause of pine tree mortality in British Columbia. Information regarding the location and spatial extent of the current attack is required for mitigating practices and forest inventory updates. This information is available from spaceborne observations. Unfortunately, the monitoring of the mountain pine beetle outbreak using remote sensing is usually limited to the visible stage at which the expansion of the attack beyond its initial hosts is unpreventable. The disruption of the sap flow caused by a blue-staining fungi carried by the beetles leads to: 1. a decrease in the amount of liquid water stored in the canopy, 2. an increase in canopy temperature, and 3. an increase in shortwave infrared reflectance shortly after the infestation. As such, the potential for early beetle detection utilizing thermal remote sensing is possible. Here we present a first attempt to detect a mountain pine beetle attack at its earliest stage (green attack stage when the foliage remains visibly green after the attack) using the temperature condition index (TCI) derived from Landsat ETM+ imagery over an affected area in British Columbia. The lack of detailed ground survey data of actual green attack areas limits the accuracy of this research. Regardless, our results show that TCI has the ability to differentiate between affected and unaffected areas in the green attack stage, and thus it provides information on the possible epicenters of the attack and on the spatial extent of the outbreak at later stages (red attack and gray attack). Furthermore, we also developed a moisture condition index (MCI) using both shortwave infrared and thermal infrared measurements. The MCI index is shown to be more effective than TCI in detecting the green attack stage and provides a more accurate picture of beetle spread patterns.

  20. Journey of water in pine cones

    PubMed Central

    Song, Kahye; Yeom, Eunseop; Seo, Seung-Jun; Kim, Kiwoong; Kim, Hyejeong; Lim, Jae-Hong; Joon Lee, Sang

    2015-01-01

    Pine cones fold their scales when it rains to prevent seeds from short-distance dispersal. Given that the scales of pine cones consist of nothing but dead cells, this folding motion is evidently related to structural changes. In this study, the structural characteristics of pine cones are studied on micro-/macro-scale using various imaging instruments. Raindrops fall along the outer scales to the three layers (bract scales, fibers and innermost lignified structure) of inner pine cones. However, not all the layers but only the bract scales get wet and then, most raindrops move to the inner scales. These systems reduce the amount of water used and minimize the time spent on structural changes. The result shows that the pine cones have structural advantages that could influence the efficient motion of pine cones. This study provides new insights to understand the motion of pine cones and would be used to design a novel water transport system. PMID:25944117

  1. Growth of a Pine Tree

    ERIC Educational Resources Information Center

    Rollinson, Susan Wells

    2012-01-01

    The growth of a pine tree is examined by preparing "tree cookies" (cross-sectional disks) between whorls of branches. The use of Christmas trees allows the tree cookies to be obtained with inexpensive, commonly available tools. Students use the tree cookies to investigate the annual growth of the tree and how it corresponds to the number of whorls…

  2. Effects of elevated CO{sub 2} on stem maintenance and construction respiration in Pinus ponderosa

    SciTech Connect

    Carey, E.V.; Delucia, E.H.; Ball, J.T. |

    1995-06-01

    We measured woody tissue respiration on stems of 4-year-old Pinus ponderosa growing under ambient (350 ppm) and twice ambient (700 ppm) atmospheric CO{sub 2} in open top chambers located at the Institute of Forest Genetics in Placerville, CA. Mean daily respiration rate per unit volume of wood was greater in trees growing under the elevated (700 ppm) treatment (46.75 vs 40.45 mol m{sup -3} d{sup -1}). This difference was due to a higher Q{sub 10} of respiration in the elevated (Q{sub 10}=2.20) versus the ambient (Q{sub 10}=1.67) treatment. The higher Q{sub 10} and CO{sub 2} efflux rate were not due to differences in phenology but may reflect a difference in demand for metabolic energy. In contrast to results seen in leaves growing under elevated atmospheric CO{sub 2} analysis of tissue construction costs suggests no difference in wood composition between treatments. Estimates of growth respiration calculated from construction costs also did not differ. Under future predicted atmospheric conditions, changes in the maintenance respiration of woody tissue may lead to an increase in the respiration component of whole plant carbon budgets of Pinus ponderosa.

  3. EFFECTS OF ELEVATED CO-2 AND N FERTILIZATION ON FINE ROOT DYNAMICS AND FUNGAL GROWTH IN SEEDLING PINUS PONDEROSA

    EPA Science Inventory

    The effects of elevated CO-2 and N fertilization on fine root growth of Pinus ponderosa Dougl. ex P. Laws. C. Laws., grown in native soil in open-top field-exposure chambers at Placerville, CA, were monitored for a 2-year period using minirhizotrons. The experimental design was a...

  4. Landscape diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While biodiversity is usually considered at the species level, maintenance of biodiversity requires management at higher levels of organization, particularly at the landscape scale. It is difficult to manage for each threatened species individually. Alternatively, management can focus on the ecosyst...

  5. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US

    USGS Publications Warehouse

    Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.

    2011-01-01

    The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the

  6. Modeling a historical mountain pine beetle outbreak using Landsat MSS and multiple lines of evidence

    USGS Publications Warehouse

    Assal, Timothy J.; Sibold, Jason; Reich, Robin M.

    2014-01-01

    Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread mortality in coniferous forests in western North America. Various remote sensing approaches have assessed the impacts of beetle outbreaks over the last two decades. However, few studies have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance represents both a major data gap and a critical research challenge in that wildfire has removed some of the evidence from the landscape. We utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. This study presents a remote sensing based framework to (1) relate measurements of canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos and found that insect effects on mortality were evident in changes to the Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a combination of NDVI and the green band resulted in the strongest model. We report a two-step process where we utilize a generalized least squares model to account for the large-scale variability in the data and a binary regression tree to describe the small-scale variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy mortality as a continuous variable can be developed to identify a gradient of mountain pine beetle severity on the

  7. Positive adjacency effects mediated by seed disperser birds in pine plantations.

    PubMed

    Zamora, Regino; Hódar, José Antonio; Matías, Luís; Mendoza, Irene

    2010-06-01

    This study examines the consequences of adjacent elements for a given patch, through their effects on zoochorous dispersion by frugivorous birds. The case study consists of pine plantations (the focal patch) adjacent to other patches of native vegetation (mixed patches of native forest and shrublands), and/or pine plantations. Our hypothesis is that input of native woody species propagules generated by frugivorous birds within plantations strongly depends on the nature of the surrounding vegetation. To test this hypothesis, we studied frugivorous-bird abundance, seed dispersion, and seedling establishment in nine pine plantation plots in contact with patches of native vegetation. To quantify adjacency arrangement effects, we used the percentage of common border between a patch and each of its adjacent elements. Frugivorous bird occurrence in pine plantations is influenced by the adjacent vegetation: the greater the contact with native vegetation patches, the more abundant were the frugivorous birds within pine plantations. Furthermore, frugivorous birds introduce into plantations the seeds of a large sample of native fleshy-fruited species. The results confirm the hypothesis that zoochorous seed rain is strongly determined by the kind of vegetation surrounding a given plantation. This finding underlines the importance of the composition of the mosaic surrounding plantations and the availability of mobile link species as key landscape features conditioning passive restoration processes. PMID:20597289

  8. Pine needle abortion biomarker detected in bovine fetal fluids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...

  9. Best Practices Case Study: Pine Mountain Builders - Pine Mountain, GA

    SciTech Connect

    2011-09-01

    Case study of Pine Mountain Builders who worked with DOE’s IBACOS team to achieve HERS scores of 59 on 140 homes built around a wetlands in Georgia. The team used taped rigid foam exterior sheathing and spray foam insulation in the walls and on the underside of the attic for a very tight 1.0 to 1.8 ACH 50 building shell.

  10. PINE CREEK ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Denton, David K., Jr.

    1984-01-01

    Examination of the Pine Creek Roadless Area, Oregon indicates that there is little likelihood for the occurrence of energy or metallic mineral resources in the area. No mines or mineral prospects were identified during the investigation. Although nearby parts of Harney Basin are characterized by higher than normal heat flow, indicating that the region as a whole may have some as yet undefined potential for the occurrence of the geothermal energy resources, no potential for this resource was identified in the roadless area.

  11. Mountain pine beetle disturbance effects on soil respiration and nutrient pools

    NASA Astrophysics Data System (ADS)

    Trahan, N. A.; Moore, D. J.; Brayden, B. H.; Dynes, E.; Monson, R. K.

    2011-12-01

    Over the past decade, the mountain pine beetle Dendroctonos ponderosae has infested more than 86 million hectares of high elevation forest in the Western U.S.A. While bark beetles are endemic to western forests and important agents of regeneration, the current mountain pine beetle outbreak is larger than any other on record and the resulting tree mortality has significant consequences for nutrient cycling and regional carbon exchange. We established decade-long parallel disturbance chronosequences in two lodgepole pine (Pinus contorta) forests in Colorado: one composed of mountain pine beetle killed lodgepole stands and one consisting of trees where beetle mortality was simulated by stem girdling. Over the 2010 and 2011 growing season we measured plot level soil respiration fluxes, as well as soil extractable dissolved organic carbon, nitrogen, microbial biomass carbon and nitrogen, and pools of ammonium, nitrate and inorganic phosphorus. We show that soil respiration sharply declines with gross primary productivity after tree mortality, but rebounds during the next 4 years, then declines again from 6-8 years post-disturbance. Soil extractable dissolved organic carbon, microbial biomass carbon, and inorganic phosphorous pools follow the pattern observed in soil respiration fluxes across disturbance age classes for both sites, while patterns in total dissolved nitrogen exhibit site specific variation. Levels of detectable soil nitrate were low and did not significantly change across the chronosequence, while soil ammonium increased in a similar pattern with soil moisture in disturbed plots. These patterns in soil respiration and nutrient pools reflect the loss of autotrophic respiration and rhizodeposition immediately after tree mortality, followed by a pulse in soil efflux linked to the decomposition of older, less labile carbon pools. This pulse is likely controlled by the fall rate of litter, coarse woody debris and the relative impact of post-disturbance water

  12. Abnormal lignin in a loblolly pine mutant

    SciTech Connect

    Ralph, J.; MacKay, J.J.; Hatfield, R.D.

    1997-07-11

    Novel lignin is formed in a mutant loblolly pine (Pinus taeda L.) severely depleted in cinnamyl alcohol dehydrogenase (E.C. 1.1.1.195), which converts coniferaldehyde to coniferyl alcohol, the primary lignin precursor in pines. Dihydroconiferyl alcohol, a monomer not normally associated with the lignin biosynthetic pathway, is the major component of the mutant`s lignin, accounting for {approximately}30 percent (versus {approximately}3 percent in normal pine) of the units. The level of aldehydes, including new 2-methoxybenzaldehydes, is also increased. The mutant pines grew normally indicating that, even within a species, extensive variations in lignin composition need not disrupt the essential functions of lignin.

  13. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    NASA Astrophysics Data System (ADS)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise

    2014-10-01

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H2O m-2 s-1. Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO2 exchange. These results agree with an emerging consensus in the literature demonstrating CO2 and H2O dynamics following large

  14. Mapping mountain pine beetle mortality through growth trend analysis of time-series landsat data

    USGS Publications Warehouse

    Liang, Lu; Chen, Yanlei; Hawbaker, Todd J.; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    Disturbances are key processes in the carbon cycle of forests and other ecosystems. In recent decades, mountain pine beetle (MPB; Dendroctonus ponderosae) outbreaks have become more frequent and extensive in western North America. Remote sensing has the ability to fill the data gaps of long-term infestation monitoring, but the elimination of observational noise and attributing changes quantitatively are two main challenges in its effective application. Here, we present a forest growth trend analysis method that integrates Landsat temporal trajectories and decision tree techniques to derive annual forest disturbance maps over an 11-year period. The temporal trajectory component successfully captures the disturbance events as represented by spectral segments, whereas decision tree modeling efficiently recognizes and attributes events based upon the characteristics of the segments. Validated against a point set sampled across a gradient of MPB mortality, 86.74% to 94.00% overall accuracy was achieved with small variability in accuracy among years. In contrast, the overall accuracies of single-date classifications ranged from 37.20% to 75.20% and only become comparable with our approach when the training sample size was increased at least four-fold. This demonstrates that the advantages of this time series work flow exist in its small training sample size requirement. The easily understandable, interpretable and modifiable characteristics of our approach suggest that it could be applicable to other ecoregions.

  15. Large-scale climatic patterns and area affected by mountain pine beetle in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Macias Fauria, Marc; Johnson, E. A.

    2009-03-01

    We present evidence of high spatial synchrony in an area affected by mountain pine beetle (MPB, Dendroctonus ponderosae) across large distances in British Columbia, Canada, in a study of a spatially explicit database of an area affected by MPB-caused tree mortality for the period 1959-2002. We further show that large-scale climatic patterns (Pacific Decadal Oscillation (PDO) and, to a lesser degree, Arctic Oscillation (AO)) are strongly related to the observed MPB synchrony, and that they probably operate through controlling the frequency of extreme cold winter temperatures that affect MPB larvae survival. A smaller portion of the data's variability is linked to the onset of the two largest outbreaks in the studied period and might be attributed to dispersal from outbreak-prone areas or else to differences in microhabitat (e.g., host availability) in these regions. The onset of a warm PDO phase in 1976 favored MPB outbreaks by reducing the occurrence of extremely low winter temperatures province-wide. Likewise, the exceptionally high and persistent AO values of the late 1980s and 1990s enhanced MPB activity in the southern and northern parts of the region. Summer warmth cannot be discarded as an important agent at smaller scales.

  16. Mountain pine beetle develops an unprecedented summer generation in response to climate warming.

    PubMed

    Mitton, Jeffry B; Ferrenberg, Scott M

    2012-05-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae) is native to western North America, attacks most trees of the genus Pinus, and periodically erupts in epidemics. The current epidemic of the MPB is an order of magnitude larger than any previously recorded, reaching trees at higher elevation and latitude than ever before. Here we show that after 2 decades of air-temperature increases in the Colorado Front Range, the MPB flight season begins more than 1 month earlier than and is approximately twice as long as the historically reported season. We also report, for the first time, that the life cycle in some broods has increased from one to two generations per year. Because MPBs do not diapause and their development is controlled by temperature, they are responding to climate change through faster development. The expansion of the MPB into previously inhospitable environments, combined with the measured ability to increase reproductive output in such locations, indicates that the MPB is tracking climate change, exacerbating the current epidemic. PMID:22504550

  17. Modeling mountain pine beetle disturbance in Glacier National Park using multiple lines of evidence

    USGS Publications Warehouse

    Assal, Timothy; Sibold, Jason

    2013-01-01

    Temperate forest ecosystems are subject to various disturbances which contribute to ecological legacies that can have profound effects on the structure of the ecosystem. Impacts of disturbance can vary widely in extent, duration and severity over space and time. Given that global climate change is expected to increase rates of forest disturbance, an understanding of these events are critical in the interpretation of contemporary forest patterns and those of the near future. We seek to understand the impact of the 1970s mountain pine beetle outbreak on the landscape of Glacier National Park and investigate any connection between this event and subsequent decades of extensive wildfire. The lack of spatially explicit data on the mountain pine beetle disturbance represents a major data gap and inhibits our ability to test for correlations between outbreak severity and fire severity. To overcome this challenge, we utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We used historical aerial and landscape photos, reports, aerial survey data, a six year collection of Landsat imagery and abiotic data in combination with regression analysis. The use of remotely sensed data is critical in large areas where subsequent disturbance (fire) has erased some of the evidence from the landscape. Results indicate that this method is successful in capturing the spatial heterogeneity of the outbreak in a topographically complex landscape. Furthermore, this study provides an example on the use of existing data to reduce levels of uncertainty associated with an historic disturbance.

  18. Modeling compensatory responses of ecosystem-scale water fluxes in forests affected by pine and spruce beetle mortality

    NASA Astrophysics Data System (ADS)

    Millar, D.; Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Reed, D. E.

    2015-12-01

    Mountain pine beetle (Dendroctonus ponderosae) and spruce beetle (Dendroctonus rufipennis) epidemics have led to extensive mortality in lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii) forests in the Rocky Mountains of the western US. In both of these tree species, mortality results from hydraulic failure within the xylem, due to blue stain fungal infection associated with beetle attack. However, the impacts of these disturbances on ecosystem-scale water fluxes can be complex, owing to their variable and transient nature. In this work, xylem scaling factors that reduced whole-tree conductance were initially incorporated into a forest ecohydrological model (TREES) to simulate the impact of beetle mortality on evapotranspiration (ET) in both pine and spruce forests. For both forests, simulated ET was compared to observed ET fluxes recorded using eddy covariance techniques. Using xylem scaling factors, the model overestimated the impact of beetle mortality, and observed ET fluxes were approximately two-fold higher than model predictions in both forests. The discrepancy between simulated and observed ET following the onset of beetle mortality may be the result of spatial and temporal heterogeneity of plant communities within the foot prints of the eddy covariance towers. Since simulated ET fluxes following beetle mortality in both forests only accounted for approximately 50% of those observed in the field, it is possible that newly established understory vegetation in recently killed tree stands may play a role in stabilizing ecosystem ET fluxes. Here, we further investigate the unaccounted for ET fluxes in the model by breaking it down into multiple cohorts that represent live trees, dying trees, and understory vegetation that establishes following tree mortality.

  19. Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera.

    PubMed

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg; Breuil, Colette

    2014-08-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals. PMID:24837377

  20. Gene Discovery for Enzymes Involved in Limonene Modification or Utilization by the Mountain Pine Beetle-Associated Pathogen Grosmannia clavigera

    PubMed Central

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg

    2014-01-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals. PMID:24837377

  1. Phytotoxic evaluation of whole pine tree substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decreased availability and increased cost of quality substrates are issues facing many horticulture crop producers. Peat moss and pine bark are the most widely used substrate components, yet producers have become more aware of acceptable alternative components. Processed whole pine trees have been i...

  2. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  3. Landscape heterogeneity modulates forest sensitivity to climate

    NASA Astrophysics Data System (ADS)

    Jencso, Kelsey; Hu, Jia; Hoylman, Zachary

    2015-04-01

    Elevation dependent snowmelt magnitude and timing strongly influences net ecosystem productivity in forested mountain watersheds. However, previous work has provided little insight into how internal watershed topography and organization may modulate plant available water and forest growth across elevation gradients. We collected 800 tree cores from four coniferous tree species across a range of elevation, topographic positions and aspects in the Lubrecht Experimental Forest, Montana, USA. We compared the annual basal area increment growth rate to precipitation and temperature from a 60-year SNOTEL data record, groundwater and soil moisture data in sideslope and hollow positions, and topographic indices derived from a LiDAR digital elevation model. At the watershed scale, we evaluated the relationships between topographic indices, LiDAR derived estimates of basal area and seasonal patterns of the Landsat derived Enhanced Vegetation Index. Preliminary results indicate strong relationships between the rates of annual basal growth and the topographic wetness index (TWI), with differing slopes dependent on tree species (P. menziesii R2 = 0.66-0.71, P. ponderosa R2 = 0.87, L. occidentalis R2 = 0.71) and elevation. Generally, trees located in wetter landscape positions (higher TWI) exhibited greater annual growth per unit of precipitation relative to trees located in drier landscape positions (lower TWI). Similarly, watershed scale analysis of LiDAR derived biomass and seasonal greenness indicates differential growth response due to local convergence and divergence across elevation and insolation gradients. These observations suggest that topographically driven water redistribution patterns may modulate the effects of large scale gradients in precipitation and temperature, thereby creating hotspots for conifer productivity in semiarid watersheds.

