Sample records for population genetic differentiation

  1. Genetic differentiation among populations of marine algae

    NASA Astrophysics Data System (ADS)

    Innes, D. J.

    1984-09-01

    Most of the information for genetic differentiation among populations of marine algae is from studies on ecotypic variation. Physiological ecotypes have been described for individuals showing different responses to temperature and salinity conditions. Morphological ecotypes have also been found associated with areas differing in wave exposure or different intertidal positions. Little is known on how genetic variation is organized within and between populations of marine algae. The occurrence of ecotypic variation in some species is evidence for genetic differentiation among populations resulting from selection by the local environment. The rate of dispersal and subsequent gene flow will also affect the level of differentiation among populations. In species with low dispersal, differentiation can arise through chance founder events or random genetic drift. The few studies available have shown that species of algae exhibit a range of dispersal capabilities. This information can be useful for predicting the potential level of genetic differentiation among populations of these species. Crossing experiments with several species of algae have shown that populations separated by a considerable distance can be interfertile. In some cases individuals from these populations have been found to be morphologically distinct. Crosses have been used to study the genetic basis of this variation and are evidence for genetic differentiation among the populations sampled. Genetic variation of enzyme proteins detected by electrophoresis provides an additional method for measuring genetic variation within and between populations of marine algae. Electrophoretic methods have previously been used to study systematic problems in algae. However, there have been few attempts to use electrophoretic variation to study the genetic structure of populations of marine algae. This approach is outlined and includes some of the potential problems associated with interpreting electrophoretic data

  2. Relevant genetic differentiation among Brazilian populations of Anastrepha fraterculus (Diptera, Tephritidae)

    PubMed Central

    Manni, Mosè; Lima, Kátia Manuela; Guglielmino, Carmela Rosalba; Lanzavecchia, Silvia Beatriz; Juri, Marianela; Vera, Teresa; Cladera, Jorge; Scolari, Francesca; Gomulski, Ludvik; Bonizzoni, Mariangela; Gasperi, Giuliano; Silva, Janisete Gomes; Malacrida, Anna Rodolfa

    2015-01-01

    Abstract We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area. PMID:26798258

  3. Genetic differentiation among North Atlantic killer whale populations.

    PubMed

    Foote, Andrew D; Vilstrup, Julia T; De Stephanis, Renaud; Verborgh, Philippe; Abel Nielsen, Sandra C; Deaville, Robert; Kleivane, Lars; Martín, Vidal; Miller, Patrick J O; Oien, Nils; Pérez-Gil, Monica; Rasmussen, Morten; Reid, Robert J; Robertson, Kelly M; Rogan, Emer; Similä, Tiu; Tejedor, Maria L; Vester, Heike; Víkingsson, Gísli A; Willerslev, Eske; Gilbert, M Thomas P; Piertney, Stuart B

    2011-02-01

    Population genetic structure of North Atlantic killer whale samples was resolved from differences in allele frequencies of 17 microsatellite loci, mtDNA control region haplotype frequencies and for a subset of samples, using complete mitogenome sequences. Three significantly differentiated populations were identified. Differentiation based on microsatellite allele frequencies was greater between the two allopatric populations than between the two pairs of partially sympatric populations. Spatial clustering of individuals within each of these populations overlaps with the distribution of particular prey resources: herring, mackerel and tuna, which each population has been seen predating. Phylogenetic analyses using complete mitogenomes suggested two populations could have resulted from single founding events and subsequent matrilineal expansion. The third population, which was sampled at lower latitudes and lower density, consisted of maternal lineages from three highly divergent clades. Pairwise population differentiation was greater for estimates based on mtDNA control region haplotype frequencies than for estimates based on microsatellite allele frequencies, and there were no mitogenome haplotypes shared among populations. This suggests low or no female migration and that gene flow was primarily male mediated when populations spatially and temporally overlap. These results demonstrate that genetic differentiation can arise through resource specialization in the absence of physical barriers to gene flow. © 2010 Blackwell Publishing Ltd.

  4. Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment?

    USGS Publications Warehouse

    Adkison, Milo D.

    1995-01-01

    Morphological, behavioral, and life-history differences between Pacific salmon (Oncorhynchus spp.) populations are commonly thought to reflect local adaptation, and it is likewise common to assume that salmon populations separated by small distances are locally adapted. Two alternatives to local adaptation exist: random genetic differentiation owing to genetic drift and founder events, and genetic homogeneity among populations, in which differences reflect differential trait expression in differing environments. Population genetics theory and simulations suggest that both alternatives are possible. With selectively neutral alleles, genetic drift can result in random differentiation despite many strays per generation. Even weak selection can prevent genetic drift in stable populations; however, founder effects can result in random differentiation despite selective pressures. Overlapping generations reduce the potential for random differentiation. Genetic homogeneity can occur despite differences in selective regimes when straying rates are high. In sum, localized differences in selection should not always result in local adaptation. Local adaptation is favored when population sizes are large and stable, selection is consistent over large areas, selective diffeentials are large, and straying rates are neither too high nor too low. Consideration of alternatives to local adaptation would improve both biological research and salmon conservation efforts.

  5. Genetic differentiation between sympatric and allopatric wintering populations of Snow Geese

    USGS Publications Warehouse

    Humphries, E.M.; Peters, J.L.; Jonsson, J.E.; Stone, R.; Afton, A.D.; Omland, K.E.

    2009-01-01

    Blackwater National Wildlife Refuge on the Delmarva Peninsula, Maryland, USA has been the wintering area of a small population of Lesser Snow Geese (Chen caerulescens caerulescens; LSGO) since the 1930s. Snow Geese primarily pair in wintering areas and gene flow could be restricted between this and other LSGO wintering populations. Winter pair formation also could facilitate interbreeding with sympatric but morphologically differentiated Greater Snow Geese (C. c. atlantica; GSGO).We sequenced 658 bp of the mitochondrial DNA control region for 68 Snow Geese from East Coast and Louisiana wintering populations to examine the level of genetic differentiation among populations and subspecies. We found no evidence for genetic differentiation between LSGO populations but, consistent with morphological differences, LSGO and GSGO were significantly differentiated. We also found a lack of genetic differentiation between different LSGO morphotypes from Louisiana. We examined available banding data and found the breeding range of Delmarva LSGO overlaps extensively with LSGO that winter in Louisiana, and documented movements between wintering populations. Our results suggest the Delmarva population of LSGO is not a unique population unit apart from Mid-Continent Snow Geese. ?? 2009 by the Wilson Ornithological Society.

  6. Population-genetic properties of differentiated copy number variations in cattle.

    PubMed

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Zhou, Yang; Hay, El Hamidi Abdel; Song, Jiuzhou; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George E

    2016-03-23

    While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.

  7. Testing the link between population genetic differentiation and clade diversification in Costa Rican orchids.

    PubMed

    Kisel, Yael; Moreno-Letelier, Alejandra C; Bogarín, Diego; Powell, Martyn P; Chase, Mark W; Barraclough, Timothy G

    2012-10-01

    Species population genetics could be an important factor explaining variation in clade species richness. Here, we use newly generated amplified fragment length polymorphism (AFLP) data to test whether five pairs of sister clades of Costa Rican orchids that differ greatly in species richness also differ in average neutral genetic differentiation within species, expecting that if the strength of processes promoting differentiation within species is phylogenetically heritable, then clades with greater genetic differentiation should diversify more. Contrary to expectation, neutral genetic differentiation does not correlate directly with total diversification in the clades studied. Neutral genetic differentiation varies greatly among species and shows no heritability within clades. Half of the variation in neutral genetic differentiation among populations can be explained by ecological variables, and species-level traits explain the most variation. Unexpectedly, we find no isolation by distance in any species, but genetic differentiation is greater between populations occupying different niches. This pattern corresponds with those observed for microscopic eukaryotes and could reflect effective widespread dispersal of tiny and numerous orchid seeds. Although not providing a definitive answer to whether population genetics processes affect clade diversification, this work highlights the potential for addressing new macroevolutionary questions using a comparative population genetic approach. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  8. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation.

    PubMed

    Aegisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg

    2009-12-01

    Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.

  9. [Genetic differentiation of Isaria farinosa populations in Anhui Province of East China].

    PubMed

    Sun, Zhao-Hong; Luan, Feng-Gang; Zhang, Da-Min; Chen, Ming-Jun; Wang, Bin; Li, Zeng-Zhi

    2011-11-01

    Isaria farinosa is an important entomopathogenic fungus. By using ISSR, this paper studied the genetic heterogeneity of six I. farinosa populations at different localities of Anhui Province, East China. A total of 98.5% polymorphic loci were amplified with ten polymorphic primers, but the polymorphism at population level varied greatly, within the range of 59.6%-93.2%. The genetic differentiation index (G(st)) between the populations based on Nei's genetic heterogenesis analysis was 0.3365, and the gene flow (N(m)) was 0.4931. The genetic differentiation between the populations was lower than that within the populations, suggesting that the genetic variation of I. farinosa mainly come from the interior of the populations. The UPGMA clustering based on the genetic similarities between the isolates revealed that the Xishan population was monophylectic, while the other five populations were polyphylectic, with the Yaoluoping population being the most heterogenic and the Langyashan population being the least heterogenic. No correlations were observed between the geographic distance and the genetic distance of the populations. According to the UPGMA clustering based on the genetic distance between the populations, the six populations were classified into three groups, and this classification was accorded with the clustering based on geographic environment, suggesting the effects of environmental heterogeneity on the population heterogeneity.

  10. Phenotypic divergence despite low genetic differentiation in house sparrow populations.

    PubMed

    Ben Cohen, Shachar; Dor, Roi

    2018-01-10

    Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.

  11. Patterns of Post-Glacial Genetic Differentiation in Marginal Populations of a Marine Microalga

    PubMed Central

    Tahvanainen, Pia; Alpermann, Tilman J.; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms. PMID:23300940

  12. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga.

    PubMed

    Tahvanainen, Pia; Alpermann, Tilman J; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST)) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

  13. Genetic Differentiation of Colombian Populations of Anopheles darlingi Root (Diptera: Culicidae).

    PubMed

    Rosero, C Y; Jaramillo, G I; Gonzalez, R; Cardenas, H

    2017-10-01

    Anopheles darlingi Root is a primary vector of malaria in the neotropic region, a species not just highly anthropophilic but very efficient in transmitting Plasmodium species and considered the most important vector in the Amazon region. The main goal of this study was to determine the genetic structure of the A. darlingi populations using microsatellites (STR) in western and eastern regions of Colombia. DNA extraction was done with the cited protocol of band using the Genomic Prep™ cell and tissue isolation commercial kits. We used the STR reported by Conn et al (Mol Ecol Notes 1: 223-225, 2001). The analysis with STR proved there was a high genetic diversity and significant alterations of the Hardy-Weinberg equilibrium. The greatest genetic diversity was recorded in Mitu (Vaupes) (Na = 14, Ho = 0.520). The lowest was in Pueblo Nuevo (Cordoba) (Na = 12, Ho = 0.457). The eastern region and the Mitu (Vaupes) populations presented the highest number of primer alleles (Ap = 30; Ap = 13; Ap = 9), with variations between 0.010 and 0.097. The AMOVA revealed that the whole population underwent moderate genetic differentiation (F ST  = 0.063, p < 0.05). The same differentiation was noticed (0.06 < F ST  > 0.06, p < 0.05) with five of the six populations included in this job, and there was a low differentiation in the Las Margaritas (Santander) area (F ST  = 0.02s3, p < 0.05). Our results suggest a slight positive correlation, which does not show a statistical significance between the geographic and genetic distances, probably suggesting that the moderate genetic differentiation found between pairs of populations does not need to be explained for the hypothesis of separation by distance.

  14. Population-genetic properties of differentiated copy number variations in cattle

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a...

  15. Genetic variation and differentiation in parent-descendant cattle and bison populations

    USDA-ARS?s Scientific Manuscript database

    Genetic variation and differentiation at 32 microsatellite DNA loci is quantified for parent-descendant cattle populations and parent-descendant bison (Bison bison) populations. Heterozygosity (Ho) and numbers of alleles/locus (AR) are less in the Line 1 Hereford inbred cattle population than in t...

  16. Population genetic differentiation of height and body mass index across Europe.

    PubMed

    Robinson, Matthew R; Hemani, Gibran; Medina-Gomez, Carolina; Mezzavilla, Massimo; Esko, Tonu; Shakhbazov, Konstantin; Powell, Joseph E; Vinkhuyzen, Anna; Berndt, Sonja I; Gustafsson, Stefan; Justice, Anne E; Kahali, Bratati; Locke, Adam E; Pers, Tune H; Vedantam, Sailaja; Wood, Andrew R; van Rheenen, Wouter; Andreassen, Ole A; Gasparini, Paolo; Metspalu, Andres; Berg, Leonard H van den; Veldink, Jan H; Rivadeneira, Fernando; Werge, Thomas M; Abecasis, Goncalo R; Boomsma, Dorret I; Chasman, Daniel I; de Geus, Eco J C; Frayling, Timothy M; Hirschhorn, Joel N; Hottenga, Jouke Jan; Ingelsson, Erik; Loos, Ruth J F; Magnusson, Patrik K E; Martin, Nicholas G; Montgomery, Grant W; North, Kari E; Pedersen, Nancy L; Spector, Timothy D; Speliotes, Elizabeth K; Goddard, Michael E; Yang, Jian; Visscher, Peter M

    2015-11-01

    Across-nation differences in the mean values for complex traits are common, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10(-8); BMI, P < 5.95 × 10(-4)), and we find an among-population genetic correlation for tall and slender individuals (r = -0.80, 95% CI = -0.95, -0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).

  17. Investigating the population structure and genetic differentiation of livestock guard dog breeds.

    PubMed

    Bigi, D; Marelli, S P; Liotta, L; Frattini, S; Talenti, A; Pagnacco, G; Polli, M; Crepaldi, P

    2018-01-14

    Livestock guarding dogs are a valuable adjunct to the pastoral community. Having been traditionally selected for their working ability, they fulfil their function with minimal interaction or command from their human owners. In this study, the population structure and the genetic differentiation of three Italian livestock guardian breeds (Sila's Dog, Maremma and Abruzzese Sheepdog and Mannara's Dog) and three functionally and physically similar breeds (Cane Corso, Central Asian Shepherd Dog and Caucasian Shepherd Dog), totalling 179 dogs unrelated at the second generation, were investigated with 18 autosomal microsatellite markers. Values for the number of alleles per locus, observed and expected heterozygosity, Hardy-Weinberg Equilibrium, F stats, Nei's and Reynold's genetic distances, clustering and sub-population formation abilities and individual genetic structures were calculated. Our results show clear breed differentiation, whereby all the considered breeds show reasonable genetic variability despite small population sizes and variable selection schemes. These results provide meaningful data to stakeholders in specific breed and environmental conservation programmes.

  18. Genetic differentiation and population structure of five ethnic groups of Punjab (North-West India).

    PubMed

    Singh, Gagandeep; Talwar, Indu; Sharma, Rubina; Matharoo, Kawaljit; Bhanwer, A J S

    2016-12-01

    The state of Punjab in the North-West part of India has acted as the main passage for all the major human invasions into the Indian subcontinent. It has resulted in the mixing of foreign gene pool into the local populations, which led to an extensive range of genetic diversity and has influenced the genetic structure of populations in Punjab, North-West India. The present study was conducted to examine the genetic structure, relationships, and extent of genetic differentiation in five Indo-European speaking ethnic groups of Punjab. A total of 1021 unrelated samples belonging to Banias, Brahmins, Jat Sikhs, Khatris, and Scheduled castes were analyzed for four human-specific Ins/Del polymorphic loci (ACE, APO, PLAT, and D1) and three restriction fragment length polymorphisms ESR (PvuII), LPL (PvuII), and T2 (MspI) using Polymerase chain reaction (PCR). All the loci were found to be polymorphic among the studied populations. The frequency of the Alu insertion at APO locus was observed to exhibit the highest value (82.6-96.3 %), whereas D1 exhibited the lowest (26.5-45.6 %) among all the ethnic groups. The average heterozygosity among the studied populations ranged from 0.3816 in Banias to 0.4163 in Khatris. The F ST values ranged from 0.0418 to 0.0033 for the PLAT and LPL loci, respectively, with an average value being 0.0166. Phylogenetic analysis revealed that Banias and Khatris are genetically closest to each other. The Jat Sikhs are genetically close to Brahmins and are distant from the Banias. The Jat Sikhs, Banias, Brahmins, and Khatris are genetically very distant from the Scheduled castes. Overall, Uniform allele frequency distribution patterns, high average heterozygosity values, and a small degree of genetic differentiation in this study suggest a genetic proximity among the selected populations. A low level of genetic differentiation was observed in the studied population groups indicating that genetic drift might have been small or negligible in shaping

  19. Ecological and genetic barriers differentiate natural populations of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causalmore » genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Lastly, our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.« less

  20. Ecological and genetic barriers differentiate natural populations of Saccharomyces cerevisiae

    DOE PAGES

    Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.; ...

    2015-05-06

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causalmore » genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Lastly, our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.« less

  1. Philopatry drives genetic differentiation in an island archipelago: comparative population genetics of Galapagos Nazca boobies (Sula granti) and great frigatebirds (Fregata minor)

    PubMed Central

    Levin, Iris I; Parker, Patricia G

    2012-01-01

    Seabirds are considered highly mobile, able to fly great distances with few apparent barriers to dispersal. However, it is often the case that seabird populations exhibit strong population genetic structure despite their potential vagility. Here we show that Galapagos Nazca booby (Sula granti) populations are substantially differentiated, even within the small geographic scale of this archipelago. On the other hand, Galapagos great frigatebird (Fregata minor) populations do not show any genetic structure. We characterized the genetic differentiation by sampling five colonies of both species in the Galapagos archipelago and analyzing eight microsatellite loci and three mitochondrial genes. Using an F-statistic approach on the multilocus data, we found significant differentiation between nearly all island pairs of Nazca booby populations and a Bayesian clustering analysis provided support for three distinct genetic clusters. Mitochondrial DNA showed less differentiation of Nazca booby colonies; only Nazca boobies from the island of Darwin were significantly differentiated from individuals throughout the rest of the archipelago. Great frigatebird populations showed little to no evidence for genetic differentiation at the same scale. Only two island pairs (Darwin – Wolf, N. Seymour – Wolf) were significantly differentiated using the multilocus data, and only two island pairs had statistically significant φST values (N. Seymour – Darwin, N. Seymour – Wolf) according to the mitochondrial data. There was no significant pattern of isolation by distance for either species calculated using both markers. Seven of the ten Nazca booby migration rates calculated between island pairs were in the south or southeast to north or northwest direction. The population differentiation found among Galapagos Nazca booby colonies, but not great frigatebird colonies, is most likely due to differences in natal and breeding philopatry. PMID:23170212

  2. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis.

    PubMed

    Herrera, Carlos M; Bazaga, Pilar

    2010-08-01

    *In plants, epigenetic variations based on DNA methylation are often heritable and could influence the course of evolution. Before this hypothesis can be assessed, fundamental questions about epigenetic variation remain to be addressed in a real-world context, including its magnitude, structuring within and among natural populations, and autonomy in relation to the genetic context. *Extent and patterns of cytosine methylation, and the relationship to adaptive genetic divergence between populations, were investigated for wild populations of the southern Spanish violet Viola cazorlensis (Violaceae) using the methylation-sensitive amplified polymorphism (MSAP) technique, a modification of the amplified fragment length polymorphism method (AFLP) based on the differential sensitivity of isoschizomeric restriction enzymes to site-specific cytosine methylation. *The genome of V. cazorlensis plants exhibited extensive levels of methylation, and methylation-based epigenetic variation was structured into distinct between- and within- population components. Epigenetic differentiation of populations was correlated with adaptive genetic divergence revealed by a Bayesian population-genomic analysis of AFLP data. Significant associations existed at the individual genome level between adaptive AFLP loci and the methylation state of methylation-susceptible MSAP loci. *Population-specific, divergent patterns of correlated selection on epigenetic and genetic individual variation could account for the coordinated epigenetic-genetic adaptive population differentiation revealed by this study.

  3. Genetic differentiation among migrant and resident populations of the threatened Asian houbara bustard.

    PubMed

    Riou, Samuel; Combreau, Olivier; Judas, Jacky; Lawrence, Mark; Al Baidani, Mohamed Saleh; Pitra, Christian

    2012-01-01

    The Asian houbara bustard Chlamydotis macqueenii is a partial migrant of conservation concern found in deserts of central Asia and the Middle East. In the southern part of the species range, resident populations have been greatly fragmented and reduced by sustained human pressure. In the north, birds migrate from breeding grounds between West Kazakhstan and Mongolia to wintering areas in the Middle East and south central Asia. Extensive satellite tracking has shown substantial partitioning in migration routes and wintering grounds, suggesting a longitudinal barrier to present-day gene flow among migrants. In this context, we explored genetic population structure using 17 microsatellite loci and sampling 108 individuals across the range. We identified limited but significant overall differentiation (F(CT) = 0.045), which was overwhelmingly due to the differentiation of resident Arabian populations, particularly the one from Yemen, relative to the central Asian populations. Population structure within the central Asian group was not detectable with the exception of subtle differentiation of West Kazakh birds on the western flyway, relative to eastern populations. We interpret these patterns as evidence of recent common ancestry in Asia, coupled with a longitudinal barrier to present-day gene flow along the migratory divide, which has yet to translate into genetic divergence. These results provide key parameters for a coherent conservation strategy aimed at preserving genetic diversity and migration routes.

  4. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    PubMed

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century. © 2013 Blackwell Publishing Ltd.

  5. Population genetic analysis and bioclimatic modeling in Agave striata in the Chihuahuan Desert indicate higher genetic variation and lower differentiation in drier and more variable environments.

    PubMed

    Trejo, Laura; Alvarado-Cárdenas, Leonardo O; Scheinvar, Enrique; Eguiarte, Luis E

    2016-06-01

    Is there an association between bioclimatic variables and genetic variation within species? This question can be approached by a detailed analysis of population genetics parameters along environmental gradients in recently originated species (so genetic drift does not further obscure the patterns). The genus Agave, with more than 200 recent species encompassing a diversity of morphologies and distributional patterns, is an adequate system for such analyses. We studied Agave striata, a widely distributed species from the Chihuahuan Desert, with a distinctive iteroparous reproductive ecology and two recognized subspecies with clear morphological differences. We used population genetic analyses along with bioclimatic studies to understand the effect of environment on the genetic variation and differentiation of this species. We analyzed six populations of the subspecies A. striata subsp. striata, with a southern distribution, and six populations of A. striata subsp. falcata, with a northern distribution, using 48 ISSR loci and a total of 541 individuals (averaging 45 individuals per population). We assessed correlations between population genetics parameters (the levels of genetic variation and differentiation) and the bioclimatic variables of each population. We modeled each subspecies distribution and used linear correlations and multifactorial analysis of variance. Genetic variation (measured as expected heterozygosity) increased at higher latitudes. Higher levels of genetic variation in populations were associated with a higher variation in environmental temperature and lower precipitation. Stronger population differentiation was associated with wetter and more variable precipitation in the southern distribution of the species. The two subspecies have genetic differences, which coincide with their climatic differences and potential distributions. Differences in genetic variation among populations and the genetic differentiation between A. striata subsp. striata

  6. Mitochondrial DNA markers reveal high genetic diversity and strong genetic differentiation in populations of Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae).

    PubMed

    Men, Qiulei; Xue, Guoxi; Mu, Dan; Hu, Qingling; Huang, Minyi

    2017-01-01

    Dendrolimus kikuchii Matsumura, 1927 is a serious forest pest causing great damage to coniferous trees in China. Despite its economic importance, the population genetics of this pest are poorly known. We used three mitochondrial genes (COI, COII and Cytb) to investigate the genetic diversity and genetic differentiation of 15 populations collected from the main distribution regions of D. kikuchii in China. Populations show high haplotype and nucleotide diversity. Haplotype network and phylogenetic analysis divides the populations into three major clades, the central and southeastern China (CC+SEC) clade, the eastern China (EC) clade, and the southwestern China (SWC) clade. Populations collected from adjacent localities share the same clade, which is consistent with the strong relationship of isolation by distance (r = 0.74824, P = 0.00001). AMOVA analysis indicated that the major portion of this molecular genetic variation is found among the three groups of CC+SEC, EC and SWC (61.26%). Of 105 pairwise FST comparisons, 93 show high genetic differentiation. Populations of Puer (PE), Yangshuo (YS) and Leishan (LS) are separated from other populations by a larger genetic distance. Distributions of pairwise differences obtained with single and combined gene data from the overall populations are multimodal, suggesting these populations had no prior population expansion in southern China. The nonsignificant neutral test on the basis of Tajima' D and Fu's Fs, and the lack of a star-shaped haplotype network together with the multiple haplotypes support this hypothesis. Pleistocene climatic fluctuations, combined with the host specificity to Pinus species, made these regions of south China into a refuge for D. kikuchii. The high level of population genetic structuring is related to their weak flight capacity, their variations of life history and the geographic distance among populations.

  7. Woody climbers show greater population genetic differentiation than trees: Insights into the link between ecological traits and diversification.

    PubMed

    Gianoli, Ernesto; Torres-Díaz, Cristian; Ruiz, Eduardo; Salgado-Luarte, Cristian; Molina-Montenegro, Marco A; Saldaña, Alfredo; Ríos, Rodrigo S

    2016-12-01

    The climbing habit is a key innovation in plants: climbing taxa have higher species richness than nonclimbing sister groups. We evaluated the hypothesis that climbing plant species show greater among-population genetic differentiation than nonclimber species. We compared the among-population genetic distance in woody climbers (eight species, 30 populations) and trees (seven species, 29 populations) coexisting in nine communities in a temperate rainforest. We also compared within-population genetic diversity in co-occurring woody climbers and trees in two communities. Mean genetic distance between populations of climbers was twice that of trees. Isolation by distance (increase in genetic distance with geographic distance) was greater for climbers. Climbers and trees showed similar within-population genetic diversity. Our longevity estimate suggested that climbers had shorter generation times, while other biological features often associated with diversification (dispersal and pollination syndromes, mating system, size, and metabolic rate) did not show significant differences between groups. We hypothesize that the greater population differentiation in climbers could result from greater evolutionary responses to local selection acting on initially higher within-population genetic diversity, which could be driven by neutral processes associated with shorter generation times. Increased population genetic differentiation could be incorporated as another line of evidence when testing for key innovations. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. Dietary Differentiation and the Evolution of Population Genetic Structure in a Highly Mobile Carnivore

    PubMed Central

    Pilot, Małgorzata; Jędrzejewski, Włodzimierz; Sidorovich, Vadim E.; Meier-Augenstein, Wolfram; Hoelzel, A. Rus

    2012-01-01

    Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ 13C and δ 15N values) for Eastern European wolves (Canis lupus) as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure), to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation) in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores. PMID:22768075

  9. Population genetic differentiation of height and body mass index across Europe

    PubMed Central

    Robinson, Matthew R.; Hemani, Gibran; Medina-Gomez, Carolina; Mezzavilla, Massimo; Esko, Tonu; Shakhbazov, Konstantin; Powell, Joseph E.; Vinkhuyzen, Anna; Berndt, Sonja I.; Gustafsson, Stefan; Justice, Anne E.; Kahali, Bratati; Locke, Adam E.; Pers, Tune H.; Vedantam, Sailaja; Wood, Andrew R.; van Rheenen, Wouter; Andreassen, Ole A.; Gasparini, Paolo; Metspalu, Andres; van den Berg, Leonard H.; Veldink, Jan H.; Rivadeneira, Fernando; Werge, Thomas M.; Abecasis, Goncalo R.; Boomsma, Dorret I.; Chasman, Daniel I.; de Geus, Eco J.C.; Frayling, Timothy M.; Hirschhorn, Joel N.; Hottenga, Jouke Jan; Ingelsson, Erik; Loos, Ruth J.F.; Magnusson, Patrik K. E.; Martin, Nicholas G.; Montgomery, Grant W.; North, Kari E.; Pedersen, Nancy L.; Spector, Timothy D.; Speliotes, Elizabeth K.; Goddard, Michael E.; Yang, Jian; Visscher, Peter M.

    2016-01-01

    Across-nation differences in the mean of complex traits such as obesity and stature are common1–8, but the reasons for these differences are not known. Here, we find evidence that many independent loci of small effect combine to create population genetic differences in height and body mass index (BMI) in a sample of 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased estimates of effect sizes from 17,500 sib pairs, we estimate that 24% (95% CI: 9%, 41%) and 8% (95% CI: 4%, 16%) of the captured additive genetic variance for height and BMI across Europe are attributed to among-population genetic differences. Population genetic divergence differed significantly from that expected under a null model (P <3.94e−08 for height and P<5.95e−04 for BMI), and we find an among-population genetic correlation for tall and slender nations (r = −0.80 (95% CI: −0.95, −0.60), contrasting no genetic correlation between height and BMI within populations (r = −0.016, 95% CI: −0.041, 0.001), consistent with selection on height genes that also act to reduce BMI. Observations of mean height across nations correlated with the predicted genetic means for height (r = 0.51, P<0.001), so that a proportion of observed differences in height within Europe reflect genetic factors. In contrast, observed mean BMI did not correlate with the genetic estimates (P<0.58), implying that genetic differentiation in BMI is masked by environmental differences across Europe. PMID:26366552

  10. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Genetic differentiation and trade among populations of peach palm ( Bactris gasipaes Kunth) in the Peruvian Amazon-implications for genetic resource management.

    PubMed

    Adin, A; Weber, J C; Sotelo Montes, C; Vidaurre, H; Vosman, B; Smulders, M J M

    2004-05-01

    Peach palm ( Bactris gasipaes Kunth) is cultivated for fruit and 'heart of palm', and is an important component of agroforestry systems in the Peruvian Amazon. In this study, AFLP was used to compare genetic diversity among domesticated populations along the Paranapura and Cuiparillo rivers, which are managed by indigenous and colonist farming communities, respectively. Gene diversity was 0.2629 for the populations in indigenous communities and 0.2534 in colonist communities. Genetic differentiation among populations ( G(st)) was 0.0377-0.0416 ( P<0.01) among populations along both rivers. There was no relation between genetic differentiation and the geographical location of populations along the rivers. Since natural seed dispersal by birds and rodents is thought to occur only across relatively short distances (100-200 m), it is likely that exchange of material by farmers and commercial traders is responsible for most of the 'long-distance' (over more than 20 km) gene flow among populations along the two rivers studied. This exchange of material may be important to counteract the effects of selection as well as genetic drift in small groups of trees in farmers' fields, much as in a metapopulation, and may account for the weak genetic differentiation between the two rivers ( G(st)=0.0249, P<0.01). A comparison with samples from other landraces in Peru and Brazil showed the existence of an isolation-by-distance structure up to 3,000 km, consistent with gene flow on a regional scale, likely mediated by trade in the Amazon Basin. Results are discussed with regard to practical implications for the management of genetic resources with farming communities.

  12. RAPID-COMMUNICATION Genetic diversity and differentiation in natural populations of Arapaima gigas from lower Amazon revealed by microsatellites.

    PubMed

    Fazzi-Gomes, P F; Melo, N; Palheta, G; Guerreiro, S; Amador, M; Ribeiro-Dos-Santos, A K; Santos, S; Hamoy, I

    2017-02-08

    Genetic variability is one of the important criteria for species conservation decisions. This study aimed to analyze the genetic diversity and the population differentiation of two natural populations of Arapaima gigas, a species with a long history of being commercially exploited. We collected 87 samples of A. gigas from Grande Curuai Lake and Paru Lake, located in the Lower Amazon region of Amazônia, Brazil, and genotyped these samples using a multiplex panel of microsatellite markers. Our results showed that the populations of A. gigas analyzed had high levels of genetic variability, which were similar to those described in previous studies. These two populations had a significant population differentiation supported by the estimates of F ST and R ST (0.06), by Bayesian analysis (K = 2), and by population assignment tests, which revealed a moderate genetic distance.

  13. Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population.

    PubMed

    Aykanat, Tutku; Johnston, Susan E; Orell, Panu; Niemelä, Eero; Erkinaro, Jaakko; Primmer, Craig R

    2015-10-01

    Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high-resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)-based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine-scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST  = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late-maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence. © 2015 John Wiley & Sons Ltd.

  14. Genetic diversity and population differentiation of small giant clam Tridacna maxima in Comoros islands assessed by microsatellite markers.

    PubMed

    Ahmed Mohamed, Nadjim; Yu, Qian; Chanfi, Mohamed Ibrahim; Li, Yangping; Wang, Shi; Huang, Xiaoting; Bao, Zhenmin

    2016-01-01

    Small giant clam, Tridacna maxima , widely distributed from French Polynesia to East Africa, has faced population declines due to over-exploitation. Comoros islands are an important biogeographic region due to potential richness of marine species, but no relevant information is available. In order to facilitate devising effective conservation management plan for T. maxima , nine microsatellite markers were used to survey genetic diversity and population differentiation of 72 specimens collected from three Comoros islands, Grande Comore, Moheli and Anjouan. A total of 51 alleles were detected ranged from 2 to 8 per locus. Observed and expected heterozygosity varied from 0.260 to 0.790 and from 0.542 to 0.830, respectively. All populations have high genetic diversity, especially the population in Moheli, a protected area, has higher genetic diversity than the others. Significant heterozygote deficiencies were recorded, and null alleles were probably the main factor leading to these deficits. F ST value indicated medium genetic differentiation among the populations. Although significant, AMOVA revealed 48.9 % of genetic variation within individuals and only a small variation of 8.9 % was found between populations. Gene flow was high ( Nm  = 12.40) between Grande Comore and Moheli, while lower ( Nm  = 1.80) between Grande Comore and Anjouan, explaining geographic barriers to genetic exchanges might exist in these two islands. Global gene flow analysis ( Nm  = 5.50) showed that larval dispersal is enough to move between the islands. The high genetic diversity and medium population differentiation revealed in the present study offer useful information on genetic conservation of small giant clams.

  15. Genetic variability and differentiation among populations of the Azorean endemic gymnosperm Juniperus brevifolia: baseline information for a conservation and restoration perspective.

    PubMed

    Silva, Luís; Elias, Rui B; Moura, Mónica; Meimberg, Harald; Dias, Eduardo

    2011-12-01

    The Azorean endemic gymnosperm Juniperus brevifolia (Seub.) Antoine is a top priority species for conservation in Macaronesia, based on its ecological significance in natural plant communities. To evaluate genetic variability and differentiation among J. brevifolia populations from the Azorean archipelago, we studied 15 ISSR and 15 RAPD markers in 178 individuals from 18 populations. The average number of polymorphic bands per population was 65 for both ISSR and RAPD. The majority of genetic variability was found within populations and among populations within islands, and this partitioning of variability was confirmed by AMOVA. The large majority of population pairwise F(ST) values were above 0.3 and below 0.6. The degree of population genetic differentiation in J. brevifolia was relatively high compared with other species, including Juniperus spp. The genetic differentiation among populations suggests that provenance should be considered when formulating augmentation or reintroduction strategies.

  16. Genetic differentiation and origin of the Jordanian population: an analysis of Alu insertion polymorphisms.

    PubMed

    Bahri, Raoudha; El Moncer, Wifak; Al-Batayneh, Khalid; Sadiq, May; Esteban, Esther; Moral, Pedro; Chaabani, Hassen

    2012-05-01

    Although much of Jordan is covered by desert, its north-western region forms part of the Fertile Crescent region that had given a rich past to Jordanians. This past, scarcely described by historians, is not yet clarified by sufficient genetic data. Thus in this paper we aim to determine the genetic differentiation of the Jordanian population and to discuss its origin. A total of 150 unrelated healthy Jordanians were investigated for ten Alu insertion polymorphisms. Genetic relationships among populations were estimated by a principal component (PC) plot based on the analyses of the R-matrix software. Statistical analysis showed that the Jordanian population is not significantly different from the United Arab Emirates population or the North Africans. This observation, well represented in PC plot, suggests a common origin of these populations belonging respectively to ancient Mesopotamia, Arabia, and North Africa. Our results are compatible with ancient peoples' movements from Arabia to ancient Mesopotamia and North Africa as proposed by historians and supported by previous genetic results. The original genetic profile of the Jordanian population, very likely Arabian Semitic, has not been subject to significant change despite the succession of several civilizations.

  17. The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population.

    PubMed

    Toro, Nicolás; Villadas, Pablo J; Molina-Sánchez, María Dolores; Navarro-Gómez, Pilar; Vinardell, José M; Cuesta-Berrio, Lidia; Rodríguez-Carvajal, Miguel A

    2017-04-06

    The question of how genotypic and ecological units arise and spread in natural microbial populations remains controversial in the field of evolutionary biology. Here, we investigated the early stages of ecological and genetic differentiation in a highly clonal sympatric Sinorhizobium meliloti population. Whole-genome sequencing revealed that a large DNA region of the symbiotic plasmid pSymB was replaced in some isolates with a similar synteny block carrying densely clustered SNPs and displaying gene acquisition and loss. Two different versions of this genomic island of differentiation (GID) generated by multiple genetic exchanges over time appear to have arisen recently, through recombination in a particular clade within this population. In addition, these isolates display resistance to phages from the same geographic region, probably due to the modification of surface components by the acquired genes. Our results suggest that an underlying process of early ecological and genetic differentiation in S. meliloti is primarily triggered by acquisition of genes that confer resistance to soil phages within particular large genomic DNA regions prone to recombination.

  18. Low genetic differentiation in a sedentary bird: house sparrow population genetics in a contiguous landscape

    PubMed Central

    Kekkonen, J; Seppä, P; Hanski, I K; Jensen, H; Väisänen, R A; Brommer, J E

    2011-01-01

    The house sparrow Passer domesticus has been declining in abundance in many localities, including Finland. We studied the genetic diversity and differentiation of the house sparrow populations across Finland in the 1980s, at the onset of the species' decline in abundance. We genotyped 472 adult males (the less dispersive sex) from 13 locations in Finland (covering a range of 400 × 800 km) and one in Sweden (Stockholm) for 13 polymorphic microsatellite markers. Our analysis of Finnish ringing records showed that natal dispersal distances are limited (90% <16 km), which confirmed earlier finding from other countries. The Finnish populations were panmictic, and genetically very homogeneous and the limited dispersal was sufficiently large to maintain their connectivity. However, all Finnish populations differed significantly from the Stockholm population, even though direct geographical distance to it was often smaller than among Finnish populations. Hence, the open sea between Finland and Sweden appears to form a dispersal barrier for this species, whereas dispersal is much less constrained across the Finnish mainland (which lacks geographical barriers). Our findings provide a benchmark for conservation biologists and emphasize the influence of landscape structure on gene flow. PMID:20372181

  19. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    USGS Publications Warehouse

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Si-Fa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  20. Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L)

    PubMed Central

    Motamayor, Juan C.; Lachenaud, Philippe; da Silva e Mota, Jay Wallace; Loor, Rey; Kuhn, David N.; Brown, J. Steven; Schnell, Raymond J.

    2008-01-01

    Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study. PMID:18827930

  1. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L).

    PubMed

    Motamayor, Juan C; Lachenaud, Philippe; da Silva E Mota, Jay Wallace; Loor, Rey; Kuhn, David N; Brown, J Steven; Schnell, Raymond J

    2008-10-01

    Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study.

  2. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event

    PubMed Central

    2010-01-01

    Background Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary

  3. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event.

    PubMed

    Plath, Martin; Hermann, Bernd; Schröder, Christiane; Riesch, Rüdiger; Tobler, Michael; García de León, Francisco J; Schlupp, Ingo; Tiedemann, Ralph

    2010-08-23

    Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations

  4. Population genetics of the understory fishtail palm Chamaedorea ernesti-augusti in Belize: high genetic connectivity with local differentiation

    PubMed Central

    Cibrián-Jaramillo, Angélica; Bacon, Christine D; Garwood, Nancy C; Bateman, Richard M; Thomas, Meredith M; Russell, Steve; Bailey, C Donovan; Hahn, William J; Bridgewater, Samuel GM; DeSalle, Rob

    2009-01-01

    Background Developing a greater understanding of population genetic structure in lowland tropical plant species is highly relevant to our knowledge of increasingly fragmented forests and to the conservation of threatened species. Specific studies are particularly needed for taxa whose population dynamics are further impacted by human harvesting practices. One such case is the fishtail or xaté palm (Chamaedorea ernesti-augusti) of Central America, whose wild-collected leaves are becoming progressively more important to the global ornamental industry. We use microsatellite markers to describe the population genetics of this species in Belize and test the effects of climate change and deforestation on its recent and historical effective population size. Results We found high levels of inbreeding coupled with moderate or high allelic diversity within populations. Overall high gene flow was observed, with a north and south gradient and ongoing differentiation at smaller spatial scales. Immigration rates among populations were more difficult to discern, with minimal evidence for isolation by distance. We infer a tenfold reduction in effective population size ca. 10,000 years ago, but fail to detect changes attributable to Mayan or contemporary deforestation. Conclusion Populations of C. ernesti-augusti are genetically heterogeneous demes at a local spatial scale, but are widely connected at a regional level in Belize. We suggest that the inferred patterns in population genetic structure are the result of the colonization of this species into Belize following expansion of humid forests in combination with demographic and mating patterns. Within populations, we hypothesize that low aggregated population density over large areas, short distance pollen dispersal via thrips, low adult survival, and low fruiting combined with early flowering may contribute towards local inbreeding via genetic drift. Relatively high levels of regional connectivity are likely the result of

  5. Genetic diversity and substantial population differentiation in Crassostrea hongkongensis revealed by mitochondrial DNA.

    PubMed

    Li, Lu; Wu, Xiangyun; Yu, Ziniu

    2013-09-01

    The Hong Kong oyster, Crassostrea hongkongensis, is an important fisheries resource that is cultivated in the coastal waters of the South China Sea. Despite significant advances in understanding biological and taxonomic aspects of this species, no detailed study of its population genetic diversity in regions of extensive cultivation are available. Direct sequencing of the mtDNA cox1 gene region was used to investigate genetic variation within and between eleven C. hongkongensis populations collected from typical habitats. Sixty-two haplotypes were identified; only haplotype 2 (21.74% of total haplotypes) was shared among all the eleven populations, and most of the observed haplotypes were restricted to individual populations. Both AMOVA and FST analyses revealed significant population structure, and the isolation by distance (IBD) was confirmed. The highest local differentiation was observed between the sample pools from Guangxi versus Guangdong and Fujian, which are separated by a geographic barrier, the Leizhou Peninsula. Current knowledge from seed management suggests that seed transfer from Guangxi province has likely reduced the divergence that somewhat naturally exists between these pools. The findings from the present study could be useful for genetic management and may serve as a baseline by which to monitor future changes in genetic diversity, either due to natural or anthropogenic impacts. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Genetic, epigenetic, and HPLC fingerprint differentiation between natural and ex situ populations of Rhodiola sachalinensis from Changbai Mountain, China.

    PubMed

    Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia

    2014-01-01

    Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = -0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.

  7. Interethnic genetic differentiation: HLA class I antigens in the population of Mongolia.

    PubMed

    Chimge, Nyam-Osorin; Batsuuri, Jamiyangiin

    1999-09-01

    A total of 1668 individuals representing 10 major Mongolian ethnic groups were serologically typed for HLA-A, -B, and -C antigens. Antigens A2, A24, B61, B51, B58, Cw3, Cw7, and Cw6 were the most frequent specificities in Mongolians and no case of B42 was noted in all ethnic groups. The cluster analysis of Principal Components I and II shows that Mongolian speaking groups form one cluster vs Turkic-speaking Kazakhs. The analysis reveals a low, but significant differentiation of Mongolian ethnic groups as measured by F(ST) = 0.0100 (P < 0.001). Gene diversity analysis shows that the genetic diversity of the Mongolian population can be attributed largely to its ethnic component, which makes up 64% of total genetic variation. The low degree of interpopulation variation and high level of intrapopulation diversity can be explained by the nomadic way of life of this indigenous population. Three-locus haplotypes A24-B61-Cw3, A33-B58-Cw3 are the most common haplotypic associations in Mongolians. The presence of antigens characteristic of Mongoloid, Caucasoid, and Negroid populations in Mongolians suggests a unique genetic background of this indigenous population. The three-locus haplotype distribution among Mongolians relative to other world populations supports the migration of ancient people from Central Asia to the New World, Korean Peninsula, and Southeast Asia. Am. J. Hum. Biol. 11:603-618, 1999. Copyright 1999 Wiley-Liss, Inc.

