Science.gov

Sample records for population dynamical responses

  1. Population dynamics and mutualism: Functional responses of benefits and costs

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Bronstein, Judith L.

    2002-01-01

    We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density‐dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed‐eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

  2. Coupled dynamics of energy budget and population growth of tilapia in response to pulsed waterborne copper.

    PubMed

    Chen, Wei-Yu; Lin, Chia-Jung; Ju, Yun-Ru; Tsai, Jeng-Wei; Liao, Chung-Min

    2012-11-01

    The impact of environmentally pulsed metal exposure on population dynamics of aquatic organisms remains poorly understood and highly unpredictable. The purpose of our study was to link a dynamic energy budget model to a toxicokinetic/toxicodynamic (TK/TD). We used the model to investigate tilapia population dynamics in response to pulsed waterborne copper (Cu) assessed with available empirical data. We mechanistically linked the acute and chronic bioassays of pulsed waterborne Cu at the scale of individuals to tilapia populations to capture the interaction between environment and population growth and reproduction. A three-stage matrix population model of larva-juvenile-adult was used to project offspring production through two generations. The estimated median population growth rate (λ) decreased from 1.0419 to 0.9991 under pulsed Cu activities ranging from 1.6 to 2.0 μg L(-1). Our results revealed that the influence on λ was predominately due to changes in the adult survival and larval survival and growth functions. We found that pulsed timing has potential impacts on physiological responses and population abundance. Our study indicated that increasing time intervals between first and second pulses decreased mortality and growth inhibition of tilapia populations, indicating that during long pulsed intervals tilapia may have enough time to recover. Our study concluded that the bioenergetics-based matrix population methodology could be employed in a life-cycle toxicity assessment framework to explore the effect of stage-specific mode-of-actions in population response to pulsed contaminants. PMID:22851126

  3. Spatiotemporal dynamics of neuronal population response in the primary visual cortex.

    PubMed

    Zhou, Douglas; Rangan, Aaditya V; McLaughlin, David W; Cai, David

    2013-06-01

    One of the fundamental questions in system neuroscience is how the brain encodes external stimuli in the early sensory cortex. It has been found in experiments that even some simple sensory stimuli can activate large populations of neurons. It is believed that information can be encoded in the spatiotemporal profile of these collective neuronal responses. Here, we use a large-scale computational model of the primary visual cortex (V1) to study the population responses in V1 as observed in experiments in which monkeys performed visual detection tasks. We show that our model can capture very well spatiotemporal activities measured by voltage-sensitive-dye-based optical imaging in V1 of the awake state. In our model, the properties of horizontal long-range connections with NMDA conductance play an important role in the correlated population responses and have strong implications for spatiotemporal coding of neuronal populations. Our computational modeling approach allows us to reveal intrinsic cortical dynamics, separating them from those statistical effects arising from averaging procedures in experiment. For example, in experiments, it was shown that there was a spatially antagonistic center-surround structure in optimal weights in signal detection theory, which was believed to underlie the efficiency of population coding. However, our study shows that this feature is an artifact of data processing. PMID:23696666

  4. Population Responses to Environmental Change in a Tropical Ant: The Interaction of Spatial and Temporal Dynamics

    PubMed Central

    Jackson, Doug; Vandermeer, John; Perfecto, Ivette; Philpott, Stacy M.

    2014-01-01

    Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants’ dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution – a signal of spatial self organization – but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations. PMID:24842117

  5. Modeling shrub population dynamics in response to overgrazing and climate change in the southwestern US desert

    NASA Astrophysics Data System (ADS)

    Stabert, E. C.; Furbish, D. J.

    2010-12-01

    The environmental health and well-being of semi-arid southwestern US deserts strongly depend on the state of the region’s vegetation. Desertification has resulted in the degradation of semi-arid lands and thus these deserts exhibit less vegetated, arid-like conditions whereby soil and associated vital nutrients are vulnerable to aeolian and hydrologic erosion. This process of desertification has been exacerbated by overgrazing and possibly climate change, and there is the possibility that such disturbances can lead to an irreversible shift from semi-arid to arid-like conditions with low relative biomass and loss of land productivity. We expand on the work of Worman (2010), who developed a probabilistic model of shrub population dynamics in response to variations in precipitation and associated soil moisture conditions, distinguishing the effects of summer versus winter precipitation on seedling recruitment and shrub mortality. Specifically, we have modified the model to mimic effects of grazing on the likelihood of shrub mortality, and we have incorporated stochastic descriptions of variations in the timing and magnitude of precipitation that are likely to occur over decadal to century timescales. By evaluating the response of shrub populations (focusing on rabbitbrush and broom snakeweed), the model provides insights regarding the likelihood of land productivity loss.

  6. The ArcSDE GIS Dynamic Population Model Tool for Savannah River Site Emergency Response

    SciTech Connect

    MCLANE, TRACY; JONES, DWIGHT

    2005-10-03

    The Savannah River Site (SRS) is a 310-square-mile Department of Energy site located near Aiken, South Carolina. With a workforce of over 10,000 employees and subcontractors, SRS emergency personnel must be able to respond to an emergency event in a timely and effective manner, in order to ensure the safety and security of the Site. Geographic Information Systems (GIS) provides the technology needed to give managers and emergency personnel the information they need to make quick and effective decisions. In the event of a site evacuation, knowing the number of on-site personnel to evacuate from a given area is an essential piece of information for emergency staff. SRS has developed a GIS Dynamic Population Model Tool to quickly communicate real-time information that summarizes employee populations by facility area and building and then generates dynamic maps that illustrate output statistics.

  7. Assessing Land Management Changes and Population Dynamics in Central Burkina Faso in Response to Climate Change.

    NASA Astrophysics Data System (ADS)

    Kabore Bontogho, P. E.; Boubacar, I.; Afouda, A.; Joerg, H.

    2015-12-01

    Assessing landscape and population's dynamics at watershed level contribute to address anthropogenic aspect of climate change issue owing to the close link between LULC and climate changes. The objective of this study is to explore the dependencies of population to land management changes in Massili basin (2612 km²) located in central Burkina Faso. A set of three satellite scenes was acquired for the years 1990 (Landsat 7 ETM), 2002 (Landsat 7 ETM+) and 2013 (Landsat 8 OLI/TIRS) from the Global Land Cover Facility's (GLCF) website. Census data were provided by the National institute of statistics and demographic (INSD). The satellites images were classified using object-oriented classification method which was supported by historic maps and field data. Those were collected in order to allow for class definition, verification and accuracy assessments. Based on the developed land use maps, change analysis was carried out using post classification comparison in GIS. Finally, derived land use changes were compared with census data in order to explore links between population dynamics and the land use changes. It was found in 1990 that Massili watershed LULC was dominated by Tree/shrub savannah (69%, 1802.28 km2 ), Farm/Fallow was representing 22%, Gallery forest (4%), Settlement (3%), Barre soil (1%), Water bodies (1%). In 2002, the major landscape was Farm (54%). Tree/Shrub savannas were reduced to 36% while the Gallery Forest was decreased to1% of the basin area. The situation has also slightly changed in 2013 with an increase of the area devoted to farm/fallow and settlement at a rate of 3% and Gallery forest has increased to 4%. The changes in land use are in agreement with a notable increase in population. The analysis of census data showed that the number of inhabitants increased from 338 inhabitants per km2 in 1990 to 1150 inhabitants per km2 in 2013. As shown by statistical analysis (Kendall correlation tau=0.9), there is a close relation between both dynamics.

  8. Functional response and population dynamics for fighting predator, based on activity distribution.

    PubMed

    Garay, József; Varga, Zoltán; Gámez, Manuel; Cabello, Tomás

    2015-03-01

    The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model. PMID:25556688

  9. Genetic reconstruction of the population dynamics of a carnivorous marsupial (Antechinus flavipes) in response to floods.

    PubMed

    Lada, Hania; Mac Nally, Ralph; Taylor, Andrea C

    2007-07-01

    Human activities such as regulating river flows, logging and removing fallen timber adversely affect floodplain ecosystems around the world. Studies of the dynamics of floodplain-dwelling populations will help to understand the effects of altered flood regimes and to manage and restore floodplains. The yellow-footed antechinus (Antechinus flavipes) is the only small, native, carnivorous mammal (Marsupialia) on many degraded floodplains in south-eastern Australia, where its abundance appears to increase with proximity to floods, which is partly due to enhanced survival (as inferred from increased abundance of second-year females). We analysed population genetic patterns and maternity among samples collected following the period of postnatal dispersal, in the years preceding and following planned floods, at different distances from flood locations along the Murray River. Our genic and genotypic analyses of mitochondrial DNA (mtDNA) control region haplotypes and 11 microsatellite loci demonstrated high immigration rates into sites in close proximity to floods. All sampled males emigrated from their natal sites to points of capture, while some females were philopatric. There were high rates of dispersal of males among all sites within a partially flooded forest, while females dispersed more to locations closest to inundations rather than to distant places. These results suggest that environmental flows are beneficial to antechinus both by enhancing adult survival and promoting dispersal of females. PMID:17614908

  10. Modulation of red blood cell population dynamics is a fundamental homeostatic response to disease

    PubMed Central

    Patel, Harsh H.; Patel, Hasmukh R.; Higgins, John M.

    2015-01-01

    Increased red blood cell (RBC) volume variation (RDW) has recently been shown to predict a wide range of mortality and morbidity: death due to cardiovascular disease, cancer, infection, renal disease, and more; complications in heart failure and coronary artery disease, advanced stage and worse prognosis in many cancers, poor outcomes in autoimmune disease, and many more. The mechanisms by which all of these diseases lead to increased RDW are unknown. Here we use a semi-mechanistic mathematical model of in vivo RBC population dynamics to dissect the factors controlling RDW and show that elevated RDW results largely from a slight reduction in the in vivo rate of RBC turnover. RBCs become smaller as they age, and a slight reduction in the rate of RBC turnover allows smaller cells to continue circulating, expanding the low-volume tail of the RBC population’s volume distribution, and thereby increasing RDW. Our results show that mildly extended RBC lifespan is a previously unrecognized homeostatic adaptation common to a very wide range of pathologic states, likely compensating for subtle reductions in erythropoietic output. A mathematical model-based estimate of the clearance rate may provide a novel early-warning biomarker for a wide range of morbidity and mortality. PMID:25691355

  11. Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers

    PubMed Central

    Kõiv, Viia; Roosaare, Märt; Vedler, Eve; Ann Kivistik, Paula; Toppi, Kristel; Schryer, David W.; Remm, Maido; Tenson, Tanel; Mäe, Andres

    2015-01-01

    Endophytes are microbes and fungi that live inside plant tissues without damaging the host. Herein we examine the dynamic changes in the endophytic bacterial community in potato (Solanum tuberosum) tuber in response to pathogenic infection by Pectobacterium atrosepticum, which causes soft rot in numerous economically important crops. We quantified community changes using both cultivation and next-generation sequencing of the 16S rRNA gene and found that, despite observing significant variability in both the mass of macerated tissue and structure of the endophytic community between individual potato tubers, P. atrosepticum is always taken over by the endophytes during maceration. 16S rDNA sequencing revealed bacteria from the phyla Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, Verrucomicrobia, Acidobacteria, TM7, and Deinococcus-Thermus. Prior to infection, Propionibacterium acnes is frequently among the dominant taxa, yet is out competed by relatively few dominant taxa as the infection proceeds. Two days post-infection, the most abundant sequences in macerated potato tissue are Gammaproteobacteria. The most dominant genera are Enterobacter and Pseudomonas. Eight days post-infection, the number of anaerobic pectolytic Clostridia increases, probably due to oxygen depletion. These results demonstrate that the pathogenesis is strictly initiated by the pathogen (sensu stricto) and proceeds with a major contribution from the endophytic community. PMID:26118792

  12. Simulation of cotton rat population dynamics and response to rodenticide applications in Florida sugarcane

    USGS Publications Warehouse

    Montague, Clay L.; Lefebvre, Lynn W.; Decker, David G.; Holler, Nicholas R.

    1990-01-01

    Alternative deterministic simulation models were compared to test the management consequences of present uncertainty about the degree of density dependence involved in cotton rat population cycles in southern Florida sugarcane fields. Efficacy of rodenticide applied in different months was explored under six different scenarios of density dependence and independence in two population parameters: fecundity and juvenile survival. Output from the six models differed considerably in the number of rats produced, but was remarkably consistent in the most effective months to apply rodenticide. Since models without density-dependent fecundity were inherently unstable and an inverse relationship between fecundity and population size is apparent in field data, such a population-growth mechanism seems possible in Florida sugarcane fields. The model in which fecundity was density-dependent at all times produced rat densities closest to field data. Output from this model was most sensitive to changes in the amount litter size declines as population size increases. Field tests are necessary to validate the general agreement among the models about the most effective months to apply rodenticide.

  13. Small-Scale Spatial Variation in Population Dynamics and Fishermen Response in a Coastal Marine Fishery

    PubMed Central

    Wilson, Jono R.; Kay, Matthew C.; Colgate, John; Qi, Roy; Lenihan, Hunter S.

    2012-01-01

    A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales. PMID:23300793

  14. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    PubMed

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate. PMID:24772388

  15. Modelling population dynamics and response to management options in the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae).

    PubMed

    Huber, K; Zenner, L; Bicout, D J

    2011-02-28

    The poultry red mite Dermanyssus gallinae is a major pest and widespread ectoparasite of laying hens and other domestic and wild birds. Under optimal conditions, D. gallinae can complete its lifecycle in less than 10 days, leading to rapid proliferation of populations in poultry systems. This paper focuses on developing a theoretical model framework to describe the population dynamics of D. gallinae. This model is then used to test the efficacy and residual effect of different control options for managing D. gallinae. As well as allowing comparison between treatment options, the model also allows comparison of treatment efficacies to different D. gallinae life stages. Three different means for controlling D. gallinae populations were subjected to the model using computer simulations: mechanical cleaning (killing once at a given time all accessible population stages), sanitary clearance (starving the mite population for a given duration, e.g. between flocks) and acaricide treatment (killing a proportion of nymphs and adults during the persistence of the treatment). Simulations showed that mechanical cleaning and sanitary clearance alone could not eradicate the model D. gallinae population, although these methods did delay population establishment. In contrast, the complete eradication of the model D. gallinae population was achieved by several successive acaricide treatments in close succession, even when a relatively low treatment level was used. PMID:21093987

  16. AMPHIBIAN POPULATION DYNAMICS

    EPA Science Inventory

    Agriculture has contributed to loss of vertebrate biodiversity in many regions, including the U.S. Corn Belt. Amphibian populations, in particular, have experienced widespread and often inexplicable declines, range reductions, and extinctions. However, few attempts have been made...

  17. Population Dynamics of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  18. Discreteness effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Lecomte, Vivien

    2016-05-01

    We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.

  19. Postfire response and genetic diversity in Erica coccinea: connecting population dynamics and diversification in a biodiversity hotspot.

    PubMed

    Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2010-12-01

    Understanding the processes of biological diversification is a central topic in evolutionary biology. The South African Cape fynbos, one of the major plant biodiversity hotspots out of the tropics, has prompted several hypotheses about the causes of generation and maintenance of biodiversity. Fire has been traditionally invoked as a key element to explain high levels of biodiversity in highly speciose fynbos taxa, such as the genus Erica. In this study, we have implemented a microevolutionary approach to elucidate how plant-response to fire may contribute to explain high levels of diversification in Erica. By using microsatellite markers, we investigated the genetic background of seeder (fire-sensitive) and resprouter (fire-resistant) populations of the fynbos species Erica coccinea. We found higher within-population genetic diversity and higher among-population differentiation in seeder populations and interpreted these higher levels of genetic diversification as a consequence of the comparatively shorter generation times and faster population turnover in the seeder form of this species. Considering that genetic divergence among populations may be seen as the initial step to speciation, the parallelism between these results and the pattern of biodiversity at the genus level offers stimulating insights into understanding causes of speciation of the genus Erica in the Cape fynbos. PMID:20561051

  20. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change.

    PubMed

    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei

    2016-01-01

    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since ~1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change. PMID:27210568

  1. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change

    PubMed Central

    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei

    2016-01-01

    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since ~1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change. PMID:27210568

  2. The dynamic balance of import and export of zinc in Escherichia coli suggests a heterogeneous population response to stress

    PubMed Central

    Takahashi, Hiroki; Oshima, Taku; Hobman, Jon L.; Doherty, Neil; Clayton, Selina R.; Iqbal, Mudassar; Hill, Philip J.; Tobe, Toru; Ogasawara, Naotake; Kanaya, Shigehiko; Stekel, Dov J.

    2015-01-01

    Zinc is essential for life, but toxic in excess. Thus all cells must control their internal zinc concentration. We used a systems approach, alternating rounds of experiments and models, to further elucidate the zinc control systems in Escherichia coli. We measured the response to zinc of the main specific zinc import and export systems in the wild-type, and a series of deletion mutant strains. We interpreted these data with a detailed mathematical model and Bayesian model fitting routines. There are three key findings: first, that alternate, non-inducible importers and exporters are important. Second, that an internal zinc reservoir is essential for maintaining the internal zinc concentration. Third, our data fitting led us to propose that the cells mount a heterogeneous response to zinc: some respond effectively, while others die or stop growing. In a further round of experiments, we demonstrated lower viable cell counts in the mutant strain tested exposed to excess zinc, consistent with this hypothesis. A stochastic model simulation demonstrated considerable fluctuations in the cellular levels of the ZntA exporter protein, reinforcing this proposal. We hypothesize that maintaining population heterogeneity could be a bet-hedging response allowing a population of cells to survive in varied and fluctuating environments. PMID:25808337

  3. Elucidating dynamic responses of North Pacific fish populations to climatic forcing: Influence of life-history strategy

    NASA Astrophysics Data System (ADS)

    Yatsu, A.; Aydin, K. Y.; King, J. R.; McFarlane, G. A.; Chiba, S.; Tadokoro, K.; Kaeriyama, M.; Watanabe, Y.

    2008-05-01

    In order to explore mechanistic linkages between low-frequency ocean/climate variability, and fish population responses, we undertook comparative studies of time-series of recruitment-related productivity and the biomass levels of fish stocks representing five life-history strategies in the northern North Pacific between the 1950s and the present. We selected seven species: Japanese sardine ( Sardinopus melanostictus) and California sardine ( Sardinopus sagax) (opportunistic strategists), walleye pollock ( Theragra chalcogramma, intermediate strategist), pink salmon ( Oncorhynchus gorbuscha, salmonic strategist), sablefish ( Anoplopoma fimbria) and Pacific halibut ( Hippoglossus stenolepis) (periodic strategists) and spiny dogfish ( Squalus acanthias, equilibrium strategist). The responses in terms of productivity of sardine, pink salmon, sablefish and halibut to climatic regime shifts were generally immediate, delayed, or no substantial responses depending on the particular regime shift year and fish stock (population). In walleye pollock, there were some periods of high productivity and low productivity, but not coincidental to climatic regime shifts, likely due to indirect climate forcing impacts on both bottom-up and top-down processes. Biomass of zooplankton and all fish stocks examined, except for spiny dogfish whose data were limited, indicated a decadal pattern with the most gradual changes in periodic strategists and most intensive and rapid changes in opportunistic strategists. Responses of sardine productivity to regime shifts were the most intense, probably due to the absence of density-dependent effects and the availability of refuges from predators when sardine biomass was extremely low. Spiny dogfish were least affected by environmental variability. Conversely, spiny dogfish are likely to withstand only modest harvest rates due to their very low intrinsic rate of increase. Thus, each life-history strategy type had a unique response to climatic

  4. Modeling sandhill crane population dynamics

    USGS Publications Warehouse

    Johnson, D.H.

    1979-01-01

    The impact of sport hunting on the Central Flyway population of sandhill cranes (Grus canadensis) has been a subject of controversy for several years. A recent study (Buller 1979) presented new and important information on sandhill crane population dynamics. The present report is intended to incorporate that and other information into a mathematical model for the purpose of assessing the long-range impact of hunting on the population of sandhill cranes.The model is a simple deterministic system that embodies density-dependent rates of survival and recruitment. The model employs four kinds of data: (1) spring population size of sandhill cranes, estimated from aerial surveys to be between 250,000 and 400,000 birds; (2) age composition in fall, estimated for 1974-76 to be 11.3% young; (3) annual harvest of cranes, estimated from a variety of sources to be about 5 to 7% of the spring population; and (4) age composition of harvested cranes, which was difficult to estimate but suggests that immatures were 2 to 4 times as vulnerable to hunting as adults.Because the true nature of sandhill crane population dynamics remains so poorly understood, it was necessary to try numerous (768 in all) combinations of survival and recruitment functions, and focus on the relatively few (37) that yielded population sizes and age structures comparable to those extant in the real population. Hunting was then applied to those simulated populations. In all combinations, hunting resulted in a lower asymptotic crane population, the decline ranging from 5 to 54%. The median decline was 22%, which suggests that a hunted sandhill crane population might be about three-fourths as large as it would be if left unhunted. Results apply to the aggregate of the three subspecies in the Central Flyway; individual subspecies or populations could be affected to a greater or lesser degree.

  5. Evolutionary dynamics in structured populations

    PubMed Central

    Nowak, Martin A.; Tarnita, Corina E.; Antal, Tibor

    2010-01-01

    Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces. PMID:20008382

  6. Microbial population dynamics in response to bioaugmentation in a constructed wetland system under 10°C.

    PubMed

    Zhao, Xinyue; Yang, Jixian; Bai, Shunwen; Ma, Fang; Wang, Li

    2016-04-01

    Compound microbial inocula were enriched and applied to a pilot-scale constructed wetland system to investigate their bioaugmentation effect on nitrogen removal under cold temperature (10°C). The results showed a 10% higher removal efficiency of ammonia and total nitrogen compared to a control (unbioaugmented) group. The microbial community structures before and after the bioaugmentation were analyzed through high throughput sequencing using Miseq Illumina platform. A variation of species richness and community equitability was observed in both systems. It is demonstrated that, based on the response of both the performance and microbial community, bioaugmentation using compound microbial inocula can fine tune the bacterial population and enhance the nitrogen removal efficiency of a constructed wetland system. PMID:26826956

  7. When Should Harvest Evolution Matter to Population Dynamics?

    PubMed

    Nusslé, Sébastien; Hendry, Andrew P; Carlson, Stephanie M

    2016-07-01

    The potential for evolution to influence fishery sustainability remains a controversial topic. We highlight new modeling research from Dunlop et al. that explores when and how fisheries-induced evolution matters for population dynamics, while also emphasizing transient dynamics in population growth and life history-dependent responses that influence population stability and resiliency. PMID:27095380

  8. Microbial population dynamics in response to increasing loadings of pre-hydrolyzed pig manure in an expanded granular sludge bed.