  4. Scientific designs of pine seeds and pine cones for species conservation

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Hyejeong; Lee, Sang Joon

    2015-11-01

    Reproduction and propagation of species are the most important missions of every living organism. For effective species propagation, pine cones fold their scales under wet condition to prevent seeds from short-distance dispersal. They open and release their embedded seeds on dry and windy days. In this study, the micro-/macro-scale structural characteristics of pine cones and pine seeds are studied using various imaging modalities. Since the scales of pine cones consist of dead cells, the folding motion is deeply related to structural changes. The scales of pine cones consist of three layers. Among them, bract scales are only involved in collecting water. This makes pine cones reduce the amount of water and minimize the time spent on structural changes. These systems also involve in drying and recovery of pine cones. In addition, pine cones and pine seeds have advantageous structures for long-distance dispersal and response to natural disaster. Owing to these structural features, pine seeds can be released safely and efficiently, and these types of structural advantages could be mimicked for practical applications. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  5. Needle asymmetry, pine vigour and pine selection by the processionary moth Thaumetopoea pityocampa

    NASA Astrophysics Data System (ADS)

    Pérez-Contreras, Tomás; Soler, Juan José; Soler, Manuel

    2008-03-01

    Developmental stability reflects the ability of a genotype to control stable development of a specific phenotype under a wide range of environmental conditions. Developmentally unstable phenotypes can be recognised by deviations from bilateral symmetry in bilaterally symmetrical traits and, because asymmetry might reflect nutritional quality of leaves for phytophagous insects, they therefore may base plant selection depending on leaf asymmetry. In this article we study such hypothetical relationships occurring between Aleppo pine ( Pinus halepensis) and pine-host selection by the pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae). Needle length of Aleppo pines indicated directional asymmetry and, as the hypothesis of developmental stability predicts, relative asymmetry was negatively related to needle length and positively to pine growth in height. Moreover, relative asymmetry proved to be negatively related to concentration of limonene, a defensive monoterpene that affects pine selection by adult female moths. In terms of growth, pine variation in needle length can be explained by the increase in volume of the pines from one to the next year, with smaller needles appearing in the pines that most increased their volume and those that least increased their height. Finally, as expected from a phytophagous insect that selects plants in relation to nutritional characteristics and level of chemical defence against herbivorous, the pine processionary moths selectively oviposited in the trees with the largest and most asymmetric needles. With these results, two of the main hypotheses that explain plant selection, plant-stress and plant-vigour hypotheses are discussed.

  6. Pine nut allergy: clinical features and major allergens characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine nuts, the seeds of pine trees, are widely used for human consumption in Europe, America, and Asia. The aims of this study were to evaluate IgE-mediated hypersensitivity to pine nut in a large number of patients with details of clinical reactions, and to characterize major pine nut allergens. Th...

  7. Factors affecting early seedling development in whole pine tree substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood-based materials derived from pine trees, such as processed whole pine tree (WPT), can be a viable option for producers looking to offset pine bark or peatmoss usage in container substrates. Reduced root development of stem cuttings rooted in WPT compared with pine bark (PB) has been observed, b...

  8. 27 CFR 9.220 - Pine Mountain-Cloverdale Peak.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Pine Mountain-Cloverdale... Areas § 9.220 Pine Mountain-Cloverdale Peak. (a) Name. The name of the viticultural area described in this section is “Pine Mountain-Cloverdale Peak”. For purposes of part 4 of this chapter, “Pine...

  9. 27 CFR 9.220 - Pine Mountain-Cloverdale Peak.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Pine Mountain-Cloverdale... Areas § 9.220 Pine Mountain-Cloverdale Peak. (a) Name. The name of the viticultural area described in this section is “Pine Mountain-Cloverdale Peak”. For purposes of part 4 of this chapter, “Pine...

  10. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Caldwell, M. K.; Hawbaker, T. J.; Briggs, J. S.; Cigan, P. W.; Stitt, S.

    2013-08-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70-80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  11. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Caldwell, M. K.; Hawbaker, T. J.; Briggs, J. S.; Cigan, P. W.; Stitt, S.

    2013-12-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused remarkable levels of tree mortality. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole-pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70-80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  12. Landscaping for energy efficiency

    SciTech Connect

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the use of landscaping for energy efficiency. The topics of the publication include minimizing energy expenses; landscaping for a cleaner environment; climate, site, and design considerations; planning landscape; and selecting and planting trees and shrubs. A source list for more information on landscaping for energy efficiency and a reading list are included.

  13. Mountain Pine beetle disturbance and climate effects on subalpine forest carbon cycling

    NASA Astrophysics Data System (ADS)

    Trahan, N. A.; Moore, D. J.; Bowling, D. R.; Monson, R. K.

    2010-12-01

    Forest ecosystems in Western North America have experienced an epidemic outbreak of Mountain Pine beetle (Dendroctonus ponderosae), reducing net primary productivity and significantly compromising the potential for these ecosystems to sequester atmospheric carbon. Estimates of lost carbon sequestration and trajectories of future carbon uptake as these forests recover, are uncertain due to lack of fundamental knowledge about the carbon cycle processes that are impacted. Furthermore, the effects of this disturbance are informed by their interplay with important climatic drivers of subalpine carbon uptake such as the availability of snowmelt water. To examine some of these carbon cycle processes, we measured soil respiration rates, the 13C/12C of soil respired CO2, extractable soil carbon, and microbial biomass carbon in a chronosequence of plots consisting of lodgepole pines (Pinus contorta) that experienced beetle kill or were girdled (simulating beetle kill). The plots are located in the Niwot Ridge AmeriFlux and Fraser Experimental Forests of Colorado. The chronosequence extended from approximately 2002 to 2010. In addition, in 2008 and 2009 we amended and removed spring snow on a subset of girdled and control plots to isolate potential snowpack effects on the autotrophic and heterotrophic components of soil respiration. Soil respiration, extractable carbon, and microbial biomass carbon were higher in control plot soils compared to soils in plots with girdled or beetle killed trees. These differences were greatest between control soils and soils of more recently girdled and beetle killed trees. Over the growing season, we found the 13C/12C ratio of soil respired CO2 was enriched in plots with girdled trees compared to the control plots past the second year of treatment. Finally, ungirdled plots in 2009 responded to spring snow amendments with increased soil respiration rates and a more depleted signature of δ13C. These effects occurred in early summer during the

  14. Coupling multi-agent model and GIS to simulate pine wood nematode disease spread in ZheJiang Province, China

    NASA Astrophysics Data System (ADS)

    Huang, Huaguo; Wang, Lei; Zhang, XiaoLi; Luo, YouQing; Zhao, Liqiong

    2008-10-01

    A coupled method based on multi-agent model, remote sensing and GIS is described to simulate the forest disease spread. The coupled model focuses on the temporal dynamics of the Bursaphelenchus xylophilus population at the landscape scale. Each individual is modeled as an autonomous agent who behaves according to a set of rules including spreading in the landscape, feeding on Pinus massoniana, sheltering in forest edges and dying, constrained by terrain, land cover and other variables. The model parameters are derived from remote sensing data and field measurements. Ten factors, including damage degree of Pinus Massoniana, altitude and slope, are helped to build the transfer rules. The main outputs are the dynamic disease distribution maps and survived pine population. Our method is applied and validated in DingHai distinct, Zhou Shan city of Zhejiang Province. Three Landsat TM images from the year 1991 to 2006 are used for the pine information extraction. The extracted pine distribution map is used to compare with the simulated surviving pine map. The results show that the coupled model can produce reasonable results and be used as a virtual experiment tool. However, it is difficult to simulate the human activities to help or prevent disease spread and the long fly behavior of insect vectors. Therefore, there still exists some difference between the simulated results and the real data. At the next step, those factors will be considered.

  15. Factors affecting bird communities in fragments ofsecondary pine forests in the north-western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Brotons, Lluís; Herrando, Sergi

    2001-02-01

    We assessed the influence of size, extent of isolation and vegetation structure of secondary forest fragments on the richness and species composition of breeding bird communities in a sample of pine forest fragments surrounded by an agricultural matrix in the north-western Mediterranean basin. Fragment size was the main predictor of bird's occurrence, since it accounted for 70 % of the model variation. Isolation was also a valuable predictor of species occurrence, especially for forest specialists. Finally, subarboreal vegetation such as holm oak and a well-developed tree layer of large pines favoured forest species occurrence. Therefore, in spite of the long history of human impact, forest birds in Mediterranean mosaics are sensitive to both habitat loss and isolation of remnant patches in a similar manner to the patterns found in other temperate fragmented landscapes where human impact is more recent.

  16. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    SciTech Connect

    Anderson, P.D.; Houpis, J.L.J. )

    1991-05-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution.

  17. Modeling the physiological and growth responses of mature Pinus ponderosa Dougl. ex Laws. to climatic change

    SciTech Connect

    Constable, J.V.H.; Taylor, G.E. Jr.; Laurence, J.A.

    1995-06-01

    Using the TREGRO model we simulated the effects of altered CO{sub 2} (+200 {mu}L/L), temperature (+4{degrees}C) and O{sub 3} (0.5x, 1x and 2x ambient) on the physiology and growth of Pinus ponderosa. Photosynthesis (Pn) increased at elevated CO{sub 2} or temperature, enhancing total tree growth 29% and 13%, respectively. In both scenarios the greatest increase in dry matter was in fine root biomass. Ozone at all exposures reduced Pn, total tree growth was unaffected at 0.5x O{sub 3}, however, at higher O{sub 3} total growth was reduced 19% (1x) and 39% (2x). Reductions in fine root biomass and total non-structural carbohydrate dominated at all O{sub 3} exposures. Increased Pn at elevated CO{sub 2} or temperature reduced, but did not eliminate, O{sub 3}-induced growth reductions. In the model changes in Pn and stomatal conductance largely determined the growth response to multiple climatic alterations, however, changes in fine root biomass may control growth response in the field.

  18. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    USGS Publications Warehouse

    Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H.

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas. ?? 2011 Taylor & Francis.

  19. Photosynthesis, Nitrogen, Their Adjustment and its Effects on Ecosystem Carbon Gain at Elevated CO{sub 2}l. A Comparison of Loblolly and Ponderosa Pines

    SciTech Connect

    Ball, J. Timothy; Eichelmann, Hillar Y.; Tissue, David T.; Lewis, James D.; Picone, Johnn B.; Ross, Peter D.

    1996-12-01

    A functional understanding of terrestrial ecosystem carbon processes is essential for two reasons. First, carbon flow is a most fundamental aspects of ecosystem function as it mediates most of the energy flow in these systems. Second, carbon flow also mediates the majority of energy flow in the global economy and will do for the foreseeable future. The increased atmospheric carbon dioxide and its inevitable flow through global ecosystems will influence ecosystem processes. There is, of course, great interest in the potential of ecosystems to sequester some of the carbon being loaded into the atmosphere by economic activity.

  20. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the field observations by a factor of ~8. This suggests one or more issues, including a large missing organic aerosol source from oxygenated VOCs (e.g. monoterpene oxidation products) or from VOCs not considered in the model, or limitations of the extrapolation of single precursor lab yields to multiple-precursor ambient air. Comparison of the relative roles of gas phase, heterogeneous, and possibly aqueous oxidation in the PAM reactor, and how PAM processing relates to ambient atmospheric processing, will be discussed.

  1. Characterization of PM 2.5 collected during broadcast and slash-pile prescribed burns of predominately ponderosa pine forests in northern Arizona

    NASA Astrophysics Data System (ADS)

    Robinson, Marin S.; Zhao, Min; Zack, Lindsay; Brindley, Christine; Portz, Lillian; Quarterman, Matthew; Long, Xiufen; Herckes, Pierre

    2011-04-01

    Prescribed burning, in combination with mechanical thinning, is a successful method for reducing heavy fuel loads from forest floors and thereby lowering the risk of catastrophic wildfire. However, an undesirable consequence of managed fire is the production of fine particulate matter or PM 2.5 (particles ≤2.5 μm in aerodynamic diameter). Wood-smoke particulate data from 21 prescribed burns are described, including results from broadcast and slash-pile burns. All PM 2.5 samples were collected in situ on day 1 (ignition) or day 2. Samples were analyzed for mass, polycyclic aromatic hydrocarbons (PAHs), inorganic elements, organic carbon (OC), and elemental carbon (EC). Results were characteristic of low-intensity, smoldering fires. PM 2.5 concentrations varied from 523 to 8357 μg m -3 and were higher on day 1. PAH weight percents (19 PAHs) were higher in slash-pile burns (0.21 ± 0.08% OC) than broadcast burns (0.07 ± 0.03% OC). The major elements were K, Cl, S, and Si. OC and EC values averaged 66 ± 7 and 2.8 ± 1.4% PM 2.5, respectively, for all burns studied, in good agreement with literature values for smoldering fires.

  2. ESTIMATION OF LEAF AREA INDEX IN OPEN-CANOPY PONDEROSA PINE FORESTS AT DIFFERENT SUCCESSIONAL STAGES AND MANAGEMENT REGIMES IN OREGON. (R828309)

    EPA Science Inventory

    Abstract

    Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...

  3. Seasonal and long-term effects of CO2 and O3 on water loss in ponderosa pine and their interaction with climate and soil moisture

    EPA Science Inventory

    Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment ...

  4. Gas/Particle Partitioning of Organic Acids and Organic Aerosols in a Ponderosa Pine Forest in Colorado during BEACHON-RoMBAS 2011

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Yatavelli, L.; Stark, H.; Hayes, P. L.; Campuzano-Jost, P.; Thompson, S.; Kimmel, J. R.; Day, D. A.; Cubison, M. J.; Thornton, J. A.; Jayne, J.; Worsnop, D. R.

    2012-12-01

    The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) took place at Manitou Forest, CO, during July-Aug. 2011. Gas and particle-phase organic acids were analyzed in real time using a micro-orifice volatilization impactor chemical ionization high-resolution time-of-flight mass spectrometer (MOVI-HRToF-CIMS; Yatavelli et al., AS&T 2012; Yatavelli & Thornton, AS&T 2010) with acetate as the reagent ion. During the gas sampling phase (when the MOVI was at room temperature) aerosol was collected on the MOVI impactor, and was subsequently thermally desorbed over 10 min. under nitrogen, allowing the collection of temperature-programmed thermal desorption (TPTD) mass spectra of particle-phase species. The high resolution of the instrument allows the determination of the elemental composition of most detected ions. Positive Matrix Factorization (PMF) is shown to be very useful to quantify the CIMS backgrounds during the different phases of operation. Two methods were used to estimate the volatility of the detected species. First, the fraction of each species in the particle phase (Fp) vs carbon number was found to approximately follow partitioning theory, both for the alkanoic acids and also for the total acid signal, after accounting for the effect of the oxidation state on vapor pressure. Fp was found to respond on timescales of ~1 h to changes in ambient temperature, indicating that diffusion limitations to evaporation are not major for the aerosol at this site. Preliminary results suggest that Fp depends more strongly on vapor pressure and temperature than on RH, suggesting preferential partitioning for the organic phase rather than the water phase. Secondly, the volatility of individual or groups of acids can be quantified based on the TPTD signal based on calibration with multiple acids of known vapor pressure at concentrations similar to ambient, analogous to the methods of Chattopadhyay and Ziemann (Anal. Chem. 2001) and Faulhaber et al. (AMT, 2009) for other TPTD techniques. The log of the vapor pressure of each compound is shown to be strongly related to the inverse of the desorption temperature for standards spanning 6 orders of magnitude in vapor pressure. A shift in the calibration curve when compared to other techniques is attributed to differences in time available for evaporation and physical arrangement of the particles on the aerosol collection surface. A method to remove the broadening of the transfer function is used to produce more accurate volatility distributions ("basis sets", VBS). Results of both methods are compared, also focusing on key species such as pinic, pinonic, tricarballylic, and oxalic acids. The effects of gas-phase adsorption on the thermogram signal are estimated based on tests sampling through a teflon filter. In addition, an Aerodyne Aerosol Mass Spectrometer (AMS) sampled ambient air and also air that had been thermally denuded at different temperatures. The method of Faulhaber et al is used to derive an estimated volatility distribution for the total organic aerosol and the organic acid fraction (based on m/z 44, CO2+), which are compared to the CIMS results.

  5. Seasonal and long-term effects of CO2 and O3 and their interaction with climate and soil moisture on water loss in ponderosa pine

    EPA Science Inventory

    Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture as well as by physiological plant activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sun-lit controlled-environment cha...

  6. Total OH reactivity measurements in ambient air in a southern Rocky Mountain ponderosa pine forest during BEACHON-SRM08 summer campaign

    SciTech Connect

    Nakashima, Yoshihiro; Kato, Shungo; Greenberg, Jim; Harley, P.; Karl, Thomas G.; Turnipseed, A.; Apel, Eric; Guenther, Alex B.; Smith, Jim; Kajii, Yoshizumi

    2014-03-01

    Total OH reactivity was measured during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Southern Rocky Mountain 2008 field campaign (BEACHON-SRM08) held at Manitou Experimental Forest (MEF) in Colorado USA during the summer season in August, 2008. The averaged total OH reactivity was 6.8 s-1, smaller than that measured in urban or suburban areas, while sporadically high OH reactivity was also observed during some evenings. The total OH reactivity measurements were accompanied by observations of traces species such as CO, NO, NOy, O3 and SO2 and VOCs. From the calculation of OH reactivity based on the analysis of these trace species, 35.3-46.3% of OH reactivity for VOCs came from biogenic species that are dominated by 2-methyl-3-butene-2-ol (MBO), and monoterpenes. MBO was the most prominent contribution to OH reactivity of any other trace species. A comparison of observed and calculated OH reactivity shows that the calculated OH reactivity is 29.5-34.8% less than the observed value, implying the existence of missing OH sink. One of the candidates of missing OH was thought to be the oxidation products of biogenic species.

  7. Genetic variation and seed transfer guidelines for ponderosa pine in the Ochoco and Malheur National Forests of central Oregon. Forest Service research paper

    SciTech Connect

    Sorensen, F.C.; Weber, J.C.

    1994-02-01

    Adaptive genetic variation in seed and seedling traits was evaluated for 280 families from 220 locations. Factor scores from three principal components were related by multiple regression to latitude, longitude, elevation, slope, and aspect of the seed source, and by classification analysis to seed zone and elevation band in seed zone. Location variance was significant but not large. Multiple regression equations explained less than 50 percent of location variance. Slope-aspect variables were important.

  8. Evaluating dead lodgepole pine for products

    SciTech Connect

    Fahey, T.D.

    1980-12-01

    Dead lodgepole pine is a resource in abundance in the intermountain region of the US. Possible uses for dead pine range from small power poles to fuel and fiber. The potential to use significant volumes depends on how well the resource meets specifications for products and the volume of products that the market will accept. In this report values for products that can be produced from dead trees are evaluated based on ovendry tons of fiber for both logs and products.