  8. Genetic, Epigenetic, and HPLC Fingerprint Differentiation between Natural and Ex Situ Populations of Rhodiola sachalinensis from Changbai Mountain, China

    PubMed Central

    Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia

    2014-01-01

    Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis. PMID:25386983

  9. Identification of a barrier height threshold where brook trout population genetic diversity, differentiation, and relatedness are affected

    Treesearch

    Anne Timm; Eric Hallerman; Andy Dolloff; Mark Hudy; Randall Kolka

    2016-01-01

    The overall goal of the study was to evaluate effects of landscape features, barriers, on Brook Trout Salvelinus fontinalis population genetics and to identify a potential barrier height threshold where genetic diversity was reduced upstream of the barrier and differentiation and relatedness increase. We screened variation at eight...

  10. Low Genetic Differentiation across Three Major Ocean Populations of the Whale Shark, Rhincodon typus

    PubMed Central

    Schmidt, Jennifer V.; Schmidt, Claudia L.; Ozer, Fusun; Ernst, Robin E.; Feldheim, Kevin A.; Ashley, Mary V.; Levine, Marie

    2009-01-01

    Background Whale sharks are a declining species for which little biological data is available. While these animals are protected in many parts of their range, they are fished legally and illegally in some countries. Baseline biological and ecological data are needed to allow the formulation of an effective conservation plan for whale sharks. It is not known, for example, whether the whale shark is represented by a single worldwide panmictic population or by numerous, reproductively isolated populations. Genetic analysis of population structure is one essential component of the baseline data required for whale shark conservation. Methodology/Principal Findings We have identified 8 polymorphic microsatellites in the whale shark and used these markers to assess genetic variation and population structure in a panel of whale sharks covering a broad geographic region. This is the first record of microsatellite loci in the whale shark, which displayed an average of 9 alleles per locus and mean Ho = 0.66 and He = 0.69. All but one of the eight loci meet the expectations of Hardy-Weinberg equilibrium. Analysis of these loci in whale sharks representing three major portions of their range, the Pacific (P), Caribbean (C), and Indian (I) Oceans, determined that there is little population differentiation between animals sampled in different geographic regions, indicating historical gene flow between populations. FST values for inter-ocean comparisons were low (P×C = 0.0387, C×I = 0.0296 and P×I = −0.0022), and only C×I approached statistical significance (p = 0.0495). Conclusions/Significance We have shown only low levels of genetic differentiation between geographically distinct whale shark populations. Existing satellite tracking data have revealed both regional and long-range migration of whale sharks throughout their range, which supports the finding of gene flow between populations. Whale sharks traverse geographic and political boundaries

  11. Genetic diversity in wild populations of Paulownia fortune.

    PubMed

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together.

  12. Genetic Variation and Population Structure in Native Americans

    PubMed Central

    Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-01-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  13. Phenotypic and genetic differentiation among yellow monkeyflower populations from thermal and non-thermal soils in Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Roskilly, Beth; Hendrick, Margaret F; Zabinski, Catherine A; Barr, Camille M; Fishman, Lila

    2012-09-01

    In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby (<500 m distant) in non-thermal soils. In simulated thermal and non-thermal environments, thermal plants remained significantly divergent from non-thermal plants in vegetative, floral, mating system, and phenological traits. Plants from both thermal populations flowered closer to the ground, allocated relatively more to sexual reproduction, were more likely to initiate flowering under short daylengths, and made smaller flowers that could efficiently self-fertilize without pollinators. These shared differences are consistent with local adaptation to life in the ephemeral window for growth and reproduction created by winter and spring snowmelt on hot soils. In contrast, habitat type (thermal vs. non-thermal) explained little of the genetic variation at neutral markers. Instead, we found that one thermal population (Agrostis Headquarters; AHQ-T) was strongly differentiated from all other populations (all F (ST) > 0.34), which were only weakly differentiated from each other (all F (ST) < 0.07). Phenotypic differentiation of thermal M. guttatus, but little population genetic evidence of long-term ecotypic divergence, encourages further investigations of the potential for fine-scale adaptation and reproductive isolation across the geothermal gradient in Yellowstone.

  14. Dispersal in the sub-Antarctic: king penguins show remarkably little population genetic differentiation across their range.

    PubMed

    Clucas, Gemma V; Younger, Jane L; Kao, Damian; Rogers, Alex D; Handley, Jonathan; Miller, Gary D; Jouventin, Pierre; Nolan, Paul; Gharbi, Karim; Miller, Karen J; Hart, Tom

    2016-10-13

    Seabirds are important components of marine ecosystems, both as predators and as indicators of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation, population recovery, and expansion. We investigated the genetic population structure and patterns of colonisation of king penguins across their current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites, we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean, suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South Georgia, possibly as a result of density-dependent processes. The observed subtle differentiation among king penguin colonies must be considered in future conservation planning and monitoring of the species, and demographic models that attempt to forecast extinction risk in response to large-scale climate change must take into account migration. It is possible that migration could buffer king penguins against some of the impacts of climate change where colonies appear panmictic, although it is unlikely to protect them completely given the widespread physical changes projected for their Southern Ocean foraging grounds

  15. Genetic Variation and Population Differentiation in a Medical Herb Houttuynia cordata in China Revealed by Inter-Simple Sequence Repeats (ISSRs)

    PubMed Central

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included. PMID:22942696

  16. Genetic variation and population differentiation in a medical herb Houttuynia cordata in China revealed by inter-simple sequence repeats (ISSRs).

    PubMed

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included.

  17. Investigating the Genetic Diversity, Population Differentiation and Population Dynamics of Cycas segmentifida (Cycadaceae) Endemic to Southwest China by Multiple Molecular Markers

    PubMed Central

    Feng, Xiuyan; Liu, Jian; Chiang, Yu-Chung; Gong, Xun

    2017-01-01

    Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs), three nuclear genes (nDNAs) and 12 nuclear microsatellites (SSRs), we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD) in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida. PMID:28580005

  18. Analysis of Pvama1 genes from China-Myanmar border reveals little regional genetic differentiation of Plasmodium vivax populations.

    PubMed

    Zhu, Xiaotong; Zhao, Pan; Wang, Si; Liu, Fei; Liu, Jun; Wang, Jian; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-11-29

    With the premise of diminishing parasite genetic diversity following the reduction of malaria incidence, the analysis of polymorphic antigenic markers may provide important information about the impact of malaria control on local parasite populations. Here we evaluated the genetic diversity of Plasmodium vivax apical membrane antigen 1 (Pvama1) gene in a parasite population from the China-Myanmar border and compared it with global P. vivax populations. We performed evolutionary analysis to examine the genetic diversity, natural selection, and population differentiation of 73 Pvama1 sequences acquired from the China-Myanmar border as well as 615 publically available Pvama1 sequences from seven global P. vivax populations. A total of 308 Pvama1 haplotypes were identified among the global P. vivax isolates. The overall nucleotide diversity of Pvama1 gene among the 73 China-Myanmar border parasite isolates was 0.008 with 41 haplotypes being identified (Hd = 0.958). Domain I (DI) harbored the majority (26/33) of the polymorphic sites. The McDonald Kreitman test showed a significant positive selection across the ectodomain and the DI of Pvama1. The fixation index (F ST ) estimation between the China-Myanmar border, Thailand (0.01) and Myanmar (0.10) showed only slight geographical genetic differentiation. Notably, the Sal-I haplotype was not detected in any of the analyzed global isolates, whereas the Belem strain was restricted to the Thai population. The detected mutations are mapped outside the overlapped region of the predicted B-cell epitopes and intrinsically unstructured/disordered regions. This study revealed high levels of genetic diversity of Pvama1 in the P. vivax parasite population from the China-Myanmar border with DI displaying stronger diversifying selection than other domains. There were low levels of population subdivision among parasite populations from the Greater Mekong Subregion.

  19. Genetic structure of populations and differentiation in forest trees

    Treesearch

    Raymond P. Guries; F. Thomas Ledig

    1981-01-01

    Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...

  20. Genetic and phenotypic differentiation of an Andean intermediate altitude population

    PubMed Central

    Eichstaedt, Christina A; Antão, Tiago; Cardona, Alexia; Pagani, Luca; Kivisild, Toomas; Mormina, Maru

    2015-01-01

    Highland populations living permanently under hypobaric hypoxia have been subject of extensive research because of the relevance of their physiological adaptations for the understanding of human health and disease. In this context, what is considered high altitude is a matter of interpretation and while the adaptive processes at high altitude (above 3000 m) are well documented, the effects of moderate altitude (below 3000 m) on the phenotype are less well established. In this study, we compare physiological and anthropometric characteristics as well as genetic variations in two Andean populations: the Calchaquíes (2300 m) and neighboring Collas (3500 m). We compare their phenotype and genotype to the sea-level Wichí population. We measured physiological (heart rate, oxygen saturation, respiration rate, and lung function) as well as anthropometric traits (height, sitting height, weight, forearm, and tibia length). We conducted genome-wide genotyping on a subset of the sample (n = 74) and performed various scans for positive selection. At the phenotypic level (n = 179), increased lung capacity stood out in both Andean groups, whereas a growth reduction in distal limbs was only observed at high altitude. At the genome level, Calchaquíes revealed strong signals around PRKG1, suggesting that the nitric oxide pathway may be a target of selection. PRKG1 was highlighted by one of four selection tests among the top five genes using the population branch statistic. Selection tests results of Collas were reported previously. Overall, our study shows that some phenotypic and genetic differentiation occurs at intermediate altitude in response to moderate lifelong selection pressures. PMID:25948820

  1. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China.

    PubMed

    Yi, Shaokui; Wang, Weimin; Zhou, Xiaoyun

    2018-02-21

    Misgurnus anguillicaudatus, an important aquatic species, is mainly distributed in the Yangtze River basin. To reveal the population genetic structure of M. anguillicaudatus distributed in the Yangtze River basin, genotyping by sequencing (GBS) technique was employed to detect the genome wide genetic variations of M. anguillicaudatus. A total of 30.03 Gb raw data were yielded from 70 samples collected from 15 geographic sites located in the Yangtze River basin. Subsequently, 2092 high quality SNPs were genotyped across these samples and used for a series of genetic analysis. The results of genetic analysis showed that high levels of genetic diversity were observed and the populations from upper reaches (UR) were significantly differentiated from the middle and lower reaches (MLR) of Yangtze River basin. Meanwhile, no significant isolation by distance was detected among the populations. Ecological factors (e.g. complicated topography and climatic environment) and anthropogenic factors (e.g. aquaculture and agriculture cultivation) might account for the genetic disconnectivity between UR and MLR populations. This study provided valuable genetic data for the future breeding program and also for the conversation and scientific utilization of those abundant genetic resources stored in the Yangtze River basin. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Genetic differentiation in red-bellied piranha populations (Pygocentrus nattereri, Kner, 1858) from the Solimões-Amazonas River.

    PubMed

    Dos Santos, Carlos Henrique Dos A; de Sá Leitão, Carolina S; Paula-Silva, Maria de N; Almeida-Val, Vera Maria F

    2016-06-01

    Red-bellied piranhas (Pygocentrus nattereri) are widely caught with different intensities throughout the region of Solimões-Amazonas River by local fishermen. Thus, the management of this resource is performed in the absence of any information on its genetic stock. P. nattereri is a voracious predator and widely distributed in the Neotropical region, and it is found in other regions of American continent. However, information about genetic variability and structure of wild populations of red-bellied piranha is unavailable. Here, we describe the levels of genetic diversity and genetic structure of red-bellied piranha populations collected at different locations of Solimões-Amazonas River system. We collected 234 red-bellied piranhas and analyzed throughout eight microsatellite markers. We identified high genetic diversity within populations, although the populations of lakes ANA, ARA, and MAR have shown some decrease in their genetic variability, indicating overfishing at these communities. Was identified the existence of two biological populations when the analysis was taken altogether at the lakes of Solimões-Amazonas River system, with significant genetic differentiation between them. The red-bellied piranha populations presented limited gene flow between two groups of populations, which were explained by geographical distance between these lakes. However, high level of gene flow was observed between the lakes within of the biological populations. We have identified high divergence between the Catalão subpopulation and all other subpopulations. We suggest the creation of sustainable reserve for lakes near the city of Manaus to better manage and protect this species, whose populations suffer from both extractive and sport fishing.

  3. The fine-scale genetic structure and evolution of the Japanese population.

    PubMed

    Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua; Teo, Yik-Ying; Kato, Norihiro

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups-Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.

  4. The fine-scale genetic structure and evolution of the Japanese population

    PubMed Central

    Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics. PMID:29091727

  5. Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range

    PubMed Central

    Lamy, Jean-Baptiste; Bouffier, Laurent; Burlett, Régis; Plomion, Christophe; Cochard, Hervé; Delzon, Sylvain

    2011-01-01

    Background Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QST

  6. Genetic differentiation in Pyrenophora teres f. teres populations from Syria and Tunisia as assessed by AFLP markers.

    PubMed

    Bouajila, A; Zoghlami, N; Murad, S; Baum, M; Ghorbel, A; Nazari, K

    2013-06-01

    To investigate the level of genetic differentiation and diversity among Pyrenophora teres isolate populations originating from different agro-ecological areas of Syria and Tunisia and to determine the potential of AFLP profiling in genotyping Pyrenophora teres f. teres. In this study, AFLP markers have been employed to identify patterns of population structure in 20 Pyrenophora teres f. teres populations from Syria and Tunisia. Ninety-four isolates were studied by the use of a protocol that involved stringent PCR amplification of fragments derived from digestion of genomic DNA with restriction enzymes EcoRI and MesI. Based on 401 amplified polymorphic DNA markers (AFLP), variance analyses indicated that most of the variation was partitioned within rather than between populations. Genotypic diversity (GD) was high for populations from Rihane, local landraces and different agro-ecological zones (GD = 0·75-0·86). There was high genetic differentiation among pathogen populations from different host populations in Syria (Gst  = 0·31, ht = 0·190) and Tunisia (Gst  = 0·39, ht = 0·263), which may be partly explained by the low gene flow around the areas sampled. A phenetic tree revealed three groups with high bootstrap values (55, 68, 76) and reflected the grouping of isolates based on host, or agro-ecological areas. AFLP profiling is an effective method for typing the genetically diverse pathogen Pyrenophora teres f. teres. The study represents a comparative analysis of the genetic diversity in P. teres isolates from two countries spanning two continents and also shows that several distinct P. teres genotypes may be found in a given environment. The implications of these findings for Pyrenophora teres f. teres evolutionary potential and net blotch-resistance breeding in Syria and Tunisia were also discussed. © 2012 The Society for Applied Microbiology.

  7. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran

    PubMed Central

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  8. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    PubMed

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  9. Genetic Resources in the "Calabaza Pipiana" Squash (Cucurbita argyrosperma) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models.

    PubMed

    Sánchez-de la Vega, Guillermo; Castellanos-Morales, Gabriela; Gámez, Niza; Hernández-Rosales, Helena S; Vázquez-Lobo, Alejandra; Aguirre-Planter, Erika; Jaramillo-Correa, Juan P; Montes-Hernández, Salvador; Lira-Saade, Rafael; Eguiarte, Luis E

    2018-01-01

    Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma , known in Mexico as calabaza pipiana , and its wild relative C. argyrosperma ssp. sororia . The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia , and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia , in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies' distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies ( H E = 0.428 in sororia , and H E = 0.410 in argyrosperma ). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation ( F ST ) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low

  10. Population and genomic lessons from genetic analysis of two Indian populations.

    PubMed

    Juyal, Garima; Mondal, Mayukh; Luisi, Pierre; Laayouni, Hafid; Sood, Ajit; Midha, Vandana; Heutink, Peter; Bertranpetit, Jaume; Thelma, B K; Casals, Ferran

    2014-10-01

    Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.

  11. Conservation genetics of managed ungulate populations

    USGS Publications Warehouse

    Scribner, Kim T.

    1993-01-01

    Natural populations of many species are increasingly impacted by human activities. Perturbations are particularly pronunced for large ungulates due in part to sport and commercial harvest, to reductions and fragmentation of native habitat, and as the result of reintroductions. These perturbations affect population size, sex and age composition, and population breeding structure, and as a consequence affect the levels and partitioning of genetic variation. Three case histories highlighting long-term ecological genetic research on mule deer Odocoileus hemionus (Rafinesque, 1817), white-tailed deer O. virginianus (Zimmermann, 1780), and Alpine ibex Capra i. ibex Linnaeus, 1758 are presented. Joint examinations of population ecological and genetic data from several populations of each species reveal: (1) that populations are not in genetic equilibrium, but that allele frequencies and heterozygosity change dramatically over time and among cohorts produced in successive years, (2) populations are genetically structured over short and large geographic distances reflecting local breeding structure and patterns of gene flow, respectively; however, this structure is quite dynamic over time, due in part to population exploitation, and (3) restocking programs are often undertaken with small numbers of founding individuals resulting in dramatic declines in levels of genetic variability and increasing levels of genetic differentiation among populations due to genetic drift. Genetic characteristics have and will continue to provide valuable indirect sources of information relating enviromental and human perturbations to changes in population processes.

  12. An analysis of genetic architecture in populations of Ponderosa Pine

    Treesearch

    Yan B. Linhart; Jeffry B. Mitton; Kareen B. Sturgeon; Martha L. Davis

    1981-01-01

    Patterns of genetic variation were studied in three populations of ponderosa pine in Colorado by using electrophoretically variable protein loci. Significant genetic differences were found between separate clusters of trees and between age classes within populations. In addition, data indicate that differential cone production and differential animal damage have...

  13. Population structure and genetic differentiation of livestock guard dog breeds from the Western Balkans.

    PubMed

    Ceh, E; Dovc, P

    2014-08-01

    Livestock guard dog (LGD) breeds from the Western Balkans are a good example of how complex genetic diversity pattern observed in dog breeds has been shaped by transition in dog breeding practices. Despite their common geographical origin and relatively recent formal recognition as separate breeds, the Karst Shepherd, Sarplaninac and Tornjak show distinct population dynamics, assessed by pedigree, microsatellite and mtDNA data. We genotyped 493 dogs belonging to five dog breeds using a set of 18 microsatellite markers and sequenced mtDNA from 94 dogs from these breeds. Different demographic histories of the Karst Shepherd and Tornjak breeds are reflected in the pedigree data with the former breed having more unbalanced contributions of major ancestors and a realized effective population size of less than 20 animals. The highest allelic richness was found in Sarplaninac (5.94), followed by Tornjak (5.72), whereas Karst Shepherd dogs exhibited the lowest allelic richness (3.33). Similarly, the highest mtDNA haplotype diversity was found in Sarplaninac, followed by Tornjak and Karst Shepherd, where only one haplotype was found. Based on FST differentiation values and high percentages of animals correctly assigned, all breeds can be considered genetically distinct. However, using microsatellite data, common ancestry between the Karst Shepherd and Sarplaninac could not be reconstructed, despite pedigree and mtDNA evidence of their historical admixture. Using neighbour-joining, STRUCTURE or DAPC methods, Sarplaninac and Caucasian Shepherd breeds could not be separated and additionally showed close proximity in the NeighborNet tree. STRUCTURE analysis of the Tornjak breed demonstrated substructuring, which needs further investigation. Altogether, results of this study show that the official separation of these dog breeds strongly affected the resolution of genetic differentiation and thus suggest that the relationships between breeds are not only determined by breed

  14. Genetic Resources in the “Calabaza Pipiana” Squash (Cucurbita argyrosperma) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models

    PubMed Central

    Sánchez-de la Vega, Guillermo; Castellanos-Morales, Gabriela; Gámez, Niza; Hernández-Rosales, Helena S.; Vázquez-Lobo, Alejandra; Aguirre-Planter, Erika; Jaramillo-Correa, Juan P.; Montes-Hernández, Salvador; Lira-Saade, Rafael; Eguiarte, Luis E.

    2018-01-01

    Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies’ distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene

  15. Population genetic structure of rare and endangered plants using molecular markers

    USGS Publications Warehouse

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  16. Genetic analysis of Mexican Criollo cattle populations.

    PubMed

    Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A

    2008-10-01

    The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.

  17. The fine scale genetic structure of the British population

    PubMed Central

    Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-01-01

    Summary Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide SNP data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom (UK). This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to SE England from Anglo-Saxon migrations to be under half, identify the regions not carrying genetic material from these migrations, suggest significant pre-Roman but post-Mesolithic movement into SE England from the Continent, and show that in non-Saxon parts of the UK there exist genetically differentiated subgroups rather than a general “Celtic” population. PMID:25788095

  18. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations.

    PubMed Central

    Kohn, Michael H; Pelz, Hans-Joachim; Wayne, Robert K

    2003-01-01

    Populations may diverge at fitness-related genes as a result of adaptation to local conditions. The ability to detect this divergence by marker-based genomic scans depends on the relative magnitudes of selection, recombination, and migration. We survey rat (Rattus norvegicus) populations to assess the effect that local selection with anticoagulant rodenticides has had on microsatellite marker variation and differentiation at the warfarin resistance gene (Rw) relative to the effect on the genomic background. Initially, using a small sample of 16 rats, we demonstrate tight linkage of microsatellite D1Rat219 to Rw by association mapping of genotypes expressing an anticoagulant-rodenticide-insensitive vitamin K 2,3-epoxide reductase (VKOR). Then, using allele frequencies at D1Rat219, we show that predicted and observed resistance levels in 27 populations correspond, suggesting intense and recent selection for resistance. A contrast of F(ST) values between D1Rat219 and the genomic background revealed that rodenticide selection has overwhelmed drift-mediated population structure only at Rw. A case-controlled design distinguished these locus-specific effects of selection at Rw from background levels of differentiation more effectively than a population-controlled approach. Our results support the notion that an analysis of locus-specific population genetic structure may assist the discovery and mapping of novel candidate loci that are the object of selection or may provide supporting evidence for previously identified loci. PMID:12871915

  19. Genetics of the Shimokita macaque population suggest an ancient bottleneck.

    PubMed

    Kawamoto, Yoshi; Tomari, Ken-ichiro; Kawai, Shizuka; Kawamoto, Sakie

    2008-01-01

    The macaque population of the Shimokita Peninsula represents the northernmost distribution of this species and is isolated from other populations in the Tohoku region of Japan. A previous protein-based study revealed a high level of genetic variability in this population and considerable differentiation from other populations. In order to reassess the genetic features of the Shimokita macaques, we examined 11 autosomal microsatellite loci and three Y chromosomal microsatellite loci. We observed considerable differentiation from other Japanese populations of macaques, but in contrast to the previous results, we observed significantly lower genetic variability in this population. There was a weak indication of a population bottleneck, suggesting a decay over time from an excess of heterozygotes that might be expected in the initial stages of a bottleneck. This may indicate that an ancient bottleneck occurred during the warm period after the last glacial period rather than a recent bottleneck due to hunting in modern times. The frequencies of private alleles were exceptionally high in the Shimokita population, suggesting that the difference in variability as determined in various studies was due to accidental sampling of marker loci with low power to resolve genetic variations in the protein-based studies. The assessments of interpopulation differentiation as determined using autosomal and Y chromosomal markers were highly correlated, and using both types of markers the Shimokita population was found to be the most differentiated of the study populations, probably due to infrequent gene flow with surrounding populations.

  20. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    PubMed

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  1. Population genetic structure and geographic differentiation in butter catfish, Ompok bimaculatus, from Indian waters inferred by cytochrome b mitochondrial gene.

    PubMed

    Kumar, Ravindra; Pandey, Brijesh Kumar; Sarkar, Uttam Kumar; Nagpure, Naresh Sahebrao; Baisvar, Vishwamitra Singh; Agnihotri, Praveen; Awasthi, Abhishek; Mishra, Abha; Kumar, Narendra

    2017-05-01

    Documentation of genetic differentiation among the populations of a species can provide useful information that has roles in conservation, breeding, and management plans. In the present study, we examined the genetic structure and phylogenetic relationships among the 149 individuals of Ompok bimaculatus belonging to 24 populations, collected from Indian waters, using cytochrome b gene. The combined analyses of data suggested that the Indian O. bimaculatus consist of three distinct mtDNA lineages with star-like haplotypes network, which exhibited high genetic variation and haplotypic diversity. Analysis of molecular variance indicated that most of the observed genetic variation was found among the populations suggesting restricted gene flow. Long-term interruption of gene flow was also evidenced by high overall Fst values (0.82367) that could be favored by the discontinuous distributions of the lineages.

  2. Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod.

    PubMed

    Spies, Ingrid; Hauser, Lorenz; Jorde, Per Erik; Knutsen, Halvor; Punt, André E; Rogers, Lauren A; Stenseth, Nils Chr

    2018-05-08

    Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator F ST , such as Wright's equation, F ST ≈ 1/(4 N e m + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the N e / N t ratio (where N e is the effective and N t is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased N e / N t and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of F ST , particularly when genetic differentiation was low, F ST ≈ 10 -3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations. Copyright © 2018 the Author(s). Published by PNAS.

  3. Influence of language and ancestry on genetic structure of contiguous populations: A microsatellite based study on populations of Orissa

    PubMed Central

    Sahoo, Sanghamitra; Kashyap, VK

    2005-01-01

    Background We have examined genetic diversity at fifteen autosomal microsatellite loci in seven predominant populations of Orissa to decipher whether populations inhabiting the same geographic region can be differentiated on the basis of language or ancestry. The studied populations have diverse historical accounts of their origin, belong to two major ethnic groups and different linguistic families. Caucasoid caste populations are speakers of Indo-European language and comprise Brahmins, Khandayat, Karan and Gope, while the three Australoid tribal populations include two Austric speakers: Juang and Saora and a Dravidian speaking population, Paroja. These divergent groups provide a varied substratum for understanding variation of genetic patterns in a geographical area resulting from differential admixture between migrants groups and aboriginals, and the influence of this admixture on population stratification. Results The allele distribution pattern showed uniformity in the studied groups with approximately 81% genetic variability within populations. The coefficient of gene differentiation was found to be significantly higher in tribes (0.014) than caste groups (0.004). Genetic variance between the groups was 0.34% in both ethnic and linguistic clusters and statistically significant only in the ethnic apportionment. Although the populations were genetically close (FST = 0.010), the contemporary caste and tribal groups formed distinct clusters in both Principal-Component plot and Neighbor-Joining tree. In the phylogenetic tree, the Orissa Brahmins showed close affinity to populations of North India, while Khandayat and Gope clustered with the tribal groups, suggesting a possibility of their origin from indigenous people. Conclusions The extent of genetic differentiation in the contemporary caste and tribal groups of Orissa is highly significant and constitutes two distinct genetic clusters. Based on our observations, we suggest that since genetic distances and

  4. Evidence for Inbreeding and Genetic Differentiation among Geographic Populations of the Saprophytic Mushroom Trogia venenata from Southwestern China.

    PubMed

    Mi, Fei; Zhang, Ying; Yang, Dan; Tang, Xiaozhao; Wang, Pengfei; He, Xiaoxia; Zhang, Yunrun; Dong, Jianyong; Cao, Yang; Liu, Chunli; Zhang, Ke-Qin; Xu, Jianping

    2016-01-01

    During the past 40 years, more than 400 Sudden Unexplained Deaths (SUDs) have occurred in Yunnan, southwestern China. Epidemiological and toxicological analyses suggested that a newly discovered mushroom called Trogia venenata was the leading culprit for SUDs. At present, relatively little is known about the genetics and natural history of this mushroom. In this study, we analyzed the sequence variation at four DNA fragments among 232 fruiting bodies of T. venenata collected from seven locations. Our ITS sequence analyses confirmed that all the isolates belonged to the same species. The widespread presence of sequence heterozygosity within many strains at each of three protein-coding genes suggested that the fruiting bodies were diploid, dikaryotic or heterokaryotic. Within individual geographic populations, we found significant deviations of genotype frequencies from Hardy-Weinberg expectations, with the overall observed heterozygosity lower than that expected under random mating, consistent with prevalent inbreeding within local populations. The geographic populations were overall genetically differentiated. Interestingly, while a positive correlation was found between population genetic distance and geographic distance, there was little correlation between genetic distance and barium concentration difference for the geographic populations. Our results suggest frequent inbreeding, geographic structuring, and limited gene flow among geographic populations of T. venenata from southwestern China.

  5. Evidence for Inbreeding and Genetic Differentiation among Geographic Populations of the Saprophytic Mushroom Trogia venenata from Southwestern China

    PubMed Central

    Yang, Dan; Tang, Xiaozhao; Wang, Pengfei; He, Xiaoxia; Zhang, Yunrun; Dong, Jianyong; Cao, Yang; Liu, Chunli; Zhang, Ke-Qin; Xu, Jianping

    2016-01-01

    During the past 40 years, more than 400 Sudden Unexplained Deaths (SUDs) have occurred in Yunnan, southwestern China. Epidemiological and toxicological analyses suggested that a newly discovered mushroom called Trogia venenata was the leading culprit for SUDs. At present, relatively little is known about the genetics and natural history of this mushroom. In this study, we analyzed the sequence variation at four DNA fragments among 232 fruiting bodies of T. venenata collected from seven locations. Our ITS sequence analyses confirmed that all the isolates belonged to the same species. The widespread presence of sequence heterozygosity within many strains at each of three protein-coding genes suggested that the fruiting bodies were diploid, dikaryotic or heterokaryotic. Within individual geographic populations, we found significant deviations of genotype frequencies from Hardy-Weinberg expectations, with the overall observed heterozygosity lower than that expected under random mating, consistent with prevalent inbreeding within local populations. The geographic populations were overall genetically differentiated. Interestingly, while a positive correlation was found between population genetic distance and geographic distance, there was little correlation between genetic distance and barium concentration difference for the geographic populations. Our results suggest frequent inbreeding, geographic structuring, and limited gene flow among geographic populations of T. venenata from southwestern China. PMID:26890380

  6. Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm

    PubMed Central

    da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G

    2015-01-01

    Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150

  7. Sex ratio rather than population size affects genetic diversity in Antennaria dioica.

    PubMed

    Rosche, C; Schrieber, K; Lachmuth, S; Durka, W; Hirsch, H; Wagner, V; Schleuning, M; Hensen, I

    2018-03-09

    Habitat fragmentation and small population size can lead to genetic erosion in threatened plant populations. Classical theory implies that dioecy can counteract genetic erosion as it decreases the magnitude of inbreeding and genetic drift due to obligate outcrossing. However, in small populations, sex ratios may be strongly male- or female-biased, leading to substantial reductions in effective population size. This may theoretically result in a unimodal relationship between sex ratios and genetic diversity; yet, empirical studies on this relationship are scarce. Using AFLP markers, we studied genetic diversity, structure and differentiation in 14 highly fragmented Antennaria dioica populations from the Central European lowlands. Our analyses focused on the relationship between sex ratio, population size and genetic diversity. Although most populations were small (mean: 35.5 patches), genetic diversity was moderately high. We found evidence for isolation-by-distance, but overall differentiation of the populations was rather weak. Females dominated 11 populations, which overall resulted in a slightly female-biased sex ratio (61.5%). There was no significant relationship between population size and genetic diversity. The proportion of females was not unimodally but positively linearly related to genetic diversity. The high genetic diversity and low genetic differentiation suggest that A. dioica has been widely distributed in the Central European lowlands in the past, while fragmentation occurred only in the last decades. Sex ratio has more immediate consequences on genetic diversity than population size. An increasing proportion of females can increase genetic diversity in dioecious plants, probably due to a higher amount of sexual reproduction. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  8. Genetic differentiation and phylogeny relationships of functional ApoVLDL-II gene in red jungle fowl and domestic chicken populations.

    PubMed

    Musa, Hassan H; Cheng, Jin H; Bao, Wen B; Li, Bi C; Mekki, Dafaalla M; Chen, Guo H

    2007-08-01

    A total of 243 individuals from Red Jungle Fowl (Gallus gallus spadiceus), Rugao, Anka, Wenchang and Silikes chicken populations were used for polymorphism analysis in functional apoVLDL-II gene by Restriction fragment length polymorphism and single strand conformation polymorphism markers. The results show that Anka population has highest gene diversity and Shannon information index, while Red jungle fowl shows highest effective number of allele. In addition, the higher coefficient of genetic differentiation (Gst) across all loci in apoVLDL-II was indicating that high variation is proportioned among populations. As expected total gene diversity (Ht) has upper estimate compared with within population genetic diversity (Hs) across all loci. The mean Gst value across all loci was (0.194) indicating about 19.4% of total genetic variation could be explained by breeds differences, while the remaining 80.6% was accounted for differences among individuals. The average apoVLDL-II gene flow across all loci in five chicken populations was 1.189. The estimates of genetic identity and distance confirm that these genes are significantly different between genetically fat and lean population, because fat type breed Anka shows highest distance with the other Silikes and Rugao whish are genetically lean. In addition, Wenchang and Red jungle fowl were found more closely and genetically related than the other breeds with 49.4% bootstrapping percentages, then they were related to Silikes by 100% bootstrapping percentages followed by Rugao and finally all of them are related with exotic fat breed Anka.

  9. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array.

    PubMed

    Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman

    2015-05-06

    Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of

  10. FINE-SCALE GENETIC DIFFERENTIATION BETWEEN CONTAMINANT-TOLERANT AND CONTAMINANT SENSITIVE FISH POPULATIONS

    EPA Science Inventory

    Studies have suggested that environmental contaminants can act as selective forces on exposed populations of wildlife species. Chronically exposed populations have shown reduced genetic diversity and/or demonstrated other genetic changes. We evaluated the genetic structure of pop...

  11. Chinstrap penguin population genetic structure: one or more populations along the Southern Ocean?

    PubMed

    Mura-Jornet, Isidora; Pimentel, Carolina; Dantas, Gisele P M; Petry, Maria Virginia; González-Acuña, Daniel; Barbosa, Andrés; Lowther, Andrew D; Kovacs, Kit M; Poulin, Elie; Vianna, Juliana A

    2018-06-13

    Historical factors, demography, reproduction and dispersal are crucial in determining the genetic structure of seabirds. In the Antarctic marine environment, penguins are a major component of the avian biomass, dominant predators and important bioindicators of ecological change. Populations of chinstrap penguins have decreased in nearly all their breeding sites, and their range is expanding throughout the Antarctic Peninsula. Population genetic structure of this species has been studied in some colonies, but not between breeding colonies in the Antarctic Peninsula or at the species' easternmost breeding colony (Bouvetøya). Connectivity, sex-biased dispersal, diversity, genetic structure and demographic history were studied using 12 microsatellite loci and a mitochondrial DNA region (HVRI) in 12 breeding colonies in the South Shetland Islands (SSI) and the Western Antarctic Peninsula (WAP), and one previously unstudied sub-Antarctic island, 3600 km away from the WAP (Bouvetøya). High genetic diversity, evidence of female bias-dispersal and a sign of population expansion after the last glacial maximum around 10,000 mya were detected. Limited population genetic structure and lack of isolation by distance throughout the region were found, along with no differentiation between the WAP and Bouvetøya (overall microsatellite F ST  = 0.002, p = 0.273; mtDNA F ST  = - 0.004, p = 0.766), indicating long distance dispersal. Therefore, genetic assignment tests could not assign individuals to their population(s) of origin. The most differentiated location was Georges Point, one of the southernmost breeding colonies of this species in the WAP. The subtle differentiation found may be explained by some combination of low natal philopatric behavior, high rates of dispersal and/or generally high mobility among colonies of chinstrap penguins compared to other Pygoscelis species.

  12. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments.

    PubMed

    Rubio de Casas, R; Vargas, P; Pérez-Corona, E; Cano, E; Manrique, E; García-Verdugo, C; Balaguer, L

    2009-05-01

    Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and beta-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors.

  13. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland.

    PubMed

    Mullins, Jacinta; McDevitt, Allan D; Kowalczyk, Rafał; Ruczyńska, Iwona; Górny, Marcin; Wójcik, Jan M

    2014-01-01

    The red fox ( Vulpes vulpes ) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002-2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

  14. Global Population Genetic Analysis of Aspergillus fumigatus

    PubMed Central

    Ashu, Eta Ebasi; Hagen, Ferry; Chowdhary, Anuradha

    2017-01-01

    ABSTRACT Aspergillus fumigatus is a ubiquitous opportunistic fungal pathogen capable of causing invasive aspergillosis, a globally distributed disease with a mortality rate of up to 90% in high-risk populations. Effective control and prevention of this disease require a thorough understanding of its epidemiology. However, despite significant efforts, the global molecular epidemiology of A. fumigatus remains poorly understood. In this study, we analyzed 2,026 A. fumigatus isolates from 13 countries in four continents using nine highly polymorphic microsatellite markers. Genetic cluster analyses suggest that our global sample of A. fumigatus isolates belonged to eight genetic clusters, with seven of the eight clusters showing broad geographic distributions. We found common signatures of sexual recombination within individual genetic clusters and clear evidence of hybridization between several clusters. Limited but statistically significant genetic differentiations were found among geographic and ecological populations. However, there was abundant evidence for gene flow at the local, regional, and global scales. Interestingly, the triazole-susceptible and triazole-resistant populations showed different population structures, consistent with antifungal drug pressure playing a significant role in local adaptation. Our results suggest that global populations of A. fumigatus are shaped by historical differentiation, contemporary gene flow, sexual reproduction, and the localized antifungal drug selection that is driving clonal expansion of genotypes resistant to multiple triazole drugs. IMPORTANCE The genetic diversity and geographic structure of the human fungal pathogen A. fumigatus have been the subject of many studies. However, most previous studies had relatively limited sample ranges and sizes and/or used genetic markers with low-level polymorphisms. In this paper, we characterize a global collection of strains of A. fumigatus using a panel of 9 highly

  15. Striking Phenotypic Variation yet Low Genetic Differentiation in Sympatric Lake Trout (Salvelinus namaycush)

    PubMed Central

    Coon, Andrew; Carson, Robert; Debes, Paul V.

    2016-01-01

    The study of population differentiation in the context of ecological speciation is commonly assessed using populations with obvious discreteness. Fewer studies have examined diversifying populations with occasional adaptive variation and minor reproductive isolation, so factors impeding or facilitating the progress of early stage differentiation are less understood. We detected non-random genetic structuring in lake trout (Salvelinus namaycush) inhabiting a large, pristine, postglacial lake (Mistassini Lake, Canada), with up to five discernible genetic clusters having distinctions in body shape, size, colouration and head shape. However, genetic differentiation was low (FST = 0.017) and genetic clustering was largely incongruent between several population- and individual-based clustering approaches. Genotype- and phenotype-environment associations with spatial habitat, depth and fish community structure (competitors and prey) were either inconsistent or weak. Striking morphological variation was often more continuous within than among defined genetic clusters. Low genetic differentiation was a consequence of relatively high contemporary gene flow despite large effective population sizes, not migration-drift disequilibrium. Our results suggest a highly plastic propensity for occupying multiple habitat niches in lake trout and a low cost of morphological plasticity, which may constrain the speed and extent of adaptive divergence. We discuss how factors relating to niche conservatism in this species may also influence how plasticity affects adaptive divergence, even where ample ecological opportunity apparently exists. PMID:27680019

  16. Genetic diversity and drivers of genetic differentiation of Reaumuria soongorica of the Inner Mongolia plateau in China

    Treesearch

    Jiuyan Yang; Samuel A. Cushman; Xuemei Song; Jie Yang; Pujin Zhang

    2015-01-01

    We quantified genetic diversity and gene flow among eight populations of Reaumuria soongorica in Inner Mongolia, China. Our results showed that genetic differentiation of R. soongorica across the Inner Mongolian plateau is primarily clinal in nature and is driven primarily by differential landscape resistance across areas with changing patterns of seasonal...

  17. Patterns of differentiation among endangered pondberry populations

    Treesearch

    Craig S Echt; Dennis Deemer; Danny Gustafson

    2011-01-01

    Pondberry, Lindera melissifolia, is an endangered and partially clonally reproducing shrub species found in isolated populations that inhabit seasonally wet depressions in forested areas of the lower Mississippi River alluvial valley and southeastern regions of the United States. With eleven microsatellite loci, we quantified population genetic differentiation and...

  18. Pronounced fixation, strong population differentiation and complex population history in the Canary Islands blue tit subspecies complex.

    PubMed

    Hansson, Bengt; Ljungqvist, Marcus; Illera, Juan-Carlos; Kvist, Laura

    2014-01-01

    Evolutionary molecular studies of island radiations may lead to insights in the role of vicariance, founder events, population size and drift in the processes of population differentiation. We evaluate the degree of population genetic differentiation and fixation of the Canary Islands blue tit subspecies complex using microsatellite markers and aim to get insights in the population history using coalescence based methods. The Canary Island populations were strongly genetically differentiated and had reduced diversity with pronounced fixation including many private alleles. In population structure models, the relationship between the central island populations (La Gomera, Tenerife and Gran Canaria) and El Hierro was difficult to disentangle whereas the two European populations showed consistent clustering, the two eastern islands (Fuerteventura and Lanzarote) and Morocco weak clustering, and La Palma a consistent unique lineage. Coalescence based models suggested that the European mainland forms an outgroup to the Afrocanarian population, a split between the western island group (La Palma and El Hierro) and the central island group, and recent splits between the three central islands, and between the two eastern islands and Morocco, respectively. It is clear that strong genetic drift and low level of concurrent gene flow among populations have shaped complex allelic patterns of fixation and skewed frequencies over the archipelago. However, understanding the population history remains challenging; in particular, the pattern of extreme divergence with low genetic diversity and yet unique genetic material in the Canary Island system requires an explanation. A potential scenario is population contractions of a historically large and genetically variable Afrocanarian population, with vicariance and drift following in the wake. The suggestion from sequence-based analyses of a Pleistocene extinction of a substantial part of North Africa and a Pleistocene/Holocene eastward

  19. Pronounced Fixation, Strong Population Differentiation and Complex Population History in the Canary Islands Blue Tit Subspecies Complex

    PubMed Central

    Hansson, Bengt; Ljungqvist, Marcus; Illera, Juan-Carlos; Kvist, Laura

    2014-01-01

    Evolutionary molecular studies of island radiations may lead to insights in the role of vicariance, founder events, population size and drift in the processes of population differentiation. We evaluate the degree of population genetic differentiation and fixation of the Canary Islands blue tit subspecies complex using microsatellite markers and aim to get insights in the population history using coalescence based methods. The Canary Island populations were strongly genetically differentiated and had reduced diversity with pronounced fixation including many private alleles. In population structure models, the relationship between the central island populations (La Gomera, Tenerife and Gran Canaria) and El Hierro was difficult to disentangle whereas the two European populations showed consistent clustering, the two eastern islands (Fuerteventura and Lanzarote) and Morocco weak clustering, and La Palma a consistent unique lineage. Coalescence based models suggested that the European mainland forms an outgroup to the Afrocanarian population, a split between the western island group (La Palma and El Hierro) and the central island group, and recent splits between the three central islands, and between the two eastern islands and Morocco, respectively. It is clear that strong genetic drift and low level of concurrent gene flow among populations have shaped complex allelic patterns of fixation and skewed frequencies over the archipelago. However, understanding the population history remains challenging; in particular, the pattern of extreme divergence with low genetic diversity and yet unique genetic material in the Canary Island system requires an explanation. A potential scenario is population contractions of a historically large and genetically variable Afrocanarian population, with vicariance and drift following in the wake. The suggestion from sequence-based analyses of a Pleistocene extinction of a substantial part of North Africa and a Pleistocene/Holocene eastward

  20. Genetic Diversity and Structure of the Apiosporina morbosa Populations on Prunus spp.

    PubMed

    Zhang, Jinxiu; Fernando, W G Dilantha; Remphrey, William R

    2005-08-01

    ABSTRACT Populations of Apiosporina morbosa collected from 15 geographic locations in Canada and the United States and three host species, Prunus virginiana, P. pensylvanica, and P. padus, were evaluated using the sequence-related amplified polymorphism (SRAP) technique to determine their genetic diversity and population differentiation. Extensive diversity was detected in the A. morbosa populations, including 134 isolates from Canada and the United States, regardless of the origin of the population. The number of polymorphic loci varied from 6.9 to 82.8% in the geographic populations, and from 41.4 to 79.3% in the populations from four host genotypes based on 58 polymorphic fragments. In all, 44 to 100% of isolates in the geographic populations and 43.6 to 76.2% in populations from four host genotypes represented unique genotypes. Values of heterozygosity (H) varied from 2.8 to 28.3% in the geographic populations and 10.2 to 26.1% in the populations from four host genotypes. In general, the A. morbosa populations sampled from wild chokecherry showed a higher genetic diversity than those populations collected from other host species, whereas the populations isolated from cultivated chokecherry, P. virginiana 'Shubert Select', showed a reduction of genetic diversity compared with populations from wild P. virginiana. Significant population differentiation was found among both the geographic populations (P < 0.05) and populations from different host genotypes (P < 0.02). In the geographic populations, most of populations from cultivated and wild P. virginiana were closely clustered, and no population differentiation was detected except for the populations from Morris, Morden, and Winnipeg, Manitoba, Canada. Furthermore, the populations from P. virginiana in the same geographic locations had higher genetic identity and closer genetic distance to each other compared with those from different locations. Four populations from P. virginiana, P. pensylvanica, and P. padus

  1. Genomic single-nucleotide polymorphisms confirm that Gunnison and Greater sage-grouse are genetically well differentiated and that the Bi-State population is distinct

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Cornman, Robert S.; Jones, Kenneth L.; Fike, Jennifer

    2015-01-01

    Sage-grouse are iconic, declining inhabitants of sagebrush habitats in western North America, and their management depends on an understanding of genetic variation across the landscape. Two distinct species of sage-grouse have been recognized, Greater (Centrocercus urophasianus) and Gunnison sage-grouse (C. minimus), based on morphology, behavior, and variation at neutral genetic markers. A parapatric group of Greater Sage-Grouse along the border of California and Nevada ("Bi-State") is also genetically distinct at the same neutral genetic markers, yet not different in behavior or morphology. Because delineating taxonomic boundaries and defining conservation units is often difficult in recently diverged taxa and can be further complicated by highly skewed mating systems, we took advantage of new genomic methods that improve our ability to characterize genetic variation at a much finer resolution. We identified thousands of single-nucleotide polymorphisms (SNPs) among Gunnison, Greater, and Bi-State sage-grouse and used them to comprehensively examine levels of genetic diversity and differentiation among these groups. The pairwise multilocus fixation index (FST) was high (0.49) between Gunnison and Greater sage-grouse, and both principal coordinates analysis and model-based clustering grouped samples unequivocally by species. Standing genetic variation was lower within the Gunnison Sage-Grouse. The Bi-State population was also significantly differentiated from Greater Sage-Grouse, albeit more weakly (FST = 0.09), and genetic clustering results were consistent with reduced gene flow with Greater Sage-Grouse. No comparable genetic divisions were found within the Greater Sage-Grouse sample, which spanned the southern half of the range. Thus, we provide much stronger genetic evidence supporting the recognition of Gunnison Sage-Grouse as a distinct species with low genetic diversity. Further, our work confirms that the Bi-State population is differentiated from other

  2. The genetic structure of a relict population of wood frogs

    USGS Publications Warehouse

    Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara

    2012-01-01

    Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.