    PubMed

    Wang, Haoyu; Tao, Yu; Gao, Dawen; Liu, Gang; Chen, Chunhong; Ren, Nanqi; van Lier, Jules B; de Kreuk, Merle

    2015-12-15

    In recent years, pig manure (PM) has been regarded as a valuable substrate for energy and resource recovery via bioprocesses such as anaerobic digestion (AD), however, the efficiency of digesting raw PM is limited by the presence of refractory compounds. In this study, we applied a series of pretreatment on raw PM, consisting of subsequent thermochemical pretreatment, enzymatic hydrolysis, tyndallization and filtration. The liquid PM hydrolysates were fed to an expanded granular sludge bed (EGSB) for the production of biogas. The general performance and population dynamics of the EGSB reactor were assessed during an extended operational period of 339 days. An efficient and stable digestion process was achieved under high organic loading rates (OLRs) up to 21 kg-COD/(m(3)·d), agreeing with a sludge loading rate of 0.75 kg-COD/(kg-VSS·d), 1600 mg-NH4(+)-N/L and 17 mg/L of free ammonia nitrogen. The tyndallization decreased the total amount of active cells from 1 × 10(8) to 1 × 10(2) CFU/ml. Hence, bio-augmentation with pigs' intestinal microbiota was absent and the community dynamics were mainly credited to the composition of the substrate (i.e. PM hydrolysates) and the environmental conditions inside the reactor. The results showed the influence of both the seed community and the imposed loading rates on the evolutionary trajectory of the EGSB microbial community. Four bacterial genera (Clostridium, Cytophaga, Bacillus and Bacteroides) and two methanogenic genera (Methanosaeta and Methanobacterium) dominated the communities. An obvious shift from aceticlastic Methanosaeta to hydrogenotrophic Methanobacterium appeared when the OLR was increased to over 10 kg-COD/(m(3)·d). PMID:26378729

  9. Responsive population dynamics and wide seeding into the duodenal lamina propria of transglutaminase-2-specific plasma cells in celiac disease

    PubMed Central

    Di Niro, R; Snir, O; Kaukinen, K; Yaari, G; Lundin, K E A; Gupta, N T; Kleinstein, S H; Cols, M; Cerutti, A; Mäki, M; Shlomchik, M J; Sollid, L M

    2016-01-01

    A hallmark of celiac disease is autoantibodies to transglutaminase 2 (TG2). By visualizing TG2-specific antibodies by antigen staining of affected gut tissue, we identified TG2-specific plasma cells in the lamina propria as well as antibodies in the subepithelial layer, inside the epithelium, and at the brush border. The frequency of TG2-specific plasma cells were found not to correlate with serum antibody titers, suggesting that antibody production at other sites may contribute to serum antibody levels. Upon commencement of a gluten-free diet, the frequency of TG2-specific plasma cells in the lesion dropped dramatically within 6 months, yet some cells remained. The frequency of TG2-specific plasma cells in the celiac lesion is thus dynamically regulated in response to gluten exposure. Laser microdissection of plasma cell patches, followed by antibody gene sequencing, demonstrated that clonal cells were seeded in distinct areas of the mucosa. This was confirmed by immunoglobulin heavy chain repertoire analysis of plasma cells isolated from individual biopsies of two untreated patients, both for TG2-specific and non-TG2-specific cells. Our results shed new light on the processes underlying the B-cell response in celiac disease, and the approach of staining for antigen-specific antibodies should be applicable to other antibody-mediated diseases. PMID:26153762

  10. Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response.

    PubMed

    Chaskopoulou, Alexandra; L'Ambert, Gregory; Petric, Dusan; Bellini, Romeo; Zgomba, Marija; Groen, Thomas A; Marrama, Laurence; Bicout, Dominique J

    2016-01-01

    West Nile virus (WNV) represents a serious burden to human and animal health because of its capacity to cause unforeseen and large epidemics. Until 2004, only lineage 1 and 3 WNV strains had been found in Europe. Lineage 2 strains were initially isolated in 2004 (Hungary) and in 2008 (Austria) and for the first time caused a major WNV epidemic in 2010 in Greece with 262 clinical human cases and 35 fatalities. Since then, WNV lineage 2 outbreaks have been reported in several European countries including Italy, Serbia and Greece. Understanding the interaction of ecological factors that affect WNV transmission is crucial for preventing or decreasing the impact of future epidemics. The synchronous co-occurrence of competent mosquito vectors, virus, bird reservoir hosts, and susceptible humans is necessary for the initiation and propagation of an epidemic. Weather is the key abiotic factor influencing the life-cycles of the mosquito vector, the virus, the reservoir hosts and the interactions between them. The purpose of this paper is to review and compare mosquito population dynamics, and weather conditions, in three ecologically different contexts (urban/semi-urban, rural/agricultural, natural) across four European countries (Italy, France, Serbia, Greece) with a history of WNV outbreaks. Local control strategies will be described as well. Improving our understanding of WNV ecology is a prerequisite step for appraising and optimizing vector control strategies in Europe with the ultimate goal to minimize the probability of WNV infection. PMID:27590848

  11. Evolutionary dynamics on interdependent populations

    NASA Astrophysics Data System (ADS)

    Gómez-Gardeñes, Jesús; Gracia-Lázaro, Carlos; Floría, Luis Mario; Moreno, Yamir

    2012-11-01

    Although several mechanisms can promote cooperative behavior, there is no general consensus about why cooperation survives when the most profitable action for an individual is to defect, especially when the population is well mixed. Here we show that when a replicator such as evolutionary game dynamics takes place on interdependent networks, cooperative behavior is fixed on the system. Remarkably, we analytically and numerically show that this is even the case for well-mixed populations. Our results open the path to mechanisms able to sustain cooperation and can provide hints for controlling its rise and fall in a variety of biological and social systems.

  12. Flood trends and population dynamics

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.

    2012-04-01

    Since the earliest recorded civilizations, such as those in Mesopotamia and Egypt that developed in the fertile floodplains of the Tigris and Euphrates and Nile rivers, humans tend to settle in flood prone areas as they offer favorable conditions for economic development. However, floodplains are also exposed to flood disasters that might cause severe socio-economic and environmental damages not to mention losses of human lives. A flood event turns to be a disaster when it coincides with a vulnerable environment exceeding society's capacity to manage the adverse consequences. This presentation discusses the link between hydrological risk and population change by referring to the outcomes of scientific works recently carried out in Africa and Europe. More specifically, it is shown that the severity of flood disasters, currently affecting more than 100 million people a year, might be seriously exacerbated because of population change. In fact, flood exposure and/or vulnerability might increase because of rapid population growth (and its spatial and temporal dynamics, e.g. urbanization) in the African continent and because of population ageing in many European countries. Lastly, timely and economically sustainable actions to mitigate this increasing hydrological risk are critically evaluated.

  13. Dynamic clustering of bacterial population

    NASA Astrophysics Data System (ADS)

    Ko, Elizabeth P.; Yomo, Tetsuya; Urabe, Itaru

    1994-08-01

    Bacterial cells having the same genotype were observed to split into a few clusters of phenotypes with various levels of enzyme activity. When the mixture of these phenotypically heterogeneous but genotypically homogeneous cells was cultivated in a liquid medium, the distribution of the population size of each cluster of phenotypes showed various kinds of dynamic oscillations. In addition, when this dynamic behavior was examined for the cells of the single colony, various patterns of shifting of homogeneous to heterogeneous lineage and vice versa were observed in the population. The results imply that differentiation of the cells with the same genotype can occur without spatial information and even under the same environment where the cells interact globally without spatial constrait. This interesting phenomenon totally contradicts the conventional biology that the genotype of a cell uniquely determines the phenotype of the cell and its progeny, but is consistent with the theoretical model of cell differentiation presented in the following paper. The sources of discrepancy between the existing theory in molecular biology and our results were discussed and it is concluded that in understanding a complex living system, a simple model consisting of the essence of the complex system can be constructed justifying the observed properties of the molecules in the system which provide free interactions.

  14. Re-evaluation of Yellowstone grizzly bear population dynamics not supported by empirical data: response to Doak & Cutler

    USGS Publications Warehouse

    van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Harris, Richard B.; Higgs, Megan D.; Cherry, Steve; White, Gary C.; Schwartz, Charles C.

    2014-01-01

    Doak and Cutler critiqued methods used by the Interagency Grizzly Bear Study Team (IGBST) to estimate grizzly bear population size and trend in the Greater Yellowstone Ecosystem. Here, we focus on the premise, implementation, and interpretation of simulations they used to support their arguments. They argued that population increases documented by IGBST based on females with cubs-of-the-year were an artifact of increased search effort. However, we demonstrate their simulations were neither reflective of the true observation process nor did their results provide statistical support for their conclusion. They further argued that survival and reproductive senescence should be incorporated into population projections, but we demonstrate their choice of extreme mortality risk beyond age 20 and incompatible baseline fecundity led to erroneous conclusions. The conclusions of Doak and Cutler are unsubstantiated when placed within the context of a thorough understanding of the data, study system, and previous research findings and publications.

  15. Penguin population dynamics over the past 1500 years in response to climate change in the Ross Sea region, East Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, X.; Nie, Y.

    2013-12-01

    Several ornithogenic sediment profiles were collected from lakes and catchments near penguin colonies in the ice-free areas of the Ross Sea region. According to the analysis on elemental and isotopic geochemistry, As, Cd, Cu, P, S, Se and Zn were identified as bio-elements for the input of penguin droppings into the sediments. The 210Pb-137Cs and AMS14C dating results showed the chronology of these determined sediment profiles covered the different time spans from 1500 to 200 cal yr BP. Factor analysis on these bio-elements can be used to reconstruct historical change of penguin population, and the result showed that the penguin population, which was reconstructed from the shorter profiles (younger than 500 years) at Cape Crozier and Beaufort Island of Ross Sea region, displayed clear peaks in the recent decades of years. This finding is in accordance with global warming and modern observation data. The penguin population reconstructed from the longer sediment profiles excavated from Cape Bird showed more fluctuations. Two sediment profiles, collected from the lower terrain of mid Cape Bird, recorded higher penguin density between 1000 and 600 cal. yr BP and then decreased sharply. However, one sediment profile on higher terrain in mid Cape Bird recorded a sudden increase in penguin population from around 600 yr BP. We believed the population peaks recorded in the different sediments profiles was indicative of a migration within the penguin colonies of Cape Bird, from lower terrain to higher terrain. This migration was likely driven by the severe climate fluctuation during the Little Ice Age in the study region. Our results clearly showed the change of penguin ecology can sensitively indicate climate change in the East Antarctica.

  16. Modeling population dynamics: A quantile approach.

    PubMed

    Chavas, Jean-Paul

    2015-04-01

    The paper investigates the modeling of population dynamics, both conceptually and empirically. It presents a reduced form representation that provides a flexible characterization of population dynamics. It leads to the specification of a threshold quantile autoregression (TQAR) model, which captures nonlinear dynamics by allowing lag effects to vary across quantiles of the distribution as well as with previous population levels. The usefulness of the model is illustrated in an application to the dynamics of lynx population. We find statistical evidence that the quantile autoregression parameters vary across quantiles (thus rejecting the AR model as well as the TAR model) as well as with past populations (thus rejecting the quantile autoregression QAR model). The results document the nature of dynamics and cycle in the lynx population over time. They show how both the period of the cycle and the speed of population adjustment vary with population level and environmental conditions. PMID:25661501

  17. Noise-induced effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  18. Population Dynamics of Viral Inactivation

    NASA Astrophysics Data System (ADS)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  19. Population Code Dynamics in Categorical Perception

    PubMed Central

    Tajima, Chihiro I.; Tajima, Satohiro; Koida, Kowa; Komatsu, Hidehiko; Aihara, Kazuyuki; Suzuki, Hideyuki

    2016-01-01

    Categorical perception is a ubiquitous function in sensory information processing, and is reported to have important influences on the recognition of presented and/or memorized stimuli. However, such complex interactions among categorical perception and other aspects of sensory processing have not been explained well in a unified manner. Here, we propose a recurrent neural network model to process categorical information of stimuli, which approximately realizes a hierarchical Bayesian estimation on stimuli. The model accounts for a wide variety of neurophysiological and cognitive phenomena in a consistent framework. In particular, the reported complexity of categorical effects, including (i) task-dependent modulation of neural response, (ii) clustering of neural population representation, (iii) temporal evolution of perceptual color memory, and (iv) a non-uniform discrimination threshold, are explained as different aspects of a single model. Moreover, we directly examine key model behaviors in the monkey visual cortex by analyzing neural population dynamics during categorization and discrimination of color stimuli. We find that the categorical task causes temporally-evolving biases in the neuronal population representations toward the focal colors, which supports the proposed model. These results suggest that categorical perception can be achieved by recurrent neural dynamics that approximates optimal probabilistic inference in the changing environment. PMID:26935275

  20. Population dynamics of interacting spiking neurons

    NASA Astrophysics Data System (ADS)

    Mattia, Maurizio; del Giudice, Paolo

    2002-11-01

    A dynamical equation is derived for the spike emission rate ν(t) of a homogeneous network of integrate-and-fire (IF) neurons in a mean-field theoretical framework, where the activity of the single cell depends both on the mean afferent current (the ``field'') and on its fluctuations. Finite-size effects are taken into account, by a stochastic extension of the dynamical equation for the ν their effect on the collective activity is studied in detail. Conditions for the local stability of the collective activity are shown to be naturally and simply expressed in terms of (the slope of) the single neuron, static, current-to-rate transfer function. In the framework of the local analysis, we studied the spectral properties of the time-dependent collective activity of the finite network in an asynchronous state; finite-size fluctuations act as an ongoing self-stimulation, which probes the spectral structure of the system on a wide frequency range. The power spectrum of ν exhibits modes ranging from very high frequency (depending on spike transmission delays), which are responsible for instability, to oscillations at a few Hz, direct expression of the diffusion process describing the population dynamics. The latter ``diffusion'' slow modes do not contribute to the stability conditions. Their characteristic times govern the transient response of the network; these reaction times also exhibit a simple dependence on the slope of the neuron transfer function. We speculate on the possible relevance of our results for the change in the characteristic response time of a neural population during the learning process which shapes the synaptic couplings, thereby affecting the slope of the transfer function. There is remarkable agreement of the theoretical predictions with simulations of a network of IF neurons with a constant leakage term for the membrane potential.

  1. Dynamic alarm response procedures

    SciTech Connect

    Martin, J.; Gordon, P.; Fitch, K.

    2006-07-01

    The Dynamic Alarm Response Procedure (DARP) system provides a robust, Web-based alternative to existing hard-copy alarm response procedures. This paperless system improves performance by eliminating time wasted looking up paper procedures by number, looking up plant process values and equipment and component status at graphical display or panels, and maintenance of the procedures. Because it is a Web-based system, it is platform independent. DARP's can be served from any Web server that supports CGI scripting, such as Apache{sup R}, IIS{sup R}, TclHTTPD, and others. DARP pages can be viewed in any Web browser that supports Javascript and Scalable Vector Graphics (SVG), such as Netscape{sup R}, Microsoft Internet Explorer{sup R}, Mozilla Firefox{sup R}, Opera{sup R}, and others. (authors)

  2. Demographic responses and population change.

    PubMed

    Friedlander, D

    1969-11-01

    Most Western societies have gone through a process of population change during the past 100-150 years. One important aspect is the socalled demographic transition: the shift from high to low birth and death rates, and accelerated growth resulting from the lag between falling mortality and falling fertility, in national populations. Equally important has been the "rural-to-urban" transition, which involved the migration of millions of people from rural areas. It is hypothesized, following the suggestion of Davis (Theory of the Multi-Phasic Demographic Response), that the adjustment in reproductive behavior made by a community in response to a rising "strain," such as that resulting from higher natural increase, is likely to differ depending upon the ease with which the community can relieve the strain through out migration. Relationships among such characteristics of modernization as intensity of industrialization, speed of urbanization, structural changes in the agricultural system, and declining fertility are implied. Case studies of England and Sweden lend support to the hypothesis: more rapid urban-industrial development, larger-scale movement from rural areas, and a delayed decline in the rural birth rate distinguish the English transition. PMID:21279792

  3. Evolutionary dynamics in set structured populations

    PubMed Central

    Tarnita, Corina E.; Antal, Tibor; Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Evolutionary dynamics are strongly affected by population structure. The outcome of an evolutionary process in a well-mixed population can be very different from that in a structured population. We introduce a powerful method to study dynamical population structure: evolutionary set theory. The individuals of a population are distributed over sets. Individuals interact with others who are in the same set. Any 2 individuals can have several sets in common. Some sets can be empty, whereas others have many members. Interactions occur in terms of an evolutionary game. The payoff of the game is interpreted as fitness. Both the strategy and the set memberships change under evolutionary updating. Therefore, the population structure itself is a consequence of evolutionary dynamics. We construct a general mathematical approach for studying any evolutionary game in set structured populations. As a particular example, we study the evolution of cooperation and derive precise conditions for cooperators to be selected over defectors. PMID:19433793

  4. Comparing models of Red Knot population dynamics

    USGS Publications Warehouse

    McGowan, Conor

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  5. Dynamic Random Networks in Dynamic Populations

    NASA Astrophysics Data System (ADS)

    Britton, Tom; Lindholm, Mathias

    2010-05-01

    We consider a random network evolving in continuous time in which new nodes are born and old may die, and where undirected edges between nodes are created randomly and may also disappear. The node population is Markovian and so is the creation and deletion of edges, given the node population. Each node is equipped with a random social index and the intensity at which a node creates new edges is proportional to the social index, and the neighbour is either chosen uniformly or proportional to its social index in a modification of the model. We derive properties of the network as time and the node population tends to infinity. In particular, the degree-distribution is shown to be a mixed Poisson distribution which may exhibit a heavy tail (e.g. power-law) if the social index distribution has a heavy tail. The limiting results are verified by means of simulations, and the model is fitted to a network of sexual contacts.

  6. Dynamics of the T cell response to Mycobacterium tuberculosis DosR and Rpf antigens in a Colombian population of household contacts of recently diagnosed pulmonary tuberculosis patients.

    PubMed

    Arroyo, Leonar; Rojas, Mauricio; Ortíz, Blanca L; Franken, Kees L M C; García, Luis F; Ottenhoff, Tom H M; Barrera, Luis F

    2016-03-01

    Immune response to DosR and Rpf antigens from Mycobacterium tuberculosis (Mtb) seems to be important for latency maintenance. Little is known about the dynamics of the immune response to these antigens in an endemic community. Thus, the IFNγ response and cytokine production in response to PPD, Esat6-Cfp10 (E6-C10), DosR and Rpf antigens in healthy HHC of tuberculosis (TB) patients over a 12 (T12) months period (short-term, stLTBI) was investigated. This response was compared with a group of LTBI, who have remained healthy for 5-7 years (long-term, ltLTBI). According to the IFNγ response, two groups of HHCs were identified in stLTBI in response to E6-C10. At T12, E6-C10(+) HHCs displayed a decrease in the IFNγ levels and a generalized decrease in cytokines production. The E6-C10(-) HHC showed an increase in the IFNγ response and cytokine levels. In stLTBI, the responses to E6-C10, DosR, and Rpf may be interpreted as a protective immune response controlling Mtb infection and may be leading to a state of latent infection. Comparing the response of stLTBI and ltLTBI, we observed significant changes in the proportions of CD45RO(+)CD27(+) T cells to specific DosR and Rpf, which may indicate a persistent immune response to Mtb antigens in ltLTBI. PMID:26980501

  7. Immigration-extinction dynamics of stochastic populations

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Ovaskainen, Otso

    2013-07-01

    How high should be the rate of immigration into a stochastic population in order to significantly reduce the probability of observing the population become extinct? Is there any relation between the population size distributions with and without immigration? Under what conditions can one justify the simple patch occupancy models, which ignore the population distribution and its dynamics in a patch, and treat a patch simply as either occupied or empty? We answer these questions by exactly solving a simple stochastic model obtained by adding a steady immigration to a variant of the Verhulst model: a prototypical model of an isolated stochastic population.

  8. Population dynamics with and without selection

    NASA Astrophysics Data System (ADS)

    Pȩkalski, Andrzej; Sznajd-Weron, Katarzyna

    2001-03-01

    A model describing population dynamics is presented. We study the effect of selection pressure and inbreeding on the time evolution of the population and the chances of survival. We find that the selection is in general beneficial, enabling survival of a population whose size is declining. Inbreeding reduces the survival chances since it leads to clustering of individuals. We have also found, in agreement with biological data, that there is a threshold value of the initial size of the population, as well as of the habitat, below which the population will almost certainly become extinct. We present analytical and computer simulation approaches.

  9. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species. PMID:27062059

  10. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program.

    PubMed

    York, Paul H; Carter, Alex B; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A

    2015-01-01

    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts. PMID:26279474

  11. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program

    PubMed Central

    York, Paul H.; Carter, Alex B.; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A.

    2015-01-01

    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts. PMID:26279474

  12. Population dynamics on heterogeneous bacterial substrates

    NASA Astrophysics Data System (ADS)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  13. Travelling waves in vole population dynamics

    NASA Astrophysics Data System (ADS)

    Ranta, Esa; Kaitala, Veijo

    1997-12-01

    Spatial self-organization patterns in population dynamics have been anticipated, but demonstrating their existence requires sampling over long periods of time at a range of sites. Voles cause severe economic damage and are therefore extensively monitored, providing a source of the required data. Using two long-term data sets we now report the existence of travelling waves in vole population numbers.

