Science.gov

Sample records for ponderosa pine landscape

  1. Western juniper and ponderosa pine ecotonal climate-growth relationships across landscape gradients in southern Oregon

    USGS Publications Warehouse

    Knutson, K.C.; Pyke, D.A.

    2008-01-01

    Forecasts of climate change for the Pacific northwestern United States predict warmer temperatures, increased winter precipitation, and drier summers. Prediction of forest growth responses to these climate fluctuations requires identification of climatic variables limiting tree growth, particularly at limits of free species distributions. We addressed this problem at the pine-woodland ecotone using tree-ring data for western juniper (Juniperus occidentalis var. occidentalis Hook.) and ponderosa pine (Pinus ponderosa Dougl. ex Loud.) from southern Oregon. Annual growth chronologies for 1950-2000 were developed for each species at 17 locations. Correlation and linear regression of climate-growth relationships revealed that radial growth in both species is highly dependent on October-June precipitation events that recharge growing season soil water. Mean annual radial growth for the nine driest years suggests that annual growth in both species is more sensitive to drought at lower elevations and sites with steeper slopes and sandy or rocky soils. Future increases in winter precipitation could increase productivity in both species at the pine-woodland ecotone. Growth responses, however, will also likely vary across landscape features, and our findings suggest that heightened sensitivity to future drought periods and increased temperatures in the two species will predominantly occur at lower elevation sites with poor water-holding capacities. ?? 2008 NRC.

  2. Monoterpene emission from ponderosa pine

    NASA Technical Reports Server (NTRS)

    Lerdau, Manual; Dilts, Stephen B.; Westberg, Hal; Lamb, Brian K.; Allwine, Eugene J.

    1994-01-01

    We explore the variability in monoterpene emissions from ponderosa pine beyond that which can be explained by temperature alone. Specifically, we examine the roles that photosynthesis and needle monoterpene concentrations play in controlling emissions. We measure monoterpene concentrations and emissions, photosynthesis, temperature, and light availability in the late spring and late summer in a ponderosa pine forest in central Oregon. We use a combination of measurements from cuvettes and Teflon bag enclosures to show that photosynthesis is not correlated with emissions in the short term. We also show that needle monoterpene concentrations are highly correlated with emissions for two compounds, alpha-pinene and beta-pinene, but that Delta-carene concentrations are not correlated with emissions. We suggest that direct effects of light and photosynthesis do not need to be included in emission algorithms. Our results indicate that the role of needle concentration bears further investigation; our results for alpha-pinene and beta-pinene are explainable by a Raoult's law relationship, but we cannot yet explain the cause of our results with Delta-carene.

  3. AmeriFlux US-Vcp Valles Caldera Ponderosa Pine

    DOE Data Explorer

    Litvak, Marcy [University of New Mexico

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcp Valles Caldera Ponderosa Pine. Site Description - The Valles Caldera Ponderosa Pine site is located in the 1200km2 Jemez River basin of the Jemez Mountains in north-central New Mexico at the southern margin of the Rocky Mountain ecoregion. The Ponderosa Pine forest is the warmest and lowest (below 2700m) zone of the forests in the Valles Caldera National Preserve. Its vegetation is composed of a Ponderosa Pine (Pinus Ponderosa) overstory and a Gambel Oak (Quercus gambelii) understory.

  4. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    USGS Publications Warehouse

    Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand-replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.

  5. ROLE OF CARBOHYDRATE SUPPLY IN WHITE AND BROWN ROOT RESPIRATION OF PONDEROSA PINE

    EPA Science Inventory

    Respiratory responses of fine ponderosa pine (Pinus ponderosa Laws) roots of differing morphology were measured to evaluate response to excision and to changes in the shoot light environment. Ponderosa pine seedlings were subject to either a 15:9 h light/dark environment over 24...

  6. INTERACTION OF GRASS COMPETITION AND OZONE STRESS ON C/N RATIO IN PONDEROSA PINE

    EPA Science Inventory

    Individual ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings were grown with three levels of blue wild-rye grass (Elymus glaucus Buckl.) (0,32, or 88 plants m-2) to determine if the presence of a natural competitor altered ponderosa pine seedling response to ozone. Gras...

  7. Differences in ponderosa pine isocupressic acid concentrations across space and time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ponderosa Pine (Pinus ponderosa) is distributed throughout the western half of North America, where it is the most widely adapted and ubiquitous conifer. Ponderosa Pine contains isocupressic acid, a diterpene acid, which has been shown to be responsible for its abortifacient activity. The objectiv...

  8. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion

    SciTech Connect

    Himejima, Masaki; Hobson, K.R.; Otsuka, Toshikazu; Wood, D.L.; Kubo, Isao )

    1992-10-01

    The oleoresin of the ponderosa pine, Pinus ponderosa (Pinaceae) exhibited broad antimicrobial activity. In order to identify the active compounds, the oleoresin was steam distilled to give a distillate and residue. The distillate contained mainly monoterpenes and some sesquiterpenes, while the residue consisted chiefly of four structurally related diterpene acids. An antimicrobial assay with the pure compounds indicated that the monoterpenes were active primarily against fungi, but there was also some activity against gram-positive bacteria. The diterpene acids, in contrast, only exhibited activity against gram-positive bacteria. Although not all of the identified sesquiterpenes could be tested, longifolene showed activity only against gram-positive bacteria. Therefore, it appears that the oleoresin of P. ponderosa functions as a biochemical defense against microbial invasion.

  9. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.

    PubMed

    Garcia, Maria O; Smith, Jane E; Luoma, Daniel L; Jones, Melanie D

    2016-05-01

    Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH4), and nitrate (NO3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish

  10. Cervid forage utilization in noncommercially thinned ponderosa pine forests

    USGS Publications Warehouse

    Gibbs, M.C.; Jenks, J.A.; Deperno, C.S.; Sowell, B.F.; Jenkins, Kurt J.

    2004-01-01

    To evaluate effects of noncommercial thinning, utilization of forages consumed by elk (Cervus elaphus L.), mule deer (Odocoileus hemionus Raf.), and white-tailed deer (Odocoileus virginianus Raf.) was measured in ponderosa pine (Pinus ponderosa P. & C. Lawson) stands in Custer State Park, S. D. Treatments consisted of unthinned (control; 22 to 32 m2/ha basal area), moderately thinned (12 to 22 m2/ha basal area), and heavily thinned (3 to 13 m2/ha basal area) stands of ponderosa pine. During June, July, and August, 1991 and 1992, about 7,000 individual plants were marked along permanent transects and percent-weight-removed by grazing was ocularly estimated. Sample plots were established along transects and plants within plots were clipped to estimate standing biomass. Pellet groups were counted throughout the study area to determine summer habitat use of elk and deer. Diet composition was evaluated using microhistological analysis of fecal samples. Average percent-weight-removed from all marked plants and percent-plants-grazed were used to evaluate forage utilization. Standing biomass of graminoids, shrubs, and forbs increased (P 0.05) across treatments. Forb use averaged less than 5% within sampling periods when measured as percent-weight-removed and percent-of-plants grazed and did not differ among treatments. Results of pellet group surveys indicated that cervids were primarily using meadow habitats. When averaged over the 2 years, forbs were the major forage class in deer diets, whereas graminoids were the major forage class in diets of elk.

  11. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. PMID:26546596

  12. THE EFFECT OF CHRONIC OZONE EXPOSURE ON THE METABOLITE CONTENT OF PONDEROSA PINE SEEDLINGS

    EPA Science Inventory

    Ponderosa Pine (Pinus ponderosa Laws.) seedlings grown in field exposure chambers and fumigated with ozone at a concentration of 200 g/cu m 6 h/day; 7 days/wk for variable periods of up to 20 weeks. Pines were harvested at 4 wk intervals to determine the levels of the metabolites...

  13. Classification tree and minimum-volume ellipsoid analyses of the distribution of ponderosa pine in the western USA

    USGS Publications Warehouse

    Norris, Jodi R.; Jackson, Stephen T.; Betancourt, Julio L.

    2006-01-01

    Aim? Ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) is an economically and ecologically important conifer that has a wide geographic range in the western USA, but is mostly absent from the geographic centre of its distribution - the Great Basin and adjoining mountain ranges. Much of its modern range was achieved by migration of geographically distinct Sierra Nevada (P. ponderosa var. ponderosa) and Rocky Mountain (P. ponderosa var. scopulorum) varieties in the last 10,000 years. Previous research has confirmed genetic differences between the two varieties, and measurable genetic exchange occurs where their ranges now overlap in western Montana. A variety of approaches in bioclimatic modelling is required to explore the ecological differences between these varieties and their implications for historical biogeography and impending changes in western landscapes. Location? Western USA. Methods? We used a classification tree analysis and a minimum-volume ellipsoid as models to explain the broad patterns of distribution of ponderosa pine in modern environments using climatic and edaphic variables. Most biogeographical modelling assumes that the target group represents a single, ecologically uniform taxonomic population. Classification tree analysis does not require this assumption because it allows the creation of pathways that predict multiple positive and negative outcomes. Thus, classification tree analysis can be used to test the ecological uniformity of the species. In addition, a multidimensional ellipsoid was constructed to describe the niche of each variety of ponderosa pine, and distances from the niche were calculated and mapped on a 4-km grid for each ecological variable. Results? The resulting classification tree identified three dominant pathways predicting ponderosa pine presence. Two of these three pathways correspond roughly to the distribution of var. ponderosa, and the third pathway generally corresponds to the distribution of var

  14. Ponderosa pine resin defenses and growth: metrics matter.

    PubMed

    Hood, Sharon; Sala, Anna

    2015-11-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow

  15. Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA.

    PubMed

    Fujimura, K E; Smith, J E; Horton, T R; Weber, N S; Spatafora, J W

    2005-03-01

    Post-fire Pezizales fruit commonly in many forest types after fire. The objectives of this study were to determine which Pezizales appeared as sporocarps after a prescribed fire in the Blue Mountains of eastern Oregon, and whether species of Pezizales formed mycorrhizas on ponderosa pine, whether or not they were detected from sporocarps. Forty-two sporocarp collections in five genera (Anthracobia, Morchella, Peziza, Scutellinia, Tricharina) of post-fire Pezizales produced ten restriction fragment length polymorphism (RFLP) types. We found no root tips colonized by species of post-fire Pezizales fruiting at our site. However, 15% (6/39) of the RFLP types obtained from mycorrhizal roots within 32 soil cores were ascomycetes. Phylogenetic analyses of the 18S nuclear ribosomal DNA gene indicated that four of the six RFLP types clustered with two genera of the Pezizales, Wilcoxina and Geopora. Subsequent analyses indicated that two of these mycobionts were probably Wilcoxina rehmii, one Geopora cooperi, and one Geopora sp. The identities of two types were not successfully determined with PCR-based methods. Results contribute knowledge about the above- and below-ground ascomycete community in a ponderosa pine forest after a low intensity fire. PMID:15316884

  16. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    PubMed

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  17. Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests

    PubMed Central

    Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill, James F.

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  18. Growth, physiological and biochemical response of ponderosa pine pinus ponderosa' to ozone. Final report

    SciTech Connect

    Temple, P.J.; Bytnerowicz, A.

    1993-11-01

    In 1989 and 1990, the effects of multi-year ozone exposures on growth, foliar injury and physiological responses in ponderosa pine were examined. Two-year old seedlings were exposed to four ozone treatments in open-top chambers: clean air (subambient levels of oxidants and particles); ambient ozone; twice-ambient ozone; or ambient air. The study was performed at Shirley Meadow in the southern Sierra Nevada. In both years, ambient ozone levels were representative of other forests in the region. While ozone is the most phytotoxic air pollutant, seedlings also experienced elevated concentrations of nitric acid and ammonia. In 1990, ambient ozone significantly increased injury to previous year needles. Premature senescence and alterations in physiological responses were also noted. Exposure to twice-ambient ozone reduced seedling biomass, increased injury and caused decreases in a variety of physiological responses.

  19. Accumulation of cesium-137 and strontium-90 in ponderosa pine and monterey pine seedlings

    SciTech Connect

    Entry, J.A.; Rygiewicz, P.T.; Emmingham, W.H.

    1993-10-01

    Because ponderosa pine Pinus ponderosa and Monterey pone (P. radiata D Don) have exceptionally fast growth rates and their abscised needles are not readily dispersed by wind, these species may be valuable for removing radioisotopes from contaminated soils. Ponderosa and Monterey pine seedlings were tested for their ability to accumulate {sup 137}Cs and {sup 90}Sr-characteristic radioisotopes of nuclear fallout-from contaminated soil. Seedlings were grown for 3 mo in 165 cm{sup 3} sphagnum peat moss/perlite (1:1 V/V) in a growth chamber. In Exp. 1, seedling accumulation of {sup 137}Cs and {sup 90}Sr after 1 mo of exposure was measured. In Exp. 2, seedling accumulation of the radioisotopes during different-length exposures was measured. Seedling accumulation of {sup 137}CS and {sup 90}Sr at different concentrations of the radioisotopes in the growth medium was measured in Exp. 3. Ponderosa pine accumulated 6.3% of the {sup 137}Cs and I.5% of the {sup 90}Sr present in the growth medium after 1 mo; Monterey pine accumulated 8.3% of the {sup 137}Cs and 4.5% of the {sup 90}Sr. Accumulation of {sup 137}Cs and {sup 90}Sr by both coniferous species was curvilinearly related to duration of exposure. Accumulation of {sup 137}Cs and {sup 90}Sr by both species increased with increasing concentration in the growth medium and correlated curvilinearly with radioisotope concentration in the growth medium. Large areas throughout the world are contaminated with {sup 137}Cs and {sup 90}Sr as a result of nuclear weapons testing or atomic reactor accidents. The ability of trees to sequester and store {sup 137}Cs and {sup 90}Sr introduces the possibility of using reforestation to remediate contaminated soils.

  20. COMBINED EFFECTS OF CO2 AND O3 ON ANTIOXIDATIVE AND PHOTOPROTECTIVE DEFENSE SYSTEMS IN NEEDLES OF PONDEROSA PINE

    EPA Science Inventory

    To determine interactive effects of important environmental stresses on biochemical defense mechanisms of tree seedlings, we studied responses to elevated O3 and elevated atmospheric CO2 on antioxidative and photoprotective systems in needles of ponderosa pine (Pinus ponderosa Do...

  1. SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES

    EPA Science Inventory

    Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...

  2. FINE ROOT TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES: FIRST-YEAR RESULTS

    EPA Science Inventory

    Root minirhizotron tubs were installed in two ponderosa pine (Pinus ponderosa Laws.) Stands of different ages to examine patterns of root growth and death. The old-growth site (OS) consists of a mixture of old (>250 years) and young trees (ca.45 yrs)< and is located near clamp S...

  3. EFFECTS OF ELEVATED CO2 AND N-FERTILIZATION ON SURVIVAL OF PONDEROSA PINE FINE ROOTS

    EPA Science Inventory

    We used minihizaotrons to assess the effects of elevated CO2N and season on the life-span of ponderosa pine (Pinus ponderosa Dougl. Ex Laws.) fine roots. CO2 levels were ambient air (A), ambient air + 175 ?mol mol-1 (A+175) and ambient air + 350 ?mol mol-1 (A+350). N treatments ...

  4. Fall rates of prescribed fire-killed ponderosa pine. Forest Service research paper

    SciTech Connect

    Harrington, M.G.

    1996-05-01

    Fall rates of prescribed fire-killed ponderosa pine were evaluated relative to tree and fire damage characteristics. High crown scorch and short survival time after fire injury were factors leading to a high probability of early tree fall. The role of chemical defense mechanisms is discussed. Results apply to prescribed-fire injured, second-growth ponderosa pine less than 16 inches diameter at breast height.

  5. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  6. Quantifying post-fire ponderosa pine snags using GIS techniques on scanned aerial photographs

    NASA Astrophysics Data System (ADS)

    Kent, Kevin

    Snags are an important component of forest ecosystems because of their utility in forest-nutrient cycling and provision of critical wildlife habitat, as well as associated fuel management concerns relating to coarse woody debris (CWD). Knowledge of snag and CWD trajectories are needed for land managers to plan for long-term ecosystem change in post-fire regimes. This need will likely be exacerbated by increasingly warm and dry climatic conditions projected for the U.S. Southwest. One of the best prospects for studying fire-induced landscape change beyond the plot scale, but still at a resolution sufficient to resolve individual snags, is to utilize the available aerial photography record. Previous field-based studies of snag and CWD loads in the Southwest have relied on regional chronosequences to judge the recovery dynamic of ponderosa pine (Pinus ponderosa) burns. This previous research has been spatially and temporally restricted because of field survey extent limitations and uncertainty associated with the chronosequence approach (i.e., space-for-time substitution), which does not consider differences between specific site conditions and histories. This study develops highly automated methods for remotely quantifying and characterizing the spatial and temporal distribution of large snags associated with severe forest fires from very high resolution (VHR) landscape imagery I obtained from scans of aerial photos. Associated algorithms utilize the sharp edges, shape, shadow, and contrast characteristics of snags to enable feature recognition. Additionally, using snag shadow length, image acquisition time, and location information, heights were estimated for each identified snag. Furthermore, a novel solution was developed for extracting individual snags from areas of high snag density by overlaying parallel lines in the direction of the snag shadows and extracting local maxima lines contained by each snag polygon. Field survey data coincident to imagery coverage

  7. Unthinned slow-growing ponderosa pine (Pinus ponderosa) trees contain muted isotopic signals in tree rings as compared to thinned trees

    EPA Science Inventory

    We analysed the oxygen isotopic values of wood (δ18Ow) of 12 ponderosa pine (Pinus ponderosa) trees from control, moderately, and heavily thinned stands and compared them with existing wood-based estimates of carbon isotope discrimination (∆13C), basal area increment (BAI), and g...

  8. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    PubMed

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests. PMID:24147398

  9. Long-term benefits to the growth of ponderosa pines from controlling southwestern pine tip moth (Lepidoptera: Tortricidae) and weeds.

    PubMed

    Wagner, Michael R; Chen, Zhong

    2004-12-01

    The southwestern pine tip moth, Rhyacionia neomexicana (Dyar) (Lepidoptera: Tortricidae), is a native forest pest that attacks seedlings and saplings of ponderosa pine, Pinus ponderosa Dougl. ex Laws, in the southwestern United States. Repeated attacks can cause severe deformation of host trees and significant long-term growth loss. Alternatively, effective control of R. neomexicana, vegetative competition, or both in young pine plantations may increase survival and growth of trees for many years after treatments are applied. We test the null hypothesis that 4 yr of R. neomexicana and weed control with insecticide, weeding, and insecticide plus weeding would not have any residual effect on survival and growth of trees in ponderosa pine plantation in northern Arizona 14 yr post-treatment, when the trees were 18 yr old. Both insecticide and weeding treatment increased tree growth and reduced the incidence of southwestern pine tip moth damage compared with the control. However, weeding alone also significantly increased tree survival, whereas insecticide alone did not. The insecticide plus weeding treatment had the greatest tree growth and survival, and the lowest rate of tip moth damage. Based on these results, we rejected our null hypothesis and concluded that there were detectable increases in the survival and growth of ponderosa pines 14 yr after treatments applied to control R. neomexicana and weeds. PMID:15666752

  10. Missing Peroxy Radical Sources within a Summertime Ponderosa Pine Forest

    SciTech Connect

    Wolfe, G. M.; Cantrell, Chris; Kim, S.; Mauldin, R. L.; Karl, Thomas G.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, Frank M.; Apel, E. C.; Hornbrook, R. S.; Hall, S. R.; Ullmann, K.; Henry, S. B.; DiGangi, J. P.; Boyle, E. S.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Graus, M.; Nakashima, Yoshihiro; Kajii, Yoshizumi; Guenther, Alex B.; Keutsch, Frank N.

    2014-05-13

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Peroxy radical sinks are unlikely to be overestimated, suggesting missing sources. A close comparison of model results with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within the forest, and we conclude that a similar mechanism may underlie many such anomalous findings.

  11. Induction of Listeria monocytogenes infection by the consumption of ponderosa pine needles.

    PubMed Central

    Adams, C J; Neff, T E; Jackson, L L

    1979-01-01

    An infectious microorganism, identified as Listeria monocytogenes, has been isolated from the bloodstream of pregnant mice fed a diet containing Pinus ponderosa needles. When the isolate was injected into pregnant mice, reproductive dysfunction and other changes, including speckled livers, spleen atrophy, and hemorrhagic intestines, appeared to mimic the signs of the disease in pregnant mice fed pine needles. Moreover, these pathological changes are similar to those observed in cattle and other mammals experiencing abortions or toxemia, or both, attributed to the ingestion of P. ponderosa needles, suggesting that L. monocytogenes may be a part of the etiology of "pine needle abortion." PMID:113341

  12. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains.

    PubMed

    Janes, Jasmine K; Li, Yisu; Keeling, Christopher I; Yuen, Macaire M S; Boone, Celia K; Cooke, Janice E K; Bohlmann, Joerg; Huber, Dezene P W; Murray, Brent W; Coltman, David W; Sperling, Felix A H

    2014-07-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below -40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species. PMID:24803641

  13. How the Mountain Pine Beetle (Dendroctonus ponderosae) Breached the Canadian Rocky Mountains

    PubMed Central

    Janes, Jasmine K.; Li, Yisu; Keeling, Christopher I.; Yuen, Macaire M.S.; Boone, Celia K.; Cooke, Janice E.K.; Bohlmann, Joerg; Huber, Dezene P.W.; Murray, Brent W.; Coltman, David W.; Sperling, Felix A.H.

    2014-01-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below −40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species. PMID:24803641

  14. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa

  15. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa

  16. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    EPA Science Inventory

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  17. Establishment, survival, and growth of selected browse species in a ponderosa pine forest

    USGS Publications Warehouse

    Dietz, D.R.; Uresk, D.W.; Messner, H.E.; McEwen, L.C.

    1980-01-01

    Information is presented on establishment, survival, and growth of seven selected browse species in a ponderosa pine forest over a 10-year period. Methods of establishment included hand seeding and planting bare-root and containerized stock. Success of different methods differed with shrub species.

  18. PARTITIONING OF WATER FLUX IN A SIERRA NEVADA PONDEROSA PINE PLANTATION. (R826601)

    EPA Science Inventory

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus pond...

  19. ROOT GROWTH AND TURNOVER IN DIFFERENT AGED PONDEROSA PINE STANDS IN OREGON, USA

    EPA Science Inventory

    The impacts of pollution and climate change on soil carbon dynamics are poorly understood, in part due to a lack of information regarding root production and turnover in natural ecosystems. In order to examine how root dynamics change with stand age in ponderosa pine forests (...

  20. TEMPORAL ALLOCATION OF 14C TO EXTRAMATRICAL HYPHAE OF ECTOMYCORRHIZAL PONDEROSA PINE SEEDLINGS

    EPA Science Inventory

    Ponderosa pine seedlings were inoculated with Hebeloma crustuliniforme either in growth pouches before they were transplanted to root-mycocosms (P seedlings), or at the time of transfer to root-mycocosms (V seedlings). ninoculated seedlings served as controls (U seedlings). he us...

  1. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Baker, William L.; DellaSala, Dominick A.; Williams, Mark A.

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper. PMID:27195808

  2. Genetically improved ponderosa pine seedlings outgrow nursery-run seedlings with and without competition -- Early findings

    SciTech Connect

    McDonald, P.M.; Fiddler, G.O. ); Kitzmiller, J.H. . Chico Tree Improvement Center)

    1994-04-01

    Three classes of ponderosa pine (Pinus ponderosa) seedlings (nursery-run, wind-pollinated, control-pollinated) were evaluated for stem height and diameter at the USDA Forest Service's Placerville Nursery and the Georgetown Range District in northern California. Pines in all three classes were grown with competing vegetation or maintained in a free-to-grow condition. Control-pollinated seedlings were statistically taller than nursery-run counterparts when outplanted, and after 1 and 2 growing seasons in the field with and without competition. They also had significantly larger diameters when outplanted and after 2 growing seasons in the field when free to grow. Wind-pollinated seedlings grew taller than nursery-run seedlings when free to grow. A large amount of competing vegetation [bearclover (Chamaebatia foliolosa)--29,490 plants per acre; herbaceous vegetation--11,500; hardwood sprouts--233; and whiteleaf manzanita (Arctostaphylos viscida) seedlings--100] ensure that future pine development will be tested rigorously.

  3. INTERACTIVE EFFECTS OF CO2 AND O3 ON A PONDEROSA PINE PLANT/LITTER/SOIL MESOCOSM

    EPA Science Inventory

    To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a four-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April, 1998. Th...

  4. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation

    PubMed Central

    Shinneman, Douglas J.; Potter, Kevin M.; Hipkins, Valerie D.

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete

  5. Exploring climate niches of ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western United States: Implications for evolutionary history and conservation

    USGS Publications Warehouse

    Shinneman, Douglas; Means, Robert E.; Potter, Kevin M.; Hipkins, Valerie D.

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with

  6. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation.