  9. Oil exploration in Pine Valley, Nevada

    SciTech Connect

    Scott, C.H.; Chamberlain, A.K.

    1989-03-01

    Three oil fields have already been established in Pine Valley, which is located in north-central Nevada along the late Mesozoic thrust trend. The potential exists for much more future exploration because of excellent reservoir potential, favorable hydrocarbon generating system, and trapping mechanisms. The Devonian is one of the main target reservoirs of Pine Valley. Pine Valley lies near the Devonian shelf edge, and carbonate facies from that period undergo abrupt changes in the Pine Valley region. The Guilmette/Devil's Gate apparently develops into a reefal system along the Uinta-Cortez arch in this area. Fore-reef and basinal facies are found at Cortez Mountain on the west side of Pine Valley. Mississippian sandstones and Tertiary tuffs are two other reservoirs which produce oil. At Blackburn field, upper plate rocks are overmature. Produced oil has been identified as Mississippian. Regional studies show Mississippian source rocks of Pine Valley to be slightly immature to mature oil in the lower plate. Gravity of the oil is approximately 26-30/degree/ API. Oil from the Tomara Ranch and North Willow Creek fields is most probably also from the Mississippian. Its API gravity is similar to the oil produced from Blackburn field. Blackburn field is a Tertiary trap probably generated by shear faulting. Tertiary traps throughout Nevada, including Blackburn, are generally small and hydrocarbon potential is limited. Larger traps associated with the late Mesozoic compressional event have much more potential and hold hundreds of millions of barrels of oil.

  10. Twenty-four years after theYellowstone Fires: Are postfire lodgepole pine stands converging in structure and function?

    PubMed

    Turner, Monica G; Whitby, Timothy G; Tinker, Daniel B; Romme, William H

    2016-05-01

    Disturbance and succession have long been of interest in ecology, but how landscape patterns of ecosystem structure and function evolve following large disturbances is poorly understood. After nearly 25 years, lodgepole pine (Pinus contorta var. latifolia) forests that regenerated after the 1988 Yellowstone Fires (Wyoming, USA) offer a prime opportunity to track the fate of disturbance-created heterogeneity in stand structure and function in a wilderness setting. In 2012, we resampled 72 permanent plots to ask (1) How have postfire stand structure and function changed between 11 and 24 yr postfire, and what variables explain these patterns and changes? (2) How has landscape-level (among-stand) variability in postfire stand structure and function changed between 11 and 24 yr postfire? We expected to see evidence of convergence beginning to emerge, but also that initial postfire stem density would still determine trajectories of biomass accumulation. After 24 yr, postfire lodgepole pine density remained very high (mean = 21,738 stems/ha, range = 0-344,067 stems/ha). Stem density increased in most plots between 11 and 24 yr postfire, but declined sharply where 11-yr-postfire stem density was > 72,000 stems/ha. Stems were small in high-density stands, but stand-level lodgepole pine leaf area, foliage biomass, and live aboveground biomass increased over time and with increasing stem density. After 24 yr, mean annual lodgepole pine aboveground net primary production (ANPP) was high (mean = 5 Mg · ha⁻¹ · yr⁻¹, range = 0-16.5 Mg · ha⁻¹ · yr⁻¹). Among stands, lodgepole pine ANPP increased with stem density, which explained 69% of the variation; another 8% of the variation was explained by environmental covariates. Early patterns of postfire lodgepole pine regeneration, which were contingent on prefire serotiny and fire severity, remained the dominant driver of stand structure and function. We observed mechanisms that would lead to convergence in stem density

  11. Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition.

    SciTech Connect

    Brudvig, Lars A.; Damschen, Ellen L.

    2010-08-13

    Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site-level characteristics, landscape factors, and land-use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site-level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red-cockaded woodpecker in the southeastern United States. Land-use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post-agricultural sites; however, understory species composition was affected by historical connectivity, but only for post-agricultural sites. The influences of management and restoration activities were only apparent once land-use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post-agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site-level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land-use history, and underscore the importance of considering land

  12. Carbon and nitrogen dynamics in the rhizosphere of Pinus ponderosa seedlings

    SciTech Connect

    Norton, J.M.

    1991-01-01

    The rhizosphere is a dynamic soil region characterized by dense microbial populations and enhanced rates of microbial processes. The rhizosphere may be especially important in determinign the spatial distribution of carbon and nitrogen cycling in forest soils. The author has investigated the flow of carbon from roots to the soil, the quantity and metabolic status of bacteria and fungi, and the production and consumption of inorganic nitrogen in the rhizosphere of Pinus ponderosa seedlings. The role of plant/microbial competition for inorganic nitrogen in determining the availability of nitrogen to plant assimilation was assessed. The author examined the flow of recently fixed photosynthate from roots to the soil using a [sup 14]C pulse-labelling technique. The highest concentration of recently fixed photosynthate carbon in the soil was adjacent to the young root tip region. Fine mycorrhizal roots had the highest rate of carbon loss to the soil per unit carbon assimilated by the root. Mycorrhizal hyphae played an important role in the redistribution of recently fixed photosynthate throughout the soil. The input of plant carbon to the soil by rhizodeposition was an important energy source for the microbial community even in soil not directly adjacent to the root. In short-term [sup 15]N experiments, the author observed that rates of mineralization and NH[sub 4][sup +] immobilization were higher in soils harvested from adjacent to roots than in soils harvested from greater than 5 mm from any root. Results from intact microcosms suggest that NH[sub 4][sup +] supply and competition between roots, heterotrophs and nitrifiers for NH[sub 4][sup +] were the direct controls on NH[sub 4][sup +] immobilization rates rather than the supply of, recently fixed carbon by rhizodeposition. Plants were more successful competitors for NH[sub 3][sup [minus

  13. Beech vs. Pine - how different tree species manage their water demands

    NASA Astrophysics Data System (ADS)

    Heidbüchel, Ingo; Dreibrodt, Janek; Simard, Sonia; Güntner, Andreas; Blume, Theresa

    2016-04-01

    In north-eastern Germany large parts of the landscape are covered by pine trees. Although beech used to be one of the typical species for the region, today it makes up only a small fraction of the forested area. In order to reinstate a more natural forest composition an effort is made to decrease the coniferous forest in the next 30 years from 70% to 40% while increasing the deciduous forest from 20% to 40%. This will have consequences for the forest water balance that we would like to understand better. In an attempt to capture the complete tree water balance for both species we monitored all relevant hydrologic fluxes in four stands of pure beech and pine (both young and old stands) as well as in eight mixed stands (as part of the TERENO observatory). Extensive measurements of throughfall and stemflow were conducted with 35 rain trough systems, 50 stemflow collectors and tipping buckets. Soil moisture was monitored in 70 depth profiles with a total of 450 sensors ranging from 10 cm down to 200 cm. In combination with soil water potential measurements at 5 depths root water uptake from different depths and hydraulic redistribution between depths could be determined. Sapflux sensors recorded tree water use for 16 trees and groundwater level was monitored at 16 locations. We found that soil moisture conditions under beech were more variable than under pine, especially in the upper 100 cm. This was due to the higher influx of water from stemflow on the one hand and to the more intensive/effective use of soil water by the beech on the other hand. Our sap flux measurements show that beech was able to sustain steady rates of sapflux even under extremely dry soil conditions. While annual average sapflow was twice as high for pines compared to beeches, pine trees were less effective in taking up water from the soil and reduced sap flow considerably during dry phases. We still found the upper 100 cm of soil under pine to be generally wetter than under beech and considered

  14. Aromatic biosynthesis in pine tissues

    NASA Technical Reports Server (NTRS)

    Cowles, J. R.

    1984-01-01

    Pinus elliotti is a woody plant species responsive to gravity and capable of synthesizing large quantities of lignin. Lignification begins very quickly after germination; lignin is detected in the vascular region within 4 days after germination and rapidly progresses up the hypocotyl. Young pine seedlings bend in response to geostimulation for about 10 days after germination, with the most rapid response time occurring in 4- to 5-day-old seedlings. Various chemicals were used to establish their effects on the geotropic response in this gymnosperm species. IAA completely arrests the geotropic response for 18 to 24 hr. Afterward the seedlings respond geostimulation as if they were not treated. The same pattern of response will occur with a second IAA treatment. If the synthetic auxin, 2-4,D, is used, the georesponse is permanently blocked. The method of application does not appear to be critical; addition of auxin to only one side of the seedling gave results similar to those obtained by treating the entire seedling.

  15. Mountain Pine Beetle Impact on Stand-level Water Balance

    NASA Astrophysics Data System (ADS)

    Reilly, J. A.; Woods, S.

    2012-12-01

    The recent mountain pine beetle (MPB) epidemic has disturbed millions of hectares throughout the Rocky Mountain West. The most persistent effects of MPB infestation on the stand-level water balance are likely concomitant with the grey stage of the disturbance cycle. The grey stage occurs within 3 to 5 years of the initial infestation after the needles of an infected tree have turned red and fallen off due to tree death. Large numbers of grey-stage trees in a stand may remain on the landscape for up to 20 years, until windthrow or another disturbance sends them to the forest floor. The greater temporal persistence of the grey stage over antecedent stages suggested that an examination of the grey stage would best capture long-term effects of MPB disturbance on the forest water balance. In this study we hypothesized that changes to the forest canopy associated with MPB disturbance may affect the stand-level water balance. The needle loss and windthrow that follows MPB disturbance is expected to increase the amount of precipitation reaching the forest floor. Additionally, overstory evapotranspiration (ET) demand is expected to decrease as MPB-induced tree mortality increases within disturbed stands. The expected cumulative effect of MPB disturbance on the stand-level water balance is an increase in soil moisture due to increased precipitation inputs and reduced overstory ET. This study was conducted in Lubrecht Experimental Forest and adjacent Bureau of Land Management areas near Missoula, Montana. Sub-canopy measurements of soil moisture, precipitation (rain and snow water equivalent), overstory transpiration and micro-meteorological data (net radiation, temperature, wind speed, etc.) were collected in three 50 x 50 meter plots. The plots consisted of a uniform stand of grey-stage lodgepole pine, a uniform stand of non-infested lodgepole pine, and a recent clear-cut stand, which served as a control unit. Water balances for each stand were constructed using a mass

  16. Impact of the Mountain Pine Beetle on the Forest Carbon Cycle in British Columbia from 1999 TO 2008 (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Czurylowicz, P.; Mo, G.; Black, T. A.

    2013-12-01

    The unprecedented mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreak in British Columbia starting in 1998 affected about 50% of the lodgepole pine (Pinus contorta var. latifolia) forests occupying about 50% of the land area of the province. The impact of this outbreak on the C cycle is assessed in this study. Annual leaf area index (LAI) maps of the affected area from 1999 to 2008 were produced using SPOT VEGETATION data, and net ecosystem production (NEP) was modeled using inputs of LAI, land cover, soil texture and daily meteorological data with the Boreal Ecosystem Productivity Simulator (BEPS). Both LAI and NEP were validated using field measurements. LAI was found to decrease on average by 20% compared to pre-outbreak conditions, while NEP decreased on average by 90%. Annual NEP values ranged from 2.4 to -8.0 Tg C between 1999 and 2008, with the ecosystem changing from a carbon sink to a carbon source in 2000. The annual average NEP was -2.9 Tg C over the 10 years, resulting in a total loss of carbon of 29 Tg C to the atmosphere. The inter-annual variability of both LAI and NEP was characterized by substantial initial decreases followed by steady increases from 2006 to 2008 with NEP returning to near carbon neutrality in 2008 (-1.8 Pg C/y). The impact of this MPB outbreak appears to be less dramatic than previously anticipated. The apparent fast recovery of LAI and NEP after MPB attacks is examined under the framework of ecosystem resilience which was manifested in the form of secondary overstory and understory growth and increased production of non-attacked host trees.

  17. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Costello, Cecily M; van Manen, Frank T.; Haroldson, Mark A.; Ebinger, Michael R.; Cain, Steven L; Gunther, Kerry A.; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  18. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

    PubMed

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-05-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas. PMID:24963393

  19. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    PubMed Central

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas. PMID:24963393

  20. The Campus Landscape.

    ERIC Educational Resources Information Center

    du Von, Jay

    1966-01-01

    All across the country, landscaping and site development are coming to the fore as essential and integral parts of university planning and development. This reprint concentrates on the function of landscape architecture, and briefly examines some of the major responsibilities of the landscape architect in planning a campus. Included are--(1)…

  1. Landscape Management: Field Supervisor.

    ERIC Educational Resources Information Center

    Newton, Deborah; Newton, Steve

    This module is the third volume in a series of instructional materials on landscape management. The materials are designed to help teachers train students in the job skills they will need in landscape occupations. The module contains six instructional units that cover the following topics: orientation; basic landscape design principles; irrigation…

  2. Do Pine Beetles Fan the Flames in Western Forests?

    NASA Video Gallery

    As mountain pine beetles damage whole regions of Western forests, some worry that the dead trees left behind have created a tinderbox ready to burn. But do pine beetles really increase fire risk? I...

  3. Western Pine Beetle Populations in Arizona and California Differ in the Composition of Their Aggregation Pheromones.

    PubMed

    Pureswaran, Deepa S; Hofstetter, Richard W; Sullivan, Brian T; Grady, Amanda M; Brownie, Cavell

    2016-05-01

    We compared pheromone production and response for populations of western pine beetle, Dendroctonus brevicomis LeConte, from sites in northern Arizona and northern California. Volatiles were collected from individuals of both sexes that had mined as a pair in a Pinus ponderosa log for 1 d, and they were subsequently analyzed by gas chromatography coupled to mass-spectrometry. Principal component analysis of quantities of Dendroctonus pheromone components indicated strong site-associated clustering of blend composition for females but not males. Much of the clustering in females evidently was due to differences in the production of endo- and exo-brevicomin, which occurred in average ratios of 0.1:1 and 19:1 for populations in the California and Arizona sites, respectively. In the California site, exo- was better than endo-brevicomin in enhancing trap catches of both sexes to lures containing the host-tree odor α-pinene and the male-produced aggregation pheromone component frontalin. In an identical test in the Arizona site, endo- was a better adjuvant than exo-brevicomin for male attraction, whereas females did not show a significant preference. At neither location were the isomers antagonistic to one another in activity. Thus, one aggregation pheromone has apparently diverged between these populations, concurrent with published evidence that D. brevicomis on either side of the Great Basin are genetically distinct and are possibly different species. Furthermore, production of and response to the isomers of brevicomin by flying Dendroctonus frontalis Zimmermann in the Arizona site were similar to those of sympatric D. brevicomis. This interspecific signal overlap is likely sustainable since joint species mass-attacks may assist both species in overcoming host defenses, thereby increasing host availability. PMID:27125814

  4. The initial phase of a Longleaf Pine-Wiregrass Savanna restoration: species establishment and community responses.

    SciTech Connect

    Aschenbach, Todd, A; Foster, Bryan, L.; Imm, Donald, W.

    2010-09-01

    AbstractAbstract The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a “matrix” species) of the longleaf pine savanna understory, and 31 other herbaceous “non-matrix” species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in June 2004, while mean 1–2 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 ×3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non-matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine-wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.

  5. [The pine processionary caterpillar Thaumetopoea pityocampa].

    PubMed

    Solt, Ido; Mendel, Zvi

    2002-09-01

    The pine processionary caterpillar Thaumetopoea pityocampa (Lepidoptera: Notodontidae) is considered to be a serious pest of medical importance. The hair on the dorsum of the last instar larvae of the moth may cause urticarial reactions (erucism) as well as eye problems and temporary blindness. In Israel, the pest occurs in all pine plantations as well as on ornamental pine trees in urban areas. The biology, ecology and management of the moth population are discussed as well as the mechanism of action of the urticarial hairs and their medical significance. Awareness of the life cycle and ecology of the pest may reduce the contact of the population with the urticarial hairs and prevent the morbidity caused by it. PMID:12362487

  6. Evolutionary fire ecology: lessons learned from pines.

    PubMed

    Pausas, Juli G

    2015-05-01

    Macroevolutionary studies of the genus Pinus provide the oldest current evidence of fire as an evolutionary pressure on plants and date back to ca. 125 million years ago (Ma). Microevolutionary studies show that fire traits are variable within and among populations, especially among those subject to different fire regimes. In addition, there is increasing evidence of an inherited genetic basis to variability in fire traits. Added together, pines provide compelling evidence that fire can exert an evolutionary pressure on plants and, thus, shape biodiversity. In addition, evolutionary fire ecology is providing insights to improve the management of pine forests under changing conditions. The lessons learned from pines may guide research on the evolutionary ecology of other taxa. PMID:25814325

  7. 78 FR 52498 - White Pine-Nye Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Forest Service White Pine-Nye Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The White Pine-Nye Resource Advisory Committee (RAC) will meet in Eureka, Nevada. The... Standard Time. All RAC meetings are subject to change or cancellation. For status of the White Pine-Nye...

  8. Pyrolysis of pine and gasification of pine chars--influence of organically bound metals.

    PubMed

    Aho, A; DeMartini, N; Pranovich, A; Krogell, J; Kumar, N; Eränen, K; Holmbom, B; Salmi, T; Hupa, M; Murzin, D Yu

    2013-01-01

    Pyrolysis of pine and gasification of pine chars was studied in this work, focusing on the influence of organically bound metals. Selective leaching of the major ash-forming elements in pine wood was performed with different acids, namely, nitric, sulfuric, hydrochloric and oxalic acids. No other major changes in the chemical composition of the biomass were observed except the removal of the metals. The effect of organically bound sodium, potassium, magnesium and calcium was studied in both pyrolysis and gasification. Removal of the metals had a positive effect on the pyrolysis, resulting in higher bio-oil, lower char and gas yields. PMID:23196217

  9. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    NASA Astrophysics Data System (ADS)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  10. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    USGS Publications Warehouse

    Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB

  11. Pine Hollow Watershed Project : FY 2000 Projects.

    SciTech Connect

    Sherman County Soil and Water Conservation District

    2001-06-01

    The Pine Hollow Project (1999-010-00) is an on-going watershed restoration effort administered by Sherman County Soil and Water Conservation District and spearheaded by Pine Hollow/Jackknife Watershed Council. The headwaters are located near Shaniko in Wasco County, and the mouth is in Sherman County on the John Day River. Pine Hollow provides more than 20 miles of potential summer steelhead spawning and rearing habitat. The watershed is 92,000 acres. Land use is mostly range, with some dryland grain. There are no water rights on Pine Hollow. Due to shallow soils, the watershed is prone to rapid runoff events which scour out the streambed and the riparian vegetation. This project seeks to improve the quality of upland, riparian and in-stream habitat by restoring the natural hydrologic function of the entire watershed. Project implementation to date has consisted of construction of water/sediment control basins, gradient terraces on croplands, pasture cross-fences, upland water sources, and grass seeding on degraded sites, many of which were crop fields in the early part of the century. The project is expected to continue through about 2007. From March 2000 to June 2001, the Pine Hollow Project built 6 sediment basins, 1 cross-fence, 2 spring developments, 1 well development, 1 solar pump, 50 acres of native range seeding and 1 livestock waterline. FY2000 projects were funded by BPA, Oregon Watershed Enhancement Board, US Fish and Wildlife Service and landowners. In-kind services were provided by Sherman County Soil and Water Conservation District, USDA Natural Resources Conservation Service, USDI Bureau of Land Management, Oregon Department of Fish and Wildlife, Pine Hollow/Jackknife Watershed Council, landowners and Wasco County Soil and Water Conservation District.