  14. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics. PMID:26807744

  15. Deterministic evolutionary game dynamics in finite populations.

    PubMed

    Altrock, Philipp M; Traulsen, Arne

    2009-07-01

    Evolutionary game dynamics describes the spreading of successful strategies in a population of reproducing individuals. Typically, the microscopic definition of strategy spreading is stochastic such that the dynamics becomes deterministic only in infinitely large populations. Here, we present a microscopic birth-death process that has a fully deterministic strong selection limit in well-mixed populations of any size. Additionally, under weak selection, from this process the frequency-dependent Moran process is recovered. This makes it a natural extension of the usual evolutionary dynamics under weak selection. We find simple expressions for the fixation probabilities and average fixation times of the process in evolutionary games with two players and two strategies. For cyclic games with two players and three strategies, we show that the resulting deterministic dynamics crucially depends on the initial condition in a nontrivial way. PMID:19658731

  16. Structural dynamics and ecology of flatfish populations

    NASA Astrophysics Data System (ADS)

    Bailey, Kevin M.

    1997-11-01

    The concept of structure in populations of marine fishes is fundamental to how we manage and conduct research on these resources. The degree of population structure ranges widely among flatfishes. Although we know that large populations tend to be subdivided into local populations, based on morphological, meristic and reproductive characteristics, these data often conflict with evidence on genetic stock structure, due to the scale and organization of movement within the metapopulation. Movement of individuals between local subpopulations and colonization events on a macroecological scale are probably important to some flatfish populations. Dispersal of larvae is known to be a major factor affecting population mixing. Some flatfishes have planktonic stages of long duration and for these species there is often, but not always, little population structure; gene flow sometimes may be limited by oceanographic features, such as eddies and fronts. At the juvenile stage dispersal can result in colonization of under-utilized habitats; however, for flatfishes with strong habitat requirements, this type of event may be less likely when suitable habitats are fragmented. Complex population structure has major implications for management, e.g. lumping harvested populations with little gene flow can have detrimental local effects. Moreover, the issue of population structure and movement influences the interpretation of research data, where populations are generally treated as closed systems. There is currently a strong need for a multidisciplinary approach to study fish population dynamics and the structure of their populations. This research should involve molecular geneticists, population geneticists, animal behaviourists and ecologists. Migration mechanisms, colonization and extinction events, gene flow and density-dependent movements are subject areas of great importance to managing large harvested populations, but our understanding of them at ecological scales, at least for

  17. Animal population dynamics: Identification of critical components

    USGS Publications Warehouse

    Emlen, J.M.; Pikitch, E.K.

    1989-01-01

    There is a growing interest in the use of population dynamics models in environmental risk assessment and the promulgation of environmental regulatory policies. Unfortunately, because of species and areal differences in the physical and biotic influences on population dynamics, such models must almost inevitably be both complex and species- or site-specific. Given the emormous variety of species and sites of potential concern, this fact presents a problem; it simply is not possible to construct models for all species and circumstances. Therefore, it is useful, before building predictive population models, to discover what input parameters are of critical importance to the desired output. This information should enable the construction of simpler and more generalizable models. As a first step, it is useful to consider population models as composed to two, partly separable classes, one comprising the purely mechanical descriptors of dynamics from given demographic parameter values, and the other describing the modulation of the demographic parameters by environmental factors (changes in physical environment, species interactions, pathogens, xenobiotic chemicals). This division permits sensitivity analyses to be run on the first of these classes, providing guidance for subsequent model simplification. We here apply such a sensitivity analysis to network models of mammalian and avian population dynamics.

  18. Multispecies population dynamics of prebiotic compositional assemblies.

    PubMed

    Markovitch, Omer; Lancet, Doron

    2014-09-21

    Present life portrays a two-tier phenomenology: molecules compose supramolecular structures, such as cells or organisms, which in turn portray population behaviors, including selection, evolution and ecological dynamics. Prebiotic models have often focused on evolution in populations of self-replicating molecules, without explicitly invoking the intermediate molecular-to-supramolecular transition. Here, we explore a prebiotic model that allows one to relate parameters of chemical interaction networks within molecular assemblies to emergent population dynamics. We use the graded autocatalysis replication domain (GARD) model, which simulates the network dynamics within amphiphile-containing molecular assemblies, and exhibits quasi-stationary compositional states termed compotype species. These grow by catalyzed accretion, divide and propagate their compositional information to progeny in a replication-like manner. The model allows us to ask how molecular network parameters influence assembly evolution and population dynamics parameters. In 1000 computer simulations, each embodying different parameter set of the global chemical interaction network parameters, we observed a wide range of behaviors. These were analyzed by a multi species logistic model often used for analyzing population ecology (r-K or Lotka-Volterra competition model). We found that compotypes with a larger intrinsic molecular repertoire show a higher intrinsic growth (r) and lower carrying capacity (K), as well as lower replication fidelity. This supports a prebiotic scenario initiated by fast-replicating assemblies with a high molecular diversity, evolving into more faithful replicators with narrower molecular repertoires. PMID:24831416

  19. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    SciTech Connect

    Jochem, Warren C; Sims, Kelly M; Bright, Eddie A; Urban, Marie L; Rose, Amy N; Coleman, Phil R; Bhaduri, Budhendra L

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  20. Stability, complexity and robustness in population dynamics.

    PubMed

    Demongeot, J; Hazgui, H; Ben Amor, H; Waku, J

    2014-09-01

    The problem of stability in population dynamics concerns many domains of application in demography, biology, mechanics and mathematics. The problem is highly generic and independent of the population considered (human, animals, molecules,…). We give in this paper some examples of population dynamics concerning nucleic acids interacting through direct nucleic binding with small or cyclic RNAs acting on mRNAs or tRNAs as translation factors or through protein complexes expressed by genes and linked to DNA as transcription factors. The networks made of these interactions between nucleic acids (considered respectively as edges and nodes of their interaction graph) are complex, but exhibit simple emergent asymptotic behaviours, when time tends to infinity, called attractors. We show that the quantity called attractor entropy plays a crucial role in the study of the stability and robustness of such genetic networks. PMID:25107273

  1. Dynamical inference of hidden biological populations

    NASA Astrophysics Data System (ADS)

    Luchinsky, D. G.; Smelyanskiy, V. N.; Millonas, M.; McClintock, P. V. E.

    2008-10-01

    Population fluctuations in a predator-prey system are analyzed for the case where the number of prey could be determined, subject to measurement noise, but the number of predators was unknown. The problem of how to infer the unmeasured predator dynamics, as well as the model parameters, is addressed. Two solutions are suggested. In the first of these, measurement noise and the dynamical noise in the equation for predator population are neglected; the problem is reduced to a one-dimensional case, and a Bayesian dynamical inference algorithm is employed to reconstruct the model parameters. In the second solution a full-scale Markov Chain Monte Carlo simulation is used to infer both the unknown predator trajectory, and also the model parameters, using the one-dimensional solution as an initial guess.

  2. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    NASA Astrophysics Data System (ADS)

    Frentz, Zak; Kuehn, Seppe; Leibler, Stanislas

    2015-10-01

    Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES) as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  3. Dynamics of newly established elk populations

    USGS Publications Warehouse

    Sargeant, G.A.; Oehler, M.W., Sr.

    2007-01-01

    The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (??=1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of ?? = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.

  4. Population mixture model for nonlinear telomere dynamics

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  5. Galactic civilizations - Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  6. Evolutionary Dynamics and Diversity in Microbial Populations

    NASA Astrophysics Data System (ADS)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  7. Population clocks: motor timing with neural dynamics

    PubMed Central

    Buonomano, Dean V.; Laje, Rodrigo

    2010-01-01

    An understanding of sensory and motor processing will require elucidation of the mechanisms by which the brain tells time. Open questions relate to whether timing relies on dedicated or intrinsic mechanisms and whether distinct mechanisms underlie timing across scales and modalities. Although experimental and theoretical studies support the notion that neural circuits are intrinsically capable of sensory timing on short scales, few general models of motor timing have been proposed. For one class of models, population clocks, it is proposed that time is encoded in the time-varying patterns of activity of a population of neurons. We argue that population clocks emerge from the internal dynamics of recurrently connected networks, are biologically realistic and account for many aspects of motor timing. PMID:20889368

  8. Computer Assisted Instruction of Population Dynamics: A New Approach to Population Education. Report No. T-19.

    ERIC Educational Resources Information Center

    Klaff, Vivian; Handler, Paul

    Available on the University of Illinois PLATO IV Computer system, the Population Dynamic Group computer-aided instruction program for teaching population dynamics is described and explained. The computer-generated visual graphics enable fast and intuitive understanding of the dynamics of population and of the concepts and data of population. The…

  9. Adaptive dynamics for physiologically structured population models.

    PubMed

    Durinx, Michel; Metz, J A J Hans; Meszéna, Géza

    2008-05-01

    We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289

  10. Metabolic responses of Glossina pallidipes (Diptera: Glossinidae) puparia exposed to oxygen and temperature variation: implications for population dynamics and subterranean life.

    PubMed

    Basson, C Helene; Terblanche, John S

    2010-12-01

    Understanding the factors affecting insect gas exchange in subterranean environments is critical to understanding energy budgets and predicting mortality under field conditions. Here, we examine the metabolic rate (MR) responses of tsetse puparia, which remain underground for ca. 1 month in this life-stage, to varying oxygen and temperature. First, the effects of temperature and oxygen on puparial MR were investigated by ramping temperature from 15 to 35°C under 10, 21 or 40% O(2). Overall, temperature was the dominant effect on puparial MR although O(2) had small but significant impacts. Second, critical O(2) concentration (P(CRIT)) for MR of puparia was examined across a range of oxygen concentrations (0-40%). P(CRIT) was 6% O(2) which is similar to P(CRIT) in other basal arthropods but relatively high for inactive or subterranean insects. Third, we asked if puparia exposed to anoxia might experience oxygen debt, potentially indicative of anaerobic metabolism or cellular repair. Metabolic responses to anoxia were limited or insignificant, but MR was marginally elevated (∼ 15%) in anoxia-exposed (4h) puparia by 12h post-anoxia. Finally, we examined the ability of puparia to withstand water submersion, thus simulating flooding conditions frequently experienced in tropical soil habitats. Puparia were unable to survive submersion for >24h suggesting limited flooding tolerance. These novel results suggest that soil conditions experienced by puparia should not be limiting for MR, except possibly under high temperature-low O(2) conditions. Due to a large safety margin between P(CRIT) and soil oxygen levels and limited effects of oxygen on metabolism during temperature ramping experiments, we suggest that Glossina pallidipes puparia are not particularly susceptible to oxygen availability in their natural environment. However, soil flooding associated with tropical rainfall likely imposes strong selection on tsetse populations and may have had important effects for

  11. Evolution of complex dynamics in spatially structured populations

    PubMed Central

    Johst, K.; Doebeli, M.; Brandl, R.

    1999-01-01

    Dynamics of populations depend on demographic parameters which may change during evolution. In simple ecological models given by one-dimensional difference equations, the evolution of demographic parameters generally leads to equilibrium population dynamics. Here we show that this is not true in spatially structured ecological models. Using a multi-patch metapopulation model, we study the evolutionary dynamics of phenotypes that differ both in their response to local crowding, i.e. in their competitive behaviour within a habitat, and in their rate of dispersal between habitats. Our simulation results show that evolution can favour phenotypes that have the intrinsic potential for very complex dynamics provided that the environment is spatially structured and temporally variable. These phenotypes owe their evolutionary persistence to their large dispersal rates. They typically coexist with phenotypes that have low dispersal rates and that exhibit equilibrium dynamics when alone. This coexistence is brought about through the phenomenon of evolutionary branching, during which an initially uniform population splits into the two phenotypic classes.

  12. Evolutionary dynamics in finite populations with zealots.

    PubMed

    Nakajima, Yohei; Masuda, Naoki

    2015-02-01

    We investigate evolutionary dynamics of two-strategy matrix games with zealots in finite populations. Zealots are assumed to take either strategy regardless of the fitness. When the strategy selected by the zealots is the same, the fixation of the strategy selected by the zealots is a trivial outcome. We study fixation time in this scenario. We show that the fixation time is divided into three main regimes, in one of which the fixation time is short, and in the other two the fixation time is exponentially long in terms of the population size. Different from the case without zealots, there is a threshold selection intensity below which the fixation is fast for an arbitrary payoff matrix. We illustrate our results with examples of various social dilemma games. PMID:24610380

  13. Assessing the dynamics of wild populations

    SciTech Connect

    Eberhardt, L.L.

    1985-01-01

    Lotka's equations summarizing population dynamics can be approximated by functional models of the survivorship and reproductive curves, incorporating three stages of survival and reproduction, respectively. An abbreviated form uses a single reproductive parameter and two survival values. Survivorship and reproductive curves were fitted to data on northern fur seals (Callorhinus ursinus), domestic and feral sheep, white-tailed deer (Odocoileus virginianus), grizzly bears (Ursus arctos), African buffalo (Syncerus caffer), free-ranging horses, and fin whales (Balaenoptera physalus). Data for 10 species suggest a useful relationship between senescence parameters. A bias due to senescence may lead to serious underestimation of survival rates. Observed annual rates of increase of 18-20% for feral horses, 16% for southern fur seals (Arctocephalus gazella), and 60% for white-tailed deer are compatible with observed population parameters. 43 references, 11 figures, 3 tables.

  14. Monitoring microbial population dynamics at low densities

    NASA Astrophysics Data System (ADS)

    Julou, Thomas; Desprat, Nicolas; Bensimon, David; Croquette, Vincent

    2012-07-01

    We propose a new and simple method for the measurement of microbial concentrations in highly diluted cultures. This method is based on an analysis of the intensity fluctuations of light scattered by microbial cells under laser illumination. Two possible measurement strategies are identified and compared using simulations and measurements of the concentration of gold nanoparticles. Based on this comparison, we show that the concentration of Escherichia coli and Saccharomyces cerevisiae cultures can be easily measured in situ across a concentration range that spans five orders of magnitude. The lowest measurable concentration is three orders of magnitude (1000×) smaller than in current optical density measurements. We show further that this method can also be used to measure the concentration of fluorescent microbial cells. In practice, this new method is well suited to monitor the dynamics of population growth at early colonization of a liquid culture medium. The dynamic data thus obtained are particularly relevant for microbial ecology studies.

  15. Patterns and localized structures in population dynamics

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Escaff, D.; Kenkre, V. M.

    2005-11-01

    Patterns, fronts, and localized structures of a prototypical model for population dynamics interaction are studied. The physical content of the model is the coexistence of a simple random walk for the motion of the individuals with a nonlinearity in the competitive struggle for resources which simultaneously stresses the Allee effect and interaction at a distance. Mathematically, the model is variational and exhibits coexistence between different stable extended states. Solutions are obtained, the phase diagram is constructed, and the emergence of localized structures is investigated.

  16. A population dynamics approach to biological aging

    NASA Astrophysics Data System (ADS)

    de Almeida, R. M. C.

    A dynamical model for aging in biological population is discussed where asexual reproduction is considered. The maximum life span is inherited from parent to offspring with some random mutations described by a transition matrix, and the fertile period begins at a defined age R. The intra species competition is modeled through a Verhulst-like factor. Discrete time evolution equations are iterated and the transient and asymptotic solutions are obtained. When only bad mutations are taken into account, the stationary solutions are obtained analytically. The results are applied to the Penna model.

  17. The population dynamics of an endemic collectible cactus

    NASA Astrophysics Data System (ADS)

    Mandujano, María C.; Bravo, Yolotzin; Verhulst, Johannes; Carrillo-Angeles, Israel; Golubov, Jordan

    2015-02-01

    Astrophytum is one of most collected genera in the cactus family. Around the world several species are maintained in collections and yearly, several plants are taken from their natural habitats. Populations of Astorphytum capricorne are found in the northern Chihuahuan desert, Mexico, and as many endemic cactus species, it has a highly restricted habitat. We conducted a demographic study from 2008 to 2010 of the northern populations found at Cuatro Ciénegas, Mexico. We applied matrix population models, included simulations, life table response experiments and descriptions of the population dynamics to evaluate the current status of the species, and detect key life table stages and demographic processes. Population growth rate decreased in both years and only 4% individual mortality can be attributed to looting, and a massive effort is needed to increase seedling recruitment and reduce adult mortality. The fate of individuals differed between years even having the same annual rainfall mainly in accentuated stasis, retrogression and high mortality in all size classes, which coupled with low seed production, no recruitment and collection of plants are the causes contributing to population decline, and hence, increase the risk in which A. capricorne populations are found. Reintroduction of seedlings and lowering adult mortality are urgently needed to revert the alarming demographic condition of A. capricorne populations.

  18. Dynamic response of aircraft structure

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The physical and mathematical problems associated with the response of elastic structures to random excitations such as occurs during buffeting and other transonic phenomena were discussed. The following subjects were covered: (1) general dynamic system consisting of the aircraft structure, the aerodynamic driving forces due to separated flow, and the aerodynamic forces due to aircraft structural motion, (2) structural and aerodynamic quantities of the dynamic system with special emphasis given to the description of the aerodynamic forces, and including a treatment of similarity laws, scaling effects, and wind tunnel testing, and (3) methods for data processing of fluctuating pressure recordings and techniques for response analysis for random excitation. A general buffeting flutter model, which takes into account the interactions between the separated and motion induced flows was presented. Relaxations of this model leading to the forced vibration model were explained.

  19. [Population dynamics and development in the Caribbean].

    PubMed

    Boland, B

    1995-12-01

    The impact is examined of socioeconomic factors on Caribbean population dynamics. This work begins by describing the socioeconomic context of the late 1980s and early 1990s, under the influence of the economic changes and crises of the 1980s. The small size, openness, dependency, and lack of diversification of the Caribbean economies have made them vulnerable to external pressures. The Bahamas and Belize had economic growth rates exceeding 5% annually during 1981-90, but most of the countries had low or negative growth. Unemployment, poverty, the structural adjustment measures adopted in the mid-1980s, and declines in social spending exacerbated general economic conditions. In broad terms, the population situation of the Caribbean is marked by diversity of sizes and growth rates. A few countries oriented toward services and tourism had demographic growth rates exceeding 3%, while at least 7 had almost no growth or negative growth. Population growth rates reflected different combinations of natural increase and migration. Crude death rates ranged from around 5/1000 to 11/1000, except in Haiti, and all countries of the region except Haiti had life expectancies of 70 years or higher. Despite fertility decline, the average crude birth rate was still relatively high at 26/1000, and the rate of natural increase was 1.8% annually for the region. Nearly half of the regional population was under 15 or over 65 years old. The body of this work provides greater detail on mortality patterns, variations by sex, infant mortality, causes of death, and implications for policy. The discussion of fertility includes general patterns and trends, age specific fertility rates, contraceptive prevalence, levels of adolescent fertility and age factors in adolescent sexual behavior, characteristics of adolescent unions, contraceptive usage, health and social consequences of adolescent childbearing, and the search for solutions. The final section describes the magnitude and causes of

  20. Effects of culling on mesopredator population dynamics.

    PubMed

    Beasley, James C; Olson, Zachary H; Beatty, William S; Dharmarajan, Guha; Rhodes, Olin E

    2013-01-01

    Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008-2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow repopulation

  1. Effects of Culling on Mesopredator Population Dynamics

    PubMed Central

    Beasley, James C.; Olson, Zachary H.; Beatty, William S.; Dharmarajan, Guha; Rhodes, Olin E.

    2013-01-01

    Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008–2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow

  2. Drivers of waterfowl population dynamics: from teal to swans

    USGS Publications Warehouse

    Koons, David N.; Gunnarsson, Gunnar; Schmutz, Joel A.; Rotella, Jay J.

    2014-01-01

    Waterfowl are among the best studied and most extensively monitored species in the world. Given their global importance for sport and subsistence hunting, viewing and ecosystem functioning, great effort has been devoted since the middle part of the 20th century to understanding both the environmental and demographic mechanisms that influence waterfowl population and community dynamics. Here we use comparative approaches to summarise and contrast our understanding ofwaterfowl population dynamics across species as short-lived as the teal Anas discors and A.crecca to those such as the swans Cygnus sp. which have long life-spans. Specifically, we focus on population responses to vital rate perturbations across life history strategies, discuss bottom-up and top-down responses of waterfowlpopulations to global change, and summarise our current understanding of density dependence across waterfowl species. We close by identifying research needs and highlight ways to overcome the challenges of sustainably managing waterfowl populations in the 21st century.

  3. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  4. Predicting fish population response to instream flows

    SciTech Connect

    Studley, T.K.; Baldridge, J.E.; Railsback, S.F.

    1996-10-01

    A cooperative research program initiated by Pacific Gas and Electric is described. The goals of the project are to determine if trout populations respond to changes in base streamflows in a predictible manner, and to evaluate and improve the methods used to predict rainbow and brown trout population responses under altered flow regimes. Predictive methods based on computer models of the Physical Habitat Simulation System are described, and predictions generated for four diversions and creeks are tabulated. Baseline data indicates that instream flow assessments can be improved by using guild criteria in streams with competing species and including additional limiting factors (low recruitment, high winter flow, and high stream temperatures) in the analyses.

  5. Dynamic analysis of a parasite population model

    NASA Astrophysics Data System (ADS)

    Sibona, G. J.; Condat, C. A.

    2002-03-01

    We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.

  6. Long-term dynamics of Typha populations

    USGS Publications Warehouse

    Grace, J.B.; Wetzel, R.G.