  3. High genetic differentiation among French populations of the Orsini's viper (Vipera ursinii ursinii) based on mitochondrial and microsatellite data: implications for conservation management.

    PubMed

    Ferchaud, Anne-Laure; Lyet, Arnaud; Cheylan, Marc; Arnal, Véronique; Baron, Jean-Pierre; Montgelard, Claudine; Ursenbacher, Sylvain

    2011-01-01

    The Orsini's viper (Vipera ursinii) is one of the most threatened snakes in Europe due to its highly fragmented distribution and specific open environment (steppic habitat) requirement. French populations are isolated on top of mountain massifs of the southern Prealps/Alps. Mitochondrial sequences (cytochrome b) and 6 microsatellite loci have been used to estimate the levels of genetic diversity and isolation within and among 11 French fragmented populations (a total of 157 individuals). Eleven cytochrome b haplotypes with a limited divergence were observed (mean divergence between haplotypes: 0.31%). However, we detected considerable genetic differentiation among populations (global F(ST) = 0.76 and 0.26 for mitochondrial and nuclear DNA, respectively). Results indicate that 3 populations possibly went through a bottleneck and 1 population showed low genetic diversity compared with the others. Although a significant isolation by distance was detected for both markers, strong differentiation was also observed between geographically close populations, probably due to the ragged landscape that constitutes a serious barrier to gene flow owing to the limited dispersal capability of the viper. Despite some discrepancies between the 2 markers, 8 Management Units have been identified and should be considered for future management projects.

  4. Contrasting Patterns of Genetic Differentiation among Blackcaps (Sylvia atricapilla) with Divergent Migratory Orientations in Europe

    PubMed Central

    Mettler, Raeann; Schaefer, H. Martin; Chernetsov, Nikita; Fiedler, Wolfgang; Hobson, Keith A.; Ilieva, Mihaela; Imhof, Elisabeth; Johnsen, Arild; Renner, Swen C.; Rolshausen, Gregor; Serrano, David; Wesołowski, Tomasz; Segelbacher, Gernot

    2013-01-01

    Migratory divides are thought to facilitate behavioral, ecological, and genetic divergence among populations with different migratory routes. However, it is currently contentious how much genetic divergence is needed to maintain distinct migratory behavior across migratory divides. Here we investigate patterns of neutral genetic differentiation among Blackcap (Sylvia atricapilla) populations with different migratory strategies across Europe. We compare the level of genetic divergence of populations migrating to southwestern (SW) or southeastern (SE) wintering areas with birds wintering in the British Isles following a recently established northwesterly (NW) migration route. The migratory divide between SW and SE wintering areas can be interpreted as a result of a re-colonization process after the last glaciation. Thus we predicted greater levels of genetic differentiation among the SW/SE populations. However, a lack of genetic differentiation was found between SW and SE populations, suggesting that interbreeding likely occurs among Blackcaps with different migratory orientations across a large area; therefore the SW/SE migratory divide can be seen as diffuse, broad band and is, at best, a weak isolating barrier. Conversely, weak, albeit significant genetic differentiation was evident between NW and SW migrants breeding sympatrically in southern Germany, suggesting a stronger isolating mechanism may be acting in this population. Populations located within/near the SW/SE contact zone were the least genetically divergent from NW migrants, confirming NW migrants likely originated from within the contact zone. Significant isolation-by-distance was found among eastern Blackcap populations (i.e. SE migrants), but not among western populations (i.e. NW and SW migrants), revealing different patterns of genetic divergence among Blackcap populations in Europe. We discuss possible explanations for the genetic structure of European Blackcaps and how gene flow influences the

  5. Population demographics and genetic diversity in remnant and translocated populations of sea otters

    USGS Publications Warehouse

    Bodkin, James L.; Ballachey, Brenda E.; Cronin, M.A.; Scribner, K.T.

    1999-01-01

    The effects of small population size on genetic diversity and subsequent population recovery are theoretically predicted, but few empirical data are available to describe those relations. We use data from four remnant and three translocated sea otter (Enhydra lutris) populations to examine relations among magnitude and duration of minimum population size, population growth rates, and genetic variation. Metochondrial (mt)DNA haplotype diversity was correlated with the number of years at minimum population size (r = -0.741, p = 0.038) and minimum population size (r = 0.709, p = 0.054). We found no relation between population growth and haplotype diversity, altough growth was significantly greater in translocated than in remnant populations. Haplotype diversity in populations established from two sources was higher than in a population established from a single source and was higher than in the respective source populations. Haplotype frequencies in translocated populations of founding sizes of 4 and 28 differed from expected, indicating genetic drift and differential reproduction between source populations, whereas haplotype frequencies in a translocated population with a founding size of 150 did not. Relations between population demographics and genetic characteristics suggest that genetic sampling of source and translocated populations can provide valuable inferences about translocations.

  6. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria)?

    PubMed

    Lenhardt, Patrick P; Brühl, Carsten A; Leeb, Christoph; Theissinger, Kathrin

    2017-01-01

    Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity) on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog ( Rana temporaria ) populations in Southern Palatinate (Germany). We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise F ST  = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance) than between viniculture populations (median pairwise F ST  = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance). Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat, inhibiting

  7. MAINTENANCE OF ECOLOGICALLY SIGNIFICANT GENETIC VARIATION IN THE TIGER SWALLOWTAIL BUTTERFLY THROUGH DIFFERENTIAL SELECTION AND GENE FLOW.

    PubMed

    Bossart, J L; Scriber, J M

    1995-12-01

    Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.

  8. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  9. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations

    PubMed Central

    2008-01-01

    Background Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation. Results We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation. Conclusion Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations. PMID:18485220

  10. Unravelling the genetic differentiation among varieties of the Neotropical savanna tree Hancornia speciosa Gomes.

    PubMed

    Collevatti, Rosane G; Rodrigues, Eduardo E; Vitorino, Luciana C; Lima-Ribeiro, Matheus S; Chaves, Lázaro J; Telles, Mariana P C

    2018-04-20

    Spatial distribution of species genetic diversity is often driven by geographical distance (isolation by distance) or environmental conditions (isolation by environment), especially under climate change scenarios such as Quaternary glaciations. Here, we used coalescent analyses coupled with ecological niche modelling (ENM), spatially explicit quantile regression analyses and the multiple matrix regression with randomization (MMRR) approach to unravel the patterns of genetic differentiation in the widely distributed Neotropical savanna tree, Hancornia speciosa (Apocynaceae). Due to its high morphological differentiation, the species was originally classified into six botanical varieties by Monachino, and has recently been recognized as only two varieties by Flora do Brasil 2020. Thus, H. speciosa is a good biological model for learning about evolution of phenotypic plasticity under genetic and ecological effects, and predicting their responses to changing environmental conditions. We sampled 28 populations (777 individuals) of Monachino's four varieties of H. speciosa and used seven microsatellite loci to genotype them. Bayesian clustering showed five distinct genetic groups (K = 5) with high admixture among Monachino's varieties, mainly among populations in the central area of the species geographical range. Genetic differentiation among Monachino's varieties was lower than the genetic differentiation among populations within varieties, with higher within-population inbreeding. A high historical connectivity among populations of the central Cerrado shown by coalescent analyses may explain the high admixture among varieties. In addition, areas of higher climatic suitability also presented higher genetic diversity in such a way that the wide historical refugium across central Brazil might have promoted the long-term connectivity among populations. Yet, FST was significantly related to geographic distances, but not to environmental distances, and coalescent analyses

  11. A population genetic transect of Panicum hallii (Poaceae).

    PubMed

    Lowry, David B; Purmal, Colin T; Juenger, Thomas E

    2013-03-01

    Understanding the relationship between climate, adaptation, and population structure is of fundamental importance to botanists because these factors are crucial for the evolution of biodiversity and the response of species to future climate change. Panicum hallii is an emerging model system for perennial grass and bioenergy research, yet very little is known about the relationship between climate and population structure in this system. • We analyzed geographic population differentiation across 39 populations of P. hallii along a longitudinal transect from the savannas of central Texas through the deserts of Arizona and New Mexico. A combination of morphological and genetic (microsatellite) analysis was used to explore patterns of population structure. • We found strong differentiation between high elevation western desert populations and lower elevation eastern populations of P. hallii, with a pronounced break in structure occurring in western Texas. In addition, we confirmed that there are high levels of morphological and genetic structure between previous recognized varieties (var. hallii and var. filipes) within this species. • The results of this study suggest that patterns of population structure within P. hallii may be driven by climatic variation over space. Overall, this study lays the groundwork for future studies on the genetics of local adaptation and reproductive isolation in this system.

  12. Population Genetic Structure of a Widespread Bat-Pollinated Columnar Cactus

    PubMed Central

    Bustamante, Enriquena; Búrquez, Alberto; Scheinvar, Enrique; Eguiarte, Luis Enrique

    2016-01-01

    Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics. PMID:27015281

  13. Population Genetic Structure of a Widespread Bat-Pollinated Columnar Cactus.

    PubMed

    Bustamante, Enriquena; Búrquez, Alberto; Scheinvar, Enrique; Eguiarte, Luis Enrique

    2016-01-01

    Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics.

  14. Accurate population genetic measurements require cryptic species identification in corals

    NASA Astrophysics Data System (ADS)

    Sheets, Elizabeth A.; Warner, Patricia A.; Palumbi, Stephen R.

    2018-06-01

    Correct identification of closely related species is important for reliable measures of gene flow. Incorrectly lumping individuals of different species together has been shown to over- or underestimate population differentiation, but examples highlighting when these different results are observed in empirical datasets are rare. Using 199 single nucleotide polymorphisms, we assigned 768 individuals in the Acropora hyacinthus and A. cytherea morphospecies complexes to each of eight previously identified cryptic genetic species and measured intraspecific genetic differentiation across three geographic scales (within reefs, among reefs within an archipelago, and among Pacific archipelagos). We then compared these calculations to estimated genetic differentiation at each scale with all cryptic genetic species mixed as if we could not tell them apart. At the reef scale, correct genetic species identification yielded lower F ST estimates and fewer significant comparisons than when species were mixed, raising estimates of short-scale gene flow. In contrast, correct genetic species identification at large spatial scales yielded higher F ST measurements than mixed-species comparisons, lowering estimates of long-term gene flow among archipelagos. A meta-analysis of published population genetic studies in corals found similar results: F ST estimates at small spatial scales were lower and significance was found less often in studies that controlled for cryptic species. Our results and these prior datasets controlling for cryptic species suggest that genetic differentiation among local reefs may be lower than what has generally been reported in the literature. Not properly controlling for cryptic species structure can bias population genetic analyses in different directions across spatial scales, and this has important implications for conservation strategies that rely on these estimates.

  15. Population genomics of early events in the ecological differentiation of bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, Jesse B.; Friedman, Jonatan; Cordero, Otto X.

    Genetic exchange is common among bacteria, but its effect on population diversity during ecological differentiation remains controversial. A fundamental question is whether advantageous mutations lead to selection of clonal genomes or, as in sexual eukaryotes, sweep through populations on their own. Here, we show that in two recently diverged populations of ocean bacteria, ecological differentiation has occurred akin to a sexual mechanism: A few genome regions have swept through subpopulations in a habitat-specific manner, accompanied by gradual separation of gene pools as evidenced by increased habitat specificity of the most recent recombinations. These findings reconcile previous, seemingly contradictory empirical observationsmore » of the genetic structure of bacterial populations and point to a more unified process of differentiation in bacteria and sexual eukaryotes than previously thought.« less

  16. Genetic Diversity and Population Structure of Ethiopian Sheep Populations Revealed by High-Density SNP Markers

    PubMed Central

    Edea, Zewdu; Dessie, Tadelle; Dadi, Hailu; Do, Kyoung-Tag; Kim, Kwan-Suk

    2017-01-01

    Sheep in Ethiopia are adapted to a wide range of environments, including extreme habitats. Elucidating their genetic diversity is critical for improving breeding strategies and mapping quantitative trait loci associated with productivity. To this end, the present study investigated the genetic diversity and population structure of five Ethiopian sheep populations exhibiting distinct phenotypes and sampled from distinct production environments, including arid lowlands and highlands. To investigate the genetic relationships in greater detail and infer population structure of Ethiopian sheep breeds at the continental and global levels, we analyzed genotypic data of selected sheep breeds from the Ovine SNP50K HapMap dataset. All Ethiopian sheep samples were genotyped with Ovine Infinium HD SNP BeadChip (600K). Mean genetic diversity ranged from 0.29 in Arsi-Bale to 0.32 in Menz sheep, while estimates of genetic differentiation among populations ranged from 0.02 to 0.07, indicating low to moderate differentiation. An analysis of molecular variance revealed that 94.62 and 5.38% of the genetic variation was attributable to differences within and among populations, respectively. Our population structure analysis revealed clustering of five Ethiopian sheep populations according to tail phenotype and geographic origin—i.e., short fat-tailed (very cool high-altitude), long fat-tailed (mid to high-altitude), and fat-rumped (arid low-altitude), with clear evidence of admixture between long fat-tailed populations. North African sheep breeds showed higher levels of within-breed diversity, but were less differentiated than breeds from Eastern and Southern Africa. When African breeds were grouped according to geographic origin (North, South, and East), statistically significant differences were detected among groups (regions). A comparison of population structure between Ethiopian and global sheep breeds showed that fat-tailed breeds from Eastern and Southern Africa clustered

  17. Genetic structure of the world's polar bear populations.

    PubMed

    Paetkau, D; Amstrup, S C; Born, E W; Calvert, W; Derocher, A E; Garner, G W; Messier, F; Stirling, I; Taylor, M K; Wiig, O; Strobeck, C

    1999-10-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  18. Genetic structure of the world's polar bear populations

    USGS Publications Warehouse

    Paetkau, David; Amstrup, Steven C.; Born, E.W.; Calvert, W.; Derocher, A.E.; Garner, G.W.; Messier, F.; Stirling, I.; Taylor, M.K.; Wiig, O.; Strobeck, C.

    1999-01-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  19. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Defaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Merilä, Juha

    2013-09-01

    Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes. © 2013 John Wiley & Sons Ltd.

  20. Genetic structure of American chestnut populations based on neutral DNA markers

    Treesearch

    Thomas L. Kubisiak; James H. Roberds

    2006-01-01

    Microsatellite and RAPD markers suggest that American chestnut exists as a highly variable species. Even at the margins of its natural range, with a large proportion of its genetic variability occurring within populations (~95%). A statistically significant proportion also exists among population. Although genetic differentiation among populations has taken place, no...

  1. Conservation genetics of American crocodile, Crocodylus acutus, populations in Pacific Costa Rica

    USGS Publications Warehouse

    Mauger, Laurie A.; Velez, Elizabeth; Cherkiss, Michael S.; Brien, Matthew L.; Mazzotti, Frank J.; Spotila, James R.

    2017-01-01

    Maintaining genetic diversity is crucial for the survival and management of threatened and endangered species. In this study, we analyzed genetic diversity and population genetic structure at neutral loci in American crocodiles, Crocodylus acutus, from several areas (Parque Nacional Marino Las Baulas, Parque Nacional Santa Rosa, Parque Nacional Palo Verde, Rio Tarcoles, and Osa Conservation Area) in Pacific Costa Rica. We genotyped 184 individuals at nine microsatellite loci to describe the genetic diversity and conservation genetics between and among populations. No population was at Hardy-Weinberg Equilibrium (HWE) over all loci tested and a small to moderate amount of inbreeding was present. Populations along the Pacific coast had an average heterozygosity of 0.572 across all loci. All populations were significantly differentiated from each other with both FST and RST measures of population differentiation with a greater degree of molecular variance (81%) found within populations. Our results suggest C. acutus populations in Pacific Costa Rica were not panmictic with moderate levels of genetic diversity. An effective management plan that maintains the connectivity between clusters is critical to the success of C. acutus in Pacific Costa Rica.

  2. Surprisingly little population genetic structure in a fungus-associated beetle despite its exploitation of multiple hosts

    PubMed Central

    Wood, Corlett W; Donald, Hannah M; Formica, Vincent A; Brodie, Edmund D

    2013-01-01

    In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B. cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B. cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure. PMID:23789061

  3. Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers.

    PubMed

    Xue, Huiling; Xiao, Yao; Jin, Yanling; Li, Xinbo; Fang, Yang; Zhao, Hai; Zhao, Yun; Guan, Jiafa

    2012-01-01

    Duckweed, with rapid growth rate and high starch content, is a new alternate feedstock for bioethanol production. The genetic diversity among 27 duckweed populations of seven species in genus Lemna and Spirodela from China and Vietnam was analyzed by ISSR-PCR. Eight ISSR primers generating a reproducible amplification banding pattern had been screened. 89 polymorphic bands were scored out of the 92 banding patterns of 16 Lemna populations, accounting for 96.74% of the polymorphism. 98 polymorphic bands of 11 Spirodela populations were scored out of 99 banding patterns, and the polymorphism was 98.43%. The genetic distance of Lemna varied from 0.127 to 0.784, and from 0.138 to 0.902 for Spirodela, which indicated a high level of genetic variation among the populations studied. The unweighted pair group method with arithmetic average (UPGMA) cluster analysis corresponded well with the genetic distance. Populations from Sichuan China grouped together and so did the populations from Vietnam, which illuminated populations collected from the same region clustered into one group. Especially, the only one population from Tibet was included in subgroup A2 alone. Clustering analysis indicated that the geographic differentiation of collected sites correlated closely with the genetic differentiation of duckweeds. The results suggested that geographic differentiation had great influence on genetic diversity of duckweed in China and Vietnam at the regional scale. This study provided primary guidelines for collection, conservation, characterization of duckweed resources for bioethanol production etc.

  4. Two closely related species differ in their regional genetic differentiation despite admixing

    PubMed Central

    Fischer, Markus; Oja, Tatjana

    2018-01-01

    Abstract Regional genetic differentiation within species is often addressed in evolutionary ecology and conservation biology. Here, we address regional differentiation in two closely related hybridizing taxa, the perennial sedges Carex flava and C. viridula and their hybrid C. × subviridula in 37 populations in the north and centre of their distribution range in Europe (Estonia, Lowland (<1000 m a.s.l.) and Highland Switzerland) using 10 putative microsatellite loci. We ask whether regional differentiation was larger in the less common taxon C. viridula or whether, possibly due to hybridization, it was similar between taxa. Our results showed similar, low to moderate genetic diversity for the three studied taxa. In total, we found 12 regional species-specific alleles. Analysis of molecular variance (AMOVA), STRUCTURE and multidimensional scaling analysis showed regional structure in genetic variation, where intraspecific differentiation between regions was lower for C. flava (AMOVA: 6.84 %) than for C. viridula (20.77 %) or C. × subviridula (18.27 %) populations. Hybrids differed from the parental taxa in the two regions where they occurred, i.e. in Estonia and Lowland Switzerland. We conclude that C. flava and C. viridula clearly differ from each other genetically, that there is pronounced regional differentiation and that, despite hybridization, this regional differentiation is more pronounced in the less common taxon, C. viridula. We encourage future studies on hybridizing taxa to work with plant populations from more than one region. PMID:29479408

  5. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    PubMed

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. © 2016 John Wiley & Sons Ltd.

  6. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

    PubMed Central

    FUNK, W. CHRIS; LOVICH, ROBERT E.; HOHENLOHE, PAUL A.; HOFMAN, COURTNEY A.; MORRISON, SCOTT A.; SILLETT, T. SCOTT; GHALAMBOR, CAMERON K.; MALDONADO, JESUS E.; RICK, TORBEN C.; DAY, MITCH D.; POLATO, NICHOLAS R.; FITZPATRICK, SARAH W.; COONAN, TIMOTHY J.; CROOKS, KEVIN R.; DILLON, ADAM; GARCELON, DAVID K.; KING, JULIE L.; BOSER, CHRISTINA L.; GOULD, NICHOLAS; ANDELT, WILLIAM F.

    2016-01-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential. PMID:26992010

  7. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    PubMed Central

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients. PMID:22588131

  8. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient.

    PubMed

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-09-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.

  9. Elucidating the multiple genetic lineages and population genetic structure of the brooding coral Seriatopora (Scleractinia: Pocilloporidae) in the Ryukyu Archipelago

    NASA Astrophysics Data System (ADS)

    Nakajima, Yuichi; Nishikawa, Akira; Iguchi, Akira; Nagata, Tomofumi; Uyeno, Daisuke; Sakai, Kazuhiko; Mitarai, Satoshi

    2017-06-01

    The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064-0.116 (all P = 0.001), pairwise G''ST = 0.107-0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.

  10. Assessing the Genetic Influence of Ancient Sociopolitical Structure: Micro-differentiation Patterns in the Population of Asturias (Northern Spain)

    PubMed Central

    Pardiñas, Antonio F.; Roca, Agustín; García-Vazquez, Eva; López, Belén

    2012-01-01

    The human populations of the Iberian Peninsula are the varied result of a complex mixture of cultures throughout history, and are separated by clear social, cultural, linguistic or geographic barriers. The stronger genetic differences between closely related populations occur in the northern third of Spain, a phenomenon commonly known as “micro-differentiation”. It has been argued and discussed how this form of genetic structuring can be related to both the rugged landscape and the ancient societies of Northern Iberia, but this is difficult to test in most regions due to the intense human mobility of previous centuries. Nevertheless, the Spanish autonomous community of Asturias shows a complex history which hints of a certain isolation of its population. This, joined together with a difficult terrain full of deep valleys and steep mountains, makes it suitable for performing a study of genetic structure, based on mitochondrial DNA and Y-Chromosome markers. Our analyses do not only show that there are micro-differentiation patterns inside the Asturian territory, but that these patterns are strikingly similar between both uniparental markers. The inference of barriers to gene flow also indicates that Asturian populations from the coastal north and the mountainous south seem to be relatively isolated from the rest of the territory. These findings are discussed in light of historic and geographic data and, coupled with previous evidence, show that the origin of the current genetic patterning might indeed lie in Roman and Pre-Roman sociopolitical divisions. PMID:23209673

  11. Biophysical connectivity explains population genetic structure in a highly dispersive marine species

    NASA Astrophysics Data System (ADS)

    Truelove, Nathan K.; Kough, Andrew S.; Behringer, Donald C.; Paris, Claire B.; Box, Stephen J.; Preziosi, Richard F.; Butler, Mark J.

    2017-03-01

    Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster ( Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 ( P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus ( P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation ( P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  12. The heterogeneous HLA genetic makeup of the Swiss population.

    PubMed

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9-13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national--and hence global--donor registry. It also

  13. The Heterogeneous HLA Genetic Makeup of the Swiss Population

    PubMed Central

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9–13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national—and hence global—donor registry. It also

  14. Evaluation of genetic population structure of smallmouth bass in the Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler

    2017-01-01

    The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.

  15. Molecular Population Genetics

    PubMed Central

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  16. Genetic Diversity and Population Structure of Siberian apricot (Prunus sibirica L.) in China

    PubMed Central

    Li, Ming; Zhao, Zhong; Miao, Xingjun; Zhou, Jingjing

    2014-01-01

    The genetic diversity and population genetic structure of 252 accessions from 21 Prunus sibirica L. populations were investigated using 10 ISSR, SSR, and SRAP markers. The results suggest that the entire population has a relatively high level of genetic diversity, with populations HR and MY showing very high diversity. A low level of inter-population genetic differentiation and a high level of intra-population genetic differentiation was found, which is supported by a moderate level of gene flow, and largely attributable to the cross-pollination and self-incompatibility reproductive system. A STRUCTURE (model-based program) analysis revealed that the 21 populations can be divided into two main groups, mainly based on geographic differences and genetic exchanges. The entire wild Siberia apricot population in China could be divided into two subgroups, including 107 accessions in subgroup (SG) 1 and 147 accessions in SG 2. A Mantel test revealed a significant positive correlation between genetic and geographic distance matrices, and there was a very significant positive correlation among three marker datasets. Overall, we recommend a combination of conservation measures, with ex situ and in situ conservation that includes the construction of a core germplasm repository and the implement of in situ conservation for populations HR, MY, and ZY. PMID:24384840

  17. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum.

    PubMed

    Wójcik, Małgorzata; Dresler, Sławomir; Jawor, Emilia; Kowalczyk, Krzysztof; Tukiendorf, Anna

    2013-01-01

    Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two

  18. Population structure and genetic diversity in natural populations of Theobroma speciosum Willd. Ex Spreng (Malvaceae).

    PubMed

    Giustina, L D; Luz, L N; Vieira, F S; Rossi, F S; Soares-Lopes, C R A; Pereira, T N S; Rossi, A A B

    2014-02-14

    The genus Theobroma found in the Amazon region is composed of 22 species, including Theobroma speciosum, better known as cacauí. These species are constantly threatened by forest fragmentation caused by human activities and require conservation strategies and management aimed at preserving them in their natural environments. The main objective of this study was to analyze the population structure and genetic diversity within and between natural populations of T. speciosum by using ISSR molecular markers to understand the population structure of the species. Four natural populations belonging to the Amazon rainforest (BAC, CRO, FLA, and PNA), located in the State of Mato Grosso, were selected. Amplification reactions were performed using 15 ISSR primers. A total of 101 loci were found, of which 54.46% were polymorphic at the species level. The BAC population showed higher genetic diversity (H=0.095 and I=0.144) and higher percentage of polymorphism (28.71%). The populations showed an FST value of 0.604, indicating marked genetic differentiation. The highest genetic variation was found between populations. Gene flow was low between populations, indicating genetic isolation between populations.

  19. Genetic differentiation among populations of Pinus ponderosa from the upper Colorado River Basin

    Treesearch

    Gerald Rehfeldt

    1990-01-01

    Genetic variation among 62 populations of ponderosa pine was studied by comparing seedlings from all populations according to (1) growth and development of 4-yr-old seedlings in three disparate common gardens and (2) patterns of shoot elongation of 2-yr-old seedlings in a greenhouse. Genetic variation was detected among populations for 19 of the variables, most of...

  20. Genetic population structure of muskellunge in the Great Lakes

    USGS Publications Warehouse

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  1. Molecular Population Genetics.

    PubMed

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  2. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche.

    PubMed

    Stronen, Astrid V; Navid, Erin L; Quinn, Michael S; Paquet, Paul C; Bryan, Heather M; Darimont, Christopher T

    2014-06-10

    Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present.

  3. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China.

    PubMed

    Xiang, Xian-Ling; Xi, Yi-Long; Wen, Xin-Li; Zhang, Gen; Wang, Jin-Xia; Hu, Ke

    2011-07-01

    Spatio-temporal patterns and processes of genetic differentiation in passively dispersing zooplankton are drawing much attention from both ecologists and evolutionary biologists. Two opposite phylogeographical scenarios have already been demonstrated in rotifers, which consist of high levels of genetic differentiation among populations even on small geographical scales on the one hand and the traditionally known cosmopolitanism that is associated with high levels of gene flow and long-distance dispersal via diapausing stages on the other hand. Here, we analysed the population genetic structure and the phylogeography of the Brachionus calyciflorus species complex in eastern China. By screening a total of 318 individuals from ten locations along a 2320-km gradient and analysing samples from two growing seasons, we aimed at focusing on both small- and large-scale patterns. We identified eight cryptic species and verified species status of two of these by sexual reproduction tests. Samples in summer and winter yielded different cryptic species. The distribution patterns of these genetically distinct cryptic species were diverse across eastern China, from full cosmopolitanism to local endemism. The two most abundant cryptic species BcWIII and BcSW showed a pattern of strong genetic differentiation among populations and no significant isolation by distance. Long-distance colonization, secondary contact and recent range expansion are probably responsible for the indistinct pattern of isolation by distance. Our results suggest that geographical distance is more important than temporal segregation across seasons in explaining population differentiation and the occurrence of cryptic species. We explain the current phylogeographical structure in the B. calyciflorus species complex by a combination of recent population expansion, restricted gene flow, priority effects and long-distance colonization. © 2011 Blackwell Publishing Ltd.

  4. Temporal changes in genetic variation of boll weevil (Coleoptera: Curculionidae) populations, and implications for population assignment in eradication zones

    USDA-ARS?s Scientific Manuscript database

    Genetic differentiation among 10 populations of boll weevil, Anthonomus grandis grandis, sampled in 2009, in Texas and Mexico, was determined using ten microsatellite loci. In addition, temporal changes in genetic composition were examined in the eight populations for which samples were available fr...

  5. Genetic diversity, structure, and patterns of differentiation in the genus vitis

    USDA-ARS?s Scientific Manuscript database

    Vitis (Vitaceae) is a taxonomically complicated genus with ca. 60 taxa divided into two subgenera, Vitis and Muscadinia. We used population genetic approaches to gain insights into the genetic diversity, patterns of evolutionary differentiation and to decipher the taxonomic status of some of the con...

  6. Evolutionary consequences of microhabitat: population-genetic structuring in kelp- vs. rock-associated chitons.

    PubMed

    Nikula, R; Spencer, H G; Waters, J M

    2011-12-01

    Rafting has long been invoked as a key marine dispersal mechanism, but biologists have thus far produced little genetic evidence to support this hypothesis. We hypothesize that coastal species associated with buoyant seaweeds should experience enhanced population connectivity owing to rafting. In particular, invertebrates strongly associated with the buoyant bull-kelp Durvillaea antarctica might be expected to have lower levels of population-genetic differentiation than taxa mainly exploiting nonbuoyant substrates. We undertook a comparative genetic study of two codistributed, congeneric chiton species, assessing population connectivity at scales of 61-516 km, using ≥ 186 polymorphic AFLP loci per species. Consistent with predictions, population-genetic differentiation was weaker in the kelp-associated Sypharochiton sinclairi than in the rock-associated S. pelliserpentis. Additionally, while we found a significant positive correlation between genetic and oceanographic distances in both chiton species, the correlation was stronger in S. pelliserpentis (R(2) = 0.28) than in S. sinclairi (R(2) = 0.18). These data support the hypothesis that epifaunal taxa can experience enhanced population-genetic connectivity as a result of their rafting ability. © 2011 Blackwell Publishing Ltd.

  7. Rivers influence the population genetic structure of bonobos (Pan paniscus).

    PubMed

    Eriksson, J; Hohmann, G; Boesch, C; Vigilant, L

    2004-11-01

    Bonobos are large, highly mobile primates living in the relatively undisturbed, contiguous forest south of the Congo River. Accordingly, gene flow among populations is assumed to be extensive, but may be impeded by large, impassable rivers. We examined mitochondrial DNA control region sequence variation in individuals from five distinct localities separated by rivers in order to estimate relative levels of genetic diversity and assess the extent and pattern of population genetic structure in the bonobo. Diversity estimates for the bonobo exceed those for humans, but are less than those found for the chimpanzee. All regions sampled are significantly differentiated from one another, according to genetic distances estimated as pairwise FSTs, with the greatest differentiation existing between region East and each of the two Northern populations (N and NE) and the least differentiation between regions Central and South. The distribution of nucleotide diversity shows a clear signal of population structure, with some 30% of the variance occurring among geographical regions. However, a geographical patterning of the population structure is not obvious. Namely, mitochondrial haplotypes were shared among all regions excepting the most eastern locality and the phylogenetic analysis revealed a tree in which haplotypes were intermixed with little regard to geographical origin, with the notable exception of the close relationships among the haplotypes found in the east. Nonetheless, genetic distances correlated with geographical distances when the intervening distances were measured around rivers presenting effective current-day barriers, but not when straight-line distances were used, suggesting that rivers are indeed a hindrance to gene flow in this species.

  8. Population structure and genetic diversity of the amphiatlantic haploid peatmoss Sphagnum affine (Sphagnopsida).

    PubMed

    Thingsgaard, K

    2001-10-01

    Nineteen populations of Sphagnum affine were included in a study of genetic diversity and structure in fragmented and less fragmented landscapes, and differentiation at intercontinental and three regional levels. Isozyme electrophoresis of eight enzyme systems revealed 12 variable loci, which could be used for haplotype identification. A hierachical analysis of variance (AMOVA) revealed no significant intercontinental differentiation, and very limited differentiation among European regions. A trend of decreasing diversity with increasing latitude was apparent. Gametic phase disequilibria was high, suggesting nonrandom mating and regionally high incidences of inbreeding. The partitioning of genetic variation within and among populations in each region varied among regions, the northernmost populations having 86% of the total variation among populations, the southernmost in Scandinavia having 25% of the variation among populations, whereas the American populations displayed 89% of the variation within populations. Fifteen alleles at eight loci occurred in the U.S.A. which were not encountered in Europe, whereas only three European alleles at one locus in three populations were not encountered in U.S.A. The differences in diversity between North America and Europe may result from loss of genetic diversity caused by founder effects during postglacial recolonization of northern Europe. In Europe, the main mountain ranges extend E-W, posing severe barriers to northwards migration of lowland species, compared to the N-S trend of mountain ranges in North America. The decline in genetic diversity and increase in population differentiation and gametic phase disequilibria towards the north in Scandinavia may be caused by a series of founder effects during postglacial migration. These may have corresponded to minor climatic oscillations that influenced the migration front/leading edge in the suboceanic lowlands of Norway. According to this model random genetic drift will be an

  9. Evidence for population bottlenecks and subtle genetic structure in the yellow rail

    USGS Publications Warehouse

    Popper, Kenneth J.; Miller, Leonard F.; Green, Michael; Haig, Susan M.; Mullins, Thomas D.

    2012-01-01

    The Yellow Rail (Coturnicops noveboracencis) is among the most enigmatic and least studied North American birds. Nesting exclusively in marshes and wetlands, it breeds largely east of the Rocky Mountains in the northern United States and Canada, but there is an isolated population in southern Oregon once believed extirpated. The degree of connectivity of the Oregon population with the main population is unknown. We used mitochondrial DNA sequences (mtDNA) and six microsatellite loci to characterize the Yellow Rail's genetic structure and diversity patterns in six areas. Our mtDNA-based analyses of genetic structure identified significant population differentiation, but pairwise comparison of regions identified no clear geographic trends. In contrast, microsatellites suggested subtle genetic structure differentiating the Oregon population from those in the five regions sampled in the Yellow Rail's main breeding range. The genetic diversity of the Oregon population was also the lowest of the six regions sampled, and Oregon was one of three regions that demonstrated evidence of recent population bottlenecks. Factors that produced population reductions may include loss of wetlands to development and agricultural conversion, drought, and wildfire. At this time, we are unable to determine if the high percentage (50%) of populations having experienced bottlenecks is representative of the Yellow Rail's entire range. Further genetic data from additional breeding populations will be required for this issue to be addressed.

  10. Population genetics and evaluation of genetic evidence for subspecies in the Semipalmated Sandpiper (Calidris pusilla)

    USGS Publications Warehouse

    Miller, Mark P.; Gratto-Trevor, Cheri; Haig, Susan M.; Mizrahi, David S.; Mitchell, Melanie M.; Mullins, Thomas D.

    2013-01-01

    Semipalmated Sandpipers (Calidris pusilla) are among the most common North American shorebirds. Breeding in Arctic North America, this species displays regional differences in migratory pathways and possesses longitudinal bill length variation. Previous investigations suggested that genetic structure may occur within Semipalmated Sandpipers and that three subspecies corresponding to western, central, and eastern breeding groups exist. In this study, mitochondrial control region sequences and nuclear microsatellite loci were used to analyze DNA of birds (microsatellites: n = 120; mtDNA: n = 114) sampled from seven North American locations. Analyses designed to quantify genetic structure and diversity patterns, evaluate genetic evidence for population size changes, and determine if genetic data support the existence of Semipalmated Sandpiper subspecies were performed. Genetic structure based only on the mtDNA data was observed, whereas the microsatellite loci provided no evidence of genetic differentiation. Differentiation among locations and regions reflected allele frequency differences rather than separate phylogenetic groups, and similar levels of genetic diversity were noted. Combined, the two data sets provided no evidence to support the existence of subspecies and were not useful for determining migratory connectivity between breeding sites and wintering grounds. Birds from western and central groups displayed signatures of population expansions, whereas the eastern group was more consistent with a stable overall population. Results of this analysis suggest that the eastern group was the source of individuals that colonized the central and western regions currently utilized by Semipalmated Sandpipers.

  11. Environmental heterogeneity explains the genetic structure of Continental and Mediterranean populations of Fraxinus angustifolia Vahl.

    PubMed

    Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F

    2012-01-01

    Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.

  12. Environmental Heterogeneity Explains the Genetic Structure of Continental and Mediterranean Populations of Fraxinus angustifolia Vahl

    PubMed Central

    Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F.

    2012-01-01

    Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations. PMID:22905171

  13. Using population genetic analyses to understand seed dispersal patterns

    NASA Astrophysics Data System (ADS)

    Hamrick, J. L.; Trapnell, Dorset W.

    2011-11-01

    Neutral genetic markers have been employed in several ways to understand seed dispersal patterns in natural and human modified landscapes. Genetic differentiation among spatially separated populations, using biparentally and maternally inherited genetic markers, allows determination of the relative historical effectiveness of pollen and seed dispersal. Genetic relatedness among individuals, estimated as a function of spatial separation between pairs of individuals, has also been used to indirectly infer seed dispersal distances. Patterns of genetic relatedness among plants in recently colonized populations provide insights into the role of seed dispersal in population colonization and expansion. High genetic relatedness within expanding populations indicates original colonization by a few individuals and population expansion by the recruitment of the original colonists' progeny; low relatedness should occur if population growth results primarily from continuous seed immigration from multiple sources. Parentage analysis procedures can identify maternal parents of dispersed fruits, seeds, or seedlings providing detailed descriptions of contemporary seed dispersal patterns. With standard parent-pair analyses of seeds or seedlings, problems can arise in distinguishing the maternal parent. However, the use of maternal DNA from dispersed fruits or seed coats allows direct identification of maternal individuals and, as a consequence, the distance and patterns of seed dispersal and deposition. Application of combinations of these approaches provides additional insights into the role seed dispersal plays in the genetic connectivity between populations in natural and disturbed landscapes.

  14. Population differentiation in allele frequencies of obesity-associated SNPs.

    PubMed

    Mao, Linyong; Fang, Yayin; Campbell, Michael; Southerland, William M

    2017-11-10

    Obesity is emerging as a global health problem, with more than one-third of the world's adult population being overweight or obese. In this study, we investigated worldwide population differentiation in allele frequencies of obesity-associated SNPs (single nucleotide polymorphisms). We collected a total of 225 obesity-associated SNPs from a public database. Their population-level allele frequencies were derived based on the genotype data from 1000 Genomes Project (phase 3). We used hypergeometric model to assess whether the effect allele at a given SNP is significantly enriched or depleted in each of the 26 populations surveyed in the 1000 Genomes Project with respect to the overall pooled population. Our results indicate that 195 out of 225 SNPs (86.7%) possess effect alleles significantly enriched or depleted in at least one of the 26 populations. Populations within the same continental group exhibit similar allele enrichment/depletion patterns whereas inter-continental populations show distinct patterns. Among the 225 SNPs, 15 SNPs cluster in the first intron region of the FTO gene, which is a major gene associated with body-mass index (BMI) and fat mass. African populations exhibit much smaller blocks of LD (linkage disequilibrium) among these15 SNPs while European and Asian populations have larger blocks. To estimate the cumulative effect of all variants associated with obesity, we developed the personal composite genetic risk score for obesity. Our results indicate that the East Asian populations have the lowest averages of the composite risk scores, whereas three European populations have the highest averages. In addition, the population-level average of composite genetic risk scores is significantly correlated (R 2 = 0.35, P = 0.0060) with obesity prevalence. We have detected substantial population differentiation in allele frequencies of obesity-associated SNPs. The results will help elucidate the genetic basis which may contribute to population

  15. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche

    PubMed Central

    2014-01-01

    Background Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. Results We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Conclusions Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present. PMID:24915756

  16. Genetic differentiation in natural populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae) with different phenotypic spot patterns on tergites in males.

    PubMed

    Silva, M H; Nascimento, M D S B; Leonardo, F S; Rebêlo, J M M; Pereira, S R F

    2011-01-01

    Entomological surveys in the state of Maranhão have recorded morphologically distinct populations of Lutzomyia longipalpis (Lutz & Neiva). Some populations have one pair of spots (1S) on the fourth tergite, while others have two pairs (2S) on the third and fourth tergites of males. In the present study we investigated the degree of genetic polymorphism among four populations in the municipalities of Caxias, Codó and Raposa, in the state of Maranhão, Brazil, by using RAPD (Random Amplified Polymorphic DNA) markers. A total of 35 loci were identified, of which 30 were polymorphic. The highest polymorphism was observed with primer OPA 4, which produced 11 different profiles. Genetic diversity was assessed using grouping methods that produced a dendrogram in which the genotypes could be clearly separated into two main clades according to the number of spots on the male abdominal tergites. One cluster contained the populations from Caxias and Codó, and the other was formed by the populations from Raposa and Codó. The results of our RAPD analysis showed a clear separation between the populations with one and two pairs of spots. The epidemiologic significance of this genetic differentiation should be investigated in future studies.