    PubMed

    Shinneman, Douglas J; Means, Robert E; Potter, Kevin M; Hipkins, Valerie D

    2016-01-01

    Ponderosa pine (Pinus ponderosa Douglas ex Lawson) occupies montane environments throughout western North America, where it is both an ecologically and economically important tree species. A recent study using mitochondrial DNA analysis demonstrated substantial genetic variation among ponderosa pine populations in the western U.S., identifying 10 haplotypes with unique evolutionary lineages that generally correspond spatially with distributions of the Pacific (P. p. var. ponderosa) and Rocky Mountain (P. p. var. scopulorum) varieties. To elucidate the role of climate in shaping the phylogeographic history of ponderosa pine, we used nonparametric multiplicative regression to develop predictive climate niche models for two varieties and 10 haplotypes and to hindcast potential distribution of the varieties during the last glacial maximum (LGM), ~22,000 yr BP. Our climate niche models performed well for the varieties, but haplotype models were constrained in some cases by small datasets and unmeasured microclimate influences. The models suggest strong relationships between genetic lineages and climate. Particularly evident was the role of seasonal precipitation balance in most models, with winter- and summer-dominated precipitation regimes strongly associated with P. p. vars. ponderosa and scopulorum, respectively. Indeed, where present-day climate niches overlap between the varieties, introgression of two haplotypes also occurs along a steep clinal divide in western Montana. Reconstructed climate niches for the LGM suggest potentially suitable climate existed for the Pacific variety in the California Floristic province, the Great Basin, and Arizona highlands, while suitable climate for the Rocky Mountain variety may have existed across the southwestern interior highlands. These findings underscore potentially unique phylogeographic origins of modern ponderosa pine evolutionary lineages, including potential adaptations to Pleistocene climates associated with discrete

  7. Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests

    PubMed Central

    Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID

  8. Differences between loblolly pine and ponderosa pine responses to elevated CO[sub 2] partitioned between biological and environmental factors

    SciTech Connect

    Winner, W.E. ); Griffin, K.L.; Thomas, R.B.; Strain, B. ); Ball, T. )

    1994-06-01

    Loblolly pine raised at the North Carolina field site and Ponderosa pine raised at the California field site show differences in their capacity to grown and sequester carbon. The contrast in CO[sub 2] responses between species is related to both environmental differences between the field sites as well as biological differences between Loblolly and Ponderosa pine. We designed an experiment to isolate the biological differences between CO[sub 2] responses of the 2 test species by raising them in common environments at the Duke University Phytotron. Both pine species were raised for 160 days in either 35 Pa or 70 Pa CO[sub 2]. Plants were also raised at 3 levels of N since N is known to affect CO[sub 2] responses of plants. Seedlings were raised in 3.3 1 pots filled with sand irrigated each morning with 1/2 strength Hoaglands solution made with N supplied at NH[sub 4] at either 1 mm. 3.5 mm. or 7 mm. Root, stem, and foliar biomass, whole plant biomass, and leaf area were similar for both species across all CO[sub 2] and N treatments at the final harvest. Thus biological differences between pine species seem to be small and N is not the environmental factor accounting for differences in CO[sub 2] responses observed at the 2 field sites. Small biological differences between Loblolly and Ponderosa pine may be difficult to detect in experiments with seedlings, but scale to important differences between species as trees mature or when forest stands are considered.

  9. Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA

    PubMed Central

    Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T

    2013-01-01

    A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860–2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20–30 years, at which point the visually healthy populations had consistently higher BAI values (22–34%) than the MPB-infected trees. These results suggest that growth rates two–three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955–59 for the visually healthy trees and 1960–64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies. PMID:23762502

  10. ACCUMULATION OF CESIUM-137 AND STRONTIUM-90 IN PONDEROSA PINE AND MONTEREY PINE SEEDLINGS

    EPA Science Inventory

    Because Pinus ponderosa (Dougl.ex Laws) and P. radiate (ID.Don) have exceptionally fast growth rates and their abscised needles are not readily dispersed by wind, these species may be valuable for removing radioisotopes from contaminated soils. . ponderosa and P. radiata seedling...

  11. A comparison of the metabolism of the abortifacient compounds from Ponderosa Pine needles in conditioned versus naive cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isocupressic acid (ICA) is the abortifacient compound in ponderosa pine needles, which can cause late term abortions in cattle. However, cattle rapidly metabolize ICA to agathic acid and subsequent metabolites. When pine needles are dosed orally to cattle, no ICA is detected in their serum while a...

  12. Effect of dietary protein level and quebracho tannin on consumption of pine needles (Pinus ponderosa) by beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ponderosa pine trees occupy over 15 million hectares of rangeland in western North America. Pregnant cows often consume pine needles (PN), and subsequently abort. The protein-to-energy ratio may be important in the ability of cattle to tolerate dietary terpenes. Tannins often co-occur with terpenes ...

  13. AmeriFlux US-Me2 Metolius-intermediate aged ponderosa pine

    DOE Data Explorer

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me2 Metolius-intermediate aged ponderosa pine. Site Description - The mean stand age is 64 years old and the stand age of the oldest trees is about 100 years old. This site is one of the Metolius cluster sites with different age and disturbance classes and part of the AmeriFlux network (http://ameriflux.ornl.gov/fullsiteinfo.php?sid=88). The overstory is almost exclusively composed of ponderosa pine trees (Pinus ponderosa Doug. Ex P. Laws) with a few scattered incense cedars (Calocedrus decurrens (Torr.) Florin) and has a peak leaf area index (LAI) of 2.8 m2 m-2. Tree height is relatively homogeneous at about 16 m, and the mean tree density is approximately 325 trees ha-1 (Irvine et al., 2008). The understory is sparse with an LAI of 0.2 m2 m-2 and primarily composed of bitterbrush (Purshia tridentate (Push) DC.) and Manzanita (Arctostaphylos patula Greene). Soils at the site are sandy (69%/24%/7% sand/silt/clay at 0–0.2 m depth and 66%/27%/7% at 0.2–0.5 m depth, and 54%/ 35%/11% at 0.5–1.0 m depth), freely draining with a soil depth of approximately 1.5 m (Irvine et al., 2008; Law et al., 2001b; Schwarz et al., 2004).

  14. Biomass and nutrient distributions in central Oregon second-growth ponderosa pine ecosystems. Forest Service research paper

    SciTech Connect

    Little, S.N.; Shainsky, L.J.

    1995-03-01

    We investigated the distributioin of biomass and nurtrients in second-growth ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems in central Oregon. Destructive sampling of aboveground and belowground tree biomass was carried out at six sites in the Deschutes National Forest; three of these sites also were intensively sampled for biomass and nutrient concentrations of the soil, forest floor, residue, and shrub components. Tree biomass equations were developed that related component biomass to diameter at breast height and total tree height.

  15. Effects of CO{sub 2} and nitrogen fertilization on growth and nutrient content of juvenile ponderosa pine

    SciTech Connect

    Johnson, D.W. |; Ball, J.T.; Walker, R.F.; Cushman, R.M.

    1998-03-01

    This data set presents measured values of plant diameter and height, biomass of plant components, and nutrient (carbon, nitrogen, phosphorus, sulfur, potassium, calcium, magnesium, boron, copper, iron, manganese, and zinc) concentrations from a study of the effects of carbon dioxide and nitrogen fertilization on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) conducted in open-top chambers in Placerville, California, from 1991 through 1996. This data set contains values from 1991 through 1993.

  16. Uptake and distribution of nitrogen from acidic fog within a ponderosa pine (Pinus ponderosa Laws.)/litter/soil system

    SciTech Connect

    Fenn, M.E.; Leininger, T.D.

    1995-11-01

    The magnitude and importance of wet deposition of N in forests of the South Coast (Los Angeles) Air Basin have not been well characterized. We exposed 3-yr-old ponderosa pine (Pinus ponderosa Laws.) seedlings growing in native forest soil to acidic fog treatments (pH 3.1) simulating fog chemistry from a pine forest near Los Angeles, California. Fog solutions contained either {sup 15}NH{sub 4}{sup +}, {sup 15}NO{sub 3}{sup {minus}}, or unlabeled N. The fog treatments were applied in open-top chambers in six 5-hr exposures. Soil treatments within each of the fog exposures were bare soil, soil overlain with L- and F-litter, and soil covered with plastic during the fog events to prevent fogwater from contacting soil. Seedlings were harvested and samples were collected 15 wk after the fog treatments. Uptake of {sup 15}N by roots was by far the dominant pathway for plant assimilation of fog-deposited {sup 15}N. Deposition of N in fog supplied 9.4% and 8.7% of the total N in current-year crown biomass in the litter-overlay and bare-soil treatments, respectively. Total N concentrations in every plant fraction except current-year stems were significantly higher in the bare-soil treatment than in the plastic-covered soil treatment. Less than 5% of the {sup 15}N deposited directly to the seedling crowns was retained by the plants in the covered-soil treatment, whereas 57% of the {sup 15}N deposited to the seedling/litter/soil systems was incorporated into plant biomass. The litter layers retained {sup 15}NH{sub 4}{sup +} more effectively than {sup 15}NH{sub 4}{sup +} more effectively than {sup 15}NO{sub 3}. Data from this study suggest that N deposited from fog may be an important source of N for plant growth in forests of the SCAB where fog occurrence and pollution exposure coincide. 5 refs., 5 figs., 3 tabs.

  17. Green foliage losses from ponderosa pines induced by Abert squirrels and snowstorms: A comparison. [Sciurus aberti; Pinus pondersosa

    SciTech Connect

    Allred, W.S.; Gaud, W.S. )

    1993-01-01

    Abert squirrels (Sciurus aberti) are obligate herbivores on ponderosa pine (Pinus ponderosa). The inner bark of pine shoots is considered one of the predominant food resources obtained by foraging squirrels. As squirrels forage for this resource they induce green needle losses from chosen feed trees. Amounts of induced green needle losses appear to vary according to the availability of alternative foods and squirrel population densities. Weather also induces green needle losses to ponderosa pines. Results of this study indicate that, at least in some years, heavy snowstorms can induce greater amounts of green needle losses than squirrels. Squirrel herbivory was not indicated as a factor in any tree mortality. However, losses due to snowstorms are more severe since they may cause the actual depletion of trees in the forest because of the tree mortality they inflict.

  18. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation

    USGS Publications Warehouse

    Kurpius, M.R.; Panek, J.A.; Nikolov, N.T.; McKay, M.; Goldstein, Allen H.

    2003-01-01

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus ponderosa) in this region. To investigate how year-round water fluxes were partitioned in a young ponderosa pine ecosystem in the Sierra Nevada Mountains, water fluxes were continually measured from June 2000 to May 2001 using a combination of sap flow and eddy covariance techniques (above- and below-canopy). Water fluxes were modeled at our study site using a biophysical model, FORFLUX. During summer and fall water fluxes were equally partitioned between transpiration and soil evaporation while transpiration dominated the water fluxes in winter and spring. The trees had high rates of canopy conductance and transpiration in the early morning and mid-late afternoon and a mid-day depression during the dry season. We used a diurnal centroid analysis to show that the timing of high canopy conductance and transpiration relative to high vapor pressure deficit (D) shifted with soil moisture: during periods of low soil moisture canopy conductance and transpiration peaked early in the day when D was low. Conversely, during periods of high soil moisture canopy conductance and transpiration peaked at the same time or later in the day than D. Our observations suggest a general strategy by the pine trees in which they maximize stomatal conductance, and therefore carbon fixation, throughout the day on warm sunny days with high soil moisture (i.e. warm periods in winter and late spring) and maximize stomatal conductance and carbon fixation in the morning through the dry periods. FORFLUX model estimates of evaporation and transpiration were close to measured/calculated values during the dry period, including the drought, but underestimated transpiration and overestimated evaporation during the wet period. ?? 2003

  19. Antioxidant activity in mature branches of ponderosa pine (Pinus ponderosa) under long-term, low concentration ozone exposure

    SciTech Connect

    Benes, S.E.; Murphy, T.M.; Laeuchli, A. ); Anderson, P.D.; Houpis, J.L.J. )

    1990-05-01

    Antioxidant activity (superoxide dismutase, peroxidases and glutathione) is being examined in mature needle tissue of ponderosa pine exposed to elevated levels of ozone (O{sub 3}). Trees used in this study are 8-14 year-old clones produced from buds from a 70 year-old tree grafted onto seedling rootstock. Trees are exposed to O{sub 3} using a newly developed branch exposure chamber (BEC). Ozone treatments are charcoal-filtered, ambient and 2x ambient concentrations. A non-chambered branch will determine the effect of exposure chamber. Superoxide dismutase (SOD) activity measured in current-year needles in February via nitrobluetetrazolium (NBT) reduction was 138.5 {plus minus} 15 (SD) units mg{sup {minus}1} protein. The activity of guaiacol-oxidizing peroxidases was 89 {plus minus} 19 (SD) {Delta}A{sub 470} min{sup {minus}1} mg{sup {minus}1} protein. Ascorbate peroxidase and the ratio of oxidized to reduced glutathione (GSSG/GSH) are also being monitored. Antioxidant activity will be measured monthly across the ozone season (March to November) and during natural ozone episodes. Cellular antioxidant activity will be related to needle photosynthesis, respiration and stomatal conductance measured using a Licor 6200 portable photosynthesis apparatus.

  20. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.

  1. Product recovery of ponderosa pine in Arizona and New Mexico. Forest Service research paper

    SciTech Connect

    Fahey, T.D.; Ayer Sachet, J.K.

    1993-11-01

    A mill recovery of ponderosa pine in Arizona and New Mexico showed wide variation in quality within the resource. Lumber grade ranged widely by log grade and diameter, with a major difference within grade 5 logs between old growth and young growth. Old growth produced mostly Shop and Selects grades of lumber while young growth produced mostly Dimension grades of lumber; small-diameter young growth developed severe problems of warpage. Log grades separated logs into distinct value classes, and separating young-growth timber (as an additional grade) allowed better segregation of logs by product type and expected value.

  2. Genetic variation and seed transfer guidelines for ponderosa pine in central Oregon. Forest Service research paper

    SciTech Connect

    Sorensen, F.C.

    1994-07-01

    The report includes an adaptive genetic variation in seed and seedling traits for ponderosa pine from the east slopes of the Cascade Range in Oregon which was analyzed by using 307 families from 227 locations. Factor scores from three principal components based on seed and seedling traits were related by multiple regression to latitude, distance from the Cascade crest, elevation, slope, and aspect of the seed sources and by classification analysis to seed zone and 300-meter elevation band within zone. A provisional transfer risk equation and tentative new seed zones were delineated to guide seed transfer in artificial regeneration.

  3. Geographic variation in speed of seed germination in central Oregon ponderosa pine ( pinus ponderosa' dougl. ex laws). Forest Service research paper

    SciTech Connect

    Weber, J.C.; Sorensen, F.C.

    1992-03-01

    Variation in speed of seed germination was investigated among ponderosa pine trees representing 225 locations in central Oregon. Results suggested that at least some of the geographic variation is related to the severity of summer drought. In general, germination speed was greater in locations with short, drought-limited growing seasons. Levels of geographic variation were highest in the region having the steepest precipitation gradients. Most of the variation occurred, however, within locations.

  4. Simulating cumulative fire effects in ponderosa pine/Douglas-fir forests

    SciTech Connect

    Keane, R.E.; Arno, S.F.; Brown, J.K. )

    1990-02-01

    A successional process model has been adapted for use with species from ponderosa pine/Douglas-fir (Pinus ponderosa var. ponderosa)/(Pseudotsuga menziesii var. glacua) forests of the inland Northwest. Its design allows modification for application to other forest types. This model, FIRESUM, simulates tree establishment, growth, and mortality, along with live and dead fuel accumulation, fire behavior, and fuel reduction on a 400-m{sup 2} plot. The modeling contains algorithms for influences on tree establishment and growth including temperature, water stress, light tolerance, and site quality. The model was used to predict 200 yr of forest succession for five different disturbance regimes. This allowed comparison of patterns of basal area by species, of duff and fuel accumulation, and of fire intensities among the following scenarios: (1) no fires (fire suppression), (2) consistent fire intervals of 10, 20, and 50 yr, and (3) a natural fire regime of variable intervals reconstructed from fire scarred trees. These five scenarios resulted in a differential survival of species determining dominance in the understory and eventually in the overstory. A test of the model showed predictions to be within 19% of field observations, and a sensitivity analysis of FIRESUM showed parameters associated with the growth algorithm to be most critical for predicting successional trends.

  5. Response of young ponderosa pines, shrubs, and grasses to two release treatments. Forest Service research note

    SciTech Connect

    McDonald, P.M.; Everest, G.A.

    1996-07-01

    To release a young pine plantation on a medium site in central California, herbicides and mulches were applied soon after planting to study their effectiveness. Bearclover is an aggressive shrub species that resprouts from rhizomes after disturbance, and must be controlled if young conifer seedlings are to become established. After 4 years, resprouting bearclover plants numbered 282,000 per acre in the control, but less than 4,000 per acre in the plots treated by herbicides. Mean foliar cover was 63 percent versus 1 percent for control and herbicide plots, respectively. Ponderosa pine seedlings were significantly taller, had larger mean diameters, and survived better in the herbicide treatment than counterparts in mulched plots and control. The 5-foot square mulches were ineffective for controlling bearclover. Cheatgrass invaded the plantation in the second year, and after 2 more years became abundant in herbicide plots and plentiful in the control.

  6. Variation in photosynthesis and stomatal conductance in an ozone-stressed Ponderosa pine stand: light response

    SciTech Connect

    Cooyne, P.I,; Bingham, G.E.

    1982-06-01

    The seasonal course (May to October 1977) of gross photosynthesis (from /sup 14/CO/sub 2/ uptake and stomatal conductance) in a stand of ponderosa pine (Pinus ponderosa Laws.) in the San Bernardino National Forest was characterized as a function of light. Nine sapling trees, classified for comparative studies into three chronic injury classes (slight, moderate, severe) had experienced oxidant fumigations from California's South Coast Air Basin for approximately 18 years, since their establishment following fire. The CO/sub 2/-transfer pathway was partitioned into its stomatal and residual (mesophyll, carboxylation, excitation) resistance components, for conditions of light saturation and 20/sup 0/C. Light-saturated gross photosynthetic rates and photochemical conversion efficiencies were highest in the current-year needles and decreased with increasing needle age and oxidant injury. Maximum stomatal conductance and stomatal sensitivity to increasing light during stomatal opening followed a trend similar to that of photosynthesis, except for current-year needles, where conductance parameters were highest in the severely injured trees. This higher conductance may contribute to observed differential ozone sensitivity in ponderosa pine. Premature senesence and abscission of the 1-year (severely injured trees) and 2-year (slight to moderate injury) needles occurred at about the time CO/sub 2/ uptake dropped to 10 percent of the potential for current needles of slightly injured trees without foliar injury symptoms. The ratio of the stomatal CO/sub 2/ resistance to the total CO/sub 2/ resistance decreased with increasing oxidant injury and needle age, suggesting that loss of photosynthetic capacity was primarily related to the loss of chloroplast function rather than to increased resistance of CO/sub 2/ diffusion through the stomata.

  7. Variation in photosynthesis and stomatal conductance in an ozone-stressed ponderosa pine stand: light response

    SciTech Connect

    Coyne, P.I.; Bingham, G.E.

    1982-01-01

    The seasonal course (May to October 1977) of gross photosynthesis (from /sup 14/CO/sub 2/ uptake and stomatal conductance) in a stand of ponderosa pine (Pinus ponderosa Laws.) in the San Bernardino National Forest was characterized as a function of light. Nine sapling trees, classified for comparative studies into three chronic injury classes (slight, moderate, severe) had experienced oxidant fumigations from California's South Coast Air Basin for approximately 18 years, since their establishment following fire. The CO/sub 2/-transfer pathway was partitioned into its stomatal and residual (mesophyll, carboxylation, excitation) resistance components, for conditions of light saturation and 20/sup 0/C. Light-saturated gross photosynthetic rates and photochemical conversion efficiencies were highest in the current-year needles and decreased with increasing needle age and oxidant injury. Maximum stomatal conductance and stomatal sensitivity to increasing light during stomatal opening followed a trend similar to that of photosynthesis, except for current-year needles, where conductance parameters were highest in the severely injured trees. This higher conductance may contribute to observed differential ozone sensitivity in ponderosa pine. Premature senesence and abscission of the 1-year (severely injured trees) and 2-year (slight to moderate injury) needles occurred at about the time CO/sub 2/ uptake dropped to 10% of the potential for current needles of slightly injured trees without foliar injury symptoms. The ratio of stomatal CO/sub 2/ resistance to the total CO/sub 2/ resistance decreased with increasing oxidant injury and needle age, suggesting that loss of photosynthetic capacity was primarily related to the loss of chloroplast function rather than to increased resistance of CO/sub 2/ diffusion through the stomata.

  8. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests.

    PubMed

    Pierce, Jennifer L; Meyer, Grant A; Jull, A J Timothy

    2004-11-01

    Western US ponderosa pine forests have recently suffered extensive stand-replacing fires followed by hillslope erosion and sedimentation. These fires are usually attributed to increased stand density as a result of fire suppression, grazing and other land use, and are often considered uncharacteristic or unprecedented. Tree-ring records from the past 500 years indicate that before Euro-American settlement, frequent, low-severity fires maintained open stands. However, the pre-settlement period between about ad 1500 and ad 1900 was also generally colder than present, raising the possibility that rapid twentieth-century warming promoted recent catastrophic fires. Here we date fire-related sediment deposits in alluvial fans in central Idaho to reconstruct Holocene fire history in xeric ponderosa pine forests and examine links to climate. We find that colder periods experienced frequent low-severity fires, probably fuelled by increased understory growth. Warmer periods experienced severe droughts, stand-replacing fires and large debris-flow events that comprise a large component of long-term erosion and coincide with similar events in sub-alpine forests of Yellowstone National Park. Our results suggest that given the powerful influence of climate, restoration of processes typical of pre-settlement times may be difficult in a warmer future that promotes severe fires. PMID:15525985

  9. Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest

    SciTech Connect

    Hart, Stephen C; Classen, Aimee T; Robert, Wright J.

    2005-01-01

    1. Plant roots and their mycorrhizal symbionts are critical components of forest eco- systems, being largely responsible for soil resource acquisition by plants and the main- tenance of soil structure, as well as influencing soil nutrient cycling. Silvicultural treatments should be guided by knowledge of how these below-ground components respond to different forest management practices. 2. We examined the cumulative effects of 20 years of prescribed burning at 2-year inter- vals. We measured fine root length density and fine root and mycorrhizal root biomass in the upper 15 cm of mineral soil in a south-western ponderosa pine forest over a com- plete burn cycle. 3. Repeated burning reduced fine root length, fine root biomass and mycorrhizal root biomass, as well as the amount of nitrogen and phosphorus stored in these below- ground pools. 4. Estimates of fine root production, fine root decomposition and nutrient dynamics were similar in burned and control plots. 5. Synthesis and applications . Although repeated-prescribed fire may be an effective, low-cost approach for reducing fuel loads and lessening the chance of a catastrophic wildfire in ponderosa pine forests, our results suggest that this strategy may negatively affect below-ground biomass pools and nutrient cycling processes in the long term. We recommend that mechanical reductions in fuel loads be conducted in these and similar forests that have not experienced fire for decades, before fire is reintroduced as a man- agement tool.

  10. An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem.

    PubMed

    Panek, Jeanne A; Kurpius, Meredith R; Goldstein, Allen H

    2002-01-01

    Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at all times of the growing season. This may be inaccurate in regions with a Mediterranean climate, such as California and the Pacific Northwest, where peak physiological activity occurs early in the season to take advantage of high soil moisture and does not correspond to peak ozone concentrations. It may also misrepresent ecosystems experiencing non-average climate conditions such as drought years. We compared direct measurements of ozone flux into a ponderosa pine canopy with a suite of the most common ozone exposure metrics to determine which best correlated with actual ozone uptake by the forest. Of the metrics we assessed, SUM0 (the sum of all daytime ozone concentrations > 0) best corresponded to ozone uptake by ponderosa pine, however the correlation was only strong at times when the stomata were unconstrained by site moisture conditions. In the early growing season (May and June). SUM0 was an adequate metric for forest ozone exposure. Later in the season, when stomatal conductance was limited by drought. SUM0 overestimated ozone uptake. A better metric for seasonally drought-stressed forests would be one that incorporates forest physiological activity, either through mechanistic modeling, by weighting ozone concentrations by stomatal conductance, or by weighting concentrations by site moisture conditions. PMID:11843543

  11. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks.

    PubMed

    Song, Yuan Yuan; Simard, Suzanne W; Carroll, Allan; Mohn, William W; Zeng, Ren Sen

    2015-01-01

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF 'donor' and ponderosa pine 'receiver' seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance. PMID:25683155

  12. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks

    PubMed Central

    Song, Yuan Yuan; Simard, Suzanne W.; Carroll, Allan; Mohn, William W.; Zeng, Ren Sen

    2015-01-01

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF ‘donor’ and ponderosa pine ‘receiver’ seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance. PMID:25683155

  13. exo-Brevicomin biosynthetic pathway enzymes from the Mountain Pine Beetle, Dendroctonus ponderosae.