    1998-01-01

    The zonation of Typha populations in an experimental pond in Michigan was re-examined 15 years after the original sampling to gain insight into the long-term dynamics. Current distributions of Typha populations were also examined in additional experimental ponds at the site that have been maintained for 23 years. The zonation between T. latifolia and T. angustifolia in the previously studied pond 15 years after the initial sampling revealed that the density and distribution of shoots had not changed significantly. Thus, it appears that previously reported results (based on 7- year old populations) have remained consistent over time. Additional insight into the interaction between these two taxa was sought by comparing mixed and monoculture stands in five experimental ponds that have remained undisturbed for their 23-year history. The maximum depth of T. latifolia, the shallow- water species, was not significantly reduced when growing in the presence of the more flood tolerant T. angustifolia. In contrast, the minimum depth of T. angustifolia was reduced from 0 to 37 cm when in the presence of T. latifolia. When total populations were compared between monoculture and mixed stands, the average density of T. angustifolia shoots was 59.4 percent lower in mixed stands while the density of T. latifolia was 32 percent lower, with T. angustifolia most affected at shallow depths (reduced by 92 percent) and T. latifolia most affected at the deepest depths (reduced by 60 percent). These long-term observations indicate that competitive displacement between Typha taxa has remained stable over time.

  7. Population Dynamics of Sugar Beets, Rhizoctonia solani, and Laetisaria arvalis: Responses of a Host, Plant Pathogen, and Hyperparasite to Perturbation in the Field.

    PubMed

    Allen, M F; Boosalis, M G; Kerr, E D; Muldoon, A E; Larsen, H J

    1985-11-01

    Rhizoctonia solani causes crown rot of sugar beets, a severe disease that has destroyed up to 60% of the plants in a test field in western Nebraska. Laetisaria arvalis, a natural hyperparasite of Rhizoctonia spp., was isolated from fields in western Nebraska. To test for the potential for biological control of R. solani, in November 1980 (following harvest) we applied various combinations of a nematicide (Telone II; Dow Chemical Co.), a nutrition source (sugar beet pulp), and an inoculum of L. arvalis in a randomized block design. Populations of R. solani, L. arvalis, and sugar beets were monitored monthly through October 1981 (just after harvest). In control and nematicide plots, the R. solani population did not change significantly through time. In plots inoculated with L. arvalis, the R. solani populations declined through March, concomitant with an increase in L. arvalis. L. arvalis then declined with a corresponding increase in the R. solani populations. Beet plant numbers declined significantly in all treatments. We suggest that reduction of the R. solani populations with the hyperparasite L. arvalis is possible but that a stable equilibrium naturally exists. PMID:16346925

  8. Barn Owl Productivity Response to Variability of Vole Populations

    PubMed Central

    Pavluvčík, Petr; Poprach, Karel; Machar, Ivo; Losík, Jan; Gouveia, Ana; Tkadlec, Emil

    2015-01-01

    We studied the response of the barn owl annual productivity to the common vole population numbers and variability to test the effects of environmental stochasticity on their life histories. Current theory predicts that temporal environmental variability can affect long-term nonlinear responses (e.g., production of young) both positively and negatively, depending on the shape of the relationship between the response and environmental variables. At the level of the Czech Republic, we examined the shape of the relationship between the annual sum of fledglings (annual productivity) and vole numbers in both non-detrended and detrended data. At the districts’ level, we explored whether the degree of synchrony (measured by the correlation coefficient) and the strength of the productivity response increase (measured by the regression coefficient) in areas with higher vole population variability measured by the s-index. We found that the owls’ annual productivity increased linearly with vole numbers in the Czech Republic. Furthermore, based on district data, we also found that synchrony between dynamics in owls’ reproductive output and vole numbers increased with vole population variability. However, the strength of the response was not affected by the vole population variability. Additionally, we have shown that detrending remarkably increases the Taylor’s exponent b relating variance to mean in vole time series, thereby reversing the relationship between the coefficient of variation and the mean. This shift was not responsible for the increased synchrony with vole population variability. Instead, we suggest that higher synchrony could result from high food specialization of owls on the common vole in areas with highly fluctuating vole populations. PMID:26709518

  9. Barn Owl Productivity Response to Variability of Vole Populations.

    PubMed

    Pavluvčík, Petr; Poprach, Karel; Machar, Ivo; Losík, Jan; Gouveia, Ana; Tkadlec, Emil

    2015-01-01

    We studied the response of the barn owl annual productivity to the common vole population numbers and variability to test the effects of environmental stochasticity on their life histories. Current theory predicts that temporal environmental variability can affect long-term nonlinear responses (e.g., production of young) both positively and negatively, depending on the shape of the relationship between the response and environmental variables. At the level of the Czech Republic, we examined the shape of the relationship between the annual sum of fledglings (annual productivity) and vole numbers in both non-detrended and detrended data. At the districts' level, we explored whether the degree of synchrony (measured by the correlation coefficient) and the strength of the productivity response increase (measured by the regression coefficient) in areas with higher vole population variability measured by the s-index. We found that the owls' annual productivity increased linearly with vole numbers in the Czech Republic. Furthermore, based on district data, we also found that synchrony between dynamics in owls' reproductive output and vole numbers increased with vole population variability. However, the strength of the response was not affected by the vole population variability. Additionally, we have shown that detrending remarkably increases the Taylor's exponent b relating variance to mean in vole time series, thereby reversing the relationship between the coefficient of variation and the mean. This shift was not responsible for the increased synchrony with vole population variability. Instead, we suggest that higher synchrony could result from high food specialization of owls on the common vole in areas with highly fluctuating vole populations. PMID:26709518

  10. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean

  11. Assessing tiger population dynamics using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.

    2006-01-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain

  12. Learning to Estimate Dynamical State with Probabilistic Population Codes

    PubMed Central

    Sabes, Philip N.

    2015-01-01

    Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  13. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    PubMed

    Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N

    2015-11-01

    Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  14. Dynamics of Genome Rearrangement in Bacterial Populations

    PubMed Central

    Darling, Aaron E.; Miklós, István; Ragan, Mark A.

    2008-01-01

    first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes. PMID:18650965

  15. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    PubMed

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field. PMID:25757322

  16. Indirect effects of primary prey population dynamics on alternative prey.

    PubMed

    Barraquand, Frédéric; New, Leslie F; Redpath, Stephen; Matthiopoulos, Jason

    2015-08-01

    We develop a theory of generalist predation showing how alternative prey species are affected by changes in both mean abundance and variability (coefficient of variation) of their predator's primary prey. The theory is motivated by the indirect effects of cyclic rodent populations on ground-breeding birds, and developed through progressive analytic simplifications of an empirically-based model. It applies nonetheless to many other systems where primary prey have fast life-histories and can become superabundant, thus facilitating impact on alternative prey species and generating highly asymmetric interactions. Our results suggest that predator effects on alternative prey should generally decrease with mean primary prey abundance, and increase with primary prey variability (low to high CV)-unless predators have strong aggregative responses, in which case these results can be reversed. Approximations of models including predator dynamics (general numerical response with possible delays) confirm these results but further suggest that negative temporal correlation between predator and primary prey is harmful to alternative prey. Finally, we find that measurements of predator numerical responses are crucial to predict-even qualitatively-the response of ecosystems to changes in the dynamics of outbreaking prey species. PMID:25930160

  17. Population dynamics of Yellowstone grizzly bears

    USGS Publications Warehouse

    Knight, Richard R.; Eberhardt, L.L.

    1985-01-01

    Data on the population of grizzly bears in the environs of Yellowstone National Park suggest that the population has not recovered from the reductions following closure of garbage dumps in 1970 and 1971, and may continue to decline. A computer simulation model indicates that the risk of extirpation over the next 30 yr is small, if the present population parameters continue to prevail. A review and further analysis of the available data brings out the importance of enhancing adult female survival if the population is to recover, and assesses various research needs. In particular, a reliable index of population trend is needed to augment available data on the population.

  18. DEMOGRAPHIC PROCESSES: POPULATION DYNAMICS IN HETEROGENEOUS LANDSCAPES

    EPA Science Inventory

    Few topics have attracted the attention of ecologists more than fluctuations in the numbers of plants and animals through time and their variation in abundance through space. nderstanding population fluctuations, and thus population conservation, requires understanding the links ...

  19. Consequences of parental care on population dynamics

    NASA Astrophysics Data System (ADS)

    de Oliveira, S. Moss

    1999-12-01

    We review the results obtained using the Penna model for biological ageing (T.J.P. Penna, J. Stat. Phys. 78 (1995) 1629) when different strategies of parental care are introduced into evolving populations. These results concern to: longevity of semelparous populations; self-organization of female menopause; the spatial distribution of the populations and finally, sexual fidelity.

  20. Experimental evidence of antiphase population dynamics in lasers

    SciTech Connect

    Cabrera, Eduardo; Calderon, Oscar G.; Guerra, J.M.

    2005-10-15

    We report a direct experimental observation of antiphase oscillations in population dynamics in lasers. We show that these population oscillations are intrinsically related to the well-known antiphase polarization dynamics, i.e., the antiphase oscillations of two orthogonal polarization laser field states. We have used a class B Nd:YAG (yttrium aluminum garnet) laser.

  1. Inferring Network Dynamics and Neuron Properties from Population Recordings

    PubMed Central

    Linaro, Daniele; Storace, Marco; Mattia, Maurizio

    2011-01-01

    Understanding the computational capabilities of the nervous system means to “identify” its emergent multiscale dynamics. For this purpose, we propose a novel model-driven identification procedure and apply it to sparsely connected populations of excitatory integrate-and-fire neurons with spike frequency adaptation (SFA). Our method does not characterize the system from its microscopic elements in a bottom-up fashion, and does not resort to any linearization. We investigate networks as a whole, inferring their properties from the response dynamics of the instantaneous discharge rate to brief and aspecific supra-threshold stimulations. While several available methods assume generic expressions for the system as a black box, we adopt a mean-field theory for the evolution of the network transparently parameterized by identified elements (such as dynamic timescales), which are in turn non-trivially related to single-neuron properties. In particular, from the elicited transient responses, the input–output gain function of the neurons in the network is extracted and direct links to the microscopic level are made available: indeed, we show how to extract the decay time constant of the SFA, the absolute refractory period and the average synaptic efficacy. In addition and contrary to previous attempts, our method captures the system dynamics across bifurcations separating qualitatively different dynamical regimes. The robustness and the generality of the methodology is tested on controlled simulations, reporting a good agreement between theoretically expected and identified values. The assumptions behind the underlying theoretical framework make the method readily applicable to biological preparations like cultured neuron networks and in vitro brain slices. PMID:22016731

  2. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  3. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    PubMed

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems. PMID:26382443

  4. POPULATION DYNAMICS OF FUNGA, NEMATODE, BACTERIA AND ALGAL POPULATION IN A SOIL OF MAZON REGION OF PERU

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbes are mainly responsible for litter decomposition and nutrient cycling in the forest ecosystems. Population dynamics of soil microbes (fungus, bacteria, nematodes, algae) under secondary forest in tropical region is not well understood. An experiment was implemented at Tropical Crop Rese...

  5. [The effect of the new technological revolution on population dynamics].

    PubMed

    Wu, K

    1985-01-29

    The impact of modernization on population dynamics in China is examined. The author notes that the industrialization process involves the concentration of the population in urban areas and the mechanization of agriculture. The need to redistribute the urban population from major urban areas to smaller towns is noted. PMID:12314273

  6. Population dynamics of Yellowstone grizzly bears

    SciTech Connect

    Knight, R.R.; Eberhardt, L.L.

    1985-04-01

    Data on the population of grizzly bears in the environs of Yellowstone National Park suggest that the population has not recovered from the reductions following closure of garbage dumps in 1970 and 1971, and may continue to decline. A computer simulation model indicates that the risk of extirpation over the next 30 yr is small, if the present population parameters continue to prevail. A review an further analysis of the available data brings out the importance of enhancing adult female survival if the population is to recover, and assesses various research needs. In particular, a reliable index of population trend is needed to augment available data on the population. 12 references, 9 figures, 6 tables.

  7. [Population dynamics and education in Paraguay].

    PubMed

    1977-01-01

    Formulation of development plans and of demographic policies for Paraguay must take into consideration the national reality as a whole, with its cultural, moral, religious, and political values. Other factors to be considered are: 1) the relatively low density of the population; 2) the low mortality, which influences a rather rapid population growth; 3) the predominance of a population in young age; and, 4) the new tendency to urbanzation. PMID:12309623

  8. Introducing Dynamic Analysis Using Malthus's Principle of Population.

    ERIC Educational Resources Information Center

    Pingle, Mark

    2003-01-01

    Declares the use of dynamic models is increasing in macroeconomics. Explains how to introduce dynamic models to students whose technical skills are modest or varied. Chooses Malthus's Principle of Population as a natural context for introducing dynamic analysis because it provides a method for reviewing the mathematical tools and theoretical…

  9. Local extinction synchronizes population dynamics in spatial networks.

    PubMed

    Matter, Stephen F; Roland, Jens

    2010-03-01

    Spatial population theory predicts that synchrony in the dynamics of local populations should decrease as dispersal among populations decreases. Thus, it would be expected that the extinction of local populations and the attendant loss of immigrants to surrounding populations would reduce synchrony. We tested this hypothesis through a large-scale experiment, simulation of the experimental system and general models. Experimental removal of two adjacent subpopulations of the Rocky Mountain Apollo butterfly, Parnassius smintheus within a network consisting of 15 other local populations resulted in a decrease in immigration to surrounding populations that was proportional to their connectivity to the removal populations. These populations also showed a significant increase in synchrony during population removal. The spatial extent of the synchrony showed good agreement with the predicted loss of immigrants owing to the removals. Simulation of the Parnassius system showed a similar short-term result and also indicated that permanent loss of populations produces structural changes increasing synchrony. General models indicate that an increase in synchrony following extinction occurs when populations undergoing extinction have different carrying capacities than surrounding populations. The result is not owing to biased migration per se, but rather is because of the number of immigrants relative to the carrying capacity. Synchrony following extinction should be most common for patchy populations, but can occur in any situation where carrying capacities differ. Overall, our results indicate that local extinction can create a positive feedback for extinction risk, increasing the probability of extinction for population networks by synchronizing their dynamics. PMID:19889700

  10. Delay driven spatiotemporal chaos in single species population dynamics models.

    PubMed

    Jankovic, Masha; Petrovskii, Sergei; Banerjee, Malay

    2016-08-01

    Questions surrounding the prevalence of complex population dynamics form one of the central themes in ecology. Limit cycles and spatiotemporal chaos are examples that have been widely recognised theoretically, although their importance and applicability to natural populations remains debatable. The ecological processes underlying such dynamics are thought to be numerous, though there seems to be consent as to delayed density dependence being one of the main driving forces. Indeed, time delay is a common feature of many ecological systems and can significantly influence population dynamics. In general, time delays may arise from inter- and intra-specific trophic interactions or population structure, however in the context of single species populations they are linked to more intrinsic biological phenomena such as gestation or resource regeneration. In this paper, we consider theoretically the spatiotemporal dynamics of a single species population using two different mathematical formulations. Firstly, we revisit the diffusive logistic equation in which the per capita growth is a function of some specified delayed argument. We then modify the model by incorporating a spatial convolution which results in a biologically more viable integro-differential model. Using the combination of analytical and numerical techniques, we investigate the effect of time delay on pattern formation. In particular, we show that for sufficiently large values of time delay the system's dynamics are indicative to spatiotemporal chaos. The chaotic dynamics arising in the wake of a travelling population front can be preceded by either a plateau corresponding to dynamical stabilisation of the unstable equilibrium or by periodic oscillations. PMID:27154920

  11. Population response to habitat fragmentation in a stream-dwelling brook trout population

    USGS Publications Warehouse

    Letcher, B.H.; Nislow, K.H.; Coombs, J.A.; O'Donnell, M. J.; Dubreuil, T.L.

    2007-01-01

    Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (-45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tribuory populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results

  12. Stochastic population dynamics under resource constraints

    NASA Astrophysics Data System (ADS)

    Gavane, Ajinkya S.; Nigam, Rahul

    2016-06-01

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.

  13. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity. PMID:23306058

  14. Stochastic dynamics and logistic population growth

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  15. Stochastic dynamics and logistic population growth.

    PubMed

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations. PMID:26172687

  16. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  17. Dynamic population mapping using mobile phone data.

    PubMed

    Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R; Gaughan, Andrea E; Blondel, Vincent D; Tatem, Andrew J

    2014-11-11

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388

  18. Dynamic population mapping using mobile phone data

    PubMed Central

    Deville, Pierre; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R.; Gaughan, Andrea E.; Blondel, Vincent D.; Tatem, Andrew J.

    2014-01-01

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388

  19. Modeling seasonal interactions in the population dynamics of migratory birds

    USGS Publications Warehouse

    Runge, M.C.; Marra, P.P.

    2005-01-01

    Understanding the population dynamics of migratory birds requires understanding the relevant biological events that occur during breeding, migratory, and overwintering periods. The few available population models for passerine birds focus on breeding-season events, disregard or oversimplify events during nonbreeding periods, and ignore interactions that occur between periods of the annual cycle. Identifying and explicitly incorporating seasonal interactions into population models for migratory birds could provide important insights about when population limitation actually occurs in the annual cycle. We present a population model for the annual cycle of a migratory bird, based on the American Redstart (Setophaga ruticilla) but more generally applicable, that examines the importance of seasonal interactions by incorporating: (1) density dependence during the breeding and winter seasons, (2) a carry-over effect of winter habitat on breeding-season productivity, and (3) the effects of behavioral dominance on seasonal and habitat specific demographic rates. First, we show that habitat availability on both the wintering and breeding grounds can strongly affect equilibrium population size and sex ratio. Second, sex ratio dynamics, as mediated by behavioral dominance, can affect all other aspects of population dynamics. Third, carry-over effects can be strong, especially when winter events are limiting. These results suggest that understanding the population dynamics of migratory birds may require more consideration of the seasonal interactions induced by carry-over effects and density dependence in multiple seasons. This model provides a framework in which to explore more fully these seasonal dynamics and a context for estimation of life history parameters.

  20. PC BEEPOP - A PERSONAL COMPUTER HONEY BEE POPULATION DYNAMICS MODEL

    EPA Science Inventory

    PC BEEPOP is a computer model that simulates honey bee (Apis mellifera L.) colony population dynamics. he model consists of a system of interdependent elements, including colony condition, environmental variability, colony energetics, and contaminant exposure. t includes a mortal...

  1. Transmission Shifts Underlie Variability in Population Responses to Yersinia pestis Infection

    PubMed Central

    Buhnerkempe, Michael G.; Eisen, Rebecca J.; Goodell, Brandon; Gage, Kenneth L.; Antolin, Michael F.; Webb, Colleen T.

    2011-01-01

    Host populations for the plague bacterium, Yersinia pestis, are highly variable in their response to plague ranging from near deterministic extinction (i.e., epizootic dynamics) to a low probability of extinction despite persistent infection (i.e., enzootic dynamics). Much of the work to understand this variability has focused on specific host characteristics, such as population size and resistance, and their role in determining plague dynamics. Here, however, we advance the idea that the relative importance of alternative transmission routes may vary causing shifts from epizootic to enzootic dynamics. We present a model that incorporates host and flea ecology with multiple transmission hypotheses to study how transmission shifts determine population responses to plague. Our results suggest enzootic persistence relies on infection of an off-host flea reservoir and epizootics rely on transiently maintained flea infection loads through repeated infectious feeds by fleas. In either case, early-phase transmission by fleas (i.e., transmission immediately following an infected blood meal) has been observed in laboratory studies, and we show that it is capable of driving plague dynamics at the population level. Sensitivity analysis of model parameters revealed that host characteristics (e.g., population size and resistance) vary in importance depending on transmission dynamics, suggesting that host ecology may scale differently through different transmission routes enabling prediction of population responses in a more robust way than using either host characteristics or transmission shifts alone. PMID:21799873

  2. A linear model of population dynamics

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  3. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    SciTech Connect

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  4. Multistability in simplest models of the population dynamics

    NASA Astrophysics Data System (ADS)

    Zhdanova, Oksana L.; Frisman, Efim Ya.

    2016-06-01

    The investigation of dynamics behavior of population number and genetic structure has been conducted for a homogeneous limited population influenced by density-dependent selection in single di-allelic genetic locus. The detailed investigation of the mechanisms of the loss of stability in the considered model is carried out. It is shown that coexistence of several different asymptotic dynamic regimes (with own attraction basins) is possible in numerous enough parametric regions which are meaningful biologically.

  5. Human population dynamics in Europe over the Last Glacial Maximum

    PubMed Central

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-01-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000–19,000 y ago (27–19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30–13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  6. Human population dynamics in Europe over the Last Glacial Maximum.

    PubMed

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-07-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000-19,000 y ago (27-19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30-13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  7. Landscape response to changes in dynamic topography

    NASA Astrophysics Data System (ADS)

    Ruetenik, Gregory A.; Moucha, Robert; Hoke, Gregory D.

    2015-04-01

    Dynamic topography is characterized by broad wavelength, low amplitude undulations of the Earth's surface maintained by stresses arising from mantle convection. Earth's topography is thus an aggregate of both dynamic and isostatic topography that is modulated by surface processes and changes in topography and/or the climate can be recorded in the offshore sedimentary record. However, it is generally difficult to deconvolve this record into contributions from changes in climate, isostatic topography, and dynamic topography. Herein, we use a landscape evolution model that is capable of producing simulations at the necessary scale and resolution for quantifying landscape response to moderate changes in dynamic topography in the presence of flexural unloading and loading due to erosion and deposition. We demonstrate that moderate changes in dynamic topography coupled with flexural response imposed on a landscape with pre-existing relief and drainage divide, disequilibrates the landscape resulting in a measurable increase in erosion rates and corresponding sedimentary flux to the margin. The magnitude and timing of this erosional response to dynamic topography is dependent on several key landscape evolution parameters, most notably the erosion (advection) coefficient and effective elastic thickness. Moreover, to maximize this response, we find that changes in dynamic topography must be slow enough and long-lived for given rates of erosion otherwise the landscape will not have sufficient time to generate a response. Lastly, this anomalous flux can persist for a significant amount of time beyond the influence of dynamic topography change as the landscape strives to re-equilibrate.