  17. How Ebola impacts genetics of Western lowland gorilla populations.

    PubMed

    Le Gouar, Pascaline J; Vallet, Dominique; David, Laetitia; Bermejo, Magdalena; Gatti, Sylvain; Levréro, Florence; Petit, Eric J; Ménard, Nelly

    2009-12-18

    Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed. We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected). Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population. Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.

  18. Population size, center-periphery, and seed dispersers' effects on the genetic diversity and population structure of the Mediterranean relict shrub Cneorum tricoccon.

    PubMed

    Lázaro-Nogal, Ana; Matesanz, Silvia; García-Fernández, Alfredo; Traveset, Anna; Valladares, Fernando

    2017-09-01

    The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species' distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation ( H E : 0.04-0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long-distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates ( F IS  = 0.155-0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among-population

  19. Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude.

    PubMed

    Hasselman, Daniel J; Ricard, Daniel; Bentzen, Paul

    2013-03-01

    Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human-mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure. © 2013 Blackwell Publishing Ltd.

  20. Rangewide Genetic Variation in Coast Redwood Populations at a Chloroplast Microsatellite Locus

    Treesearch

    Chris Brinegar

    2012-01-01

    Old growth and second growth populations of coast redwood (Sequoia sempervirens) were sampled at 10 locations throughout its range and analyzed at a highly variable chloroplast microsatellite locus. Very low FST values indicated that there was no significant genetic differentiation between adjacent old growth and second growth populations at each location. Genetic...

  1. Temporal Stability of Genetic Variability and Differentiation in the Three-Spined Stickleback (Gasterosteus aculeatus)

    PubMed Central

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow. PMID:25853707

  2. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.

  3. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region

    PubMed Central

    Douaihy, Bouchra; Vendramin, Giovanni G.; Boratyński, Adam; Machon, Nathalie; Bou Dagher-Kharrat, Magda

    2011-01-01

    Background and aims Juniperus excelsa is an important woody species in the high mountain ecosystems of the eastern Mediterranean Basin where it constitutes the only coniferous species found at the tree line. The genetic diversity within and among J. excelsa populations of the eastern Mediterranean Basin is studied in the light of their historical fragmentation. Methodology Nuclear microsatellites originally developed for Juniperus communis and J. przewalskii were tested on 320 individuals from 12 different populations originating from Lebanon, Turkey, Cyprus, Greece and the Ukraine. Principal results Among the 31 nuclear microsatellite primers tested, only three produced specific amplification products, with orthology confirmed by sequence analysis. They were then used for genetic diversity studies. The mean number of alleles and the expected heterozygosity means were Na=8.78 and He=0.76, respectively. The fixation index showed a significant deviation from Hardy–Weinberg equilibrium and an excess of homozygotes (FIS=0.27–0.56). A moderate level of genetic differentiation was observed among the populations (FST=0.075, P<0.001). The most differentiated populations corresponded to old vestigial stands found at the tree line (>2000 m) in Lebanon. These populations were differentiated from the other populations that are grouped into three sub-clusters. Conclusions High levels of genetic diversity were observed at species and population levels. The high level of differentiation in the high-mountain Lebanese populations reflects a long period of isolation or possibly a different origin. The admixture observed in other populations from Lebanon suggests a more recent separation from the Turkish–southeastern European populations. PMID:22476474

  4. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region.

    PubMed

    Douaihy, Bouchra; Vendramin, Giovanni G; Boratyński, Adam; Machon, Nathalie; Bou Dagher-Kharrat, Magda

    2011-01-01

    Juniperus excelsa is an important woody species in the high mountain ecosystems of the eastern Mediterranean Basin where it constitutes the only coniferous species found at the tree line. The genetic diversity within and among J. excelsa populations of the eastern Mediterranean Basin is studied in the light of their historical fragmentation. Nuclear microsatellites originally developed for Juniperus communis and J. przewalskii were tested on 320 individuals from 12 different populations originating from Lebanon, Turkey, Cyprus, Greece and the Ukraine. Among the 31 nuclear microsatellite primers tested, only three produced specific amplification products, with orthology confirmed by sequence analysis. They were then used for genetic diversity studies. The mean number of alleles and the expected heterozygosity means were N(a)=8.78 and H(e)=0.76, respectively. The fixation index showed a significant deviation from Hardy-Weinberg equilibrium and an excess of homozygotes (F(IS)=0.27-0.56). A moderate level of genetic differentiation was observed among the populations (F(ST)=0.075, P<0.001). The most differentiated populations corresponded to old vestigial stands found at the tree line (>2000 m) in Lebanon. These populations were differentiated from the other populations that are grouped into three sub-clusters. High levels of genetic diversity were observed at species and population levels. The high level of differentiation in the high-mountain Lebanese populations reflects a long period of isolation or possibly a different origin. The admixture observed in other populations from Lebanon suggests a more recent separation from the Turkish-southeastern European populations.

  5. Genetic Differentiation of North-East Argentina Populations Based on 30 Binary X Chromosome Markers.

    PubMed

    Di Santo Meztler, Gabriela P; Del Palacio, Santiago; Esteban, María E; Armoa, Isaías; Argüelles, Carina F; Catanesi, Cecilia I

    2018-01-01

    Alu insertions, INDELs, and SNPs in the X chromosome can be useful not only for revealing relationships among populations but also for identification purposes. We present data of 10 Alu insertions, 5 INDELs, and 15 SNPs of X-chromosome from three Argentinian north-east cities in order to gain insight into the genetic diversity of the X chromosome within this region of the country. Data from 198 unrelated individuals belonging to Posadas, Corrientes, and Eldorado cities were genotyped for Ya5DP62, Yb8DP49, Ya5DP3, Ya5NBC37, Ya5DP77, Ya5NBC491, Ya5DP4, Ya5DP13, Yb8NBC634, and Yb8NBC102 Alu insertions, for MID193, MID1705, MID3754, MID3756 and MID1540 Indels and for rs6639398, rs5986751, rs5964206, rs9781645, rs2209420, rs1299087, rs318173, rs933315, rs1991961, rs4825889, rs1781116, rs1937193, rs1781104, rs149910, and rs652 SNPs. No deviations from Hardy-Weinberg equilibrium were observed for Posadas and Corrientes. However, Eldorado showed significant values, and it was found to have an internal substructuring with two groups of different origin, one showing higher similarity with European countries, and the other with more similarities to Posadas and Corrientes. F st pairwise genetic distances emerged for some markers among the studied populations and also between our data and those from other countries and continents. Of particular interest, Alu insertions demonstrated the most differences, and could be of use in ancestry studies for these populations, while INDELs and SNPs variation were informative for differentiation within the country.

  6. Genetic structure in four West African population groups

    PubMed Central

    Adeyemo, Adebowale A; Chen, Guanjie; Chen, Yuanxiu; Rotimi, Charles

    2005-01-01

    Background Africa contains the most genetically divergent group of continental populations and several studies have reported that African populations show a high degree of population stratification. In this regard, it is important to investigate the potential for population genetic structure or stratification in genetic epidemiology studies involving multiple African populations. The presences of genetic sub-structure, if not properly accounted for, have been reported to lead to spurious association between a putative risk allele and a disease. Within the context of the Africa America Diabetes Mellitus (AADM) Study (a genetic epidemiologic study of type 2 diabetes mellitus in West Africa), we have investigated population structure or stratification in four ethnic groups in two countries (Akan and Gaa-Adangbe from Ghana, Yoruba and Igbo from Nigeria) using data from 372 autosomal microsatellite loci typed in 493 unrelated persons (986 chromosomes). Results There was no significant population genetic structure in the overall sample. The smallest probability is associated with an inferred cluster of 1 and little of the posterior probability is associated with a higher number of inferred clusters. The distribution of members of the sample to inferred clusters is consistent with this finding; roughly the same proportion of individuals from each group is assigned to each cluster with little variation between the ethnic groups. Analysis of molecular variance (AMOVA) showed that the between-population component of genetic variance is less than 0.1% in contrast to 99.91% for the within population component. Pair-wise genetic distances between the four ethnic groups were also very similar. Nonetheless, the small between-population genetic variance was sufficient to distinguish the two Ghanaian groups from the two Nigerian groups. Conclusion There was little evidence for significant population substructure in the four major West African ethnic groups represented in the AADM

  7. Genetic differentiation in Elaeocarpus photiniifolia (Elaeocarpaceae) associated with geographic distribution and habitat variation in the Bonin (Ogasawara) Islands.

    PubMed

    Sugai, Kyoko; Setsuko, Suzuki; Nagamitsu, Teruyoshi; Murakami, Noriaki; Kato, Hidetoshi; Yoshimaru, Hiroshi

    2013-11-01

    Gene flow between populations in different environmental conditions can be limited due to divergent natural selection, thus promoting genetic differentiation. Elaeocarpus photiniifolia, an endemic tree species in the Bonin Islands, is distributed in two types of habitats, dry scrubs and mesic forests. We aim to elucidate the genetic differentiation in E. photiniifolia within and between islands and between the habitat types. We investigated genotypes of 639 individuals from 19 populations of E. photiniifolia and its closely-related E. sylvestris at 24 microsatellite loci derived from expressed sequence tags. The data revealed genetic differentiation (1) between E. photiniifolia and E. sylvestris (0.307 ≤ F ST ≤ 0.470), (2) between the E. photiniifolia populations of the Chichijima and Hahajima Island Groups in the Bonin Islands (0.033 ≤ F ST ≤ 0.121) and (3) between E. photiniifolia populations associated with dry scrubs and mesic forests in the Chichijima Island Group (0.005 ≤ F ST ≤ 0.071). Principal coordinate analysis and Bayesian clustering analysis also showed that genetically distinct groups were associated with the habitat types, and isolation by distance was not responsible for the genetic differentiation. These findings suggest that E. photiniifolia is divided into genetically differentiated groups associated with different environmental conditions in the Bonin Islands.

  8. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    PubMed

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  9. The influence of climatic niche preferences on the population genetic structure of a mistletoe species complex.

    PubMed

    Ramírez-Barahona, Santiago; González, Clementina; González-Rodríguez, Antonio; Ornelas, Juan Francisco

    2017-06-01

    The prevalent view on genetic structuring in parasitic plants is that host-race formation is caused by varying degrees of host specificity. However, the relative importance of ecological niche divergence and host specificity to population differentiation remains poorly understood. We evaluated the factors associated with population differentiation in mistletoes of the Psittacanthus schiedeanus complex (Loranthaceae) in Mexico. We used genetic data from chloroplast sequences and nuclear microsatellites to study population genetic structure and tested its association with host preferences and climatic niche variables. Pairwise genetic differentiation was associated with environmental and host preferences, independent of geography. However, environmental predictors appeared to be more important than host preferences to explain genetic structure, supporting the hypothesis that the occurrence of the parasite is largely determined by its own climatic niche and, to a lesser degree, by host specificity. Genetic structure is significant within this mistletoe species complex, but the processes associated with this structure appear to be more complex than previously thought. Although host specificity was not supported as the major determinant of population differentiation, we consider this to be part of a more comprehensive ecological model of mistletoe host-race formation that incorporates the effects of climatic niche evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Population-genetic models of sex-limited genomic imprinting.

    PubMed

    Kelly, S Thomas; Spencer, Hamish G

    2017-06-01

    Genomic imprinting is a form of epigenetic modification involving parent-of-origin-dependent gene expression, usually the inactivation of one gene copy in some tissues, at least, for some part of the diploid life cycle. Occurring at a number of loci in mammals and flowering plants, this mode of non-Mendelian expression can be viewed more generally as parentally-specific differential gene expression. The effects of natural selection on genetic variation at imprinted loci have previously been examined in a several population-genetic models. Here we expand the existing one-locus, two-allele population-genetic models of viability selection with genomic imprinting to include sex-limited imprinting, i.e., imprinted expression occurring only in one sex, and differential viability between the sexes. We first consider models of complete inactivation of either parental allele and these models are subsequently generalized to incorporate differential expression. Stable polymorphic equilibrium was possible without heterozygote advantage as observed in some prior models of imprinting in both sexes. In contrast to these latter models, in the sex-limited case it was critical whether the paternally inherited or maternally inherited allele was inactivated. The parental origin of inactivated alleles had a different impact on how the population responded to the different selection pressures between the sexes. Under the same fitness parameters, imprinting in the other sex altered the number of possible equilibrium states and their stability. When the parental origin of imprinted alleles and the sex in which they are inactive differ, an allele cannot be inactivated in consecutive generations. The system dynamics became more complex with more equilibrium points emerging. Our results show that selection can interact with epigenetic factors to maintain genetic variation in previously unanticipated ways. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Genetic structure in the Sherpa and neighboring Nepalese populations.

    PubMed

    Cole, Amy M; Cox, Sean; Jeong, Choongwon; Petousi, Nayia; Aryal, Dhana R; Droma, Yunden; Hanaoka, Masayuki; Ota, Masao; Kobayashi, Nobumitsu; Gasparini, Paolo; Montgomery, Hugh; Robbins, Peter; Di Rienzo, Anna; Cavalleri, Gianpiero L

    2017-01-19

    We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China, India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components, admixture and homozygosity. We identified clear substructure across populations resident in the Himalayan arc, with genetic structure broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic structure, on both admixture and principal component analysis. We detected differential proportions of ancestry from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang carrying the greatest proportions of Tibetan ancestry. We show that populations dwelling on the Himalayan plateau have had a clear impact on the Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow from surrounding Nepalese populations.

  12. Comparing population structure as inferred from genealogical versus genetic information.

    PubMed

    Colonna, Vincenza; Nutile, Teresa; Ferrucci, Ronald R; Fardella, Giulio; Aversano, Mario; Barbujani, Guido; Ciullo, Marina

    2009-12-01

    Algorithms for inferring population structure from genetic data (ie, population assignment methods) have shown to effectively recognize genetic clusters in human populations. However, their performance in identifying groups of genealogically related individuals, especially in scanty-differentiated populations, has not been tested empirically thus far. For this study, we had access to both genealogical and genetic data from two closely related, isolated villages in southern Italy. We found that nearly all living individuals were included in a single pedigree, with multiple inbreeding loops. Despite F(st) between villages being a low 0.008, genetic clustering analysis identified two clusters roughly corresponding to the two villages. Average kinship between individuals (estimated from genealogies) increased at increasing values of group membership (estimated from the genetic data), showing that the observed genetic clusters represent individuals who are more closely related to each other than to random members of the population. Further, average kinship within clusters and F(st) between clusters increases with increasingly stringent membership threshold requirements. We conclude that a limited number of genetic markers is sufficient to detect structuring, and that the results of genetic analyses faithfully mirror the structuring inferred from detailed analyses of population genealogies, even when F(st) values are low, as in the case of the two villages. We then estimate the impact of observed levels of population structure on association studies using simulated data.

  13. Comparing population structure as inferred from genealogical versus genetic information

    PubMed Central

    Colonna, Vincenza; Nutile, Teresa; Ferrucci, Ronald R; Fardella, Giulio; Aversano, Mario; Barbujani, Guido; Ciullo, Marina

    2009-01-01

    Algorithms for inferring population structure from genetic data (ie, population assignment methods) have shown to effectively recognize genetic clusters in human populations. However, their performance in identifying groups of genealogically related individuals, especially in scanty-differentiated populations, has not been tested empirically thus far. For this study, we had access to both genealogical and genetic data from two closely related, isolated villages in southern Italy. We found that nearly all living individuals were included in a single pedigree, with multiple inbreeding loops. Despite Fst between villages being a low 0.008, genetic clustering analysis identified two clusters roughly corresponding to the two villages. Average kinship between individuals (estimated from genealogies) increased at increasing values of group membership (estimated from the genetic data), showing that the observed genetic clusters represent individuals who are more closely related to each other than to random members of the population. Further, average kinship within clusters and Fst between clusters increases with increasingly stringent membership threshold requirements. We conclude that a limited number of genetic markers is sufficient to detect structuring, and that the results of genetic analyses faithfully mirror the structuring inferred from detailed analyses of population genealogies, even when Fst values are low, as in the case of the two villages. We then estimate the impact of observed levels of population structure on association studies using simulated data. PMID:19550436

  14. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    PubMed

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.

  15. Hierarchical Genetic Analysis of German Cockroach (Blattella germanica) Populations from within Buildings to across Continents

    PubMed Central

    Vargo, Edward L.; Crissman, Jonathan R.; Booth, Warren; Santangelo, Richard G.; Mukha, Dmitry V.; Schal, Coby

    2014-01-01

    Understanding the population structure of species that disperse primarily by human transport is essential to predicting and controlling human-mediated spread of invasive species. The German cockroach (Blattella germanica) is a widespread urban invader that can actively disperse within buildings but is spread solely by human-mediated dispersal over longer distances; however, its population structure is poorly understood. Using microsatellite markers we investigated population structure at several spatial scales, from populations within single apartment buildings to populations from several cities across the U.S. and Eurasia. Both traditional measures of genetic differentiation and Bayesian clustering methods revealed increasing levels of genetic differentiation at greater geographic scales. Our results are consistent with active dispersal of cockroaches largely limited to movement within a building. Their low levels of genetic differentiation, yet limited active spread between buildings, suggests a greater likelihood of human-mediated dispersal at more local scales (within a city) than at larger spatial scales (within and between continents). About half the populations from across the U.S. clustered together with other U.S. populations, and isolation by distance was evident across the U.S. Levels of genetic differentiation among Eurasian cities were greater than those in the U.S. and greater than those between the U.S. and Eurasia, but no clear pattern of structure at the continent level was detected. MtDNA sequence variation was low and failed to reveal any geographical structure. The weak genetic structure detected here is likely due to a combination of historical admixture among populations and periodic population bottlenecks and founder events, but more extensive studies are needed to determine whether signatures of global movement may be present in this species. PMID:25020136

  16. Genetic genealogy comes of age: perspectives on the use of deep-rooted pedigrees in human population genetics.

    PubMed

    Larmuseau, M H D; Van Geystelen, A; van Oven, M; Decorte, R

    2013-04-01

    In this article, we promote the implementation of extensive genealogical data in population genetic studies. Genealogical records can provide valuable information on the origin of DNA donors in a population genetic study, going beyond the commonly collected data such as residence, birthplace, language, and self-reported ethnicity. Recent studies demonstrated that extended genealogical data added to surname analysis can be crucial to detect signals of (past) population stratification and to interpret the population structure in a more objective manner. Moreover, when in-depth pedigree data are combined with haploid markers, it is even possible to disentangle signals of temporal differentiation within a population genetic structure during the last centuries. Obtaining genealogical data for all DNA donors in a population genetic study is a labor-intensive task but the vastly growing (genetic) genealogical databases, due to the broad interest of the public, are making this job more time-efficient if there is a guarantee for sufficient data quality. At the end, we discuss the advantages and pitfalls of using genealogy within sampling campaigns and we provide guidelines for future population genetic studies. Copyright © 2013 Wiley Periodicals, Inc.

  17. Population genetic structure of three species in the genus Astrocaryum G. Mey. (Arecaceae).

    PubMed

    Oliveira, N P; Oliveira, M S P; Davide, L C; Kalisz, S

    2017-08-31

    We assessed the level and distribution of genetic diversity in three species of the economically important palm genus Astrocaryum located in Pará State, in northern Brazil. Samples were collected in three municipalities for Astrocaryum aculeatum: Belterra, Santarém, and Terra Santa; and in two municipalities for both A. murumuru: Belém and Santo Antônio do Tauá and A. paramaca: Belém and Ananindeua. Eight microsatellite loci amplified well and were used for genetic analysis. The mean number of alleles per locus for A. aculeatum, A. murumuru, and A. paramaca were 2.33, 2.38, and 2.06, respectively. Genetic diversity was similar for the three species, ranging from H E = 0.222 in A. aculeatum to H E = 0.254 in A. murumuru. Both F ST and AMOVA showed that most of the genetic variation was found within populations for all three species, but high genetic differentiation among populations was found for A. aculeatum. Three loci were not in Hardy-Weinberg equilibrium, with populations of A. paramaca showing a tendency for the excess of heterozygotes (F IS = -0.144). Gene flow was high for populations of A. paramaca (N m = 19.35). Our results suggest that the genetic diversity within populations followed the genetic differentiation among populations due to high gene flow among the population. Greater geographic distances among the three collection sites for A. aculeatum likely hampered gene flow for this species.

  18. Genetic variability in the Guahibo population from Venezuela.

    PubMed

    Moral, Pedro; Marini, Elisabetta; Esteban, Esther; Mameli, Giuseppa Elisa; Succa, Valeria; Vona, Giuseppe

    2002-01-01

    Four communities from Guahibo of Venezuela were analyzed for the genetic variants of nine erythrocyte enzymes and five serum proteins. Of the 14 loci determined, four were monomorphic. Significant frequency differentiation among communities, was present for ESD and TF markers. In general, Guahibo allele frequencies are in the variation ranges described for South American groups. The analysis indicates a relatively higher affinity of Guahibos with other Venezuelan groups within an irregular pattern of genetic distances that are likely related to the complex demographic history of the South American groups. Genetic diversity estimates reveal a moderate degree of genetic structure between the four Guahibo communities. This intra-tribal variability in Guahibo appears to be lower than in Venezuelan Piaroa but higher than in other Amerindians and could be attributed to a combined effect of low population size and relative isolation of communities. At a continental level, the distribution of genetic diversity is consistent with preferential population movements along the eastern and western coastal areas.

  19. Genetic signals of past demographic changes and the history of oak populations in California

    NASA Astrophysics Data System (ADS)

    Dodd, R. S.

    2009-04-01

    A retrospective view of species' demographic changes can inform on population stability through times of climatic change and the origins and spatial structure of genetic diversity in contemporary populations. The former provides the means to predict responses to future climatic change, while the latter allows us to infer the ability of populations to buffer the effects of reductions in population size and fragmentation. The approximately 1.8 my of the Pleistocene is believed to have had a significant impact on diversity through high rates of extinction during early glacial cycles and population expansions and contractions during the later cycles. In the Mediterranean basin, early emphasis on taxa with wide latitudinal ranges led to models of refugial sites and subsequent recolonization routes that could explain geographic patterns in genetic diversity, with a trend towards reduced genetic diversity in the north. More recently, the study of strictly Mediterranean taxa has revealed relictual sites that have persisted over very long periods of time, commonly relatively poor in diversity, but populations well differentiated from one site to another. In California, relatively little is known of the population dynamics of plant taxa during the Pleistocene glacial cycles, or to what extent differentiation today is a result of pre-Pleistocene events. For several animal taxa, differentiation between Coastal and Sierran taxa are believed to date to the Pliocene. Major demographic changes resulting in population isolation, bottlenecks, founder events and population expansions leave a genetic signal that can be detected through appropriate genetic markers and analyses. Such signals help to infer whether past climate fluctuations have had important effects on population demographics. Here, I will focus on key oak species of the California mediterranean climate zone. I will explore the likely effects of the last glacial maximum on oak populations using palaeoclimate and niche

  20. Genetic structure among greater white-fronted goose populations of the Pacific Flyway

    USGS Publications Warehouse

    Ely, Craig R.; Wilson, Robert E.; Talbot, Sandra L.

    2017-01-01

    An understanding of the genetic structure of populations in the wild is essential for long-term conservation and stewardship in the face of environmental change. Knowledge of the present-day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white-fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine-scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long-lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population-specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white-fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.

  1. GENETIC STRUCTURE OF TRIATOMA INFESTANS POPULATIONS IN RURAL COMMUNITIES OF SANTIAGO DEL ESTERO, NORTHERN ARGENTINA

    PubMed Central

    Marcet, PL; Mora, MS; Cutrera, AP; Jones, L; Gürtler, RE; Kitron, U; Dotson, EM

    2008-01-01

    To gain an understanding of the genetic structure and dispersal dynamics of T. infestans populations, we analyzed the multilocus genotype of 10 microsatellite loci for 352 T. infestans collected in 21 houses of 11 rural communities in October 2002. Genetic structure was analyzed at the community and house compound levels. Analysis revealed that vector control actions affected the genetic structure of T. infestans populations. Bug populations from communities under sustained vector control (core area) were highly structured and genetic differentiation between neighboring house compounds was significant. In contrast, bug populations from communities with sporadic vector control actions were more homogeneous and lacked defined genetic clusters. Genetic differentiation between population pairs did not fit a model of isolation by distance at the microgeographical level. Evidence consistent with flight or walking bug dispersal was detected within and among communities, dispersal was more female-biased in the core area and results suggested that houses received immigrants from more than one source. Putative sources and mechanisms of re-infestation are described. These data may be use to design improved vector control strategies PMID:18773972

  2. Eco-geographical differentiation among Colombian populations of the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae).

    PubMed

    Gómez-Palacio, Andrés; Triana, Omar; Jaramillo-O, Nicolás; Dotson, Ellen M; Marcet, Paula L

    2013-12-01

    Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance. Copyright © 2013. Published by Elsevier B.V.

  3. Eco-geographical differentiation among Colombian populations of the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae)

    PubMed Central

    Gómez-Palacio, Andrés; Triana, Omar; Jaramillo-O, Nicolás; Dotson, Ellen M.; Marcet, Paula L.

    2016-01-01

    Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance. PMID:24035810

  4. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias

    PubMed Central

    Guerrero-Jiménez, Claudia Jimena; Peña, Fabiola; Morales, Pamela; Méndez, Marco; Sallaberry, Michel; Vila, Irma; Poulin, Elie

    2017-01-01

    During the Pleistocene and Holocene, the southwest Andean Altiplano (17°-22°S) was affected by repeated fluctuations in water levels, high volcanic activity and major tectonic movements. In the early Holocene the humid Tauca phase shifted to the arid conditions that have lasted until the present, producing endorheic rivers, lakes, lagoons and wetlands. The endemic fish Orestias (Cyprinodontidae) represents a good model to observe the genetic differentiation that characterizes an incipient speciation process in allopatry since the morphospecies described inhabit a restricted geographic area, with present habitat fragmentation. The genetic diversity and population structure of four endemic morphospecies of Orestias (Cyprinodontidae) found in the Lauca National Park (LNP) analyzed with mitochondrial markers (Control Region) and eight microsatellites, revealed the existence of genetic groups that matches the fragmentation of these systems. High values of genetic and phylogeographic differentiation indices were observed between Chungará Lake and Piacota lagoon. The group composed of the Lauca River, Copapujo and Chuviri wetlands sampling sites showed a clear signal of expansion, with a star-like haplotype network. Levels of genetic differentiation were lower than in Chungará and Piacota, suggesting that these localities would have differentiated after the bottlenecks linked to the collapse of Parinacota volcano. The Parinacota sample showed a population signal that differed from the other localities revealing greater genetic diversity and a disperse network, presenting haplotypes shared with other LNP localities. A mixing pattern of the different genetic groups was evident using the microsatellite markers. The chronology of the vicariance events in LNP may indicate that the partition process of the Orestias populations was gradual. Considering this, and in view of the genetic results, we may conclude that the morphospecies from LNP are populations in ongoing

  5. High genetic diversity in the offshore island populations of the tephritid fruit fly Bactrocera dorsalis.

    PubMed

    Yi, Chunyan; Zheng, Chunyan; Zeng, Ling; Xu, Yijuan

    2016-10-13

    Geographic isolation is an important factor that limit species dispersal and thereby affects genetic diversity. Because islands are often small and surrounded by a natural water barrier to dispersal, they generally form discrete isolated habitats. Therefore, islands may play a key role in the distribution of the genetic diversity of insects, including flies. To characterize the genetic structure of island populations of Bactrocera dorsalis, we analyzed a dataset containing both microsatellite and mtDNA loci of B. dorsalis samples collected from six offshore islands in Southern China. The microsatellite data revealed a high level of genetic diversity among these six island populations based on observed heterozygosity (Ho), expected heterozygosity (H E ), Nei's standard genetic distance (D), genetic identity (I) and the percentage of polymorphic loci (PIC). These island populations had low F ST values (F ST  = 0.04161), and only 4.16 % of the total genetic variation in the species was found on these islands, as determined by an analysis of molecular variance. Based on the mtDNA COI data, high nucleotide diversity (0.9655) and haplotype diversity (0.00680) were observed in all six island populations. F-statistics showed that the six island populations exhibited low or medium levels of genetic differentiation among some island populations. To investigate the population differentiation between the sampled locations, a factorial correspondence analysis and both the unweighted pair-group method with arithmetic mean and Bayesian clustering methods were used to analyze the microsatellite data. The results showed that Hebao Island, Weizhou Island and Dong'ao Island were grouped together in one clade. Another clade consisted of Shangchuan Island and Naozhou Island, and a final, separate clade contained only the Wailingding Island population. Phylogenetic analysis of the mtDNA COI sequences revealed that the populations on each of these six islands were closely related to

  6. Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis

    NASA Astrophysics Data System (ADS)

    Qiao, Hongjin; Liu, Xiangquan; Zhang, Xijia; Jiang, Haibin; Wang, Jiying; Zhang, Limin

    2013-03-01

    Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa, Rhizostomatidae). One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations. The polymorphic ratio, Shannon's diversity index and average heterozygosity were 70.3%, 0.346 and 0.228 for the white hatchery population, 74.3%, 0.313, and 0.201 for the red hatchery population, 79.3%, 0.349, and 0.224 for the Jiangsu wild population, and 74.9%, 0.328 and 0.210 for the Penglai wild population, respectively. Thus, all populations had a relatively high level of genetic diversity. A specific band was identified that could separate the white from the red hatchery population. There was 84.85% genetic differentiation within populations. Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided. For the hatchery populations, the white and red populations clustered separately; however, for the wild populations, Penglai and Jiangsu populations clustered together. The genetic diversity at the clone level was also determined. Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations, which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing. These findings will benefit the artificial seeding and conservation of the germplasm resources.

  7. Competitive advantage and higher fitness in native populations of genetically structured planktonic diatoms.

    PubMed

    Sildever, Sirje; Sefbom, Josefin; Lips, Inga; Godhe, Anna

    2016-12-01

    It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Quantifying Spatial Genetic Structuring in Mesophotic Populations of the Precious Coral Corallium rubrum

    PubMed Central

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations. PMID:23646109

  9. Population genetic structure of moose (Alces alces) of South-central Alaska

    USGS Publications Warehouse

    Wilson, Robert E.; McDonough, John T.; Barboza, Perry S.; Talbot, Sandra L.; Farley, Sean D.

    2015-01-01

    The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins are often thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST= 0.071, P < 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.

  10. Genetic drift and the population history of the Irish travellers.

    PubMed

    Relethford, John H; Crawford, Michael H

    2013-02-01

    The Irish Travellers are an itinerant group in Ireland that has been socially isolated. Two hypotheses have been proposed concerning the genetic origin of the Travellers: (1) they are genetically related to Roma populations in Europe that share a nomadic lifestyle or (2) they are of Irish origin, and genetic differences from the rest of Ireland reflect genetic drift. These hypotheses were tested using data on 33 alleles from 12 red blood cell polymorphism loci. Comparison with other European, Roma, and Indian populations shows that the Travellers are genetically distinct from the Roma and Indian populations and most genetically similar to Ireland, in agreement with earlier genetic analyses of the Travellers. However, the Travellers are still genetically distinct from other Irish populations, which could reflect some external gene flow and/or the action of genetic drift in a small group that was descended from a small number of founders. In order to test the drift hypothesis, we analyzed genetic distances comparing the Travellers to four geographic regions in Ireland. These distances were then compared with adjusted distances that account for differential genetic drift using a method developed by Relethford (Hum Biol 68 (1996) 29-44). The unadjusted distances show the genetic distinctiveness of the Travellers. After adjustment for the expected effects of genetic drift, the Travellers are equidistant from the other Irish samples, showing their Irish origins and population history. The observed genetic differences are thus a reflection of genetic drift, and there is no evidence of any external gene flow. Copyright © 2012 Wiley Periodicals, Inc.

  11. Population genomics and the causes of local differentiation.

    PubMed

    Tonsor, Stephen J

    2012-11-01

    Exactly 50 years ago, a revolution in empirical population genetics began with the introduction of methods for detecting allelic variation using protein electrophoresis (Throckmorton 1962; Hubby 1963; Lewontin & Hubby 1966). These pioneering scientists showed that populations are chock-full of genetic variation. This variation was a surprise that required a re-thinking of evolutionary genetic heuristics. Understanding the causes for the maintenance of this variation became and remains a major area of research. In the process of addressing the causes, this same group of scientists documented geographical genetic structure (Prakash et al. 1969), spawning the continued accumulation of what is now a huge case study catalogue of geographical differentiation (e.g. Loveless & Hamrick 1984; Linhart & Grant 1996). Geographical differentiation is clearly quite common. Yet, a truly general understanding of the patterns in and causes of spatial genetic structure across the genome remains elusive. To what extent is spatial structure driven by drift and phylogeography vs. geographical differences in environmental sources of selection? What proportion of the genome participates? A general understanding requires range-wide data on spatial patterning of variation across the entire genome. In this issue of Molecular Ecology, Lasky et al. (2012) make important strides towards addressing these issues, taking advantage of three contemporary revolutions in evolutionary biology. Two are technological: high-throughput sequencing and burgeoning computational power. One is cultural: open access to data from the community of scientists and especially data sets that result from large collaborative efforts. Together, these developments may at last put answers within reach.

  12. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters.

    PubMed

    Yoon, M; Park, W; Nam, Y K; Kim, D S

    2012-02-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population F ST values (-0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (F CT = 0.028, p<0.05), and no genetic variation within groups (0.53%; F SC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  13. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters

    PubMed Central

    Yoon, M.; Park, W.; Nam, Y. K.; Kim, D. S.

    2012-01-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population FST values (−0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (FCT = 0.028, p<0.05), and no genetic variation within groups (0.53%; FSC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species. PMID:25049547

  14. Environmental and Historical Determinants of Patterns of Genetic Differentiation in Wild Soybean (Glycine soja Sieb. et Zucc)

    PubMed Central

    He, Shui-Lian; Wang, Yun-Sheng; Li, De-Zhu; Yi, Ting-Shuang

    2016-01-01

    Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes. PMID:26952904

  15. Diversity and population structure of a dominant deciduous tree based on morphological and genetic data

    PubMed Central

    Zhang, Qin-di; Jia, Rui-Zhi; Meng, Chao; Ti, Chao-Wen; Wang, Yi-Ling

    2015-01-01

    Knowledge of the genetic diversity and structure of tree species across their geographic ranges is essential for sustainable use and management of forest ecosystems. Acer grosseri Pax., an economically and ecologically important maple species, is mainly distributed in North China. In this study, the genetic diversity and population differentiation of 24 natural populations of this species were evaluated using sequence-related amplified polymorphism markers and morphological characters. The results show that highly significant differences occurred in 32 morphological traits. The coefficient of variation of 34 characters was 18.19 %. Principal component analysis indicated that 18 of 34 traits explained 60.20 % of the total variance. The phenotypic differentiation coefficient (VST) was 36.06 % for all morphological traits. The Shannon–Wiener index of 34 morphological characters was 6.09, while at the population level, it was 1.77. The percentage of polymorphic bands of all studied A. grosseri populations was 82.14 %. Nei's gene diversity (He) and Shannon's information index (I) were 0.35 and 0.50, respectively. Less genetic differentiation was detected among the natural populations (GST = 0.20, ΦST = 0.10). Twenty-four populations of A. grosseri formed two main clusters, which is consistent with morphological cluster analysis. Principal coordinates analysis and STRUCTURE analysis supported the UPGMA-cluster dendrogram. There was no significant correlation between genetic and geographical distances among populations. Both molecular and morphological data suggested that A. grosseri is rich in genetic diversity. The high level of genetic variation within populations could be affected by the biological characters, mating system and lifespan of A. grosseri, whereas the lower genetic diversity among populations could be caused by effective gene exchange, selective pressure from environmental heterogeneity and the species' geographical range. PMID:26311734

  16. [Matrimonial radius and anthropologic differentiation of the population of the Peloponnese, Greece].

    PubMed

    Pitsios, T K

    1983-09-01

    Mean matrimonial radius (MMR) and mean breeding radius (MBR) were studied in the population of the Peloponnese (Greece). The historical and geographical causes of these important genetical variables are discussed considering, too, their effects on the anthropological differentiation of this population.

  17. The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    PubMed Central

    Pujolar, José Martin; Vincenzi, Simone; Zane, Lorenzo; Jesensek, Dusan; De Leo, Giulio A.; Crivelli, Alain J.

    2011-01-01

    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global F ST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change. PMID:21931617

  18. Longitudinal differentiation among pelagic populations in a planktic foraminifer

    PubMed Central

    Ujiié, Yurika; Asami, Takahiro; de Garidel-Thoron, Thibault; Liu, Hui; Ishitani, Yoshiyuki; de Vargas, Colomban

    2012-01-01

    Evolutionary processes in marine plankton have been assumed to be dependent on the oceanic circulation system, which transports plankton between populations in marine surface waters. Gene flow facilitated by oceanic currents along longitudinal gradients may efficiently impede genetic differentiation of pelagic populations in the absence of confounding marine environmental effects. However, how responsible oceanic currents are for the geographic distribution and dispersal of plankton is poorly understood. We examined the phylogeography of the planktic foraminifer Pulleniatina obliquiloculata in the Indo-Pacific Warm Pool (IPWP) by using partial small subunit ribosomal DNA (SSU rDNA) sequences. We found longitudinal clines in the frequencies of three distinct genetic types in the IPWP area. These frequencies were correlated with environmental factors that are characteristic of three water masses in the IPWP. Noteworthy, populations inhabiting longitudinally distant water masses at the Pacific and Indian sides of the IPWP were genetically different, despite transportation of individuals via oceanic currents. These results demonstrate that populations of pelagic plankton have diverged genetically among different water masses within a single climate zone. Changes of the oceanic circulation system could have impacted the geographic patterns of dispersal and divergence of pelagic plankton. PMID:22957176

  19. Genetic history of the African Sahelian populations.

    PubMed

    Černý, V; Kulichová, I; Poloni, E S; Nunes, J M; Pereira, L; Mayor, A; Sanchez-Mazas, A

    2018-03-01

    From a biogeographic perspective, Africa is subdivided into distinct horizontal belts. Human populations living along the Sahel/Savannah belt south of the Sahara desert have often been overshadowed by extensive studies focusing on other African populations such as hunter-gatherers or Bantu in particular. However, the Sahel together with the Savannah bordering it in the south is a challenging region where people had and still have to cope with harsh climatic conditions and show resilient behaviours. Besides exponentially growing urban populations, several local groups leading various lifestyles and speaking languages belonging to three main linguistic families still live in rural localities across that region today. Thanks to several years of consistent population sampling throughout this area, the genetic history of the African Sahelian populations has been largely reconstructed and a deeper knowledge has been acquired regarding their adaptation to peculiar environments and/or subsistence modes. Distinct exposures to pathogens-in particular, malaria-likely contributed to their genetic differentiation for HLA genes. In addition, although food-producing strategies spread within the Sahel/Savannah belt relatively recently, during the last five millennia according to recent archaeological and archaeobotanical studies, remarkable amounts of genetic differences are also observed between sedentary farmers and more mobile pastoralists at multiple neutral and selected loci, reflecting both demographic effects and genetic adaptations to distinct cultural traits, such as dietary habits. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Population genetic structure of a widespread coniferous tree, Taxodium distichum [L.] Rich. (Cupressaceae), in the Mississippi River Alluvial Valley and Florida

    USGS Publications Warehouse

    Tanaka, Ayako; Ohtani, Masato; Suyama, Yoshihisa; Inomata, Nobuyuki; Tsumura, Yoshihiko; Middleton, Beth A.; Tachida, Hidenori; Kusumi, Junko

    2012-01-01

    Studies of genetic variation can elucidate the structure of present and past populations as well as the genetic basis of the phenotypic variability of species. Taxodium distichum is a coniferous tree dominant in lowland river flood plains and swamps of the southeastern USA which exhibits morphological variability and adaption to stressful habitats. This study provides a survey of the Mississippi River Alluvial Valley (MAV) and Florida to elucidate their population structure and the extent of genetic differentiation between the two regions and sympatric varieties, including bald cypress (var. distichum) and pond cypress (var. imbricatum). We determined the genotypes of 12 simple sequence repeat loci totaling 444 adult individuals from 18 natural populations. Bayesian clustering analysis revealed high levels of differentiation between the MAV and the Florida regions. Within the MAV region, there was a significant correlation between genetic and geographical distances. In addition, we found that there was almost no genetic differentiation between the varieties. Most genetic variation was found within individuals (76.73 %), 1.67 % among individuals within population, 15.36 % among populations within the regions, and 9.23 % between regions within the variety. Our results suggest that (1) the populations of the MAV and the Florida regions are divided into two major genetic groups, which might originate from different glacial refugia, and (2) the patterns of genetic differentiation and phenotypic differentiation were not parallel in this species.

  1. Microsatellite-based genetic diversity patterns in disjunct populations of a rare orchid.

    PubMed

    Pandey, Madhav; Richards, Matt; Sharma, Jyotsna

    2015-12-01

    We investigated the patterns of genetic diversity and structure in seven disjunct populations of a rare North American orchid, Cypripedium kentuckiense by including populations that represented the periphery and the center of the its range. Eight nuclear and two chloroplast microsatellites were used. Genetic diversity was low across the sampled populations of C. kentuckiense based on both nuclear (average An = 4.0, Ho = 0.436, He = 0.448) and cpDNA microsatellites (average An = 1.57, Nh = 1.57 and H = 0.133). The number of private alleles ranged from one to four per population with a total of 17 private alleles detected at five nuclear microsatellites. One private allele at one cpDNA microsatellite was also observed. Although the absolute values for nuclear microsatellite based population differentiation were low (Fst = 0.075; ϕPT = 0.24), they were statistically significant. Pairwise Fst values ranged from 0.038 to 0.123 and each comparison was significant. We also detected isolation by distance with nDNA microsatellites based on the Mantel test (r(2) = 0.209, P = 0.05). STRUCTURE analysis and the neighbor joining trees grouped the populations similarly whereby the geographically proximal populations were genetically similar. Our data indicate that the species is genetically depauperate but the diversity is distributed more or less equally across its range. Population differentiation and isolation by distance were detectable, which indicates that genetic isolation is beginning to manifest itself across the range in this rare species.

  2. Do hatchery-reared sea urchins pose a threat to genetic diversity in wild populations?

    PubMed Central

    Segovia-Viadero, M; Serrão, E A; Canteras-Jordana, J C; Gonzalez-Wangüemert, M

    2016-01-01

    In salmonids, the release of hatchery-reared fish has been shown to cause irreversible genetic impacts on wild populations. However, although responsible practices for producing and releasing genetically diverse, hatchery-reared juveniles have been published widely, they are rarely implemented. Here, we investigated genetic differences between wild and early-generation hatchery-reared populations of the purple sea urchin Paracentrotus lividus (a commercially important species in Europe) to assess whether hatcheries were able to maintain natural levels of genetic diversity. To test the hypothesis that hatchery rearing would cause bottleneck effects (that is, a substantial reduction in genetic diversity and differentiation from wild populations), we compared the levels and patterns of genetic variation between two hatcheries and four nearby wild populations, using samples from both Spain and Ireland. We found that hatchery-reared populations were less diverse and had diverged significantly from the wild populations, with a very small effective population size and a high degree of relatedness between individuals. These results raise a number of concerns about the genetic impacts of their release into wild populations, particularly when such a degree of differentiation can occur in a single generation of hatchery rearing. Consequently, we suggest that caution should be taken when using hatchery-reared individuals to augment fisheries, even for marine species with high dispersal capacity, and we provide some recommendations to improve hatchery rearing and release practices. Our results further highlight the need to consider the genetic risks of releasing hatchery-reared juveniles into the wild during the establishment of restocking, stock enhancement and sea ranching programs. PMID:26758187

  3. [New view on the population genetic structure of marine fish].

    PubMed

    Salmenkova, E A

    2011-11-01

    The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.

  4. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China.

    PubMed

    Meng, Lixue; Wang, Yongmo; Wei, Wen-Hua; Zhang, Hongyu

    2018-01-24

    The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima's D and Fu's F S parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.

  5. Genetic variability in captive populations of the stingless bee Tetragonisca angustula.

    PubMed

    Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C

    2016-08-01

    Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.