    PubMed

    Song, Minmin; Delaplain, Patrick; Nguyen, Trang T; Liu, Xibei; Wickenberg, Leah; Jeffrey, Christopher; Blomquist, Gary J; Tittiger, Claus

    2014-10-01

    exoBrevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive Mountain Pine Beetle (Dendroctonus ponderosae). It is also found in other insects and the African elephant. Despite its significance, very little is known about its biosynthesis. A recent microarray analysis implicated a small cluster of three D. ponderosae genes in exo-brevicomin biosynthesis, two of which had identifiable open reading frames (Aw et al., 2010; BMC Genomics 11:215). Here we report further expression profiling of two genes in that cluster and functional analysis of their recombinantly-produced enzymes. One encodes a short-chain dehydrogenase that used NAD(P)(+) as a co-factor to catalyze the oxidation of (Z)-6-nonen-2-ol to (Z)-6-nonen-2-one. We therefore named the enzyme (Z)-6-nonen-2-ol dehydrogenase (ZnoDH). The other encodes the cytochrome P450, CYP6CR1, which epoxidized (Z)-6-nonen-2-one to 6,7-epoxynonan-2-one with very high specificity and substrate selectivity. Both the substrates and products of the two enzymes are intermediates in the exo-brevicomin biosynthetic pathway. Thus, ZnoDH and CYP6CR1 are enzymes that apparently catalyze the antepenultimate and penultimate steps in the exo-brevicomin biosynthetic pathway, respectively. PMID:25138711

  14. exo-Brevicomin biosynthesis in the fat body of the mountain pine beetle, Dendroctonus ponderosae.

    PubMed

    Song, Minmin; Gorzalski, Andrew; Nguyen, Trang T; Liu, Xibei; Jeffrey, Christopher; Blomquist, Gary J; Tittiger, Claus

    2014-02-01

    exo-Brevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive mountain pine beetle, Dendroctonus ponderosae. It also has been found in other insects and even in the African elephant. Despite its significance, little is known about its biosynthesis. In order to fill this gap and to identify new molecular targets for potential pest management methods, we performed gas chromatography-mass spectrometry analyses of cell cultures and in vitro assays of various D. ponderosae tissues with exo-brevicomin intermediates, analogs, and inhibitors. We confirmed that exo-brevicomin was synthesized by "unfed" males after emerging from the brood tree. Furthermore, in contrast to the paradigm established for biosynthesis of monoterpenoid pheromone components in bark beetles, exo-brevicomin was produced in the fat body, and not in the anterior midgut. The first committed step involves decarboxylation or decarbonylation of ω-3-decenoic acid, which is derived from a longer-chain precursor via β-oxidation, to (Z)-6-nonen-2-ol. This secondary alcohol is converted to the known precursor, (Z)-6-nonen-2-one, and further epoxidized by a cytochrome P450 to 6,7-epoxynonan-2-one. The keto-epoxide is stable at physiological pH, suggesting that its final cyclization to form exo-brevicomin is enzyme-catalyzed. exo-Brevicomin production is unusual in that tissue not derived from ectoderm apparently is involved. PMID:24532213

  15. Nitrogen limitation and growth response to CO{sub 2} in ponderosa pine

    SciTech Connect

    Johnson, D.W.; Henderson, P.; Walker, R.F.

    1995-09-01

    Ponderosa pine (Pinus ponderosa) was grown from seed and subjected to three levels of CO{sub 2} (370,525, and 700 {mu}l/ l{sup {minus}1}) and three levels of N (0, 10, and 20 g N m{sup {minus}2} yr{sup {minus}1}) for three years in open top chambers. Both N and CO{sub 2} produced a positive growth response, and there was a growth response to CO{sub 2} without fertilization. This growth increase was accompanied by increased N uptake with elevated CO{sub 2}; the commonly-observed reduction in tissue N concentration was insufficient to allow a significant growth response without additional N uptake. Detailed and exhaustive analyses of both bulk soil and rhizosphere soil revealed no growth response without additional N uptake. Detailed and exhaustive analyses of both bulk soil and rhizosphere soil revealed no effect of elevated CO{sub 2} on soil N mineralization rate. Thus, the growth response to elevated CO{sub 2} with suboptimal N was facilitated by greater root biomass and exploration of the soil for available N supplies. Root biomass was disproportionately greater in trees treated with elevated CO{sub 2}. Results of this in combination with previous pot studies show that N limitation is a continuum rather than an on/off situation, and thus N limitation constraints upon CO{sub 2} response varies continuously from complete limitation at very low N to no limitation at high N.

  16. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy.

    PubMed

    Clay, Sharon A; Krack, Kaitlynn K; Bruggeman, Stephanie A; Papiernik, Sharon; Schumacher, Thomas E

    2016-08-01

    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of (14)C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices. PMID:27153402

  17. Seasonal changes in above- and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient.

    PubMed

    Grulke, N E; Andersen, C P; Hogsett, W E

    2001-02-01

    Seasonal patterns of carbohydrate concentration in coarse and fine roots, stem or bole, and foliage of ponderosa pine (Pinus ponderosa Laws) were described across five tree-age classes from seedlings to mature trees at an atmospherically clean site. Relative to all other tree-age classes, seedlings exhibited greater tissue carbohydrate concentration in stems and foliage, and greater shifts in the time at which maximum and minimum carbohydrate concentration occurred. To determine the effect of environmental stressors on tissue carbohydrate concentration, two tree-age classes (40-year-old and mature) were compared at three sites along a well-established, long-term O3 and N deposition gradient in the San Bernardino Mountains, California. Maximum carbohydrate concentration of 1-year-old needles declined with increasing pollution exposure in both tree-age classes. Maximum fine root monosaccharide concentration was depressed for both 40-year-old and mature trees at the most polluted site. Maximum coarse and fine root starch concentrations were significantly depressed at the most polluted site in mature trees. Maximum bole carbohydrate concentration of 40-year-old trees was greater for the two most polluted sites relative to the cleanest site: the bole appeared to be a storage organ at sites where high O3 and high N deposition decreased root biomass. PMID:11303648

  18. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration

    USGS Publications Warehouse

    Petrie, Matthew; Wildeman, A.M.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.

    2016-01-01

    The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling emergence and/or establishment and one or more independent variables of air temperature, soil temperature, precipitation and moisture availability. Our review suggests that seedling emergence and establishment for both species is highest at intermediate temperatures (20 to 25 °C), and higher precipitation and higher moisture availability support a higher percentage of seedling emergence and establishment at daily, monthly and annual timescales. We found that ponderosa pine seedlings may be more sensitive to temperature fluctuations whereas lodgepole pine seedlings may be more sensitive to moisture fluctuations. In a changing climate, increasing temperatures and declining moisture availability may hinder forest persistence by limiting seedling processes. Yet, only 23 studies in our review investigated the effects of driving climate and environmental variables directly. Furthermore, 74 studies occurred in a laboratory or greenhouse, which do not often replicate the conditions experienced by tree seedlings in a field setting. It is therefore difficult to provide strong conclusions on how sensitive emergence and establishment in ponderosa and lodgepole pine are to these specific driving variables, or to investigate their potential aggregate effects. Thus, the effects of many driving variables on seedling processes remain largely inconclusive. Our review stresses the need for additional field and laboratory studies to better elucidate the effects of driving climate and environmental variables on seedling emergence and establishment for ponderosa and lodgepole pine.

  19. Lessons from the fires of 2000: Post-fire heterogeneity in ponderosa pine forests

    USGS Publications Warehouse

    Kotliar, Natasha B.; Haire, Sandra L.; Key, Carl H.

    2003-01-01

    We evaluate burn-severity patterns for six burns that occurred in the southern Rocky Mountains and the Colorado Plateau in 2000. We compare the results of two data sources: Burned Area Rehabilitations Teams (BAER) and a spatial burnseverity model derived from satellite imagery (the Normalized Burn Ratio; NBR). BAER maps tended to overestimate area of severe burns and underestimate area of moderate-severity burns relative to NBR maps. Low elevation and more southern ponderosa pine burns were predominantly understory burns, whereas burns at higher elevations and farther north had a greater component of high-severity burns. Thus, much, if not most, of the area covered by these burns appears to be consistent with historic burns and contributes to healthy functioning ecosystems.

  20. AmeriFlux US-Me4 Metolius-old aged ponderosa pine

    SciTech Connect

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me4 Metolius-old aged ponderosa pine. Site Description - The site is located on land designated as a Research Natural Area (RNA). The site is very open, with even-aged stands of old-growth trees, young trees and mixed aged stands. The eddy-flux tower footprint was classified as ~ 48% mixed aged, ~27% pure old growth and ~25% young aged stands. The data in this workbook describes the mixed aged component. A separate workbook describes the pure old growth component. Law et al (2001) Global Change Biology 7, 755-777; Law et al (2001) Agricultural and Forest Meteorology 110, 27-43; Anthoni et al (2002) Agricultural and Forest Meteorology 111, 203-222; Irvine & Law (2002) Global Change biology 8,1183-1194, Irivne et al (2004) Tree Physiology 24,753-763.

  1. Nitrogen oxide fluxes over a ponderosa pine plantation during BEARPEX-2009

    NASA Astrophysics Data System (ADS)

    Min, K.; Lafranchi, B. W.; Pusede, S. E.; Browne, E. C.; Wooldridge, P. J.; Cohen, R. C.

    2009-12-01

    The biosphere-atmosphere exchange of reactive nitrogen oxides affects atmospheric oxidative capacity and ecosystem nutrient cycling. During the Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX-2009), eddy covariance fluxes of NO2, sum of peroxy nitrates (∑PNs), sum of alkyl nitrates (∑ANs), and nitric acid (HNO3) were monitored from July 4 to July 26 above a ponderosa pine plantation in the Sierra Nevada Mountains of California using thermal dissociation - laser induced fluorescence (TD-LIF). NO2 fluxes are found to be positive and ∑AN fluxes negative supporting previous research (Farmer and Cohen, 2006). In contrast, we report downward ∑PN and HNO3 fluxes. We present these results and interpret the relationship between our flux observations and concurrent NO2, ∑PN, ∑AN, and HNO3 gradient measurements.

  2. Ponderosa pine snag densities following multiple fires in the Gila Wilderness, New Mexico

    USGS Publications Warehouse

    Holden, Z.A.; Morgan, P.; Rollins, M.G.; Wright, R.G.

    2006-01-01

    Fires create and consume snags (standing dead trees), an important structural and ecological component of ponderosa pine forests. The effects of repeated fires on snag densities in ponderosa pine forests of the southwestern USA have not been studied. Line intercept sampling was used to estimate snag densities in areas of the Gila Wilderness that had burned one to three times under Wildland Fire Use for Resource Benefit (WFU), a fire management policy implemented since 1974 aimed at restoring natural fire regimes. Twenty randomly located transects were measured in areas burned since 1946; six in once-burned areas, six in twice-burned areas and eight in thrice-burned areas. The mean density ?? standard errors of large (>47.5 cm dbh) snags for areas that burned once, twice and thrice was 7.0 ?? 2.7, 4.4 ?? 1.1 and 4.1 ?? 1.3 snags/ha, respectively. Differences in snag densities between once- and multiple-burned areas were significant (F-test; p < 0.05). There was no significant difference in density of large snags between twice- and thrice-burned areas. Proportions of type 1 snags (recently created) were higher in once- and twice-burned areas than in areas that burned three times, likely reflecting high tree mortality and snag recruitment resulting from an initial entry fire. Type 3 snags (charred by previous fire) were more abundant in areas that burned multiple times. The lack of differences in snag densities between areas that burned two and three times suggests that repeated fires leave many snags standing. The increasing proportion of type 3 snags with repeated fires supports this conclusion. ?? 2005 Elsevier B.V. All rights reserved.

  3. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    PubMed

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear. PMID:27209781

  4. Carbon fluxes from ponderosa pine forests disturbed by wildfire and thinning

    NASA Astrophysics Data System (ADS)

    Dore, S.; Kolb, T.; Montes-Helu, M.; Eckert, S.; Sullivan, B. W.; Hungate, B.; Kaye, J. P.; Hart, S.; Koch, G.

    2009-12-01

    We compared the impact of two types of disturbances on ecosystem carbon uptake and storage of ponderosa pine forests in the southwestern U. S.: 1) high-intensity burning, and 2) thinning. High severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. The intense fire, ten years after burning, reduced carbon stock by 50% compared with an undisturbed site. Eddy covariance measurements showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP) at the burned site was 90-210 g C m-2yr-1 less than at the undisturbed site, depending on the year. In contrast, thinning decreased carbon stocks by 18%, changed the site from a carbon sink to a source in the first post-treatment year, increased NPP, decreased the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning) and increased the contribution of soil CO2 efflux to TER. Dependence of TER on temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both, large disturbances, such as intense burning, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that forest thinning is a desirable alternative to stand-replacing wildfires in the effort to maintain carbon stored in dense, dry forests of ponderosa pine in southwestern United States.

  5. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  6. Non-native plant invasions in managed and protected ponderosa pine/Douglas-fir forests of the Colorado Front Range

    USGS Publications Warehouse

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stoker, J.M.; Stohlgren, T.J.

    2003-01-01

    We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not. Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At both Cheesman Lake and Turkey Creek, low/riparian plots had highest native and non-native species richness and cover; upland plots (especially east/west-facing, south-facing and flat, high plots) had the lowest. However, there were no significant differences between Cheesman Lake and Turkey Creek for native species richness, native species cover, non-native species richness, or non-native species cover for any topographic category. In general, non-native species richness and cover were highly positively correlated with native species richness and/or cover (among other variables). In total, 16 non-native species were recorded at Cheesman Lake and Turkey Creek; none of the 16 non-native species were more common at one site than another. These findings suggest that: (1) areas that are high in native species diversity also contain more non-native species; (2) both protected and managed areas can be invaded by non-native plant species, and at similar intensities; and (3) logging, grazing, and other similar disturbances may have less of an impact on non-native species establishment and growth than topographic position (i.e., in lowland and riparian zones versus upland zones).

  7. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico

    USGS Publications Warehouse

    Reynolds, Amanda C.; Betancourt, Julio L.; Quade, Jay; Patchett, P. Jonathan; Dean, Jeffery S.; Stein, John

    2005-01-01

    Previous analysis of 87Sr/86Sr ratios shows that 10th through 12th century Chaco Canyon was provisioned with plant materials that came from more than 75 km away. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, and (2) spruce (Picea sp.) and fir (Abies sp.) beams from the crest of the Chuska and San Mateo Mountains to the west and south. Here, we extend 87Sr/86Sr analysis to ponderosa pine (Pinus ponderosa) prevalent in the architectural timber at three of the Chacoan great houses (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo). Like the architectural spruce and fir, much of the ponderosa matches the 87Sr/86Sr ratios of living trees in the Chuska Mountains. Many of the architectural ponderosa, however, have similar ratios to living trees in the La Plata and San Juan Mountains to the north and Lobo Mesa/Hosta Butte to the south. There are no systematic patterns in spruce/fir or ponderosa provenance by great house or time, suggesting the use of stockpiles from a few preferred sources. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic scope of the larger Chacoan system. The complexity of this procurement warns against simple generalizations based on just one species, a single class of botanical artifact, or a few isotopic values.

  8. Effects of nursery fertilizer and irrigation on ponderosa and lodgepole pine seedling size. Forest Service research note

    SciTech Connect

    Sloan, J.P.

    1992-12-01

    Eight fertilizer treatments combined with three irrigation regimes were used when growing lodgepole and ponderosa pine seedlings on two soil types at Lucky Peak Nursery near Biose, ID. Seedlings of both species were larger on the sandy loam than the clay loam soil. Milorganite, an organic fertilizer derived from sewage sludge, reduced initial seedbeed densities but had no further effects. Ammonium nitrate increased seedling size on the clay loam, but not on the sandy loam soil. Increased irrigation was more effective in increasing seedling size on the sandy loam than on the clay loam soil. However, ponderosa pine receiving the least irrigation in the nursery grew the fastest for 3 years after being transplanted in the field, possibly because of drought conditioning.

  9. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae)

    PubMed Central

    Pitt, Caitlin; Carroll, Allan L.; Lindgren, B. Staffan; Huber, Dezene P.W.

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to

  10. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    PubMed

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability. PMID:15519986

  11. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  12. Vegetation trends in a 31-year-old ponderosa pine plantation: Effect of different shrub densities. Forest Service research paper

    SciTech Connect

    McDonald, P.M.; Abbott, C.S.

    1997-04-01

    On a poor site in northern California, a brushfield community was treated in various ways which left initial densities of no shrubs, light, medium, and heavy shrubs. Density and development (height, foliar cover, crown volume) for three shrub species (alone and combined), one grass, and planted ponderosa pine in these categories were quantified from 1966 to 1992. Successional trends (ascendance and decline) are presented for these species and for forbs from 1962 (the date pines were planted) through 1992. Regression equations that model density and development are presented for the shrubs and pine. In general, greenleaf manzanita prospered during the study; snowbrush initially developed well, but then declined; Sierra plum endured, but was relegated to the understory; needlegrass invaded rapdily, peaked early, and was mostly gone by the end of the study. Only a trace of forb species remained by study end. Needlegrass displayed strong environmental preference, becoming dense and developing well in shrub-free areas, but was scarcely present in heavy shrubs. Ponderosa pine grew well in no-shrub plots, farily well in light-shrub plots, and poorly in medium- and heavy-shrub plots. Extensive testing showed that shrub foliar cover and crown volume per acre explained more variation in several pine parameters than shrub height or density.

  13. Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.

    PubMed

    Hungate, Bruce A; Hart, Stephen C; Selmants, Paul C; Boyle, Sarah I; Gehring, Catherine A

    2007-07-01

    Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased

  14. Initial Decomposition and Humification Dynamics of Ponderosa Pine Fine Roots and Needles

    NASA Astrophysics Data System (ADS)

    Bird, J. A.; Torn, M. S.

    2002-12-01

    To understand the influence of litter chemistry and microclimate on the long-term stabilization of plant inputs, it is essential to better understand biological and chemical regulation of the conversion of litter to stable soil organic matter (SOM). We present first-year results from a 3-year field study examining the fate of 13C- and 15N- labeled Pinus ponderosa in an 80-year-old conifer forest in the Sierra Nevada, CA on an Ultic Haploxeralf. Our objectives are to assess the effects of litter type (fine roots vs. needles) and substrate placement depth (O vs. A horizon) on rates of C and N mineralization, immobilization into microbial biomass and specific microbial groups, and stabilization into SOM fractions. Data will be presented on recovery of 13C and 15N in soil microbial, mineral and SOM fractions after 152 d and C respiration over the initial 300 d. In situ litter decomposition, as estimated by 13C respiration, of needles exceeded that of roots by 270% at 61 d, by 140% at 152 d and was similar for the two substrates at 221 d. Comparing the effect of soil depth, pine needles had greater 13C respiration in the O horizon than in the A horizon through 152 d, while the rate of fine root decay was not significantly different between soil depths through 221 d.

  15. Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings

    SciTech Connect

    Norton, J.M.; Firestone, M.K. )

    1991-04-01

    The authors determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types.

  16. Modeling responses of ponderosa pine to interacting stresses of ozone and drought

    SciTech Connect

    Chen, C.W.; Tasi, W.T.; Gomez, L.E. )

    1994-05-01

    Plant-Growth-Stress Model (PGSM) is a physiologically based process model that integrates the effects of ozone, acid deposition, elevated carbon dioxide, temperature, drought, and nutrient deficiency. The model uses an hourly time step for photosynthesis and a daily time step for all other plant and soil processes. It can be set up to run for as many years as needed. The model was applied to simulate the growth pattern of ponderosa pine seedlings under the experimental conditions of ozone and drought stresses. The simulated diameter and biomass of canopy, roots, and stem were comparable to the measured. Major effect of drought stress was root mortality; however, its sublethal effect on stomata opening caused significant reductions of photosynthesis, canopy, roots, and stem. Ozone stress increased litterfall and decreased canopy. Trees compensated by growing more new needles. The canopy photosynthesis was not reduced to the extent of an across-the-board decrease of roots and stem. Ozone and drought stresses had an antagonistic effect, in which the biomass reductions due to the combined stresses were less than the sum of reductions from individual stresses. However, the observed data indicated a protective effect, not simulated by the model.

  17. A statistical approach to estimate O3 uptake of ponderosa pine in a mediterranean climate.

    PubMed

    Grulke, N E; Preisler, H K; Fan, C C; Retzlaff, W A

    2002-01-01

    In highly polluted sites, stomatal behavior is sluggish with respect to light, vapor pressure deficit, and internal CO2 concentration (Ci) and poorly described by existing models. Statistical models were developed to estimate stomatal conductance (gs) of 40-year-old ponderosa pine at three sites differing in pollutant exposure for the purpose of calculating O3 uptake. Gs was estimated using julian day, hour of day, pre-dawn xylem potential and photosynthetic photon flux density (PPFD). The median difference between estimated and observed field gs did not exceed 10 mmol H2O m(-2) s(-1), and estimated gs within 95% confidence intervals. 03 uptake was calculated from hourly estimated gs, hourly O3 concentration, and a constant to correct for the difference in diffusivity between water vapor and 03. The simulation model TREGRO was also used to calculate the cumulative 03 uptake at all three sites. 03 uptake estimated by the statistical model was higher than that simulated by TREGRO because gas exchange rates were proportionally higher. O3 exposure and uptake were significantly correlated (r2>0.92), because O3 exposure and gs were highly correlated in both statistical and simulation models. PMID:12152824

  18. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack

  19. An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine

    USGS Publications Warehouse

    van Mantgem, P.; Schwartz, M.

    2004-01-01

    We subjected 159 small ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) to treatments designed to test the relative importance of stem damage as a predictor of postfire mortality. The treatments consisted of a group with the basal bark artificially thinned, a second group with fuels removed from the base of the stem, and an untreated control. Following prescribed burning, crown scorch severity was equivalent among the groups. Postfire mortality was significantly less frequent in the fuels removal group than in the bark removal and control groups. No model of mortality for the fuels removal group was possible, because dead trees constituted <4% of subject trees. Mortality in the bark removal group was best predicted by crown scorch and stem scorch severity, whereas death in the control group was predicted by crown scorch severity and bark thickness. The relative lack of mortality in the fuels removal group and the increased sensitivity to stem damage in the bark removal group suggest that stem damage is a critical determinant of postfire mortality for small ponderosa pine.

  20. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    USGS Publications Warehouse

    Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.

  1. Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics.

    PubMed

    Grulke, N E; Alonso, R; Nguyen, T; Cascio, C; Dobrowolski, W

    2004-09-01

    Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) is widely distributed in the western USA. We report the lack of stomatal closure at night in early summer for ponderosa pine at two of three sites investigated. Trees at a third site with lower nitrogen dioxide and nitric acid exposure, but greater drought stress, had slightly open stomata at night in early summer but closed stomata at night for the rest of the summer. The three sites had similar background ozone exposure during the summer of measurement (2001). Nighttime stomatal conductance (gs) ranged from one tenth to one fifth that of maximum daytime values. In general, pole-sized trees (< 40 years old) had greater nighttime gs than mature trees (> 250 years old). In late summer, nighttime gs was low (< 3.0 mmol H2O m(-2) s(-1)) for both tree size classes at all sites. Measurable nighttime gs has also been reported in other conifers, but the values we observed were higher. In June, nighttime ozone (O3) uptake accounted for 9, 5 and 3% of the total daily O3 uptake of pole-sized trees from west to east across the San Bernardino Mountains. In late summer, O3 uptake at night was < 2% of diel uptake at all sites. Nocturnal O3 uptake may contribute to greater oxidant injury development, especially in pole-sized trees in early summer. PMID:15234897

  2. An investigation of the effects of simulated acid rain and elevated ozone on the physiology of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings and mature trees

    SciTech Connect

    Momen, B.

    1993-12-31

    This study investigated the combined effects of simulated acid rain and ozone on foliar water relations, carbon and nitrogen contents, gas exchange, and respiration of ponderosa pine seedlings and mature trees grown in the field at the USDA Forest Service Tree Improvement Center in Chico, California. Acid rain levels (pH 5.1 and 3) were applied weekly on foliage only, from January to April, 1992. Plants were exposed to ozone levels (ambient and twice ambient) during the day only, from August to December, 1990, and from September to November, 1992. Results suggested that elevated ozone, particularly in combination with strong acid, caused osmotic adjustment that may benefit plants during drought. The observed effects of pollutants are similar to the reported effects of drought on plant water relations. Elevated ozone decreased foliar nitrogen content and thus increased the C:N ratio, particularly in seedlings. Stomatal conductance was not affected by pollutants but net photosynthesis was decreased by elevated ozone, especially in mature trees. The greater sensitivity of net photosynthesis of mature trees to elevated ozone was contrary to all other plant characteristics investigated. Elevated ozone increased seedling respiration. Under controlled, temperature, light, and vapor pressure deficit conditions, net photosynthesis responded positively to increases in plant age, light intensity, and rain pH, but negatively to increases in tissue age, heat, and ozone concentration. Overall results indicated that acid rain and elevated ozone declined the carbon pool of ponderosa pine due to increased respiration and decreased net photosynthesis. Pollutant effects were more profound in mid-summer when ozone concentrations were highest. On many occasions the effects of acid rain and ozone levels interacted. Seedlings were more sensitive to pollutants than mature trees.