  12. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates.

    PubMed

    Kerr, Kelly L; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Marias, Danielle E

    2015-05-01

    First-year tree seedlings represent a particularly vulnerable life stage and successful seedling establishment is crucial for forest regeneration. We investigated the extent to which Pinus ponderosa P. & C. Lawson populations from different climate zones exhibit differential expression of functional traits that may facilitate their establishment. Seeds from two populations from sites with contrasting precipitation and temperature regimes east (PIPO dry) and west (PIPO mesic) of the Oregon Cascade mountains were sown in a common garden experiment and grown under two water availability treatments (control and drought). Aboveground biomass accumulation, vegetative phenology, xylem anatomy, plant hydraulic architecture, foliar stable carbon isotope ratios (δ(13)C), gas exchange and leaf water relations characteristics were measured. No treatment or population-related differences in leaf water potential were detected. At the end of the first growing season, aboveground biomass was 74 and 44% greater in PIPO mesic in the control and drought treatments, respectively. By early October, 73% of PIPO dry seedlings had formed dormant buds compared with only 15% of PIPO mesic seedlings. Stem theoretical specific conductivity, calculated from tracheid dimensions and packing density, declined from June through September and was nearly twice as high in PIPO mesic during most of the growing season, consistent with measured values of specific conductivity. Intrinsic water-use efficiency based on δ(13)C values was higher in PIPO dry seedlings for both treatments across all sampling dates. There was a negative relationship between values of δ(13)C and leaf-specific hydraulic conductivity across populations and treatments, consistent with greater stomatal constraints on gas exchange with declining seedling hydraulic capacity. Integrated growing season assimilation and stomatal conductance estimated from foliar δ(13)C values and photosynthetic CO2-response curves were 6 and 28

  13. First record of the Kuwana pine mealybug Crisicoccus pini (Kuwana) in Italy: a new threat to Italian pine forests?

    PubMed

    Boselli, Mauro; Pellizzari, Giuseppina

    2016-01-01

    The Asiatic Kuwana pine mealybug, Crisicoccus pini (Kuwana, 1902) (Hemiptera, Pseudococcidae), is reported in Italy for the first time. It was detected in September 2015 on maritime pine, Pinus pinaster, and stone pine, Pinus pinea, trees growing in the town of Cervia (Ravenna Province), Northern Italy. The mealybug has caused yellowing and decline of the pine trees. Pinus pinea is recorded here as a new host for C. pini. PMID:27394232

  14. China's Masson pine forests: Cure or curse

    SciTech Connect

    Wilson, L.F.

    1993-01-01

    Masson pine, which grows well on rocky montane soil where it can be aerial seeded, has long been one of southern China's better sources for timber, fuel, and various wood products. However, although it has been widely planted in reforestation projects, expected yields will never be realized because of poor quality seed, poor site selection, and aggressive insect attacks. The pine needle scale is discussed in detail. Scale control options are presented: biological control, cultural control, and isolation of infected stands. Also discussed are other forestry approaches such as alternative species and alternative planting systems.

  15. Uneven-aged management of pine and pine-hardwood mixtures in the Ouachita mountains

    SciTech Connect

    Shelton, M.G.; Baker, J.B.

    1992-01-01

    The Ouachita National Forest and the Southern Forest Experiment Station launched a long-term research project in 1988 to study uneven-aged management of shortleaf pine and pine-hardwood mixtures in the Ouachita Mountains. The successful use of uneven-aged management in the southern pines has to date been limited to pure stands. However, the maintenance of a hardwood component is desirable to enhance biological diversity, wildlife habitat, and aesthetics. The study's goals are: (1) to determine the levels at which pine and hardwoods are biologically compatible in uneven-aged stands, and (2) to evaluate the timber, wildlife, water quality, aesthetics and biodiversity associated with each management alternative so that sound decisions concerning the tradeoffs among these resources can be determined.

  16. Food reserves in mountain longleaf pine roots during shoot elongation.

    SciTech Connect

    Walkinshaw, C.H.; W.J. Otrosina

    2001-03-20

    Roots of saplings appear to be models for healthy tissues in longleaf pines. Results show that roots of mountain longleaf pine have a normal anatomy, but also have unusual amounts of starch when compared to loblolly pine roots growing during phenologiexecy equal time periods. Roots appear large in diameter and grow much nearer the soil surface than roots observed from Coastal Plain longleaf pine. Starch grains are large in size and uniformly filled root cells. These results yield methodology potentially useful in assessment of health and productivity of longleaf pine.

  17. Effect of pine mistletoe on radial growth of Crimean pine (Pinus nigra) in Turkey.

    PubMed

    Catal, Yilmaz; Carus, Serdar

    2011-05-01

    In this study, the influence of infection by pine mistletoe (Viscum album L. subsp. austriacum (Wiesb.) Volmann) on the radial growth of crimean pine (Pinus nigra Amold) in Turkey was investigated. We built local residual tree-ring-width chronologies using dendrochronogical techniques. Tree ring chronologies of uninfected (control) crimean pine were used to estimate potential radial growth characteristics in the "infected" crimean pine (light, moderate and severe infection groups). In 2005, increment cores were collected from 26 infected and 19 control dominant or co-dominant trees and annual radial growth indices from 1930-2005 were calculated for each infection group in a 14 point sampling. We compared radial growth in the uninfected trees with mean regional chronology. We found a strong decrease in radial growth in during the 1998-2005 period. The periodic average radial growth reduction (in %) from 1998 to 2005, respectively, were 0 for control, 26 for light, 39 for moderate and 63 for severe infection groups. It can be especially concluded that a severe degree of pine mistletoe attack has a negative effect on radial growth of the infected crimean pine trees. PMID:22167935

  18. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.

    PubMed

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation. PMID:22563499

  19. Regeneration of Different Plant Functional Types in a Masson Pine Forest Following Pine Wilt Disease

    PubMed Central

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J.; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation. PMID:22563499

  20. Amending pine bark with alternative substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to a number of factors, pine bark supplies have significantly decreased over the past few years. While alternative substrates are being evaluated, many growers are asking if these alternative substrates can be used to stretch existing PB supplies. In this study, two alternative substrates, “Cl...

  1. PINE Discovery Box, 101 Stimulating Ideas.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    This manual is intended for use with the PINE (Projects in Imaginative Nature Education) discovery box in elementary school conservation education. The box contains 21 natural specimens which can serve as the starting point for simple student investigations. Specimens and activities are keyed for grade level. For each item, background information…

  2. Agroforestry planting design affects loblolly pine growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of plantation design on resource utilization has not been adequately investigated in agroforestry plantations. An experiment was conducted near Booneville, AR on a silt loam soil with a fragipan. Loblolly pine trees were planted in 1994 in an east-west row orientation in three designs: ...

  3. Ecology and evolution of pine life histories

    USGS Publications Warehouse

    Keeley, Jon E.

    2012-01-01

    Conclusion - Understanding the current pattern of pine distribution requires interpreting their evolution in terms of climate, geology, and fire. All three of these factors have played a role since the Mesozoic origin of the genus. All are important to the appropriate management of these resources.

  4. LONG LEAF PINE RESTORATION PROJECT MX974390

    EPA Science Inventory

    There are two primary goals for managing the Dantzler Coastal Preserve: 1) Protect and enhance the flora and fauna of the estuarine marsh; and 2) Manage the upland portion by restoring the long leaf pine ecosystem. Results from this project will improve the wetlands and water...

  5. SUSTAINABLE HOUSING AT PINE RIDGE RESERVATION

    EPA Science Inventory

    The Pine Ridge Reservation, located in rural South Dakota is plagued with deteriorating infrastructure, poverty, lack of local employment, and high utility bills. Many of the residents, the Oglala Lakota Nation, live in mobile homes or substandard housing and spend nearly 25% of...

  6. Another Paper Landscape?

    ERIC Educational Resources Information Center

    Radlak, Ted

    2001-01-01

    Describes the University of Toronto's extensive central campus revitalization plan to create lush landscapes that add to the school's image and attractiveness. Drawings and photographs are included. (GR)

  7. Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: a combined experimental and modeling approach

    NASA Astrophysics Data System (ADS)

    Ruehr, N. K.; Law, B. E.; Quandt, D.; Williams, M.

    2014-08-01

    Predicting the net effects on the carbon and water balance of semi-arid forests under future conditions depends on ecosystem processes responding to changes in soil and atmospheric drought. Here we apply a combination of field observations and soil-plant-atmosphere modeling (SPA) to study carbon and water dynamics in a regenerating ponderosa pine forest. The effects of soil and atmospheric drought were quantified based on a field irrigation experiment combined with model simulations. To assess future effects of intensifying drought on ecosystem processes, the SPA model was run using temperature and precipitation scenarios for 2040 and 2080. Experimentally increased summer water availability clearly affected tree hydraulics and enhanced C uptake in both the observations and the model. Simulation results showed that irrigation was sufficient to eliminate soil water limitation and maintaining transpiration rates, but gross primary productivity (GPP) continued to decrease. Observations of stomatal conductance indicated a dominant role of vapor pressure deficit (VPD) in limiting C uptake. This was confirmed by running the simulation under reduced atmospheric drought (VPD of 1 kPa), which largely maintained GPP rates at pre-drought conditions. The importance of VPD as a dominant driver was underlined by simulations of extreme summer conditions. We found GPP to be affected more by summer temperatures and VPD as predicted for 2080 (-17%) than by reductions in summer precipitation (-9%). Because heterotrophic respiration responded less to heat (-1%) than to reductions in precipitation (-10%), net ecosystem C uptake declined strongest under hotter (-38%) compared to drier summer conditions (-8%). Considering warming trends across all seasons (September-May: +3 °C and June-August: +4.5 °C), the negative drought effects were largely compensated by an earlier initiation of favorable growing conditions and bud break, enhancing early season GPP and needle biomass. An adverse

  8. DEVELOPMENT OF ENZYME-LINKED IMMUNOSORBENT ASSAYS FOR ISOCUPRESSIC ACID AND SERUM METABOLITES OF ISOCUPRESSIC ACID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), common juniper (Juniperus communis) and Monterey cypress (Cupressus macrocarpa) causes abortions in pregnant cattle. Recent studies have identified isocupressic acid as the primary abortifacient compound in these ...

  9. The global risk landscape

    NASA Astrophysics Data System (ADS)

    2015-03-01

    Initiatives aimed at preserving or enhancing the state of the environment are created in a broad political landscape influenced by, among other things, perceived risks. We take a brief look at this risk landscape in the run up to Paris 2015.

  10. Geomorpho-Landscapes

    NASA Astrophysics Data System (ADS)

    Farabollini, Piero; Lugeri, Francesca; Amadio, Vittorio

    2014-05-01

    Landscape is the object of human perceptions, being the image of spatial organization of elements and structures: mankind lives the first approach with the environment, viewing and feeling the landscape. Many definitions of landscape have been given over time: in this case we refer to the Landscape defined as the result of interaction among physical, biotic and anthropic phenomena acting in a different spatial-temporal scale (Foreman & Godron) Following an Aristotelic approach in studying nature, we can assert that " Shape is synthesis": so it is possible to read the land features as the expression of the endogenous and exogenous processes that mould earth surfaces; moreover, Landscape is the result of the interaction of natural and cultural components, and conditions the spatial-temporal development of a region. The study of the Landscape offers results useful in order to promote sustainable development, ecotourism, enhancement of natural and cultural heritage, popularization of the scientific knowledge. In Italy, a very important GIS-based tool to represent the territory is the "Carta della Natura" ("Map of Nature", presently coordinated by the ISPRA) that aims at assessing the state of the whole Italian territory, analyzing Landscape. The methodology follows a holistic approach, taking into consideration all the components of a landscape and then integrating the information. Each individual landscape, studied at different scales, shows distinctive elements: structural, which depend on physical form and specific spatial organization; functional, which depend on relationships created between biotic and abiotic elements, and dynamic, which depend on the successive evolution of the structure. The identification of the landscape units, recognized at different scales of analysis, allows an evaluation of the state of the land, referring to the dual risk/resource which characterizes the Italian country. An interesting opportunity is to discover those areas of unusual

  11. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem.

    PubMed

    Logan, Jesse A; MacFarlane, William W; Willcox, Louisa

    2010-06-01

    Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine. PMID:20597278

  12. Planetary Landscape Geography

    NASA Astrophysics Data System (ADS)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  13. Extracting DNA from submerged pine wood.

    PubMed

    Reynolds, M Megan; Williams, Claire G

    2004-10-01

    A DNA extraction protocol for submerged pine logs was developed with the following properties: (i) high molecular weight DNA, (ii) PCR amplification of chloroplast and nuclear sequences, and (iii) high sequence homology to voucher pine specimens. The DNA extraction protocol was modified from a cetyltrimehtylammonium bromide (CTAB) protocol by adding stringent electrophoretic purification, proteinase K, RNAse, polyvinyl pyrrolidone (PVP), and Gene Releaser. Chloroplast rbcL (ribulose-1,5-bisphosphate carboxylase) could be amplified. Nuclear ribosomal sequences had >95% homology to Pinus taeda and Pinus palustris. Microsatellite polymorphism for PtTX2082 matched 2 of 14 known P. taeda alleles. Our results show DNA analysis for submerged conifer wood is feasible. PMID:15499414

  14. Acousto-Convective Drying of Pine Nuts

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.; Fedorov, A. V.

    2014-07-01

    An experimental investigation of the process of drying pine nut grains has been carried out by three methods: acousto-convective, thermoconvective, and thermal. A qualitative and a quantitative comparison of the dynamics of the processes of moisture extraction from the nut grains for the considered drying methods have been made. To elucidate the mechanism of moisture extraction from the pine nut grains, we carried out a separate investigation of the process of drying the nut shell and the kernel. The obtained experimental data on the acousto-convective drying of nuts are well described by the relaxation model, the data on the thermoconvective drying are well described by the bilinear law, and the data on the thermal drying are well described by the combined method consisting of three time steps characterized by different kinetic regimes of drying.

  15. Whitebark pine, grizzly bears, and red squirrels

    USGS Publications Warehouse

    Mattson, D.J.; Kendall, K.C.; Reinhart, D.P.

    2001-01-01

    Appropriately enough, much of this book is devoted to discussing management challenges and techniques. However, the impetus for action—the desire to save whitebark pine (Pinus albicaulis)—necessarily arises from the extent to which we cherish it for its beauty and its connections with other things that we value. Whitebark pine is at the hub of a fascinating web of relationships. It is the stuff of great stories (cf. Quammen 1994). One of the more interesting of these stories pertains to the dependence of certain grizzly bear (Ursus arctos horribilis) populations on its seeds, and the role that red squirrels (Tamiasciurus hudsonicus) play as an agent of transfer between tree and bear.

  16. [Testate amoebas of pine forests in Mexico].

    PubMed

    Bobrov, A A; Krasil'nikov, P A

    2011-01-01

    The population of testate amoebas in the soils of pine forests in Mexico has been studied. In total, 68 species, varieties, and types of testate amoebas with cosmopolite distribution were found. The species diversity of the testate population includes hygrophilous species that differ from hygrophilous species with luvisols in higher andosols. Comparative analysis using the results of one available study of soil testate amoebas from Mexico has been carried out [Bonnet, 1977]. PMID:21870497

  17. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  18. Contrasting Patterns of Carbon Flux and Storage in Pine Forest Ecosystems of the Atlantic Coastal Plain: Implications for Ecosystem Restoration and Climate Change Mitigation.

    NASA Astrophysics Data System (ADS)

    Mitchell, S. R.; Christensen, N.; Cohen, S.; Cunningham, P.

    2015-12-01

    Forest ecosystems in the Southeastern US have high rates of productivity but are underutilized as a medium for the mitigation of atmospheric CO2. In the lower Atlantic coastal plain, three pine species (longleaf [Pinus palustris], loblolly [P. taeda] and pond [P. serotina]) are the dominant overstory trees in a variety of wetland and upland ecosystems. These forest types can exist in close proximity throughout coastal plain landscapes, but exhibit contrasting patterns of productivity, pyrogenic C emissions, and mortality, thereby creating contrasting patterns of C assimilation and long-term C storage. Here, we combine field-based estimates of forest C storage and pyrogenic C emissions with LiDAR-based estimates of forest canopy heights in three contrasting forest ecosystems to 1) model their respective patterns of forest growth, mortality, and decomposition, 2) estimate the contribution of pyrogenic C fluxes to the ecosystem C budget, 3) estimate their potential upper bounds of forest C storage, and 4) model the impacts of current forest management practices and disturbance regimes on long-term forest C storage. Our results suggest that even though longleaf pine forests store comparatively little C in soil or belowground biomass, these forests nevertheless have the highest capacity for long-term C storage, in part due to their longevity. By contrast, while pond pine ecosystems have the highest capacity for long-term belowground C storage, they also have the lowest capacity for long-term aboveground C storage, one that is rarely achieved due to infrequent, high-severity disturbance regimes. Loblolly pine forests, while capable of higher growth rates than either longleaf or pond pine when in early stages of succesion, lack the long-term C storage capabilities of longleaf pine due to earlier senescence. Pyrogenic C emissions in these ecosystems are dominated by the combustion of ground and duff materials and occur over timescales ranging from rapid combustion in fire

  19. [Landscape and ecological genomics].

    PubMed

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25508669

  20. [Landscape and ecological genomics].

    PubMed

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25474890

  1. Pine Gene Discovery Project - Final Report - 08/31/1997 - 02/28/2001

    SciTech Connect

    Whetten, R. W.; Sederoff, R. R.; Kinlaw, C.; Retzel, E.

    2001-04-30

    Integration of pines into the large scope of plant biology research depends on study of pines in parallel with study of annual plants, and on availability of research materials from pine to plant biologists interested in comparing pine with annual plant systems. The objectives of the Pine Gene Discovery Project were to obtain 10,000 partial DNA sequences of genes expressed in loblolly pine, to determine which of those pine genes were similar to known genes from other organisms, and to make the DNA sequences and isolated pine genes available to plant researchers to stimulate integration of pines into the wider scope of plant biology research. Those objectives have been completed, and the results are available to the public. Requests for pine genes have been received from a number of laboratories that would otherwise not have included pine in their research, indicating that progress is being made toward the goal of integrating pine research into the larger molecular biology research community.