  6. Genetic diversity and population structure of an extremely endangered species: the world's largest Rhododendron.

    PubMed

    Wu, Fu Qin; Shen, Shi Kang; Zhang, Xin Jun; Wang, Yue Hua; Sun, Wei Bang

    2014-12-04

    Comprehensive studies on the genetic diversity and structure of endangered species are urgently needed to promote effective conservation and management activities. The big tree rhododendron, Rhododendron protistum var. giganteum, is a highly endangered species with only two known endemic populations in a small area in the southern part of Yunnan Province in China. Unfortunately, limited information is available regarding the population genetics of this species. Therefore, we conducted amplified fragment length polymorphism (AFLP) analysis to characterize the genetic diversity and variation of this species within and between remaining populations. Twelve primer combinations of AFLP produced 447 unambiguous and repetitious bands. Among these bands, 298 (66.67 %) were polymorphic. We found high genetic diversity at the species level (percentage of polymorphic loci = 66.67 %, h = 0.240, I = 0.358) and low genetic differentiation (Gst = 0.110) between the two populations. Gene flow between populations (Nm) was relatively high at 4.065. Analysis of molecular variance results revealed that 22 % of the genetic variation was partitioned between populations and 78 % of the genetic variation was within populations. The presence of moderate to high genetic diversity and low genetic differentiation in the two populations can be explained by life history traits, pollen dispersal and high gene flow (Nm = 4.065). Bayesian structure and principal coordinate analysis revealed that 56 sampled trees were clustered into two groups. Our results suggest that some rare and endangered species are able to maintain high levels of genetic diversity even at small population sizes. These results will assist with the design of conservation and management programmes, such as in situ and ex situ conservation, seed collection for germplasm conservation and reintroduction. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Impact of Geography and Climate on the Genetic Differentiation of the Subtropical Pine Pinus yunnanensis

    PubMed Central

    Zhao, Wei; Wang, Xiao-Ru

    2013-01-01

    Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species’ range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China. PMID:23840668

  8. Impact of Geography and Climate on the Genetic Differentiation of the Subtropical Pine Pinus yunnanensis.

    PubMed

    Wang, Baosheng; Mao, Jian-Feng; Zhao, Wei; Wang, Xiao-Ru

    2013-01-01

    Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species' range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China.

  9. Global genetic differentiation of complex traits shaped by natural selection in humans.

    PubMed

    Guo, Jing; Wu, Yang; Zhu, Zhihong; Zheng, Zhili; Trzaskowski, Maciej; Zeng, Jian; Robinson, Matthew R; Visscher, Peter M; Yang, Jian

    2018-05-14

    There are mean differences in complex traits among global human populations. We hypothesize that part of the phenotypic differentiation is due to natural selection. To address this hypothesis, we assess the differentiation in allele frequencies of trait-associated SNPs among African, Eastern Asian, and European populations for ten complex traits using data of large sample size (up to ~405,000). We show that SNPs associated with height ([Formula: see text]), waist-to-hip ratio ([Formula: see text]), and schizophrenia ([Formula: see text]) are significantly more differentiated among populations than matched "control" SNPs, suggesting that these trait-associated SNPs have undergone natural selection. We further find that SNPs associated with height ([Formula: see text]) and schizophrenia ([Formula: see text]) show significantly higher variance in linkage disequilibrium (LD) scores across populations than control SNPs. Our results support the hypothesis that natural selection has shaped the genetic differentiation of complex traits, such as height and schizophrenia, among worldwide populations.

  10. Population genetics of Sargassum horneri (Fucales, Phaeophyta) in China revealed by ISSR and SRAP markers

    NASA Astrophysics Data System (ADS)

    Yu, Shenhui; Chong, Zhuo; Zhao, Fengjuan; Yao, Jianting; Duan, Delin

    2013-05-01

    Sargassum horneri is a common brown macro-alga that is found in the inter-tidal ecosystems of China. To investigate the current status of seaweed resources and provide basic data for its sustainable development, ISSR (inter simple sequence repeat) and SRAP (sequence related amplified polymorphism) markers were used to analyze the population genetics among nine natural populations of S. horneri. The nine studied populations were distributed over 2 000 km from northeast to south China. The percentage of polymorphic loci P % (ISSR, 99.44%; SRAP, 100.00%), Nei's genetic diversity H (ISSR, 0.107-0.199; SRAP, 0.100-0.153), and Shannon's information index I (ISSR, 0.157-0.291; SRAP, 0.148-0.219) indicated a fair amount of genetic variability among the nine populations. Moreover, the high degree of gene differentiation G st (ISSR, 0.654; SRAP, 0.718) and low gene flow N m (ISSR, 0.265; SRAP, 0.196) implied that there was significant among-population differentiation, possibly as a result of habitat fragmentation. The matrices of genetic distances and fixation indices ( F st) among the populations correlated well with their geographical distribution (Mantel test R =0.541 5, 0.541 8; P =0.005 0, 0.002 0 and R =0.728 6, 0.641 2; P =0.001 0, 0.001 0, respectively); the Rongcheng population in the Shandong peninsula was the only exception. Overall, the genetic differentiation agreed with the geographic isolation. The fair amount of genetic diversity that was revealed in the S. horneri populations in China indicated that the seaweed resources had not been seriously affected by external factors.

  11. Effect of sociocultural cleavage on genetic differentiation: a study from North India.

    PubMed

    Khan, Faisal; Pandey, Atul Kumar; Borkar, Meenal; Tripathi, Manorma; Talwar, Sudha; Bisen, P S; Agrawal, Suraksha

    2008-06-01

    Indian populations possess an exclusive genetic profile primarily due to the many migratory events, which caused an extensive range of genetic diversity, and also due to stringent and austere sociocultural barriers that structure these populations into different endogamous groups. In the present study we attempt to explore the genetic relationships between various endogamous North Indian populations and to determine the effect of stringent social regulations on their gene pool. Twenty STR markers were genotyped in 1,800 random North Indians from 9 endogamous populations belonging to upper-caste and middle-caste Hindus and Muslims. All nine populations had high allelic diversity (176 alleles) and average observed heterozygosity (0.742 +/- 0.06), suggesting strong intrapopulation diversity. The average F(ST) value over all loci was as low as 0.0084. However, within-group F(ST) and genetic distance analysis showed that populations of the same group were genetically closer to each other. The genetic distance of Muslims from middle castes (F(ST) = 0.0090; DA = 0.0266) was significantly higher than that of Muslims from upper castes (F(ST) = 0.0050; DA = 0.0148). Phylogenetic trees (neighbor-joining and maximum-likelihood) show the basal cluster pattern of three clusters corresponding to Muslims, upper-caste, and middle-caste populations, with Muslims clustered with upper-caste populations. Based on the results, we conclude that the extensive gene flow through a series of migrations and invasions has created an enormous amount of genetic diversity. The interpopulation differences are minimal but have a definite pattern, in which populations of different socioreligious groups have more genetic similarity within the same group and are genetically more distant from populations of other groups. Finally, North Indian Muslims show a differential genetic relationship with upper- and middle-caste populations.

  12. Population genetic structure in a social landscape: barley in a traditional Ethiopian agricultural system

    PubMed Central

    Samberg, Leah H; Fishman, Lila; Allendorf, Fred W

    2013-01-01

    Conservation strategies are increasingly driven by our understanding of the processes and patterns of gene flow across complex landscapes. The expansion of population genetic approaches into traditional agricultural systems requires understanding how social factors contribute to that landscape, and thus to gene flow. This study incorporates extensive farmer interviews and population genetic analysis of barley landraces (Hordeum vulgare) to build a holistic picture of farmer-mediated geneflow in an ancient, traditional agricultural system in the highlands of Ethiopia. We analyze barley samples at 14 microsatellite loci across sites at varying elevations and locations across a contiguous mountain range, and across farmer-identified barley types and management strategies. Genetic structure is analyzed using population-based and individual-based methods, including measures of population differentiation and genetic distance, multivariate Principal Coordinate Analysis, and Bayesian assignment tests. Phenotypic analysis links genetic patterns to traits identified by farmers. We find that differential farmer management strategies lead to markedly different patterns of population structure across elevation classes and barley types. The extent to which farmer seed management appears as a stronger determinant of spatial structure than the physical landscape highlights the need for incorporation of social, landscape, and genetic data for the design of conservation strategies in human-influenced landscapes. PMID:24478796

  13. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    USGS Publications Warehouse

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  14. Genetic diversity and population structure of sickleweed (Falcaria vulgaris; Apiaceae) in the upper Midwest USA

    Treesearch

    Sarbottam Piya; Madhav P. Nepal; Jack L. Butler; Gary E. Larson; Achal Neupane

    2014-01-01

    Sickleweed (Falcaria vulgaris), an introduced species native to Europe and Asia, grows as an aggressive weed in some areas of the upper Midwest in the United States. We are reporting genetic diversity and population structure of sickleweed populations using microsatellite markers and nuclear and chloroplast DNA sequences. Populations showed high genetic differentiation...

  15. The Population Genetics of Cultivation: Domestication of a Traditional Chinese Medicine, Scrophularia ningpoensis Hemsl. (Scrophulariaceae)

    PubMed Central

    Chen, Chuan; Li, Pan; Wang, Rui-Hong; Schaal, Barbara A.; Fu, Cheng-Xin

    2014-01-01

    Background Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement. Results Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations. Conclusions These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong artificial selection

  16. Genetic Variation in the Acorn Barnacle from Allozymes to Population Genomics

    PubMed Central

    Flight, Patrick A.; Rand, David M.

    2012-01-01

    Understanding the patterns of genetic variation within and among populations is a central problem in population and evolutionary genetics. We examine this question in the acorn barnacle, Semibalanus balanoides, in which the allozyme loci Mpi and Gpi have been implicated in balancing selection due to varying selective pressures at different spatial scales. We review the patterns of genetic variation at the Mpi locus, compare this to levels of population differentiation at mtDNA and microsatellites, and place these data in the context of genome-wide variation from high-throughput sequencing of population samples spanning the North Atlantic. Despite considerable geographic variation in the patterns of selection at the Mpi allozyme, this locus shows rather low levels of population differentiation at ecological and trans-oceanic scales (FST ∼ 5%). Pooled population sequencing was performed on samples from Rhode Island (RI), Maine (ME), and Southwold, England (UK). Analysis of more than 650 million reads identified approximately 335,000 high-quality SNPs in 19 million base pairs of the S. balanoides genome. Much variation is shared across the Atlantic, but there are significant examples of strong population differentiation among samples from RI, ME, and UK. An FST outlier screen of more than 22,000 contigs provided a genome-wide context for interpretation of earlier studies on allozymes, mtDNA, and microsatellites. FST values for allozymes, mtDNA and microsatellites are close to the genome-wide average for random SNPs, with the exception of the trans-Atlantic FST for mtDNA. The majority of FST outliers were unique between individual pairs of populations, but some genes show shared patterns of excess differentiation. These data indicate that gene flow is high, that selection is strong on a subset of genes, and that a variety of genes are experiencing diversifying selection at large spatial scales. This survey of polymorphism in S. balanoides provides a number of

  17. Genetic studies among seven endogamous populations of the Koshi Zone, Bihar (India).

    PubMed

    Pandey, B N; Das, P K; Husain, S; Anwer, Md Rauf; Jha, A K

    2003-09-01

    The distribution of AB0 and Rhesus blood groups, PTC taste sensitivity and colour blindness was studied among seven endogamous populations (Tharu, Mushar, Santal, Dhobi, Julaha, Kulhaiya and Karan Kayastha) in the Koshi Zone of Bihar (India). The phenotype and allele frequencies of the four gene loci (AB0, RH, PTC and colour blindness) show considerable differences between these populations. The measurement of genetic distances revealed, that the lowest genetic distance is seen between Dhobi and Julaha, the highest between Mushar and Tharu. From the genetic distance analysis there is some evidence for a close genetic relationship among the population groups belonging to the same region, irrespective of their caste, religion, linguistic or any other affinities. It may be concluded that all these populations have arisen through a common ancestor and changed gene frequencies among them is due to evolutionary forces like mutation, selection, migration, temporal variation and genetic drift. However, these populations retain their separate entities by practising endogamy. Gene diversity analysis reveals that these populations are at an early stage of genetic differentiation.

  18. Genetic diversity and geographic differentiation in the threatened species Dysosma pleiantha in China as revealed by ISSR analysis.

    PubMed

    Zong, Min; Liu, Hai-Long; Qiu, Ying-Xiong; Yang, Shu-Zhen; Zhao, Ming-Shui; Fu, Cheng-Xin

    2008-04-01

    Dysosma pleiantha, an important threatened medicinal plant species, is restricted in distribution to southeastern China. The species is capable of reproducing both sexually and asexually. In this study, inter-simple sequence repeat marker data were obtained and analyzed with respect to genetic variation and genetic structure. The extent of clonality, together with the clonal and sexual reproductive strategies, varied among sites, and the populations under harsh ecological conditions tended to have large clones with relatively low clonal diversity caused by vegetative reproduction. The ramets sharing the same genotype show a clumped distribution. Across all populations surveyed, average within-population diversity was remarkably low (e.g., 0.111 for Nei's gene diversity), with populations from the nature reserves maintaining relatively high amounts of genetic diversity. Among all populations, high genetic differentiation (AMOVA: Phi(ST) = 0.500; Nei's genetic diversity: G (ST) = 0.465, Bayesian analysis: Phi(B) = 0.436) was detected, together with an isolation-by-distance pattern. Low seedling recruitment due to inbreeding, restricted gene flow, and genetic drift are proposed as determinant factors responsible for the low genetic diversity and high genetic differentiation observed.

  19. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    PubMed

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-08-12

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P < 0.05) with environmental factors. Genetic differentiation existed among populations and the populations exhibited heteroplasmy.

  20. Genetic population structure analysis in New Hampshire reveals Eastern European ancestry.

    PubMed

    Sloan, Chantel D; Andrew, Angeline D; Duell, Eric J; Williams, Scott M; Karagas, Margaret R; Moore, Jason H

    2009-09-07

    Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population.

  1. Genetic variation and biogeography of the spotted gar Lepisosteus oculatus from core and peripheral populations.

    PubMed

    David, Solomon R; Wright, Jeremy J

    2017-11-01

    The spotted gar (Lepisosteus oculatus) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to the U.S. gulf coast and a peripheral population in the southern Great Lakes Basin. Despite significant conservation concerns for this species in the Great Lakes watersheds where it occurs, few genetic examinations and comparisons of these populations have been performed. We investigated inter- and intrapopulational variation in several mitochondrial genetic markers (cytochrome oxidase subunit I, COI; cytochrome oxidase subunit II, COII; and 16S rRNA, 16S) from spotted gars taken from core and peripheral populations. Genetic diversity was highest in the Mississippi River Basin and lowest in the Great Lakes Basin, while the Nueces River Basin (Texas) population showed the greatest level of divergence from other populations. Average genetic distance among core and peripheral populations was over an order of magnitude less than that seen between L. oculatus and its sister species, the Florida gar (L. platyrhincus), although a significant correlation was found between genetic and geographical distance in L. oculatus. Genetic divergence in spotted gars is likely to be related to a combination of geographic isolation and founder effects associated with recent colonization following glacial retreat. Despite its apparent lack of significant genetic differentiation or haplotype diversity, the Great Lakes population of spotted gars has previously been shown to be a unique component of the species, and additional studies are needed to determine the genetic mechanisms underlying regional adaptations as well as potential morphological differentiation among spotted gar populations. © 2017 Wiley Periodicals, Inc.

  2. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.

    PubMed

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-04-05

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.

  3. Genetic Differentiation in a Sample from Northern Mexico City Detected by HLA System Analysis: Impact in the Study of Population Immunogenetics.

    PubMed

    Cortés, Eva D Juárez; Sieck, Miguel A Contreras; Perea, Agustín J Arriaga; Medrano, Rosa M Macías; Jaime, Anaí Balbuena; Martínez, Paola Everardo; Zúñiga, Joaquín; Alonzo, Víctor Acuña; Granados, Julio; Barquera, Rodrigo

    2017-07-01

    The major histocompatibility complex is directly involved in the immune response, and thus the genes coding for its proteins are useful markers for the study of genetic diversity, susceptibility to disease (autoimmunity and infections), transplant medicine, and pharmacogenetics, among others. The polymorphism of the system also allows researchers to use it as a proxy for population genetics analysis, such as genetic admixture and genetic structure. In order to determine the immunogenetic characteristics of a sample from the northern part of Mexico City and to use them to analyze the genetic differentiation from other admixed populations, including those from previous studies of Mexico City population, we analyzed molecular typing results of donors and patients from the Histocompatibility Laboratory of the Central Blood Bank of the Centro Médico Nacional La Raza selected according to their geographic origin. HLA-A, -B, -DRB1, and -DQB1 alleles were typed by polymerase chain reaction with sequence-specific primers. Allelic and haplotype frequencies, as well as population genetics parameters, were obtained by maximum likelihood methods. The most frequent haplotypes found were HLA-A * 02/-B * 39/-DRB1 * 04/-DQB1 * 03:02P, HLA-A * 02/-B * 35/-DRB1 * 04/-DQB1 * 03:02P, HLA-A * 68/-B * 39/-DRB1 * 04/-DQB1 * 03:02P, and HLA-A * 02/-B * 35/-DRB1 * 08/-DQB1 * 04. Importantly, the second most frequent haplotype found in our sample (HLA-A * 02/-B * 35/-DRB1 * 04/-DQB1 * 03:02P) has not been previously reported in any mixedancestry populations from Mexico but is commonly encountered in Native American human groups, which can reflect the impact of migration dynamics in the genetic conformation of the northern part of Mexico City, and the limitations of previous studies with regard to the genetic diversity of the analyzed groups. Differences found in haplotype frequencies demonstrated that large urban conglomerates cannot be analyzed as one homogeneous entity but, rather, should

  4. Genetic Population Structure of Local Populations of the Endangered Saltmarsh Sesarmid Crab Clistocoeloma sinense in Japan

    PubMed Central

    Yuhara, Takeshi; Kawane, Masako; Furota, Toshio

    2014-01-01

    During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species. PMID:24400112

  5. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country.

    PubMed

    Pumpaibool, Tepanata; Arnathau, Céline; Durand, Patrick; Kanchanakhan, Naowarat; Siripoon, Napaporn; Suegorn, Aree; Sitthi-Amorn, Chitr; Renaud, François; Harnyuttanakorn, Pongchai

    2009-07-14

    The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 +/- 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic

  6. Population genetic data of 38 insertion-deletion markers in six populations of the northern fringe of the Iberian Peninsula.

    PubMed

    Cardoso, Sergio; Sevillano, Rubén; Gamarra, David; Santurtún, Ana; Martínez-Jarreta, Begoña; de Pancorbo, Marian M

    2017-03-01

    Insertion-deletions have been reported very useful markers for forensic purposes. To further deepen in this matter, 38 non-coding bi-allelic autosomal indels were analyzed in 575 individuals representing six populations from the northern fringe of the Iberian Peninsula. Autochthonous populations from the Basque Country, northern Navarre, the Pas Valley in Cantabria and Aragon were analyzed, together with non-autochthonous populations from the Basque Country and northern Navarre. At the intra-population level, all loci analyzed were in Hardy-Weinberg equilibrium except for marker rs33917182 in autochthonous Basques. Linkage disequilibrium (LD) test did not reveal statistically significant allelic association between the different loci pairs in all six populations. Forensic parameters proved to be highly informative in the six populations analyzed, even if a scenario with population substructure and local inbreeding was considered for match probability calculations, and the potential of this indels set to be used in combination with other genetic markers is remarkable. As for inter-population analyses, in general terms the six populations showed low but statistically significant genetic distances. However, though this indels set efficiently differentiate between main ancestries, it does not allow an accurate separation at a local level and, for the time being, their combination with other informative markers is needed to maximize the power to accurately differentiate populations with close genetic ancestry. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Geographical distance and barriers explain population genetic patterns in an endangered island perennial

    PubMed Central

    Dias, Elisabete F.; Moura, M.; Schaefer, H.; Silva, Luís

    2016-01-01

    Island plants are frequently used as model systems in evolutionary biology to understand factors that might explain genetic diversity and population differentiation levels. Theory suggests that island plants should have lower levels of genetic diversity than their continental relatives, but this hypothesis has been rejected in several recent studies. In the Azores, the population level genetic diversity is generally low. However, like in most island systems, there are high levels of genetic differentiation between different islands. The Azores lettuce, Lactuca watsoniana, is an endangered Asteraceae with small population sizes. Therefore, we expect to find a lower level of genetic diversity than in the other more common endemic Asteraceae. The intra- and interpopulation genetic structure and diversity of L. watsoniana was assessed using eight newly developed microsatellite markers. We included 135 individuals, from all 13 known populations in the study. Because our microsatellite results suggested that the species is tetraploid, we analysed the microsatellite data (i) in codominant format using PolySat (Principal Coordinate Analysis, PCoA) and SPAgedi (genetic diversity indexes) and (ii) in dominant format using Arlequin (AMOVA) and STRUCTURE (Bayesian genetic cluster analysis). A total of 129 alleles were found for all L. watsoniana populations. In contrast to our expectations, we found a high level of intrapopulation genetic diversity (total heterozigosity = 0.85; total multilocus average proportion of private alleles per population = 26.5 %, Fis = −0.19). Our results show the existence of five well-defined genetic groups, one for each of the three islands São Miguel, Terceira and Faial, plus two groups for the East and West side of Pico Island (Fst = 0.45). The study revealed the existence of high levels of genetic diversity, which should be interpreted taking into consideration the ploidy level of this rare taxon. PMID:27742648

  8. Population genetic structure of a California endemic Branchiopod, Branchinecta sandiegonensis

    USGS Publications Warehouse

    Davies, Cathleen P.; Simovich, Marie A.; Hathaway, Stacie A.

    1997-01-01

    Branchinecta sandiegonensis (Crustacea: Anostraca) is a narrow range endemic fairy shrimp discontinuously distributed in ephemeral pools on coastal mesas in San Diego County, USA. Ten populations across the range of the species were subjected to allozyme analysis for eleven loci. The species exhibits low variability (P95 =9.1–45.5) and one third of the loci tested did not conform to Hardy-Weinberg equilibrium expectations. The species also exhibited a high degree of genetic differentiation between populations. F ST values (fixation index) for most pairs of populations were above 0.25 (0.036–0.889).Low genetic variability and high genetic structure may result from low gene flow and founder effects due to habitat fragmentation and the lack of potential vectors for cyst dispersal. The unpredictable rainfall of the region also creates potential for variable population sizes which could affect structure and variability.

  9. Multi-population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic Correlations Between Populations.

    PubMed

    Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L

    2017-10-01

    Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.

  10. Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster

    PubMed Central

    Turner, Thomas L.; Stewart, Andrew D.; Fields, Andrew T.; Rice, William R.; Tarone, Aaron M.

    2011-01-01

    Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size. PMID:21437274

  11. Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting Habitat Conditions.

    PubMed

    Zoldoš, Vlatka; Biruš, Ivan; Muratovic, Edina; Šatovic, Zlatko; Vojta, Aleksandar; Robin, Odile; Pustahija, Fatima; Bogunic, Faruk; Vicic Bockor, Vedrana; Siljak-Yakovlev, Sonja

    2018-01-01

    Epigenetic variation in natural populations with contrasting habitats might be an important element, in addition to the genetic variation, in plant adaptation to environmental stress. Here, we assessed genetic, epigenetic, and cytogenetic structure of the three Lilium bosniacum populations growing on distinct habitats. One population was growing under habitual ecological conditions for this species and the other two were growing under stress associated with high altitude and serpentine soil. Amplified fragment length polymorphism and methylation-sensitive amplification polymorphism analyses revealed that the three populations did not differentiate genetically, but were clearly separated in three distinct clusters according to DNA methylation profiles. Principal coordinate analysis showed that overall epigenetic variation was closely related to habitat conditions. A new methylation-sensitive amplification polymorphism scoring approach allowed identification of mainly unmethylated (φST = 0.190) and fully CpG methylated (φST = 0.118) subepiloci playing a role in overall population differentiation, in comparison with hemimethylated sites (φST = 0.073). In addition, unusual rDNA repatterning and the presence of B chromosomes bearing 5S rDNA loci were recorded in the population growing on serpentine soil, suggesting dynamic chromosome rearrangements probably linked to global genome demethylation, which might have reactivated some mobile elements. We discuss our results considering our earlier data on morphology and leaf anatomy of several L. bosniacum populations, and suggest a possible role of epigenetics as a key element in population differentiation associated with environmental stress in these particular lily populations. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes.

    PubMed

    Fernández, Leonardo D; Hernández, Cristián E; Schiaffino, M Romina; Izaguirre, Irina; Lara, Enrique

    2017-10-01

    The patterns and mechanisms underlying the genetic structure of microbial populations remain unresolved. Herein we investigated the role played by two non-mutually exclusive models (i.e. isolation by distance and isolation by environment) in shaping the genetic structure of lacustrine populations of a microalga (a freshwater Bathycoccaceae) in the Argentinean Patagonia. To our knowledge, this was the first study to investigate the genetic population structure in a South American microorganism. Population-level analyses based on ITS1-5.8S-ITS2 sequences revealed high levels of nucleotide and haplotype diversity within and among populations. Fixation index and a spatially explicit Bayesian analysis confirmed the occurrence of genetically distinct microalga populations in Patagonia. Isolation by distance and isolation by environment accounted for 38.5% and 17.7% of the genetic structure observed, respectively, whereas together these models accounted for 41% of the genetic differentiation. While our results highlighted isolation by distance and isolation by environment as important mechanisms in driving the genetic population structure of the microalga studied, none of these models (either alone or together) could explain the entire genetic differentiation observed. The unexplained variation in the genetic differentiation observed could be the result of founder events combined with rapid local adaptations, as proposed by the monopolisation hypothesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations.

    PubMed

    Wallace, I J; Botigué, L R; Lin, M; Smaers, J B; Henn, B M; Grine, F E

    2016-09-01

    This study investigates the influence of genetic differentiation in determining worldwide heterogeneity in osteoporosis-related hip fracture rates. The results indicate that global variation in fracture incidence exceeds that expected on the basis of random genetic variance. Worldwide, the incidence of osteoporotic hip fractures varies considerably. This variability is believed to relate mainly to non-genetic factors. It is conceivable, however, that genetic susceptibility indeed differs across populations. Here, we present the first quantitative assessment of the effects of genetic differentiation on global variability in hip fracture rates. We investigate the observed variance in publically reported age-standardized rates of hip fracture among 28 populations from around the world relative to the expected variance given the phylogenetic relatedness of these populations. The extent to which these variances are similar constitutes a "phylogenetic signal," which was measured using the K statistic. Population genetic divergence was calculated using a robust array of genome-wide single nucleotide polymorphisms. While phylogenetic signal is maximized when K > 1, a K value of only 0.103 was detected in the combined-sex fracture rate pattern across the 28 populations, indicating that fracture rates vary more than expected based on phylogenetic relationships. When fracture rates for the sexes were analyzed separately, the degree of phylogenetic signal was also found to be small (females: K = 0.102; males: K = 0.081). The lack of a strong phylogenetic signal underscores the importance of factors other than stochastic genetic diversity in shaping worldwide heterogeneity in hip fracture incidence.

  14. A comparison of worldwide phonemic and genetic variation in human populations

    PubMed Central

    Creanza, Nicole; Ruhlen, Merritt; Pemberton, Trevor J.; Rosenberg, Noah A.; Feldman, Marcus W.; Ramachandran, Sohini

    2015-01-01

    Worldwide patterns of genetic variation are driven by human demographic history. Here, we test whether this demographic history has left similar signatures on phonemes—sound units that distinguish meaning between words in languages—to those it has left on genes. We analyze, jointly and in parallel, phoneme inventories from 2,082 worldwide languages and microsatellite polymorphisms from 246 worldwide populations. On a global scale, both genetic distance and phonemic distance between populations are significantly correlated with geographic distance. Geographically close language pairs share significantly more phonemes than distant language pairs, whether or not the languages are closely related. The regional geographic axes of greatest phonemic differentiation correspond to axes of genetic differentiation, suggesting that there is a relationship between human dispersal and linguistic variation. However, the geographic distribution of phoneme inventory sizes does not follow the predictions of a serial founder effect during human expansion out of Africa. Furthermore, although geographically isolated populations lose genetic diversity via genetic drift, phonemes are not subject to drift in the same way: within a given geographic radius, languages that are relatively isolated exhibit more variance in number of phonemes than languages with many neighbors. This finding suggests that relatively isolated languages are more susceptible to phonemic change than languages with many neighbors. Within a language family, phoneme evolution along genetic, geographic, or cognate-based linguistic trees predicts similar ancestral phoneme states to those predicted from ancient sources. More genetic sampling could further elucidate the relative roles of vertical and horizontal transmission in phoneme evolution. PMID:25605893

  15. Population Genetic Structure and Demographic History of Atrina pectinata Based on Mitochondrial DNA and Microsatellite Markers

    PubMed Central

    Xue, Dong-Xiu; Wang, Hai-Yan; Zhang, Tao; Liu, Jin-Xian

    2014-01-01

    The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata. PMID:24789175

  16. Genetic Differentiation in Insular Lowland Rainforests: Insights from Historical Demographic Patterns in Philippine Birds

    PubMed Central

    Sánchez-González, Luis Antonio; Hosner, Peter A.; Moyle, Robert G.

    2015-01-01

    Phylogeographic studies of Philippine birds support that deep genetic structure occurs across continuous lowland forests within islands, despite the lack of obvious contemporary isolation mechanisms. To examine the pattern and tempo of diversification within Philippine island forests, and test if common mechanisms are responsible for observed differentiation, we focused on three co-distributed lowland bird taxa endemic to Greater Luzon and Greater Negros-Panay: Blue-headed Fantail (Rhipidura cyaniceps), White-browed Shama (Copsychus luzoniensis), and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis). Each species has two described subspecies within Greater Luzon, and a single described subspecies on Greater Negros/Panay. Each of the three focal species showed a common geographic pattern of two monophyletic groups in Greater Luzon sister to a third monophyletic group found in Greater Negros-Panay, suggesting that common or similar biogeographic processes may have produced similar distributions. However, studied species displayed variable levels of mitochondrial DNA differentiation between clades, and genetic differentiation within Luzon was not necessarily concordant with described subspecies boundaries. Population genetic parameters for the three species suggested both rapid population growth from small numbers and geographic expansion across Luzon Island. Estimates of the timing of population expansion further supported that these events occurred asynchronously throughout the Pleistocene in the focal species, demanding particular explanations for differentiation, and support that co-distribution may be secondarily congruent. PMID:26312748

  17. Genetic Differentiation in Insular Lowland Rainforests: Insights from Historical Demographic Patterns in Philippine Birds.

    PubMed

    Sánchez-González, Luis Antonio; Hosner, Peter A; Moyle, Robert G

    2015-01-01

    Phylogeographic studies of Philippine birds support that deep genetic structure occurs across continuous lowland forests within islands, despite the lack of obvious contemporary isolation mechanisms. To examine the pattern and tempo of diversification within Philippine island forests, and test if common mechanisms are responsible for observed differentiation, we focused on three co-distributed lowland bird taxa endemic to Greater Luzon and Greater Negros-Panay: Blue-headed Fantail (Rhipidura cyaniceps), White-browed Shama (Copsychus luzoniensis), and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis). Each species has two described subspecies within Greater Luzon, and a single described subspecies on Greater Negros/Panay. Each of the three focal species showed a common geographic pattern of two monophyletic groups in Greater Luzon sister to a third monophyletic group found in Greater Negros-Panay, suggesting that common or similar biogeographic processes may have produced similar distributions. However, studied species displayed variable levels of mitochondrial DNA differentiation between clades, and genetic differentiation within Luzon was not necessarily concordant with described subspecies boundaries. Population genetic parameters for the three species suggested both rapid population growth from small numbers and geographic expansion across Luzon Island. Estimates of the timing of population expansion further supported that these events occurred asynchronously throughout the Pleistocene in the focal species, demanding particular explanations for differentiation, and support that co-distribution may be secondarily congruent.

  18. Genetic diversity and patterns of population structure in Creole goats from the Americas.

    PubMed

    Ginja, C; Gama, L T; Martínez, A; Sevane, N; Martin-Burriel, I; Lanari, M R; Revidatti, M A; Aranguren-Méndez, J A; Bedotti, D O; Ribeiro, M N; Sponenberg, P; Aguirre, E L; Alvarez-Franco, L A; Menezes, M P C; Chacón, E; Galarza, A; Gómez-Urviola, N; Martínez-López, O R; Pimenta-Filho, E C; da Rocha, L L; Stemmer, A; Landi, V; Delgado-Bermejo, J V

    2017-06-01

    Biodiversity studies are more efficient when large numbers of breeds belonging to several countries are involved, as they allow for an in-depth analysis of the within- and between-breed components of genetic diversity. A set of 21 microsatellites was used to investigate the genetic composition of 24 Creole goat breeds (910 animals) from 10 countries to estimate levels of genetic variability, infer population structure and understand genetic relationships among populations across the American continent. Three commercial transboundary breeds were included in the analyses to investigate admixture with Creole goats. Overall, the genetic diversity of Creole populations (mean number of alleles = 5.82 ± 1.14, observed heterozygosity = 0.585 ± 0.074) was moderate and slightly lower than what was detected in other studies with breeds from other regions. The Bayesian clustering analysis without prior information on source populations identified 22 breed clusters. Three groups comprised more than one population, namely from Brazil (Azul and Graúna; Moxotó and Repartida) and Argentina (Long and shorthair Chilluda, Pampeana Colorada and Angora-type goat). Substructure was found in Criolla Paraguaya. When prior information on sample origin was considered, 92% of the individuals were assigned to the source population (threshold q ≥ 0.700). Creole breeds are well-differentiated entities (mean coefficient of genetic differentiation = 0.111 ± 0.048, with the exception of isolated island populations). Dilution from admixture with commercial transboundary breeds appears to be negligible. Significant levels of inbreeding were detected (inbreeding coefficient > 0 in most Creole goat populations, P < 0.05). Our results provide a broad perspective on the extant genetic diversity of Creole goats, however further studies are needed to understand whether the observed geographical patterns of population structure may reflect the mode of goat colonization in the

  19. Genetic Population Structure Analysis in New Hampshire Reveals Eastern European Ancestry

    PubMed Central

    Sloan, Chantel D.; Andrew, Angeline D.; Duell, Eric J.; Williams, Scott M.; Karagas, Margaret R.; Moore, Jason H.

    2009-01-01

    Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population. PMID:19738909

  20. Population genetic structure of the point-head flounder, Cleisthenes herzensteini, in the Northwestern Pacific.

    PubMed

    Xiao, Yongshuang; Zhang, Yan; Yanagimoto, Takashi; Li, Jun; Xiao, Zhizhong; Gao, Tianxiang; Xu, Shihong; Ma, Daoyuan

    2011-02-01

    Intraspecific phylogenies can provide useful insights into how populations have been shaped by historical and contemporary processes. To determine the population genetic structure and the demographic and colonization history of Cleisthenes herzensteini in the Northwestern Pacific, one hundred and twenty-one individuals were sampled from six localities along the coastal regions of Japan and the Yellow Sea of China. Mitochondrial DNA variation was analyzed using DNA sequence data from the 5' end of control region. High levels of haplotype diversity (>0.96) were found for all populations, indicating a high level of genetic diversity. No pattern of isolation by distance was detected among the population differentiation throughout the examined range. Analyses of molecular variance (AMOVA) and the conventional population statistic Fst revealed no significant population genetic structure among populations. According to the exact test of differentiation among populations, the null hypothesis that C. herzensteini within the examined range constituted a non-differential mtDNA gene pool was accepted. The demographic history of C. herzensteini was examined using neutrality test and mismatch distribution analyses and results indicated Pleistocene population expansion (about 94-376 kya) in the species, which was consistent with the inference result of nested clade phylogeographical analysis (NCPA) showing contiguous range expansion for C. herzensteini. The lack of phylogeographical structure for the species may reflect a recent range expansion after the glacial maximum and insufficient time to attain migration-drift equilibrium.

  1. TEMPLE: analysing population genetic variation at transcription factor binding sites.

    PubMed

    Litovchenko, Maria; Laurent, Stefan

    2016-11-01

    Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle. The current proliferation of genomewide profiling experiments of transcription factor occupancies greatly improves our ability to identify genomic regions involved in specific DNA-protein interactions. Although software exists for predicting transcription factor binding sites (TFBS), and the effects of genetic variants on TFBS specificity, there are no tools currently available for inferring this information jointly with the genetic variation at TFBS in natural populations. We developed the software Transcription Elements Mapping at the Population LEvel (TEMPLE), which predicts TFBS, evaluates the effects of genetic variants on TFBS specificity and summarizes the genetic variation occurring at TFBS in intraspecific sequence alignments. We demonstrate that TEMPLE's TFBS prediction algorithms gives identical results to PATSER, a software distribution commonly used in the field. We also illustrate the unique features of TEMPLE by analysing TFBS diversity for the TF Senseless (SENS) in one ancestral and one cosmopolitan population of the fruit fly Drosophila melanogaster. TEMPLE can be used to localize TFBS that are characterized by strong genetic differentiation across natural populations. This will be particularly useful for studies aiming to identify adaptive mutations. TEMPLE is a java-based cross-platform software that easily maps the genetic diversity at predicted TFBSs using a graphical interface, or from the Unix command line. © 2016 John Wiley & Sons Ltd.

  2. Population genetic structure in Atlantic and Pacific Ocean common murres (Uria aalge): Natural replicate tests of post-Pleistocene evolution

    USGS Publications Warehouse

    Morris-Pocock, J. A.; Taylor, S.A.; Birt, T.P.; Damus, M.; Piatt, John F.; Warheit, K.I.; Friesen, Vicki L.

    2008-01-01

    Understanding the factors that influence population differentiation in temperate taxa can be difficult because the signatures of both historic and contemporary demographics are often reflected in population genetic patterns. Fortunately, analyses based on coalescent theory can help untangle the relative influence of these historic and contemporary factors. Common murres (Uria aalge) are vagile seabirds that breed in the boreal and low arctic waters of the Northern Hemisphere. Previous analyses revealed that Atlantic and Pacific populations are genetically distinct; however, less is known about population genetic structure within ocean basins. We employed the mitochondrial control region, four microsatellite loci and four intron loci to investigate population genetic structure throughout the range of common murres. As in previous studies, we found that Atlantic and Pacific populations diverged during the Pleistocene and do not currently exchange migrants. Therefore, Atlantic and Pacific murre populations can be used as natural replicates to test mechanisms of population differentiation. While we found little population genetic structure within the Pacific, we detected significant east-west structuring among Atlantic colonies. The degree that population genetic structure reflected contemporary population demographics also differed between ocean basins. Specifically, while the low levels of population differentiation in the Pacific are at least partially due to high levels of contemporary gene flow, the east-west structuring of populations within the Atlantic appears to be the result of historic fragmentation of populations rather than restricted contemporary gene flow. The contrasting results in the Atlantic and Pacific Oceans highlight the necessity of carefully considering multilocus nonequilibrium population genetic approaches when reconstructing the demographic history of temperate Northern Hemisphere taxa. ?? 2008 The Authors.

  3. Dissecting the genetic structure and admixture of four geographical Malay populations

    PubMed Central

    Deng, Lian; Hoh, Boon-Peng; Lu, Dongsheng; Saw, Woei-Yuh; Twee-Hee Ong, Rick; Kasturiratne, Anuradhani; Janaka de Silva, H.; Zilfalil, Bin Alwi; Kato, Norihiro; Wickremasinghe, Ananda R.; Teo, Yik-Ying; Xu, Shuhua

    2015-01-01

    The Malay people are an important ethnic composition in Southeast Asia, but their genetic make-up and population structure remain poorly studied. Here we conducted a genome-wide study of four geographical Malay populations: Peninsular Malaysian Malay (PMM), Singaporean Malay (SGM), Indonesian Malay (IDM) and Sri Lankan Malay (SLM). All the four Malay populations showed substantial admixture with multiple ancestries. We identified four major ancestral components in Malay populations: Austronesian (17%–62%), Proto-Malay (15%–31%), East Asian (4%–16%) and South Asian (3%–34%). Approximately 34% of the genetic makeup of SLM is of South Asian ancestry, resulting in its distinct genetic pattern compared with the other three Malay populations. Besides, substantial differentiation was observed between the Malay populations from the north and the south, and between those from the west and the east. In summary, this study revealed that the genetic identity of the Malays comprises a mixed entity of multiple ancestries represented by Austronesian, Proto-Malay, East Asian and South Asian, with most of the admixture events estimated to have occurred 175 to 1,500 years ago, which in turn suggests that geographical isolation and independent admixture have significantly shaped the genetic architectures and the diversity of the Malay populations. PMID:26395220

  4. Dissecting the genetic structure and admixture of four geographical Malay populations.

    PubMed

    Deng, Lian; Hoh, Boon-Peng; Lu, Dongsheng; Saw, Woei-Yuh; Twee-Hee Ong, Rick; Kasturiratne, Anuradhani; de Silva, H Janaka; Zilfalil, Bin Alwi; Kato, Norihiro; Wickremasinghe, Ananda R; Teo, Yik-Ying; Xu, Shuhua

    2015-09-23

    The Malay people are an important ethnic composition in Southeast Asia, but their genetic make-up and population structure remain poorly studied. Here we conducted a genome-wide study of four geographical Malay populations: Peninsular Malaysian Malay (PMM), Singaporean Malay (SGM), Indonesian Malay (IDM) and Sri Lankan Malay (SLM). All the four Malay populations showed substantial admixture with multiple ancestries. We identified four major ancestral components in Malay populations: Austronesian (17%-62%), Proto-Malay (15%-31%), East Asian (4%-16%) and South Asian (3%-34%). Approximately 34% of the genetic makeup of SLM is of South Asian ancestry, resulting in its distinct genetic pattern compared with the other three Malay populations. Besides, substantial differentiation was observed between the Malay populations from the north and the south, and between those from the west and the east. In summary, this study revealed that the genetic identity of the Malays comprises a mixed entity of multiple ancestries represented by Austronesian, Proto-Malay, East Asian and South Asian, with most of the admixture events estimated to have occurred 175 to 1,500 years ago, which in turn suggests that geographical isolation and independent admixture have significantly shaped the genetic architectures and the diversity of the Malay populations.

  5. Estimates of effective population size and inbreeding in South African indigenous chicken populations: implications for the conservation of unique genetic resources.

    PubMed

    Mtileni, Bohani; Dzama, Kennedy; Nephawe, Khathutshelo; Rhode, Clint

    2016-06-01

    Conservation of locally adapted indigenous livestock breeds has become an important objective in sustainable animal breeding, as these breeds represent a unique genetic resource. Therefore, the Agricultural Research Council of South Africa initiated a conservation programme for four South African indigenous chicken breeds. The evaluation and monitoring of the genetic constitution of these conservation flocks is important for proper management of the conservation programme. Using molecular genetic analyses, the effective population sizes and relatedness of these conservation flocks were compared to village (field) chicken populations from which they were derived. Genetic diversity within and between these populations are further discussed within the context of population size. The conservation flocks for the respective breeds had relatively small effective population sizes (point estimate range 38.6-78.6) in comparison to the field populations (point estimate range 118.9-580.0). Furthermore, evidence supports a transient heterozygous excess, generally associated with the occurrence of a recent population bottleneck. Genetic diversity, as measured by the number of alleles, heterozygosity and information index, was also significantly reduced in the conservation flocks. The average relatedness amongst the conservation flocks was high, whilst it remained low for the field populations. There was also significant evidence for population differentiation between field and conservation populations. F st estimates for conservation flocks were moderate to high with a maximum reached between VD_C and VD_F (0.285). However, F st estimates for field population were excessively low between the NN_C and EC_F (0.007) and between EC_F and OV_F (0.009). The significant population differentiation of the conservation flocks from their geographically correlated field populations of origin is further supported by the analysis of molecular variance (AMOVA), with 10.51 % of genetic

  6. Type 2 diabetes mellitus: distribution of genetic markers in Kazakh population.

    PubMed

    Sikhayeva, Nurgul; Talzhanov, Yerkebulan; Iskakova, Aisha; Dzharmukhanov, Jarkyn; Nugmanova, Raushan; Zholdybaeva, Elena; Ramanculov, Erlan

    2018-01-01

    Ethnic differences exist in the frequencies of genetic variations that contribute to the risk of common disease. This study aimed to analyse the distribution of several genes, previously associated with susceptibility to type 2 diabetes and obesity-related phenotypes, in a Kazakh population. A total of 966 individuals belonging to the Kazakh ethnicity were recruited from an outpatient clinic. We genotyped 41 common single nucleotide polymorphisms (SNPs) previously associated with type 2 diabetes in other ethnic groups and 31 of these were in Hardy-Weinberg equilibrium. The obtained allele frequencies were further compared to publicly available data from other ethnic populations. Allele frequencies for other (compared) populations were pooled from the haplotype map (HapMap) database. Principal component analysis (PCA), cluster analysis, and multidimensional scaling (MDS) were used for the analysis of genetic relationship between the populations. Comparative analysis of allele frequencies of the studied SNPs showed significant differentiation among the studied populations. The Kazakh population was grouped with Asian populations according to the cluster analysis and with the Caucasian populations according to PCA. According to MDS, results of the current study show that the Kazakh population holds an intermediate position between Caucasian and Asian populations. A high percentage of population differentiation was observed between Kazakh and world populations. The Kazakh population was clustered with Caucasian populations, and this result may indicate a significant Caucasian component in the Kazakh gene pool.