  3. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes.

    PubMed

    McDowell, Nate G; Adams, Henry D; Bailey, John D; Hess, Marcey; Kolb, Thomas E

    2006-06-01

    Homeostatic maintenance of gas exchange optimizes carbon gain per water loss. Homeostasis is regulated by short-term physiological and long-term structural mechanisms, both of which may respond to changes in resource availability associated with competition. Therefore, stand density regulation via silvicultural manipulations may facilitate growth and survival through mechanisms operating at both short and long timescales. We investigated the responses of ponderosa pine (Pinus ponderosa) to stand basal area manipulations in Arizona, USA. Stand basal area was manipulated to seven replicated levels in 1962 and was maintained for four decades by decadal thinning. We measured basal area increment (BAI) to assess the response and sustainability of wood growth, carbon isotope discrimination (A) inferred from annual rings to assess the response of crown gas exchange, and ratios of leaf area to sapwood area (A(l):A(s)) to assess longer term structural acclimation. Basal area treatments increased soil water potential (r2 = 0.99) but did not affect photosynthetic capacity. BAI increased within two years of thinning, and the 40-year mean BAI was negatively correlated with stand basal area (r2 = 0.98). delta was negatively correlated with stand basal area for years 5 through 12 after thinning (r2 = 0.90). However, delta was relatively invariant with basal area for the period 13-40 years after initial thinning despite maintenance of treatment basal areas via repeated decadal thinnings. Independent gas exchange measurements verified that the ratio of photosynthesis to stomatal conductance was invariant with basal area, but absolute values of both were elevated at lower basal areas. A(l):A(s) was negatively correlated with basal area (r2 = 0.93). We hypothesize that increased A(l):A(s) is a homeostatic response to increased water availability that maximizes water-use efficiency and whole-tree carbon uptake. Elevated A(l):A(s) of trees at low basal areas was associated with greater

  4. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Schnitzhofer, R.; Graus, M.; Herdlinger-Blatt, I. S.; DiGangi, J. P.; Sive, B.; Turnipseed, A.; Hornbrook, R. S.; Zheng, W.; Flocke, F. M.; Guenther, A.; Keutsch, F. N.; Apel, E.; Hansel, A.

    2012-10-01

    Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK+MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK+MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and likely

  5. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Schnitzhofer, R.; Graus, M.; Herdlinger-Blatt, I. S.; DiGangi, J. P.; Sive, B.; Turnipseed, A.; Hornbrook, R. S.; Zheng, W.; Flocke, F. M.; Guenther, A.; Keutsch, F. N.; Apel, E.; Hansel, A.

    2013-03-01

    Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and

  6. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico

    USGS Publications Warehouse

    Reynolds, A.C.; Betancourt, J.L.; Quade, Jay; Patchett, P.J.; Dean, J.S.; Stein, J.

    2005-01-01

    Previous analysis of 87Sr/86Sr ratios shows that 10th through 12th century Chaco Canyon was provisioned with plant materials that came from more than 75 km away. This includes (1) corn (Zea mays) grown on the eastern flanks of the Chuska Mountains and floodplain of the San Juan River to the west and north, and (2) spruce (Picea sp.) and fir (Abies sp.) beams from the crest of the Chuska and San Mateo Mountains to the west and south. Here, we extend 87Sr/86Sr analysis to ponderosa pine (Pinus ponderosa) prevalent in the architectural timber at three of the Chacoan great houses (Pueblo Bonito, Chetro Ketl, Pueblo del Arroyo). Like the architectural spruce and fir, much of the ponderosa matches the 87Sr/86Sr ratios of living trees in the Chuska Mountains. Many of the architectural ponderosa, however, have similar ratios to living trees in the La Plata and San Juan Mountains to the north and Lobo Mesa/Hosta Butte to the south. There are no systematic patterns in spruce/fir or ponderosa provenance by great house or time, suggesting the use of stockpiles from a few preferred sources. The multiple and distant sources for food and timber, now based on hundreds of isotopic values from modern and archeological samples, confirm conventional wisdom about the geographic scope of the larger Chacoan system. The complexity of this procurement warns against simple generalizations based on just one species, a single class of botanical artifact, or a few isotopic values. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Development of a mixed shrub-ponderosa pine community in a natural and treated condition. Forest Service research paper (Final)

    SciTech Connect

    McDonald, P.M.; Fiddler, G.O.

    1995-05-01

    On a medium site in northern California, a mostly shrub community was treated by two manual release techniques and by two herbicides, to study its development in both a natural (control) and treated condition. Survival and growth of planted ponderosa pine seedlings were quantified for 8 to 11 years after initial treatment applications. Treatments included manual release in a 4-foot radius around pine seedlings one, two, and three times; grubbing the entire one-seventh acre plot two times; applying 2,4-D and Velpar herbicides to the entire plot one time; and a control. Data are presented for the most abundant species (greenleaf manzanita), second most abundant species (snowbrush), by the two species combined, and by all 10 shrub species combined. At the end of the study in 1990, manzanita was the most abundant species with 15,267 plants per acre, cover of 24,800 ft, and height of 5.4 feet. Ponderosa pine developed best in plots where the entire area was grubbed twice (mean height of 14.2 feet).

  8. Mechanical and chemical release in a 12-year-old ponderosa pine plantation. Forest Service research paper

    SciTech Connect

    Fiddler, G.O.; McDonald, P.M.

    1997-04-01

    A 12-year-old ponderosa pine plantation on the Tahoe National Forest in northern California was mechanically treated with a Hydro-Ax in an attempt to increase the survival and growth of the planted seedlings. Other release methods were not feasible because the shrubs in the mixed-shrub community (greenleaf manzanita, mountain whitethorn, bittercherry, coffeberry) were too large (3 to 5 feet tall) and well developed. Additional treatments were a chemical treatment, in which 2,4-D was applied to a portion of the study site that had been treated with the Hydro-Ax 1 year previously, and control. Eleven growing seasons after treatment (1993), average pine crown cover was statistically higher in the mechanical treatment (Hydro-Ax alone) than in the control. This was the only significant enhancement of pine growth by the Hydro-Ax alone. Mean pine diameter and height did not differ statistically from the control after 11 years. In contrast, the Hydro-Ax plus herbicide (chemical) treatment statistically increased pine crown cover, height, and diameter over the Hydro-Ax alone and the control. Mean crown cover was 104 percent greater in the treated trees than for pines in the control, height was 45 percent greater, and diameter was 47 percent greater. Relative costs were $225 per acre for the Hydro-Ax alone (mechanical) and $273 per acre for the Hydro-Ax + herbicide (chemical). Altogether, the most cost-effective treatment was Hydro-Ax + herbicide (chemical).

  9. Metabolic Status of Bacteria and Fungi in the Rhizosphere of Ponderosa Pine Seedlings

    PubMed Central

    Norton, Jeanette M.; Firestone, Mary K.

    1991-01-01

    We determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types. Determination of total and INT-active biomass has increased our understanding of the role of spatial compartmentalization of bacteria and fungi in rhizosphere carbon flow. PMID:16348461

  10. Distribution of black carbon in Ponderosa pine litter and soils following the High Park wildfire

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2014-12-01

    Black carbon (BC), the heterogeneous product of burned biomass, is a critical component in the global carbon cycle, yet timescales and mechanisms for incorporation into the soil profile are not well understood. The High Park Fire, which took place in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire intenstiy and geomorphology on properties of carbon (C), nitrogen (N), and BC in the Cache La Poudre River drainage. We sampled montane Ponderosa pine litter, 0-5 cm soils, and 5-15 cm soils four months post-fire in order to examine the effects of slope and burn intensity on %C, C stocks, %N and black carbon (g kg-1 C, and g m-2). We developed and implemented the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes, but that there was no difference in black carbon content or stocks. BC content was greatest in the litter in burned sites (19 g kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g m-2). At the time of sampling, none of the BC deposited on the land surface post-fire had been incorporated into to either the 0-5 cm or 5-15 cm soil layers. The ratio of B5CA : B6CA (less condensed to more condensed BC) indicated there was significantly more older, more processed BC at depth. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely transported off the surface through erosion events. Future work examining mechanisms for BC transport will be required for understanding the role BC plays in the global carbon cycle.

  11. Effects of feeding ponderosa pine needles during pregnancy: comparative studies with bison, cattle, goats, and sheep.

    PubMed

    Short, R E; James, L F; Panter, K E; Staigmiller, R B; Bellows, R A; Malcolm, J; Ford, S P

    1992-11-01

    Four experiments were conducted to determine the effect of feeding dried pine needles (Pinus ponderosa; PN) on the abortion rate of ruminants. In Exp. 1, cattle were fed 5.4 kg of PN daily for 21 d starting at 116, 167, 215, or 254 d of pregnancy. The PN did not cause abortions when started at 116 d; thereafter, the percentage of cows that aborted increased linearly, and the interval to abortion decreased linearly (both P < .01); all cows fed PN beginning at 254 d aborted. In Exp. 2, cattle were fed .7, 1.4, or 2.7 kg of PN for 21 d or 2.7 kg for 1 or 3 d. Sheep and goats were fed .8 and .5 kg of PN, respectively, starting at 121 d of pregnancy. The PN induced some abortions in cattle when fed for 1 (11%) or 3 (30%) d, but the abortion rate was greater (P < .01) when the PN were fed for longer periods of time (80, 90, and 100% aborted in 19, 17, and 10 d for .7-, 1.4-, and 2.7-kg doses, respectively). No goats or sheep aborted in response to PN feeding. Pregnancy rates during the next breeding season for cows that aborted in response to the PN were slightly higher than rates for control cows (94 vs 87%). In Exp. 3, buffalo (Bison bison) and cattle were fed 2.25 kg of PN from the same collection. Abortions were induced in all buffalo and cattle that were fed PN.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1459912

  12. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attackingPinus ponderosa, with special emphasis on the western pine beetle,Dendroctonus brevicomis.

    PubMed

    Moeck, H A; Wood, D L; Lindahl, K Q

    1981-01-01

    Detection of weakened hosts from a distance by bark beetles through olfaction was investigated in field experiments. No significant numbers of Scolytidae were attracted to anaerobically treated pine bolts, stem disks, or sugar and ponderosa pine bark including phloem. Treatment of living trees with cacodylic acid induced attacks byDendroctonus brevicomis, D. ponderosae, Ips latidens, Gnathotrichus retusus, andPityophthorus scalptor, beginning two weeks after treatment. There was no significant difference between landing rates ofD. brevicomis andD. ponderosae on screened treated trees and screened controls. There was a significant increase in landing rates ofG. retusus andI. latidens, because both species had penetrated the screen and produced pheromones. Tree frilling alone did not increase the landing rate of bark beetles. Freezing of the lower trunk with dry ice did not increase significantly the landing rate ofD. brevicomis, D. ponderosae, G. retusus, orI. latidens on screened trees, whereas unscreened frozen trees were attacked by all four species. There was no significantly higher landing rate byD. brevicomis, D. ponderosae, I. paraconfusus, I. latidens, G. retusus, orHylurgops subcostulatus on screened trees evidencing symptoms of severe infection by the root pathogenVerticicladiella wagenerii, than on symptornless trees. These experiments show thatD. brevicomis, D. ponderosae, I. paraconfusus, I. latidens, andG. retusus land, apparently indiscriminately, on healthy and stressed hosts. Thus, in these species host discrimination must occur after landing and prior to sustained feeding. PMID:24420427

  13. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    USGS Publications Warehouse

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas

  14. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  15. Effects of CO[sub 2] on apparent dark respiration in loblolly and ponderosa pine seedlings grown in sub-optimal, optimal or supra-optimal nitrogen

    SciTech Connect

    Griffin, K.L.; Strain, B.R. ); Winner, W.E. )

    1994-06-01

    Differences in the response of apparent dark respiration to elevated CO[sub 2] and nitrogen were studied in loblolly (Pinus taeda) and ponderosa (P. ponderosa) pine seedlings. Seedlings of both species were grown for 160 days in two CO[sub 2] partial pressures (35 or 70 Pa) and three levels of soil nitrogen (1, 3.5 or 7 mM NH[sub 4]) in sterilized sand culture. Ponderosa pine had higher apparent respiration rates (CO[sub 2] efflux in the dark) than loblolly pine across all CO[sub 2] and nitrogen treatments. Loblolly poine grown in elevated CO[sub 2] had lower apparent respiration rates than seedlings grown in low CO[sub 2]. Apparent respiration for ponderosa pine was similar at both CO[sub 2] partial pressures. Apparent respiration increased with nitrogen in both species. The direct effects of ambient CO[sub 2] environment surrounding isolated leaves or whole seedlings. Short term increases in CO[sub 2] partial pressures consistently resulted in significant decreases in CO[sub 2] efflux across the growth treatments and measurement scales. Leaf level decreases in CO[sub 2] efflux were as large as 90% when CO[sub 2] partial pressures were increased form 0 to 100 Pa Species level differences in apparent respiration, and its response to nitrogen availability, may influence the potential of these two species to grow and sequester carbon as atmospheric CO[sub 2] increases.

  16. EFFECTS OF PHOTOCHEMICAL OXIDANT INJURY OF PONDEROSA AND JEFFREY PINE ON SUSCEPTIBILITY OF SAPWOOD AND FRESHLY CUT STUMPS TO FOMES ANNOSUS

    EPA Science Inventory

    Ponderosa and Jeffrey pine sapwood samples and freshly cut stumps from trees with different amounts of oxidant injury were inoculated with Fomes annosus. With stumps, percentage of surface cross-section area infected and extent of vertical colonization were determined 1 mo and 6-...

  17. EFFECTS OF CLIMATE VARIABILITY ON THE CARBON DIOXIDE, WATER, AND SENSIBLE HEAT FLUXES ABOVE A PONDEROSA PINE PLANTATION IN THE SIERRA NEVADA, CA. (R826601)

    EPA Science Inventory

    Abstract

    Fluxes of CO2, water vapor, and sensible heat were measured by the eddy covariance method above a young ponderosa pine plantation in the Sierra Nevada Mountains (CA) over two growing seasons (1 June¯10 September 1997 and 1 May&#...

  18. FOLIAR N RESPONSE OF PONDEROSA PINE SEEDLINGS TO ELEVATED CO2 AND O3

    EPA Science Inventory

    Interactions between needle N status and exposure to combined CO2 and O3 stresses were studied in Pinus ponderosa seedlings. The seedlings were grown for three years (April 1998 through March 2001) in outdoor chambers in native soils from eastern Oregon, and exposed to ambient ...

  19. Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases

    PubMed Central

    Keeling, Christopher I.; Chiu, Christine C.; Aw, Tidiane; Li, Maria; Henderson, Hannah; Tittiger, Claus; Weng, Hong-Biao; Blomquist, Gary J.; Bohlmann, Joerg

    2013-01-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive pest of western North American pine forests. Adult males produce frontalin, an eight-carbon antiaggregation pheromone, via the mevalonate pathway, as part of several pheromones that initiate and modulate the mass attack of host trees. Frontalin acts as a pheromone, attractant, or kairomone in most Dendroctonus species, other insects, and even elephants. 6-Methylhept-6-en-2-one, a frontalin precursor, is hypothesized to originate from 10-carbon geranyl diphosphate (GPP), 15-carbon farnesyl diphosphate (FPP), or 20-carbon geranylgeranyl diphosphate (GGPP) via a dioxygenase- or cytochrome P450-mediated carbon–carbon bond cleavage. To investigate the role of isoprenyl diphosphate synthases in pheromone biosynthesis, we characterized a bifunctional GPP/FPP synthase and a GGPP synthase in the mountain pine beetle. The ratio of GPP to FPP produced by the GPP/FPP synthase was highly dependent on the ratio of the substrates isopentenyl diphosphate and dimethylallyl diphosphate used in the assay. Transcript levels in various tissues and life stages suggested that GGPP rather than GPP or FPP is used as a precursor to frontalin. Reduction of transcript levels by RNA interference of the isoprenyl diphosphate synthases identified GGPP synthase as having the largest effect on frontalin production, suggesting that frontalin is derived from a 20-carbon isoprenoid precursor rather than from the 10- or 15-carbon precursors. PMID:24167290

  20. Stemwood production patterns in ponderosa pine: Effects of stand dynamics and other factors. Forest Service research paper

    SciTech Connect

    Arbaugh, M.J.; Peterson, D.L.

    1993-05-01

    The growth patterns of vertical stems in nine ponderosa pines from a stand in the southern Sierra Nevada were analyzed for recent changes due to stand dominance position, age, climate, and ozone exposure. Large positive correlations were found between increments in volume growth and basal area at d.b.h. The results indicated that patterns of wood distribution along the bole were associated with age, competitive position, and release from competition. A multiple regression model using winter and spring precipitation adequately explained short-term growth fluctuations during 1920-1955 and predicted growth during 1956-1985 for the trees as a group. A prominent feature of all volume, basal area, and ring width series was a growth response to a selective harvest in 1965. Increments in gross volume increased througout the bole of all trees but declined for thinning. This increasing trend continued for young and dominant trees but declined for older nondominant trees.

  1. Use of a simulation model and ecosystem flux data to examine carbon-water interactions in ponderosa pine.

    PubMed

    Williams, M; Law, B E; Anthoni, P M; Unsworth, M H

    2001-03-01

    Drought stress plays an important role in determining both the structure and function of forest ecosystems, because of the close association between the carbon (C) and hydrological cycles. We used a detailed model of the soil-plant-atmosphere continuum to investigate the links between carbon uptake and the hydrological cycle in a mature, open stand of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at the Metolius river in eastern Oregon over a 2-year period (1996-1997). The model was parameterized from local measurements of vegetation structure, soil properties and meteorology, and tested against independent measurements of ecosystem latent energy (LE) and carbon fluxes and soil water content. Although the 2 years had very different precipitation regimes, annual uptake of C and total transpiration were similar in both years, according to both direct observation and simulations. There were important differences in ratios of evaporation to transpiration, and in the patterns of water abstraction from the soil profile, depending on the frequency of summer storms. Simulations showed that, during periods of maximum water limitation in late summer, plants maintained a remarkably constant evapotranspirative flux because of deep rooting, whereas changes in rates of C accumulation were determined by interactions between atmospheric vapor pressure deficit and stomatal conductance. Sensitivity analyses with the model suggest a highly conservative allocation strategy in the vegetation, focused belowground on accessing a soil volume large enough to buffer summer droughts, and optimized to account for interannual variability in precipitation. The model suggests that increased allocation to leaf area would greatly increase productivity, but with the associated risk of greater soil water depletion and drought stress in some years. By constructing sparse canopies and deep rooting systems, these stands balance reduced productivity in the short term with risk avoidance over the long

  2. Predicted response of stem respiration in ponderosa pine to global climate change

    SciTech Connect

    Carey, E.V.; DeLucia, E.H.; Callaway, R.M. )

    1994-06-01

    We measured woody tissue respiration on boles of desert and montane populations of Pinus ponderosa growing in the Great Basin Desert and on the east-slope of the Sierra Nevada as part of a study of responses of P. ponderosa to global climate change. The differences in temperature and precipitation between desert and montane populations match changes in climate predicted from a doubling of atmospheric CO[sub 2]; therefore, these naturally occurring populations represent the difference between present and future climatic conditions for these trees. Allometric relationships derived previously, indicate that for trees of equal diameter, desert trees predicted that desert trees would have lower Q[sub 10] responses for respiration (increase in respiration with a 10[degrees] increase in temperature) volume was not different between populations (Desert: 3.24; Montane: 3.13 moles m[sup [minus]3] sec[sup [minus]1]). Moreover, between population differences in Q[sub 10] for respiration were not statistically significant (Desert: 2.27; Montane: 2.39). Results suggest that under predicted future climatic conditions increased respiratory losses from woody tissue resulting from increased allocation to sapwood may offset increases in carbon uptake due to enhanced photosynthesis from elevated CO[sub 2].

  3. Genotypic variability in ponderosa pine responses to combined ozone and drought stresses

    SciTech Connect

    Temple, P.J.

    1995-06-01

    Five-year-old ponderosa (Pinus ponderosa Laws.) seedlings from 18 half-sib and one full-sib families obtained from the California Tree Improvement Program were harvested after 1, 2, and 3 growing seasons of exposure to three levels of ozone (O{sub 3}) and two levels of available soil water (ASW) in open-top chambers in the California Sierras. Seedlings were evaluated for O{sub 3} injury symptoms, biomass, and radial growth in response to these stresses. Ozone injury responses were highly variable across families, but family rankings for O{sub 3} injury were consistent across years. Family rankings for O{sub 3} injury were highly correlated with those for reductions in biomass and radial growth for trees in the high ASW treatment, but drought-stressed trees showed no consistent relation between foliar 03 injury and reductions in growth. After three seasons of exposure to 88 ppb O{sub 3}, foliar biomass of the three most susceptible families averaged 60% less than trees in the low-O{sub 3} control, while O{sub 3} had no effect on growth of the three most resistant families. Variability across families of growth responses to drought was significantly less than the variability in seedling responses to O{sub 3}.

  4. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests.

    PubMed

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Yuen, Mack; Clark, Erin L; Fraser, Jordie D; Huber, Dezene P W; Liao, Nancy Y; Docking, T Roderick; Birol, Inanc; Chan, Simon K; Taylor, Greg A; Palmquist, Diana; Jones, Steven J M; Bohlmann, Joerg

    2012-08-01

    Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera. PMID:22516182

  5. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  6. Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest

    USGS Publications Warehouse

    Keeley, J.E.; McGinnis, T.W.

    2007-01-01

    Following the reintroduction of fire Bromus tectorum has invaded the low elevation ponderosa pine forests in parts of Kings Canyon National Park, California. We used prescribed burns, other field manipulations, germination studies, and structural equation modelling, to investigate how fire and other factors affect the persistence of cheatgrass in these forests. Our studies show that altering burning season to coincide with seed maturation is not likely to control cheatgrass because sparse fuel loads generate low fire intensity. Increasing time between prescribed fires may inhibit cheatgrass by increasing surface fuels (both herbaceous and litter), which directly inhibit cheatgrass establishment, and by creating higher intensity fires capable of killing a much greater fraction of the seed bank. Using structural equation modelling, postfire cheatgrass dominance was shown to be most strongly controlled by the prefire cheatgrass seedbank; other factors include soil moisture, fire intensity, soil N, and duration of direct sunlight. Current fire management goals in western conifer forests are focused on restoring historical fire regimes; however, these frequent fire regimes may enhance alien plant invasion in some forest types. Where feasible, fire managers should consider the option of an appropriate compromise between reducing serious fire hazards and exacerbating alien plant invasions. ?? IAWF 2007.

  7. Observations of BVOC (Biogenic Volatile Organic Compound) Fluxes and Vertical Gradients in a Ponderosa Pine Forest during BEARPEX 2009

    NASA Astrophysics Data System (ADS)

    Park, J.; Fares, S.; Weber, R.; Goldstein, A.

    2010-12-01

    During summer 2009 an intensive field campaign (Biosphere Effects on AeRosols and Photochemistry EXperiment - BEARPEX) took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada Mountains of California. The campaign aimed to investigate biosphere-atmosphere interactions during a period of intense photochemical activity, to elucidate the fate BVOC (Biogenic Volatile Organic Compounds) in the atmosphere, and explore the processes of secondary organic aerosol formation. In this study, a PTR-MS (Proton Transfer Reaction - Mass Spectrometry) was used to measure 19 compounds (masses) including methanol, isoprene + MBO (2-Methyl-3-butene-2-ol), monoterpenes, sesquiterpenes, and some oxygenated BVOCs at 5 heights of a vertical gradient from the forest floor to above the canopy. Fluxes of the 4 dominant BVOCs were measured above the canopy with the Eddy covariance technique. In parallel with BVOC measurements, ozone fluxes and gradients, and meteorological parameters (PAR, temperature, relative humidity, wind speed, and wind direction) were recorded in order to investigate the dependence of BVOC emissions and chemistry on meteorological conditions and to test the hypothesis that BVOC remove atmospheric ozone through gas-phase reactions. BVOCs which are directly emitted from pine trees generally have the highest concentration at the lowest measurement height and the lowest concentration above the canopy. Sesquiterpenes were observed at lower concentration than monoterpenes, but with very similar vertical gradient patterns, indicating their emission patterns are similar. The observed MBO flux was approximately twice the Monoterpene flux. Measured monoterpene canopy scale flux was consistent with modeled emissions based on scaling up from branch enclosure measurements at this site (basal emission rate F30= 0.61 ±0.14 mgC m-2 hr-1 and temperature response β= 0.15 ±0.09 °C-1). We find that m/z 113, an unidentified OVOCs (oxygenated volatile organic compounds

  8. Climate Effects on Carbon and Water Exchange of Young and Intermediate-growth Ponderosa Pine Ecosystems in Central Oregon

    NASA Astrophysics Data System (ADS)

    Kurpius, M. R.; Irvine, J.; Law, B. E.; Unsworth, M. H.