  8. The 5:1 Neptune Resonance: Dynamics and Population

    NASA Astrophysics Data System (ADS)

    Pike, Rosemary E.; Kavelaars, J. J.; Gladman, Brett; Petit, Jean-Marc; Alexandersen, Mike

    2014-11-01

    Based on 4 objects detected with semi-major axes near the 5:1 external resonance with Neptune, we estimate a substantial and previously unrecognized population of objects, perhaps more significant than the 3:2 (Plutino) resonance population. These external resonances are largely unexplored in both observations and dynamical simulations. However, understanding the characteristics and trapping history for objects in these populations is critical for constraining the dynamical history of the solar system. The 4 objects detected in the Canada-France Ecliptic Plane Survey (CFEPS) were classified using dynamical integrations. Three are resonant, and the last appears to be a resonant drop-off. The 3 objects are taken to be representative of the steady-state population, so by using these detections and the CFEPS characterization (pointings and detection limits) we calculate a population estimate for this resonance at ~3000(+5000 -2000) with Hg<8. This is at least as large as the Plutinos (3:2 resonance) at 90% confidence. The small number of detected objects results in such a large population estimate due to the numerous biases against detecting objects with semimajor axes at 88AU. Based on the dynamical behavior of the known objects, the trapping mechanism for the 5:1 resonance appears to be resonance sticking from the scattering objects. The long resonance lifetimes of some dynamical clones suggests that a steady state population could be maintained through periodic sticking.

  9. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  10. Explaining "Noise" as Environmental Variations in Population Dynamics

    SciTech Connect

    Ginn, Timothy R.; Loge, Frank J.; Scheibe, Timothy D.

    2007-03-01

    The impacts of human activities on our own and other populations on the plant are making news at an alarming pace. Global warming, ocean and freshwater contamination and acidification, deforestation, habitat destruction and incursion, and in general a burgeoning human population are associated with a complete spectrum of changes to the dynamics of populations. Effects on songbirds, insects, coral reefs, ocean mammals, anadromous fishes, just to name a few, and humans, have been linked to human industry and population growth. The linkage, however, remains often ghostly and often tenuous at best, because of the difficulty in quantitatively combining ecological processes with environmental fate and transport processes. Establishing quantitative tools, that is, models, for the combined dynamics of populations and environmental chemical/thermal things is needed. This truly interdisciplinary challenge is briefly reviewed, and two approaches to integrating chemical and biological intermingling are addressed in the context of salmon populations in the Pacific Northwest.

  11. AN INDIVIDUAL-BASED MODEL OF COTTUS POPULATION DYNAMICS

    EPA Science Inventory

    We explored population dynamics of a southern Appalachian population of Cottus bairdi using a spatially-explicit, individual-based model. The model follows daily growth, mortality, and spawning of individuals as a function of flow and temperature. We modeled movement of juveniles...

  12. Multiple Cancer Cell Population Dynamics in a Complex Ecology

    NASA Astrophysics Data System (ADS)

    Lin, Ke-Chih; Targa, Gonzalo; Pienta, Kenneth; Sturm, James; Austin, Robert

    We have developed a technology for study of complex ecology cancer population dynamics. The technology includes complex drug gradients, full bright field/dark field/fluorescence imaging of areas of several square millimeters and thin gas-permable membranes which allow single cell extraction and analysis. We will present results of studies of prostate cancer cell dynamics.

  13. A Particle Population Control Method for Dynamic Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sweezy, Jeremy; Nolen, Steve; Adams, Terry; Zukaitis, Anthony

    2014-06-01

    A general particle population control method has been derived from splitting and Russian Roulette for dynamic Monte Carlo particle transport. A well-known particle population control method, known as the particle population comb, has been shown to be a special case of this general method. This general method has been incorporated in Los Alamos National Laboratory's Monte Carlo Application Toolkit (MCATK) and examples of it's use are shown for both super-critical and sub-critical systems.

  14. Population persistence of stream fish in response to environmental change: integrating data and models across space

    NASA Astrophysics Data System (ADS)

    Letcher, B. H.; Schueller, P.; Bassar, R.; Coombs, J.; Rosner, A.; Sakrejda, K.; Kanno, Y.; Whiteley, A.; Nislow, K. H.

    2013-12-01

    For stream fishes, environmental variation is a key driver of individual body growth/movement/survival and, by extension, population dynamics. Identifying how stream fish respond to environmental variation can help clarify mechanisms responsible for population dynamics and can help provide tools to forecast relative resilience of populations across space. Forecasting dynamics across space is challenging, however, because it can be difficult to conduct enough studies with enough intensity to fully characterize broad-scale population response to environmental change. We have adopted a multi-scale approach, using detailed individual-based studies and analyses (integral projection matrix) to determine sensitivities of population growth to environmental variation combined with broad spatial data and analyses (occupancy and abundance models) to estimate patterns of population response across space. Population growth of brook trout was most sensitive to stream flow in the spring and winter, most sensitive to stream temperature in the fall and sensitive to both flow and temperature in the summer. High flow in the spring and winter had negative effects on population growth while high temperature had a negative effect in the fall. Flow had no effect when it was cold, but a positive effect when it was warm in the summer. Combined with occupancy and abundance models, these data give insight into the spatial structure of resilient populations and can help guide prioritization of management actions.

  15. A life-history perspective on the demographic drivers of structured population dynamics in changing environments.

    PubMed

    Koons, David N; Iles, David T; Schaub, Michael; Caswell, Hal

    2016-09-01

    Current understanding of life-history evolution and how demographic parameters contribute to population dynamics across species is largely based on assumptions of either constant environments or stationary environmental variation. Meanwhile, species are faced with non-stationary environmental conditions (changing mean, variance, or both) created by climate and landscape change. To close the gap between contemporary reality and demographic theory, we develop a set of transient life table response experiments (LTREs) for decomposing realised population growth rates into contributions from specific vital rates and components of population structure. Using transient LTREs in a theoretical framework, we reveal that established concepts in population biology will require revision because of reliance on approaches that do not address the influence of unstable population structure on population growth and mean fitness. Going forward, transient LTREs will enhance understanding of demography and improve the explanatory power of models used to understand ecological and evolutionary dynamics. PMID:27401966

  16. Co-infection alters population dynamics of infectious disease.

    PubMed

    Susi, Hanna; Barrès, Benoit; Vale, Pedro F; Laine, Anna-Liisa

    2015-01-01

    Co-infections by multiple pathogen strains are common in the wild. Theory predicts co-infections to have major consequences for both within- and between-host disease dynamics, but data are currently scarce. Here, using common garden populations of Plantago lanceolata infected by two strains of the pathogen Podosphaera plantaginis, either singly or under co-infection, we find the highest disease prevalence in co-infected treatments both at the host genotype and population levels. A spore-trapping experiment demonstrates that co-infected hosts shed more transmission propagules than singly infected hosts, thereby explaining the observed change in epidemiological dynamics. Our experimental findings are confirmed in natural pathogen populations-more devastating epidemics were measured in populations with higher levels of co-infection. Jointly, our results confirm the predictions made by theoretical and experimental studies for the potential of co-infection to alter disease dynamics across a large host-pathogen metapopulation. PMID:25569306

  17. Population dynamics and regulation in the cave salamander Speleomantes strinatii

    NASA Astrophysics Data System (ADS)

    Salvidio, Sebastiano

    2007-05-01

    Time series analysis has been used to evaluate the mechanisms regulating population dynamics of mammals and insects, but has been rarely applied to amphibian populations. In this study, the influence of endogenous (density-dependent) and exogenous (density-independent) factors regulating population dynamics of the terrestrial plethodontid salamander Speleomantes strinatii was analysed by means of time series and multiple regression analyses. During the period 1993 2005, S. strinatii population abundance, estimated by a standardised temporary removal method, displayed relatively low fluctuations, and the autocorrelation function (ACF) analysis showed that the time series had a noncyclic structure. The partial rate correlation function (PRCF) indicated that a strong first-order negative feedback dominated the endogenous dynamics. Stepwise multiple regression analysis showed that the only climatic factor influencing population growth rate was the minimum winter temperature. Thus, at least during the study period, endogenous, density-dependent negative feedback was the main factor affecting the growth rate of the salamander population, whereas stochastic environmental variables, such as temperature and rainfall, seemed to play a minor role in regulation. These results stress the importance of considering both exogenous and endogenous factors when analysing amphibian long-term population dynamics.

  18. Dynamic electrical response of solar cells

    NASA Technical Reports Server (NTRS)

    Catani, J. P.

    1981-01-01

    The dynamic response of a solar generator is of primary importance as much for the design and development of electrical power conditioning hardware as for the analysis of electromagnetic compatibility. A mathematical model of photo-batteries was developed on the basis of impedance measurements performed under differing conditions of temperature, light intensity, before and after irradiation. This model was compared with that derived from PN junction theory and to static measurements. These dynamic measurements enabled the refinement of an integration method capable of determining, under normal laboratory conditions, the dynamic response of a generator to operational lighting conditions.

  19. A Quantitative Model of Honey Bee Colony Population Dynamics

    PubMed Central

    Khoury, David S.; Myerscough, Mary R.; Barron, Andrew B.

    2011-01-01

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem. PMID:21533156

  20. Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    PubMed Central

    Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-01-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915

  1. Growth dynamics and the evolution of cooperation in microbial populations

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Melbinger, Anna; Frey, Erwin

    2012-02-01

    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.

  2. Generational Spreading Speed and the Dynamics of Population Range Expansion.

    PubMed

    Bateman, Andrew W; Neubert, Michael G; Krkošek, Martin; Lewis, Mark A

    2015-09-01

    Some of the most fundamental quantities in population ecology describe the growth and spread of populations. Population dynamics are often characterized by the annual rate of increase, λ, or the generational rate of increase, R0. Analyses involving R0 have deepened our understanding of disease dynamics and life-history complexities beyond that afforded by analysis of annual growth alone. While range expansion is quantified by the annual spreading speed, a spatial analog of λ, an R0-like expression for the rate of spread is missing. Using integrodifference models, we derive the appropriate generational spreading speed for populations with complex (stage-structured) life histories. The resulting measure, relevant to locations near the expanding edge of a (re)colonizing population, incorporates both local population growth and explicit spatial dispersal rather than solely growth across a population, as is the case for R0. The calculations for generational spreading speed are often simpler than those for annual spreading speed, and analytic or partial analytic solutions can yield insight into the processes that facilitate or slow a population's spatial spread. We analyze the spatial dynamics of green crabs, sea otters, and teasel as examples to demonstrate the flexibility of our methods and the intuitive insights that they afford. PMID:26655354

  3. Population dynamics and the ecological stability of obligate pollination mutualisms

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2001-01-01

    Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.

  4. Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy

    PubMed Central

    van Wilderen, Luuk J. G. W.; Lincoln, Craig N.; van Thor, Jasper J.

    2011-01-01

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is

  5. Phase Response Synchronization in Neuronal Population with Time-Varying Coupling Strength

    PubMed Central

    Jiao, Xianfa; Zhao, Wanyu; Cao, Jinde

    2015-01-01

    We present the dynamic model of global coupled neuronal population subject to external stimulus by the use of phase sensitivity function. We investigate the effect of time-varying coupling strength on the synchronized phase response of neural population subjected to external harmonic stimulus. For a time-periodic coupling strength, we found that the stimulus with increasing intensity or frequency can reinforce the phase response synchronization in neuronal population of the weakly coupled neural oscillators, and the neuronal population with stronger coupling strength has good adaptability to stimulus. When we consider the dynamics of coupling strength, we found that a strong stimulus can quickly cause the synchronization in the neuronal population, the degree of synchronization grows with the increasing stimulus intensity, and the period of synchronized oscillation induced by external stimulation is related to stimulus frequency. PMID:26640514

  6. Dynamic response of cavitating turbomachines

    NASA Technical Reports Server (NTRS)

    Ng, S. L.

    1976-01-01

    Stimulated by the pogo instability encountered in many liquid propellant rockets, the dynamic behavior of cavitating inducers is discussed. An experimental facility where the upstream and downstream flows of a cavitating inducer could be perturbed was constructed and tested. The upstream and downstream pressure and mass flow fluctuations were measured. Matrices representing the transfer functions across the inducer pump were calculated from these measurements and from the hydraulic system characteristics for two impellers in various states of cavitation. The transfer matrices when plotted against the perturbing frequency showed significant departure from steady state or quasi-steady predictions especially at higher frequencies.

  7. Population dynamics of a pathogen: the conundrum of vivax malaria.

    PubMed

    McQueen, Philip G

    2010-08-01

    Building a mathematical model of population dynamics of pathogens within their host involves considerations of factors similar to those in ecology, as pathogens can prey on cells in the host. But within the multicellular host, attacked cell types are integrated with other cellular systems, which in turn intervene in the infection. For example, immune responses attempt to sense and then eliminate or contain pathogens, and homeostatic mechanisms try to compensate for cell loss. This review focuses on modeling applied to malarias, diseases caused by single-cell eukaryote parasites that infect red blood cells, with special concern given to vivax malaria, a disease often thought to be benign (if sometimes incapacitating) because the parasite only attacks a small proportion of red blood cells, the very youngest ones. However, I will use mathematical modeling to argue that depletion of this pool of red blood cells can be disastrous to the host if growth of the parasite is not vigorously check by host immune responses. Also, modeling can elucidate aspects of new field observations that indicate that vivax malaria is more dangerous than previously thought. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12551-010-0034-3) contains supplementary material, which is available to authorized users. PMID:20730124

  8. Population dynamics: Social security, markets, and families

    PubMed Central

    Lee, Ronald D.; Lee, Sang-Hyop

    2015-01-01

    Upward intergenerational flows – from the working ages to old age – are increasing substantially in the advanced industrialized countries and are much larger than in developing countries. Population aging is the most important factor leading to this change. Thus, in the absence of a major demographic shift, e.g., a return to high fertility, an increase in upward flows is inevitable. Even so, three other important factors will influence the magnitudes of upward flows. First, labor income varies at older ages due to differences in average age at retirement, productivity, unemployment, and hours worked. Second, the age patterns of consumption at older ages vary primarily due to differences in spending on health. Third, spending on human capital, i.e., spending child health and education, varies. Human capital spending competes with spending on the elderly, but it also increases the productivity of subsequent generations of workers and the resources available to support consumption in old age. All contemporary societies rely on a variety of institutions and economic mechanisms to shift economic resources from the working ages to the dependent ages – the young and the old. Three institutions dominate intergenerational flows: governments which implement social security, education, and other public transfer programs; markets which are key to the accumulation of assets, e.g., funded pensions and housing; and families which provide economic support to children in all societies and to the elderly in many. The objectives of this paper are, first, to describe how population aging and other changes influence the direction and magnitude of intergenerational flows; and, second, to contrast the institutional approaches to intergenerational flows as they are practiced around the world. The paper relies extensively on National Transfer Accounts, a system for measuring economic flows across age in a manner consistent with the UN System of National Accounts. These accounts are

  9. A general method for modeling population dynamics and its applications.

    PubMed

    Shestopaloff, Yuri K

    2013-12-01

    Studying populations, be it a microbe colony or mankind, is important for understanding how complex systems evolve and exist. Such knowledge also often provides insights into evolution, history and different aspects of human life. By and large, populations' prosperity and decline is about transformation of certain resources into quantity and other characteristics of populations through growth, replication, expansion and acquisition of resources. We introduce a general model of population change, applicable to different types of populations, which interconnects numerous factors influencing population dynamics, such as nutrient influx and nutrient consumption, reproduction period, reproduction rate, etc. It is also possible to take into account specific growth features of individual organisms. We considered two recently discovered distinct growth scenarios: first, when organisms do not change their grown mass regardless of nutrients availability, and the second when organisms can reduce their grown mass by several times in a nutritionally poor environment. We found that nutrient supply and reproduction period are two major factors influencing the shape of population growth curves. There is also a difference in population dynamics between these two groups. Organisms belonging to the second group are significantly more adaptive to reduction of nutrients and far more resistant to extinction. Also, such organisms have substantially more frequent and lesser in amplitude fluctuations of population quantity for the same periodic nutrient supply (compared to the first group). Proposed model allows adequately describing virtually any possible growth scenario, including complex ones with periodic and irregular nutrient supply and other changing parameters, which present approaches cannot do. PMID:24057917

  10. Inferences about ungulate population dynamics derived from age ratios

    USGS Publications Warehouse

    Harris, N.C.; Kauffman, M.J.; Mills, L.S.

    2008-01-01

    Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:xow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (??) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and ??. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.

  11. Evolutionary dynamics of general group interactions in structured populations.

    PubMed

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions. PMID:26986362

  12. Evolutionary dynamics of general group interactions in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.

  13. When stable-stage equilibrium is unlikely: integrating transient population dynamics improves asymptotic methods

    PubMed Central

    Tremblay, Raymond L.; Raventos, Josep; Ackerman, James D.

    2015-01-01

    Background and Aims Evaluation of population projection matrices (PPMs) that are focused on asymptotically based properties of populations is a commonly used approach to evaluate projected dynamics of managed populations. Recently, a set of tools for evaluating the properties of transient dynamics has been expanded to evaluate PPMs and to consider the dynamics of populations prior to attaining the stable-stage distribution, a state that may never be achieved in disturbed or otherwise ephemeral habitats or persistently small populations. This study re-evaluates data for a tropical orchid and examines the value of including such analyses in an integrative approach. Methods Six small populations of Lepanthes rubripetala were used as a model system and the R software package popdemo was used to produce estimates of the indices for the asymptotic growth rate (lambda), sensitivities, reactivity, first-time step attenuation, maximum amplification, maximum attenuation, maximal inertia and maximal attenuation. The response in lambda to perturbations of demographic parameters using transfer functions and multiple perturbations on growth, stasis and fecundity were also determined. The results were compared with previously published asymptotic indices. Key Results It was found that combining asymptotic and transient dynamics expands the understanding of possible population changes. Comparison of the predicted density from reactivity and first-time step attenuation with the observed change in population size in two orchid populations showed that the observed density was within the predicted range. However, transfer function analysis suggests that the traditional approach of measuring perturbation of growth rates and persistence (inertia) may be misleading and is likely to result in erroneous management decisions. Conclusions Based on the results, an integrative approach is recommended using traditional PPMs (asymptotic processes) with an evaluation of the diversity of dynamics

  14. Coral population dynamics across consecutive mass mortality events.

    PubMed

    Riegl, Bernhard; Purkis, Sam

    2015-11-01

    Annual coral mortality events due to increased atmospheric heat may occur regularly from the middle of the century and are considered apocalyptic for coral reefs. In the Arabian/Persian Gulf, this situation has already occurred and population dynamics of four widespread corals (Acropora downingi, Porites harrisoni, Dipsastrea pallida, Cyphastrea micropthalma) were examined across the first-ever occurrence of four back-to-back mass mortality events (2009-2012). Mortality was driven by diseases in 2009, bleaching and subsequent diseases in 2010/2011/2012. 2009 reduced P. harrisoni cover and size, the other events increasingly reduced overall cover (2009: -10%; 2010: -20%; 2011: -20%; 2012: -15%) and affected all examined species. Regeneration was only observed after the first disturbance. P. harrisoni and A. downingi severely declined from 2010 due to bleaching and subsequent white syndromes, while D. pallida and P. daedalea declined from 2011 due to bleaching and black-band disease. C. microphthalma cover was not affected. In all species, most large corals were lost while fission due to partial tissue mortality bolstered small size classes. This general shrinkage led to a decrease of coral cover and a dramatic reduction of fecundity. Transition matrices for disturbed and undisturbed conditions were evaluated as Life Table Response Experiment and showed that C. microphthalma changed the least in size-class dynamics and fecundity, suggesting they were 'winners'. In an ordered 'degradation cascade', impacts decreased from the most common to the least common species, leading to step-wise removal of previously dominant species. A potentially permanent shift from high- to low-coral cover with different coral community and size structure can be expected due to the demographic dynamics resultant from the disturbances. Similarities to degradation of other Caribbean and Pacific reefs are discussed. As comparable environmental conditions and mortality patterns must be

  15. Dynamics of Sequence -Discrete Bacterial Populations Inferred Using Metagenomes

    SciTech Connect

    Stevens, Sarah; Bendall, Matthew; Kang, Dongwan; Froula, Jeff; Egan, Rob; Chan, Leong-Keat; Tringe, Susannah; McMahon, Katherine; Malmstrom, Rex

    2014-03-14

    From a multi-year metagenomic time series of two dissimilar Wisconsin lakes we have assembled dozens of genomes using a novel approach that bins contigs into distinct genome based on sequence composition, e.g. kmer frequencies, and contig coverage patterns at various times points. Next, we investigated how these genomes, which represent sequence-discrete bacterial populations, evolved over time and used the time series to discover the population dynamics. For example, we explored changes in single nucleotide polymorphism (SNP) frequencies as well as patterns of gene gain and loss in multiple populations. Interestingly, SNP diversity was purged at nearly every genome position in some populations during the course of this study, suggesting these populations may have experienced genome-wide selective sweeps. This represents the first direct, time-resolved observations of periodic selection in natural populations, a key process predicted by the ecotype model of bacterial diversification.

  16. Exploitation of chemical signaling by parasitoids: impact on host population dynamics.

    PubMed

    Lof, Marjolein E; De Gee, Maarten; Dicke, Marcel; Gort, Gerrit; Hemerik, Lia

    2013-06-01

    Chemical information mediates species interactions in a wide range of organisms. Yet, the effect of chemical information on population dynamics is rarely addressed. We designed a spatio-temporal parasitoid--host model to investigate the population dynamics when both the insect host and the parasitic wasp that attacks it can respond to chemical information. The host species, Drosophila melanogaster, uses food odors and aggregation pheromone to find a suitable resource for reproduction. The larval parasitoid, Leptopilina heterotoma, uses these same odors to find its hosts. We show that when parasitoids can respond to food odors, this negatively affects fruit fly population growth. However, extra parasitoid responsiveness to aggregation pheromone does not affect fruit fly population growth. Our results indicate that the use of the aggregation pheromone by D. melanogaster does not lead to an increased risk of parasitism. Moreover, the use of aggregation pheromone by the host enhances its population growth and enables it to persist at higher parasitoid densities. PMID:23689875

  17. Population dynamics and angler exploitation of the unique muskellunge population in Shoepack Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.

    2007-01-01

    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.

  18. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    SciTech Connect

    Close, Dan; Sayler, Gary Steven; Xu, Tingting; Ripp, Steven Anthony

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.