  7. Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups

    PubMed Central

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-01-01

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia. PMID:21483678

  8. Genetic affinities of north and northeastern populations of India: inference from HLA-based study.

    PubMed

    Agrawal, S; Srivastava, S K; Borkar, M; Chaudhuri, T K

    2008-08-01

    India is like a microcosm of the world in terms of its diversity; religion, climate and ethnicity which leads to genetic variations in the populations. As a highly polymorphic marker, the human leukocyte antigen (HLA) system plays an important role in the genetic differentiation studies. To assess the genetic diversity of HLA class II loci, we studied a total of 1336 individuals from north India using DNA-based techniques. The study included four endogamous castes (Kayastha, Mathurs, Rastogies and Vaishyas), two inbreeding Muslim populations (Shias and Sunnis) from north India and three northeast Indian populations (Lachung, Mech and Rajbanshi). A total of 36 alleles were observed at DRB1 locus in both Hindu castes and Muslims from north, while 21 alleles were seen in northeast Indians. At the DQA1 locus, the number of alleles ranged from 11 to 17 in the studied populations. The total number of alleles at DQB1 was 19, 12 and 20 in the studied castes, Muslims and northeastern populations, respectively. The most frequent haplotypes observed in all the studied populations were DRB1*0701-DQA1*0201-DQB1*0201 and DRB1*1501-DQA1*0103-DQB1*0601. Upon comparing our results with other world populations, we observed the presence of Caucasoid element in north Indian population. However, differential admixturing among Sunnis and Shias with the other north Indians was evident. Northeastern populations showed genetic affinity with Mongoloids from southeast Asia. When genetic distances were calculated, we found the north Indians and northeastern populations to be markedly unrelated.

  9. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) as Revealed by Mitochondrial and Microsatellite DNA

    PubMed Central

    Chen, Minmin; Zheng, Jinsong; Wu, Min; Ruan, Rui; Zhao, Qingzhong; Wang, Ding

    2014-01-01

    Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA) control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS), and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY) and Tongling (TL)) and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP. PMID:24968271

  10. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America.

    PubMed

    Mirabello, Lisa; Vineis, Joseph H; Yanoviak, Stephen P; Scarpassa, Vera M; Póvoa, Marinete M; Padilla, Norma; Achee, Nicole L; Conn, Jan E

    2008-03-26

    Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5-8 microsatellite loci. We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742), and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457). The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 - 0.3901, P < 0.05). Both the DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia. We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1) and Central America, parts of Colombia and

  11. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  12. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    PubMed

    Al-Hamidhi, Salama; H Tageldin, Mohammed; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were

  13. Extensive population genetic structure in the giraffe.

    PubMed

    Brown, David M; Brenneman, Rick A; Koepfli, Klaus-Peter; Pollinger, John P; Milá, Borja; Georgiadis, Nicholas J; Louis, Edward E; Grether, Gregory F; Jacobs, David K; Wayne, Robert K

    2007-12-21

    A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.

  14. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    PubMed

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  15. Conservation genetics of extremely isolated urban populations of the northern dusky salamander (Desmognathus fuscus) in New York City

    PubMed Central

    Zak, Yana; Pehek, Ellen

    2013-01-01

    Urbanization is a major cause of amphibian decline. Stream-dwelling plethodontid salamanders are particularly susceptible to urbanization due to declining water quality and hydrological changes, but few studies have examined these taxa in cities. The northern dusky salamander (Desmognathus fuscus) was once common in the New York City metropolitan area, but has substantially declined throughout the region in recent decades. We used five tetranucleotide microsatellite loci to examine population differentiation, genetic variation, and bottlenecks among five remnant urban populations of dusky salamanders in NYC. These genetic measures provide information on isolation, prevalence of inbreeding, long-term prospects for population persistence, and potential for evolutionary responses to future environmental change. All populations were genetically differentiated from each other, and the most isolated populations in Manhattan have maintained very little genetic variation (i.e. <20% heterozygosity). A majority of the populations also exhibited evidence of genetic bottlenecks. These findings contrast with published estimates of high genetic variation within and lack of structure between populations of other desmognathine salamanders sampled over similar or larger spatial scales. Declines in genetic variation likely resulted from population extirpations and the degradation of stream and terrestrial paths for dispersal in NYC. Loss of genetic variability in populations isolated by human development may be an underappreciated cause and/or consequence of the decline of this species in urbanized areas of the northeast USA. PMID:23646283

  16. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.

    PubMed

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.

  17. Genetic differentiation over a small spatial scale of the sand fly Lutzomyia vexator (Diptera: Psychodidae).

    PubMed

    Neal, Allison T; Ross, Max S; Schall, Jos J; Vardo-Zalik, Anne M

    2016-10-18

    The geographic scale and degree of genetic differentiation for arthropod vectors that transmit parasites play an important role in the distribution, prevalence and coevolution of pathogens of human and wildlife significance. We determined the genetic diversity and population structure of the sand fly Lutzomyia vexator over spatial scales from 0.56 to 3.79 km at a study region in northern California. The study was provoked by observations of differentiation at fine spatial scales of a lizard malaria parasite vectored by Lu. vexator. A microsatellite enrichment/next-generation sequencing protocol was used to identify variable microsatellite loci within the genome of Lu. vexator. Alleles present at these loci were examined in four populations of Lu. vexator in Hopland, CA. Population differentiation was assessed using Fst and D (of Cavalli-Sforza and Edwards), and the program Structure was used to determine the degree of subdivision present. The effective population size for the sand fly populations was also calculated. Eight microsatellite markers were characterized and revealed high genetic diversity (uHe = 0.79-0.92, Na = 12-24) and slight but significant differentiation across the fine spatial scale examined (average pairwise D = 0.327; F ST  = 0.0185 (95 % bootstrapped CI: 0.0102-0.0264). Even though the insects are difficult to capture using standard methods, the estimated population size was thousands per local site. The results argue that Lu. vexator at the study sites are abundant and not highly mobile, which may influence the overall transmission dynamics of the lizard malaria parasite, Plasmodium mexicanum, and other parasites transmitted by this species.

  18. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  19. Population genetic analysis of Mountain Plover using mitochondrial DNA sequence data

    USGS Publications Warehouse

    Oyler-McCance, S.J.; St. John, J.; Knopf, F.L.; Quinn, T.W.

    2005-01-01

    Mountain Plover (Charadrius montanus) distribution and abundance have been reduced drastically in the past 30 years and the conversion of shortgrass prairie to agriculture has caused breeding populations to become geographically isolated. This, coupled with the fact that Mountain Plovers are thought to show fidelity to breeding grounds, leads to the prediction that the isolated breeding populations would be genetically distinct. This pattern, if observed, would have important management implications for a species at risk of extinction. Our study examined genetic variation at two mitochondrial regions for 20–30 individuals from each of four breeding sites. We found no evidence of significant population differentiation in the data from the control region or the ATPase 6/8 region. Nested-clade analysis revealed no relationship between haplotype phylogeny, and geography among the 47 control region haplotypes. In the ATPase 6/8 region, however, one of the two clades provided information suggesting that, historically, there has been continuous range expansion. Analysis of mismatch distributions and Tajima's D suggest that the Mountain Plover underwent a population expansion, following the Pleistocene glacial period. To explain the lack of detectable genetic differentiation among populations, despite their geographic isolation and fidelity to breeding locations, we speculate that there is sufficient female-mediated gene flow to homogenize gene pools among populations. Such gene flow might ensue if pair bonds are formed in mixed flocks on wintering grounds rather than on the summer breeding grounds.

  20. Genetic structure of the threatened Dipterocarpus costatus populations in lowland tropical rainforests of southern Vietnam.

    PubMed

    Duc, N M; Duy, V D; Xuan, B T T; Thang, B V; Ha, N T H; Tam, N M

    2016-10-24

    Dipterocarpus costatus is an endangered species restricted to the lowland forests of southern Vietnam. Habitat loss and over-exploitation of D. costatus wood are the major threats to this species. We investigated the level of genetic variability within and among populations of D. costatus in order to provide guidelines for the conservation, management, and restoration of this species to the Forest Protection Department, Vietnam. Nine microsatellite markers were used to analyze 114 samples from four populations representing the natural range of D. costatus in southeast Vietnam. We indicated the low allelic diversity (N A = 2.3) and low genetic diversities with an average observed and expected heterozygosity of 0.130 and 0.151, respectively, in the lowland forests of southeast Vietnam. The low genetic diversity might be a consequence of inbreeding within the small and isolated populations of D. costatus owing to its habitat loss and over-exploitation. All populations deviated from Hardy-Weinberg equilibrium showing reduced heterozygosity. Alleles were lost from the populations by genetic drift. Genetic differentiation among populations was high (average pairwise F ST = 0.405), indicating low gene flow (<1) and isolated populations due to its destructed habitat and large geographical distances (P < 0.05) among populations. Heterozygosity excess tests (except of Bu Gia Map only under infinite allele model) were negative. The high genetic variation (62.7%) was found within populations. The STRUCTURE and neighbor joining tree results suggest strong differentiation among D. costatus populations, with the three genetic clusters, Phu Quoc, Tan Phu and Bu Gia Map, and Lo Go-Xa Mat due to habitat fragmentation and isolation. The threatened status of D. costatus was related to a lack of genetic diversity, with all its populations isolated in small forest patches. We recommend the establishment of an ex situ conservation site for D. costatus with a new big population comprising

  1. The role of selection and historical factors in driving population differentiation along an elevational gradient in an island bird.

    PubMed

    Bertrand, J A M; Delahaie, B; Bourgeois, Y X C; Duval, T; García-Jiménez, R; Cornuault, J; Pujol, B; Thébaud, C; Milá, B

    2016-04-01

    Adaptation to local environmental conditions and the range dynamics of populations can influence evolutionary divergence along environmental gradients. Thus, it is important to investigate patterns of both phenotypic and genetic variations among populations to reveal the respective roles of these two types of factors in driving population differentiation. Here, we test for evidence of phenotypic and genetic structure across populations of a passerine bird (Zosterops borbonicus) distributed along a steep elevational gradient on the island of Réunion. Using 11 microsatellite loci screened in 401 individuals from 18 localities distributed along the gradient, we found that genetic differentiation occurred at two spatial levels: (i) between two main population groups corresponding to highland and lowland areas, respectively, and (ii) within each of these two groups. In contrast, several morphological traits varied gradually along the gradient. Comparison of neutral genetic differentiation (FST ) and phenotypic differentiation (PST ) showed that PST largely exceeds FST at several morphological traits, which is consistent with a role for local adaptation in driving morphological divergence along the gradient. Overall, our results revealed an area of secondary contact midway up the gradient between two major, cryptic, population groups likely diverged in allopatry. Remarkably, local adaptation has shaped phenotypic differentiation irrespective of population history, resulting in different patterns of variation along the elevational gradient. Our findings underscore the importance of understanding both historical and selective factors when trying to explain variation along environmental gradients. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  2. Population genetics of Thamnaconus hypargyreus (Tetraodontiformes: Monacanthidae) in the South China Sea.

    PubMed

    Li, Yufang; Chen, Guobao; Yu, Jie; Wu, Shuiqing; Xiong, Dan; Li, Xia; Cui, Ke; Li, Yongzhen

    2016-01-01

    Knowledge of population structure is particularly important for long-term fisheries management and conservation. Lesser-spotted leatherjacket Thamnaconus hypargyreus is an economically important fish species in the South China Sea. Fish specimens (totally 158 individuals) used in this study were collected from five geographical locations in the north of the South China Sea and the southwestern Nansha Islands. The results were as follows: a total of 636 nucleotides of the mitochondrial DNA (mtDNA) control region (CR) of T. hypargyreus were amplified by polymerase chain reaction (PCR) technology. Both 103 mutations of nucleotide acids without inserting or deleting one and 91 haplotypes were found among the examined CR fragment. High haplotype diversity (0.9419 ± 0.0151) and nucleotide diversity (0.0095 ± 0.00506) relatively together with a recent and sudden population expansion which characterizes the genetic population structure of this species. Analysis of molecular variance (AMOVA) and the fixation indices (Fst) of five groups showed that the genetic variance mainly came from individuals within groups, and there was no genetic differentiation between groups. The phylogenetic trees including maximum likelihood (ML) and Bayesian inference (BI) proved no phylogeographic differentiation structure in five groups. The mtDNA marker suggested the five groups should be genetic homogeneity, which implied T. hypargyreus in the north and southwest continental shelf of the South China Sea belongs to one population.

  3. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors.

    PubMed

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  4. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    PubMed

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  5. Ecological correlates of population genetic structure: a comparative approach using a vertebrate metacommunity.

    PubMed

    Manier, Mollie K; Arnold, Stevan J

    2006-12-07

    Identifying ecological factors associated with population genetic differentiation is important for understanding microevolutionary processes and guiding the management of threatened populations. We identified ecological correlates of several population genetic parameters for three interacting species (two garter snakes and an anuran) that occupy a common landscape. Using multiple regression analysis, we found that species interactions were more important in explaining variation in population genetic parameters than habitat and nearest-neighbour characteristics. Effective population size was best explained by census size, while migration was associated with differences in species abundance. In contrast, genetic distance was poorly explained by the ecological correlates that we tested, but geographical distance was prominent in models for all species. We found substantially different population dynamics for the prey species relative to the two predators, characterized by larger effective sizes, lower gene flow and a state of migration-drift equilibrium. We also identified an escarpment formed by a series of block faults that serves as a barrier to dispersal for the predators. Our results suggest that successful landscape-level management should incorporate genetic and ecological data for all relevant species, because even closely associated species can exhibit very different population genetic dynamics on the same landscape.

  6. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    PubMed

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  7. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats

    PubMed Central

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten BH; Kurtz, Joachim

    2012-01-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences

  8. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    PubMed

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  9. Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations.

    PubMed

    Wang, Yuchen; Lu, Dongsheng; Chung, Yeun-Jun; Xu, Shuhua

    2018-01-01

    Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied. We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant. These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.

  10. Microgeographic and temporal genetic variation in populations of the bluetongue virus vector Culicoides variipennis (Diptera: Ceratopogonidae).

    PubMed

    Tabachnick, W J

    1992-05-01

    Seven Colorado populations of the bluetongue virus vector Culicoides varipennis (Coquillett) were analyzed for genetic variation at 19-21 isozyme loci. Permanent populations, which overwinter as larvae, showed little temporal genetic change at 19 loci. PGD and MDH showed seasonal changes in gene frequencies, attributable to selection at two permanent populations. Two temporary populations showed low heterozygosity compared with permanent populations. Independent estimates of gene flow, calculated using FST and the private allele method, were Nm* = 2.15 and 6.95, respectively. Colorado C. variipennis permanent populations showed high levels of gene flow which prevented significant genetic differentiation due to genetic drift. Temporary populations showed significant gene frequency differences from nearby permanent populations due to the "founder effect" associated with chance colonization.

  11. A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows

    PubMed Central

    Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L

    2016-01-01

    Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323

  12. Genetic differentiation of the stingless bee Tetragonula pagdeni in Thailand using SSCP analysis of a large subunit of mitochondrial ribosomal DNA.

    PubMed

    Thummajitsakul, Sirikul; Klinbunga, Sirawut; Sittipraneed, Siriporn

    2011-08-01

    Genetic diversity and population differentiation of the stingless bee Tetragonula pagdeni (Schwarz) was assessed using single-strand conformational polymorphism (SSCP) analysis of a large subunit of the ribosomal RNA gene (16S rRNA). High levels of genetic variation among individuals within each population (North, Northeast, Central, Prachuap Khiri Khan, Chumphon, and Peninsular Thailand) of T. pagdeni were observed. Analysis of molecular variance indicated significant genetic differentiation among the six geographic populations (Φ (PT) = 0.28, P < 0.001) and between samples collected from north and south of the Isthmus of Kra (Φ (PT) = 0.18, P < 0.001). In addition, Φ (PT) values between all pairwise comparisons were statistically significant (P < 0.01), indicating strong degrees of intraspecific population differentiation. Therefore, PCR-SSCP is a simple and cost-effective technique applicable for routine population genetic analyses in T. pagdeni and other stingless bees. The results also provide an important baseline for the conservation and management of this ecologically important species.

  13. Extensive genetic differentiation detected within a model marsupial, the tammar wallaby (Notamacropus eugenii)

    PubMed Central

    Miller, Emily J.; Neaves, Linda E.; Zenger, Kyall R.; Herbert, Catherine A.

    2017-01-01

    The tammar wallaby (Notamacropus eugenii) is one of the most intensively studied of all macropodids and was the first Australasian marsupial to have its genome sequenced. However, comparatively little is known about genetic diversity and differentiation amongst the morphologically distinct allopatric populations of tammar wallabies found in Western (WA) and South Australia (SA). Here we compare autosomal and Y-linked microsatellite genotypes, as well as sequence data (~600 bp) from the mitochondrial DNA (mtDNA) control region (CR) in tammar wallabies from across its distribution. Levels of diversity at autosomal microsatellite loci were typically high in the WA mainland and Kangaroo Island (SA) populations (A = 8.9–10.6; He = 0.77–0.78) but significantly reduced in other endemic island populations (A = 3.8–4.1; He = 0.41–0.48). Autosomal and Y-linked microsatellite loci revealed a pattern of significant differentiation amongst populations, especially between SA and WA. The Kangaroo Island and introduced New Zealand population showed limited differentiation. Multiple divergent mtDNA CR haplotypes were identified within both SA and WA populations. The CR haplotypes of tammar wallabies from SA and WA show reciprocal monophyly and are highly divergent (14.5%), with levels of sequence divergence more typical of different species. Within WA tammar wallabies, island populations each have unique clusters of highly related CR haplotypes and each is most closely related to different WA mainland haplotypes. Y-linked microsatellite haplotypes show a similar pattern of divergence although levels of diversity are lower. In light of these differences, we suggest that two subspecies of tammar wallaby be recognized; Notamacropus eugenii eugenii in SA and N. eugenii derbianus in WA. The extensive neutral genetic diversity and inter-population differentiation identified within tammar wallabies should further increase the species value and usefulness as a model organism. PMID

  14. Type 2 diabetes mellitus: distribution of genetic markers in Kazakh population

    PubMed Central

    Sikhayeva, Nurgul; Talzhanov, Yerkebulan; Iskakova, Aisha; Dzharmukhanov, Jarkyn; Nugmanova, Raushan; Zholdybaeva, Elena; Ramanculov, Erlan

    2018-01-01

    Background Ethnic differences exist in the frequencies of genetic variations that contribute to the risk of common disease. This study aimed to analyse the distribution of several genes, previously associated with susceptibility to type 2 diabetes and obesity-related phenotypes, in a Kazakh population. Methods A total of 966 individuals belonging to the Kazakh ethnicity were recruited from an outpatient clinic. We genotyped 41 common single nucleotide polymorphisms (SNPs) previously associated with type 2 diabetes in other ethnic groups and 31 of these were in Hardy–Weinberg equilibrium. The obtained allele frequencies were further compared to publicly available data from other ethnic populations. Allele frequencies for other (compared) populations were pooled from the haplotype map (HapMap) database. Principal component analysis (PCA), cluster analysis, and multidimensional scaling (MDS) were used for the analysis of genetic relationship between the populations. Results Comparative analysis of allele frequencies of the studied SNPs showed significant differentiation among the studied populations. The Kazakh population was grouped with Asian populations according to the cluster analysis and with the Caucasian populations according to PCA. According to MDS, results of the current study show that the Kazakh population holds an intermediate position between Caucasian and Asian populations. Conclusion A high percentage of population differentiation was observed between Kazakh and world populations. The Kazakh population was clustered with Caucasian populations, and this result may indicate a significant Caucasian component in the Kazakh gene pool. PMID:29551892

  15. Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile.

    PubMed

    Fuentes-Contreras, Eduardo; Espinoza, Juan L; Lavandero, Blas; Ramírez, Claudio C

    2008-02-01

    Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production.

  16. Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations.

    PubMed

    Nakajima, Yuichi; Nishikawa, Akira; Iguchi, Akira; Sakai, Kazuhiko

    2010-06-16

    Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadcast-spawning coral Acropora digitifera at 19 sites in seven regions along the 1,000 km long island chain of Nansei Islands, Japan. This area includes both subtropical and temperate habitats. Thus, the coral populations around the Nansei Islands in Japan are northern peripheral populations that would be subjected to environmental stresses different from those in tropical areas. The existence of high genetic connectivity across this large geographic area was suggested for all sites (F(ST) < or = 0.033) although small but significant genetic differentiation was detected among populations in geographically close sites and regions. In addition, A. digitifera appears to be distributed throughout the Nansei Islands without losing genetic diversity. Therefore, A. digitifera populations in the Nansei Islands may be able to recover relatively rapidly even when high disturbances of coral communities occur locally if populations on other reefs are properly maintained.

  17. Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma cœrulescens)

    USGS Publications Warehouse

    Coulon, A.; Fitzpatrick, J.W.; Bowman, R.; Stith, B.M.; Makarewich, C.A.; Stenzler, L.M.; Lovette, I.J.

    2008-01-01

    The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.

  18. Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep.

    PubMed

    Qwabe, Sithembele O; van Marle-Köster, Este; Visser, Carina

    2013-02-01

    The Namaqua Afrikaner is an endangered sheep breed indigenous to South Africa, primarily used in smallholder farming systems. Genetic characterization is essential for the breed's conservation and utilization. In this study, a genetic characterization was performed on 144 Namaqua Afrikaner sheep kept at the Karakul Experimental Station (KES), Carnarvon Experimental Station (CES), and a private farm Welgeluk (WGK) using 22 microsatellite markers. The mean number of alleles observed was low (3.7 for KES, 3.9 for CES, and 4.2 for WGK). Expected heterozygosity values across loci ranged between 46 % for WGK, 48 % for KES, and 55 % for CES, indicating low to moderate genetic variation. The analysis of molecular variance revealed that 89.5 % of the genetic variation was due to differences within populations. The population structure confirmed the differentiation of three clusters with high relationships between the CES and WGK populations. In the population structure comparison with Pedi and South African Mutton Merino sheep, limited hybridization between the Namaqua Afrikaner sheep and both of these breeds was observed. The results of this study will serve as a reference for genetic management and conservation of Namaqua Afrikaner sheep.

  19. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials.

    PubMed

    Foust, C M; Preite, V; Schrey, A W; Alvarez, M; Robertson, M H; Verhoeven, K J F; Richards, C L

    2016-04-01

    While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using AFLP and methylation-sensitive AFLP, we tested the hypothesis that differentiation to habitats along natural salt marsh environmental gradients occurs at epigenetic, but not genetic loci in two salt marsh perennials. We detected significant genetic and epigenetic structure among populations and among subpopulations, but we found multilocus patterns of differentiation to habitat type only in epigenetic variation for both species. In addition, more epigenetic than genetic loci were correlated with habitat in both species. When we analysed genetic and epigenetic variation simultaneously with partial Mantel, we found no correlation between genetic variation and habitat and a significant correlation between epigenetic variation and habitat in Spartina alterniflora. In Borrichia frutescens, we found significant correlations between epigenetic and/or genetic variation and habitat in four of five populations when populations were analysed individually, but there was no significant correlation between genetic or epigenetic variation and habitat when analysed jointly across the five populations. These analyses suggest that epigenetic mechanisms are involved in the response to salt marsh habitats, but also that the relationships among genetic and epigenetic variation and habitat vary by species. Site-specific conditions may also cloud our ability to detect response in replicate populations with similar environmental gradients. Future studies analysing sequence data and the correlation between genetic variation and DNA methylation will be powerful to identify the contributions of genetic and epigenetic response to environmental gradients. © 2016 John Wiley & Sons Ltd.

  20. Genetic population structure of Shoal Bass within their native range

    USGS Publications Warehouse

    Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.

    2018-01-01

    Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is

  1. Population Genetics of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) across Multiple Spatial Scales

    PubMed Central

    Unger, Shem D.; Rhodes, Olin E.; Sutton, Trent M.; Williams, Rod N.

    2013-01-01

    Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94–98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species. PMID:24204565

  2. Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases

    PubMed Central

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  3. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species.

    PubMed

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-06-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.

  4. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within Mesophotic reefs.

    PubMed

    Brazeau, Daniel A; Lesser, Michael P; Slattery, Marc

    2013-01-01

    Mesophotic coral reefs (30-150 m) have recently received increased attention as a potential source of larvae (e.g., the refugia hypothesis) to repopulate a select subset of the shallow water (<30 m) coral fauna. To test the refugia hypothesis we used highly polymorphic Amplified Fragment Length Polymorphism (AFLP) markers as a means to assess small-scale genetic heterogeneity between geographic locations and across depth clines in the Caribbean coral, Montastraea cavernosa. Zooxanthellae-free DNA extracts of coral samples (N = 105) were analyzed from four depths, shallow (3-10 m), medium (15-25 m), deep (30-50 m) and very deep (60-90 m) from Little Cayman Island (LCI), Lee Stocking Island (LSI), Bahamas and San Salvador (SS), Bahamas which range in distance from 170 to 1,600 km apart. Using AMOVA analysis there were significant differences in ΦST values in pair wise comparisons between LCI and LSI. Among depths at LCI, there was significant genetic differentiation between shallow and medium versus deep and very deep depths in contrast there were no significant differences in ΦST values among depths at LSI. The assignment program AFLPOP, however, correctly assigned 95.7% of the LCI and LSI samples to the depths from which they were collected, differentiating among populations as little as 10 to 20 m in depth from one another. Discriminant function analysis of the data showed significant differentiation among samples when categorized by collection site as well as collection depth. FST outlier analyses identified 2 loci under positive selection and 3 under balancing selection at LCI. At LSI 2 loci were identified, both showing balancing selection. This data shows that adult populations of M. cavernosa separated by depths of tens of meters exhibits significant genetic structure, indicative of low population connectivity among and within sites and are not supplying successful recruits to adjacent coral reefs less than 30 m in depth.

  5. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian.

    PubMed

    Cortázar-Chinarro, Maria; Lattenkamp, Ella Z; Meyer-Lucht, Yvonne; Luquet, Emilien; Laurila, Anssi; Höglund, Jacob

    2017-08-14

    Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.

  6. Geographical structuring of Trypanosoma cruzi populations from Chilean Triatoma infestans triatomines and their genetic relationship with other Latino American counterparts

    PubMed Central

    Venegas, J; Rojas, T; DÍaz, F; Miranda, S; Jercic, M I; González, C; Coñoepán, W; Pichuantes, S; RodrÍguez, J; Gajardo, M; Sánchez, G

    2011-01-01

    In order to obtain more information about the population structure of Chilean Trypanosoma cruzi, and their genetic relationship with other Latino American counterparts, we performed the study of T. cruzi samples detected in the midgut content of Triatoma infestans insects from three endemic regions of Chile. The genetic characteristics of these samples were analysed using microsatellite markers and PCR conditions that allow the detection of predominant T. cruzi clones directly in triatomine midgut content. Population genetic analyses using the Fisher’s exact method, analysis of molecular variance (AMOVA) and the determination of FST showed that the northern T. cruzi population sample was genetically differentiated from the two southern population counterparts. Further analysis showed that the cause of this genetic differentiation was the asymmetrical distribution of TcIII T. cruzi predominant clones. Considering all triatomines from the three regions, the most frequent predominant lineages were TcIII (38%), followed by TcI (34%) and hybrid (8%). No TcII lineage was observed along the predominant T. cruzi clones. The best phylogenetic reconstruction using the shared allelic genetic distance was concordant with the population genetic analysis and tree topology previously described studying foreign samples. The correlation studies showed that the lineage TcIII from the III region was genetically differentiated from the other two, and this differentiation was correlated with geographical distance including Chilean and mainly Brazilian samples. It will be interesting to investigate whether this geographical structure may be related with different clinical manifestation of Chagas disease. PMID:22325822

  7. Genetic Variability and Geographic Diversity of the Common Bed Bug (Hemiptera: Cimicidae) Populations from the Midwest Using Microsatellite Markers.

    PubMed

    Narain, Ralph B; Lalithambika, Sreedevi; Kamble, Shripat T

    2015-07-01

    With the recent global resurgence of the bed bugs (Cimex lectularius L.), there is a need to better understand its biology, ecology, and ability to establish populations. Bed bugs are domestic pests that feed mainly on mammalian blood. Although bed bugs have not been implicated as vectors of pathogens, their biting activity inflicts severe insomnia and allergic reactions. Moreover, they have recently developed resistance to various insecticides, which requires further molecular research to determine genetic variation and appropriate interventions. Population dynamics, including genetic differentiation and genetic distance of 10 populations from the Midwest were analyzed in this study. The bed bug samples collected by pest control companies were genotyped using eight species-specific microsatellite markers. Results showed all eight markers were polymorphic, with 8-16 alleles per locus, suggesting high genetic diversity. The FST values were >0.25, signifying pronounced genetic differentiation. The G-test results also indicated high genetic differentiation among populations. The frequency of the most common allele across all eight loci was 0.42. The coefficient of relatedness between each of the populations was >0.5, indicative of sibling or parent-offspring relationships, while the FIS and its confidence interval values were statistically insignificant within the populations tested. The populations departed from Hardy-Weinberg equilibrium, possibly because of high heterozygosity. The genetic distance analysis using a neighbor-joining tree showed that the populations from Kansas City, MO, were genetically separate from most of those from Nebraska, indicating a geographic pattern of genetic structure. Our study demonstrated the effectiveness of using microsatellite markers to study bed bugs population structure, thereby improving our understanding of bed bug population dynamics in the Midwest. Overall, this study showed a high genetic diversity and identified several

  8. Genetic Diversity and Differentiation in Urban and Indigenous Populations of Mexico: Patterns of Mitochondrial DNA and Y-Chromosome Lineages.

    PubMed

    González-Sobrino, Blanca Z; Pintado-Cortina, Ana P; Sebastián-Medina, Leticia; Morales-Mandujano, Fabiola; Contreras, Alejandra V; Aguilar, Yasnaya E; Chávez-Benavides, Juan; Carrillo-Rodríguez, Aurelio; Silva-Zolezzi, Irma; Medrano-González, Luis

    2016-01-01

    Aside from the admixture between indigenous people and people from overseas, populations in Mexico changed drastically after the Spanish conquest of the sixteenth century, forming an intricate history that has been underutilized in understanding the genetic population structure of Mexicans. To infer historical processes of isolation, dispersal, and assimilation, we examined the phylogeography of mitochondrial (mt) DNA and Y-chromosome lineages in 3,026 individuals from 10 urban and nine indigenous populations by identifying single nucleotide polymorphisms. A geographic array with a predominance of Amerindian lineages was observed for mtDNA, with northern indigenous populations being divergent from the central and southern indigenous populations; urban populations showed low differentiation with isolation by distance. Y-chromosome variation distinguished urban and indigenous populations through the Amerindian haplogroup Q frequency. The MtDNA and the Y-chromosome together primarily distinguished urban and indigenous populations, with different geographic arrays for both. Gene flow across geographical distance and between the urban and indigenous realms appears to have altered the pre-Hispanic phylogeography in central and southern Mexico, mainly by displacement of women, while maintaining the indigenous isolation in the north, southeast, and Zapotec regions. Most Amerindian mtDNA diversity currently occurs in urban populations and appears to be reduced among indigenous people.

  9. Genetic variation and population structure of the mixed-mating cactus, Melocactus curvispinus (Cactaceae).

    PubMed

    Nassar, J M; Hamrick, J L; Fleming, T H

    2001-07-01

    Genetic diversity was measured in the mixed-mating cactus, Melocactus curvispinus, in Venezuela. Allozyme diversity was surveyed in 19 putative loci over 18 populations. Compared to other plant taxa, this cactus is rich in polymorphic loci (Ps=89.5%), with high numbers of alleles per polymorphic locus (APs=3.82), but moderate levels of heterozygosity (Hes=0.145). Substantial levels of inbreeding were detected across loci and populations at macrogeographic (FIS=0.348) and regional levels (FIS=0.194-0.402). Moderate levels of genetic differentiation among populations were detected at macrogeographical (FST=0.193) and regional (FST=0.084-0.187) scales, suggesting that gene flow is relatively restricted, but increases within regions without topographic barriers. The population genetic structure observed for this cactus was attributed to, at least, three factors: short-distance pollination and seed dispersal, the mixed-mating condition of the species, and genetic drift. High genetic identities between populations (I=0.942) supported the conspecific nature of all populations surveyed. The levels and patterns of genetic structure observed for M. curvispinus were consistent with its mating system and gene dispersal mechanisms.

  10. Seed-Mediated Gene Flow Promotes Genetic Diversity of Weedy Rice within Populations: Implications for Weed Management

    PubMed Central

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka. PMID:25436611

  11. Low levels of genetic divergence across geographically and linguistically diverse populations from India.

    PubMed

    Rosenberg, Noah A; Mahajan, Saurabh; Gonzalez-Quevedo, Catalina; Blum, Michael G B; Nino-Rosales, Laura; Ninis, Vasiliki; Das, Parimal; Hegde, Madhuri; Molinari, Laura; Zapata, Gladys; Weber, James L; Belmont, John W; Patel, Pragna I

    2006-12-01

    Ongoing modernization in India has elevated the prevalence of many complex genetic diseases associated with a western lifestyle and diet to near-epidemic proportions. However, although India comprises more than one sixth of the world's human population, it has largely been omitted from genomic surveys that provide the backdrop for association studies of genetic disease. Here, by genotyping India-born individuals sampled in the United States, we carry out an extensive study of Indian genetic variation. We analyze 1,200 genome-wide polymorphisms in 432 individuals from 15 Indian populations. We find that populations from India, and populations from South Asia more generally, constitute one of the major human subgroups with increased similarity of genetic ancestry. However, only a relatively small amount of genetic differentiation exists among the Indian populations. Although caution is warranted due to the fact that United States-sampled Indian populations do not represent a random sample from India, these results suggest that the frequencies of many genetic variants are distinctive in India compared to other parts of the world and that the effects of population heterogeneity on the production of false positives in association studies may be smaller in Indians (and particularly in Indian-Americans) than might be expected for such a geographically and linguistically diverse subset of the human population.

  12. Genetic and Morphological Differentiation of the Semiterrestrial Crab Armases angustipes (Brachyura: Sesarmidae) along the Brazilian Coast.

    PubMed

    Marochi, Murilo Zanetti; Masunari, Setuko; Schubart, Christoph D

    2017-02-01

    The genetic and morphometric population structures of the semiterrestrial crab Armases angustipes from along the Brazilian coast were examined. The influence of the Central South Equatorial Current on larval dispersal of A. angustipes also was evaluated. Six populations were sampled from estuarine areas in São Luis do Maranhão, Maranhão; Natal, Rio Grande do Norte; Maceió, Alagoas; Ilhéus, Bahia; Aracruz, Espírito Santo; and Guaratuba, Paraná. Patterns of genetic differentiation were assessed using DNA sequence data corresponding to parts of the mitochondrial cytochrome c oxidase subunit 1. Geometric morphometric techniques were used to evaluate morphological variation in shape and size of the carapace and right cheliped propodus. Our results revealed low genetic variability and lack of phylogeographic structure; geometric morphometrics showed statistically significant morphological differentiation and geographic structuring. Our data indicate the absence of possible barriers to gene flow for this mobile species, and no clear correlation of morphological or genetic variation with ocean currents and/or geographic distance. Our results also suggest that historical geological and climatological events and/or possible bottleneck effects influenced the current low genetic variability among the populations of A. angustipes.

  13. Divergence in morphology, but not habitat use, despite low genetic differentiation among insular populations of the lizard Anolis lemurinus in Honduras

    USGS Publications Warehouse

    Logan, M.L.; Montgomery, Chad E.; Boback, Scott M.; Reed, R.N.; Campbell, J.A.

    2012-01-01

    Studies of recently isolated populations are useful because observed differences can often be attributed to current environmental variation. Two populations of the lizard Anolis lemurinus have been isolated on the islands of Cayo Menor and Cayo Mayor in the Cayos Cochinos Archipelago of Honduras for less than 15 000 y. We measured 12 morphometric and 10 habitat-use variables on 220 lizards across these islands in 2 y, 2008 and 2009. The goals of our study were (1) to explore patterns of sexual dimorphism, and (2) to test the hypothesis that differences in environment among islands may have driven divergence in morphology and habitat use despite genetic homogeneity among populations. Although we found no differences among sexes in habitat use, males had narrower pelvic girdles and longer toe pads on both islands. Between islands, males differed in morphology, but neither males nor females differed in habitat use. Our data suggest that either recent selection has operated differentially on males despite low genetic dill'erentiation, or that they display phenotypic plasticity in response to environmental variation. We suggest that patterns may be driven by variation in intrapopulation density or differences in predator diversity among islands.

  14. Genetic Variability and Population Structure of Disanthus cercidifolius subsp. longipes (Hamamelidaceae) Based on AFLP Analysis

    PubMed Central

    Yu, Yi; Fan, Qiang; Shen, Rujiang; Guo, Wei; Jin, Jianhua; Cui, Dafang; Liao, Wenbo

    2014-01-01

    Disanthus cercidifolius subsp. longipes is an endangered species in China. Genetic diversity and structure analysis of this species was investigated using amplified fragments length polymorphism (AFLP) fingerprinting. Nei's gene diversity ranged from 0.1290 to 0.1394. The AMOVA indicated that 75.06% of variation was distributed within populations, while the between-group component 5.04% was smaller than the between populations-within-group component 19.90%. Significant genetic differentiation was detected between populations. Genetic and geographical distances were not correlated. PCA and genetic structure analysis showed that populations from East China were together with those of the Nanling Range. These patterns of genetic diversity and levels of genetic variation may be the result of D. c. subsp. longipes restricted to several isolated habitats and “excess flowers production, but little fruit set”. It is necessary to protect all existing populations of D. c. subsp. longipes in order to preserve as much genetic variation as possible. PMID:25250583

  15. Extensive population genetic structure in the giraffe

    PubMed Central

    Brown, David M; Brenneman, Rick A; Koepfli, Klaus-Peter; Pollinger, John P; Milá, Borja; Georgiadis, Nicholas J; Louis, Edward E; Grether, Gregory F; Jacobs, David K; Wayne, Robert K

    2007-01-01

    Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations. PMID:18154651

  16. Evaluation of genetic diversity and population structure of West-Central Indian cattle breeds.

    PubMed

    Shah, Tejas M; Patel, Jaina S; Bhong, Chandrakant D; Doiphode, Aakash; Umrikar, Uday D; Parmar, Shivnandan S; Rank, Dharamshibhai N; Solanki, Jitendra V; Joshi, Chaitanya G

    2013-08-01

    Evaluations of genetic diversity in domestic livestock populations are necessary to implement region-specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west-central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST ) among the eight Indian breeds varied from 0.0126 for the Kankrej-Malvi pair to 0.2667 for Khillar-Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  17. Genetic variation within and among populations of Rhodiola alsia (Crassulaceae) native to the Tibetan Plateau as detected by ISSR markers.

    PubMed

    Xia, Tao; Chen, Shilong; Chen, Shengyun; Ge, Xuejun

    2005-04-01

    Genetic variation of 10 Rhodiola alsia (Crassulaceae) populations from the Qinghai-Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai-Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.

  18. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa

    PubMed Central

    2011-01-01

    Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (RST = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro

  19. Intertidal population genetic dynamics at a microgeographic seascape scale.

    PubMed

    Hu, Zi-Min

    2013-06-01

    The intertidal community is among the most physically harsh niches on earth, with highly heterogeneous environmental and biological factors that impose strong habitat selection on population abundance, genetic connectivity and ecological adaptation of organisms in nature. However, most genetic studies to date have concentrated on the influence of basin-wide or regional marine environments (e.g. habitat discontinuities, oceanic currents and fronts, and geographic barriers) on spatiotemporal distribution and composition of intertidal invertebrates having planktonic stages or long-distance dispersal capability. Little is known about sessile marine organisms (e.g. seaweeds) in the context of topographic tidal gradients and reproductive traits at the microgeographic scale. In this issue of Molecular Ecology, Krueger-Hadfield et al. () implemented an elaborate sampling strategy with red seaweed (Chondrus crispus) from a 90-m transect stand near Roscoff and comprehensively detected genome-scale genetic differentiation and biases in ploidy level. This study not only revealed that tidal height resulted in genetic differentiation between high- and low-shore stands and restricted the genetic exchange within the high-shore habitat, but also demonstrated that intergametophytic nonrandom fertilization in C. crispus can cause significant deviation from Hardy-Weinberg equilibrium. Such new genetic insights highlight the importance of microgeographic genetic dynamics and life history characteristics for better understanding the evolutionary processes of speciation and diversification of intertidal marine organisms. © 2013 John Wiley & Sons Ltd.

  20. Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe.

    PubMed

    Conrad, Taina; Paxton, Robert J; Assum, Günter; Ayasse, Manfred

    2018-01-01

    In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i) if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii) how odor bouquets of male O. bicornis vary within and between populations, and (iii) whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.

  1. Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil.

    PubMed

    Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A

    2013-11-18

    The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations.

  2. Genetic diversity and population structure of an insular tree, Santalum austrocaledonicum in New Caledonian archipelago.

    PubMed

    Bottin, L; Verhaegen, D; Tassin, J; Olivieri, I; Vaillant, A; Bouvet, J M

    2005-06-01

    We present a study of the genetic diversity and structure of a tropical tree in an insular system. Santalum austrocaledonicum is endemic to the archipelago of New Caledonia and is exploited for oil extraction from heartwood. A total of 431 individuals over 17 populations were analysed for eight polymorphic microsatellite loci. The number of alleles per locus ranged from 3 to 33 and the observed heterozygosity per population ranged from 0.01 in Mare to 0.74 in Ile des Pins. The genetic diversity was lowest in the most recent islands, the Loyautes, and highest in the oldest island, Grande Terre, as well as the nearby small Ile des Pins. Significant departures from panmixia were observed for some loci-population combinations (per population FIS = 0-0.03 on Grande-Terre and Ile des Pins, and 0-0.67 on Loyautes). A strong genetic differentiation among all islands was observed (FST = 0.22), and the amount of differentiation increased with geographic distance in Iles Loyaute and in Grande Terre. At both population and island levels, island age and isolation seem to be the main factors influencing the amount of genetic diversity. In particular, populations from recent islands had large average FIS that could not be entirely explained by null alleles or a Wahlund effect. This result suggests that, at least in some populations, selfing occurred extensively. Conclusively, our results indicate a strong influence of insularity on the genetic diversity and structure of Santalum austrocaledonicum.

  3. Genetic structure of colline and montane populations of an endangered plant species

    PubMed Central

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-01-01

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale, there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations. PMID:27519913

  4. Population genetic structure of the African elephant in Uganda based on variation at mitochondrial and nuclear loci: evidence for male-biased gene flow.