  2. Geophysical features influence the climate change sensitivity of northern Wisconsin pine and oak forests.

    PubMed

    Tweiten, Michael A; Calcote, Randy R; Lynch, Elizabeth A; Hotchkiss, Sara C; Schuurman, Gregor W

    2015-10-01

    Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P < 0.0163) and on sites with relatively warmer and drier local climate (R² = 0.55, P < 0.0056). Volatility in the rate of change between samples was positively associated with LIA fire frequency (R² = 0.41, P < 0.0256). Over multi-decadal to centennial timescales, forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our

  3. Boundary dynamics in landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscapes consist of a mosaic of distinct vegetation types and their intervening boundaries with distinct characteristics. Boundaries can exist along abrupt environmental gradients or along gradual changes that are reinforced by feedback mechanisms between plants and soil properties. Boundaries can...

  4. Landscape evolution (A Review)

    PubMed Central

    Sharp, Robert P.

    1982-01-01

    Landscapes are created by exogenic and endogenic processes acting along the interface between the lithosphere and the atmosphere and hydrosphere. Various landforms result from the attack of weathering and erosion upon the highly heterogeneous lithospheric surface. Landscapes are dynamic, acutely sensitive to natural and artificial perturbation. Undisturbed, they can evolve through a succession of stages to a plain of low relief. Often, the progression of an erosion cycle is interrupted by tectonic or environmental changes; thus, many landscapes preserve vestiges of earlier cycles useful in reconstructing the recent history of Earth's surface. Landforms are bounded by slopes, so their evolution is best understood through study of slopes and the complex of factors controlling slope character and development. The substrate, biosphere, climatic environment, and erosive processes are principal factors. Creep of the disintegrated substrate and surface wash by water are preeminent. Some slopes attain a quasisteady form and recede parallel to themselves (backwearing); others become ever gentler with time (downwearing). The lovely convex/rectilinear/concave profile of many debris-mantled slopes reflects an interplay between creep and surface wash. Landscapes of greatest scenic attraction are usually those in which one or two genetic factors have strongly dominated or those perturbed by special events. Nature has been perturbing landscapes for billions of years, so mankind can learn about landscape perturbation from natural examples. Images

  5. Ant Distribution in Relation to Ground Water in North Florida Pine Flatwoods

    PubMed Central

    Tschinkel, Walter R.; Murdock, Tyler; King, Joshua R.; Kwapich, Christina

    2012-01-01

    Longleaf pine savannas are one of the most threatened ecosystems in the world, yet are understudied. Ants are a functionally important and diverse group of insects in these ecosystems. It is largely unknown how local patterns of species diversity and composition are determined through the interaction of this dominant animal group with abiotic features of longleaf pine ecosystems. Here we describe how an important abiotic variable, depth to water table, relates to ant species distributions at local scales. Pitfall trapping studies across habitat gradients in the Florida coastal plains longleaf pine flatwoods showed that the ant community changed with mild differences in habitat. In this undulating landscape, elevation differences were less than 2 m, and the depth to the water table ranged from < 20 cm to 1.2 m. The plant species composing the ground cover were zoned in response to depth to water, and shading by canopy trees increased over deeper water tables. Of the 27 ant species that were analyzed, depending on the statistical test, seven or eight were significantly more abundant over a deep water table, eight to ten over a shallow one, and nine to eleven were not significantly patterned with respect to depth to water. Ant species preferring sites with shallow groundwater also preferred the shadier parts of the sites, while those preferring sites with deeper groundwater preferred the sunnier parts of the sites. This suggests that one group of species prefers hot-dry conditions, and the other cooler-moist. Factor analysis and abundance-weighted mean site characteristics generally confirmed these results. These results show that ant communities in this region respond to subtle differences in habitat, but whether these differences arise from founding preferences, survival, competition, or some combination of these is not known. PMID:23445122

  6. Integrating models to investigate critical phenological overlaps in complex ecological interactions: the mountain pine beetle-fungus symbiosis.

    PubMed

    Addison, Audrey; Powell, James A; Bentz, Barbara J; Six, Diana L

    2015-03-01

    The fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures. One critical phase for MPB-fungus symbiosis occurs just before dispersal of teneral (new) adult beetles, when fungi are acquired and transported in specialized structures (mycangia). Before dispersal, fungi must capture sufficient spatial resources within the tree to ensure contact with teneral adults and get packed into mycangia. Mycangial packing occurs at an unknown time during teneral feeding. We adapt thermal models predicting fungal growth and beetle development to predict overlap between the competing fungi and MPB teneral adult feeding windows and emergence. We consider a spectrum of mycangial packing strategies and describe them in terms of explicit functions with unknown parameters. Rates of growth are fixed by laboratory data, the unknown parameters describing various packing strategies, as well as the degree to which mycangial growth is slowed in woody tissues as compared to agar, are determined by maximum likelihood and two years of field observations. At the field location used, the most likely fungus acquisition strategy for MPB was packing mycangia just prior to emergence. Estimated model parameters suggested large differences in the relative growth rates of the two fungi in trees at the study site, with the most likely model estimating that G. clavigera grew approximately twenty-five times faster than O. montium under the bark, which is completely unexpected in comparison with observed fungal growth on agar. PMID:25556687

  7. Effects of a clear-cut harvest on soil respiration in a jack pine - Lichen woodland

    USGS Publications Warehouse

    Striegl, R.G.; Wickland, K.P.

    1998-01-01

    Quantification of the components of ecosystem respiration is essential to understanding carbon (C) cycling of natural and disturbed landscapes. Soil respiration, which includes autotrophic and heterotrophic respiration from throughout the soil profile, is the second largest flux in the global carbon cycle. We measured soil respiration (soil CO2 emission) at an undisturbed mature jack pine (Pinus banksiana Lamb.) stand in Saskatchewan (old jack pine, OJP), and at a formerly continuous portion of the stand that was clear-cut during the previous winter (clear-cut, CC). Tree harvesting reduced soil CO2 emission from ???22.5 to ???9.1 mol CO2??m2 for the 1994 growing season. OJP was a small net sink of atmospheric CO2, while CC was a net source of CO2. Winter emissions were similar at both sites. Reduction of soil respiration was attributed to disruption of the soil surface and to the death of tree roots. Flux simulations for CC and OJP identify 40% of CO2 emission at the undisturbed OJP site as near-surface respiration, 25% as deep-soil respiration, and 35% as tree-root respiration. The near-surface component was larger than the estimated annual C input to soil, suggesting fast C turnover and no net C accumulation in these boreal uplands in 1994.

  8. Modelling drought-induced dieback of Aleppo pine at the arid timberline

    NASA Astrophysics Data System (ADS)

    Wingate, Lisa; Preisler, Yakir; Bert, Didier; Rotenberg, Eyal; Yakir, Dan; Maseyk, Kadmiel; Ogee, Jerome

    2016-04-01

    During the mid 1960's an ambitious afforestation programme was initiated in the Negev desert of Israel. After five decades enduring harsh growing conditions, the Aleppo pine forest of Yatir is now exhibiting signs of 'drought-induced' dieback. Since 2010, 5-10% of the entire Yatir population have died, however the pattern of mortality is extremely patchy with some areas exhibiting >80% mortality whilst others display none. In this presentation, we reflect on historic climatic and edaphic conditions that have triggered this landscape mosaic of survival and mortality and how physiological and hydraulic traits vary within this patchwork. In addition, we explore how these pine trees have responded physiologically over recent years (1996-2010) to a series of severe drought events using a combined approach that brings together micrometeorological, dendro-isotopic and dendro-climatological datasets alongside process-based modelling. In particular the dataset trends were investigated with the isotope-enabled ecosystem model MuSICA to explore the consequences of subsequent droughts and embolism on modelled carbohydrate and water pool dynamics and their impact on carbon allocation and ecosystem function.

  9. Reptile assemblage response to restoration of fire-suppressed longleaf pine sandhills.

    PubMed

    Steen, David A; Smith, Lora L; Conner, L M; Litt, Andrea R; Provencher, Louis; Hiers, J Kevin; Pokswinski, Scott; Guyer, Craig

    2013-01-01

    Measuring the effects of ecological restoration on wildlife assemblages requires study on broad temporal and spatial scales. Longleaf pine (Pinus palustris) forests are imperiled due to fire suppression and subsequent invasion by hardwood trees. We employed a landscape-scale, randomized-block design to identify how reptile assemblages initially responded to restoration treatments including removal of hardwood trees via mechanical methods (felling and girdling), application of herbicides, or prescribed burning alone. Then, we examined reptile assemblages after all sites experienced more than a decade of prescribed burning at two- to thee-year return intervals. Data were collected concurrently at reference sites chosen to represent target conditions for restoration. Reptile assemblages changed most rapidly in response to prescribed burning, but reptile assemblages at all sites, including reference sites, were generally indistinguishable by the end of the study. Thus, we suggest that prescribed burning in longleaf pine forests over long time periods is an effective strategy for restoring reptile assemblages to the reference condition. Application of herbicides or mechanical removal of hardwood trees provided no apparent benefit to reptiles beyond what was achieved by prescribed fire alone. PMID:23495643

  10. EuroPineDB: a high-coverage web database for maritime pine transcriptome

    PubMed Central

    2011-01-01

    Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and

  11. 77 FR 45331 - White Pine-Nye Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF AGRICULTURE Forest Service White Pine-Nye Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of two meetings. SUMMARY: The White Pine-Nye Resource Advisory Committee will meet in Eureka, Nevada....

  12. 77 FR 58095 - White Pine-Nye Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Forest Service White Pine-Nye Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice meeting. SUMMARY: The White Pine-Nye Resource Advisory Committee will meet in Eureka, Nevada....

  13. 76 FR 48800 - White Pine-Nye Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Forest Service White Pine-Nye Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting cancellation. SUMMARY: The White Pine-Nye Resource Advisory Committee meeting scheduled in...

  14. Rooting Rose Cuttings in Whole Pine Tree Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for alternatives to pine bark (PB) and peat moss (P) has led to extensive research on wood-based substrates, such as processed whole pine trees (WPT), for nursery and greenhouse crop production. Limited information is available on how WPT may perform as a rooting substrate for cutti...

  15. Boston Fern Prodcution in Whole Pine Tree Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted to evaluate processed whole pine trees as an alternative container substrate for Boston fern production. Three whole pine tree (WPT) substrates and a commercial peat-lite mix (PL) were each amended per cubic meter with 0.59 kg micromax, 2.37 kg Harrell’s 16-6-12 Plus (4-5...

  16. 1. VIEW, LOOKING WEST, AT THE SITE OF THE PINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW, LOOKING WEST, AT THE SITE OF THE PINE LOG MILL. THE STONE RETAINING WALL ON THE RIGHT MARKS THE LOCATION OF THE 1896 20-STAMP FACILITY, EXPANDED SOUTH TO INCLUDE 20 ADDITIONAL STAMPS BY 1899 - Pine Log Mill, Southern Edge of Salt Spring Valley, Copperopolis, Calaveras County, CA

  17. Modeling Pine Plantation NEP Using Landsat

    NASA Astrophysics Data System (ADS)

    Wynne, R. H.; Potter, C. S.; Blinn, C. E.

    2008-12-01

    The CASA (Carnegie Ames Stanford Approach) ecosystem process model predicts terrestrial ecosystem fluxes using satellite-based inputs at a maximum geographic resolution of 30 meters to infer variability in forest carbon fluxes. We are using CASA to model pine plantation net ecosystem production (NEP) under a range of standard silvicultural prescriptions, primarily thinning by fertilization interactions. Landsat scenes from WRS path/row 14/35, 21/37, and 16/34 are being used. Within each frame, all available cloud-free scenes within a two- to three-year period have been obtained from the USGS EROS Data Center processed to L1T, and subsequently converted to top-of-atmosphere reflectance using standard methods and the latest calibration parameter files. Atmospheric amelioration started with dark object subtraction (band minimum) and only proceeded to more complex techniques as necessary. Subsequent to preprocessing, the reduced simple ratio (RSR; using global min/max) was calculated for all images for each WRS path/row. Pure pine pixels in each frame were identified using unsupervised classification of the most recent leaf-off scene. We developed four age classes using two decades of Landsat data over each WRS path/row. CASA runs, which require soil parameters, and gridded climate/solar radiation in addition to satellite-derived vegetation indices, are now complete. Soil respiration and productivity estimates are being evaluated using a regionwide network of validation sites spanning the range of loblolly pine (Texas to Virginia). Preliminary results indicate that Landsat-based process modeling (1) is necessary for the scale at which land is actually managed and (2) produces estimates with an accuracy and precision affording improved understanding and management of forest ecosystems.

  18. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    USGS Publications Warehouse

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  19. Regime Shifts and Weakened Environmental Gradients in Open Oak and Pine Ecosystems

    PubMed Central

    Hanberry, Brice B.; Dey, Dan C.; He, Hong S.

    2012-01-01

    Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on

  20. Dendrochronology of bristlecone pine: a progress report

    SciTech Connect

    Ferguson, C.W.; Graybill, D.A.

    1983-01-01

    Dendrochronological studies of bristlecone pine, Pinus longaeva, have produced a continuous tree-ring sequence back to 6700 BC for the White Mountains of California and to 3258 BC for east-central Nevada. The primary focus of the project is to provide dendrochronolgically-dated decade samples for an interlaboratory calibration of the /sup 14/C time scale. The primary climatic signal that can be isolated in both the California and Nevada series is annual moisture variability. Current efforts are directed at calibration of the tree-ring series with instrumented climatic series.

  1. Modeling ultrafine particle growth at a pine forest site influenced by anthropogenic pollution during BEACHON-RoMBAS 2011

    NASA Astrophysics Data System (ADS)

    Cui, Y. Y.; Hodzic, A.; Smith, J. N.; Ortega, J.; Brioude, J.; Matsui, H.; Turnipseed, A.; Winkler, P.; de Foy, B.

    2014-03-01

    Formation and growth of ultrafine particles is crudely represented in chemistry-climate models, which contributes to uncertainties in aerosol composition, size distribution, and aerosol effects on cloud condensation nuclei (CCN) concentrations. Measurements of ultrafine particles, their precursor gases, and meteorological parameters were performed in a ponderosa pine forest in the Colorado Front Range in July-August 2011, and were analyzed to study processes leading to Aitken-mode Particle burst Events (APEs). These measurements suggest that APEs were associated with the arrival at the site of anthropogenic pollution plumes around noon or in the early afternoon. Number concentrations of ultrafine (4 to 30 nm diameter) particles typically exceeded 10 000 cm-3 during APEs, and these elevated concentrations coincided with increased SO2 and monoterpene concentrations, and led to a factor of two increase in CCN concentrations at 0.5% supersaturation. The APEs were simulated using the regional WRF-Chem model, which was extended to account for ultrafine particle sizes starting at 1 nm in diameter, to include an empirical activation nucleation scheme in the planetary boundary layer, and to explicitly simulate the subsequent growth of Aitken particles by condensation of organic and inorganic vapors. Comparisons with aerosol size distribution measurements showed that simulations using the activation nucleation parameterization reasonably captured aerosol number concentrations and size distribution during APEs, as well as ground level CCN concentrations. Results suggest that sulfuric acid from anthropogenic SO2 triggers APEs, and that the condensation of monoterpene oxidation products onto freshly nucleated particles drives their growth. The simulated growth rate of 3.4 nm h-1 for small particles (4-30 nm in diameter) was comparable to the measured average value of 2.3 nm h-1. Model results also suggest that the presence of APEs tends to modify the composition of sub-100 nm

  2. Geomorpho-Landscapes

    NASA Astrophysics Data System (ADS)

    Farabollini, Piero; Lugeri, Francesca; Amadio, Vittorio

    2014-05-01

    Landscape is the object of human perceptions, being the image of spatial organization of elements and structures: mankind lives the first approach with the environment, viewing and feeling the landscape. Many definitions of landscape have been given over time: in this case we refer to the Landscape defined as the result of interaction among physical, biotic and anthropic phenomena acting in a different spatial-temporal scale (Foreman & Godron) Following an Aristotelic approach in studying nature, we can assert that " Shape is synthesis": so it is possible to read the land features as the expression of the endogenous and exogenous processes that mould earth surfaces; moreover, Landscape is the result of the interaction of natural and cultural components, and conditions the spatial-temporal development of a region. The study of the Landscape offers results useful in order to promote sustainable development, ecotourism, enhancement of natural and cultural heritage, popularization of the scientific knowledge. In Italy, a very important GIS-based tool to represent the territory is the "Carta della Natura" ("Map of Nature", presently coordinated by the ISPRA) that aims at assessing the state of the whole Italian territory, analyzing Landscape. The methodology follows a holistic approach, taking into consideration all the components of a landscape and then integrating the information. Each individual landscape, studied at different scales, shows distinctive elements: structural, which depend on physical form and specific spatial organization; functional, which depend on relationships created between biotic and abiotic elements, and dynamic, which depend on the successive evolution of the structure. The identification of the landscape units, recognized at different scales of analysis, allows an evaluation of the state of the land, referring to the dual risk/resource which characterizes the Italian country. An interesting opportunity is to discover those areas of unusual

  3. Feast and famine: previous defoliation limiting survival of pine processionary caterpillar Thaumetopoea pityocampa in Scots pine Pinus sylvestris

    NASA Astrophysics Data System (ADS)

    Hódar, José A.; Zamora, Regino; Castro, Jorge; Baraza, Elena

    2004-12-01

    This study analyses the consequences of previous defoliation on the survival of the larvae of the pine processionary moth Thaumetopoea pityocampa (Denis and Schiffermüller) feeding on relict Scots pine Pinus sylvestris (L.) ssp. nevadensis Christ in the Sierra Nevada mountains (SE Spain). Egg batches of the pine processionary moth were placed on four groups of Scots pines that underwent different periods of herbivory. The larval survival was related to the nitrogen content, fibre, phenolics and terpenes in the needles. Larval survival was higher in undefoliated pines, lower in pines defoliated two consecutive years, and intermediate in pines defoliated only one year, suggesting a direct relationship between previous defoliation and larval survival. In contrast, none of the characteristics of the needles showed a clear relationship with larval survival. The resulting reduction in larval number also affects the capacity of the larvae to develop during winter, because it hampered nest warming. Thus, previous defoliation limits, although it does not impede, the possibility of repeated defoliation on Scots pine.

  4. Suitability of Pines and Other Conifers as Hosts for the Invasive Mediterranean Pine Engraver (Coleoptera: Scolytidae) in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive Mediterranean pine engraver, Orthotomicus erosus (Wollaston), was detected in North America in 2004 and is currently distributed in the southern Central Valley of California. It originates from the Mediterranean region, the Middle East, and Asia, and reproduces on pines. To identify p...

  5. Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: mosaic structure and differential introgression.