  19. Dynamics of recruitment-subsidized populations. Final report, 15 July 1989--14 July 1992

    SciTech Connect

    Caswell, H.

    1992-10-31

    This final report briefly describes progress gained in four areas. These are the development of a frequency-response model for the density-independent dynamics of stage classified recruitment-subsidized populations; effects of density on growth rates in benthic invertebrates; larval subsidy; and consideration of individual-based models.

  20. MODELING THE DYNAMICS OF WILDLIFE HABITAT AND POPULATIONS AT THE LANDSCAPE SCALE

    EPA Science Inventory

    A forest dynamics model (FORCLIM) was linked to a spatial wildlife population model (PATCH) to assess the effects of habitat change in a landscape on selected wildlife species. The habitat changes included forest responses to harvesting, development, and climate change on a west...

  1. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories

    USGS Publications Warehouse

    Miller, David A.; Clark, W.R.; Arnold, S.J.; Bronikowski, A.M.

    2011-01-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (??s) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on ?? s. The magnitude of variation in the proportion of gravid females and its effect on ??s was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on ??s was 4- 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life

  2. Critical transition between cohesive and population-dividing responses to change

    PubMed Central

    Muneepeerakul, Rachata; Qubbaj, Murad R.; Aggarwal, Rimjhim M.; Anderies, John M.; Janssen, Marco A.

    2012-01-01

    Globalization and global climate change will probably be accompanied by rapid social and biophysical changes that may be caused by external forcing or internal nonlinear dynamics. These changes often subject residing populations (human or otherwise) to harsh environments and force them to respond. Research efforts have mostly focused on the underlying mechanisms that drive these changes and the characteristics of new equilibria towards which populations would adapt. However, the transient dynamics of how populations respond under these new regimes is equally, if not more, important, and systematic analysis of such dynamics has received less attention. Here, we investigate this problem under the framework of replicator dynamics with fixed reward kernels. We show that at least two types of population responses are possible—cohesive and population-dividing transitions—and demonstrate that the critical transition between the two, as well as other important properties, can be expressed in simple relationships between the shape of reward structure, shift magnitude and initial strategy diversity. Importantly, these relationships are derived from a simple, yet powerful and versatile, method. As many important phenomena, from political polarization to the evolution of distinct ecological traits, may be cast in terms of division of populations, we expect our findings and method to be useful and applicable for understanding population responses to change in a wide range of contexts. PMID:22809848

  3. Effects of Population Type on Mail Survey Response Rates and on the Efficacy of Response Enhancers.

    ERIC Educational Resources Information Center

    Green, Kathy E.; And Others

    Experimental studies of response rates to mail surveys were reviewed and differences in response by population type were described. Cases were selected for review if they were experimental studies that manipulated a response enhancement factor. Results suggest significant differences in typical response rates for different populations. Higher…

  4. Network evolution induced by the dynamical rules of two populations

    NASA Astrophysics Data System (ADS)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t < t1 = κb) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ0 = 1. Interestingly, in the intermediate time regime (defined for t_1\\lt t\\lt t_2\\propto \\kappa_a and for which θ0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  5. Population Dynamics with Global Regulation: The Conserved Fisher Equation

    NASA Astrophysics Data System (ADS)

    Newman, T. J.; Kolomeisky, E. B.; Antonovics, J.

    2004-06-01

    We introduce and study a conserved version of the Fisher equation. Within a population biology context, this model describes spatially extended populations in which the total number of individuals is fixed due to either biotic or environmental factors. We find a rich spectrum of dynamical phases including a pseudotraveling wave and, in the presence of the Allee effect, a phase transition from a locally constrained high density state to a low density fragmented state.

  6. Evolutionary History and Population Dynamics of Hepatitis E Virus

    PubMed Central

    Purdy, Michael A.; Khudyakov, Yury E.

    2010-01-01

    Background Hepatitis E virus (HEV) is an enterically transmitted hepatropic virus. It segregates as four genotypes. All genotypes infect humans while only genotypes 3 and 4 also infect several animal species. It has been suggested that hepatitis E is zoonotic, but no study has analyzed the evolutionary history of HEV. We present here an analysis of the evolutionary history of HEV. Methods and Findings The times to the most recent common ancestors for all four genotypes of HEV were calculated using BEAST to conduct a Bayesian analysis of HEV. The population dynamics for genotypes 1, 3 and 4 were analyzed using skyline plots. Bayesian analysis showed that the most recent common ancestor for modern HEV existed between 536 and 1344 years ago. The progenitor of HEV appears to have given rise to anthropotropic and enzootic forms of HEV, which evolved into genotypes 1 and 2 and genotypes 3 and 4, respectively. Population dynamics suggest that genotypes 1, 3 and 4 experienced a population expansion during the 20th century. Genotype 1 has increased in infected population size ∼30–35 years ago. Genotype 3 and 4 have experienced an increase in population size starting late in the 19th century until ca.1940-45, with genotype 3 having undergone additional rapid expansion until ca.1960. The effective population size for both genotype 3 and 4 rapidly declined to pre-expansion levels starting in ca.1990. Genotype 4 was further examined as Chinese and Japanese sequences, which exhibited different population dynamics, suggesting that this genotype experienced different evolutionary history in these two countries. Conclusions HEV appears to have evolved through a series of steps, in which the ancestors of HEV may have adapted to a succession of animal hosts leading to humans. Analysis of the population dynamics of HEV suggests a substantial temporal variation in the rate of transmission among HEV genotypes in different geographic regions late in the 20th Century. PMID:21203540

  7. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  8. Species with more volatile population dynamics are differentially impacted by weather

    PubMed Central

    Harrison, Joshua G.; Shapiro, Arthur M.; Espeset, Anne E.; Nice, Christopher C.; Jahner, Joshua P.; Forister, Matthew L.

    2015-01-01

    Climatic variation has been invoked as an explanation of population dynamics for a variety of taxa. Much work investigating the link between climatic forcings and population fluctuation uses single-taxon case studies. Here, we conduct comparative analyses of a multi-decadal dataset describing population dynamics of 50 co-occurring butterfly species at 10 sites in Northern California. Specifically, we explore the potential commonality of response to weather among species that encompass a gradient of population dynamics via a hierarchical Bayesian modelling framework. Results of this analysis demonstrate that certain weather conditions impact volatile, or irruptive, species differently as compared with relatively stable species. Notably, precipitation-related variables, including indices of the El Niño Southern Oscillation, have a more pronounced impact on the most volatile species. We hypothesize that these variables influence vegetation resource availability, and thus indirectly influence population dynamics of volatile taxa. As one of the first studies to show a common influence of weather among taxa with similar population dynamics, the results presented here suggest new lines of research in the field of biotic–abiotic interactions. PMID:25672998

  9. Species with more volatile population dynamics are differentially impacted by weather.

    PubMed

    Harrison, Joshua G; Shapiro, Arthur M; Espeset, Anne E; Nice, Christopher C; Jahner, Joshua P; Forister, Matthew L

    2015-02-01

    Climatic variation has been invoked as an explanation of population dynamics for a variety of taxa. Much work investigating the link between climatic forcings and population fluctuation uses single-taxon case studies. Here, we conduct comparative analyses of a multi-decadal dataset describing population dynamics of 50 co-occurring butterfly species at 10 sites in Northern California. Specifically, we explore the potential commonality of response to weather among species that encompass a gradient of population dynamics via a hierarchical Bayesian modelling framework. Results of this analysis demonstrate that certain weather conditions impact volatile, or irruptive, species differently as compared with relatively stable species. Notably, precipitation-related variables, including indices of the El Niño Southern Oscillation, have a more pronounced impact on the most volatile species. We hypothesize that these variables influence vegetation resource availability, and thus indirectly influence population dynamics of volatile taxa. As one of the first studies to show a common influence of weather among taxa with similar population dynamics, the results presented here suggest new lines of research in the field of biotic-abiotic interactions. PMID:25672998

  10. Response to selection and evolvability of invasive populations.

    PubMed

    Lee, Carol Eunmi; Remfert, Jane Louise; Chang, Yu-Mei

    2007-02-01

    While natural selection might in some cases facilitate invasions into novel habitats, few direct measurements of selection response exist for invasive populations. This study examined selection response to changes in salinity using the copepod Eurytemora affinis. This copepod has invaded fresh water from saline habitats multiple times independently throughout the Northern Hemisphere. Selection response to a constant intermediate salinity (5 PSU) was measured in the laboratory for saline source and freshwater invading populations from the St. Lawrence drainage (North America). These populations were reared under three conditions: (1) native salinities (0 or 15 PSU) for at least two generations, (2) 5 PSU for two generations, and (3) 5 PSU for six generations. Full-sib clutches taken from populations reared under these three conditions were split across four salinities (0, 5, 15, and 25 PSU) to determine reaction norms for survival and development time. Contrasts in survival and development time across the three rearing conditions were treated as the selection response. Selection at 5 PSU resulted in a significant decline in freshwater (0 PSU) tolerance for both the saline and freshwater populations. Yet, evolutionary differences in freshwater tolerance persisted between the saline and freshwater populations. The saline and freshwater populations converged in their high-salinity (25 PSU) tolerance, with an increase in the freshwater population and decline in the saline population. Development time did not shift greatly in response to selection at 5 PSU. For all three rearing conditions, the freshwater population exhibited retarded larval development and accelerated juvenile development relative to the saline population. Results from this study indicate that both the saline and freshwater populations exhibit significant responses to selection for a fitness-related trait critical for invasions into a novel habitat. PMID:16915512

  11. Dynamic regimes of local homogeneous population model with time lag

    NASA Astrophysics Data System (ADS)

    Neverova, Galina; Frisman, Efim

    2016-06-01

    We investigated Moran - Ricker model with time lag 1. It is made analytical and numerical study of the model. It is shown there is co-existence of various dynamic regimes under the same values of parameters. The model simultaneously possesses several different limit regimes: stable state, periodic fluctuations, and chaotic attractor. The research results show if present population size substantially depends on population number of previous year then it is observed quasi-periodic oscillations. Fluctuations with period 2 occur when the growth of population size is regulated by density dependence in the current year.

  12. [The relationship between population dynamics and the process of development: an interdependence requiring the definition of population policies].

    PubMed

    1989-01-01

    The case of Senegal is used to illustrate the impact of population dynamics on the economic development of a country and the process of creating a population policy. 1 of the 6 principles of the Kilimanjaro Program of Action concerning African population and autonomous development was the interdependence between population and development, but interest in the problem was only sporadic until the deepening of the economic crisis. Population growth is now regarded as a major constraint on improvement of welfare for the population. The population of the Sahel countries has almost doubled in the past 2 decades as a consequence of very high fertility rates and declining mortality rates. About 44% of the Sahel population is under 15 years old and only about 53% is aged 15-64. The population is unequally distributed and the proportion urban increased from 18 to 23% between 1982-85. The general opinion is that the African population is increasing more rapidly than available resources. From 1973-83, Senegal's gross national product increased by 2.2%/year on average, less than the population increase of 2.5%. Cereal production increased by 1%/year between 1973-81. Investments in agriculture have declined continuously since 1973. Cereal needs are on the order of 6.69 million tons, while production is only 4.4 million tons. According to the World Bank the literacy rate for 5 Sahel countries was only 15% in 1982, and only 35% of school aged children are enrolled. The constant increase of population is also putting pressure on health services. In response to these problems, Senegal developed its population policy in 3 phases. In the 1st phase, 3 commissions and a working group carried out research and documentation around the country, producing sectorial documents. In the 2nd phase, workshops and seminars were held for the critical examination of the sectorial documents, culminating in presentation of a synthesis to the National Commission on Population and to the

  13. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    PubMed

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure. PMID:25403576

  14. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes.

    PubMed

    Buck, Moritz; Nilsson, Louise K J; Brunius, Carl; Dabiré, Roch K; Hopkins, Richard; Terenius, Olle

    2016-01-01

    The intolerable burden of malaria has for too long plagued humanity and the prospect of eradicating malaria is an optimistic, but reachable, target in the 21(st) century. However, extensive knowledge is needed about the spatial structure of mosquito populations in order to develop effective interventions against malaria transmission. We hypothesized that the microbiota associated with a mosquito reflects acquisition of bacteria in different environments. By analyzing the whole-body bacterial flora of An. gambiae mosquitoes from Burkina Faso by 16 S amplicon sequencing, we found that the different environments gave each mosquito a specific bacterial profile. In addition, the bacterial profiles provided precise and predicting information on the spatial dynamics of the mosquito population as a whole and showed that the mosquitoes formed clear local populations within a meta-population network. We believe that using microbiotas as proxies for population structures will greatly aid improving the performance of vector interventions around the world. PMID:26960555

  15. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes

    PubMed Central

    Buck, Moritz; Nilsson, Louise K. J.; Brunius, Carl; Dabiré, Roch K.; Hopkins, Richard; Terenius, Olle

    2016-01-01

    The intolerable burden of malaria has for too long plagued humanity and the prospect of eradicating malaria is an optimistic, but reachable, target in the 21st century. However, extensive knowledge is needed about the spatial structure of mosquito populations in order to develop effective interventions against malaria transmission. We hypothesized that the microbiota associated with a mosquito reflects acquisition of bacteria in different environments. By analyzing the whole-body bacterial flora of An. gambiae mosquitoes from Burkina Faso by 16 S amplicon sequencing, we found that the different environments gave each mosquito a specific bacterial profile. In addition, the bacterial profiles provided precise and predicting information on the spatial dynamics of the mosquito population as a whole and showed that the mosquitoes formed clear local populations within a meta-population network. We believe that using microbiotas as proxies for population structures will greatly aid improving the performance of vector interventions around the world. PMID:26960555

  16. Dynamics of Two Populations with Different Birth Rates

    NASA Astrophysics Data System (ADS)

    Hoffmann, Julia; Pekalski, Andrzej

    We propose a simple model describing the dynamics of a system of two populations — more numerous natives and less numerous immigrants. The immigrants' birth rate is higher than that of the natives. Several modifications of this model taking into account changes of the birth rates due to external factors and/or possibility of contacts between the populations, are also introduced. The model is studied within two approaches — by solving a set of differential equations and through a Monte Carlo simulations. We show that the question of which population will eventually dominate depends on such factors as the probability of producing offsprings of mixed origin, assimilation of the immigrants, the ratio of the birth rates, initial numbers of the populations and the average age of an individual. In all, but two extreme cases, both populations will survive.

  17. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  18. COMPARISON OF SAMPLING TECHNIQUES USED IN STUDYING LEPIDOPTERA POPULATION DYNAMICS

    EPA Science Inventory

    Four methods (light traps, foliage samples, canvas bands, and gypsy moth egg mass surveys) that are used to study the population dynamics of foliage-feeding Lepidoptera were compared for 10 species, including gypsy moth, Lymantria dispar L. Samples were collected weekly at 12 sit...

  19. Binary Populations and Stellar Dynamics in Young Clusters

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  20. Population Dynamics, Demography, Dispersal and Spread of Bemisia tabaci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci is an insect pest of global significance. It attacks multiple crops and causes damage through feeding and transmission of plant viruses. This review focuses on the current state of knowledge of the population dynamics, demography and dispersal of this important pest. Sampling metho...

  1. Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: implications for areawide management.

    PubMed

    Aluja, Martín; Ordano, Mariano; Guillén, Larissa; Rull, Juan

    2012-06-01

    Fruit flies (Diptera: Tephritidae) are devastating agricultural pests worldwide but studies on their long-term population dynamics are sparse. Our aim was to determine the mechanisms driving long-term population dynamics as a prerequisite for ecologically based areawide pest management. The population density of three pestiferous Anastrepha species [Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), and Anastrepha serpentina (Wiedemann)] was determined in grapefruit (Citrus x paradisi Macfad.), mango (Mangifera indica L.), and sapodilla [Manilkara zapota (L.) P. Royen] orchards in central Veracruz, México, on a weekly basis over an 11-yr period. Fly populations exhibited relatively stable dynamics over time. Population dynamics were mainly driven by a direct density-dependent effect and a seasonal feedback process. We discovered direct and delayed influences that were correlated with both local (rainfall and air temperature) and global climatic variation (El Niño Southern Oscillation [ENSO] and North Atlantic Oscillation [NAO]), and detected differences among species and location of orchards with respect to the magnitude and nature (linear or nonlinear) of the observed effects, suggesting that highly mobile pest outbreaks become uncertain in response to significant climatic events at both global and local levels. That both NAO and ENSO affected Anastrepha population dynamics, coupled with the high mobility of Anastrepha adults and the discovery that when measured as rate of population change, local population fluctuations exhibited stable dynamics over time, suggests potential management scenarios for the species studied lie beyond the local scale and should be approached from an areawide perspective. Localized efforts, from individual growers will probably prove ineffective, and nonsustainable. PMID:22812118

  2. Dynamics and response functions of an impurity in a BEC

    NASA Astrophysics Data System (ADS)

    Shchadilova, Yulia; Grusdt, Fabian; Schmidt, Richard; Demler, Eugene

    2016-05-01

    We discuss the non-equilibrium quantum dynamics of an impurity in an ultracold Bose gas. In our theoretical description we take into account the microscopic interactions beyond the Fröhlich approximation. We calculate the response functions of the system for weak and strong RF-driving between two hyperfine states of the impurity. We show that in the weak driving regime the population transfer of the impurity is in agreement with spectral functions obtained by the linear response calculations. This is in contrast with the strong RF regime where we observe the strong renormalization of the Rabi frequency close to the inter-species Feshbach resonance.

  3. ESTIMATION OF AQUATIC SPECIES SENSITIVITY AND POPULATION-LEVEL RESPONSES

    EPA Science Inventory

    Determining species sensitivity and population-level responses of aquatic organisms to contaminants are critical components of criteria development and ecological risk assessment. To address data gaps in species sensitivity, the U.S. EPA developed the Interspecies Correlation Est...

  4. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  5. Single-cell variation leads to population invariance in NF-κB signaling dynamics

    PubMed Central

    Hughey, Jacob J.; Gutschow, Miriam V.; Bajar, Bryce T.; Covert, Markus W.

    2015-01-01

    The activation dynamics of nuclear factor (NF)-κB have been shown to affect downstream gene expression. On activation, NF-κB shuttles back and forth across the nuclear envelope. Many dynamic features of this shuttling have been characterized, and most features vary significantly with respect to ligand type and concentration. Here, we report an invariant feature with regard to NF-κB dynamics in cellular populations: the distribution—the average, as well as the variance—of the time between two nuclear entries (the period). We find that this period is conserved, regardless of concentration and across several different ligands. Intriguingly, the distributions observed at the population level are not observed in individual cells over 20-h time courses. Instead, the average period of NF-κB nuclear translocation varies considerably among single cells, and the variance is much smaller within a cell than that of the population. Finally, analysis of daughter-cell pairs and isogenic populations indicates that the dynamics of the NF-κB response is heritable but diverges over multiple divisions, on the time scale of weeks to months. These observations are contrary to the existing theory of NF-κB dynamics and suggest an additional level of control that regulates the overall distribution of translocation timing at the population level. PMID:25473117

  6. Population dynamics of epiphytic orchids in a metapopulation context

    PubMed Central

    Winkler, Manuela; Hülber, Karl; Hietz, Peter

    2009-01-01

    Background and Aims Populations of many epiphytes show a patchy distribution where clusters of plants growing on individual trees are spatially separated and may thus function as metapopulations. Seed dispersal is necessary to (re)colonize unoccupied habitats, and to transfer seeds from high- to low-competition patches. Increasing dispersal distances, however, reduces local fecundity and the probability that seeds will find a safe site outside the original patch. Thus, there is a conflict between seed survival and colonization. Methods Populations of three epiphytic orchids were monitored over three years in a Mexican humid montane forest and analysed with spatially averaged and with spatially explicit matrix metapopulation models. In the latter, population dynamics at the scale of the subpopulations (epiphytes on individual host trees) are based on detailed stage-structured observations of transition probabilities and trees are connected by a dispersal function. Key Results Population growth rates differed among trees and years. While ignoring these differences, and averaging the population matrices over trees, yields negative population growth, metapopulation models predict stable or growing populations because the trees that support growing subpopulations determine the growth of the metapopulation. Stochastic models which account for the differences among years differed only marginally from deterministic models. Population growth rates were significantly lower, and extinctions of local patches more frequent in models where higher dispersal results in reduced local fecundity compared with hypothetical models where this is not the case. The difference between the two models increased with increasing mean dispersal distance. Though recolonization events increased with dispersal distance, this could not compensate the losses due to reduced local fecundity. Conclusions For epiphytes, metapopulation models are useful to capture processes beyond the level of the single

  7. Diversity Waves in Collapse-Driven Population Dynamics

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2015-01-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies. PMID:26367172

  8. Diversity waves in collapse-driven population dynamics

    SciTech Connect

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.

  9. Diversity waves in collapse-driven population dynamics

    DOE PAGESBeta

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less

  10. Diversity Waves in Collapse-Driven Population Dynamics.

    PubMed

    Maslov, Sergei; Sneppen, Kim

    2015-09-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ''diversity waves'' triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak--species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies. PMID:26367172

  11. Metamodels for Transdisciplinary Analysis of Wildlife Population Dynamics

    PubMed Central

    Lacy, Robert C.; Miller, Philip S.; Nyhus, Philip J.; Pollak, J. P.; Raboy, Becky E.; Zeigler, Sara L.

    2013-01-01

    Wildlife population models have been criticized for their narrow disciplinary perspective when analyzing complexity in coupled biological – physical – human systems. We describe a “metamodel” approach to species risk assessment when diverse threats act at different spatiotemporal scales, interact in non-linear ways, and are addressed by distinct disciplines. A metamodel links discrete, individual models that depict components of a complex system, governing the flow of information among models and the sequence of simulated events. Each model simulates processes specific to its disciplinary realm while being informed of changes in other metamodel components by accessing common descriptors of the system, populations, and individuals. Interactions among models are revealed as emergent properties of the system. We introduce a new metamodel platform, both to further explain key elements of the metamodel approach and as an example that we hope will facilitate the development of other platforms for implementing metamodels in population biology, species risk assessments, and conservation planning. We present two examples – one exploring the interactions of dispersal in metapopulations and the spread of infectious disease, the other examining predator-prey dynamics – to illustrate how metamodels can reveal complex processes and unexpected patterns when population dynamics are linked to additional extrinsic factors. Metamodels provide a flexible, extensible method for expanding population viability analyses beyond models of isolated population demographics into more complete representations of the external and intrinsic threats that must be understood and managed for species conservation. PMID:24349567

  12. Modeling structured population dynamics using data from unmarked individuals

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  13. Simulated population responses of common carp to commercial exploitation

    SciTech Connect

    Weber, Michael J.; Hennen, Matthew J.; Brown, Michael L.