    2002-12-01

    Carbon and water fluxes were measured continuously by eddy covariance above young- and intermediate-aged ponderosa pine (Pinus ponderosa Dougl. Ex P. and C. Laws.) stands in a seasonally semiarid environment in central Oregon. Ecophysiological measurements of processes contributing to fluxes were also made (soil CO2 effluxes, transpiration). The young stand (YS) is ~17 years old, and has a total LAI of 1.5, with 40% of the leaf area in understory shrubs. The intermediate stand (IS), ~1.5 km from the YS, is ~56 years old, with total LAI ~3.1 (5% in understory shrubs). Our goal was to examine how seasonal weather patterns and age-related site characteristics affect CO2 and H2O exchange at these sites. Throughout the measurement period, water vapor exchange for both sites was similar in magnitude and trend. Net ecosystem exchange (NEE) was similar in magnitude (-1 to +1 mmol m-2 s-1) for both sites from January 2002 through March. As the rainy season ended, carbon uptake at both sites increased in April, and reached a maximum in early June. Early summer daytime mean NEE was greater at the IS (-6 to -8 mmol m-2 s-1) than at the YS (-3 to -4 mmol m-2 s-1). While the YS had higher summer soil CO2 efflux during this period, NEE remained higher at the IS due to higher GEP. Air temperature, vapor pressure deficit (VPD), and incident PAR were similar at both sites, but greater snow cover at the IS resulted in twice the soil moisture of the YS until July, when both sites reached low values (12% and 9%, respectively). A combination of higher leaf area and soil moisture likely accounts for higher early summer carbon uptake at the IS. NEE became strongly correlated with VPD in June as soil moisture levels were rapidly declining. VPD caused lowered NEE at both sites but the IS decreased more substantially than the YS and by mid-July NEE at both sites was -2 to -4 mmol m-2 s-1. Even with the diminished carbon uptake at the IS due to the strong coupling between VPD and NEE, we

  9. Response of brown-headed cowbirds and three host species to thinning treatments in low-elevation ponderosa pine forests along the northern Colorado Front Range

    USGS Publications Warehouse

    Keeley, W.H.; Germaine, Stephen; Stanley, Thomas R.; Spaulding, Sarah A.; Wanner, C.E.

    2013-01-01

    Thinning ponderosa pine (Pinus ponderosa) forests to achieve desired ecological conditions remains a priority in the North American west. In addition to reducing the risk of high-severity wildfires in unwanted areas, stand thinning may increase wildlife and plant diversity and provide increased opportunity for seedling recruitment. We initiated conservative (i.e. minimal removal of trees) ponderosa stand thinning treatments with the goals of reducing fire risk and improving habitat conditions for native wildlife and flora. We then compared site occupancy of brown-headed cowbirds (Molothrus ater), chipping sparrows (Spizella passerina), plumbeous vireos (Vireo plumbeus), and western wood-pewees (Contopus sordidulus) in thinned and unthinned (i.e., control) forest stands from 2007 to 2009. Survey stations located in thinned stands had 64% fewer trees/ha, 25% less canopy cover, and 23% less basal area than stations in control stands. Occupancy by all three host species was negatively associated with tree density, suggesting that these species respond favorably to forest thinning treatments in ponderosa pine forests. We also encountered plumbeous vireos more frequently in plots closer to an ecotonal (forest/grassland) edge, an association that may increase their susceptibility to edge-specialist, brood parasites like brown-headed cowbirds. Occupancy of brown-headed cowbirds was not related to forest metrics but was related to occupancy by plumbeous vireos and the other host species in aggregate, supporting previous reports on the affiliation between these species. Forest management practices that promote heterogeneity in forest stand structure may benefit songbird populations in our area, but these treatments may also confer costs associated with increased cowbird occupancy. Further research is required to understand more on the complex relationships between occupancy of cowbirds and host species, and between cowbird occupancy and realized rates of nest parasitism.

  10. In situ measurements of C2-C10 volatile organic compounds above a Sierra Nevada ponderosa pine plantation

    NASA Astrophysics Data System (ADS)

    Lamanna, Mark S.; Goldstein, Allen H.

    1999-09-01

    A fully automated gas chromatograph-flame ionization detector system was designed and built to measure ambient concentrations of C2-C10 volatile organic compounds, including many oxygenated compounds, without using liquid cryogen. It was deployed at Blodgett Forest Research Station in Georgetown, California, 38°53'42.9″N, 120°37'57.9″W, 1315 m elevation. More than 900 in situ measurements were made above a ponderosa pine canopy at 40-min intervals, continuously from July 2 through August 1, 1997. Factor analysis and observed temporal patterns were used to categorize sources for measured compounds as biogenic or anthropogenic or both. Compounds that were clearly biogenic included methylbutenol, isoprene and its oxidation products (methacrolein and methyl vinyl ketone), and terpenes (α-pinene, 3-carene, d-limonene). Other compounds were partially biogenic, including acetone, ethene, propene, hexanal, acetaldehyde, and methanol. Hydroxyl radical (OH) loss rates were dominated by the clearly biogenic compounds, accounting for 70% of the loss under mean midday conditions. The most important single compounds were isoprene (33%) and methylbutenol (21%). These two compounds were dominant under all conditions, including the coldest and most polluted days. Under the most polluted conditions, acetaldehyde became very important, accounting for 13% of the total. Total OH loss rates were highly correlated with temperature because emissions of biogenic compounds, which dominate OH loss, are strongly temperature dependent. Much of the research on biogenic volatile organic compounds has focused on isoprene and terpenes. Our results suggest that quantifying and understanding factors controlling biogenic emissions of other compounds such as methylbutenol, acetone, hexanal, methanol, and acetaldehyde are critical for improving our understanding of regional photochemistry.

  11. Acid composition of particles and gases in a ponderosa pine forest during the BEACHON-RoMBAS campaign

    NASA Astrophysics Data System (ADS)

    Stark, H.; Yatavelli, L.; Thompson, S.; Kimmel, J. R.; Palm, B. B.; Day, D. A.; Campuzano-Jost, P.; Cubison, M. J.; Jayne, J.; Worsnop, D. R.; Thornton, J. A.; Jimenez, J. L.

    2012-12-01

    We present results from the high mass-resolution analysis of gas-phase and aerosol spectra collected with a chemical ionization high-resolution time-of-flight mass spectrometer, equipped with a micro-orifice volatilization impactor ("MOVI-HRToF-CIMS", Yatavelli and Thornton AS&T, 2010; Yatavelli et al., AS&T, 2012) during the 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study ("BEACHON-RoMBAS"). The study was conducted during July - August 2011 in a ponderosa pine forest in Colorado. Choosing acetate (CH3C(O)O-) as the reagent ion and developing analysis tools for formula identification and elemental analysis allowed us to identify hundreds of individual acids in aerosol spectra. Positive Matrix Factorization (PMF) analysis of the ion time series is useful to account for backgrounds in the different modes of operation and to separate several gas-phase and particulate factors with different volatility and composition. Results on aerosol composition, including nitrogen- and sulfur-containing species as well as information about elemental ratios (e.g. O:C, H:C) and average carbon oxidation state are presented. Most of the acids detected have between 1 and 10 carbons and average carbon oxidation states (OsC) between -1 and 1. This suggests the importance of monoterpenes and MBO as precursors of the measured acids. We will discuss these results with special consideration of fragmentation on the heated surfaces of the instrument.

  12. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests

    USGS Publications Warehouse

    Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.

    2005-01-01

    The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important

  13. Effects of CO{sub 2} and nitrogen fertilization on soils planted with ponderosa pine

    SciTech Connect

    Johnson, D.W.

    1996-12-01

    The effects of elevated CO{sub 2} (ambient, 525, and 700 {micro}l l{sup -1})and N fertilization (0, 10, and 20 g N m{sup 2} yr{sup -1}) on soil pCO{sub 2}, CO{sub 2} efflux, soil solution chemistry, and soil C and nutrients in an open-top chamber study with Pinus ponderosa are described. Soil pCO{sub 2} and CO{sub 2} efflux were significantly greater with elevated CO{sub 2}, at first (second growing season) in the 525 {micro}l l{sup -1} and later (fourth and fifth growing seasons) in the 700 {micro}l l{sup -1} CO{sub 2} treatments. Soil solution HCO{sub 3}{sup -} concentrations were temporarily elevated in the 525 {micro}l l{sup -1} CO{sub 2} treatment during the second growing season, consistent with the elevated pCO{sub 2}. Nitrogen fertilization had no consistent effect on soil pCO{sub 2} or CO{sub 2} efflux, but did have the expected negative effect on exchangeable Ca{sup 2+}, K{sup +}, and Mg{sup 2+}, presumed to be caused by increased nitrate leaching. Elevated CO{sub 2} had no consistent effects on exchangeable Ca{sup 2+}, K{sup +}, and Mg{sup 2+}, but did cause temporary reductions in soil NO{sup 3{sup -}} (second growing season). Statistically significant negative effects of elevated CO{sub 2} on soil extractable P were noted in the third and sixth growing seasons. However, these patterns in extractable P reflected pre-treatment differences, which, while not statistically significant, followed the same pattern. Statistically significant effects of elevated CO{sub 2} on total C and N in soils were noted in the third and sixth growing seasons, but these effects were inconsistent among N treatments and years. The clearest effect of elevated CO{sub 2} was in the case of C/N ratio in year 6, where there was a consistent, positive effect. The increases in C/N ratio with elevated CO{sub 2} in year six were largely a result of reductions in soil N rather than increases in soil C. Future papers will assess whether this apparent reduction in soil N could have been

  14. Organic aerosol formation from biogenic compounds over the Ponderosa pine forest in Colorado

    NASA Astrophysics Data System (ADS)

    Roux, Alma Hodzic; Lee-Taylor, Julia; Cui, Yuyan; Madronich, Sasha

    2013-05-01

    The secondary organic aerosol (SOA) formation and regional growth from biogenic precursors is of particular interest given their abundance in the atmosphere, and has been investigated during the Rocky Mountain Biogenic Aerosol field Study in 2011 in the pine forest canopy (dominated by terpene emissions) using both WRF/Chem 4km simulations and the GECKO-A explicit chemistry box-model runs. We have quantified the relative contribution of different biogenic precursors to SOA levels that were measured by the aerosol mass spectrometer at the site, and investigated the relative contribution of OH, O3 and NO3 chemistry to the formed SOA mass during day-and nighttime. Although, the local production and mass concentrations of submicron organic aerosols at the site seem relatively modest ˜1-2 ug/m3, we show that the optically active regional mass is increased as the SOA formation continues for several days in the background forest air. We investigate whether the simplified SOA parameterizations used in 3D models can capture this growth. In addition, preliminary comparisons of the number concentrations and the composition of ultrafine particles (8 - 30nm) from WRF/Chem simulations and TD-CIMS measurements are also discussed, and the contribution of organic aerosols to CCN formation is quantified.

  15. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.

    PubMed

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K

    2014-09-01

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene. PMID:25015120

  16. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    SciTech Connect

    Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; Keutsch, F. N.; Hansel, A.

    2013-01-01

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOFMS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration ompounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1mgcompoundm-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50 %), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10 %). The total MBO+isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of 20 monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO+isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms, are

  17. Measurement of BVOCs by PTR-ToF-MS in a ponderosa pine forest during the BEACHON-ROCS campaign

    NASA Astrophysics Data System (ADS)

    Su, L.; Evans, T.; Knopf, D. A.; Mak, J. E.

    2012-12-01

    We present measurements of biogenic volatile organic compounds (BVOCs) using Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) during the 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Organic Carbon Study (BEACHON-ROCS) campaign in a ponderosa pine forest near Woodland Park, Colorado. BVOCs were continuously measured through the gradient sampling lines mounted at 1.8 m, 5.0 m, 8.5 m, 12.0 m, 17.7 m, and 25.3 m, respectively, of the Manitou Forest Observatory Chemistry Tower. 2-methyl-3-butene-2-ol (MBO) and the monoterpenes (MT) were identified as the major BVOCs emitted from the forest. The 5-minute averaged mixing ratios of MBO ranged from 0.03 to 3.9 ppbv, while mixing ratios of MT ranged from 0.02 to 3.8 ppbv, with an analytical precision of ±15%. The mixing ratios of MBO were highest during the daytime, with the maximum concentrations occurred right under the canopy top, decreasing towards the ground and above the canopy. The diurnal variations of MT mixing ratios showed an opposite pattern compared to MBO, with nighttime values significantly higher than during the daytime. The high nighttime mixing ratios of MT could be due to the sufficient temperature-dependent emission together with lack of oxidation and small vertical transport. MT usually accumulated near the ground level and decreased vertically towards the canopy top. Soil enclosure measurements were performed to characterize the needle litter emission of BVOCs. The flux of MT from needle litter were quantified and showed a clear temperature dependency. The highest flux of MT from needle litter occurred in the morning (09:00-12:00 MST), while during the nighttime the flux was significantly reduced. Measurements of BVOCs gradients throughout the canopy together with ground needle litter emissions could provide a better understanding of the contribution to above-canopy emission of BVOCs from different sources.

  18. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; Keutsch, F. N.; Hansel, A.

    2013-12-01

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration compounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks, including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters, showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1 mg compound m-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50%), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10%). The total MBO + isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light- and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site-specific leaf cuvette measurements. While the modeled and measured MBO + isoprene fluxes agree well, the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to

  19. Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS measurements and MEGAN 2.1 model results

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Karl, T.; Guenther, A.; Graus, M.; Schnitzhofer, R.; Turnipseed, A.; Fischer, L.; Harley, P.; Madronich, M.; Gochis, D.; Keutsch, F. N.; Hansel, A.

    2013-06-01

    We present the first eddy covariance flux measurements of volatile organic compounds (VOCs) using a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-TOF-MS) above a ponderosa pine forest in Colorado, USA. The high mass resolution of the PTR-TOF-MS enabled the identification of chemical sum formulas. During a 30 day measurement period in August and September 2010, 649 different ion mass peaks were detected in the ambient air mass spectrum (including primary ions and mass calibration compounds). Eddy covariance with the vertical wind speed was calculated for all ion mass peaks. On a typical day, 17 ion mass peaks including protonated parent compounds, their fragments and isotopes as well as VOC-H+-water clusters showed a significant flux with daytime average emissions above a reliable flux threshold of 0.1 mg compound m-2 h-1. These ion mass peaks could be assigned to seven compound classes. The main flux contributions during daytime (10:00-18:00 LT) are attributed to the sum of 2-methyl-3-buten-2-ol (MBO) and isoprene (50%), methanol (12%), the sum of acetic acid and glycolaldehyde (10%) and the sum of monoterpenes (10%). The total MBO + isoprene flux was composed of 10% isoprene and 90% MBO. There was good agreement between the light and temperature dependency of the sum of MBO and isoprene observed for this work and those of earlier studies. The above canopy flux measurements of the sum of MBO and isoprene and the sum of monoterpenes were compared to emissions calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1). The best agreement between MEGAN 2.1 and measurements was reached using emission factors determined from site specific leaf cuvette measurements. While the modelled and measured MBO + isoprene fluxes agree well the emissions of the sum of monoterpenes is underestimated by MEGAN 2.1. This is expected as some factors impacting monoterpene emissions, such as physical damage of needles and branches due to storms

  20. Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection.

    PubMed

    Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir

    2016-09-01

    Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores. PMID:26820567

  1. CO2 AND N-FERTILIZATION EFFECTS ON FINE ROOT LENGTH, PRODUCTION, AND MORTALITY: A 4-YEAR PONDEROSA PINE STUDY

    EPA Science Inventory

    We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...

  2. Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis.

    PubMed

    Keeling, Christopher I; Li, Maria; Sandhu, Harpreet K; Henderson, Hannah; Yuen, Macaire Man Saint; Bohlmann, Jörg

    2016-03-01

    Bark beetles (Coleoptera: Scolytinae) are pests of many forests around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant pest of western North American pine forests. The MPB is able to overcome the defences of pine trees through pheromone-assisted aggregation that results in a mass attack of host trees. These pheromones, both male and female produced, are believed to be biosynthesized in the midgut and/or fat bodies of these insects. We used metabolite analysis, quantitative proteomics (iTRAQ) and transcriptomics (RNA-seq) to identify proteins and transcripts differentially expressed between sexes and between tissues when treated with juvenile hormone III. Juvenile hormone III induced frontalin biosynthesis in males and trans-verbenol biosynthesis in females, as well as affected the expression of many proteins and transcripts in sex- and tissue-specific ways. Based on these analyses, we identified candidate genes involved in the biosynthesis of frontalin, exo-brevicomin, and trans-verbenol pheromones. PMID:26792242

  3. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

    SciTech Connect

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K.

    2014-07-12

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  4. Deconvolution of Soil CO2 Efflux from Root, Litter, and SOM Components in a Ponderosa Pine Mesocosm Experiment Exposed to Elevated CO2 and O3

    NASA Astrophysics Data System (ADS)

    Gregg, J. W.; Rygiewicz, P. T.; Johnson, M. G.; Andersen, C. P.

    2001-12-01

    Stable isotopes have become an important tool for determining the relative importance of CO2 sources and sinks contributing to the global carbon budget. Of particular importance is estimating the terrestrial CO2 flux which is difficult to decipher without determining the relative importance of autotrophic and heterotrophic respiration from below-ground sources. Whereas increased SOM respiration could indicate reduced C storage ultimately creating a stronger terrestrial CO2 source, increased autotrophic respiration could indicate greater NPP and therefore an overall stronger terrestrial sink. Here, we used the dual isotope, three equation mixing model approach of Lin et al. 1999 to determine the relative importance of root, litter, and SOM respiration in a `closed' chamber Ponderosa pine (Pinus ponderosa, Doug. Ex Laws.) mesocosm experiment exposed to elevated CO2 and ozone. This approach uses the δ 13C and δ 18O signatures of surface CO2 efflux and the component litter, root and SOM fluxes to provide a system of three equations to solve for the three unknown source fluxes. To enhance our ability to determine the relative contribution of the different sources: 1) Keeling plots were used to measure δ 13C and δ 18O signatures of surface CO2 efflux, 2) mininert vials were used to measure signatures of root, soil, and litter respiration, and 3) the biomass-, volume- and respiration- weighted mean δ 18O signatures were calculated for roots versus soils across the evaporative gradient. Our results indicate that root and SOM respiration made up the bulk of CO2 flux, root respiration was higher under elevated CO2, and there was no effect of elevated ozone. Future experiments will determine the potential for using the dual isotope, three equation mixing model approach to determine the relative importance of root, litter, and SOM respiration under ambient CO2 conditions.

  5. Aboveground biomass allocation of ponderosa pine along an elevational gradient: An analog for response to climate change

    SciTech Connect

    Callaway, R.M.; DeLucia, E.H.; Schlesinger, W.H. Duke Univ., Durham, NC )

    1993-06-01

    Predictions of CO[sub 2]-enhanced growth for adult trees are primarily based on leaf-level assimilation responses and improved growth rates of seedlings and saplings. Plant growth may be more dependent on biomass allocation than on rates of assimilation, but predictions have not incorporated the effects of temperature on biomass reallocation among autotrophic and heterotrophic tissues and whole-plant carbon balance. We measured biomass allocation of Pinus ponderosa on hydrothermally altered andesite in montane and desert climates, thus substrate was held constant while climate varied. Trees from montane climates supported higher leaf mass per cross-sectional sapwood area (functional conducting xylem) than trees from desert climates, suggesting that a functional response to climate had occurred. Our results also indicate that sapwood mass:leaf mass ratios of P. ponderosa may increase [approx] 50% with a 5[degrees]C change. in mean growing season temperature, approximately the difference between our montane and desert sites. Such an increase in sapwood:leaf ratio may partially offset predicted CO[sub 2]-enhancement effects and substantially reduce whole-plant carbon balance. Biomass allocation responses must be incorporated into growth-response models used to predict fluctuations in forest productivity with changes in climate and atmospheric CO[sub 2] concentration.

  6. Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements

    SciTech Connect

    Beverly E. Law; Larry Mahrt

    2007-01-05

    The goal is to quantify and understand the influence of climate and disturbance on ecosystem processes and thus net carbon uptake by forests. The objective is to combine tower and ground-based observations to quantify the effects of disturbance on processes controlling carbon storage and CO{sub 2} and energy exchange in varying climatic conditions. Specific objectives are: (1) Investigate the effects of logging and fire on carbon storage and carbon dioxide and energy exchange in chronosequences of ponderosa pine, using consistent methodology; (2) Determine key environmental factors controlling carbon storage and carbon dioxide and energy exchange in these forests through a combination of measurements and process modeling; and (3) Assess spatial variation of the concentrations and transport in complex terrain. The eddy covariance method is used for measurements of CO2, water vapor, and energy exchanges in a chronosequence of ponderosa pine forests (burned in 2002 wildfire, 10 year-old stand, 90 year-old mature stand). The mature stand has been an AmeriFlux site since 2000 (following previous flux sites in young and old stands initiated in 1996). In addition to the eddy covariance measurements, a large suite of biological processes and ecosystem properties are determined for the purpose of developing independent forest carbon budgets and NEP estimates; these include photosynthesis, stand respiration, soil CO{sub 2} fluxes, annual litterfall, foliar chemistry, and bole increment, and soil organic matter among other parameters. The measurements are being integrated and evaluated with two ecosystem models (BIOME-BGC and SPA). Such analyses are needed to assess regional terrestrial ecosystem carbon budgets. The results will contribute scientific understanding of carbon processes, and will provide comprehensive data sets for forest managers and those preparing national carbon inventories to use in assessments of carbon sequestration in relation to interannual climate

  7. Southern pine beetle regional outbreaks modeled on landscape, climate and infestation history

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southern pine beetle (Dendroctonus fromtalis, SPB) is the major insect pest of pine species in the southeastern United States. It attains outbreak population levels across the landscape at scales ranging from a single forest stand to interstate epidemics. This county level analysis selected and ...

  8. Proteomics Indicators of the Rapidly Shifting Physiology from Whole Mountain Pine Beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), Adults during Early Host Colonization

    PubMed Central

    Pitt, Caitlin; Robert, Jeanne A.; Bonnett, Tiffany R.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2014-01-01

    We developed proteome profiles for host colonizing mountain pine beetle adults, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Adult insects were fed in pairs on fresh host lodgepole pine, Pinus contorta Dougl. ex Loud, phloem tissue. The proteomes of fed individuals were monitored using iTRAQ and compared to those of starved beetles, revealing 757 and 739 expressed proteins in females and males, respectively, for which quantitative information was obtained. Overall functional category distributions were similar for males and females, with the majority of proteins falling under carbohydrate metabolism (glycolysis, gluconeogenesis, citric acid cycle), structure (cuticle, muscle, cytoskeleton), and protein and amino acid metabolism. Females had 23 proteins with levels that changed significantly with feeding (p<0.05, FDR<0.20), including chaperones and enzymes required for vitellogenesis. In males, levels of 29 proteins changed significantly with feeding (p<0.05, FDR<0.20), including chaperones as well as motor proteins. Only two proteins, both chaperones, exhibited a significant change in both females and males with feeding. Proteins with differential accumulation patterns in females exhibited higher fold changes with feeding than did those in males. This difference may be due to major and rapid physiological changes occurring in females upon finding a host tree during the physiological shift from dispersal to reproduction. The significant accumulation of chaperone proteins, a cytochrome P450, and a glutathione S-transferase, indicate secondary metabolite-induced stress physiology related to chemical detoxification during early host colonization. The females' activation of vitellogenin only after encountering a host indicates deliberate partitioning of resources and a balancing of the needs of dispersal and reproduction. PMID:25360753

  9. Overshoot in Leaf Development of Ponderosa Pine in Wet Years Leads to Bark Beetle Outbreaks on Fine-Textured Soils in Drier Years

    NASA Astrophysics Data System (ADS)

    Peterman, W. L.; Waring, R. H.

    2014-12-01

    Frequent outbreaks of insects and diseases have been recorded in forests of western North America during the past few decades, but the distribution of these outbreaks has not been uniform. In some cases, recent climatic variations along with the age and density of forests may explain some spatial variation. Forest managers and policy makers would benefit if areas prone to disturbance could be recognized so that mitigating actions could be taken. In this paper, we used two ponderosa pine-dominated sites in western Montana, U.S.A. to apply a modelling approach that couples information from remote sensing, soil surveys, and local weather stations to assess where bark beetle outbreaks might first occur and why. There was a slight downward trend in precipitation for both sites over the period between 1998 and 2010, and, interannual variability was high. Some years showed large increases followed by sharp decreases. Both sites had similar topography and fire histories, but bark beetle activity occurred earlier and more severely on one site than the other. The initial canopy density of the two sites was also similar, with leaf area indices derived via Landsat imagery ranging between 1.6- 2.0 m2 m-2. We wondered if the difference in bark beetle activity might be related to soils that were fine-textured at site I and coarse-textured at site II. We applied a process-based stand growth model (3-PG) to analyze the data and evaluate the hypotheses.

  10. Accounting for age Structure in Ponderosa Pine Ecosystem Analyses: Integrating Management, Disturbance Histories and Observations with the BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Law, B.; Thornton, P.