    PubMed

    Nyakaana, S; Arctander, P

    1999-07-01

    A drastic decline has occurred in the size of the Uganda elephant population in the last 40 years, exacerbated by two main factors; an increase in the size of the human population and poaching for ivory. One of the attendant consequences of such a decline is a reduction in the amount of genetic diversity in the surviving populations due to increased effects of random genetic drift. Information about the amount of genetic variation within and between the remaining populations is vital for their future conservation and management. The genetic structure of the African elephant in Uganda was examined using nucleotide variation of mitochondrial control region sequences and four nuclear microsatellite loci in 72 individuals from three localities. Eleven mitochondrial DNA (mtDNA) haplotypes were observed, nine of which were geographically localized. We found significant genetic differentiation between the three populations at the mitochondrial locus while three out of the four microsatellite loci differentiated KV and QE, one locus differentiated KV and MF and no loci differentiated MF and QE. Expected heterozygosity at the four loci varied between 0.51 and 0.84 while nucleotide diversity at the mitochondrial locus was 1.4%. Incongruent patterns of genetic variation within and between populations were revealed by the two genetic systems, and we have explained these in terms of the differences in the effective population sizes of the two genomes and male-biased gene flow between populations.

  5. Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Wilson, Robert E.; Underwood, Jared G.

    2017-01-01

    The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity, on genetic diversity within two Hawaiian endemic waterbirds, the Hawaiian coot and Hawaiian gallinule, by comparing historical (samples collected in the late 1800s and early 1900s) and modern (collected in 2012–2013) populations. Population declines simultaneously experienced by Hawaiian coots and Hawaiian gallinules differentially shaped the evolutionary trajectory of these two populations. Within Hawaiian coot, large reductions (between −38.4% and −51.4%) in mitochondrial diversity were observed, although minimal differences were observed in the distribution of allelic and haplotypic frequencies between sampled time periods. Conversely, for Hawaiian gallinule, allelic frequencies were strongly differentiated between time periods, signatures of a genetic bottleneck were detected, and biases in means of the effective population size were observed at microsatellite loci. The strength of the decline appears to have had a greater influence on genetic diversity within Hawaiian gallinule than Hawaiian coot, coincident with the reduction in census size. These species exhibit similar life history characteristics and generation times; therefore, we hypothesize that differences in behavior and colonization history are likely playing a large role in how allelic and haplotypic frequencies are being shaped through time. Furthermore, differences in patterns of genetic diversity within Hawaiian coot and Hawaiian gallinule highlight the influence of demographic and evolutionary processes in shaping how species respond genetically to ecological stressors.

  6. Importance of dispersal routes that minimize open-ocean movement to the genetic structure of island populations.

    PubMed

    Harradine, E L; Andrew, M E; Thomas, J W; How, R A; Schmitt, L H; Spencer, P B S

    2015-12-01

    Islands present a unique scenario in conservation biology, offering refuge yet imposing limitations on insular populations. The Kimberley region of northwestern Australia has more than 2500 islands that have recently come into focus as substantial conservation resources. It is therefore of great interest for managers to understand the driving forces of genetic structure of species within these island archipelagos. We used the ubiquitous bar-shouldered skink (Ctenotus inornatus) as a model species to represent the influence of landscape factors on genetic structure across the Kimberley islands. On 41 islands and 4 mainland locations in a remote area of Australia, we genotyped individuals across 18 nuclear (microsatellite) markers. Measures of genetic differentiation and diversity were used in two complementary analyses. We used circuit theory and Mantel tests to examine the influence of the landscape matrix on population connectivity and linear regression and model selection based on Akaike's information criterion to investigate landscape controls on genetic diversity. Genetic differentiation between islands was best predicted with circuit-theory models that accounted for the large difference in resistance to dispersal between land and ocean. In contrast, straight-line distances were unrelated to either resistance distances or genetic differentiation. Instead, connectivity was determined by island-hopping routes that allow organisms to minimize the distance of difficult ocean passages. Island populations of C. inornatus retained varying degrees of genetic diversity (NA = 1.83 - 7.39), but it was greatest on islands closer to the mainland, in terms of resistance-distance units. In contrast, genetic diversity was unrelated to island size. Our results highlight the potential for islands to contribute to both theoretical and applied conservation, provide strong evidence of the driving forces of population structure within undisturbed landscapes, and identify the islands

  7. Koalas (Phascolarctos cinereus) From Queensland Are Genetically Distinct From 2 Populations in Victoria.

    PubMed

    Ruiz-Rodriguez, Christina T; Ishida, Yasuko; Murray, Neil D; O'Brien, Stephen J; Graves, Jennifer A M; Greenwood, Alex D; Roca, Alfred L

    2016-01-01

    The koala (Phascolarctos cinereus) suffered population declines and local extirpation due to hunting in the early 20th century, especially in southern Australia. Koalas were subsequently reintroduced to the Brisbane Ranges (BR) and Stony Rises (SR) by translocating individuals from a population on French Island descended from a small number of founders. To examine genetic diversity and north-south differentiation, we genotyped 13 microsatellite markers in 46 wild koalas from the BR and SR, and 27 Queensland koalas kept at the US zoos. The Queensland koalas displayed much higher heterozygosity (H O = 0.73) than the 2 southern Australian koala populations examined: H O = 0.49 in the BR, whereas H O = 0.41 in the SR. This is consistent with the historical accounts of bottlenecks and founder events affecting the southern populations and contrasts with reports of high genetic diversity in some southern populations. The 2 southern Australian koala populations were genetically similar (F ST = 0.018, P = 0.052). By contrast, northern and southern Australian koalas were highly differentiated (F ST = 0.27, P < 0.001), thereby suggesting that geographic structuring should be considered in the conservation management of koalas. Sequencing of 648bp of the mtDNA control region in Queensland koalas found 8 distinct haplotypes, one of which had not been previously detected among koalas. Queensland koalas displayed high mitochondrial haplotype diversity (H = 0.753) and nucleotide diversity (π = 0.0072), indicating along with the microsatellite data that North American zoos have maintained high levels of genetic diversity among their Queensland koalas. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Spatial Genetic Structure and Mitochondrial DNA Phylogeography of Argentinean Populations of the Grasshopper Dichroplus elongatus

    PubMed Central

    Rosetti, Natalia; Remis, Maria Isabel

    2012-01-01

    Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD) and partial sequences of the cytochrome oxydase 1 (COI) mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the genetic loss

  9. Genetic structure and gene flow among European corn borer populations from the Great Plains to the Appalachians of North America

    USDA-ARS?s Scientific Manuscript database

    Earlier population genetic spatial analysis of European corn borer (ECB), Ostrinia nubilalis, populations sampled along transects indicated, surprisingly, that there is no genetic differentiation between populations separated by as much as 720 km. This unanticipated result suggests either that Euro...

  10. Genetic diversity and relationships among the tribes of Meghalaya compared to other Indian and Continental populations.

    PubMed

    Langstieh, B T; Reddy, B Mohan; Thangaraj, K; Kumar, V; Singh, Lalji

    2004-08-01

    The autosomal AmpFLSTR markers validated and widely used for forensic applications are used in this study to examine the extent of diversity and genetic relationships among nine Meghalaya populations. Altogether, 932 chromosomes from 9 populations were analyzed using 9 tetrameric AmpFLSTR loci. The included populations were all seven subtribes of the Austro-Asiatic Mon-Khmer-speaking Khasi and the neighboring Tibeto-Burman Garo. The Lyngngam, which are linguistically closer to the Khasi but are culturally intermediate between the Khasi and the Garo, are also included in the study. Although most of the microsatellite loci are highly polymorphic in each of these populations, the allele distributions are fairly uniform across the Meghalaya populations, suggesting relative homogeneity among them. Concurrent with this, the coefficient of gene differentiation (G(ST)) is observed to be low (0.026+/-0.002). This is naturally reflected in the lack of clear differentiation and clustering pattern of the Meghalaya tribes based on either geographic proximity or the historical or current affiliations of these tribes. Analysis of molecular variance (AMOVA) suggests no significant population structure. The structure analysis further suggests that, barring War-Khasi and Pnar, no other population shows any semblance of genetic identity. Even the position of the linguistically distinct Garo is not portrayed as separate from the Khasi. However, when comparable data from other Indian, Southeast Asian, and other continental populations were analyzed, the Meghalaya populations formed a compact cluster clearly separated from other populations, suggesting genetic identity of the Meghalaya populations as a whole. These results are concurrent with the hypothesis of a common and recent origin of these Meghalaya populations, whose genetic differentiation is overwhelmed by the homogenizing effect of continuous gene flow.

  11. Mechanisms of population differentiation in marbled murrelets: historical versus contemporary processes

    USGS Publications Warehouse

    Congdon, B.C.; Piatt, John F.; Martin, Kathy; Friesen, Vicki L.

    2000-01-01

    Mechanisms of population differentiation in highly vagile species such as seabirds are poorly understood. Previous studies of marbled murrelets (Brachyramphus marmoratus; Charadriiformes: Alcidae) found significant population genetic structure, but could not determine whether this structure is due to historical vicariance (e.g., due to Pleistocene glaciers), isolation by distance, drift or selection in peripheral populations, or nesting habitat selection. To discriminate among these possibilities, we analyzed sequence variation in nine nuclear introns from 120 marbled murrelets sampled from British Columbia to the western Aleutian Islands. Mismatch distributions indicated that murrelets underwent at least one population expansion during the Pleistocene and probably are not in genetic equilibrium. Maximum-likelihood analysis of allele frequencies suggested that murrelets from 'mainland' sites (from the Alaskan Peninsula east) are genetically different from those in the Aleutians and that these two lineages diverged prior to the last glaciation. Analyses of molecular variance, as well as estimates of gene flow derived using coalescent theory, indicate that population genetic structure is best explained by peripheral isolation of murrelets in the Aleutian Islands, rather than by selection associated with different nesting habitats. No isolation-by-distance effects could be detected. Our results are consistent with a rapid expansion of murrelets from a single refugium during the early-mid Pleistocene, subsequent isolation and divergence in two or more refugia during the final Pleistocene glacial advance, and secondary contact following retreat of the ice sheets. Population genetic structure now appears to be maintained by distance effects combined with small populations and a highly fragmented habitat in the Aleutian Islands.

  12. Fire Increases Genetic Diversity of Populations of Six-Lined Racerunner.

    PubMed

    Ragsdale, Alexandria K; Frederick, Bridget M; Dukes, David W; Liebl, Andrea L; Ashton, Kyle G; McCoy, Earl D; Mushinsky, Henry R; Schrey, Aaron W

    2016-01-01

    Wildfires are highly variable and can disturb habitats, leading to direct and indirect effects on the genetic characteristics of local populations. Florida scrub is a fire-dependent, highly fragmented, and severely threatened habitat. Understanding the effect of fire on genetic characteristics of the species that use this habitat is critically important. We investigated one such lizard, the Six-lined Racerunner (Aspidoscelis sexlineata), which has a strong preference for open areas. We collected Six-lined Racerunners (n = 154) from 11 sites in Highlands County, FL, and defined 2 time-since-last-fire (TSF) categories: recently burned and long unburned. We screened genetic variation at 6 microsatellites to estimate genetic differentiation and compare genetic diversity among sites to determine the relationship with TSF. A clear pattern exists between genetic diversity and TSF in the absence of strong genetic differentiation. Genetic diversity was greater and inbreeding was lower in sites with more recent TSF, and genetic characteristics had significantly larger variance in long unburned sites compared with more recently burned sites. Our results suggest that fire suppression increases variance in genetic characteristics of the Six-lined Racerunner. More generally, fire may benefit genetic characteristics of some species that use fire-dependent habitats and management efforts for such severely fragmented habitat will be challenged by the presence of multiple species with incompatible fire preferences. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    PubMed

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  14. Differentiation of Saccharomyces cerevisiae populations from vineyards of the Azores Archipelago: Geography vs Ecology.

    PubMed

    Drumonde-Neves, João; Franco-Duarte, Ricardo; Vieira, Eugénia; Mendes, Inês; Lima, Teresa; Schuller, Dorit; Pais, Célia

    2018-09-01

    Aiming to elucidate the roles that ecology and geography play in shaping the differentiation of fermentative grape-associated Saccharomyces cerevisiae populations, several locations on six islands of the Azores Archipelago were surveyed. A total of 249 strains were isolated from spontaneous fermentations of grape samples from several varieties of two distinct grapevine species (Vitis vinifera L. and Vitis labrusca L.), in vineyards that are under regular cultivation or in abandoned vineyards. Strains were genetically analyzed using a set of nine microsatellite loci, and also phenotypically characterized using relevant physiological/biotechnological tests. Results showed that genetic divergence among populations of the same island was lower than from populations from different islands. Phenotypic comparison of the populations from each of the islands revealed significant differences between them. Strains isolated from the islands with more intensive viticultural activity - Pico, Terceira and Graciosa - showed higher levels of SO 2 tolerance, possibly resulting from selection by human activity. The percentage of strains producing low levels of H 2 S was higher in S. Jorge (60%). Our findings were supported both by genetic and phenotypic data and provide clear evidence for the prevailing role of the geography over ecology in the differentiation of S. cerevisiae populations in the Azores Archipelago. Copyright © 2018. Published by Elsevier Ltd.

  15. Characterization of the genetic diversity and population structure for the yellow cattle in Taiwan based on microsatellite markers.

    PubMed

    Tu, Po-An; Lin, Der-Yuh; Li, Guang-Fu; Huang, Jan-Chi; Wang, De-Chi; Wang, Pei-Hwa

    2014-01-01

    In recent years, the population size of Taiwan yellow cattle has drastically declined, even become endangered. A preservation project, Taiwan Yellow Cattle Genetic Preservation Project (TYCGPP), was carried out at the Livestock Research Institute (LRI) Hengchun branch (1988-present). An analysis of intra- and inter- population variability was performed to be the first step to preserve this precious genetic resource. In this work, a total number of 140 individuals selected from the five Taiwan yellow cattle populations were analyzed using 12 microsatellite markers (loci). These markers determined the level of genetic variation within and among populations as well as the phylogenetic structure. The total number of alleles detected (122, 10.28 per locus) and the expected heterozygosity (0.712) indicated that these five populations had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups was 2 (K = 2). Genetic differentiation among clusters was moderate (F ST = 0.095). The result of AMOVA showed that yellow cattle in Taiwan had maintained a high level of within-population genetic differentiation (91%), the remainder being accounted for by differentiation among subpopulations (4%), and by differentiation among regions (5%). The results of STRUCTURE and principal component analysis (PCA) revealed two divergent clusters. The individual unrooted phylogenetic tree showed that some Kinmen yellow cattle in the Hengchun facility (KMHC individuals) were overlapped with Taiwan yellow cattle (TW) and Taiwan yellow cattle Hengchun (HC) populations. Also, they were overlapped with Kinmen × Taiwan (KT) and Kinmen yellow cattle (KM) populations. It is possible that KMHC kept similar phenotypic characteristics and analogous genotypes between TW and KM. A significant inbreeding coefficient (F IS = 0.185; P < 0.01) was detected, suggesting a medium level of inbreeding for yellow cattle in Taiwan. The hypothesis that yellow cattle

  16. Genetic structure of muskellunge in the Great Lakes region and the effects of supplementation on genetic integrity of wild populations

    USGS Publications Warehouse

    Turnquist, Keith N.; Larson, Wesley; Farrell, John M.; Hanchin, P.A.; Kapuscinski, Kevin L.; Miller, Loren M.; Scribner, Kim T.; Wilson, Chris C.; Sloss, Brian L.

    2017-01-01

    Muskellunge (Esox masquinongy) are important apex predators that support numerous recreational fisheries throughout the Great Lakes region. Declines in muskellunge abundance from historical overharvest and environmental degradation have threatened the viability of many populations and prompted significant restoration efforts that often include stocking. The goal of our study was to investigate contemporary population structure and genetic diversity in 42 populations of muskellunge sampled across the Great Lakes region to inform future management and supplementation practices. We genotyped 1896 muskellunge (N = 10–123/population) at 13 microsatellite loci. The greatest genetic variation was between populations of Great Lakes origin and populations of Northern (inland) origin, with both groups also exhibiting significant substructure (overall FST = 0.23). Genetic structure was generally correlated with geography; however, we only found marginal evidence of isolation by distance, likely due to high genetic differentiation among proximate populations. Measures of genetic diversity were moderate across most populations, but some populations displayed low diversity consistent with small population sizes or historical bottlenecks. Many of the populations studied displayed evidence of historic introductions and supplemental stocking, including the presence of individuals with primarily non-native ancestry as well as interlineage hybrids. Our results suggest that the historic population structure of muskellunge is largely intact across the Great Lakes region, but also that stocking practices have altered this structure to some degree. We suggest that future supplementation practices use local sources where possible, and incorporate genetic tools including broodstock screening to ensure that non-native muskellunge are not used to supplement wild populations.

  17. Population genetics and adaptation to climate along elevation gradients in invasive Solidago canadensis.

    PubMed

    Moran, Emily V; Reid, Andrea; Levine, Jonathan M

    2017-01-01

    Gene flow between populations may either support local adaptation by supplying genetic variation on which selection may act, or counteract it if maladapted alleles arrive faster than can be purged by selection. Although both such effects have been documented within plant species' native ranges, how the balance of these forces influences local adaptation in invasive plant populations is less clear, in part because introduced species often have lower genetic variation initially but also tend to have good dispersal abilities. To evaluate the extent of gene flow and adaptation to local climate in invasive populations of Solidago canadensis, and the implications of this for range expansion, we compared population differentiation at microsatellite and chloroplast loci for populations across Switzerland and assessed the effect of environmental transfer distance using common gardens. We found that while patterns of differentiation at neutral genetic markers suggested that populations are connected through extensive pollen and seed movement, common-garden plants nonetheless exhibited modest adaptation to local climate conditions. Growth rate and flower production declined with climatic distance from a plant's home site, with clones from colder home sites performing better at or above the range limit. Such adaptation in invasive species is likely to promote further spread, particularly under climate change, as the genotypes positioned near the range edge may be best able to take advantage of lengthening growing seasons to expand the range.

  18. High genetic diversity and insignificant interspecific differentiation in Opisthopappus Shih, an endangered cliff genus endemic to the Taihang Mountains of China.

    PubMed

    Guo, Rongmin; Zhou, Lihua; Zhao, Hongbo; Chen, Fadi

    2013-01-01

    Opisthopappus Shih is endemic to the Taihang Mountains, China. It grows in the crevice of cliffs and is in fragmented distribution. This genus consists of two species, namely, O. taihangensis (Ling) Shih and O. longilobus Shih, which are both endangered plants in China. This study adopted intersimple sequence repeat markers (ISSR) to analyze the genetic diversity and genetic structure from different levels (genus, species, and population) in this genus. A total of 253 loci were obtained from 27 primers, 230 of which were polymorphic loci with a proportion of polymorphic bands (PPB) of up to 90.91% at genus level. At species level, both O. taihangensis (PPB = 90.12%, H = 0.1842, and I = 0.289) and O. longilobus (PPB = 95.21%, H = 0.2226, and I = 0.3542) have high genetic diversity. Their respective genetic variation mostly existed within the population. And genetic variation in O. longilobus (84.95%) was higher than that in O. taihangensis (80.45%). A certain genetic differentiation among populations in O. taihangensis was found (G(st) = 0.2740, Φ(st) = 0.196) and genetic differentiation in O. longilobus was very small (G(st) = 0.1034, Φ(st) = 0.151). Gene flow in different degrees (N(m) = 1.325 and 4.336, resp.) and mating system can form the existing genetic structures of these two species. Furthermore, genetic differentiation coefficient (G(st) = 0.0453) between species and the clustering result based on the genetic distance showed that interspecific differentiation between O. taihangensis and O. longilobus was not significant and could occur lately.

  19. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions.

    PubMed

    Techer, Maéva Angélique; Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène

    2017-01-01

    With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic "subspecies." If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis

  20. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions

    PubMed Central

    Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène

    2017-01-01

    With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic “subspecies.” If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering

  1. Population Genetic Structure and Colonisation History of the Tool-Using New Caledonian Crow

    PubMed Central

    Abdelkrim, Jawad; Hunt, Gavin R.; Gray, Russell D.; Gemmell, Neil J.

    2012-01-01

    New Caledonian crows exhibit considerable variation in tool making between populations. Here, we present the first study of the species’ genetic structure over its geographical distribution. We collected feathers from crows on mainland Grande Terre, the inshore island of Toupéti, and the nearby island of Maré where it is believed birds were introduced after European colonisation. We used nine microsatellite markers to establish the genotypes of 136 crows from these islands and classical population genetic tools as well as Approximate Bayesian Computations to explore the distribution of genetic diversity. We found that New Caledonian crows most likely separate into three main distinct clusters: Grande Terre, Toupéti and Maré. Furthermore, Toupéti and Maré crows represent a subset of the genetic diversity observed on Grande Terre, confirming their mainland origin. The genetic data are compatible with a colonisation of Maré taking place after European colonisation around 1900. Importantly, we observed (1) moderate, but significant, genetic differentiation across Grande Terre, and (2) that the degree of differentiation between populations on the mainland increases with geographic distance. These data indicate that despite individual crows’ potential ability to disperse over large distances, most gene flow occurs over short distances. The temporal and spatial patterns described provide a basis for further hypothesis testing and investigation of the geographical variation observed in the tool skills of these crows. PMID:22590576

  2. Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba

    PubMed Central

    2011-01-01

    Background Southern Ocean fauna represent a significant amount of global biodiversity, whose origin may be linked to glacial cycles determining local extinction/eradication with ice advance, survival of refugee populations and post-glacial re-colonization. This pattern implies high potential for differentiation in benthic shelf species with limited dispersal, yet consequences for pelagic organisms are less clear. The present study investigates levels of genetic variation and population structure of the Antarctic krill Euphausia superba using mitochondrial DNA and EST-linked microsatellite markers for an unprecedentedly comprehensive sampling of its populations over a circum-Antarctic range. Results MtDNA (ND1) sequences and EST-linked microsatellite markers indicated no clear sign of genetic structure among populations over large geographic scales, despite considerable power to detect differences inferred from forward-time simulations. Based on ND1, few instances of genetic heterogeneity, not significant after correction for multiple tests, were detected between geographic or temporal samples. Neutrality tests and mismatch distribution based on mtDNA sequences revealed strong evidence of past population expansion. Significant positive values of the parameter g (a measure of population growth) were obtained from microsatellite markers using a coalescent-based genealogical method and suggested a recent start (60 000 - 40 000 years ago) for the expansion. Conclusions The results provide evidence of lack of genetic heterogeneity of Antarctic krill at large geographic scales and unequivocal support for recent population expansion. Lack of genetic structuring likely reflects the tight link between krill and circum-Antarctic ocean currents and is consistent with the hypothesis that differentiation processes in Antarctic species are largely influenced by dispersal potential, whereas small-scale spatial and temporal differentiation might be due to local conditions leading

  3. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species

    PubMed Central

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-01-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. PMID:26029262

  4. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler.

    PubMed

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-05-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  5. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler

    PubMed Central

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-01-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. PMID:24689851

  6. Population genetic structure of Monimopetalum chinense (Celastraceae), an endangered endemic species of eastern China.

    PubMed

    Xie, Guo-Wen; Wang, De-Lian; Yuan, Yong-Ming; Ge, Xue-Jun

    2005-04-01

    Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp=0.183) and at the population level (Ipop=0.083). High clonal diversity (D = 0.997) was found, and strong genetic differentiation among populations was detected (49.06 %). Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species.

  7. Population Genetics of an Ecosystem-Defining Reef Coral Pocillopora damicornis in the Tropical Eastern Pacific

    PubMed Central

    Combosch, David J.; Vollmer, Steven V.

    2011-01-01

    Background Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP. Methodology Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama. Principal Findings/Conclusions We detected significant levels of population genetic structure (global RST = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions (RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly

  8. Fire increases variance in genetic characteristics of Florida Sand Skink (Plestiodon reynoldsi) local populations.

    PubMed

    Schrey, Aaron W; Fox, Alicia M; Mushinsky, Henry R; McCoy, Earl D

    2011-01-01

    Fire is a complex event that maintains many ecological systems. The Florida Sand Skink (Plestiodon reynoldsi) is precinctive to Florida Scrub, a habitat that is maintained by infrequent fire. We characterize the effect of fire on genetic diversity and genetic differentiation at eight microsatellite loci in the Florida Sand Skink (n=470) collected from 30 replicate sites over three 'time since last fire' categories at the Archbold Biological Station. Long unburned sites had greater allelic richness and expected heterozygosity than either recently or intermediately burned sites. More recently, burned sites had greater standard deviations of allelic richness and private allelic richness. Expected heterozygosity positively correlated with 'time since fire' (r=0.36, P=0.05) and abundance (r=0.53, P=0.002). There was a significant spatial component to genetic differentiation, and results indicate individuals rarely disperse >1 km. Genetic differentiation was positively correlated with geographic distance in long unburned units (r=0.59, P=0.04), yet this relationship was disrupted by fire in recently (r=0.00, 1) and intermediately (r= -0.81, 0.05) burned areas. Simulations indicate that demographic changes to a local population could have generated the observed differences among 'time since fire' categories. Our findings indicate that infrequent fire may be beneficial to the Florida Sand Skink and that local populations begin to recover from changes attributable to the fire after 10 years. Too frequent fires may reduce genetic diversity because it may take multiple generations for local populations to recover. © 2010 Blackwell Publishing Ltd.

  9. Genetic differentiation in proboscis monkeys--A reanalysis.

    PubMed

    Nijman, Vincent

    2016-01-01

    Ogata and Seino [Zoo Biol, 2015, 34:76-79] sequenced the mitochondrial D-loop of five proboscis monkeys Nasalis larvatus from Yokahama Zoo, Japan, that were imported from Surabaya Zoo, Indonesia. They compared their sequences with those of 16 proboscis monkeys from Sabah, Malaysia, and on the basis of a haplotype network analysis of 256 base pairs concluded that the northern Malaysian and southern Indonesian populations of proboscis monkeys are genetically differentiated. I provide information on the origin of the Indonesian proboscis monkeys, showing that they were the first-generation offspring of wild-caught individuals from the Pulau Kaget Strict Nature Reserve in the province of South Kalimantan. Using a phylogenetic approach and adding additional sequences from Indonesia and Malaysia, I reanalyzed their data, and found no support for a north-south divide. Instead the resulting tree based on 433 base pairs sequences show two strongly supported clades, both containing individuals from Indonesia and Malaysia. Work on captive individuals, as reported by Ogata and Seino, can aid in developing appropriate markers and techniques, but to obtain a more complete understanding of the genetic diversity and differentiation of wild proboscis monkeys, more detailed geographic sampling from all over Borneo is needed. © 2015 Wiley Periodicals, Inc.

  10. Effective population size and genetic structure of a Piute ground squirrel (Spermophilus mollis) population

    USGS Publications Warehouse

    Antolin, Michael F.; Van Horne, Beatrice; Berger, Michael D.

    2001-01-01

    Piute ground squirrels (Spermophilus mollis) are distributed continuously in habitat dominated by native shrubs and perennial grasses in the Snake River Birds of Prey National Conservation Area in Idaho, U.S.A. This habitat is being fragmented and replaced by exotic annual plants, changing it to a wildfire-dominated system that provides poor habitat for ground squirrels. To assess potential effects of this fragmentation on ground squirrel populations, we combined an estimate of effective population size (Ne) based upon a demographic study with a population genetic analysis. The study area included three subpopulations separated from each other by 8–13 km. The ratio of effective population size to census number (Ne/N) was 0.57. Combining Ne/N with dispersal distances from a radio-tracking study, we calculated that neighborhood size was 62.2 ha, which included between 204 and 480 individuals. Our population genetic analysis (based on randomly amplified polymorphic DNA (RAPD) and microsatellite markers) showed relatively low levels of genetic differentiation (Qpopulations 0.07–0.10) between subpopulations and no inbreeding within subpopulations (f = 0.0003). These estimates of population subdivision translate into an effective migration rate (Nem) of 2.3–3.3 per year, which represents a high level of gene flow. Invasion by exotics will reduce the overall productivity of the habitat, and will lead to isolation among subpopulations if favorable habitat patches become isolated.

  11. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes.

    PubMed

    Christie, Mark R; Knowles, L Lacey

    2015-06-01

    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes.

  12. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes

    PubMed Central

    Christie, Mark R; Knowles, L Lacey

    2015-01-01

    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes. PMID:26029259

  13. The population genetics of a solitary oligolectic sweat bee, Lasioglossum (Sphecodogastra) oenotherae (Hymenoptera: Halictidae).

    PubMed

    Zayed, A; Packer, L

    2007-10-01

    Strong evidence exists for global declines in pollinator populations. Data on the population genetics of solitary bees, especially diet specialists, are generally lacking. We studied the population genetics of the oligolectic bee Lasioglossum oenotherae, a specialist on the pollen of evening primrose (Onagraceae), by genotyping 455 females from 15 populations across the bee's North American range at six hyper-variable microsatellite loci. We found significant levels of genetic differentiation between populations, even at small geographic scales, as well as significant patterns of isolation by distance. However, using multilocus genotype assignment tests, we detected 11 first-generation migrants indicating that L. oenotherae's sub-populations are experiencing ongoing gene flow. Southern populations of L. oenotherae were significantly more likely to deviate from Hardy-Weinberg equilibrium and from genotypic equilibrium, suggesting regional differences in gene flow and/or drift and inbreeding. Short-term N(e) estimated using temporal changes in allele frequencies in several populations ranged from approximately 223 to 960. We discuss our findings in terms of the conservation genetics of specialist pollinators, a group of considerable ecological importance.

  14. Population Genetic Analysis of Theileria annulata from Six Geographical Regions in China, Determined on the Basis of Micro- and Mini-satellite Markers

    PubMed Central

    Yin, Fangyuan; Liu, Zhijie; Liu, Junlong; Liu, Aihong; Salih, Diaeldin A.; Li, Youquan; Liu, Guangyuan; Luo, Jianxun; Guan, Guiquan; Yin, Hong

    2018-01-01

    Theileria annulata, a tick-borne apicomplexan protozoan, causes a lymphoproliferative disease of cattle with high prevalence in tropical and sub-tropical regions. Understanding the genetic diversity and structure of local populations will provide more fundamental knowledge for the population genetics and epidemics of protozoa. In this study, 78 samples of T. annulata collected from cattle/yaks representing 6 different geographic populations in China were genotyped using eight micro- and mini-satellite markers. High genetic variation within population, moderate genetic differentiation, and high level of diversity co-occurring with significant linkage disequilibrium were observed, which indicates there is gene flow between these populations in spite of the existence of reproductive and geographical barriers among populations. Furthermore, some degree of genetic differentiation was also found between samples from China and Oman. These findings provide a first glimpse of the genetic diversity of the T. annulata populations in China, and might contribute to the knowledge of distribution, dynamics, and epidemiology of T. annulata populations and optimize the management strategies for control. PMID:29515624

  15. Variation of genetic diversity in a rapidly expanding population of the greater long-tailed hamster (Tscherskia triton) as revealed by microsatellites.

    PubMed

    Xu, Laixiang; Xue, Huiliang; Song, Mingjing; Zhao, Qinghua; Dong, Jingping; Liu, Juan; Guo, Yu; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shushen; Yang, Hefang; Zhang, Zhibin

    2013-01-01

    Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984-1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.

  16. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  17. If F(ST) does not measure neutral genetic differentiation, then comparing it with Q(ST) is misleading. Or is it?

    PubMed

    Edelaar, Pim; Björklund, Mats

    2011-05-01

    The comparison between neutral genetic differentiation (F(ST) ) and quantitative genetic differentiation (Q(ST) ) is commonly used to test for signatures of selection in population divergence. However, there is an ongoing discussion about what F(ST) actually measures, even resulting in some alternative metrics to express neutral genetic differentiation. If there is a problem with F(ST) , this could have repercussions for its comparison with Q(ST) as well. We show that as the mutation rate of the neutral marker increases, F(ST) decreases: a higher within-population heterozygosity (He) yields a lower F(ST) value. However, the same is true for Q(ST) : a higher mutation rate for the underlying QTL also results in a lower Q(ST) estimate. The effect of mutation rate is equivalent in Q(ST) and F(ST) . Hence, the comparison between Q(ST) and F(ST) remains valid, if one uses neutral markers whose mutation rates are not too high compared to those of quantitative traits. Usage of highly variable neutral markers such as hypervariable microsatellites can lead to serious biases and the incorrect inference that divergent selection has acted on populations. Much of the discussion on F(ST) seems to stem from the misunderstanding that it measures the differentiation of populations, whereas it actually measures the fixation of alleles. In their capacity as measures of population differentiation, Hedrick's G'(ST) and Jost's D reach their maximum value of 1 when populations do not share alleles even when there remains variation within populations, which invalidates them for comparisons with Q(ST) . © 2011 Blackwell Publishing Ltd.

  18. Pioneer study of population genetics of Rhodnius ecuadoriensis (Hemiptera: Reduviidae) from the central coastand southern Andean regions of Ecuador.

    PubMed

    Villacís, Anita G; Marcet, Paula L; Yumiseva, César A; Dotson, Ellen M; Tibayrenc, Michel; Brenière, Simone Frédérique; Grijalva, Mario J

    2017-09-01

    Effective control of Chagas disease vector populations requires a good understanding of the epidemiological components, including a reliable analysis of the genetic structure of vector populations. Rhodnius ecuadoriensis is the most widespread vector of Chagas disease in Ecuador, occupying domestic, peridomestic and sylvatic habitats. It is widely distributed in the central coast and southern highlands regions of Ecuador, two very different regions in terms of bio-geographical characteristics. To evaluate the genetic relationship among R. ecuadoriensis populations in these two regions, we analyzed genetic variability at two microsatellite loci for 326 specimens (n=122 in Manabí and n=204 in Loja) and the mitochondrial cytochrome b gene (Cyt b) sequences for 174 individuals collected in the two provinces (n=73 and=101 in Manabí and Loja respectively). The individual samples were grouped in populations according to their community of origin. A few populations presented positive F IS, possible due to Wahlund effect. Significant pairwise differentiation was detected between populations within each province for both genetic markers, and the isolation by distance model was significant for these populations. Microsatellite markers showed significant genetic differentiation between the populations of the two provinces. The partial sequences of the Cyt b gene (578bp) identified a total of 34 haplotypes among 174 specimens sequenced, which translated into high haplotype diversity (Hd=0.929). The haplotype distribution differed among provinces (significant Fisher's exact test). Overall, the genetic differentiation of R. ecuadoriensis between provinces detected in this study is consistent with the biological and phenotypic differences previously observed between Manabí and Loja populations. The current phylogenetic analysis evidenced the monophyly of the populations of R. ecuadoriensis within the R. pallescens species complex; R. pallescens and R. colombiensis were more

  19. [The effect of reproduction biotopes on the genetic differentiation of populations of sockeye salmon Oncorhynchus nerka].

    PubMed

    Brykov, V A; Poliakova, N E; Podlesnykh, A V; Golub', E V; Golub', A P; Zhdanova, O L

    2005-05-01

    Variation of mitochondrial DNA (mtDNA) was examined in nine populations from three lake-river systems of Chukotka and Kamchatka. Significant differences were found between most of the sockeye salmon samples studied. The genetic differences among populations were not high and often did not correlate with the geographical distances between them. The low population divergence is explained by a short time of existence of most of them, having been formed after the recession of the upper Pleistocene glacier. When the populations were grouped according to their spawning biotopes (river or lake), they in general appeared more genetically similar than upon their grouping by geographical location (the lake-river systems). The differences between the river and lake populations in the lake--river systems increased from north to south.

  20. Genetic structure of Pseudococcus microcirculus (Hemiptera: Pseudococcidae) populations on epiphytic orchids in south Florida.

    PubMed

    Zettler, J A; Adams, K; Frederick, B; Gutting, A; Ingebretsen, N; Ragsdale, A; Schrey, A

    2017-03-01

    In 2012, the orchid mealy bug Pseudococcus microcirculus was first detected in situ in North America's more diverse orchid region, the Big Cypress Basin (Collier Co FL). A follow-up survey showed that the mealy bug is more widespread and found on epiphytic orchids in two locations, in both the Fakahatchee Strand State Preserve (sites B and F) and the Florida Panther National Wildlife Refuge (sites M and C). There, we collected mealy bugs (n = 54) from 35 orchid individuals and screened allelic variation at seven microsatellite loci. We estimated genetic diversity and differentiation among all sites and compared the variation among individuals collected on the same plant. Genetic differentiation between sites M and C (F ST = 0.03, P < 0.01) and,Mand B (F ST = 0.04, P < 0.01) was detected.We also detected significantly lower mean pairwise relatedness among individuals from site B compared to all the other locations, and this population had the lowest inbreeding coefficient. Genetic diversity and mean pairwise relatedness were highly variable among plants with multiple individuals; however, plants from sites F and M tend to have collections of individuals with higher mean pairwise relatedness compared to sites B and C. Our results indicate that there is genetic diversity and differentiation among mealy bugs in these locations, and that collections of individuals on the same plant are genetically diverse. As such, the mealy bugs throughout these areas are likely to be genetically diverse and exist in multiple distinct populations.

  1. Genetic polymorphism and population structure of Echinococcus ortleppi.

    PubMed

    Addy, F; Wassermann, M; Banda, F; Mbaya, H; Aschenborn, J; Aschenborn, O; Koskei, P; Umhang, G; DE LA Rue, M; Elmahdi, I E; Mackenstedt, U; Kern, P; Romig, T

    2017-04-01

    The zoonotic cestode Echinococcus ortleppi (Lopez-Neyra and Soler Planas, 1943) is mainly transmitted between dogs and cattle. It occurs worldwide but is only found sporadically in most regions, with the notable exception of parts of southern Africa and South America. Its epidemiology is little understood and the extent of intraspecific variability is unknown. We have analysed in the present study the genetic diversity among 178 E. ortleppi isolates from sub-Saharan Africa, Europe and South America using the complete mitochondrial cox1 (1608 bp) and nad1 (894 bp) DNA sequences. Genetic polymorphism within the loci revealed 15 cox1 and six nad1 haplotypes, respectively, and 20 haplotypes of the concatenated genes. Presence of most haplotypes was correlated to geographical regions, and only one haplotype had a wider spread in both eastern and southern Africa. Intraspecific microvariance was low in comparison with Echinococcus granulosus sensu stricto, despite the wide geographic range of examined isolates. In addition, the various sub-populations showed only subtle deviation from neutrality and were mostly genetically differentiated. This is the first insight into the population genetics of the enigmatic cattle adapted Echinococcus ortleppi. It, therefore, provides baseline data for biogeographical comparison among E. ortleppi endemic regions and for tracing its translocation paths.

  2. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    USGS Publications Warehouse

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  3. RAPD variation and population genetic structure of Physalaemus cuvieri (Anura: Leptodactylidae) in Central Brazil.

    PubMed

    Telles, Mariana Pires de Campos; Bastos, Rogério Pereira; Soares, Thannya Nascimento; Resende, Lucileide Vilela; Diniz-Filho, José Alexandre Felizola

    2006-01-01

    Studies about the organization of the genetic variability and population structure in natural populations are used either to understand microevolutionary processes or the effects of isolation by human-inducted landscape modifications. In this paper, we analyzed patterns of genetic population structure using 126 RAPD loci scored for 214 individuals of Physalaemus cuvieri, sampled from 18 local populations. Around 97% of these loci were polymorphic. The among-population variation component (Phi(ST)) obtained by AMOVA was equal to 0.101 and theta B obtained using a Bayesian approach for dominant markers was 0.103. Genetic divergence, analyzed by Mantel spatial correlogram, revealed only a short-distance significant correlation between genetic and geographic distances. This is expected if low levels of population differentiation, due to high abundance buffering the effect of stochastic processes, are combined with low spatially restricted gene flow. Although this may be consistent with the current knowledge of species' biology, the spatial distribution of local populations observed in this study also suggest that, at least in part, recent human occupation and habitat fragmentation may also explain part of the interpopulational component of the genetic variation.

  4. Reproductive isolation between populations of Iris atropurpurea is associated with ecological differentiation

    PubMed Central

    Yardeni, Gil; Tessler, Naama; Imbert, Eric; Sapir, Yuval

    2016-01-01

    Background and Aims Speciation is often described as a continuous dynamic process, expressed by different magnitudes of reproductive isolation (RI) among groups in different levels of divergence. Studying intraspecific partial RI can shed light on mechanisms underlying processes of population divergence. Intraspecific divergence can be driven by spatially stochastic accumulation of genetic differences following reduced gene flow, resulting in increased RI with increased geographical distance, or by local adaptation, resulting in increased RI with environmental difference. Methods We tested for RI as a function of both geographical distance and ecological differentiation in Iris atropurpurea, an endemic Israeli coastal plant. We crossed plants in the Netanya Iris Reserve population with plants from 14 populations across the species’ full distribution, and calculated RI and reproductive success based on fruit set, seed set and fraction of seed viability. Key Results We found that total RI was not significantly associated with geographical distance, but significantly increased with ecological distance. Similarly, reproductive success of the crosses, estimated while controlling for the dependency of each component on the previous stage, significantly reduced with increased ecological distance. Conclusions Our results indicate that the rise of post-pollination reproductive barriers in I. atropurpurea is more affected by ecological differentiation between populations than by geographical distance, supporting the hypothesis that ecological differentiation is predominant over isolation by distance and by reduced gene flow in this species. These findings also affect conservation management, such as genetic rescue, in the highly fragmented and endangered I. atropurpurea. PMID:27436798

  5. Evolutionary mechanisms shaping the genetic population structure of coastal fish: insight from populations of Coilia nasus in Northwestern Pacific.

    PubMed

    Gao, Tianxiang; Wan, Zhenzhen; Song, Na; Zhang, Xiumei; Han, Zhiqiang

    2014-12-01

    A number of evolutionary mechanisms have been suggested for generating significant genetic structuring among marine fish populations in Northwestern Pacific. We used mtDNA control region to assess the factors in shaping the genetic structure of Japanese grenadier anchovy, Coilia nasus, an anadromous and estuarine coastal species, in Northwestern Pacific. Sixty seven individuals from four locations in Northwestern Pacific were sequenced for mitochondrial control region, detecting 61 haplotypes. The length of amplified control region varied from 677 to 754 bp. This length variability was due to the presence of varying numbers of a 38-bp tandemly repeated sequence. Two distinct lineages were detected, which might have diverged during Pleistocene low sea levels. There were strong differences in the geographical distribution of the two lineages. Analyses of molecular variance and the population statistic ΦST revealed significant genetic structure between China and Ariake Bay populations. Based on the frequency distribution of tandem repeat units, significant genetic differentiation was also detected between China and Ariake Bay populations. Isolation by distance seems to be the main factor driving present genetic structuring of C. nasus populations, indicating coastal dispersal pattern in this coastal species. Such an evolutionary process agrees well with some of the biological features characterizing this species.

  6. HLA-C molecular characterization of a Lebanese population and genetic structure of 39 populations from Europe to India-Pakistan.

    PubMed

    Buhler, S; Megarbane, A; Lefranc, G; Tiercy, J-M; Sanchez-Mazas, A

    2006-07-01

    Lebanon is located at a continental crossroad between Europe, Africa, and Asia. This region has been the center of wide-scale movements of populations as well as the theater of genetic and cultural trade off among neighboring populations. In this study, HLA-C alleles were characterized by a PCR-SSOP (sequence-specific oligonucleotide probes) hybridization protocol in a sample of 97 Lebanese. A total of 23 alleles were identified with four predominant, Cw*0401, Cw*0602, Cw*0701/06, and Cw*1203, accounting for almost 60% of HLA-C allele frequencies. We included the Lebanese data into a broad analysis of the HLA-C genetic structure of a large set of populations located in Europe, the Middle East, and the Indian subcontinent. Our results indicate that Lebanese exhibit an intermediate genetic profile among the populations from the Middle East, which constitute a rather homogeneous genetic group. In Europe, a high correlation coefficient is found between genetic and geographic distances. In this continent, we also identified a significant genetic frontier following a north-east to south-west axis. This frontier cuts through the Alps and the Pyrenees, thus separating the north-western European populations from those located in the eastern and Mediterranean areas. Finally, the populations from India - Pakistan are very heterogeneous, particularly the Dravidians. Their differentiation has probably been caused by rapid genetic drift under complex influences of cultural, linguistic, and/or religious barriers. Overall, the results show that the HLA-C genetic patterns of these three geographic regions, i.e., the Middle East, Europe, and India-Pakistan, have been shaped by very different genetic histories.