    2011-12-01

    Common carp Cyprinus carpio is a widespread invasive species that can become highly abundant and impose deleterious ecosystem effects. Thus, aquatic resource managers are interested in controlling common carp populations. Control of invasive common carp populations is difficult, due in part to the inherent uncertainty of how populations respond to exploitation. To understand how common carp populations respond to exploitation, we evaluated common carp population dynamics (recruitment, growth, and mortality) in three natural lakes in eastern South Dakota. Common carp exhibited similar population dynamics across these three systems that were characterized by consistent recruitment (ages 3 to 15 years present), fast growth (K = 0.37 to 0.59), and low mortality (A = 1 to 7%). We then modeled the effects of commercial exploitation on size structure, abundance, and egg production to determine its utility as a management tool to control populations. All three populations responded similarly to exploitation simulations with a 575-mm length restriction, representing commercial gear selectivity. Simulated common carp size structure modestly declined (9 to 37%) in all simulations. Abundance of common carp declined dramatically (28 to 56%) at low levels of exploitation (0 to 20%) but exploitation >40% had little additive effect and populations were only reduced by 49 to 79% despite high exploitation (>90%). Maximum lifetime egg production was reduced from 77 to 89% at a moderate level of exploitation (40%), indicating the potential for recruitment overfishing. Exploitation further reduced common carp size structure, abundance, and egg production when simulations were not size selective. Our results provide insights to how common carp populations may respond to exploitation. Although commercial exploitation may be able to partially control populations, an integrated removal approach that removes all sizes of common carp has a greater chance of controlling population abundance

  14. Population-specific responses to an invasive species.

    PubMed

    Reichard, Martin; Douda, Karel; Przybyłski, Mirosław; Popa, Oana P; Karbanová, Eva; Matasová, Klára; Rylková, Kateřina; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-08-01

    Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions. PMID:26180070

  15. Aspiration dynamics of multi-player games in finite populations

    PubMed Central

    Du, Jinming; Wu, Bin; Altrock, Philipp M.; Wang, Long

    2014-01-01

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics. PMID:24598208

  16. The demography of climate-driven and density-regulated population dynamics in a perennial plant.

    PubMed

    Dahlgren, Johan P; Bengtsson, Karin; Ehrlén, Johan

    2016-04-01

    Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models. The population projection models accurately captured observed fluctuations in population size. Our analyses suggested the population was intrinsically regulated but with annual fluctuations in response to variation in weather. Simulations showed that implicitly assuming variation in demographic rates to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses to environmental changes. PMID:27220206

  17. Spreading dynamics on heterogeneous populations: Multitype network approach

    NASA Astrophysics Data System (ADS)

    Vazquez, Alexei

    2006-12-01

    I study the spreading of infectious diseases in heterogeneous populations. The population structure is described by a contact graph where vertices represent agents and edges represent disease transmission channels among them. The population heterogeneity is taken into account by the agent’s subdivision in types and the mixing matrix among them. I introduce a type-network representation for the mixing matrix, allowing an intuitive understanding of the mixing patterns and the calculations. Using an iterative approach I obtain recursive equations for the probability distribution of the outbreak size as a function of time. I demonstrate that the expected outbreak size and its progression in time are determined by the largest eigenvalue of the reproductive number matrix and the characteristic distance between agents on the contact graph. Finally, I discuss the impact of intervention strategies to halt epidemic outbreaks. This work provides both a qualitative understanding and tools to obtain quantitative predictions for the spreading dynamics of heterogeneous populations.

  18. Dynamic-tensile-extrusion response of fluoropolymers

    SciTech Connect

    Brown, Eric N; Trujillo, Carl P; Gray, George T

    2009-01-01

    The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

  19. Relative importance of natural disturbances and habitat degradation on snail kite population dynamics

    USGS Publications Warehouse

    Martin, J.; Kitchens, W.M.; Cattau, Christopher E.; Oli, M.K.

    2008-01-01

    Natural disturbances and habitat degradation are major factors influencing the dynamics and persistence of many wildlife populations, yet few large-scale studies have explored the relative influence of these factors on the dynamics and persistence of animal populations. We used longterm demographic data and matrix population models to examine the potential effects of habitat degradation and natural disturbances on the dynamics of the endangered snail kite Rostrhamus sociabilis in Florida, USA. We found that estimates of stochastic population growth rate were low (0.90). Population growth rate (??) during the first half or our study period (1992 to 1998) was substantially greater than during the second half (1999 to 2005). These 2 periods were characterized by contrasting hydrological conditions. Although ?? was most sensitive to changes in adult survival, the analysis of life table response experiments revealed that a reduction in fertility of kites accounted for >80% of the observed decline in population growth rate. We examined the possibility that the reduction in ?? was caused by (1) habitat degradation due to management, (2) an increase in frequency of moderate drying events in recent years, and (3) both habitat degradation and an increase in frequency of moderate drying events. Our results suggest that both factors could potentially contribute to a large decrease in population growth rate. Our study highlights the importance of simultaneously considering short- and long-term effects of disturbances when modeling population dynamics. Indeed, focusing exclusively on one type of effect may be misleading to both our understanding of the ecological dynamics of the system and to management. The relevance of our results to management is heightened because the snail kite has been selected as a key performance measure of one of the most ambitious ecosystem restoration projects ever undertaken. ?? Inter-Research 2008.

  20. How Predation and Landscape Fragmentation Affect Vole Population Dynamics

    PubMed Central

    Dalkvist, Trine; Sibly, Richard M.; Topping, Chris J.

    2011-01-01

    Background Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The gradient has often been attributed to changes in the interactions between microtines and their predators. Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species, it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. Methodology/Principal Findings By using a spatially explicit computer simulation model based on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the oscillations. Significance There is good agreement between our results and the experimental work from Fennoscandia, but our results allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the

  1. Dynamic response of tunnels in jointed rocks

    SciTech Connect

    Heuze, F.E.; Shaffer, R.J.; Walton, O.R.; Maddix, D.M.

    1993-09-01

    The current proposed site for an underground nuclear waste repository is at Yucca Mountain, Nevada. The host rock is a jointed tuff. The question is: how will the repository behave under strong earthquake motion. The basic requirement for analysis is an ability to follow the dynamic motion of a multiplicity of discrete particles, i.e., rock blocks separated by joints and faults. The authors describe the application of the discrete element method (DEM) to the dynamic analysis of the response of tunnels in jointed rocks to earthquake loading. In situations where large motions of many blocks and collapse occur, the discontinuum-based DEM approach appears superior to other methods of analysis.

  2. Population variability complicates the accurate detection of climate change responses.

    PubMed

    McCain, Christy; Szewczyk, Tim; Bracy Knight, Kevin

    2016-06-01

    The rush to assess species' responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (iv) Under scenarios of moderate to high PV across a species' range or at the range edges, there is a bias toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate 'canaries in the coal mine' for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC responses. PMID:26725404

  3. Parameter-less approaches for interpreting dynamic cellular response

    PubMed Central

    2014-01-01

    Cellular response such as cell signaling is an integral part of information processing in biology. Upon receptor stimulation, numerous intracellular molecules are invoked to trigger the transcription of genes for specific biological purposes, such as growth, differentiation, apoptosis or immune response. How complex are such specialized and sophisticated machinery? Computational modeling is an important tool for investigating dynamic cellular behaviors. Here, I focus on certain types of key signaling pathways that can be interpreted well using simple physical rules based on Boolean logic and linear superposition of response terms. From the examples shown, it is conceivable that for small-scale network modeling, reaction topology, rather than parameter values, is crucial for understanding population-wide cellular behaviors. For large-scale response, non-parametric statistical approaches have proven valuable for revealing emergent properties. PMID:25183996

  4. Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10 000 years of population growth in Australia

    PubMed Central

    Johnson, Christopher N.; Brook, Barry W.

    2011-01-01

    Measuring trends in the size of prehistoric populations is fundamental to our understanding of the demography of ancient people and their responses to environmental change. Archaeologists commonly use the temporal distribution of radiocarbon dates to reconstruct population trends, but this can give a false picture of population growth because of the loss of evidence from older sites. We demonstrate a method for quantifying this bias, and we use it to test for population growth through the Holocene of Australia. We used model simulations to show how turnover of site occupation across an archaeological landscape, interacting with erasure of evidence at abandoned sites, can create an increase in apparent site occupation towards the present when occupation density is actually constant. By estimating the probabilities of abandonment and erasure from archaeological data, we then used the model to show that this effect does not account for the observed increase in occupation through the Holocene in Australia. This is best explained by population growth, which was low for the first part of the Holocene but accelerated about 5000 years ago. Our results provide new evidence for the dynamism of non-agricultural populations through the Holocene. PMID:21561972

  5. Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10 000 years of population growth in Australia.

    PubMed

    Johnson, Christopher N; Brook, Barry W

    2011-12-22

    Measuring trends in the size of prehistoric populations is fundamental to our understanding of the demography of ancient people and their responses to environmental change. Archaeologists commonly use the temporal distribution of radiocarbon dates to reconstruct population trends, but this can give a false picture of population growth because of the loss of evidence from older sites. We demonstrate a method for quantifying this bias, and we use it to test for population growth through the Holocene of Australia. We used model simulations to show how turnover of site occupation across an archaeological landscape, interacting with erasure of evidence at abandoned sites, can create an increase in apparent site occupation towards the present when occupation density is actually constant. By estimating the probabilities of abandonment and erasure from archaeological data, we then used the model to show that this effect does not account for the observed increase in occupation through the Holocene in Australia. This is best explained by population growth, which was low for the first part of the Holocene but accelerated about 5000 years ago. Our results provide new evidence for the dynamism of non-agricultural populations through the Holocene. PMID:21561972

  6. Evolutionary dynamics of a multigroup fluctuating-population system

    NASA Astrophysics Data System (ADS)

    Bhatia, D. P.; Arora, D.; Prasad, M. A.

    1993-03-01

    We studied the evolutionary dynamics of a population undergoing asexual reproduction in a flat-fitness landscape. The quantity of interest is the distribution of the overlap function q which is a measure of the similarity in the genome structure between two individuals. We obtain analytical expressions for , , and p(q) in a model with the following features: continuous time, fluctuating population divided into many compartments, and a finite number of genes per genome. A few special cases of interest are also discussed.

  7. Optimal control methods for controlling bacterial populations with persister dynamics

    NASA Astrophysics Data System (ADS)

    Cogan, N. G.

    2016-06-01

    Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.

  8. Dynamics of a population of oscillatory and excitable elements

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Kevin P.; Strogatz, Steven H.

    2016-06-01

    We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

  9. Structural Drift: The Population Dynamics of Sequential Learning

    PubMed Central

    Crutchfield, James P.; Whalen, Sean

    2012-01-01

    We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream “teacher” and then pass samples from the model to their downstream “student”. It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory. PMID:22685387

  10. Dynamical models of a sample of Population II stars

    NASA Astrophysics Data System (ADS)

    Levison, H. F.; Richstone, D. O.

    1986-09-01

    Dynamical models are constructed in order to investigate the implications of recent kinematic data of distant Population II stars on the emissivity distribution of those stars. Models are constructed using a modified Schwarzschild method in two extreme scale-free potentials, spherical and E6 elliptical. Both potentials produce flat rotation curves and velocity dispersion profiles. In all models, the distribution of stars in this sample is flat. Moreover, it is not possible to construct a model with a strictly spheroidal emissivity distribution. Most models have dimples at the poles. The dynamics of the models indicate that the system is supported by both the third integral and z angular momentum.

  11. High-resolution chromatin dynamics during a yeast stress response.

    PubMed

    Weiner, Assaf; Hsieh, Tsung-Han S; Appleboim, Alon; Chen, Hsiuyi V; Rahat, Ayelet; Amit, Ido; Rando, Oliver J; Friedman, Nir

    2015-04-16

    Covalent histone modifications are highly conserved and play multiple roles in eukaryotic transcription regulation. Here, we mapped 26 histone modifications genome-wide in exponentially growing yeast and during a dramatic transcriptional reprogramming-the response to diamide stress. We extend prior studies showing that steady-state histone modification patterns reflect genomic processes, especially transcription, and display limited combinatorial complexity. Interestingly, during the stress response we document a modest increase in the combinatorial complexity of histone modification space, resulting from roughly 3% of all nucleosomes transiently populating rare histone modification states. Most of these rare histone states result from differences in the kinetics of histone modification that transiently uncouple highly correlated marks, with slow histone methylation changes often lagging behind the more rapid acetylation changes. Explicit analysis of modification dynamics uncovers ordered sequences of events in gene activation and repression. Together, our results provide a comprehensive view of chromatin dynamics during a massive transcriptional upheaval. PMID:25801168

  12. High-Resolution Chromatin Dynamics during a Yeast Stress Response

    PubMed Central

    Weiner, Assaf; Hsieh, Tsung-Han S.; Appleboim, Alon; Chen, Hsiuyi V.; Rahat, Ayelet; Amit, Ido; Rando, Oliver J.; Friedman, Nir

    2015-01-01

    Summary Covalent histone modifications are highly conserved and play multiple roles in eukaryotic transcription regulation. Here, we mapped 26 histone modifications genome-wide in exponentially growing yeast and during a dramatic transcriptional reprogramming—the response to diamide stress. We extend prior studies showing that steady-state histone modification patterns reflect genomic processes, especially transcription, and display limited combinatorial complexity. Interestingly, during the stress response we document a modest increase in the combinatorial complexity of histone modification space, resulting from roughly 3% of all nucleosomes transiently populating rare histone modification states. Most of these rare histone states result from differences in the kinetics of histone modification that transiently uncouple highly correlated marks, with slow histone methylation changes often lagging behind the more rapid acetylation changes. Explicit analysis of modification dynamics uncovers ordered sequences of events in gene activation and repression. Together, our results provide a comprehensive view of chromatin dynamics during a massive transcriptional upheaval. PMID:25801168

  13. Drosophila suzukii population response to environment and management strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  14. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  15. Dynamical plasma response during driven magnetic reconnection.

    PubMed

    Egedal, J; Fasoli, A; Nazemi, J

    2003-04-01

    Direct measurements of a collisionless current channel during driven magnetic reconnection are obtained for the first time on the Versatile Toroidal Facility. The size of the diffusion region is found to scale with the electron drift orbit width, independent of the ion mass and plasma density. Based on experimental observations, analytic expressions governing the dynamical evolution of the current profile and the formation of the electrostatic potential that develops in response to the externally imposed reconnection drive are established. This time response is closely linked to the presence of ion polarization currents. PMID:12689297

  16. Rapid Cellular Identification by Dynamic Electromechanical Response

    SciTech Connect

    Nikiforov, Maxim; Jesse, Stephen; Kalinin, Sergei V; Reukov, Vladimir V; Vertegel, Alexey; Thompson, Gary L

    2009-01-01

    Coupling between electrical and mechanical phenomena is ubiquitous in living systems. Here, we demonstrate rapid identification of cellular organisms using difference in electromechanical activity in a broad frequency range. Principal component analysis of the dynamic electromechanical response spectra bundled with neural network based recognition provides a robust identification algorithm based on their electromechanical signature, and allows unambiguous differentiation of model Micrococcus Lysodeikticus and Pseudomonas Fluorescens system. This methodology provides a universal pathway for biological identification obviating the need for well-defined analytical models of Scanning Probe Microscopy response.

  17. Seasonal Population Dynamics of Three Potato Pests in Washington State.

    PubMed

    D'Auria, Elizabeth M; Wohleb, Carrie H; Waters, Timothy D; Crowder, David W

    2016-08-01

    Pest phenology models allow producers to anticipate pest outbreaks and deploy integrated pest management (IPM) strategies. Phenology models are particularly useful for cropping systems with multiple economically damaging pests throughout a season. Potato (Solanum tuberosum L.) crops of Washington State, USA, are attacked by many insect pests including the potato tuberworm (Phthorimaea operculella Zeller), the beet leafhopper (Circulifer tenellus Baker), and the green peach aphid (Myzus persicae Sulzer). Each of these pests directly damages potato foliage or tubers; C. tenellus and M. persicae also transmit pathogens that can drastically reduce potato yields. We monitored the seasonal population dynamics of these pests by conducting weekly sampling on a network of commercial farms from 2007 to 2014. Using these data, we developed phenology models to characterize the seasonal population dynamics of each pest based on accumulated degree-days (DD). All three pests exhibited consistent population dynamics across seasons that were mediated by temperature. Of the three pests, C. tenellus was generally the first detected in potato crops, with 90% of adults captured by 936 DD. In contrast, populations of P. operculella and M. persicae built up more slowly over the course of the season, with 90% cumulative catch by 1,590 and 2,634 DD, respectively. Understanding these seasonal patterns could help potato producers plan their IPM strategies while allowing them to move away from calendar-based applications of insecticides. More broadly, our results show how long-term monitoring studies that explore dynamics of multiple pest species can aid in developing IPM strategies in crop systems. PMID:27271946

  18. Development of paradigms for the dynamics of structured populations

    SciTech Connect

    Not Available

    1994-10-01

    This is a technical progress report on the dynamics of predator-prey systems in a patchy environment. A new phenomenon that might contribute to outbreaks in systems of discrete patches has been determined using a discrete time model with both spatial and age structure. A model for a single species in a patchy environment with migration, local population growth and disasters with in patches has been formulated and a brief description is included.

  19. Continuous probabilistic analysis to evolutionary game dynamics in finite populations.

    PubMed

    Gao, Meng

    2009-07-01

    Evolutionary game dynamics of two strategies in finite population is studied by continuous probabilistic approach. Besides frequency dependent selection, mutation was also included in this study. The equilibrium probability density functions of abundance, expected time to extinction or fixation were derived and their numerical solutions are calculated as illustrations. Meanwhile, individual-based computer simulations are also done. A comparison reveals the consistency between theoretical analysis and simulations. PMID:19219510

  20. Population based models of cortical drug response: insights from anaesthesia

    PubMed Central

    Bojak, Ingo; Liley, David T. J.

    2008-01-01

    A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia. PMID:19003456

  1. Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics.

    PubMed

    Abbott, Karen C; Morris, William F; Gross, Kevin

    2008-02-01

    Many herbivore populations fluctuate temporally, but the causes of those fluctuations remain unclear. Plant inducible resistance can theoretically cause herbivore population fluctuations, because herbivory may induce plant changes that reduce the survival or reproduction of later-feeding herbivores. Herbivory can also simply reduce the quantity of food available for later feeders and this, too, can cause population fluctuations. Inducible resistance and food limitation often occur simultaneously, yet whether they jointly facilitate or suppress herbivore fluctuations remains largely unexplored. We present models that suggest that food limitation and inducible resistance may have synergistic effects on herbivore population dynamics. The population-level response of the food plant to herbivory and the details of how inducible resistance affects herbivore performance both influence the resulting herbivore dynamics. Our results identify some biological properties of plant-herbivore systems that might determine whether or not cycles occur, and suggest that future empirical and theoretical population dynamics studies should account for the effects of both food limitation and inducible resistance. PMID:17991500

  2. Environmental variation and population responses to global change.

    PubMed

    Lawson, Callum R; Vindenes, Yngvild; Bailey, Liam; van de Pol, Martijn

    2015-07-01

    Species' responses to environmental changes such as global warming are affected not only by trends in mean conditions, but also by natural and human-induced environmental fluctuations. Methods are needed to predict how such environmental variation affects ecological and evolutionary processes, in order to design effective strategies to conserve biodiversity under global change. Here, we review recent theoretical and empirical studies to assess: (1) how populations respond to changes in environmental variance, and (2) how environmental variance affects population responses to changes in mean conditions. Contrary to frequent claims, empirical studies show that increases in environmental variance can increase as well as decrease long-term population growth rates. Moreover, environmental variance can alter and even reverse the effects of changes in the mean environment, such that even if environmental variance remains constant, omitting it from population models compromises their ability to predict species' responses to changes in mean conditions. Drawing on theory relating these effects of environmental variance to the curvatures of population growth responses to the environment, we outline how species' traits such as phylogenetic history and body mass could be used to predict their responses to global change under future environmental variability. PMID:25900148

  3. Interacting trophic forcing and the population dynamics of herring.

    PubMed

    Lindegren, Martin; Ostman, Orjan; Gårdmark, Anna

    2011-07-01

    Small pelagic fish occupy a central position in marine ecosystems worldwide, largely by determining the energy transfer from lower trophic levels to predators at the top of the food web, including humans. Population dynamics of small pelagic fish may therefore be regulated neither strictly bottom-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue. Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua) also was evident, these factors were less important than resource availability and interspecific competition. Understanding key ecological processes and interactions is fundamental to ecosystem-based management practices necessary to promote sustainable exploitation of small pelagic fish. PMID:21870614

  4. Building the bridge between animal movement and population dynamics

    PubMed Central

    Morales, Juan M.; Moorcroft, Paul R.; Matthiopoulos, Jason; Frair, Jacqueline L.; Kie, John G.; Powell, Roger A.; Merrill, Evelyn H.; Haydon, Daniel T.

    2010-01-01

    While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through ‘spatially informed’ movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission–fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction. PMID:20566505

  5. Evolutionary dynamics of social dilemmas in structured heterogeneous populations

    PubMed Central

    Santos, F. C.; Pacheco, J. M.; Lenaerts, Tom

    2006-01-01

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations. PMID:16484371

  6. Evolutionary dynamics of social dilemmas in structured heterogeneous populations.

    PubMed

    Santos, F C; Pacheco, J M; Lenaerts, Tom

    2006-02-28

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations. PMID:16484371

  7. Connection between dynamically derived IMF normalisation and stellar populations

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.