    2003-12-01

    Disturbance and management regimes in forested ecosystems have been recently highlighted as important factors contributing to quantification of carbon stocks and fluxes. Disturbance events, such as stand-replacing fires and current management regimes that emphasize understory and tree thinning are primary suspects influencing ecosystem processes, including net ecosystem productivity (NEP) in forests of the Pacific Northwest. Several recent analyses have compared simulated to measured component stocks and fluxes of carbon in Ponderosa Pine (Pinus ponderosa var. Laws) at 12 sites ranging from 9 to 300 years in central Oregon (Law et al. 2001, Law et al. 2003) using the BIOME-BGC model. Major emphases on ecosystem model developments include improving allocation logic, integrating ecosystem processes with disturbance such as fire and including nitrogen in biogeochemical cycling. In Law et al. (2001, 2003), field observations prompted BIOME-BGC improvements including dynamic allocation of carbon to fine root mass through the life of a stand. A sequence of simulations was also designed to represent both management and disturbance histories for each site, however, current age structure of each sites wasn't addressed. Age structure, or cohort management has largely been ignored by ecosystem models, however, some studies have sought to incorporate stand age with disturbance and management (e.g. Hibbard et al. 2003). In this analyses, we regressed tree ages against height (R2 = 0.67) to develop a proportional distribution of age structure for each site. To preserve the integrity of the comparison between Law et al. (2003) and this study, we maintained the same timing of harvest, however, based on the distribution of age structures, we manipulated the amount of removal. Harvest by Law et al. (2003) was set at stand-replacement (99%) levels to simulate clear-cutting and reflecting the average top 10% of the age in each plot. For the young sites, we set removal at 73%, 51% and

  11. A Comparison of Landsat TM and ASTER for Equivalent Water Thickness Derivation in a Ponderosa Pine Ecosystem

    NASA Astrophysics Data System (ADS)

    Toomey, M.; Vierling, L.

    2004-12-01

    Landsat TM and ASTER satellite data can be used to make physically-based estimates of equivalent water thickness (EWT) in a Pinus ponderosa ecosystem. EWT is a measure of ecosystem water status and is an important parameter for studying ecosystem dynamics, fire potential, and biological responses to climate change. Near infrared (NIR) and shortwave infrared (SWIR) reflectances were simulated using the LIBERTY and GeoSAIL leaf and canopy reflectance models; the results were used to calculate a NIR/SWIR ratio and a normalized NIR/SWIR index. Index-EWT relationships were modeled and inverted for EWT derivation. Landsat and ASTER were used to make reasonably accurate estimates of EWT (± 17.3% and 19.4% mean error, respectively); TM band 5 and ASTER band 4 produced the best results. Exclusion of plots with dense understory vegetation reduced point scatter substantially, especially with Landsat (r2 = 0.847, ±13%), indicating that this method can provide robust EWT quantification in homogeneous conifer ecosystems.

  12. Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal.

    PubMed

    Gayathri Samarasekera, G D N; Bartell, Nicholas V; Lindgren, B Staffan; Cooke, Janice E K; Davis, Corey S; James, Patrick M A; Coltman, David W; Mock, Karen E; Murray, Brent W

    2012-06-01

    Environmental change has a wide range of ecological consequences, including species extinction and range expansion. Many studies have shown that insect species respond rapidly to climatic change. A mountain pine beetle epidemic of record size in North America has led to unprecedented mortality of lodgepole pine, and a significant range expansion to the northeast of its historic range. Our goal was to determine the spatial genetic variation found among outbreak population from which genetic structure, and dispersal patterns may be inferred. Beetles from 49 sampling locations throughout the outbreak area in western Canada were analysed at 13 microsatellite loci. We found significant north-south population structure as evidenced by: (i) Bayesian-based analyses, (ii) north-south genetic relationships and diversity gradients; and (iii) a lack of isolation-by-distance in the northernmost cluster. The north-south structure is proposed to have arisen from the processes of postglacial colonization as well as recent climate-driven changes in population dynamics. Our data support the hypothesis of multiple sources of origin for the outbreak and point to the need for population specific information to improve our understanding and management of outbreaks. The recent range expansion across the Rocky Mountains into the jack/lodgepole hybrid and pure jack pine zones of northern Alberta is consistent with a northern British Columbia origin. We detected no loss of genetic variability in these populations, indicating that the evolutionary potential of mountain pine beetle to adapt has not been reduced by founder events. This study illustrates a rapid range-wide response to the removal of climatic constraints, and the potential for range expansion of a regional population. PMID:22554298

  13. Effects of elevated CO{sub 2} and N fertilization on ponderosa pine fine root turn-over

    SciTech Connect

    Tingey, D.T.; Phillips, D.L.; Johnson, M.G.

    1995-06-01

    The rapid increase in atmospheric CO{sub 2} may alter patterns of C assimilation, allocation and sequestration; effects on roots being particularly important because they are a primary point of resource acquisition and uptake. The effects of elevated CO{sub 2} and nitrogen treatments on Pinus ponderosa fine roots and associated fungal structures were monitored for a two year period using a minirhizotron camera system The trees were grown in native soil in open-top field-exposure chambers at Placerville, CA and exposed to ambient air or ambient air plus either 175 or 350 {mu}mol mol{sup -1} CO{sub 2} and 3 levels of nitrogen addition (0, 100 and 200 kg ha{sup -1}). The majority (>90 %) of roots observed were smaller than 2 mm and the mean diameter decreased during the study. Root production was greatest in June and least in February. Root turnover was greater in summer than in winter, with very fine roots (<0.5 mm) disappearing most rapidly. Trees growing under elevated CO{sub 2} produced more roots in late summer as compared to trees under ambient CO{sub 2}. Roots receiving 0 and 200 kg N/ha survived longer than those receiving 100 kg N/ha. Roots produced under elevated CO{sub 2} live longer than those produced under ambient CO{sub 2}. The occurrence of mycorrhizae and fungal hyphae increased in response to CO{sub 2} treatment but not the nitrogen with the highest levels of occurrence were during the summer.

  14. Characterization of vegetation properties: Canopy modeling of pinyon-juniper and ponderosa pine woodlands; Final report. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX model

    SciTech Connect

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1994-12-31

    This report is comprised of two studies. The first study focuses on plant canopies in pinyon-juniper woodland, ponderosa pine woodland, and waste sites at Los Alamos National Laboratory which involved five basic areas of research: (1) application of hemispherical photography and other gap fraction techniques to study solar radiation regimes and canopy architecture, coupled with application of time-domain reflectometry to study soil moisture; (2) detailed characterization of canopy architecture using stand mapping and allometry; (3) development of an integrated geographical information system (GIS) database for relating canopy architecture with ecological, hydrological, and system modeling approaches; (4) development of geometric models that simulate complex sky obstruction, incoming solar radiation for complex topographic surfaces, and the coupling of incoming solar radiation with energy and water balance, with simulations of incoming solar radiation for selected native vegetation and experimental waste cover design sites; and (5) evaluation of the strengths and limitations of the various field sampling techniques. The second study describes an approach to develop software that takes advantage of new generation computers to model insolation on complex topographic surfaces. SOLARFLUX is a GIS-based (ARC/INFO, GRID) computer program that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modelling insolation on complex surfaces, the theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modelling.

  15. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  16. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    PubMed

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  17. The use of multispectral sensing techniques to detect ponderosa pines trees under stress from insects or diseases

    NASA Technical Reports Server (NTRS)

    Heller, R. C.; Weber, F. P.; Zealear, K. A.

    1970-01-01

    The detection of stress induced by bark beetles in conifers is reviewed in two sections: (1) the analysis of very small scale aerial photographs taken by NASA's RB-57F aircraft on August 10, 1969, and (2) the analysis of multispectral imagery obtained by the optical-mechanical line scanner. Underexposure of all films taken from the RB-57 aircraft and inadequate flight coverage prevented drawing definitive conclusions regarding optimum scales and film combinations to detect the discolored infestations. Preprocessing of the scanner signals by both analog and digital computers improved the accuracy of target recognition. Selection and ranking of the best channels for signature recognition was the greatest contribution of digital processing. Improvements were made in separating hardwoods from conifers and old-kill pine trees from recent discolored trees and from healthy trees, but accuracy of detecting the green infested trees is still not acceptable on either the SPARC or thermal-contouring processor. From six years of experience in processing line scan data it is clear that the greatest gain in previsual detection of stress will occur when registered multispectral data from a single aperture or common instantaneous field of view scanner system can be collected and processed.

  18. The Fate of Ozone at a Ponderosa Pine Plantation: Partitioning Between Stomatal and Non-stomatal Deposition Using Sap Flow and Eddy Covariance Techniques

    NASA Astrophysics Data System (ADS)

    Kurpius, M. R.; McKay, M. M.; Goldstein, A. H.

    2001-12-01

    Major advances in quantifying ozone deposition to vegetated ecosystems have been made using above-canopy techniques -- such as eddy covariance -- that allow for the direct measure of ozone flux into natural systems. However, from above-canopy flux measurements alone, it is impossible to differentiate between deposition through stomatal openings of trees versus non-stomatal surfaces or within canopy chemical loss. Therefore, there is a need to partition ozone fluxes into plant stomatal and non-stomatal components. Sap flow measurements provide a direct measurement of stomatal conductance from which we can infer ozone uptake by trees: this represents a novel way to determine pollutant loading on stomatal surfaces of trees that is inexpensive, reliable, and can be deployed in a multitude of environments. Sap flow measurements were used to determine ozone uptake by ponderosa pine trees in the Sierra Nevada Mountains year-round starting in June 2000 at Blodgett Forest, an Ameriflux site located ~75 miles downwind of Sacramento, CA. Concurrently, total ecosystem ozone flux was measured using eddy covariance. Mean total ozone flux to the ecosystem was 46.6 μ mol m-2 h-1 (+/-15.1) in summer 2000, 27.6 μ mol m-2 h-1 (+/-14.2) in fall 2000, 8.2 μ mol m-2 h-1 (+/-5.1) in winter 2001, and 21.1 μ mol m-2 h-1 (+/-11.6) in spring 2001. Mean ozone flux through the stomata was 14.6 μ mol m-2 h-1 (+/-4.1) during summer 2000, 12.9 μ mol m-2 h-1 (+/-5.8) during fall 2000, 5.6 μ mol m-2 h-1 (+/-2.8) during winter 2001, and 12.7 μ mol m-2 h-1 (+/-3.7) during spring 2001. The percentage of total ozone deposition which occurred through the stomata was 31% in summer, 47% in fall, 69% but highly variable in winter, and 60% in spring. The difference between total ozone flux to the ecosystem and stomatal ozone flux to the trees varied exponentially with air temperature, suggesting that much of the non-stomatal deposition was actually due to chemical loss either on surfaces or within

  19. Impact of mountain pine beetle outbreaks on forest albedo and radiative forcing, as derived from Moderate Resolution Imaging Spectroradiometer, Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.

    2013-12-01

    pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.

  20. Forest structure and landscape patterns in the subalpine lodgepole pine type: A procedure for quantifying past and present conditions. Forest Service general technical report

    SciTech Connect

    Arno, S.F.; Reinhardt, E.D.; Scott, J.H.

    1993-02-01

    The report presents a method of quantitatively representing the mosaic of stand types on a small landscape in the subalpine lodgepole pine forest type. The method utilizes macroplots placed systematically on a transect grid. Structure and composition of both current and past stands are inventoried. Procedures for data analysis and interpretation are illustrated for a lodgepole pine landscape in Montana.

  1. Insights on carbon budgets for Ponderosa pine systems growing at three levels of CO[sub 2] and of nitrogen from leaf to whole open-top chamber flux measurements

    SciTech Connect

    Ball, J.T.; Picone, J.B.; Ross, P.D.; Ross, G.N.; Johnson, D.W. )

    1994-06-01

    At any scale of integration carbon accumulation in the biosphere is a small difference between large input and output terms and is proportional to resource levels. This can result in the impression that growth and carbon accumulation have little to do with either the input or output rates. Our measurements show that rising concentration of CO[sub 2] in the atmosphere results in biospheric influx and efflux of carbon increasing and the proportionality between carbon left and nitrogen in the system changing. A gap exists between the carbon balance inferred from gas-exchange and measured changes in pool sizes. The rhizosphere is the likely harbor for much of this [open quotes]missing carbon[close quotes]. These measurements were made on ponderosa pine saplings growing near Placerville, California USA. The chambers are set at ambient, 525 ppm, 700 ppm CO[sub 2]. Soil nitrogen levels are at the background level, plus 10 g/m[sup [minus]2] or plus 20 g/m[sup [minus]2].

  2. CARBON ISOTOPE DISCRIMINATION AND GROWTH RESPONSE OF OLD PINUS PONDEROSA TREES TO STAND DENSITY REDUCTIONS

    EPA Science Inventory

    Stand density reductions have been proposed as a method by which old-growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre-1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing product...

  3. Modeling Landscape-Level Spatial Variation in Sex Ratio Skew in the Mountain Pine Beetle (Coleoptera: Curculionidae).

    PubMed

    James, Patrick M A; Janes, Jasmine K; Roe, Amanda D; Cooke, Barry J

    2016-08-01

    Through their influence on effective population sizes, sex ratio skew affects population dynamics. We examined spatial variation in female-biased sex ratios in the mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in western Canada to better understand how environmental context affects sex ratio skew. Our specific objectives were to: 1) characterize spatial variation in mountain pine beetle sex ratio; 2) test previously asserted hypotheses that beetle sex ratio varies with tree diameter and year in outbreak; and 3) develop predictive models of sex ratio skew for larval and adult populations. Using logistic regression, we modeled the probability that an individual beetle (n = 2,369) was female as a function of multiple environmental variables across 34 stands in British Columbia and Alberta, Canada. We identified a consistent female-biased sex ratio with significantly greater skew in adults (2:1, n = 713) than in larvae (1.76:1, n = 1,643). We found that the proportion of larval females increased with decreasing tree size and with outbreak age. However, adults did not respond to tree size and larvae did not respond to outbreak age. Predictive models differed between larvae and adults. All identified models perform well and included predictors related to weather, tree diameter, and year in outbreak. Female-biased sex ratios appear to originate from differential male mortality during development rather than from sex-biased oviposition, suggesting sex ratio skew is not the cause of outbreaks, but rather a consequence. PMID:27209334

  4. SEASONAL PATTERNS AND VERTICAL PROFILE OF SOIL WATER UPTAKE AND UTILIZATION BY YOUNG AND OLD DOUGLAS-FIR AND PONDEROSA PINE FORESTS

    EPA Science Inventory

    Water availability has a strong influence on the distribution of forest tree species across the landscape. However, we do not understand how seasonal patterns of water utilization by tree species are related to their drought tolerance. In the Pacific Northwest, Douglas-fir occu...

  5. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    NASA Astrophysics Data System (ADS)

    Bright, B. C.; Hicke, J. A.; Hudak, A. T.

    2012-12-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40-50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75-89% of the study area had >25% AGC in killed trees and 3-6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale.

  6. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats.

    PubMed

    Stout, Deborah H; Sala, Anna

    2003-01-01

    In the Rocky Mountains, ponderosa pine (Pinus ponderosa (ssp.) ponderosa Dougl. ex P. Laws. & C. Laws) often co-occurs with Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco). Despite previous reports showing higher shoot vulnerability to water-stress-induced cavitation in ponderosa pine, this species extends into drier habitats than Douglas-fir. We examined: (1) whether roots and shoots of ponderosa pine in riparian and slope habitats are more vulnerable to water-stress-induced cavitation than those of Douglas-fir; (2) whether species-specific differences in vulnerability translate into differences in specific conductivity in the field; and (3) whether the ability of ponderosa pine to extend into drier sites is a result of (a) greater plasticity in hydraulic properties or (b) functional or structural adjustments. Roots and shoots of ponderosa pine were significantly more vulnerable to water-stress-induced cavitation (overall mean cavitation pressure, Psi(50%) +/- SE = -3.11 +/- 0.32 MPa for shoots and -0.99 +/- 0.16 MPa for roots) than those of Douglas-fir (Psi(50%) +/- SE = -4.83 +/- 0.40 MPa for shoots and -2.12 +/- 0.35 MPa for roots). However, shoot specific conductivity did not differ between species in the field. For both species, roots were more vulnerable to cavitation than shoots. Overall, changes in vulnerability from riparian to slope habitats were small for both species. Greater declines in stomatal conductance as the summer proceeded, combined with higher allocation to sapwood and greater sapwood water storage, appeared to contribute to the ability of ponderosa pine to thrive in dry habitats despite relatively high vulnerability to water-stress-induced cavitation. PMID:12511303

  7. Climate Change Effects on Multiple Disturbance Interactions: Wildland Fire, Mountain Pine Beetles, and Blister Rust Simulations on a Yellowstone National Park Landscape

    NASA Astrophysics Data System (ADS)

    Keane, R. E.; Loehman, R.; Smithwick, E. A.

    2011-12-01

    Complex interactions between disturbance, climate, and vegetation will dramatically alter spatial patterns and ecosystem processes in the future, but the interactions between multiple disturbances may ultimately determine vegetation response and landscape dynamics. The frequency and extent of wildland fire, mountain pine beetles, and blister rust are predicted to increase with global warming, but the interactions and reciprocal feedbacks between these three disturbances could also alter landscape trajectories. We used the mechanistic, spatially explicit, landscape FireBGCv2 model parameterized for Yellowstone National Park to determine the extent to which climate altered ecosystem carbon storage, landscape composition and structure, and interacting disturbance regimes that include wildland fire, mountain pine beetles, and white pine blister rust for lodgepole and whitebark pine forests. Under two simulated future climate scenarios (B2 and A2) and three disturbance scenarios (fire only, fire and beetles/rust, beetles/rust only), it appears fire and bark beetle disturbance events interacted to moderate burn area and decrease insect/disease mortality. Landscape composition and structure was roughly the same across disturbance scenarios except whitebark pine disappears when rust is present in the simulation. Overall, we conclude that disturbance interactions are important to landscape dynamics under future climates and these interactions may overwhelm the direct effects of climate or single disturbances.

  8. Pine as Fast Food: Foraging Ecology of an Endangered Cockatoo in a Forestry Landscape

    PubMed Central

    Stock, William D.; Finn, Hugh; Parker, Jackson; Dods, Ken

    2013-01-01

    Pine plantations near Perth, Western Australia have provided an important food source for endangered Carnaby’s Cockatoos (Calyptorhynchus latirostris) since the 1940s. Plans to harvest these plantations without re-planting will remove this food source by 2031 or earlier. To assess the impact of pine removal, we studied the ecological association between Carnaby’s Cockatoos and pine using behavioural, nutritional, and phenological data. Pine plantations provided high densities of seed (158 025 seeds ha−1) over a large area (c. 15 000 ha). Carnaby’s Cockatoos fed throughout these plantations and removed almost the entire annual crop of pine cones. Peak cockatoo abundance coincided with pine seed maturation. Pine seed had energy and protein contents equivalent to native food sources and, critically, is available in summer when breeding pairs have young offspring to feed. This strong and enduring ecological association clearly suggests that removing pine will have a significant impact on this endangered species unless restoration strategies, to establish alternative food sources, are implemented. PMID:23593413

  9. Detection of bromacil herbicide in ponderosa pine

    SciTech Connect

    Ferenbaugh, R.W.; Spall, W.D.; LaCombe, D.M.

    1981-08-01

    Bromacil is a substituted uracil herbicide, 5-bromo-3-sec-butyl-6-methyluracil. Because it is readily absorbed through the root system of plants, bromacil usually is applied to the soil as an aqueous solution or suspension during or just before periods of active plnt growth. Until recently, bromacil was used as part of a vegetation control program along roadways at the Los Alamos National Laboratory. The prescribed method of application was to spray a four-foot wide strip of bromacil solution along the edges of roadways with a spray-bar. During the late spring and early summer of 1978, bromacil was determined to be the proximate cause of damage to numerous trees at substantial distances away from roadways at Los Alamos. This paper describes the investigation that was undertaken to determine the cause of the tree mortality.

  10. Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands.

    PubMed

    Balestrieri, Alessandro; Bogliani, Giuseppe; Boano, Giovanni; Ruiz-González, Aritz; Saino, Nicola; Costa, Stefano; Milanesi, Pietro

    2016-01-01

    In recent years, the "forest-specialist" pine marten Martes martes has been reported to also occur also in largely fragmented, lowland landscapes of north-western Italy. The colonization of such an apparently unsuitable area provided the opportunity for investigating pine marten ecological requirements and predicting its potential south- and eastwards expansion. We collected available pine marten occurrence data in the flood plain of the River Po (N Italy) and relate them to 11 environmental variables by developing nine Species Distribution Models. To account for inter-model variability we used average ensemble predictions (EP). EP predicted a total of 482 suitable patches (8.31% of the total study area) for the pine marten. The main factors driving pine marten occurrence in the western River Po plain were the distance from watercourses and the distance from woods. EP suggested that the pine marten may further expand in the western lowland, whilst the negligible residual wood cover of large areas in the central and eastern plain makes the habitat unsuitable for the pine marten, except for some riparian corridors and the pine wood patches bordering the Adriatic coast. Based on our results, conservation strategies should seek to preserve remnant forest patches and enhance the functional connectivity provided by riparian corridors. PMID:27368056

  11. Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands

    PubMed Central

    Balestrieri, Alessandro; Bogliani, Giuseppe; Boano, Giovanni; Ruiz-González, Aritz; Saino, Nicola; Costa, Stefano; Milanesi, Pietro

    2016-01-01

    In recent years, the “forest-specialist” pine marten Martes martes has been reported to also occur also in largely fragmented, lowland landscapes of north-western Italy. The colonization of such an apparently unsuitable area provided the opportunity for investigating pine marten ecological requirements and predicting its potential south- and eastwards expansion. We collected available pine marten occurrence data in the flood plain of the River Po (N Italy) and relate them to 11 environmental variables by developing nine Species Distribution Models. To account for inter-model variability we used average ensemble predictions (EP). EP predicted a total of 482 suitable patches (8.31% of the total study area) for the pine marten. The main factors driving pine marten occurrence in the western River Po plain were the distance from watercourses and the distance from woods. EP suggested that the pine marten may further expand in the western lowland, whilst the negligible residual wood cover of large areas in the central and eastern plain makes the habitat unsuitable for the pine marten, except for some riparian corridors and the pine wood patches bordering the Adriatic coast. Based on our results, conservation strategies should seek to preserve remnant forest patches and enhance the functional connectivity provided by riparian corridors. PMID:27368056

  12. PONDEROSA-C/S: client-server based software package for automated protein 3D structure determination.

    PubMed

    Lee, Woonghee; Stark, Jaime L; Markley, John L

    2014-11-01

    Peak-picking Of Noe Data Enabled by Restriction Of Shift Assignments-Client Server (PONDEROSA-C/S) builds on the original PONDEROSA software (Lee et al. in Bioinformatics 27:1727-1728. doi: 10.1093/bioinformatics/btr200, 2011) and includes improved features for structure calculation and refinement. PONDEROSA-C/S consists of three programs: Ponderosa Server, Ponderosa Client, and Ponderosa Analyzer. PONDEROSA-C/S takes as input the protein sequence, a list of assigned chemical shifts, and nuclear Overhauser data sets ((13)C- and/or (15)N-NOESY). The output is a set of assigned NOEs and 3D structural models for the protein. Ponderosa Analyzer supports the visualization, validation, and refinement of the results from Ponderosa Server. These tools enable semi-automated NMR-based structure determination of proteins in a rapid and robust fashion. We present examples showing the use of PONDEROSA-C/S in solving structures of four proteins: two that enable comparison with the original PONDEROSA package, and two from the Critical Assessment of automated Structure Determination by NMR (Rosato et al. in Nat Methods 6:625-626. doi: 10.1038/nmeth0909-625 , 2009) competition. The software package can be downloaded freely in binary format from http://pine.nmrfam.wisc.edu/download_packages.html. Registered users of the National Magnetic Resonance Facility at Madison can submit jobs to the PONDEROSA-C/S server at http://ponderosa.nmrfam.wisc.edu, where instructions, tutorials, and instructions can be found. Structures are normally returned within 1-2 days. PMID:25190042

  13. Mountain pine beetle-caused mortality over eight years in two pine hosts in mixed conifer stands of the southern Rocky Mountains

    USGS Publications Warehouse

    West, Daniel R.; Briggs, Jennifer S.; Jacobi, William R.; Negrón, José F.