    PubMed

    Cullingham, Catherine I; James, Patrick M A; Cooke, Janice E K; Coltman, David W

    2012-12-01

    Understanding the physical and genetic structure of hybrid zones can illuminate factors affecting their formation and stability. In north-central Alberta, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia) and jack pine (Pinus banksiana Lamb) form a complex and poorly defined hybrid zone. Better knowledge of this zone is relevant, given the recent host expansion of mountain pine beetle into jack pine. We characterized the zone by genotyping 1998 lodgepole, jack pine, and hybrids from British Columbia, Alberta, Saskatchewan, Ontario, and Minnesota at 11 microsatellites. Using Bayesian algorithms, we calculated genetic ancestry and used this to model the relationship between species occurrence and environment. In addition, we analyzed the ancestry of hybrids to calculate the genetic contribution of lodgepole and jack pine. Finally, we measured the amount of gene flow between the pure species. We found the distribution of the pine classes is explained by environmental variables, and these distributions differ from classic distribution maps. Hybrid ancestry was biased toward lodgepole pine; however, gene flow between the two species was equal. The results of this study suggest that the hybrid zone is complex and influenced by environmental constraints. As a result of this analysis, range limits should be redefined. PMID:23346232

  6. Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: mosaic structure and differential introgression

    PubMed Central

    Cullingham, Catherine I; James, Patrick M A; Cooke, Janice E K; Coltman, David W

    2012-01-01

    Understanding the physical and genetic structure of hybrid zones can illuminate factors affecting their formation and stability. In north-central Alberta, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia) and jack pine (Pinus banksiana Lamb) form a complex and poorly defined hybrid zone. Better knowledge of this zone is relevant, given the recent host expansion of mountain pine beetle into jack pine. We characterized the zone by genotyping 1998 lodgepole, jack pine, and hybrids from British Columbia, Alberta, Saskatchewan, Ontario, and Minnesota at 11 microsatellites. Using Bayesian algorithms, we calculated genetic ancestry and used this to model the relationship between species occurrence and environment. In addition, we analyzed the ancestry of hybrids to calculate the genetic contribution of lodgepole and jack pine. Finally, we measured the amount of gene flow between the pure species. We found the distribution of the pine classes is explained by environmental variables, and these distributions differ from classic distribution maps. Hybrid ancestry was biased toward lodgepole pine; however, gene flow between the two species was equal. The results of this study suggest that the hybrid zone is complex and influenced by environmental constraints. As a result of this analysis, range limits should be redefined. PMID:23346232

  7. Disorder on the landscape

    SciTech Connect

    Podolsky, Dmitry; Jokela, Niko; Majumder, Jaydeep E-mail: majumder@mnnit.ac.in

    2008-05-15

    Disorder on the string theory landscape may significantly affect dynamics of eternal inflation leading to the possibility for some vacua on the landscape to become dynamically preferable over others. We systematically study effects of a generic disorder on the landscape, starting by identifying a sector with built-in disorder-a set of de Sitter vacua corresponding to compactifications of the type IIB string theory on Calabi-Yau manifolds with a number of warped Klebanov-Strassler throats attached randomly to the bulk part of the Calabi-Yau. Further, we derive a continuum limit of the vacuum dynamics equations on the landscape. Using methods of the dynamical renormalization group we determine the late-time behavior of the probability distribution for an observer to measure a given value of the cosmological constant. We find the diffusion of the probability distribution to significantly slow down in sectors of the landscape where the number of nearest-neighboring vacua for any given vacuum is small. We discuss the relation of this slowdown with the phenomenon of Anderson localization in disordered media.

  8. Influence of water deficit on the molecular responses of Pinus contorta × Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera.

    PubMed

    Arango-Velez, Adriana; González, Leonardo M Galindo; Meents, Miranda J; El Kayal, Walid; Cooke, Barry J; Linsky, Jean; Lusebrink, Inka; Cooke, Janice E K

    2014-11-01

    Conifers exhibit a number of constitutive and induced mechanisms to defend against attack by pests and pathogens such as mountain pine beetle (Dendroctonus ponderosae Hopkins) and their fungal associates. Ecological studies have demonstrated that stressed trees are more susceptible to attack by mountain pine beetle than their healthy counterparts. In this study, we tested the hypothesis that water deficit affects constitutive and induced responses of mature lodgepole pine × jack pine hybrids (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats. × Pinus banksiana Lamb.) to inoculation with the mountain pine beetle fungal associate Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield. The degree of stress induced by the imposed water-deficit treatment was sufficient to reduce photosynthesis. Grosmannia clavigera-induced lesions exhibited significantly reduced dimensions in water-deficit trees relative to well-watered trees at 5 weeks after inoculation. Treatment-associated cellular-level changes in secondary phloem were also observed. Quantitative RT-PCR was used to analyze transcript abundance profiles of 18 genes belonging to four families classically associated with biotic and abiotic stress responses: aquaporins (AQPs), dehydration-responsive element binding (DREB), terpene synthases (TPSs) and chitinases (CHIs). Transcript abundance profiles of a TIP2 AQP and a TINY-like DREB decreased significantly in fungus-inoculated trees, but not in response to water deficit. One TPS, Pcb(+)-3-carene synthase, and the Class II CHIs PcbCHI2.1 and PcbCHI2.2 showed increased expression under water-deficit conditions in the absence of fungal inoculation, while another TPS, Pcb(E)-β-farnesene synthase-like, and two CHIs, PcbCHI1.1 and PcbCHI4.1, showed attenuated expression under water-deficit conditions in the presence of fungal inoculation. The effects were observed both locally and systemically. These results demonstrate

  9. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    SciTech Connect

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  10. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    PubMed Central

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  11. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    PubMed

    Brudvig, Lars A; Orrock, John L; Damschen, Ellen I; Collins, Cathy D; Hahn, Philip G; Mattingly, W Brett; Veldman, Joseph W; Walker, Joan L

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  12. From landscape to domain: Soils role in landscape classifications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil landscape classifications are designed to divide landscapes into units with significance for the provisioning and regulating of ecosystem services and the development of conservation plans for natural resources. More specifically, such classifications serve as the basis for stratifying manageme...

  13. Modeling animal landscapes.

    PubMed

    Porter, W P; Ostrowski, S; Williams, J B

    2010-01-01

    There is an increasing need to assess the effects of climate and land-use change on habitat quality, ideally from a mechanistic basis. The symposium "Molecules to Migration: Pressures of Life" at the Fourth International Conference in Africa for Comparative Physiology and Biochemistry, Maasai Mara National Reserve, Kenya, 2008, illustrated how the principles of biophysical ecology can capture the mechanistic links between organisms, climate, and other habitat features. These principles provide spatially explicit assessments of habitat quality from a physiological perspective (i.e., "animal landscapes") that can be validated independently of the data used to derive and parameterize them. The contents of this symposium showcased how the modeling of animal landscapes can be used to assess key issues in applied and theoretical ecology. The presentations included applications to amphibians, reptiles, birds, and mammals. The rare Arabian oryx on the Arabian Peninsula is used as an example for energetic calculations and their implications for behavior on the landscape. PMID:20670170

  14. Landscape of superconducting membranes

    SciTech Connect

    Denef, Frederik; Hartnoll, Sean A.

    2009-06-15

    The AdS/CFT correspondence may connect the landscape of string vacua and the 'atomic landscape' of condensed matter physics. We study the stability of a landscape of IR fixed points of N=2 large N gauge theories in 2+1 dimensions, dual to Sasaki-Einstein compactifications of M theory, toward a superconducting state. By exhibiting instabilities of charged black holes in these compactifications, we show that many of these theories have charged operators that condense when the theory is placed at a finite chemical potential. We compute a statistical distribution of critical superconducting temperatures for a subset of these theories. With a chemical potential of 1 mV, we find critical temperatures ranging between 0.24 and 165 K.

  15. 75 FR 23666 - Huron-Manistee National Forests, White Pines Wind Farm Project, Mason County, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Forest Service Huron-Manistee National Forests, White Pines Wind Farm Project, Mason County, MI AGENCY... Pines Wind Farm Project on National Forest System (NFS) lands managed by the Huron-Manistee National... process for the White Pines Wind Farm Project. DATES: The Notice of Intent to prepare the White Pines...

  16. 75 FR 7470 - Pine Prairie Energy Center, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Energy Regulatory Commission Pine Prairie Energy Center, LLC; Notice of Application February 3, 2010. Take notice that on January 26, 2010, Pine Prairie Energy Center, LLC (Pine Prairie), 333 Clay Street... Pine Prairie to: (1) Install six 5,750 hp electric motor drive compressor units instead of the four...

  17. 75 FR 65310 - Pine Prairie Energy Center, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Energy Regulatory Commission Pine Prairie Energy Center, LLC; Notice of Application October 15, 2010. Take notice that on October 4, 2010, Pine Prairie Energy Center, LLC (Pine Prairie), 333 Clay Street... convenience and necessity to construct and operate its Phase III Expansion Project. Pine Prairie's Phase...

  18. 76 FR 81924 - Pine Prairie Energy Center, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Energy Regulatory Commission Pine Prairie Energy Center, LLC; Notice of Application Take notice that on December 15, 2011, Pine Prairie Energy Center, LLC (Pine Prairie), 333 Clay Street, Suite 1500, Houston, TX... necessity to amend its certificate authority previously granted in CP04-379-000, et al. Pine...

  19. Excavation of red squirrel middens by grizzly bears in the whitebark pine zone

    USGS Publications Warehouse

    Mattson, D.J.; Reinhart, D.P.

    1997-01-01

    7. Grizzly bears would benefit from the minimization of roads and other human facilities in the whitebark pine zone and from increases in the availability of whitebark pine seeds, potentially achieved by increasing the numbers of cone-producing whitebark pine trees, especially in lower elevations of the whitebark pine zone where red squirrels are more abundant.

  20. Landscapes, tourism, and conservation

    PubMed

    Burger

    2000-04-17

    One key aspect of global change is a decrease in ecological integrity as more and more landscapes are developed, leaving a mosaic of intact refuges and degraded patches that may not be sufficient for conserving biodiversity. While increases in human population and shifts in the distribution of people affect land use, the temporary movement of people can have major implications for conservation and biodiversity. Three examples are presented where recreation/tourism can enhance the conservation of land on a landscape scale, leading to habitat protection and biodiversity preservation: (1) Shorebirds often require a matrix of different habitat types during migratory stopovers, and ecotourism can serve as a catalyst for landscape scale protection of habitat. (2) Riparian habitats can serve as corridors to link diverse habitat patches, as well as serving as biodiversity hotspots. (3) Remediation and rehabilitation of contaminated lands, such as those of the US Department of Energy, aimed at developing recreational activities on the uncontaminated portions, can be the most economical form of re-development with no increase in human or ecological risk. Since large areas on many DOE sites have been undisturbed since the Second World War, when they were acquired, they contain unique or valuable ecosystems that serve an important role within their regional landscapes. In all three cases the judicious development of recreational/tourist interests can encourage both the conservation of habitats and the wise management of habitats on a landscape scale. While some species or habitats are too fragile for sustained tourism, many can be managed so that species, ecosystems and ecotourists flourish. By contributing to the economic base of regions, ecotourists/recreationists can influence the protection of land and biodiversity on a landscape scale, contributing to ecosystem management. The human dimensions of land preservation and biodiversity protection are key to long

  1. Bacteriostatics of volatile organic compounds of Crimean pine and environmental meteorological conditions

    NASA Astrophysics Data System (ADS)

    Chalaya, Elena; Slepykh, Victor; Efimenko, Natalia; Povolotckaia, Nina

    2015-04-01

    Sanitary and hygienic properties of air saturated with volatile organic compounds of plants (VOC) have a fundamental importance for the biosphere. In particular, they make such a feature as the freshness of the air. The energy contained in VOC and made by Earth vegetation can be compared with the energy of lightning discharges in the atmosphere during the year [1]. The influence of natural environment on the dynamics of VOC developed by plants is also of current interest and is, in particular, important for resort study because VOC produced by the vegetation of the resort regions can be seen as a self-contained resort resource [2]. Dynamics of VOC evolution by Crimean pine (Pinus Pallasiana D.Don.) that is the forest forming breed of the resort region Caucasus Mineral Waters (Russia) has been studied by a microbiological method [1]. Dynamics of bacteriostatics was qualified by the extent of oppression of the VOC test- culture (Staphylococcus aureus 209p) of the pine in % in comparison with control. The needles for the experience were selected at noon in the middle of the summer. At the time of the needle selection meteorological indicators were fixed. As the result of the researches we got an empirical equation of dynamics of VOC bacteriostatics of the Crimean pine under the influence of total solar radiation (kW/m2) and relative air humidity (%). The coefficient of the multiple correlation of the VOC bacteriostatics of the Crimean pine, total solar radiation and relative air humidity makes: R=0,83 at the importance of F=7,53>F0 05=3,49. The coefficient of the multiple determination is R2=0,69. The equation is: y = - 35,1020 + 1,7193x + 175,6638p- 0,0181x2 + 0,6054 (xp) - 191,1319p2, where Y - is bacteriostatics (%); x - is relative humidity (%); p - is total solar radiation (kW/m2). The fixed parameters of the equation are: air humidity - 90-30%; total solar radiation - 0.20-1.0 kW/m2; bacteriostatics - 0-61%. The obtained results can be used in the resort study

  2. The oldest know Rocky Mountain bristlecone pines (Pinus aristata Engelm. )

    SciTech Connect

    Brunstein, F.C. ); Yamaguchi, D.K. )

    1992-08-01

    We have found 12 living Rocky Mountain bristlecone pines (Pinus aristata) more than 1600 yr old, including four that are more than 2 1 00 yr old, on Black Mountain, near South Park, and on Almagre Mountain, in the southern Front Range, Colorado. A core from the oldest of these trees has an inner-ring date of 442 B.C. This tree is therefore at least 2435 yr old and exceeds the age of the oldest previously reported Rocky Mountain bristlecone pine by 846 yr, The ages of these trees show that Rocky Mountain bristlecone pines, under arid environmental conditions, achieve much older ages than have been previously reported. The ages also show that previously inferred trends in bristlecone pine ages, where maximum ages in the eastern range of Rocky Mountain bristlecone pines are much less than maximum ages in the western range of Great Basin bristlecone pines (Pinus longaea), are less strong than previously supposed. Ancient Rocky Mountain bristlecone pines, such as those found in this study, have the potential to expand our knowledge of late Holocene climatic conditions in western North America.

  3. A Tale of Two Forests: Simulating Contrasting Lodgepole Pine and Spruce Forest Water and Carbon Fluxes Following Mortality from Bark Beetles

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Pendall, E.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Borkhuu, B.

    2014-12-01

    In recent decades, bark beetle infestation in western North America has reached epidemic levels. The resulting widespread forest mortality may have profound effects on present and future water and carbon cycling with potential negative consequences to a region that relies on water from montane and subalpine watersheds. We simulated stand-level ecosystem fluxes of water and carbon at two bark beetle-attacked conifer forests in southeast Wyoming, USA. The lower elevation site dominated by lodgepole pine (Pinus contorta) was attacked by mountain pine beetle (Dendroctonus ponderosae) during 2008-2010. The high elevation Engelmann spruce (Picea engelmannii) dominated site was attacked by the spruce beetle (Dendroctonus rufipennis) during roughly the same time period. Both beetle infestations resulted in >60% canopy mortality in the footprint of eddy covariance towers located at each site. However, carbon and water fluxes responses to mortality depended on the forest type. Using data collected at the sites, we scaled simulated plant hydraulic conductivity by either percent canopy mortality or loss of live tree basal area during infestation. We also simulated a case of no beetle attack. At the lodgepole site, the no-beetle model best fit the data and showed no significant change in growing season carbon flux and a 15% decrease in evapotranspiration (ET). However, at the spruce site, the simulation that tracked canopy loss agreed best with observations: carbon flux decreased by 72% and ET decreased by 31%. In the lodgepole stand, simulated soil water content agreed with spatially distributed measurements that were weighted to reflect overall mortality in the tower footprint. Although these two forest ecosystems are only 20 km apart, separated by less than 300m in elevation, and have been impacted by similar mortality agents, the associated changes in carbon and water cycling are significantly different. Beetle effects on hydrologic cycling were greatest at high elevation

  4. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest?

    PubMed

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L

    2013-09-01

    Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine. PMID:23955061

  5. Shaping the Landscape.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on various agents that change the landscape. Includes teaching activities on weathering, water, wind and ice erosion, plate tectonics, sedimentation, deposition, mountain building, and determining contour lines. Contains reproducible handouts and worksheets for two of the activities. (TW)

  6. Performance Technology Landscape.

    ERIC Educational Resources Information Center

    Addison, Roger M.

    2003-01-01

    Describes a performance technology landscape that has been developed for performance improvement institutes. Defines performance technology, including identification of value; definition of outcomes; performance analysis; valuation of effectiveness; focusing on results; systemic approach; adding value; aligning workers, activity, the organization,…

  7. Desert landscape irrigation

    SciTech Connect

    Quinones, R.

    1995-06-01

    Industrialization can take place in an arid environment if a long term, overall water management program is developed. The general rule to follow is that recharge must equal or exceed use. The main problem encountered in landscape projects is that everyone wants a lush jungle setting, tall shade trees, ferns, with a variety of floral arrangements mixed in. What we want, what we can afford, and what we get are not always the same. Vegetation that requires large quantities of water are not native to any desert. Surprisingly; there are various types of fruit trees, and vegetables that will thrive in the desert. Peaches, plums, nut trees, do well with drip irrigation as well as tomatoes. Shaded berry plans will also do well, the strawberry being one. In summary; if we match our landscape to our area, we can then design our irrigation system to maintain our landscape and grow a variety of vegetation in any arid or semiarid environment. The application of science and economics to landscaping has now come of age.

  8. Biofuels from urban landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass from urban landscapes is an untapped resource. Lawn thatch and clippings, fallen leaves and tree limbs are all potential sources of biofuels. Most cities already collect and transport these materials to disposal sites; but, alternatively could collect and transport these materials to a loc...

  9. Landscape in Literature.

    ERIC Educational Resources Information Center

    Salter, Christopher L.; Lloyd, William J.

    One of a series of Resource Papers for College Geography, this thematic study guide focuses on literary setting and the personal space of fictional characters as an approach to comparative literary study, and concurrently uses fictional treatments of landscape and place as a means to encourage greater sensitivity to geographical and architectural…

  10. A Curious Landscape

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 'postcard' from the panoramic camera on the Mars Exploration Rover Opportunity shows the view of the martian landscape southwest of the rover. The image was taken in the late martian afternoon at Meridiani Planum on Mars, where Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24.

  11. Landscape Management: Field Specialist.

    ERIC Educational Resources Information Center

    Newton, Deborah; Newton, Steve

    This module is the second volume in a series of three publications on landscape management. The module contains five instructional units that cover the following topics: orientation; equipment; irrigation systems and maintenance; plant material identification and pests; and turf identification and pests. Each instructional unit follows a standard…

  12. Moving into Landscapes

    ERIC Educational Resources Information Center

    Nelson, Cindy

    2008-01-01

    This article describes a lesson, designed for second graders, that begins with the teacher showing and talking about a few landscape fundamentals: horizon line, depth, and the mood or feeling that a work of art inspires. A class discussion ensues about how an artist's images can make one feel, how they can convey calmness, warmth, anxiety, or a…

  13. Landscapes. Artists' Workshop Series.

    ERIC Educational Resources Information Center

    King, Penny; Roundhill, Clare

    This instructional resource, designed to be used by and with elementary level students, provides inspiration for landscape painting by presenting the work of six different artists. These include: "Fuji in Clear Weather" (Katsushika Hokusai, 1823-29); "The Tree of Life" (Gustav Klimt, c. 1905-1909); "The Waterlily Pond" (Claude Monet, 1899);…

  14. LANDSCAPE SCIENCES OVERVIEW

    EPA Science Inventory

    The primary aim of the Landscape Sciences Program (LSP) is to develop methodologies to evaluate the status, trends, and vulnerability of ecological resources (primarily water) at site, watershed, regional, and national scales, and to evaluate the major stressors and exposures to...