    2015-04-01

    In this contributed talk I present recent results on the connection between stellar population properties and the normalisation of the stellar initial mass function (IMF) measured using stellar dynamics, based on a large sample of 260 early-type galaxies observed as part of the ATLAS3D project. This measure of the IMF normalisation is found to vary non-uniformly with age- and metallicity-sensitive absorption line strengths. Applying single stellar population models, there are weak but measurable trends of the IMF with age and abundance ratio. Accounting for the dependence of stellar population parameters on velocity dispersion effectively removes these trends, but subsequently introduces a trend with metallicity, such that `heavy' IMFs favour lower metallicities. The correlations are weaker than those found from previous studies directly detecting low-mass stars, suggesting some degree of tension between the different approaches of measuring the IMF. Resolving these discrepancies will be the focus of future work.

  8. Inferring the Dynamics of Effective Population Size Using Autosomal Genomes.

    PubMed

    Hou, Zheng; Luo, Yin; Wang, Zhisheng; Zheng, Hong-Xiang; Wang, Yi; Zhou, Hang; Wu, Leqin; Jin, Li

    2016-01-01

    Next-generation sequencing technology has provided a great opportunity for inferring human demographic history by investigating changes in the effective population size (Ne). In this report, we introduce a strategy for estimating Ne dynamics, allowing the exploration of large multi-locus SNP datasets. We applied this strategy to the Phase 1 Han Chinese samples from the 1000 Genomes Project. The Han Chinese population has undergone a continuous expansion since 25,000 years ago, at first slowly from about 7,300 to 9,800 (at the end of the last glacial maximum about 15,000 YBP), then more quickly to about 46,000 (at the beginning of the Neolithic about 8,000 YBP), and then even more quickly to reach a population size of about 140,000 (recently). PMID:26832887

  9. Inferring the Dynamics of Effective Population Size Using Autosomal Genomes

    PubMed Central

    Hou, Zheng; Luo, Yin; Wang, Zhisheng; Zheng, Hong-Xiang; Wang, Yi; Zhou, Hang; Wu, Leqin; Jin, Li

    2016-01-01

    Next-generation sequencing technology has provided a great opportunity for inferring human demographic history by investigating changes in the effective population size (Ne). In this report, we introduce a strategy for estimating Ne dynamics, allowing the exploration of large multi-locus SNP datasets. We applied this strategy to the Phase 1 Han Chinese samples from the 1000 Genomes Project. The Han Chinese population has undergone a continuous expansion since 25,000 years ago, at first slowly from about 7,300 to 9,800 (at the end of the last glacial maximum about 15,000 YBP), then more quickly to about 46,000 (at the beginning of the Neolithic about 8,000 YBP), and then even more quickly to reach a population size of about 140,000 (recently). PMID:26832887

  10. Stochasticity and universal dynamics in communicating cellular populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Mehta, Pankaj; Allyson Sgro Collaboration; David Schwab Collaboration; Troy Mestler Collaboration; Thomas Gregor Collaboration

    2014-03-01

    A fundamental problem in biology is to understand how biochemical networks within individual cells coordinate and control population-level behaviors. Our knowledge of these biochemical networks is often incomplete, with little known about the underlying kinetic parameters. Here, we present a general modeling approach for overcoming these challenges based on universality. We apply our approach to study the emergence of collective oscillations of the signaling molecule cAMP in populations of the social amoebae Dictyostelium discoideum and show that a simple two-dimensional dynamical system can reproduce signaling dynamics of single cells and successfully predict novel population-level behaviors. We reduce all the important parameters of our model to only two and will study its behavior through a phase diagram. This phase diagram determines conditions under which cells are quiet or oscillating either coherently or incoherently. Furthermore it allows us to study the effect of different model components such as stochasticity, multicellularity and signal preprocessing. A central finding of our model is that Dictyostelium exploit stochasticity within biochemical networks to control population level behaviors.

  11. Predicting the response of populations to environmental change

    SciTech Connect

    Ives, A.R.

    1995-04-01

    When subject to long-term directional environmental perturbations, changes in population densities depend on the positive and negative feedbacks operating through interactions within and among species in a community. This paper develops techniques to predict the long-term responses of population densities to environmental changes using data on short-term population fluctuations driven by short-term environmental variability. In addition to giving quantitative predictions, the techniques also reveal how different qualitative patterns of species interactions either buffer or accentuate population responses to environmental trends. All of the predictions are based on regression coefficients extracted from time series data, and they can therefore be applied with a minimum of mathematical and statistical gymnastics. 48 refs., 10 figs., 4 tabs.

  12. Population dynamics of Microtus pennsylvanicus in corridor-linked patches

    USGS Publications Warehouse

    Coffman, C.J.; Nichols, J.D.; Pollock, K.H.

    2001-01-01

    Corridors have become a key issue in the discussion of conservation planning: however, few empirical data exist on the use of corridors and their effects on population dynamics. The objective of this replicated, population level, capture-re-capture experiment on meadow voles was to estimate and compare population characteristics of voles between (1) corridor-linked fragments, (2) isolated or non-linked fragments, and (3) unfragmented areas. We conducted two field experiments involving 22600 captures of 5700 individuals. In the first, the maintained corridor study, corridors were maintained at the time of fragmentation, and in the second, the constructed corridor study, we constructed corridors between patches that had been fragmented for some period of time. We applied multistate capture-recapture models with the robust design to estimate adult movement and survival rates, population size, temporal variation in population size, recruitment, and juvenile survival rates. Movement rates increased to a greater extent on constructed corridor-linked grids than on the unfragmented or non-linked fragmented grids between the pre- and post-treatment periods. We found significant differences in local survival on the treated (corridor-linked) grids compared to survival on the fragmented and unfragmented grids between the pre- and post-treatment periods. We found no clear pattern of treatment effects on population size or recruitment in either study. However, in both studies, we found that unfragmented grids were more stable than the fragmented grids based on lower temporal variability in population size. To our knowledge, this is the first experimental study demonstrating that corridors constructed between existing fragmented populations can indeed cause increases in movement and associated changes in demography, supporting the use of constructed corridors for this purpose in conservation biology.

  13. Dynamic response of flexible retaining walls

    SciTech Connect

    Younan, A.H.; Veletsos, A.S.; Bandyopadhyay, K.

    1997-01-01

    Making use of an extension of a recently proposed, relatively simple, approximate method of analysis, a critical evaluation is made of the response to horizontal ground shaking of flexible walls retaining a uniform, linear, viscoelastic stratum of constant thickness and semiinfinite extent in the horizontal direction. Both cantilever and top-supported walls are examined. Following a detailed description of the method and of its rate of convergence, comprehensive numerical solutions are presented that elucidate the action of the system and the effects of the various parameters involved. The parameters varied include the flexibility of the wall, the condition of top support, and the characteristics of the ground motion. The effects of both harmonic base motions and an actual earthquake record are examined. Special attention is paid to the effects of long-period, effectively static excitations. A maximum dynamic response is then expressed as the product of the corresponding static response and an appropriate amplification or deamplification factor. The response quantities examined include the displacements of the wall relative to the moving base, the dynamic wall pressures, and the total wall force, base shear and base moment.

  14. Energy deposition and dynamic response of materials

    NASA Astrophysics Data System (ADS)

    Perry, Frank C.

    1993-07-01

    We are exploring new applications of the technology of energy deposition and dynamic response. Early studies involved analytical solutions of the coupled thermal and elastic response of materials to pulsed energy deposition. Experiments designed to test the theory led to determinations of thermal pressure coefficients for a variety of materials and an understanding of the effects of the time dependence of the energy source on dynamic response. Subsequent experiments at higher deposited energies required analysis by an energy deposition-wave propagation code to explain the observed elastic-plastic behavior. Instrumentation included laser interferometry and holographic interferometry for multi- dimensional response. A possible application of this technology to Biomedical Science is a technique to measure ion transport in biological material. It requires a combination of holographic interferometry and spectroscopy, namely, Resonant Holographic Interferometry Spectroscopy (RHIS). The technique involves the absorption and refraction of light near absorption lines. Stress waves arising from the absorbed light can be assessed with the energy deposition-wave propagation code. Such calculations will require the inclusion of appropriate biomaterial properties.

  15. Population Dynamics of Early Human Migration in Britain

    PubMed Central

    Vahia, Mayank N.; Ladiwala, Uma; Mahathe, Pavan; Mathur, Deepak

    2016-01-01

    Background Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction. Method and Results We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples’ movement over ~2000 years before the present era. Conclusions We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available. PMID:27148959

  16. Population dynamics in Asia and the Pacific: implications for development.

    PubMed

    1994-03-01

    This article is an excerpt from a recently published article on interactions between population and development in the "Economic and Social Survey of Asia and the Pacific, 1993." Topics include the dynamics of change (growth, age structure, sex composition, migration); implications for specific development issues (population and education, population and health, population and employment, and population and the environment); and policy approaches (slowing growth, spatial distribution, and the role of women). The Asian focus is on population policy and fertility declines. Different conditions specific to each country and varying degrees of program success give rise to country-specific differences in rates of growth and declines in fertility. Population compositions and pressures on spatial distribution differ among countries. Development demands differ for education, health, employment, and environmental controls. A common feature is that population is integrated into social and economic development policies. The links between population and the environment are recognized and will be integrated into policy as knowledge emerges. The ESCAP region has about 58% of world population, and fertility has declined to 3.1 children per woman. Fertility declines do not result in demonstrable changes in the rate of population growth, because the proportion of reproductive age women has increased and will continue to do so until 2010. Reductions in fertility are balanced by mortality declines. The annual rate of increase has gradually slowed, however the absolute size is still huge. The goal of the Bali Declaration of 1992 is to reach replacement level fertility of 2.2 children per woman by 2010 in the ESCAP region. The UN median variant projects 2.4 children per woman by 2010. The countries unlikely to reach replacement level fertility are India, the Philippines, Vietnam, Bangladesh, and Pakistan. Age structure will determine the need for services. For example, South Asia will

  17. Spatial structure and chaos in insect population dynamics

    NASA Astrophysics Data System (ADS)

    Hassell, Michael P.; Comins, Hugh N.; Mayt, Robert M.

    1991-09-01

    MOST environments are spatially subdivided, or patchy, and there has been much interest in the relationship between the dynamics of populations at the local and regional (metapopulation) scales1. Here we study mathematical models for host-parasitoid interactions, where in each generation specified fractions (µN and µp, respectively) of the host and parasitoid subpopulations in each patch move to adjacent patches; in most previous work, the movement is not localized but is to any other patch2. These simple and biologically sensible models with limited diffusive dispersal exhibit a remarkable range of dynamic behaviour: the density of the host and parasitoid subpopulations in a two-dimensional array of patches may exhibit complex patterns of spiral waves or spatially chaotic variation, they may show static 'crystal lattice' patterns, or they may become extinct. This range of behaviour is obtained with the local dynamics being deterministically unstable, with a constant host reproductive rate and no density dependence in the movement patterns. The dynamics depend on the host reproductive rate, and on the values of the parameters µN and µp. The results are relatively insensitive to the details of the interactions; we get essentially the same results from the mathematically-explicit Nicholon-Bailey model of host-parasitoid interactions, and from a very general 'cellular automaton' model in which only qualitative rules are specified. We conclude that local movement in a patchy environment can help otherwise unstable host and parasitoid populations to persist together, but that the deterministically generated spatial patterns in population density can be exceedingly complex (and sometimes indistinguishable from random environmental fluctuations).

  18. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  19. Diet shifts and population dynamics of estuarine foraminifera during ecosystem recovery after experimentally induced hypoxia crises

    NASA Astrophysics Data System (ADS)

    Brouwer, G. M.; Duijnstee, I. A. P.; Hazeleger, J. H.; Rossi, F.; Lourens, L. J.; Middelburg, J. J.; Wolthers, M.

    2016-03-01

    This study shows foraminiferal dynamics after experimentally induced hypoxia within the wider context of ecosystem recovery. 13C-labeled bicarbonate and glucose were added to the sediments to examine foraminiferal diet shifts during ecosystem recovery and test-size measurements were used to deduce population dynamics. Hypoxia-treated and undisturbed patches were compared to distinguish natural (seasonal) fluctuations from hypoxia-induced responses. The effect of timing of disturbance and duration of recovery were investigated. The foraminiferal diets and population dynamics showed higher fluctuations in the recovering patches compared to the controls. The foraminiferal diet and population structure of Haynesina germanica and Ammonia beccarii responded differentially and generally inversely to progressive stages of ecosystem recovery. Tracer inferred diet estimates in April and June and the two distinctly visible cohorts in the test-size distribution, discussed to reflect reproduction in June, strongly suggest that the ample availability of diatoms during the first month of ecosystem recovery after the winter hypoxia was likely profitable to A. beccarii. Enhanced reproduction itself was strongly linked to the subsequent dietary shift to bacteria. The distribution of the test dimensions of H. germanica indicated that this species had less fluctuation in population structure during ecosystem recovery but possibly reproduced in response to the induced winter hypoxia. Bacteria seemed to consistently contribute more to the diet of H. germanica than diatoms. For the diet and test-size distribution of both species, the timing of disturbance seemed to have a higher impact than the duration of the subsequent recovery period.

  20. Identifying consumer-resource population dynamics using paleoecological data.

    PubMed

    Einarsson, Árni; Hauptfleisch, Ulf; Leavitt, Peter R; Ives, Anthony R

    2016-02-01

    Ecologists have long been fascinated by cyclic population fluctuations, because they suggest strong interactions between exploiter and victim species. Nonetheless, even for populations showing high-amplitude fluctuations, it is often hard to identify which species are the key drivers of the dynamics, because data are generally only available for a single species. Here, we use a paleoecological approach to investigate fluctuations in the midge population in Lake Mývatn, Iceland, which ranges over several orders of magnitude in irregular, multigeneration cycles. Previous circumstantial evidence points to consumer-resource interactions between midges and their primary food, diatoms, as the cause of these high-amplitude fluctuations. Using a pair of sediment cores from the lake, we reconstructed 26 years of dynamics of midges using egg remains and of algal groups using diagnostic pigments. We analyzed these data using statistical methods that account for both the autocorrelated nature of paleoecological data and measurement error caused by the mixing of sediment layers. The analyses revealed a signature of consumer-resource interactions in the fluctuations of midges and diatoms: diatom abundance (as inferred from biomarker pigment diatoxanthin) increased when midge abundance was low, and midge abundance (inferred from egg capsules) decreased when diatom abundance was low. Similar patterns were not found for pigments characterizing the other dominant primary producer group in the lake (cyanobacteria), subdominant algae (cryptophytes), or ubiquitous but chemically unstable biomarkers of total algal abundance (chlorophyll a); however, a significant but weaker pattern was found for the chemically stable indicator of total algal populations (β-carotene) to which diatoms are the dominant contributor. These analyses provide the first paleoecological evaluation of specific trophic interactions underlying high amplitude population fluctuations in lakes. PMID:27145611

  1. Survival and Population Dynamics of the Marabou Stork in an Isolated Population, Swaziland

    PubMed Central

    Monadjem, Ara; Kane, Adam; Botha, Andre; Dalton, Desire; Kotze, Antoinette

    2012-01-01

    Investigating the ecology of long lived birds is particularly challenging owing to the time scales involved. Here an analysis is presented of a long term study of the survival and population dynamics of the marabou stork (Leptoptilos crumeniferus), a wide ranging scavenging bird from Sub-Saharan Africa. Using resightings data of tagged nestlings and free flying birds we show that the stork population can be divided into three general life stages with unique survival probabilities and fecundities. Fecundity of the storks is inversely related to rainfall during their breeding season. Corroborative evidence for a metapopulation structure is discussed highlighting the impact of the Swaziland birds on the ecology of the species in the broader region. The importance of tag loss or illegibility over time is highlighted. Clearly, any attempt at conserving a species will require a detailed understanding of its population structure, of the sort examined here. PMID:23029517

  2. Mammal population regulation, keystone processes and ecosystem dynamics.

    PubMed Central

    Sinclair, A R E

    2003-01-01

    The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329

  3. Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Walshe, Ray; Devocelle, Marc

    The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.

  4. The dynamic inelastic response of delaminated plates

    SciTech Connect

    Addessio, F.L.; Williams, T.O.

    1996-12-01

    A generalized theory for laminated plates with delaminations is used to consider the influence of inelastic deformations on the dynamic behavior of composite plates with delaminations. The laminate model is based on a generalized displacement formulation implemented at the layer level. The delamination behavior can be modeled using any general interfacial fracture law: however, for the current work a linear model is employed. The interfacial displacement jumps are expressed in an internally consistent fashion in terms of the fundamental unknown interfacial tractions. The current theory imposes no restrictions on the size, location, distribution, or direction of growth of the delaminations. The proposed theory is used to consider the inelastic, dynamic response of delaminated plates in cylindrical bending subjected to a ramp and hold type of loading. The individual layers in the current study are assumed to be either titanium or aluminum. The inelastic response of both materials is modeled using the unified viscoplastic theory of Bodner and Partom. It is shown that the presence of both inelastic behavior and delamination can have a significant influence on the plate response. In particular it is shown that these mechanisms are strongly interactive. This result emphasizes the need to consider both mechanisms simultaneously.

  5. Simulating the dynamic response of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Lloyd, Jeffrey; Becker, Richard

    Unlike several conventional metals, the mechanical response of magnesium is severely anisotropic for quasistatic and dynamic loading conditions. In this work we present a crystal-based strength model that is the same order of magnitude in computational cost as rate-dependent isotropic strength models, yet is able to capture essential features exhibited by textured magnesium polycrystals. The model demarcates plastic deformation into contributions from basal slip, extension twinning, and non-basal slip mechanisms. Comparisons are made between model predictions and experiments for two magnesium alloys with differing processing histories. The model is then used to explore and quantify the dependence of metallurgical and processing variations for several dynamic experiments that probe propensity for localization and failure under complex loading conditions.

  6. Evolutionary dynamics for persistent cooperation in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Xinsheng; Claussen, Jens Christian; Guo, Wanlin

    2015-06-01

    The emergence and maintenance of cooperative behavior is a fascinating topic in evolutionary biology and social science. The public goods game (PGG) is a paradigm for exploring cooperative behavior. In PGG, the total resulting payoff is divided equally among all participants. This feature still leads to the dominance of defection without substantially magnifying the public good by a multiplying factor. Much effort has been made to explain the evolution of cooperative strategies, including a recent model in which only a portion of the total benefit is shared by all the players through introducing a new strategy named persistent cooperation. A persistent cooperator is a contributor who is willing to pay a second cost to retrieve the remaining portion of the payoff contributed by themselves. In a previous study, this model was analyzed in the framework of well-mixed populations. This paper focuses on discussing the persistent cooperation in lattice-structured populations. The evolutionary dynamics of the structured populations consisting of three types of competing players (pure cooperators, defectors, and persistent cooperators) are revealed by theoretical analysis and numerical simulations. In particular, the approximate expressions of fixation probabilities for strategies are derived on one-dimensional lattices. The phase diagrams of stationary states, and the evolution of frequencies and spatial patterns for strategies are illustrated on both one-dimensional and square lattices by simulations. Our results are consistent with the general observation that, at least in most situations, a structured population facilitates the evolution of cooperation. Specifically, here we find that the existence of persistent cooperators greatly suppresses the spreading of defectors under more relaxed conditions in structured populations compared to that obtained in well-mixed populations.

  7. Slicing and dicing globular clusters: dynamically evolved single stellar populations

    NASA Astrophysics Data System (ADS)

    Sippel, Anna C.; Hurley, Jarrod R.

    2016-04-01

    We utilize direct N-body models of globular clusters including stellar evolution to calculate magnitudes for each star in the Hubble Space Telescope Advanced Camera for Surveys 555, 606 and 814 filters. This enables us to analyse the colour of dynamically evolved single stellar populations over time in colour-magnitude diagrams of both, resolved and integrated globular clusters. We find that the change of integrated cluster colour is driven predominantly by the colour of the brightest stars available and hence by stellar evolution, but not by the removal of low-mass stars. We show that even in mass-segregated clusters, different stellar populations are distributed over the entire cluster. This implies that evolved stars also exist within and outside the half-mass radius.

  8. State-dependent neutral delay equations from population dynamics.

    PubMed

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations. PMID:25117688

  9. Population.

    ERIC Educational Resources Information Center

    King, Pat; Landahl, John

    This pamphlet has been prepared in response to a new problem, a rapidly increasing population, and a new need, population education. It is designed to help teachers provide their students with some basic population concepts with stress placed on the elements of decision making. In the first section of the pamphlet, some of the basic concepts of…

  10. The island syndrome and population dynamics of introduced rats.

    PubMed

    Russell, James C; Ringler, David; Trombini, Aurélien; Le Corre, Matthieu

    2011-11-01

    The island syndrome predicts directional changes in the morphology and demography of insular vertebrates, due to changes in trophic complexity and migration rates caused by island size and isolation. However, the high rate of human-mediated species introductions to some islands also increases trophic complexity, and this will reduce the perceived insularity on any such island. We test four hypotheses on the role of increased trophic complexity on the island syndrome, using introduced black rats (Rattus rattus) on two isolated coral atolls in the Mozambique Channel. Europa Island has remained relatively pristine and insular, with few species introductions, whereas Juan de Nova Island has had many species introductions, including predators and competitors of rats, anthropogenically increasing its trophic complexity. In the most insular environments, the island syndrome is expected to generate increases in body size and densities of rodents but decreases in the rates of reproduction and population cycling. Morphology and reproduction were compared using linear regression and canonical discriminant analysis, while density and population cycling were compared using spatially explicit capture-recapture analysis. Results were compared to other insular black rat populations in the Mozambique Channel and were consistent with predictions from the island syndrome. The manifestation of an island syndrome in rodents depends upon the trophic composition of a community, and may not relate to island size alone when many species additions, such as invasions, have occurred. The differing patterns of rodent population dynamics on each island provide information for future rodent eradication operations. PMID:21643994