    2014-01-01

    Eruptive mountain pine beetle (Dendroctonus ponderosae, MPB) populations have caused widespread mortality of pines throughout western North America since the late 1990s. Early work by A.D. Hopkins suggested that when alternate host species are available, MPB will prefer to breed in the host to which it has become adapted. In Colorado, epidemic MPB populations that originated in lodgepole pine expanded into mixed-conifer stands containing ponderosa pine, a related host. We evaluated the susceptibility of both hosts to successful MPB colonization in a survey of 19 sites in pine-dominated mixed-conifer stands spanning 140 km of the Front Range, CO, USA. In each of three 0.2-ha plots at each site, we (1) assessed trees in the annual flights of 2008–2011 to compare MPB-caused mortality between lodgepole and ponderosa pine; (2) recorded previous MPB-caused tree mortality from 2004–2007 to establish baseline mortality levels; and (3) measured characteristics of the stands (e.g. tree basal area) and sites (e.g. elevation, aspect) that might be correlated with MPB colonization. Uninfested average live basal area of lodgepole and ponderosa pine was 74% of total basal area before 2004. We found that for both species, annual percent basal area of attacked trees was greatest in one year (2009), and was lower in all other years (2004–2007, 2008, 2010, and 2011). Both pine species had similar average total mortality of 38–39% by 2011. Significant predictors of ponderosa pine mortality in a given year were basal area of uninfested ponderosa pine and the previous year’s mortality levels in both ponderosa and lodgepole pine. Lodgepole pine mortality was predicted by uninfested basal areas of both lodgepole and ponderosa pine, and the previous year’s lodgepole pine mortality. These results indicate host selection by MPB from lodgepole pine natal hosts into ponderosa pine the following year, but not the reverse. In both species, diameters of attacked trees within each year

  14. Pine needle abortion in cattle update: Metabolite detection in sera and fetal fluids from abortion case samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle abortions associated with consumption of pine needles during late gestation are a serious poisonous plant problem in the Western US. Most cases of abortion have been associated with consumption of ponderosa pine (Pinus ponderosa) and the causative agent was identified as the labdane diterpen...

  15. Landscape Genetics for the Empirical Assessment of Resistance Surfaces: The European Pine Marten (Martes martes) as a Target-Species of a Regional Ecological Network

    PubMed Central

    Ruiz-González, Aritz; Gurrutxaga, Mikel; Cushman, Samuel A.; Madeira, María José; Randi, Ettore; Gómez-Moliner, Benjamin J.

    2014-01-01

    Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2) evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species at regional scale. PMID:25329047

  16. ANALYSIS OF THE RELATIONSHIPS AMONG OZONE UPTAKE, CONDUCTANCE, AND PHOTOSYNTHESIS IN NEEDLES OF PINUS PONDEROSA

    EPA Science Inventory

    Determination of the relationships of conductance and photosynthesis to ozone uptake is important for the prediction of the long-term response of trees to ozone exposure. e studied the effects of O3 uptake on conductance (gwv) and photosynthesis (A) in needles of ponderosa pine (...

  17. Effects of Dwarf Mistletoe on Stand Structure of Lodgepole Pine Forests 21-28 Years Post-Mountain Pine Beetle Epidemic in Central Oregon

    PubMed Central

    Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  18. Monitoring forest structure at landscape level: a case study of Scots pine forest in NE Turkey.

    PubMed

    Terzioğlu, Salih; Başkent, Emin Zeki; Kadioğullari, Ali Ihsan

    2009-05-01

    This study aims to investigate the change in spatial-temporal configuration of secondary forest succession and generate measurements for monitoring the changes in structural plant diversity in Yalnizçam Scots pine forest in NE Turkey from 1972 to 2005. The successional stages were mapped using the combination of Geographic Information System (GIS), Global Positioning System (GPS), aerial photos and high resolution satellite images (IKONOS). Forest structure and its relationship with structural plant diversity along with its changes over time were characterized using FRAGSTATS. In terms of spatial configuration of seral stages, the total number of fragments increased from 572 to 735, and mean size of patch (MPS) decreased from 154.97 ha to 120.60 ha over 33 years. The situation resulted in forestation serving appropriate conditions for plant diversity in the area. As an overall change in study area, there was a net increase of 1823.3 ha forest during the period with an average annual forestation rate of 55.25 ha year(-1) (0.4% per year). In conclusion, the study revealed that stand type maps of forest management plans in Turkey provide a great chance to monitor the changes in structural plant diversity over time. The study further contributes to the development of a framework for effective integration of biodiversity conservation into Multiple Use Forest Management (MUFM) plans using the successional stages as a critical mechanism. PMID:18553149

  19. Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation

    PubMed Central

    Allen, Craig D.; Breshears, David D.

    1998-01-01

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects—particularly those caused by mortality—largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and piñon–juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change. PMID:9843976

  20. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation

    USGS Publications Warehouse

    Allen, C.D.; Breshears, D.D.

    1998-01-01

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects - particularly those caused by mortality - largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and pinon-juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change.

  1. Colonization History, Host Distribution, Anthropogenic Influence and Landscape Features Shape Populations of White Pine Blister Rust, an Invasive Alien Tree Pathogen

    PubMed Central

    Brar, Simren; Tsui, Clement K. M.; Dhillon, Braham; Bergeron, Marie-Josée; Joly, David L.; Zambino, P. J.; El-Kassaby, Yousry A.; Hamelin, Richard C.

    2015-01-01

    White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales). This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs) and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur. PMID:26010250

  2. Understanding the role of wildland fire, insects, and disease in predicting climate change effects on whitebark pine: Simulating vegetation, disturbance, and climate dynamics in a northern Rocky Mountain landscape

    NASA Astrophysics Data System (ADS)

    Keane, R. E.; Loehman, R.

    2010-12-01

    Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be particularly sensitive to climatic change, and are likely to experience significant impacts under predicted future climate change conditions. Whitebark pine (Pinus albicaulis), a high-elevation five-needle pine species that is important for snowpack retention, resource provision, and other ecosystem services in alpine environments in the northern Rocky Mountains, is particularly sensitive to an interacting complex of disturbances - climatic change, altered fire regimes, white-pine blister rust, and mountain pine beetles - that have already caused major changes in species distribution and density. Further changes in abiotic and biotic conditions will likely pose additional threats to the success of this keystone alpine tree species. We used the mechanistic simulation model Fire-BGCv2 to assess potential interacting effects of climate changes, pathogens, and wildfire on the distribution and density of whitebark pine in a high-elevation watershed in Glacier National Park, Montana, USA. The FireBGCv2 modeling platform is uniquely structured to address questions of future species distribution in response to interacting disturbance agents; further, we integrated a range of potential future climate conditions derived from downscaled Global Circulation Models to examine multiple potential future climatic contexts. Our results show that the distribution of whitebark pine is severely reduced under potential future climates, and that increased fire frequency and severity resulting from warmer, drier conditions further reduces the presence of the species on the simulation landscape. Simulation model results

  3. Mountain Pine Beetles Use Volatile Cues to Locate Host Limber Pine and Avoid Non-Host Great Basin Bristlecone Pine

    PubMed Central

    Gray, Curtis A.; Runyon, Justin B.; Jenkins, Michael J.; Giunta, Andrew D.

    2015-01-01

    The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species. PMID:26332317

  4. Evaluating Predators and Competitors in Wisconsin Red Pine Forests for Attraction to Mountain Pine Beetle Pheromones for Anticipatory Biological Control.

    PubMed

    Pfammatter, Jesse A; Krause, Adam; Raffa, Kenneth F

    2015-08-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), is an irruptive tree-killing species native to pine forests of western North America. Two potential pathways of spread to eastern forests have recently been identified. First, warming temperatures have driven range expansion from British Columbia into Albertan jack pine forests that are contiguous with the Great Lakes region. Second, high temperatures and drought have fostered largescale outbreaks within the historical range, creating economic incentives to salvage killed timber by transporting logs to midwestern markets, which risks accidental introduction. We evaluated the extent to which local predators and competitors that exploit bark beetle semiochemicals would respond to D. ponderosae in Wisconsin. We emulated D. ponderosae attack by deploying lures containing synthetic aggregation pheromones with and without host tree compounds and blank control traps in six red pine plantations over 2 yr. Predator populations were high in these stands, as evidenced by catches in positive control traps, baited with pheromones of local bark beetles and were deployed distant from behavioral choice plots. Only one predator, Thanasimus dubius F. (Coleoptera: Cleridae) was attracted to D. ponderosae's aggregation pheromones relative to blank controls, and its attraction was relatively weak. The most common bark beetles attracted to these pheromones were lower stem and root colonizers, which likely would facilitate rather than compete with D. ponderosae. There was some, but weak, attraction of potentially competing Ips species. Other factors that might influence natural enemy impacts on D. ponderosae in midwestern forests, such as phenological synchrony and exploitation of male-produced pheromones, are discussed. PMID:26314062

  5. Model for detection and assessment of abiotic stress caused by uranium mining in European Black Pine landscapes

    NASA Astrophysics Data System (ADS)

    Filchev, Lachezar; Roumenina, Eugenia

    2013-10-01

    The article presents the results obtained from a study for detection and assessment of abiotic stress through pollution with heavy metals, metalloids, and natural radionuclides in European Black Pine (Pinus nigra L.) forests caused by uranium mining using ground-based biogeochemical, biophysical, and field spectrometry data. The forests are located on a territory subject to underground and open uranium mining. An operational model of the study is proposed. The areas subject to technogeochemical load are outlined based on the aggregate pollution index Zc. Laboratory and field spectrometry data were used to detect the signals of abiotic stress at pixel level. The methods used for determination of stressed and unstressed black pine forests are: four vegetation indices (TCARI, MCARI, MTVI 2, and PRI 1) for stress detection, and the position, depth, asymmetry, and shift of the red-edge. Based on the "blue shift" and the depth and position of the red-edge, registered by the laboratory analysis and field spectral reflectance, it is established that coniferous forests subject to abiotic stress show an increase in total chlorophyll content and carotene. It has been found that the vegetation indices MTVI 2 and PRI 1, as well as the combination of vegetation indices and pigments may be used as a direct indicator of abiotic stress in coniferous forests caused by uranium mining.

  6. Mineralization of soil organic matter in biochar amended agricultural landscape

    NASA Astrophysics Data System (ADS)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  7. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis

    USGS Publications Warehouse

    Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.

    2007-01-01

    Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.

  8. Severe White Pine Blister Rust Infection in Whitebark Pine Alters Mountain Pine Beetle (Coleoptera: Curculionidae) Attack Density, Emergence Rate, and Body Size.

    PubMed

    Dooley, Edith M; Six, Diana L

    2015-10-01

    Exotic tree pathogens can cause devastating ecological effects on forests that can be exacerbated when infections increase the likelihood of attack by insects. Current high rates of mortality of whitebark pine (Pinus albicaulis Engelm.) are due to white pine blister rust caused by the exotic fungus, Cronartium ribicola J.C. Fisch, and the native mountain pine beetle (Dendroctonus ponderosae Hopkins). These two mortality agents interact in whitebark pine; mountain pine beetle preferentially selects white pine blister rust-infected whitebark pine over healthy trees, and likelihood of attack has been observed to increase with infection severity. We examined attack and emergence rates, and size and sex ratio of mountain pine beetle in whitebark pines exhibiting varying white pine blister rust infection severities. Mountain pine beetle attack density was lowest on the most severely infected trees, but emergence rates and size of beetles from these trees were greater than those from uninfected and less severely infected trees. Low attack rates on severely infected whitebark pine may indicate these trees have lower defenses and that fewer beetle attacks are needed to kill them. Higher beetle emergence rates from severely infected trees may be due to low intraspecific competition resulting from low attack rates or differences in nutrient quality. PMID:26314009

  9. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    PubMed Central

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  10. Incidence of the pine wood nematode in green coniferous sawn wood in Oregon and California. Forest Service research note

    SciTech Connect

    Dwinell, L.D.

    1993-05-01

    Samples of green sawn Douglas-fir, redwood, ponderosa pine, and white fir were collected in August and September 1992 from seven mills in Oregon and California, and assayed for the pine wood nematode, Bursaphelenchus xylophilus. The mills produced about 108 million board feet during the survey period. The pine wood nematode was not found in any of the 424 samples of Douglas-fir, the 192 of redwood, or the 3 of white fir. The nematode was recovered from 8 of 105 samples of green ponderosa pine lumber from a mill in Oregon. These eight samples contained an average of 54 pine wood nematodes per gram of dry weight. This is the first report of the pine wood nematode in Oregon.

  11. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However

  12. An Integrated Model of Environmental Effects on Growth, Carbohydrate Balance, and Mortality of Pinus ponderosa Forests in the Southern Rocky Mountains

    PubMed Central

    Tague, Christina L.; McDowell, Nathan G.; Allen, Craig D.

    2013-01-01

    Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities. PMID:24282532

  13. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern Rocky Mountains

    USGS Publications Warehouse

    Tague, Christina L.; McDowell, Nathan G.; Allen, Craig D.

    2013-01-01

    Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities.

  14. Modeling the response of mature Pinus ponderosa Laws. to tropospheric ozone: Effects of genotypic variability

    SciTech Connect

    Constable, J.V.H.; Taylor, G.E. Jr. ); Weinstein, D.A.; Laurence, J.A. )

    1994-06-01

    Regionally distributed pollutants (e.g., tropospheric ozone and CO[sub 2]) can influence the growth of terrestrial plants. The mosaic of genotypes in natural populations makes it difficult to predict the ecological consequences of pollutants throughout a species' distribution. We simulated the response of Pinus ponderosa Laws to ambient, sub-ambient and above-ambient troposopheric O[sub 3] for 3 years using TREGRO, a physiologically based three growth model. Parameters controlling growth and carbon allocation were obtained from the literature and were varied to simulate intravarietal and intervarietal genotypes (western var. Ponderosa and eastern var. Scopulorum) of Ponderosa Pine. Parameter differences between the varieties include physiology, carbon allocation and phenoloy. Ozone altered 3 year biomass gain (+6% to 61%) and fine root to leaf mass ratio ([minus]8% to [minus]14%) in spite of a small effect on photosynthesis ([<=] 10%). Overall, O[sub 3] caused growth differences between varieties to be reduced. The reduction in growth differences between genotypes due to ozone has consequences for regional identification of populations sensitive to the effects of tropospheric ozone.

  15. Holocene disturbance dynamics from a pine-dominated forest in central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Brown, K. J.; Hebda, N.; Condor, N.; Hebda, R.; Hawkes, B.

    2013-12-01

    A lake sediment record was retrieved from the Sub-Boreal Pine-Spruce biogeoclimatic zone on the Chilcotin Plateau in central British Columbia, Canada. The record is being analyzed for charcoal, pollen, and magnetic susceptibility, as well as insect and mollusc content. The oldest radiocarbon age is 9.2 cal BP, illustrating that the record spans most of the Holocene. Regarding fire disturbance, charcoal fragments are persistent throughout the core, revealing that fire disturbance has characterized the site for millennia. In total, 74 fire events were recognized. During the warm dry early Holocene, fire frequency was 12-15 fires 2000 yr-1 and peak magnitudes were low, possibly in response to a more open landscape. A change in fire regime occurred at ca. 5000 cal BP, as fire frequency increased, peaking at ca. 20 fires 2000 yr-1 by 3000 cal BP. Peak magnitude likewise increased notably, possibly in response to the development of denser forest cover. On-going analysis of pollen will better constrain the vegetation history in this poorly sampled region. In contrast to charcoal, which was pervasive, Dendroctonus ponderosae (mountain pine beetle) remains were absent in both modern and paleo samples. Given that several insect outbreaks have occurred in the region in the last 100 years, the scarcity of remains is likely related to taphonomic issues.

  16. Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle

    PubMed Central

    Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir

    2015-01-01

    The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (−):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest. PMID:26042134

  17. Progress report for the project: Comparison of the response of mature branches and seedlings of Pinus ponderosa to atmospheric pollution

    SciTech Connect

    Houpis, J.L.J.; Anderson, P.D.; Benes, S.E.; Phelps, S.P.; Loeffler, A.T.

    1990-09-01

    This progress report details Lawrence Livermore National Laboratory's (LLNL) performance regarding the projects Comparison of the Response of Mature Branches and Seedlings of Pinus ponderosa to Atmospheric Pollution'' and Effects of Ozone, acid Precipitation, and Their Interactions on Mature Branches and Seedlings of Ponderosa Pine'' for the months of November 1989 to June 1990. During the last eight months, we have initiated ozone and acid precipitation exposures, and we began intensive growth, morphological, and physiological measurements. During these major physiological measurement periods, we measured photosynthesis, transpiration, stomatal conductance, respiration, antioxidant activity, pigmentation, and foliar nutrient concentration. We have also concluded the analysis of our branch autonomy experiment, which we conducted in the fall. We determined that virtually no carbon is exported among branches in close proximity to one another. This conclusion assists in validating the approach of using branches and branch exposure chambers as a means of assessing the effects of air pollution on mature trees of Ponderosa pine. 6 refs., 4 figs., 3 tabs.

  18. Phosphorus acquisition and growth of Pinus ponderosa under different climate regimes

    SciTech Connect

    DeLucia, E.H.; Callaway, R.M.; Thomas, E.M.

    1995-06-01

    Ponderosa pine seedlings were grown with an organic P fertilizer in a factorial 2 temp (25 & 30 C) and 2 CO{sub 2} (350 & 700 {mu}l/l) design. Elevated CO{sub 2} stimulated growth and elevated CO{sub 2} and temp increased the specific absorption rate of P by ca. 30%. The percent infection by mycorrhizae increased with elevated CO{sub 2} but decreased with elevated temp. In contrast, the activity of root phosphatases was depressed in seedlings grown under elevated CO{sub 2} and temperature. Thus, there appears to be a functional tradeoff in the mechanisms of P acquisition in different climate regimes. Under current conditions root phosphatase activity is high and mycorrhizal infection is low. This reverses under simulated future conditions of elevated temp and CO{sub 2}. The concentration of soil oxalate also increased under elevated CO{sub 2}. This small organic acid, released by roots and fungi, chelates Ca, Fe, and Al in the soil thereby increasing the availability of inorganic P. Enhanced P acquisition and utilization under elevated CO{sub 2} and temp contributed to higher growth rates suggesting that ponderosa pine may overcome P limitations under future climate conditions.

  19. Using pheromones to protect heat-injured lodgepole pine from mountain pine beetle infestation. Forest Service research note

    SciTech Connect

    Amman, G.D.; Ryan, K.C.

    1994-01-01

    The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the basal circumference of lodgepole pines. When the peat moss was ignited, it simulated the smoldering of natural duff, generating temperatures that killed the cambium. The four treatments tested were uninjured tree, heat-injured tree, heat-injured tree treated with verbenone, and heat-injured tree treated with verbenone plus ipsdienol. Treatments were replicated 20 times. Mountain pine beetles were attracted into treatment blocks by placing mountain pine beetle tree baits on metal posts 3 to 5 meters from treated trees. Fisher's Extract Test showed that treatment and beetle infestation were not independent (P < 0.015). Check treatments contained more unattacked and mass-attacked trees, whereas pheromone treatments contained more unsuccessfully attacked trees.

  20. Localized spatial and temporal attack dynamics of the mountain pine beetle in lodgepole pine. Forest Service research paper

    SciTech Connect

    Bentz, B.J.; Powell, J.A.; Logan, J.A.

    1996-12-01

    Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and that verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.

  1. Effect of phloem thickness on heterozygosity in laboratory-reared mountain pine beetles. Forest Service research note

    SciTech Connect

    Amman, G.D.; Stock, M.W.

    1995-02-01

    Mountain pine beetles (Dendrocotonus ponderosae Hopkins) were collected from naturally infested trees of lodgepole pine (Pinus contorta Dougl.) in northern Utah. Bettles were reared in logs through six generations in a laboratory, and heterozygosity measured. Heterozygosity levels initially decreased when individual pairs of beetles were reared. However, when beetles were allowed to selected mates at random, heterozygosity rose to levels higher than those in the starting population. Heterozygosity was higher in bettles reared in thin than those in thick phloem.

  2. Analysis of the relationships among O3 uptake, conductance, and photosynthesis in needles of pinus ponderosa

    SciTech Connect

    Weber, J.A.; Clark, C.S.; Hogsett, W.E.

    1993-01-01

    The determination of conductance and photosynthesis to ozone uptake is important for the prediction of the long-term response of trees to ozone exposure. The authors studied the effects of O3 uptake on conductance (gwv) and photosynthesis (A) in needles of ponderosa pine (Pinus ponderosa) seedlings exposed for 70 days to one of three O3 regimes -- Low-O3, High-O3, and Low/High-O3. Seedlings exposed to charcoal-filtered air served as controls. Total O3 exposures, expressed as ppm-h (the sum of the average hourly concentration to ppm over the exposure period), were 77, 135, 105, and 4 for the Low-O3, High-O3, Low/High-O3, and control treatments, respectively. Conductance declined to about 60% of the value in control seedlings by Day 6 in seedlings in the High-O3 treatment and by Day 37 in seedlings in the Low/High-O3 treatment, but did not decline at all in seedlings in the Low-O3 treatment.

  3. Effects of long-term elevated atmospheric CO{sub 2} concentrations on Pinus ponderosa

    SciTech Connect

    Surano, K.A.; Kercher, J.R.

    1993-10-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO{sub 2} concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO{sub 2} responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO{sub 2} responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO{sub 2} responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO{sub 2} exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO{sub 2} scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases.

  4. Growth response of Pinus ponderosa seedlings and mature tree branches to acid rain and ozone exposure

    SciTech Connect

    Anderson, P.D.; Houpis, J.L.J.; Helms, J.A.

    1994-10-01

    Forests of the central and southern Sierra Nevada in California have been subjected to chronic damage by ozone and other atmospheric pollutants for the past several decades. Until recently, pollutant exposure of northern Sierra Nevada forests has been mild but increasing population and changes in land use throughout the Sacramento Valley and Sierra Nevada foothills may lead to increased pollutant damage in these forests. Although, better documented in other regions of the United States, little is known regarding the potential for acidic precipitation damage to Sierra Nevada forests. Only recently have studies directed towards understanding the potential interactive effects of ozone and acidic precipitation been undertaken. A key issue in resolving potential regional impacts of pollutants on forests is the extent to which research results can be scaled across genotypes and life-stages. Most of the pollution research to date has been performed using seedlings with varying degrees of genetic control. It is important to determine if the results obtained in such studies can be extrapolated to mature trees and to different genetic sources. In this paper, we present results from a one-year study examining the interactive effects of foliar exposure to acidic rain and ozone on the growth of ponderosa pine (Pinus ponderosa), a conifer known to be sensitive to ozone. The response to pollutants is characterized for both seedlings and mature tree branches of three genotypes grown in a common environment.

  5. Resource selection by elk in an agro-forested landscape of northwestern Nebraska.

    PubMed

    Baasch, David M; Fischer, Justin W; Hygnstrom, Scott E; VerCauteren, Kurt C; Tyre, Andrew J; Millspaugh, Joshua J; Merchant, James W; Volesky, Jerry D

    2010-11-01

    In recent years, elk have begun recolonizing areas east of the Rocky Mountains that are largely agro-forested ecosystems composed of privately owned land where management of elk is an increasing concern due to crop and forage depredation and interspecific disease transmission. We used a Geographic Information System, elk use locations (n = 5013), random locations (n = 25,065), discrete-choice models, and information-theoretic methods to test hypotheses about elk resource selection in an agro-forested landscape located in the Pine Ridge region of northwestern Nebraska, USA. Our objectives were to determine landscape characteristics selected by female elk and identify publicly owned land within the Pine Ridge for potential redistribution of elk. We found distance to edge of cover influenced selection of resources by female elk most and that in areas with light hunting pressure, such as ours, this selection was not driven by an avoidance of roads. Female elk selected resources positioned near ponderosa pine cover types during all seasons, exhibited a slight avoidance of roads during spring and fall, selected areas with increased slope during winter and spring, and selected north- and east-facing aspects over flat areas and areas with south-facing slopes during winter months. We used our models to identified a potential elk redistribution area that had a higher proportion of landcover with characteristics selected by elk in our study area than the current herd areas and more landcover that was publicly owned. With appropriate management plans, we believe elk within the Potential Elk Redistribution Area would predominantly occupy publicly owned land, which would help minimize crop and forage damage on privately owned lands. PMID:20872141

  6. SEASONAL CHANGES IN ROOT AND SOIL RESPIRATION OF OZONE-EXPOSED PONDEROSA PINE (PINUS PONDEROSA) GROWN IN DIFFERENT SUBSTRATES

    EPA Science Inventory

    Exposure to(ozone 0-3)has been shown to decrease the allocation of carbon to tree roots. Decreased allocation of carbon to roots might disrupt root metabolism and rhizosphere organisms. The effects of soil type and shoot 0, exposure on below-ground respiration and soil microbial ...

  7. Changes In Snowmelt Timing In Response To Pine Beetle Infestation In Lodgepole Pines In The Colorado Rockies

    NASA Astrophysics Data System (ADS)

    Pugh, E.; Tilton, E. S.

    2008-12-01

    Since 1996, roughly 1.5 million acres of lodgepole pine forest in Colorado have been infested by mountain pine beetles (Dendroctonus ponderosae). We measured physical snowpack properties (depth, density, and temperature) under stands of both living and dead lodgepole pines in the Colorado Rockies. This data allowed us to investigate the effect of increased forest canopy transmittance due to tree death on potential advances in the annual hydrograph. We compared snow accumulation and melt on north-facing and south- facing slopes at an elevation of approximately 3000m. As expected, topography-dominated solar forcing is the chief factor in snowmelt: snow on south-facing slopes melted earlier in the season than north-facing slopes. Comparing stands of dead and live trees within topographic zones revealed a few dramatic differences: snow water equivalent was lower and mean snowpack temperature was warmer in dead lodgepole pine stands. Temperature timeseries from within the snowpack suggest that snow in dead tree stands became isothermal sooner than snow in living tree stands. Together these show that there was indeed earlier snowmelt in lodgepole pine forest regions infested with mountain pine beetle. Earlier snowmelt will likely cause peak snowmelt discharge to occur sooner.