  15. LANDSCAPE MANAGEMENT PRACTICES

    EPA Science Inventory

    USDA Conservation Practices are applied at various scales ranging from a portion of a field or a specific farm operation to the watershed or landscape scale. The Conservation Effects Assessment Project is a joint effort of USDA Conservation and Research agencies to determine the...

  16. Campus Landscape: Functions, Forms, Features.

    ERIC Educational Resources Information Center

    Dober, Richard P.

    This guide provides information, instruction, and ideas on planning and designing every aspect of the campus landscape, from parking lots to playing fields. Using real-world examples of classic and contemporary campus landscapes, it features coverage of landscape restoration and regeneration; provides an assessment matrix for consistent, effective…

  17. Geomorphology of anthropogenic landscapes

    NASA Astrophysics Data System (ADS)

    Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    The construction of urban areas and the development of road networks leave a significant signature on the Earth surface, providing a geomorphological evidence to support the idea that humans are nowadays a geomorphic agent having deep effects on the morphological organization of the landscape. The reconstruction or identification of anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the Anthropocene. Following this research line, the present study tests the effectiveness of a recently published topographic index, the Slope Local Length of Autocorrelation (SLLAC, Sofia et al. 2014) to portrait anthropogenic geomorphology, focusing in particular on road network density, and urban complexity (UCI). At first, the research considers the increasing of anthropic structures and the resulting changes in the SLLAC and in two derived parameters (mean SLLAC per km2 and SLLAC roughness, or Surface Peak Curvature -Spc). As a second step, considering the SLLAC derived indices, the anthropogenic geomorphology is automatically depicted using a k-means clustering algorithm. In general, the increasing of road network density or of the UCI is positively correlated to the mean SLLAC per km2, while the Spc is negatively correlated to the increasing of the anthropic structures. Areas presenting different road network organization are effectively captured considering multiple combinations of the defined parameters. Landscapes with small scattered towns, and a network with long roads in a dendritic shape (with hierarchical branching) are characterized simultaneously by high mean SLLAC and low Spc. Large and complex urban areas served by rectilinear networks with numerous short straight lines and right angles, have either a maximized mean SLLAC or a minimized Spc or both. In all cases, the anthropogenic landscape identified by the procedure is comparable to the ones identified manually from orthophoto, with the

  18. Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine.

    PubMed

    Villari, Caterina; Battisti, Andrea; Chakraborty, Sourav; Michelozzi, Marco; Bonello, Pierluigi; Faccoli, Massimo

    2012-07-01

    Conifer bark beetles are often associated with fungal complexes whose components have different ecological roles. Some associated species are nutritionally obligate fungi, serving as nourishment to the larvae, whereas others are pathogenic blue-stain fungi known to be involved in the interaction with host defenses. In this study we characterized the local and systemic defense responses of Scots pine (Pinus sylvestris L.) against Ophiostoma brunneo-ciliatum Math. (a blue-stain pathogen) and Hyalorhinocladiella macrospora (Franke-Grosm.) Harr. (a nutritional fungus). These fungi are the principal associates of the pine engraver beetle, Ips acuminatus (Gyll.). Host responses were studied following inoculation with the fungi, singly and as a fungal complex, and by identifying and quantifying terpenoids, phenolic compounds and lignin. Although the length of the necrotic lesions differed between control (wound) and fungal treatments, only two compounds (pinosylvin monomethyl ether and (+)-α-pinene) were significantly affected by the presence of the fungi, indicating that Scots pine has a generic, rather than specific, induced response. The fact that both nutritional and blue-stain fungi triggered comparable induced defense responses suggests that even a non-pathogenic fungus may participate in exhausting host plant defenses, indirectly assisting in the beetle establishment process. Our findings contribute to the further development of current theory on the role of associated fungal complexes in bark beetle ecology. PMID:22718525

  19. Host Deception: Predaceous Fungus, Esteya vermicola, Entices Pine Wood Nematode by Mimicking the Scent of Pine Tree for Nutrient

    PubMed Central

    Lin, Feng; Ye, Jianling; Wang, Huaguang; Zhang, Aijun; Zhao, Boguang

    2013-01-01

    Background A nematophagous fungus, Esteya vermicola, is recorded as the first endoparasitic fungus of pine wood nematode (PWN), Bursaphelenchus xylophilus, in last century. E. vermicola exhibited high infectivity toward PWN in the laboratory conditions and conidia spraying of this fungus on Japanese red pine, Pinus densiflora, seedlings in the field protected the pine trees from pine wilt disease to some extent, indicating that it is a potential bio-control agent against PWN. Previous research had demonstrated that the living fungal mycelia of E. vermicola continuously produced certain volatile organic compounds (VOCs), which were responsible for the PWN attraction. However, identity of these VOCs remains unknown. Methodology/Principal Findings In this study, we report the identification of α-pinene, β-pinene, and camphor produced by living mycelia of E. vermicola, the same volatile compounds emitted from PWN host pine tree, as the major VOCs for PWN attraction using gas chromatography-mass spectrometry (GC-MS). In addition, we also confirmed the host deception behavior of E. vermicola to PWN by using synthetic VOCs in a straightforward laboratory bioassay. Conclusions/Significance This research result has demonstrated that the endoparasitic nematophagous fungus, E. vermicola, mimics the scent of PWN host pine tree to entice PWN for the nutrient. The identification of the attractive VOCs emitted from the fungus E. vermicola is of significance in better understanding parasitic mechanism of the fungus and the co-evolution in the two organisms and will aid management of the pine wilt disease. PMID:23990972

  20. Seasonal and intraspecific variability of chlorophyll fluorescence, pigmentation and growth of Pinus ponderosa subjected to elevated CO{sub 2}

    SciTech Connect

    Houpis, J.L.J.; Anschel, D.; Pushnik, J.C.; Demaree, R.S.; Anderson, P.D.

    1994-12-01

    Atmospheric CO{sub 2}2 is expected to double in the next century, and these increases will have substantial impact on forest ecosystems. However, the database on the effects of elevated CO{sub 2} on forests is limited, and the extent of intraspecific variability remains unknown. We are investigating the effects of elevated CO{sub 2} on the intraspecific variability of quantum yield (as measured through chlorophyll fluorescence Fv/Fm ratio) and pigmentation, and how these are correlated to variability in growth. Four-year-old Pinus ponderosa seedlings were obtained from nine different sources across California. These seedlings were grown in standard outdoor exposure chambers for sixteen months at either ambient levels of CO{sub 2}, ambient+175ppm CO{sub 2}, or ambient+350ppm CO{sub 2}. The seedlings were periodically measured for growth, pigmentation, and chlorophyll fluorescence. The results showed a variable growth response of the nine sources during all measurement periods. Increasing CO{sub 2} resulted in a decrease in Fv/Fm among sources ranging from {minus}2.1% to {minus}23.2% in February, and 3.1% to {minus}12.5% in June. The source that had the best growth throughout the study, also had a minimal reduction in quantum yield (Fv/Fm) in the presence of elevated CO{sub 2}. For the seedlings of fastest growing sources, the correspondence between total growth and chlorophyll fluorescence was strongest during the February measurement period. Our results also showed a significant reduction in pigmentation due to increased CO{sub 2}. There are at least three explanations for the different responses during each measurement periods. First, the trees could be adapting favorably to increasing CO{sub 2}. Secondly, 1993 needles could be under less physiological stress than the current year needles. Third, there is a seasonal effect dependent upon temperature or light which is influencing the Fv/Fm ratio and pigmentation.

  1. Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Dannenberg, Matthew P.; Wise, Erika K.

    2016-04-01

    Projected changes in the seasonality of hydroclimatic regimes are likely to have important implications for water resources and terrestrial ecosystems in the U.S. Pacific Northwest. The tree ring record, which has frequently been used to position recent changes in a longer-term context, typically relies on signals embedded in the total ring width of tree rings. Additional climatic inferences at a subannual temporal scale can be made using alternative tree ring metrics such as earlywood and latewood widths and the density of tree ring latewood. Here we examine seasonal precipitation and temperature signals embedded in total ring width, earlywood width, adjusted latewood width, and blue intensity chronologies from a network of six Pinus ponderosa sites in and surrounding the upper Columbia River Basin of the U.S. Pacific Northwest. We also evaluate the potential for combining multiple tree ring metrics together in reconstructions of past cool- and warm-season precipitation. The common signal among all metrics and sites is related to warm-season precipitation. Earlywood and latewood widths differ primarily in their sensitivity to conditions in the year prior to growth. Total and earlywood widths from the lowest elevation sites also reflect cool-season moisture. Effective correlation analyses and composite-plus-scale tests suggest that combining multiple tree ring metrics together may improve reconstructions of warm-season precipitation. For cool-season precipitation, total ring width alone explains more variance than any other individual metric or combination of metrics. The composite-plus-scale tests show that variance-scaled precipitation reconstructions in the upper Columbia River Basin may be asymmetric in their ability to capture extreme events.

  2. 23 CFR 752.4 - Landscape development.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Landscape development. 752.4 Section 752.4 Highways... ROADSIDE DEVELOPMENT § 752.4 Landscape development. (a) Landscape development, which includes landscaping... landscaping and environmental design. (b) Landscape development should have provisions for plant...

  3. 23 CFR 752.4 - Landscape development.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Landscape development. 752.4 Section 752.4 Highways... ROADSIDE DEVELOPMENT § 752.4 Landscape development. (a) Landscape development, which includes landscaping... landscaping and environmental design. (b) Landscape development should have provisions for plant...

  4. 23 CFR 752.4 - Landscape development.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Landscape development. 752.4 Section 752.4 Highways... ROADSIDE DEVELOPMENT § 752.4 Landscape development. (a) Landscape development, which includes landscaping... landscaping and environmental design. (b) Landscape development should have provisions for plant...

  5. 23 CFR 752.4 - Landscape development.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Landscape development. 752.4 Section 752.4 Highways... ROADSIDE DEVELOPMENT § 752.4 Landscape development. (a) Landscape development, which includes landscaping... landscaping and environmental design. (b) Landscape development should have provisions for plant...

  6. 23 CFR 752.4 - Landscape development.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Landscape development. 752.4 Section 752.4 Highways... ROADSIDE DEVELOPMENT § 752.4 Landscape development. (a) Landscape development, which includes landscaping... landscaping and environmental design. (b) Landscape development should have provisions for plant...

  7. Morphological and niche divergence of pinyon pines.

    PubMed

    Ortiz-Medrano, Alejandra; Scantlebury, Daniel Patrick; Vázquez-Lobo, Alejandra; Mastretta-Yanes, Alicia; Piñero, Daniel

    2016-05-01

    The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation. PMID:27092235

  8. Freshwater resources of Big Pine Key, Florida

    USGS Publications Warehouse

    Hanson, Chris E.

    1980-01-01

    The principal freshwater-bearing unit underlying Big Pine Key, Fla, is a layer of oolitic limestone averaging 19 feet in thickness. The freshwater exists in two separate lenses, one in the northern half of the island and one in the southern half. The slightly larger north lens is separated from the south lens by a low-lying land area 1 to 3 feet above mean sea level. The lenses float on saltwater in the aquifer and are affected by tidal fluctuations. The areal and depth configuration of the lenses fluctuate in response to rainfall, evapotranspiration, lateral and vertical losses, and pumpage from local wells. The lenses are not a major source of freshwater. Only a small amount of the freshwater in the lenses can be removed before saltwater intrusion will occur. (USGS)

  9. 29. In context, from west facing east on Pine Street, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. In context, from west facing east on Pine Street, south side of Building H-2, left. - Clark Howell Homes (Public Housing), Bounded by North Avenue, Lovejoy Street, Mills Street & Luckie Street, Atlanta, Fulton County, GA

  10. 27. In context, from west facing east on Pine Street, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. In context, from west facing east on Pine Street, west side of Building E-6, far left. - Clark Howell Homes (Public Housing), Bounded by North Avenue, Lovejoy Street, Mills Street & Luckie Street, Atlanta, Fulton County, GA

  11. 20. GROVE OF TREES PINES, MULBERRY, JUNIPER, BLUE SPRUCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. GROVE OF TREES -- PINES, MULBERRY, JUNIPER, BLUE SPRUCE -- TRANSPLANTED FROM NEW MEXICO MANZANO MOUNTAINS, WEST OF BUILDINGS 4 AND T-59, LOOKING NORTHWEST - U. S. Veterans Administration Medical Center, 2100 Ridgecrest Southeast, Albuquerque, Bernalillo County, NM

  12. 6. FRONT PORCH AND GABLE SHOWING PINE TREE SILHOUETTE, TIMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FRONT PORCH AND GABLE SHOWING PINE TREE SILHOUETTE, TIMBER SUPPORTS, AND STONE PORCH FLOOR, TO NORTHWEST - U.S. Forest Service Chelan Ranger Station, Main Office, 428 West Woodin Avenue, Chelan, Chelan County, WA

  13. 58. View of Writer's Cabin (or Three Pines Cabin) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. View of Writer's Cabin (or Three Pines Cabin) and path looking from the southeast (similar to HALS no. LA-1-35) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  14. ESTATE ROAD WITH LONGLEAF PINE AND WIREGRASS HABITAT, NORTH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ESTATE ROAD WITH LONGLEAF PINE AND WIREGRASS HABITAT, NORTH OF NURSERY ROAD AND WEST OF HIGHWAY 87, FACING SOUTHEAST - Overhills, Fort Bragg Military Reservation, Approximately 15 miles NW of Fayetteville, Overhills, Harnett County, NC

  15. VIEW OF ELM DRIVE WITH NORFOLK PINE ON RIGHT. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF ELM DRIVE WITH NORFOLK PINE ON RIGHT. VIEW FACING WEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  16. Isolation and characterization of Korean pine (Pinus koraiensis) convicilin.

    PubMed

    Jin, Tengchuan; Wang, Yang; Chen, Yu-Wei; Albillos, Silvia M; Kothary, Mahendra H; Fu, Tong-Jen; Tankersley, Boyce; McHugh, Tara H; Zhang, Yu-Zhu

    2014-07-01

    A vicilin-like globulin seed storage protein, termed convicilin, was isolated for the first time from Korean pine (Pinus koraiensis). SDS-PAGE analysis revealed that Korean pine convicilin was post-translationally processed. The N-terminal peptide sequences of its components were determined. These peptides could be mapped to a protein translated from an embryo abundant transcript isolated in this study. Similar to vicilin, native convicilin appeared to be homotrimeric. Differential scanning calorimetry (DSC) analyses revealed that this protein is less resistant to thermal treatment than Korean pine vicilin. Its transition temperature was 75.57 °C compared with 84.13 °C for vicilin. The urea induced folding-unfolding equilibrium of pine convicilin monitored by intrinsic fluorescence could be interpreted in terms of a two-state model, with a Cm of 4.41 ± 0.15 M. PMID:24735553

  17. [Analysis of polychlorinated biphenyls and organochlorine pesticides in pine needles].

    PubMed

    Kozul, Darija; Herceg Romanić, Snjezana

    2007-12-01

    This paper presents a review of methods for the analysis of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in pine needles. These compounds are lipophilic, they accumulate in the biotic and abiotic part of the environment in which they are persistent, and their use is forbidden or restricted due to harmful effects on human and animal health. Pine needles are convenient for monitoring the levels of organochlorine compounds in the air because they accumulate them in wax with which they are covered. However, the presence of many other compounds makes them complex for analysis. Analytical methods for determining organochlorine compounds in pine needles include sample collection, extraction of compounds with a suitable solvent, extract clean-up from unwanted compounds and qualitative and quantitative analysis. PCBs and OCPs are present in pine needles in traces, and every part of the analytical procedure has to be as efficient and selective as possible. PMID:18063531

  18. Estimating Scots Pine Tree Mortality Using High Resolution Multispectral Images

    NASA Astrophysics Data System (ADS)

    Buriak, L.; Sukhinin, A. I.; Conard, S. G.; Ivanova, G. A.; McRae, D. J.; Soja, A. J.; Okhotkina, E.

    2010-12-01

    Scots pine (Pinus sylvestris) forest stands of central Siberia are characterized by a mixed-severity fire regime that is dominated by low- to high-severity surface fires, with crown fires occurring less frequently. The purpose of this study was to link ground measurements with air-borne and satellite observations of active wildfires and older fire scars to better estimate tree mortality remotely. Data from field sampling on experimental fires and wildfires were linked with intermediate-resolution satellite (Landsat Enhanced Thematic Mapper) data to estimate fire severity and carbon emissions. Results are being applied to Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, MERIS, Landsat-ETM, SPOT (i.e., low, middle and high spatial resolution), to understand their remote-sensing capability for mapping fire severity, as indicated by tree mortality. Tree mortality depends on fireline intensity, residence time, and the physiological effects on the cambium layer, foliage and roots. We have correlated tree mortality measured after fires of varying severity with NDVI and other Chlorophyll Indexes to model tree mortality on a landscape scale. The field data obtained on experimental and wildfires are being analyzed and compared with intermediate-resolution satellite data (Landsat7-ETM) to help estimate fire severity, emissions, and carbon balance. In addition, it is being used to monitor immediate ecosystem fire effects (e.g., tree mortality) and long-term postfire vegetation recovery. These data are also being used to validate AVHRR , MODIS, and MERIS estimates of burn area. We studied burned areas in the Angara Region of central Siberia (northeast of Lake Baikal) for which both ground data and satellite data (ENVISAT-MERIS, Spot4, Landsat5, Landsat7-ETM) were available for the 2003 - 2004 and 2006 - 2008 periods. Ground validation was conducted on seventy sample plots established on burned sites differing in

  19. 76 FR 1339 - Pine Shoot Beetle; Additions to Quarantined Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ...We are adopting as a final rule, without change, an interim rule that amended the pine shoot beetle (PSB) regulations by adding the entire State of Ohio and counties in Maine and Indiana to the list of quarantined areas following the detection of PSB in those areas. The interim rule was necessary to prevent the spread of PSB, a pest of pine trees, into noninfested areas of the United...

  20. Fire, red squirrels, whitebark pine, and Yellowstone grizzly bears

    USGS Publications Warehouse

    Podruzny, Shannon; Reinhart, D.P.; Mattson, David J.

    1999-01-01

    Whitebark pine (Pinus albicaulis) habitats are important to Yellowstone grizzly bears (Ursus arctos) as refugia and sources of food. Ecological relationships between whitebark pine, red squirrels (Tamiasciurus hudsonicus), and grizzly bear use of pine seeds on Mt. Washburn in Yellowstone National Park, Wyoming, were examined during 1984-86. Following large-scale fires in 1988, we repeated the study in 1995-97 to examine the effects of fire on availability of whitebark pine seed in red squirrel middens and on bear use of middens. Half of the total length of the original line transects burned. We found no red squirrel middens in burned areas. Post-fire linear-abundance (no./km) of active squirrel middens that were pooled from burned and unburned areas decreased 27% compared to pre-fire abundance, but increased in unburned portions of some habitat types. Mean size of active middens decreased 54% post-fire. Use of pine seeds by bears (linear abundance of excavated middens) in pooled burned and unburned habitats decreased by 64%, likely due to the combined effects of reduced midden availability and smaller midden size. We discourage any further large-scale losses of seed producing trees from management-prescribed fires or timber harvesting until the effects of fire on ecological relationships in the whitebark pine zone are better understood.