  8. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect

    USGS Publications Warehouse

    McDowell, N.G.; Allen, C.D.; Marshall, L.

    2010-01-01

    Drought- and insect-associated tree mortality at low-elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low-elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole-crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa-pc) derived from tree ring carbon isotope ratios (??13C), corrected for temporal trends in atmospheric CO2 and ??13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa-pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa-pc to climate, and a steep relationship between pa-pc and BAI/BA. The pa-pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought - i.e., chronic water stress. It appears that chronic water stress predisposed low-elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in

  9. AmeriFlux US-Me5 Metolius-first young aged pine

    DOE Data Explorer

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me5 Metolius-first young aged pine. Site Description - Previously old-growth ponderosa pine, clearcut in 1978 and allowed to regenerate naturally. Law et al (2001) Global Change Biology 7, 755-777; Law et al (2001) Agricultural and Forest Meteorology 110, 27-43; Anthoni et al (2002) Agricultural and Forest Meteorology 111, 203-222; Irvine & Law (2002) Global Change biology 8,1183-1194, Irivne et al (2004) Tree Physiology 24,753-763.

  10. Effect of water stress on chlorophyll and carotenoid contents on seedlings from three seed sources of Pinus ponderosa

    SciTech Connect

    Benes, S.E.; Houpis, J.L.J. )

    1989-04-01

    The effect of water stress on pigmentation was studied on seedlings from three seed sources of ponderosa pine (Pinus ponderosa Dougl.) selected from similar latitudes but along a gradient of decreasing water availability from the California coast to the western and eastern sides of the Sierra Nevada Mountains. All plants were grown in a common garden for 18 months. Water was withheld from the two-year old potted seedlings and weekly needle samples were taken for the 10 week drought period and for a two week recovery period. Pigments were passively extracted in dimethylformamide and quantified spectrophotometrically. The seedlings from the more mesic seed zone exhibited water stress earlier (Week 8) and to a greater extent (-1.53 Mpa predawn water potential) than seedlings from the other two seed zones. However, chlorophyll and carotenoid concentrations did not correspond to increasing level of water stress. There were differences in pigmentation among the seedlings from the three seed zones, with those seedlings from the west side of the Sierra Nevada having less chlorophyll a and b, and carotenoids than those from the other two regions. Analysis of the chlorophyll a and b, and carotenoids than those from the other two regions. Analysis of the chlorophyll a/b ratio indicated that although there were differences in pigmentation, the relative abundance of chlorophyll a to be was consistent among seedlings from all three seed zones.

  11. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers

    PubMed Central

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666

  12. Contrasting cascades: insectivorous birds increase pine but not parasitic mistletoe growth.

    PubMed

    Mooney, Kailen A; Linhart, Yan B

    2006-03-01

    1. Intraguild predation occurs when top predators feed upon both intermediate predators and herbivores. Intraguild predators may thus have little net impact on herbivore abundance. Variation among communities in the strength of trophic cascades (the indirect effects of predators on plants) may be due to differing frequencies of intraguild predation. Less is known about the influence of variation within communities in predator-predator interactions upon trophic cascade strength. 2. We compared the effects of a single predator community between two sympatric plants and two herbivore guilds. We excluded insectivorous birds with cages from ponderosa pine Pinus ponderosa trees parasitized by dwarf mistletoe Arceuthobium vaginatum. For 3 years we monitored caged and control trees for predatory arthropods that moved between the two plants, foliage-feeding caterpillars and sap-feeding hemipterans that were host-specific, and plant damage and growth. 3. Excluding birds increased the abundance of ant-tended aphids on pine and resulted in an 11% reduction in pine woody growth. Mutualist ants protected pine-feeding aphids from predatory arthropods, allowing aphid populations to burgeon in cages even though predatory arthropods also increased in cages. By protecting pine-feeding aphids from predatory arthropods but not birds, mutualist ants created a three-tiered linear food chain where bird effects cascaded to pine growth via aphids. 4. In contrast to the results for tended aphids on pine, bird exclusion had no net effects on untended pine herbivores, the proportion of pine foliage damaged by pine-feeding caterpillars, or the proportion of mistletoe plants damaged by mistletoe-feeding caterpillars. These results suggest that arthropod predators, which were more abundant in cages as compared with control trees, compensated for bird predation of untended pine and mistletoe herbivores. 5. These contrasting effects of bird exclusion support food web theory: where birds were

  13. Chloroplast diversity in a putative hybrid swarm of Ponderosae (Pinaceae).

    PubMed

    Epperson, Bryan K; Telewski, Frank W; Willyard, Ann

    2009-03-01

    The Ponderosae subsection of the genus Pinus contains numerous taxa in disjunct mountain ranges of southern Arizona and New Mexico, differing for several leaf and cone traits, key among which is the number of leaf needles per fascicle. Trees with three needles are often found together with trees having five needles and mixed numbers. One taxonomic hypothesis is that there are swarms of hybrids between P. ponderosa and P. arizonica. A second hypothesis is that there are spatial mixtures of two separate taxa, five-needle P. arizonica and a "taxon X" containing three needle and mixed needle trees. We genotyped chloroplasts in one putative hybrid swarm on Mt. Lemmon using microsatellite markers and show that cpDNA is almost completely differentiated between two separate morphotypes corresponding to P. arizonica and "taxon X." Little if any introgression has occurred on Mt. Lemmon, and the simplest explanation is that little or no effective hybridization has occurred. Further results indicate that not only is taxon X not of hybrid origin, it is more closely related to nonregional Ponderosae other than P. ponderosa and P. arizonica. The results further suggest that other putative hybrid swarms in the region are also spatial mixtures of distinct taxa. PMID:21628225

  14. Modeling mountain pine beetle habitat suitability within Sequoia National Park

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    Understanding significant changes in climate and their effects on timber resources can help forest managers make better decisions regarding the preservation of natural resources and land management. These changes may to alter natural ecosystems dependent on historical and current climate conditions. Increasing mountain pine beetle (MBP) outbreaks within the southern Sierra Nevada are the result of these alterations. This study better understands MPB behavior within Sequoia National Park (SNP) and model its current and future habitat distribution. Variables contributing to MPB spread are vegetation stress, soil moisture, temperature, precipitation, disturbance, and presence of Ponderosa (Pinus ponderosa) and Lodgepole (Pinus contorta) pine trees. These variables were obtained using various modeled, insitu, and remotely sensed sources. The generalized additive model (GAM) was used to calculate the statistical significance of each variable contributing to MPB spread and also created maps identifying habitat suitability. Results indicate vegetation stress and forest disturbance to be variables most indicative of MPB spread. Additionally, the model was able to detect habitat suitability of MPB with a 45% accuracy concluding that a geospatial driven modeling approach can be used to delineate potential MPB spread within SNP.

  15. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    NASA Astrophysics Data System (ADS)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  16. Uptake of trifluoroacetate by Pinus ponderosa via atmospheric pathway

    NASA Astrophysics Data System (ADS)

    Benesch, J. A.; Gustin, M. S.

    Trifluoroacetate (TFA, CF 3COO -), a break down product of hydro(chloro)-fluorocarbons (HFC/HCFCs), has been suggested to contribute to forest decline syndrome. To investigate the possible effects, Pinus ponderosa was exposed to TFA applied as mist (150 and 10,000 ng l -1) to foliar surfaces. Needles accumulated TFA as a function of concentration and time. However, no adverse physiological responses, as plant morphology, photosynthetic and conductance rates, were observed at the TFA concentrations used in this study.

  17. OZONE DECREASES SPRING ROOT GROWTH AND ROOT CARBOHYDRATE CONTENT IN PONDEROSA PINE THE YEAR FOLLOWING EXPOSURE

    EPA Science Inventory

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. he hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. eedling...

  18. ELEVATED CO2 AND O3 EFFECTS ON FINE-ROOT SURVIVORSHIP IN PONDEROSA PINE MESOCOSMS

    EPA Science Inventory

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograph...

  19. Elevated CO2 or O3 effects on fine-root survivorship in ponderosa pine

    EPA Science Inventory

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograp...

  20. OZONE AMBIENT AIR QUALITY STANDARD HAS BENEFICIAL EFFECT ON PONDEROSA PINE IN CALIFORNIA

    EPA Science Inventory

    Ambient air quality standards and control strategies are implemented to protect humans and vegetation from adverse effects. However, to date there has not been a simple and objective method to determine if the standards and resultant control strategies have reduced O3 impacts on ...

  1. EFFECTS OF CARBON DIOXIDE AND OZONE ON NITROGEN RETRANSLOCATION IN PONDEROSA PINE NEEDLES

    EPA Science Inventory

    Changes in leaf N concentration can be an important response to air pollutants in trees, with implications both for tree growth and N cycling through forest ecosystems. Ozone causes premature leaf senescence, which may be associated with a shift in N from the senescing leaves to...

  2. CHANGES IN CARBON STORAGE AND FLUXES IN A CHRONOSEQUENCE OF PONDEROSA PINE. (R828309)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. AN EVALUATION OF OZONE EXPOSURE METRICS FOR A SEASONALLY DROUGHT STRESSED PONDEROSA PINE ECOSYSTEM. (R826601)

    EPA Science Inventory

    Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at ...

  4. PATTERNS OF ROOT GROWTH, TURNOVER, AND DISTRIBUTION IN DIFFERENT AGED PONDEROSA PINE STANDS

    EPA Science Inventory

    The objectives of this study are to examine the spatial distribution of roots in relation to canopy size and tree distribution, and to determine if rates of fine root production and turnover are similar in the different aged stands. During the fall of 1998, 54 clear plexiglass t...

  5. Maize, switchgrass, and ponderosa pine biochar added to soil increased herbicide sorption and decreased herbicide efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochars, a by-product of pyrolysis conversion of a wide array of plant biomass to biofuels, are being considered as soil amendments that may provide nutrients and increase soil water holding capacity. However, there may be unintended consequences to other crop management practices. We examined her...

  6. O3, CO2 and chemical fractionation in ponderosa pine saplings

    EPA Science Inventory

    Environmental factors can affect plant tissue quality which is important for quality of organic matter inputs into soil food webs and decomposition of soil organic matter. Thus the effects of increases in CO2 and O3 and their interactions were determined for various chemical fra...

  7. CARRY-OVER EFFECTS OF OZONE ON ROOT GROWTH AND CARBOHYDRATE CONCENTRATIONS OF PONDEROSA PINE SEEDLINGS

    EPA Science Inventory

    Ozone exposure decreases belowground carbon allocation and root growth of plants;however,the extent to which these effects persist and the cumulative impact of ozone stress on plant growth are poorly understood.To evaluate the potential for plant compensation,we followed the prog...

  8. Monitoring direct and indirect climate effects on whitebark pine ecosystems at Crater Lake National park

    USGS Publications Warehouse

    Smith, S.B.; Odion, D.C.; Sarr, D.A.; Irvine, K.M.

    2011-01-01

    Whitebark pine (Pinus albicaulis) is the distinctive, often stunted, and picturesque tree line species in the American West. As a result of climate change, mountain pine beetles (Dendroctonus ponderosae) have moved up in elevation, adding to nonnative blister rust (Cronartium ribicola) disease as a major cause of mortality in whitebark pine. At Crater Lake National Park, Oregon, whitebark pine is declining at the rate of 1% per year. The Klamath Network, National Park Service, has elected to monitor whitebark pine and associated high-elevation vegetation. This program is designed to sample whitebark pine throughout the park to look for geographic patterns in its exposure to and mortality from disease and beetles. First-year monitoring has uncovered interesting patterns in blister rust distribution. Incidence of rust disease was higher on the west side of the park, where conditions are wetter and more humid than on the east side. However, correlating climate alone with rust disease is not straightforward. On the east side of the park, the odds of blister rust infection were much greater in plots having Ribes spp., shrubs that act as the alternate host for a portion of the rust's life cycle. However, on the park's west side, there was not a statistically significant increase in blister rust in plots with Ribes. This suggests that different species of Ribes associated with whitebark pine can increase pine exposure to blister rust disease. There is also convincing evidence of an association between total tree density and the incidence of blister rust. Warmer temperatures and possibly increased precipitation will affect both whitebark pine and Ribes physiology as well as tree density and mountain pine beetle numbers, all of which may interact with blister rust to cause future changes in tree line communities at Crater Lake. The Klamath Network monitoring program plans to document and study these ongoing changes.

  9. Modeling the Effects of Climate Change on Whitebark Pine Along the Pacific Crest Trail

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Nguyen, A.; Gill, N.; Kannan, S.; Patadia, N.; Meyer, M.; Schmidt, C.

    2012-12-01

    The Pacific Crest Trail (PCT), one of eight National Scenic Trails, stretches 2,650 miles from Mexico to the Canadian border. At high elevations along this trail, within Inyo and Sierra National Forests, populations of whitebark pine (Pinus albicaulis) have been diminishing due to infestation of the mountain pine beetle (Dendroctonus ponderosae) and are threatened due to a changing climate. Understanding the current and future condition of whitebark pine is a primary goal of forest managers due to its high ecological and economic importance, and it is currently a candidate for protection under the Endangered Species Act (ESA). Using satellite imagery, we analyzed the rate and spatial extent of whitebark pine tree mortality from 1984 to 2011 using the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) program. Climate data, soil properties, and biological features of the whitebark pine were incorporated in the Physiological Principles to Predict Growth (3-PG) model to predict future rates of growth and assess its applicability in modeling natural whitebark pine processes. Finally, the Random Forest algorithm was used with topographic data alongside recent and future climate data from the IPCC A2 and B1 climate scenarios for the years 2030, 2060, and 2090 to model the future distribution of whitebark pine. LandTrendr results indicate beetle related mortality covering 14,940 km2 of forest, 2,880 km2 of which are within whitebark pine forest. By 2090, our results show that under the A2 climate scenario, whitebark pine suitable habitat may be reduced by as much as 99.97% by the year 2090 within our study area. Under the B1 climate scenario, which has decreased CO2 emissions, 13.54% more habitat would be preserved in 2090.

  10. Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department of Agriculture, Forest Service, Region 5. L. Glenn Hall, landscape engineer. 11-5-35. - Pine Hills Station, Barracks, West Side of Boulder Creek Road at Engineers Road, Julian, San Diego County, CA

  11. Mountain pine beetle impacts on vegetation and carbon stocks

    USGS Publications Warehouse

    Hawbaker, Todd J.; Briggs, Jennifer S.; Caldwell, Megan K.; Stitt, Susan

    2013-01-01

    In the Southern Rocky Mountains, an epidemic outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality unprecedented in recorded history. The impacts of this mortality on vegetation composition, forest structure, and carbon stocks have only recently received attention, although the impacts of other disturbances such as fires and land-use/land-cover change are much better known. This study, initiated in 2010, aims to increase our understanding of MPB outbreaks and their impacts. We have integrated field-collected data with vegetation simulation models to assess and quantify how long-term patterns of vegetation and carbon stocks have and may change in response to MPB outbreaks and other disturbances.

  12. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.

    PubMed

    Teste, François P; Lieffers, Victor J; Landhausser, Simon M

    2011-01-01

    burial; cone opening; Dendroctonus ponderosae; ground-foraging vertebrates; mountain pine beetle; natural regeneration; Pinus contorta var. latifolia; Rocky Mountain lodgepole pine; seed banks; serotiny (canopy seed storage); Tamiasciurus hudsonicus. PMID:21516894

  13. Cruise survey of oxidant air pollution injury to Pinus ponderosa and Pinus jeffreyi in Saguaro National Monument, Yosemite National Park, and Sequoia and Kings Canyon National Parks. Final report

    SciTech Connect

    Duriscoe, D.M.

    1990-08-01

    The yellow pine populations in Saguaro National Monument, Yosemite National Park, and Sequoia and Kings Canyon National Parks were surveyed in 1986 to evaluate and quantify the extent and severity of ozone injury (chlorotic mottle) to foliage of ponderosa and Jeffrey pines. A total of 3780 trees were observed. Severity of ozone injury was quantified, using an approximate square root transformation of the percentage of foliage exhibiting chlorotic mottle in branches pruned from each tree. Foliage of different ages was examined separately. Of all trees examined at Saguaro National Monument, 15% had visible chlorotic mottle; at Yosemite, 28%; and at Sequoia and Kings Canyon, 39%. Severity of injury averaged very slight for all three parks, with least injury at Saguaro and greatest at Sequoia and Kings Canyon.

  14. Pine Island Bay

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Birth of a Large Iceberg in Pine Island Bay, Antarctica     View ... iceberg (42 kilometers x 17 kilometers) broke off Pine Island Glacier, West Antarctica (75°S latitude, 102°W longitude) sometime ...

  15. Running Title: C and N Allocation in Pine

    SciTech Connect

    Ball, J. Timothy

    1996-12-01

    uptake, and the dynamics of nutrient use were all seen to be influenced by the interplay between previous N supply, previous C supply, and the concentration of CO{sub 2} in the atmosphere. The data suggest that in an elevated CO{sub 2} atmosphere ponderosa pine seedlings will have higher root biomass and be likely to capture more N compared to seedlings today. Further, the combined growth and allocation responses of Ponderosa pine at elevated CO{sub 2} resulted in higher growth per unit N (nitrogen productivity) and lower N per gram of tissue (all tissues not just leaves) when nitrogen was not in abundant supply.

  16. Managing pine straw harvests to minimize soil and water losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine straw is a valuable landscape mulch because it conserves soil moisture, moderates soil temperature, inhibits weed growth, and protects the soil surface against erosion, while retaining a loose structure that allows water, air, and fertilizer to easily reach the soil surface. As a result, marke...

  17. AmeriFlux US-Me6 Metolius Young Pine Burn

    SciTech Connect

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me6 Metolius Young Pine Burn. Site Description - The study site is located east of the Cascade mountains, near Sisters, Central Oregon and is part of the Metolius cluster sites with different age and disturbance classes within the AmeriFlux network. After a severe fire in 1979, the site was salvage logged, was acquired by the US Forest Service land and re-forested in 1990. The dominant overstory vegetation are 20-year old ponderosa pine trees with an average height of 5.2 +/- 1.1 m. The season maximum overstory half-sided LAI was 0.6 m2 m-2 in 2010. Tree density is low, with ca. 162 trees ha-1.

  18. A Hierarchical Approach to Forest Landscape Pattern Characterization

    NASA Astrophysics Data System (ADS)

    Wang, Jialing; Yang, Xiaojun

    2012-01-01

    Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.

  19. SOIL RESPIRATION RESPONSE TO THREE YEARS OF ELEVATED CO-2 AND N FERTILIZATION IN PONDEROSA PINE (PINUS PONDEROSA DOUG. EX LAWS.)

    EPA Science Inventory

    We measured growing season soil CO-2 evolution under elevated atmospheric (CO-2) and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated (CO-2) treatments were applied in op...

  20. EFFECTS OF ELEVATED CO2 AND N FERTILIZATION ON SOIL RESPIRATION FROM PONDEROSA PINE (PINUS PONDEROSA) IN OPEN-TOP CHAMBERS

    EPA Science Inventory

    The objectives of this study were to determine treatment effects, quantify seasonal variation, and determine regulating mechanisms. rowing season soil CO2 evolution under elevated atmospheric CO2 and soil nitrogen additions were measured. cross all sample periods and treatments t...

  1. LIFETIME AND TEMPORAL OCCURRENCE OF ECTOMYCORRHIZAE ON PONDEROSA PINE (PINUS PONDEROSA LAWS.) SEEDLINGS GROWN UNDER VARIED ATMOSPHERIC CO-2 AND NITROGEN LEVELS

    EPA Science Inventory

    Climate change(elevated atmospheric CO-2,and altered air temperatures,precipitation amounts and seasonal patterns)may affect ecosystem processes by altering carbon allocation in plants,and carbon flux from plants to soil.Mycorrhizal fungi,as carbon sinks, are among the first soil...

  2. AmeriFlux US-Wi6 Pine barrens #1 (PB1)

    DOE Data Explorer

    Chen, Jiquan [Michigan State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi6 Pine barrens #1 (PB1). Site Description - The Wisconsin Pine Barrens site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. In order to establish and maintain both natural and plantation jack pine stands, pine barrens undergo prescribed burns and harvesting rotations. Pine Barrens occupy 17% of the region in 2001.

  3. Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms

    PubMed Central

    Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726

  4. Whitebark Pine Stand Condition, Tree Abundance, and Cone Production as Predictors of Visitation by Clark's Nutcracker

    PubMed Central

    Barringer, Lauren E.; Tomback, Diana F.; Wunder, Michael B.; McKinney, Shawn T.

    2012-01-01

    Background Accurately quantifying key interactions between species is important for developing effective recovery strategies for threatened and endangered species. Whitebark pine (Pinus albicaulis), a candidate species for listing under the Endangered Species Act, depends on Clark's nutcracker (Nucifraga columbiana) for seed dispersal. As whitebark pine succumbs to exotic disease and mountain pine beetles (Dendroctonus ponderosae), cone production declines, and nutcrackers visit stands less frequently, reducing the probability of seed dispersal. Methodology/Principal Findings We quantified whitebark pine forest structure, health metrics, and the frequency of nutcracker occurrence in national parks within the Northern and Central Rocky Mountains in 2008 and 2009. Forest health characteristics varied between the two regions, with the northern region in overall poorer health. Using these data, we show that a previously published model consistently under-predicts the proportion of survey hours resulting in nutcracker observations at all cone density levels. We present a new statistical model of the relationship between whitebark pine cone production and the probability of Clark's nutcracker occurrence based on combining data from this study and the previous study. Conclusions/Significance Our model clarified earlier findings and suggested a lower cone production threshold value for predicting likely visitation by nutcrackers: Although nutcrackers do visit whitebark pine stands with few cones, the probability of visitation increases with increased cone production. We use information theoretics to show that beta regression is a more appropriate statistical framework for modeling the relationship between cone density and proportion of survey time resulting in nutcracker observations. We illustrate how resource managers may apply this model in the process of prioritizing areas for whitebark pine restoration. PMID:22662186

  5. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus.

    PubMed

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M; Erbilgin, Nadir

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle's historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  6. Spatiotemporal Dynamics of Fire in Whitebark Pine Stands on two Mountains in the Lolo National Forest, Montana, USA.

    NASA Astrophysics Data System (ADS)

    Larson, E. R.; Grissino-Mayer, H. D.

    2004-12-01

    Whitebark pine (Pinus albicaulis) is a long-lived tree species that exists throughout high elevation and treeline forest communities of western North America. It is the foundation of a diminishing ecosystem that supports Clark's nutcrackers (Nucifraga columbiana), red squirrels (Tamiasciurus hudsonicus), grizzly bears (Ursus arctos), and black bears (U. americana). Several factors are directly linked to the decline of the whitebark pine ecosystem: mortality from recent and widespread mountain pine beetle (Dendroctonus ponderosae) outbreaks, infestation by the invasive white pine blister rust (Cronartium ribicola, an exotic fungal canker that weakens and eventually kills white pines), and fire suppression that may have altered the historic fire regime and enabled fire-intolerant tree species to encroach upon whitebark pine stands. The synergistic effects of these factors have led to a dramatic decline in whitebark pine communities throughout its native range, and in response land managers and conservationists have called for research to better understand the ecological dynamics of this little studied ecosystem. My research uses dendrochronology to investigate the fire history of whitebark pine stands on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure analyses. I present here the results from the fire-scar analyses from Morrell Mountain where I obtained 40 cross sections from dead and down whitebark pines. Individual tree mean fire return intervals (MFRI) range from 33 to 119 years, with a stand MFRI of 49 years that includes fire scars dating to the 16th century. Fire events scarred multiple trees in AD 1754, 1796, and 1843, indicating a mixed-severity fire regime. The majority of the samples recorded a frost event in AD 1601, perhaps evidence of the AD 1600 eruption of Mt. Huaynapatina in the Peruvian Andes. My research not only provides an historical framework for land managers, but also provides an opportunity to examine long

  7. HYDROLOGICAL AND CLIMATIC RESPONSES OF OLD-GROWTH PINUS ELLIOTTII VAR. DENSA IN MESIC PINE FLATWOODS FLORIDA, USA

    EPA Science Inventory

    Pinus elliottii Englem. var. densa Little & Dorman (Southern Slash Pine) is unique in that it is the only native sub-tropical pine in the USA. Once occupying much of the south Florida landscape, it is now restricted to an estimated 3% of its pre human settlement area. Land manag...

  8. Pine straw harvesting effects on Vadose-zone water content of a Leadvale Silt Loam in Western Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine needles that accumulate on the forest floor help to conserve soil moisture, protect the soil surface against erosion, moderate soil temperature, inhibit weed growth, and provide soil nutrients and organic matter. These qualities make pine straw a valuable landscaping mulch that has become a mu...

  9. Density dependence, whitebark pine, and vital rates of grizzly bears

    USGS Publications Warehouse

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  10. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    PubMed

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment. PMID:23542624