  1. Simulations of Fluvial Landscapes

    NASA Astrophysics Data System (ADS)

    Cattan, D.; Birnir, B.

    2013-12-01

    The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.

  2. Driving the Landscape

    NASA Astrophysics Data System (ADS)

    Haff, P. K.

    2012-12-01

    Technological modification of the earth's surface (e.g., agriculture, urbanization) is an old story in human history, but what about the future? The future of landscape in an accelerating technological world, beyond a relatively short time horizon, lies hidden behind an impenetrable veil of complexity. Sufficiently complex dynamics generates not only the trajectory of a variable of interest (e.g., vegetation cover) but also the environment in which that variable evolves (e.g., background climate). There is no way to anticipate what variables will define that environment—the dynamics creates its own variables. We are always open to surprise by a change of conditions we thought or assumed were fixed or by the appearance of new phenomena of whose possible existence we had been unaware or thought unlikely. This is especially true under the influence of technology, where novelty is the rule. Lack of direct long-term predictability of landscape change does not, however, mean we cannot say anything about its future. The presence of persistence (finite time scales) in a system means that prediction by a calibrated numerical model should be good for a limited period of time barring bad luck or faulty implementation. Short-term prediction, despite its limitations, provides an option for dealing with the longer-term future. If a computer-controlled car tries to drive itself from New York to Los Angeles, no conceivable (or possible) stand-alone software can be constructed to predict a priori the space-time trajectory of the vehicle. Yet the drive is normally completed easily by most drivers. The trip is successfully completed because each in a series of very short (linear) steps can be "corrected" on the fly by the driver, who takes her cues from the environment to keep the car on the road and headed toward its destination. This metaphor differs in a fundamental way from the usual notion of predicting geomorphic change, because it involves a goal—to reach a desired

  3. Sharing a disparate landscape

    NASA Astrophysics Data System (ADS)

    Ali-Khan, Carolyne

    2010-06-01

    Working across boundaries of power, identity, and political geography is fraught with difficulties and contradictions. In Tali Tal and Iris Alkaher's, " Collaborative environmental projects in a multicultural society: Working from within separate or mutual landscapes?" the authors describe their efforts to do this in the highly charged atmosphere of Israel. This forum article offers a response to their efforts. Writing from a framework of critical pedagogy, I use the concepts of space and time to anchor my analysis, as I examine the issue of power in this Jew/Arab collaborative environmental project. This response problematizes "sharing" in a landscape fraught with disparities. It also looks to further Tal and Alkaher's work by geographically and politically grounding it in the broader current conflict and by juxtaposing sustainability with equity.

  4. MIRANDA PINE, HORSESHOE SPRINGS, TEPUSQUET PEAK, LA BREA, SPOOR CANYON, FOX MOUNTAIN, AND LITTLE PINE ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A., Jr.; Kuizon, Lucia

    1984-01-01

    The Miranda Pine, Horseshoe Springs, Tepusquet Peak, La Brea, Spoor Canyon, Fox Mountain and Little Pine Roadless Areas together occupy about 246 sq mi in the Los Padres National Forest, California. Mineral-resource surveys indicate demonstrated resources of barite, copper, and zinc at two localities in the La Brea Roadless Area and demonstrated resources of phosphate at a mine in the Fox Mountain Roadless Area. A building stone quarry is present on the southern border of the Horseshoe Spring Roadless Area and an area of substantiated resource potential extends into the area. The Miranda Pine, Tepusquet Peak, Spoor Canyon, and Little Pine Roadless Areas have little promise for the occurrence of mineral resources and there is little promise for the occurrence of energy resources in any of the roadless areas.

  5. Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales

    PubMed Central

    Lantschner, M. Victoria; Corley, Juan C.

    2015-01-01

    Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems. PMID:25992640

  6. Multi-scale monitoring of landscape change after the 2011 tsunami

    NASA Astrophysics Data System (ADS)

    Hara, K.; Zhao, Y.; Harada, I.; Tomita, M.; Park, J.; Jung, E.; Kamagata, N.; Hirabuki, Y.

    2015-04-01

    The Great East Japan Earthquake (magnitude 9.0; occurred on 11th March 2011) and subsequent huge tsunami caused widespread damage along the Pacific Ocean coast of eastern Honshu, Japan. This research utilizes multi-resolution remote sensing images to clarify the impact on landscapes caused by this disaster, and also to monitor the subsequent survival and recovery process in the Sendai Bay region. The coastal landscape in the target area features a narrow strip of coastal sand barrier, historically stabilized by planted pine groves; backed by a low-lying plain that has traditionally been diked and converted to irrigated rice paddies. Farmsteads on the flat alluvial plain are surrounded by groves called "Igune", consisting primarily of conifers. MODIS data (250 m resolution) were employed to map the overall extent of inundation and damage on the regional landscape scale. The major damage caused by the tsunami, destruction of coastal pine forests and inundation or rice paddies on the plain, was identified at this level. Progressively finer scale analysis were then implemented using SPOT/HRG-2 (10 m resolution) data; GeoEye-1 fine resolution data (0.5 m) and very fine resolution aerial photographs (10 cm) and LiDAR. These results demonstrated the minute details of the damage and recovery process. Some patches of pine forest, for example, were seen to have survived, and some coastal plant communities were already recovering only a year after the disaster. Continuous monitoring using field work and remote sensing is required for balanced regional strategies that provide for economic and social recovery and as well as restoration of vegetation, biodiversity and vital ecosystem services.

  7. Testing remote sensing estimates of bark beetle induced mortality in lodgepole pine and Engelmann spruce with ground data

    NASA Astrophysics Data System (ADS)

    King, A.; Ewers, B. E.; Sivanpillai, R.; Pendall, E.

    2012-12-01

    Bark beetles have caused widespread regional mortality in both lodgepole and Engelmann spruce forests across western North America, and while studies have addressed the impact on water partitioning caused by the mountain pine beetle, spruce beetle which often occur at high elevations with larger snowpack might have a disproportional impact. Beetle caused mortality can have significant effects on the hydrology of a watershed and therefore needs to be considered when evaluating increased runoff. The objective of this project was to generate maps showing beetle caused mortality for lodgepole pine and spruce fir forests that capture changes to the landscape to improve hydrologic models. Our study area in southeast Wyoming covered an area of approximately 2 by 4 km from 2700 to 2800m elevation range. High spatial resolution (0.5m) aerial imagery acquired by the Airborne Environmental Research Observational Camera (AEROCam) in fall 2011, provided by the Upper Midwest Aerospace Consortium (UMAC), was manually classified into four conifer thematic classes: live and dead lodgepole pine, and live and dead spruce/fir. The classified high resolution image was then verified by tree surveys conducted July-September, 2012 documenting species, tree diameter at breast height (dbh), and the stage of beetle infestation for each tree. After verification the high resolution aerial images were used to train and evaluate the accuracy of a supervised classification of a Landsat 5 Thematic Mapper image from the same time period and area. The preliminary results of a supervised classification show that map accuracy was 57%, 77%, 44%, and 83% for lodgepole live and dead, and spruce/fir live and dead respectively. The highest commission error, 24%, was for dead lodgepole pine being falsely labeled dead spruce/fir. The second highest commission error, 22%, was for live spruce/fir falsely labeled dead spruce/fir. The results indicate high spectral overlap between dead spruce/fir and dead

  8. Mortality in Subalpine Forests of the Sierra Nevada, California, USA: Differential Response of Pines (Pinus albicaulis and P. flexilis) to Climate Variability

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Westfall, R. D.; Delany, D. L.

    2010-12-01

    Widespread forest mortality in high-elevation forests has been increasing across western North American mountains in recent years, with climate, insects, and disease the primary causes. Subalpine forests in the eastern Sierra Nevada, by contrast, have experienced far less mortality than other ranges, and mortality events have been patchy and episodic. This situation, and lack of significant effect of non-native white-pine blister rust, enable investigation of fine-scale response of two subalpine Sierran species, whitebark pine (Pinus albicaulis, PiAl) and limber pine (P. flexilis, PiFl), to climate variability. We report similarities and differences between the two major mortality events in these pines in the last 150 years: 1988-1992 for PiFl and 2006-ongoing for PiAl. In both species, the events occurred within monotypic, closed-canopy, relatively young stands (< 200 yrs PiAl, < 300 yrs in PiFl); were localized to central-eastern Sierra Nevada; and occurred at 2740-2840 m along the eastern edge of the escarpment on north/northeast aspects with slopes > 40%. Mortality patches averaged 40-80 ha in both species, with mean stand mortality of trees > 10 cm diameter 91% in PiAl and 60% in PiFl. The ultimate cause of tree death was mountain pine beetle (Dendroctonus ponderosae) in both species, with increasing 20th/21st C minimum temperatures combined with drought the pre-conditioning factors. Overall growth in the past 150 years suggests that PiFl is more drought hardy than PiAl but responds sensitively to the combined effects of drought and increasing warmth. After the 1988-1992 drought, surviving PiFl recovered growth. PiAl trees grew very poorly during that drought, and continued poor growth in the years until 2006 when the mortality event occurred in PiAl. A significant species effect is the apparent difference in levels of within-stand genetic diversity for climate factors. Differential growth between 19th C (cool, wet) and 20th/21st C (warming, drying) of Pi

  9. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    SciTech Connect

    Negri, M. Cristina; Ssegane, H.

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  10. Seasonal Climate Signals in Multiple Tree-Ring Parameters: A Pilot Study of Pinus ponderosa in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Dannenberg, M.; Wise, E. K.; Keung, J. H.

    2014-12-01

    Proxy-based reconstructions of past climate have played an integral role in assessments of historical climate change, and tree-ring widths (TRW) have a long history of use in this paleoclimate research due to their annual resolution, widespread availability, and sensitivity of growth processes to variation in temperature and water availability. Increasingly, studies have shown that additional tree-ring metrics—including earlywood and latewood widths (EW and LW, respectively), maximum latewood density, and the intensity of reflected blue light from latewood (BI)—can provide additional information on seasonal climatic variability that is not present in TRW alone due to different processes that affect growth in different parts of the growing season. Studies of these additional tree-ring metrics highlight their utility in climate reconstructions, but to date they have mostly been limited to a few tree species and regions. Here, we extend the range of previous studies on alternative tree-ring metrics by evaluating the seasonal climate signals in TRW, EW, LW, and BI of Pinus ponderosa at six semiarid sites surrounding the Columbia River basin in the U.S. Pacific Northwest (PNW). Cores from each site were cross-dated and EW, LW, and TRW were measured using standard dendrochronological procedures. BI was obtained using a high-resolution flatbed scanner and CooRecorder software. To evaluate the unique climate processes and seasonalities contributing to different dendrochronological metrics, monthly temperature and precipitation from each site were obtained from the PRISM climate model and were correlated with each of the tree-ring metrics using the MATLAB program SEASCORR. We also evaluate the potential of using multiple tree-ring metrics (rather than a single proxy) in reconstructions of precipitation in the PNW. Initial results suggest that 1) tree growth at each site is water-limited but with substantial differences among the sites in the strength and seasonality of

  11. Mapping wetland and forest landscapes in Siberia with Landsat data

    NASA Astrophysics Data System (ADS)

    Maksyutov, Shamil; Kleptsova, Irina; Glagolev, Mikhail; Sedykh, Vladimir; Kuzmenko, Ekaterina; Silaev, Anton; Frolov, Alexander; Nikolaeva, Svetlana; Fedorov, Alexander

    2014-05-01

    the permafrost area around Yakutsk the most widespread succession type is birch to larch succession. Three stages of the birch to larch succession are detectable from Landsat image. When Landsat data is used in both West and East Siberia, distinction between deciduous broad-leaved species (birch, aspen, and willow) is difficult due to similarity in spectral signatures. Same problem exists for distinguishing between dark coniferous species (Siberian pine, fir and spruce). Forest classification can be improved by applying landscape type analysis, such as separation into floodplain, terrace, sloping hills.

  12. Nesting success of birds in different silvicultural treatments in southeastern U.S. Pine Forests

    USGS Publications Warehouse

    Barber, D.R.; Martin, T.E.; Melchiors, M.A.; Thill, R.E.; Wigley, T.B.

    2001-01-01

    We examined nesting success and levels of nest predation and cowbird parasitism among five different silvicultural treatments: regenerating (3-6 years old), mid-rotation (12-15 years old), and thinned (17-23 years old) pine plantations, single-tree selection, and late-rotation pine-hardwood stands in the Ouachita Mountains of Arkansas from 1993 to 1995. We monitored 1674 nests. Differences in daily mortality and daily predation rate among two or more treatments were found for 4 and 3 of 12 species, respectively. These differences were lost following Bonferroni adjustments, but thinned stands had higher levels of predation than single-tree selection stands when predation levels were averaged across species. Daily predation rates were positively correlated with the relative abundance of birds, suggesting that nest predators respond to prey availability (i.e., nests) in a density-dependent manner. The relative abundance of cowbirds differed among treatments, with the highest densities in regenerating, thinned, and single-tree selection stands. Field Sparrows (Spizella pusilla) and Yellow-breasted Chats (Icteria virens) experienced higher levels of parasitism in thinned than regenerating plantations, whereas White-eyed Vireos (Vireo griseus) experienced higher parasitism in regenerating plantations than in mid-rotation or thinned plantations. Several shrub-nesting and 1 ground-nesting species had lower nesting success in thinned and regenerating plantations than has been reported in previously published studies. Thus, some seral stages of even-aged management may provide low-quality nesting habitat for several early-successional bird species. In contrast, many species nesting in mid-rotation and single-tree selection stands had nesting success similar to or greater than that found in previous studies, suggesting that some silvicultural treatments, when embedded in a largely forested landscape, may provide suitable habitat for forest land birds without affecting their

  13. Estimating slash pine biomass using radar backscatter

    NASA Technical Reports Server (NTRS)

    Hussin, Yousif Ali; Reich, Robin M.; Hoffer, Roger M.

    1991-01-01

    L-band HV multiple-incidence-angle aircraft synthetic aperture radar (SAR) data were analyzed in relation to average stand biomass, basal area, and tree height for 55 slash pine plantations located in northern Florida. This information was used to develop a system of equations to predict average stand biomass as a function of L-band (24.5-cm) radar backscatter. The system of equations developed in this study using three-stage least-squares and combinatorial screening accounted for 97 percent of the variability observed in average stand biomass per hectare. When applied to an independent data set, the biomass equations had an average bias of less than 1 percent with a standard error of approximately 3 percent. These results indicate that future Shuttle Imaging Radar Systems (e.g., SIR-C, which will have cross-polarized radar sensors) should be able to obtain better estimates of forest biomass than were obtained with previous satellite radar missions, which utilized only HH-polarized SAR data.

  14. Southwestern Pine Forests Likely to Disappear

    ScienceCinema

    McDowell, Nathan

    2016-06-29

    A new study, led by Los Alamos National Laboratory's Nathan McDowell, suggests that widespread loss of a major forest type, the pine-juniper woodlands of the Southwestern U.S., could be wiped out by the end of this century due to climate change, and that conifers throughout much of the Northern Hemisphere may be on a similar trajectory. New results, reported in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. McDowell and his large international team strove to provide the missing pieces of understanding tree death at three levels: plant, regional and global. The team rigorously developed and evaluated multiple process-based and empirical models against experimental results, and then compared these models to results from global vegetation models to examine independent simulations. They discovered that the global models simulated mortality throughout the Northern Hemisphere that was of similar magnitude, but much broader spatial scale, as the evaluated ecosystem models predicted for in the Southwest.

  15. Southwestern Pine Forests Likely to Disappear

    SciTech Connect

    McDowell, Nathan

    2015-12-21

    A new study, led by Los Alamos National Laboratory's Nathan McDowell, suggests that widespread loss of a major forest type, the pine-juniper woodlands of the Southwestern U.S., could be wiped out by the end of this century due to climate change, and that conifers throughout much of the Northern Hemisphere may be on a similar trajectory. New results, reported in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. McDowell and his large international team strove to provide the missing pieces of understanding tree death at three levels: plant, regional and global. The team rigorously developed and evaluated multiple process-based and empirical models against experimental results, and then compared these models to results from global vegetation models to examine independent simulations. They discovered that the global models simulated mortality throughout the Northern Hemisphere that was of similar magnitude, but much broader spatial scale, as the evaluated ecosystem models predicted for in the Southwest.

  16. Landscape Construction in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Yuan, Ruoshi; Wang, Gaowei; Ao, Ping

    The idea of landscape has been recently applied to study various of biological problems. We demonstrate that a dynamical structure built into nonlinear dynamical systems allows us to construct such a global optimization landscape, which serves as the Lyapunov function for the ordinary differential equation. We find exact constructions on the landscape for a class of dynamical systems, including a van der Pol type oscillator, competitive Lotka-Volterra systems, and a chaotic system. The landscape constructed provides a new angle for understanding and modelling biological network dynamics.

  17. Barrenia, a new genus associated with roots of switchgrass and pine in the oligotrophic pine barrens.

    PubMed

    Walsh, Emily; Luo, Jing; Naik, Abhishek; Preteroti, Thomas; Zhang, Ning

    2015-12-01

    A new genus Barrenia is described based on multi-gene phylogenetic analyses and phenotypic and ecological characters. Isolated from roots of switchgrass and pitch pine in the acidic and oligotrophic New Jersey Pine Barrens in this study, Barrenia likely has a wide distribution because its internal transcribed spacer (ITS) sequence has high similarity with a number of GenBank sequences from various ecological studies. The majority of these matching samples were from roots of plants in acidic, nutrient-poor environments, as well as from managed sugarcane plantations. Phylogenetic analyses based on ITS, LSU, and RPB1 sequence data strongly support that Barrenia is a monophyletic clade in Helotiales, distinct from any known taxa. Barrenia is phylogenetically close to Acidomelania, Loramyces, Mollisia, and Phialocephala fortinii - Acephala applanata species complex (PAC), the dark septate endophytes. Barrenia can be distinguished from Loramyces and Mollisia by its association with living plant roots. Taxa in PAC also are root endophytes but they have complex phialid arrangements that appear to be lacking in Barrenia. Plant-fungal interaction experiments showed that Barrenia panicia and Acidomelania panicicola significantly promoted root hair growth in switchgrass. Results from this work will facilitate ecological and evolutionary studies on root-associated fungi. PMID:26615744

  18. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    SciTech Connect

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  19. Probing the String Landscape

    ScienceCinema

    Keith Dienes

    2010-01-08

    We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.

  20. Wind-Eroded Landscape

    NASA Technical Reports Server (NTRS)

    2005-01-01

    5 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust-mantled, wind-eroded landscape in the Medusae Sulci region of Mars. Wind eroded the bedrock in this region, and then, later, windblown dust covered much of the terrain.

    Location near: 5.7oS, 160.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Spring