  7. Development of microsatellite markers to genetically differentiate populations of Octopus minor from Korea and China.

    PubMed

    Kang, Jung-Ha; Kim, Yi-Kyung; Park, Jung-Youn; An, Chel-Min; Jun, Je-Chun

    2012-08-01

    Of the more than 300 octopus species, Octopus minor is one of the most popular and economically important species in Eastern Asia, including Korea, along with O. vulgaris, O. ocellatus, and O. aegina. We developed 19 microsatellite markers from Octopus minor and eight polymorphic markers were developed to analyze the genetic diversity and relationships among four octopus populations from Korea and three from China. The number of alleles per locus varied from 10 to 49, and allelic richness per locus ranged from 2 to 16.4 across all populations. The average allele number among the populations was 11.1, with a minimum of 8.3 and a maximum of 13.6. The mean allelic richness was 8.7 in all populations. The Hardy-Weinberg equilibrium (HWE) test revealed significant deviation in 19 of the 56 single-locus sites, and null alleles were presumed in five of eight loci. The pairwise F ( ST ) values between populations from Korea and China differed significantly in all pairwise comparisons. The genetic distances between the China and Korea samples ranged from 0.161 to 0.454. The genetic distances among the populations from Korea ranged from 0.033 to 0.090, with an average of 0.062; those among populations from China ranged from 0.191 to 0.316, with an average of 0.254. The populations from Korea and China formed clearly separated into clusters via an unweighted pair group method with arithmetic mean dendrogram. Furthermore, a population from muddy flats on the western coast of the Korean Peninsula and one from a rocky area on Jeju Island formed clearly separated subclusters. An assignment test based on the allele distribution discriminated between the Korean and Chinese origins with 96.9 % accuracy.

  8. Spatial and ecological population genetic structures within two island-endemic Aeonium species of different niche width.

    PubMed

    Harter, David E V; Thiv, Mike; Weig, Alfons; Jentsch, Anke; Beierkuhnlein, Carl

    2015-10-01

    The Crassulacean genus Aeonium is a well-known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra-island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island-endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci-environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.

  9. Genetic diversity of Elaeis oleifera (HBK) Cortes populations using cross species SSRs: implication's for germplasm utilization and conservation.

    PubMed

    Ithnin, Maizura; Teh, Chee-Keng; Ratnam, Wickneswari

    2017-04-19

    The Elaeis oleifera genetic materials were assembled from its center of diversity in South and Central America. These materials are currently being preserved in Malaysia as ex situ living collections. Maintaining such collections is expensive and requires sizable land. Information on the genetic diversity of these collections can help achieve efficient conservation via maintenance of core collection. For this purpose, we have applied fourteen unlinked microsatellite markers to evaluate 532 E. oleifera palms representing 19 populations distributed across Honduras, Costa Rica, Panama and Colombia. In general, the genetic diversity decreased from Costa Rica towards the north (Honduras) and south-east (Colombia). Principle coordinate analysis (PCoA) showed a single cluster indicating low divergence among palms. The phylogenetic tree and STRUCTURE analysis revealed clusters based on country of origin, indicating considerable gene flow among populations within countries. Based on the values of the genetic diversity parameters, some genetically diverse populations could be identified. Further, a total of 34 individual palms that collectively captured maximum allelic diversity with reduced redundancy were also identified. High pairwise genetic differentiation (Fst > 0.250) among populations was evident, particularly between the Colombian populations and those from Honduras, Panama and Costa Rica. Crossing selected palms from highly differentiated populations could generate off-springs that retain more genetic diversity. The results attained are useful for selecting palms and populations for core collection. The selected materials can also be included into crossing scheme to generate offsprings that capture greater genetic diversity for selection gain in the future.

  10. Genetic Variation and Geographic Differentiation Among Populations of the Nonmigratory Agricultural Pest Oedaleus infernalis (Orthoptera: Acridoidea) in China

    PubMed Central

    Sun, Wei; Dong, Hui; Gao, Yue-Bo; Su, Qian-Fu; Qian, Hai-Tao; Bai, Hong-Yan; Zhang, Zhu-Ting; Cong, Bin

    2015-01-01

    The nonmigratory grasshopper Oedaleus infernalis Saussure (Orthoptera : Acridoidea) is an agricultural pest to crops and forage grasses over a wide natural geographical distribution in China. The genetic diversity and genetic variation among 10 geographically separated populations of O. infernalis was assessed using polymerase chain reaction-based molecular markers, including the intersimple sequence repeat and mitochondrial cytochrome oxidase sequences. A high level of genetic diversity was detected among these populations from the intersimple sequence repeat (H: 0.2628, I: 0.4129, Hs: 0.2130) and cytochrome oxidase analyses (Hd: 0.653). There was no obvious geographical structure based on an unweighted pair group method analysis and median-joining network. The values of FST, θII, and Gst estimated in this study are low, and the gene flow is high (Nm > 4). Analysis of the molecular variance suggested that most of the genetic variation occurs within populations, whereas only a small variation takes place between populations. No significant correlation was found between the genetic distance and geographical distance. Overall, our results suggest that the geographical distance plays an unimpeded role in the gene flow among O. infernalis populations. PMID:26496789

  11. Population genetic structure and connectivity in the widespread coral-reef fish Abudefduf saxatilis: the role of historic and contemporary factors

    NASA Astrophysics Data System (ADS)

    Piñeros, Victor Julio; Gutiérrez-Rodríguez, Carla

    2017-09-01

    We assessed geographic patterns of genetic variation and connectivity in the widely distributed coral-reef fish Abudefduf saxatilis at different temporal scales. We sequenced two mitochondrial regions (cytochrome b and control region) and genotyped 12 microsatellite loci in a total of 296 individuals collected from 14 reefs in two biogeographic provinces in the tropical western Atlantic Ocean and from three provinces within the Caribbean Sea. We used phylogeography, population genetics and coalescent methods to assess the potential effects of climatic oscillations in the Pleistocene and contemporary oceanographic barriers on the population genetic structure and connectivity of the species. Sequence analyses indicated high genetic diversity and a lack of genetic differentiation throughout the Caribbean and between the two biogeographic provinces. Different lines of evidence depicted demographic expansions of A. saxatilis populations dated to the Pleistocene. The microsatellites exhibited high genetic diversity, and no genetic differentiation was detected within the Caribbean; however, these markers identified a genetic discontinuity between the two western Atlantic biogeographic provinces. Migration estimates revealed gene flow across the Amazon-Orinoco Plume, suggesting that genetic divergence may be promoted by differential environmental conditions on either side of the barrier. The climatic oscillations of the Pleistocene, together with oceanographic barriers and the dispersal potential of the species, constitute important factors determining the geographic patterns of genetic variation in A. saxatilis.

  12. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    PubMed Central

    Serrano, Magdalena; Calvo, Jorge H; Martínez, Marta; Marcos-Carcavilla, Ane; Cuevas, Javier; González, Carmen; Jurado, Juan J; de Tejada, Paloma Díez

    2009-01-01

    Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008) consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08) mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will facilitate the

  13. Forensic and population genetic characteristics of 62 X chromosome SNPs revealed by multiplex PCR and MALDI-TOF mass spectrometry genotyping in 4 North Eurasian populations.

    PubMed

    Stepanov, Vadim; Vagaitseva, Ksenyia; Kharkov, Vladimir; Cherednichenko, Anastasia; Bocharova, Anna; Berezina, Galina; Svyatova, Gulnara

    2016-01-01

    X chromosome genetic markers are widely used in basic population genetic research as well as in forensic genetics. In this paper we analyze the genetic diversity of 62 X chromosome SNPs in 4 populations using multiplex genotyping based on multi-locus PCR and MALDI-TOF mass spectrometry, and report forensic and population genetic features of the panel of X-linked SNPs (XSNPid). Studied populations represent Siberian (Buryat and Khakas), North Asian (Khanty) and Central Asian (Kazakh) native people. Khanty, Khakas and Kazakh population demonstrate average gene diversity over 0.45. Only East Siberian Buryat population is characterized by lower average heterozygosity (0.436). AMOVA analysis of genetic structure reveals a relatively low but significant level of genetic differentiation in a group of 4 population studied (FST=0.023, p=0.0000). The XSNPid panel provides a very high discriminating power in each population. The combined probability of discrimination in females (PDf) for XSNPid panel ranged between populations from 0.99999999999999999999999982 in Khakas to 0.9999999999999999999999963 in Buryats. The combined discriminating power in males (PDm) varies from 0.999999999999999792 to 0.9999999999999999819. The developed multiplex set of X chromosome SNPs can be a useful tool for population genetic studies and for forensic identity and kinship testing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Genetic composition of captive panda population.

    PubMed

    Yang, Jiandong; Shen, Fujun; Hou, Rong; Da, Yang

    2016-10-03

    A major function of the captive panda population is to preserve the genetic diversity of wild panda populations in their natural habitats. Understanding the genetic composition of the captive panda population in terms of genetic contributions from the wild panda populations provides necessary knowledge for breeding plans to preserve the genetic diversity of the wild panda populations. The genetic contributions from different wild populations to the captive panda population were highly unbalanced, with Qionglai accounting for 52.2 % of the captive panda gene pool, followed by Minshan with 21.5 %, Qinling with 10.6 %, Liangshan with 8.2 %, and Xiaoxiangling with 3.6 %, whereas Daxiangling, which had similar population size as Xiaoxiangling, had no genetic representation in the captive population. The current breeding recommendations may increase the contribution of some small wild populations at the expense of decreasing the contributions of other small wild populations, i.e., increasing the Xiaoxiangling contribution while decreasing the contribution of Liangshan, or sharply increasing the Qinling contribution while decreasing the contributions of Xiaoxiangling and Liangshan, which were two of the three smallest wild populations and were already severely under-represented in the captive population. We developed three habitat-controlled breeding plans that could increase the genetic contributions from the smallest wild populations to 6.7-11.2 % for Xiaoxiangling, 11.5-12.3 % for Liangshan and 12.9-20.0 % for Qinling among the offspring of one breeding season while reducing the risk of hidden inbreeding due to related founders from the same habitat undetectable by pedigree data. The three smallest wild panda populations of Daxiangling, Xiaoxiangling and Liangshan either had no representation or were severely unrepresented in the current captive panda population. By incorporating the breeding goal of increasing the genetic contributions from the smallest wild

  15. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    PubMed

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  16. The subtle role of climate change on population genetic structure in Canada lynx.

    PubMed

    Row, Jeffrey R; Wilson, Paul J; Gomez, Celine; Koen, Erin L; Bowman, Jeff; Thornton, Daniel; Murray, Dennis L

    2014-07-01

    Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west-to-east) across the Pacific-North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041-2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east-west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns. © 2014 John Wiley & Sons Ltd.

  17. Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization.

    PubMed

    Lourenço, André; Álvarez, David; Wang, Ian J; Velo-Antón, Guillermo

    2017-03-01

    Urbanization is a severe form of habitat fragmentation that can cause many species to be locally extirpated and many others to become trapped and isolated within an urban matrix. The role of drift in reducing genetic diversity and increasing genetic differentiation is well recognized in urban populations. However, explicit incorporation and analysis of the demographic and temporal factors promoting drift in urban environments are poorly studied. Here, we genotyped 15 microsatellites in 320 fire salamanders from the historical city of Oviedo (Est. 8th century) to assess the effects of time since isolation, demographic history (historical effective population size; N e ) and patch size on genetic diversity, population structure and contemporary N e . Our results indicate that urban populations of fire salamanders are highly differentiated, most likely due to the recent N e declines, as calculated in coalescence analyses, concomitant with the urban development of Oviedo. However, urbanization only caused a small loss of genetic diversity. Regression modelling showed that patch size was positively associated with contemporary N e , while we found only moderate support for the effects of demographic history when excluding populations with unresolved history. This highlights the interplay between different factors in determining current genetic diversity and structure. Overall, the results of our study on urban populations of fire salamanders provide some of the very first insights into the mechanisms affecting changes in genetic diversity and population differentiation via drift in urban environments, a crucial subject in a world where increasing urbanization is forecasted. © 2017 John Wiley & Sons Ltd.

  18. Genetic diversity of Brazilian natural populations of Anthonomus grandis Boheman (Coleoptera: Curculionidae), the major cotton pest in the New World.

    PubMed

    Martins, W F S; Ayres, C F J; Lucena, W A

    2007-01-27

    Twenty-five RAPD loci and 6 isozyme loci were studied to characterize the genetic variability of natural populations of Anthonomus grandis from two agroecosystems of Brazil. The random-amplified polymorphic DNA data disclosed a polymorphism that varied from 52 to 84% and a heterozygosity of 0.189 to 0.347. The index of genetic differentiation (GST) among the six populations was 0.258. The analysis of isozymes showed a polymorphism and a heterozygosity ranging from 25 to 100% and 0.174 to 0.277, respectively. The genetic differentiation (FST) among the populations obtained by isozyme data was 0.544. It was possible to observe rare alleles in the populations from the Northeast region. The markers examined allowed us to distinguish populations from large-scale, intensive farming region (cotton belts) versus populations from areas of small-scale farming

  19. Genetic diversity and conservation status of managed vicuña (Vicugna vicugna) populations in Argentina.

    PubMed

    Anello, M; Daverio, M S; Romero, S R; Rigalt, F; Silbestro, M B; Vidal-Rioja, L; Di Rocco, F

    2016-02-01

    The vicuña (Vicugna vicugna) was indiscriminately hunted for more than 400 years and, by the end of 1960s, it was seriously endangered. At that time, a captive breeding program was initiated in Argentina by the National Institute of Agricultural Technology (INTA) with the aim of preserving the species. Nowadays, vicuñas are managed in captivity and in the wild to obtain their valuable fiber. The current genetic status of Argentinean vicuña populations is virtually unknown. Using mitochondrial DNA and microsatellite markers, we assessed levels of genetic diversity of vicuña populations managed in the wild and compared it with a captive population from INTA. Furthermore, we examined levels of genetic structure and evidence for historical bottlenecks. Overall, all populations revealed high genetic variability with no signs of inbreeding. Levels of genetic diversity between captive and wild populations were not significantly different, although the captive population showed the lowest estimates of allelic richness, number of mitochondrial haplotypes, and haplotype diversity. Significant genetic differentiation at microsatellite markers was found between free-living populations from Jujuy and Catamarca provinces. Moreover, microsatellite data also revealed genetic structure within the Catamarca management area. Genetic signatures of past bottlenecks were detected in wild populations by the Garza Williamson test. Results from this study are discussed in relation to the conservation and management of the species.

  20. Genetic structure and gene flow among European corn borer populations from the Great Plains to the Appalachians of North America

    EPA Science Inventory

    Earlier population genetic spatial analysis of European corn borer, Ostrinia nubilalis (Hubner), indicated no genetic differentiation even between locations separated by 720 km. This result suggests either high dispersal resulting in high gene flow, or that populations are not in...

  1. Possible implication of the genetic composition of the Lutzomyia longipalpis (Diptera: Psychodidae) populations in the epidemiology of the visceral leishmaniasis.

    PubMed

    Rocha, Leonardo de Souza; Falqueto, Aloisio; Dos Santos, Claudiney Biral; Grimaldi, Gabriel Júnior; Cupolillo, Elisa

    2011-09-01

    Lutzomyia longipalpis (Diptera: Psychodidae) is the principal vector of American visceral leishmaniasis. Several studies have indicated that the Lu. longipalpis population structure is complex. It has been suggested that genetic divergence caused by genetic drift, selection, or both may affect the vectorial capacity of Lu. longipalpis. However, it remains unclear whether genetic differences among Lu. longipalpis populations are directly implicated in the transmission features of visceral leishmaniasis. We evaluated the genetic composition and the patterns of genetic differentiation among Lu. longipalpis populations collected from regions with different patterns of transmission of visceral leishmaniasis by analyzing the sequence variation in the mitochondrial cytochrome b gene. Furthermore, we investigated the temporal distribution of haplotypes and compared our results with those obtained in a previous study. Our data indicate that there are differences in the haplotype composition and that there has been significant differentiation between the analyzed populations. Our results reveal that measures used to control visceral leishmaniasis might have influenced the genetic composition of the vector population. This finding raises important questions concerning the epidemiology of visceral leishmaniasis, because these differences in the genetic structures among populations of Lu. longipalpis may have implications with respect to their efficiency as vectors for visceral leishmaniasis.

  2. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida

    PubMed Central

    Fedrizzi, Nathan; Stiassny, Melanie L. J.; Boehm, J. T.; Dougherty, Eric R.; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa. PMID:26200110

  3. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida.

    PubMed

    Fedrizzi, Nathan; Stiassny, Melanie L J; Boehm, J T; Dougherty, Eric R; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa.

  4. Population Genetics of a Trochid Gastropod Broadens Picture of Caribbean Sea Connectivity

    PubMed Central

    Díaz-Ferguson, Edgardo; Haney, Robert; Wares, John; Silliman, Brian

    2010-01-01

    Background Regional genetic connectivity models are critical for successful conservation and management of marine species. Even though rocky shore invertebrates have been used as model systems to understand genetic structure in some marine environments, our understanding of connectivity in Caribbean communities is based overwhelmingly on studies of tropical fishes and corals. In this study, we investigate population connectivity and diversity of Cittarium pica, an abundant rocky shore trochid gastropod that is commercially harvested across its natural range, from the Bahamas to Venezuela. Methodology/Principal Findings We tested for genetic structure using DNA sequence variation at the mitochondrial COI and 16S loci, AMOVA and distance-based methods. We found substantial differentiation among Caribbean sites. Yet, genetic differentiation was associated only with larger geographic scales within the Caribbean, and the pattern of differentiation only partially matched previous assessments of Caribbean connectivity, including those based on larval dispersal from hydrodynamic models. For instance, the Bahamas, considered an independent region by previous hydrodynamic studies, showed strong association with Eastern Caribbean sites in our study. Further, Bonaire (located in the east and close to the meridional division of the Caribbean basin) seems to be isolated from other Eastern sites. Conclusions/Significance The significant genetic structure and observed in C. pica has some commonalities in pattern with more commonly sampled taxa, but presents features, such as the differentiation of Bonaire, that appear unique. Further, the level of differentiation, together with regional patterns of diversity, has important implications for the application of conservation and management strategies in this commercially harvested species. PMID:20844767

  5. Population Genetic Structure of Monimopetalum chinense (Celastraceae), an Endangered Endemic Species of Eastern China

    PubMed Central

    XIE, GUO-WEN; WANG, DE-LIAN; YUAN, YONG-MING; GE, XUE-JUN

    2005-01-01

    • Background and Aims Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. • Methods One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). • Key Results A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp = 0·183) and at the population level (Ipop = 0·083). High clonal diversity (D = 0·997) was found, and strong genetic differentiation among populations was detected (49·06 %). • Conclusions Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species. PMID:15710646

  6. Selection of RAPD markers for investigation of genetic population structure in fusiform rust fungus infecting loblolly pine

    Treesearch

    James H. Roberds; Thomas L. Kubisiak; Pauline C. Spaine; S.F. Covert; R.L. Doudrick

    1997-01-01

    research to determine patterns of genetic differentiation among and within field populations of Cronartium quercuum f. sp. fusiforme using RAPD markers is currently underway in the molecular genetics laboratory at the Southern Institute of Forest Genetics. Fungal tissue was collected as a drop of spermatia or scrapings of a...

  7. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis.

    PubMed

    Schuller, Dorit; Casal, Margarida

    2007-02-01

    From the analysis of six polymorphic microsatellite loci performed in 361 Saccharomyces cerevisiae isolates, 93 alleles were identified, 52 of them being described for the first time. All these isolates have a distinct mtDNA RFLP pattern. They are derived from a pool of 1620 isolates obtained from spontaneous fermentations of grapes collected in three vineyards of the Vinho Verde Region in Portugal, during the 2001-2003 harvest seasons. For all loci analyzed, observed heterozygosity was 3-4 times lower than the expected value supposing a Hardy-Weinberg equilibrium (random mating and no evolutionary mechanisms acting), indicating a clonal structure and strong populational substructuring. Genetic differences among S. cerevisiae populations were apparent mainly from gradations in allele frequencies rather than from distinctive "diagnostic" genotypes, and the accumulation of small allele-frequency differences across six loci allowed the identification of population structures. Genetic differentiation in the same vineyard in consecutive years was of the same order of magnitude as the differences verified among the different vineyards. Correlation of genetic differentiation with the distance between sampling points within a vineyard suggested a pattern of isolation-by-distance, where genetic divergence in a vineyard increased with size. The continuous use of commercial yeasts has a limited influence on the autochthonous fermentative yeast population collected from grapes and may just slightly change populational structures of strains isolated from sites very close to the winery where they have been used. The present work is the first large-scale approach using microsatellite typing allowing a very fine resolution of indigenous S. cerevisiae populations isolated from vineyards.

  8. Ancient marine hunter-gatherers from Patagonia and Tierra Del Fuego: Diversity and differentiation using uniparentally inherited genetic markers.

    PubMed

    de la Fuente, Constanza; Galimany, Jacqueline; Kemp, Brian M; Judd, Kathleen; Reyes, Omar; Moraga, Mauricio

    2015-12-01

    The human population history from Patagonia and Tierra del Fuego has been of great interest in the context of the American peopling. Different sources of evidence have contributed to the characterization of the local populations, but some main questions about their history remain unsolved. Among the native populations, two marine hunter-gatherers groups inhabited the Patagonian channels below the 478S: Kawéskar and Yámana. Regardless of their geographical proximity and cultural resemblance, their languages were mutually unintelligible. In this study we aim to evaluate the genetic diversity of uniparental genetic markers in both groups and to test if there is a high genetic differentiation between them, mirroring their linguistic differences. Ancient DNA was extracted from 37 samples from both populations. We compared their genetic variability of their mitochondrial lineages and Y-STR as well as with other modern native populations from the area and further north. We observed an important differentiation in their maternal lineages: while Kawéskar shows a high frequency of D (80%), Yámana shows a high frequency of C (90%). The analysis of paternal lineages reveals the presence of only Q1a2a1a1 and little variation was found between individuals. Both groups show very low levels of genetic diversity compared with modern populations. We also notice shared and unique mitochondrial DNA variants between modern and ancient samples of Kawéskar and Yámana. © 2015 Wiley Periodicals, Inc.

  9. Sewage treatment plant associated genetic differentiation in the blue mussel from the Baltic Sea and Swedish west coast

    PubMed Central

    Lönn, Mikael; Lind, Emma E.; Świeżak, Justyna; Smolarz, Katarzyna; Grahn, Mats

    2016-01-01

    Human-derived environmental pollutants and nutrients that reach the aquatic environment through sewage effluents, agricultural and industrial processes are constantly contributing to environmental changes that serve as drivers for adaptive responses and evolutionary changes in many taxa. In this study, we examined how two types of point sources of aquatic environmental pollution, harbors and sewage treatment plants, affect gene diversity and genetic differentiation in the blue mussel in the Baltic Sea area and off the Swedish west coast (Skagerrak). Reference sites (REF) were geographically paired with sites from sewage treatments plant (STP) and harbors (HAR) with a nested sampling scheme, and genetic differentiation was evaluated using a high-resolution marker amplified fragment length polymorphism (AFLP). This study showed that genetic composition in the Baltic Sea blue mussel was associated with exposure to sewage treatment plant effluents. In addition, mussel populations from harbors were genetically divergent, in contrast to the sewage treatment plant populations, suggesting that there is an effect of pollution from harbors but that the direction is divergent and site specific, while the pollution effect from sewage treatment plants on the genetic composition of blue mussel populations acts in the same direction in the investigated sites. PMID:27812424

  10. Genetic isolation of a now extinct population of bottlenose dolphins (Tursiops truncatus)

    PubMed Central

    Nichols, Courtney; Herman, Jerry; Gaggiotti, Oscar E; Dobney, Keith M; Parsons, Kim; Hoelzel, A. Rus

    2007-01-01

    A number of dolphin species, though highly mobile, show genetic structure among parapatric and sometimes sympatric populations. However, little is known about the temporal patterns of population structure for these species. Here, we apply Bayesian inference and data from ancient DNA to assess the structure and dynamics of bottlenose dolphin (Tursiops truncatus) populations in the coastal waters of the UK. We show that regional population structure in UK waters is consistent with earlier studies suggesting local habitat dependence for this species in the Mediterranean Sea and North Atlantic. One genetically differentiated UK population went extinct at least 100 years ago and has not been replaced. The data indicate that this was a local extinction, and not a case of historical range shift or contraction. One possible interpretation is a declining metapopulation and conservation need for this species in the UK. PMID:17456457

  11. A survey of the population genetic variation in the human kinome.

    PubMed

    Zhang, Wei; Catenacci, Daniel V T; Duan, Shiwei; Ratain, Mark J

    2009-08-01

    Protein kinases are key regulators of various biological processes, such as control of cell growth, metabolism, differentiation and apoptosis. Therefore, protein kinases have been an important class of targets for anticancer drugs. Health-related disparities such as differential drug response have been observed between human populations. A survey of the human kinases and their ligand genes for those containing population-specific genetic variants could provide new insights into the mechanisms of these health disparities and suggest novel targets for ethnicity-specific personalized medicine. Using the International HapMap Project genotypic data on single-nucleotide polymorphisms (SNPs), the protein kinase complement of the human genome (kinome) and some experimentally verified ligand genes were scanned for the existence of population-specific SNPs (eSNPs). In general, protein kinases were found to contain a much higher proportion of eSNPs than the whole genome background, indicating a stronger pressure for adaptation in individual populations. In contrast, the proportion of ligand genes containing eSNPs was not different from that of the whole genome background. Although with some important limitations, our results suggest that human kinases are more likely to be under recent positive selection than ligands. Our findings suggest that the health-related disparities associated with kinase signaling pathways are more likely to be driven by the genetic variation in the kinase genes than their cognate ligands. Illustrating the role of molecular evolution in the genetic variation of the human kinome could provide a promising route to understand the ethnic differences in cancer and facilitate the realization of ethnicity-based individualized medicine.

  12. From Shelf to Shelf: Assessing Historical and Contemporary Genetic Differentiation and Connectivity across the Gulf of Mexico in Gag, Mycteroperca microlepis

    PubMed Central

    Jue, Nathaniel K.; Brulé, Thierry; Coleman, Felicia C.; Koenig, Christopher C.

    2015-01-01

    Describing patterns of connectivity among populations of species with widespread distributions is particularly important in understanding the ecology and evolution of marine species. In this study, we examined patterns of population differentiation, migration, and historical population dynamics using microsatellite and mitochondrial loci to test whether populations of the epinephelid fish, Gag, Mycteroperca microlepis, an important fishery species, are genetically connected across the Gulf of Mexico and if so, whether that connectivity is attributable to either contemporary or historical processes. Populations of Gag on the Campeche Bank and the West Florida Shelf show significant, but low magnitude, differentiation. Time since divergence/expansion estimates associated with historical population dynamics indicate that any population or spatial expansions indicated by population genetics would have likely occurred in the late Pleistocene. Using coalescent-based approaches, we find that the best model for explaining observed spatial patterns of contemporary genetic variation is one of asymmetric gene flow, with movement from Campeche Bank to the West Florida Shelf. Both estimated migration rates and ecological data support the hypothesis that Gag populations throughout the Gulf of Mexico are connected via present day larval dispersal. Demonstrating this greatly expanded scale of connectivity for Gag highlights the influence of “ghost” populations (sensu Beerli) on genetic patterns and presents a critical consideration for both fisheries management and conservation of this and other species with similar genetic patterns. PMID:25856095

  13. Rapid genetic and morphologic divergence between captive and wild populations of the endangered Leon Springs pupfish, Cyprinodon bovinus.

    PubMed

    Black, Andrew N; Seears, Heidi A; Hollenbeck, Christopher M; Samollow, Paul B

    2017-04-01

    The Leon Springs pupfish (Cyprinodon bovinus) is an endangered species currently restricted to a single desert spring and a separate captive habitat in southwestern North America. Following establishment of the captive population from wild stock in 1976, the wild population has undergone natural population size fluctuations, intentional culling to purge genetic contamination from an invasive congener (Cyprinodon variegatus) and augmentation/replacement of wild fish from the captive stock. A severe population decline following the most recent introduction of captive fish prompted us to examine whether the captive and wild populations have differentiated during the short time they have been isolated from one another. If so, the development of divergent genetic and/or morphologic traits between populations could contribute to a diminished ability of fish from one location to thrive in the other. Examination of genomewide single nucleotide polymorphisms and morphologic variation revealed no evidence of residual C. variegatus characteristics in contemporary C. bovinus samples. However, significant genetic and morphologic differentiation was detected between the wild and captive populations, some of which might reflect local adaptation. Our results indicate that genetic and physical characteristics can diverge rapidly between isolated subdivisions of managed populations, potentially compromising the value of captive stock for future supplementation efforts. In the case of C. bovinus, our findings underscore the need to periodically inoculate the captive population with wild genetic material to help mitigate genetic, and potentially morphologic, divergence between them and also highlight the utility of parallel morphologic and genomic evaluation to inform conservation management planning. © 2017 John Wiley & Sons Ltd.

  14. Population genetic structure of endangered Mongolian racerunner (Eremias argus) from the Korean Peninsula.

    PubMed

    Park, Han-Chan; Suk, Ho Young; Jeong, Eu-Jin; Park, Dae-Sik; Lee, Hang; Min, Mi-Sook

    2014-11-01

    The Mongolian racerunner (Eremias argus) is a small lacertid lizard species, and its distribution range encompasses the Korean Peninsula, Mongolia, China and Russia. Eremias argus is widespread, but populations on the Korean Peninsula are small and declining, provoking concerns that genetic diversity is being lost. This species is currently listed under the Protection of Wild Fauna and Flora Act in South Korea. In this study, nine novel microsatellites for E. argus were developed with a biotin-enrichment method and used to understand its population genetic structure and delineate conservation units on the Korean Peninsula. Overall, low intrapopulation genetic diversity was observed (mean number of alleles per locus = 2.463; mean H E = 0.398) from 10 populations investigated (n = 110). Two populations (among five with n≥ 10) showed an excess of heterozygosity expected under HWE relative to that expected at mutation-drift equilibrium, indicating severe reduction in population sizes. With only a few exceptions, the overall genetic differentiation among populations was substantial with the high levels of pairwise-F ST (0.006-0.746) and -R ST (0.034-0.940) values. The results of Bayesian STRUCTURE analysis showed that E. argus populations on the Korean Peninsula were most likely partitioned into three genetic clusters. Taken all together, such low levels of gene flow and strong genetic structuring have critical implications for the conservation of this endangered species and its management.

  15. Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes.

    PubMed

    Flanley, Catherine M; Ramalho-Ortigao, Marcelo; Coutinho-Abreu, Iliano V; Mukbel, Rami; Hanafi, Hanafi A; El-Hossary, Shabaan S; Fawaz, Emad El-Din Y; Hoel, David F; Bray, Alexander W; Stayback, Gwen; Shoue, Douglas A; Kamhawi, Shaden; Karakuş, Mehmet; Jaouadi, Kaouther; Yaghoobie-Ershadi, Mohammad Reza; Krüger, Andreas; Amro, Ahmad; Kenawy, Mohamed Amin; Dokhan, Mostafa Ramadhan; Warburg, Alon; Hamarsheh, Omar; McDowell, Mary Ann

    2018-03-27

    Phlebotomus papatasi sand flies are major vectors of Leishmania major and phlebovirus infection in North Africa and across the Middle East to the Indian subcontinent. Population genetics is a valuable tool in understanding the level of genetic variability present in vector populations, vector competence, and the development of novel control strategies. This study investigated the genetic differentiation between P. papatasi populations in Egypt and Jordan that inhabit distinct ecotopes and compared this structure to P. papatasi populations from a broader geographical range. A 461 base pair (bp) fragment from the mtDNA cytochrome b (cyt b) gene was PCR amplified and sequenced from 116 individual female sand flies from Aswan and North Sinai, Egypt, as well as Swaimeh and Malka, Jordan. Haplotypes were identified and used to generate a median-joining network, F ST values and isolation-by-distance were also evaluated. Additional sand fly individuals from Afghanistan, Iran, Israel, Jordan, Libya, Tunisia and Turkey were included as well as previously published haplotypes to provide a geographically broad genetic variation analysis. Thirteen haplotypes displaying nine variant sites were identified from P. papatasi collected in Egypt and Jordan. No private haplotypes were identified from samples in North Sinai, Egypt, two were observed in Aswan, Egypt, four from Swaimeh, Jordan and two in Malka, Jordan. The Jordan populations clustered separately from the Egypt populations and produced more private haplotypes than those from Egypt. Pairwise F ST values fall in the range 0.024-0.648. The clustering patterns and pairwise F ST values indicate a strong differentiation between Egyptian and Jordanian populations, although this population structure is not due to isolation-by-distance. Other factors, such as environmental influences and the genetic variability in the circulating Le. major parasites, could possibly contribute to this heterogeneity. The present study aligns with

  16. Genetic diversity and population structure of a protected species: Polygala tenuifolia Willd.

    PubMed

    Peng, Yan Qun; Fan, Ling Ling; Mao, Fu Ying; Zhao, Yun Sheng; Xu, Rui; Yin, Yu Jie; Chen, Xin; Wan, De Guang; Zhang, Xin Hui

    2018-03-01

    Polygala tenuifolia Willd. is an important protected species used in traditional Chinese medicine. In the present study, amplified fragment length polymorphism (AFLP) markers were employed to characterize the genetic diversity in wild and cultivated P. tenuifolia populations. Twelve primer combinations of AFLP produced 310 unambiguous and repetitious bands. Among these bands, 261 (84.2%) were polymorphic. The genetic diversity was high at the species level: percentage of polymorphic loci (PPL)=84.2%, Nei's gene diversity (h)=0.3296 and Shannon's information index (I)=0.4822. Between the two populations, the genetic differentiation of 0.1250 was low and the gene flow was relatively high, at 3.4989. The wild population (PPL=81.9%, h=0.3154, I=0.4635) showed a higher genetic diversity level than the cultivated population (PPL=63.9%, h=0.2507, I=0.3688). The results suggest that the major factors threatening the persistence of P. tenuifolia resources are ecological and human factors rather than genetic. These results will assist with the design of conservation and management programs, such as in natural habitat conservation, setting the excavation time interval for resource regeneration and the substitution of cultivated for wild plants. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  17. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    PubMed Central

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event. PMID:26720131

  18. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories.

    PubMed

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event.

  19. GENETICS AND POPULATION-LEVEL RISK ASSESSMENT

    EPA Science Inventory

    Genetic variation defines population structure and provides the mechanism for populations to adapt to novel stressors. Despite its fundamental importance in understanding populations, genetic information has been included rarely in models of population dynamics (endangered speci...

  20. Population genetic structure and genetic diversity of Chinese pomfret at the coast of the East China Sea and the South China Sea.

    PubMed

    Sun, Peng; Tang, Baojun; Yin, Fei

    2018-05-01

    The Chinese pomfret Pampus chinensis is one of the most economic and ecological important marine fish species in China. In the present study, the population genetic structure and genetic diversity of P. chinensis were evaluated from a total sample size of 180 individuals representing six populations from the East China Sea and the South China Sea using mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 24 variable sites (including 3 singleton sites and 21 parsimony information sites) were observed, and 18 haplotypes were defined. The haplotype diversity (Hd) of the populations ranged from 0.559 to 0.775, and the nucleotide diversity (π) ranged from 0.330 to 1.090%. Analysis of molecular variance (AMOVA) reveals that the main variation (66.02%) was among individuals within populations. The average pairwise differences and ϕ ST values indicated significant genetic differentiation between Dongxing population and the other populations. The results of the present study are helpful for the sustainable management and utilization of this species.

  1. Population genetics of the westernmost distribution of the glaciations-surviving black truffle Tuber melanosporum.

    PubMed

    García-Cunchillos, Iván; Sánchez, Sergio; Barriuso, Juan José; Pérez-Collazos, Ernesto

    2014-04-01

    The black truffle (Tuber melanosporum Vittad.) is an important natural resource due to its relevance as a delicacy in gastronomy. Different aspects of this hypogeous fungus species have been studied, including population genetics of French and Italian distribution ranges. Although those studies include some Spanish populations, this is the first time that the genetic diversity and genetic structure of the wide geographical range of the natural Spanish populations have been analysed. To achieve this goal, 23 natural populations were sampled across the Spanish geographical distribution. ISSR technique demonstrated its reliability and capability to detect high levels of polymorphism in the species. Studied populations showed high levels of genetic diversity (h N  = 0.393, h S  = 0.678, Hs = 0.418), indicating a non threatened genetic conservation status. These high levels may be a consequence of the wide distribution range of the species, of its spore dispersion by animals, and by its evolutionary history. AMOVA analysis showed a high degree of genetic structure among populations (47.89%) and other partitions as geographical ranges. Bayesian genetic structure analyses differentiated two main Spanish groups separated by the Iberian Mountain System, and showed the genetic uniqueness of some populations. Our results suggest the survival of some of these populations during the last glaciation, the Spanish southern distribution range perhaps surviving as had occurred in France and Italy, but it is also likely that specific northern areas may have acted as a refugia for the later dispersion to other calcareous areas in the Iberian Peninsula and probably France.

  2. Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern European populations of the common ash (Fraxinus excelsior L.).

    PubMed

    Heuertz, Myriam; Hausman, Jean-François; Hardy, Olivier J; Vendramin, Giovanni G; Frascaria-Lacoste, Nathalie; Vekemans, Xavier

    2004-05-01

    To determine extant patterns of population genetic structure in common ash and gain insight into postglacial recolonization processes, we applied multilocus-based Bayesian approaches to data from 36 European populations genotyped at five nuclear microsatellite loci. We identified two contrasting patterns in terms of population genetic structure: (1) a large area from the British Isles to Lithuania throughout central Europe constituted effectively a single deme, whereas (2) strong genetic differentiation occurred over short distances in Sweden and southeastern Europe. Concomitant geographical variation was observed in estimates of allelic richness and genetic diversity, which were lowest in populations from southeastern Europe, that is, in regions close to putative ice age refuges, but high in western and central Europe, that is, in more recently recolonized areas. We suggest that in southeastern Europe, restricted postglacial gene flow caused by a rapid expansion of refuge populations in a mountainous topography is responsible for the observed strong genetic structure. In contrast, admixture of previously differentiated gene pools and high gene flow at the onset of postglacial recolonization of western and central Europe would have homogenized the genetic structure and raised the levels of genetic diversity above values in the refuges.

  3. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China.

    PubMed

    Feng, Hui; Gupta, Bhavna; Wang, Meilian; Zheng, Wenqi; Zheng, Li; Zhu, Xiaotong; Yang, Yimei; Fang, Qiang; Luo, Enjie; Fan, Qi; Tsuboi, Takafumi; Cao, Yaming; Cui, Liwang

    2015-12-01

    The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright's fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV.

  4. The contributions of admixture and genetic drift to diversity among post-contact populations in the Americas.

    PubMed

    Koehl, Anthony J; Long, Jeffrey C

    2018-02-01

    We present a model that partitions Nei's minimum genetic distance between admixed populations into components of admixture and genetic drift. We applied this model to 17 admixed populations in the Americas to examine how admixture and drift have contributed to the patterns of genetic diversity. We analyzed 618 short tandem repeat loci in 949 individuals from 49 population samples. Thirty-two samples serve as proxies for continental ancestors. Seventeen samples represent admixed populations: (4) African-American and (13) Latin American. We partition genetic distance, and then calculate fixation indices and principal coordinates to interpret our results. A computer simulation confirms that our method correctly estimates drift and admixture components of genetic distance when the assumptions of the model are met. The partition of genetic distance shows that both admixture and genetic drift contribute to patterns of genetic diversity. The admixture component of genetic distance provides evidence for two distinct axes of continental ancestry. However, the genetic distances show that ancestry contributes to only one axis of genetic differentiation. The genetic distances among the 13 Latin American populations in this analysis show contributions from both differences in ancestry and differences in genetic drift. By contrast, the genetic distances among the four African American populations in this analysis owe mostly to genetic drift because these groups have similar fractions of European and African ancestry. The genetic structure of admixed populations in the Americas reflects more than admixture. We show that the history of serial founder effects constrains the impact of admixture on allele frequencies to a single dimension. Genetic drift in the admixed populations imposed a new level of genetic structure onto that created by admixture. © 2017 Wiley Periodicals, Inc.

  5. Genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay

    USGS Publications Warehouse

    Duda, T. F.

    1994-01-01

    The genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay was described using starch gel electrophoresis at eight presumptive loci. Specimens were taken from five environmentally distinct sites located throughout the bay. The population maintains a high degree of genetic variation, with a mean heterozygosity of 0.295, a mean polymorphism of 0.75, and an average of 3.70 alleles per locus. The population is genetically homogeneous, as evidenced from genetic distance values and F-statistics. However, heterogeneity of populations was indicated from a contingency chi-square test. Significant deviations from Hardy-Weinberg equilibrium and heterozygote deficiencies were found at the Lap-1 locus for all populations and at the Lap-2 locus for a single population. High levels of variability could represent a universal characteristic of invading species, the levels of variability in the source population(s), and/or the dynamics of the introduction. Lack of differentiation between subpopulations may be due to the immaturity of the San Francisco Bay population, the “general purpose” phenotype genetic strategy of the species, high rates of gene flow in the population, and/or the selective neutrality of the loci investigated.

  6. Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises.

    PubMed

    Ciofi, Claudio; Milinkovitch, Michel C; Gibbs, James P; Caccone, Adalgisa; Powell, Jeffrey R

    2002-11-01

    Giant Galápagos tortoises represent an interesting model for the study of patterns of genetic divergence and adaptive differentiation related to island colonization events. Recent mitochondrial DNA work elucidated the evolutionary history of the species and helped to clarify aspects of nomenclature. We used 10 microsatellite loci to assess levels of genetic divergence among and within island populations. In particular, we described the genetic structure of tortoises on the island of Isabela, where discrimination of different taxa is still subject of debate. Individual island populations were all genetically distinct. The island of Santa Cruz harboured two distinct populations. On Isabela, populations of Volcan Wolf, Darwin and Alcedo were significantly different from each other. On the other hand, Volcan Wolf showed allelic similarity with the island of Santiago. On Southern Isabela, lower genetic divergence was found between Northeast Sierra Negra and Volcan Alcedo, while patterns of gene flow were recorded among tortoises of Cerro Azul and Southeast Sierra Negra. These tortoises have endured heavy exploitation during the last three centuries and recently attracted much concern due to the current number of stochastic and deterministic threats to extant populations. Our study complements previous investigation based on mtDNA diversity and provides further information that may help devising tortoise management plans.

  7. Breeding system and demography shape population genetic structure across ecological and climatic zones in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata), intermediate host for schistosomes.

    PubMed

    Gow, J L; Noble, L R; Rollinson, D; Mimpfoundi, R; Jones, C S

    2004-11-01

    The role of breeding system and population bottlenecks in shaping the distribution of neutral genetic variation among populations inhabiting patchily distributed, ephemeral water bodies was examined for the hermaphroditic freshwater snail Bulinus forskalii, intermediate host for the medically important trematode Schistosoma guineensis. Levels of genetic variation at 11 microsatellite loci were assessed for 600 individuals sampled from 19 populations that span three ecological and climatic zones (ecozones) in Cameroon, West Africa. Significant heterozygote deficiencies and linkage disequilibria indicated very high selfing rates in these populations. Despite this and the large genetic differentiation detected between populations, high levels of genetic variation were harboured within these populations. The high level of gene flow inferred from assignment tests may be responsible for this pattern. Indeed, metapopulation dynamics, including high levels of gene flow as well as extinction/contraction and recolonization events, are invoked to account for the observed population structuring, which was not a consequence of isolation-by-distance. Because B. forskalii populations inhabiting the northern, Sahelian area are subject to more pronounced annual cycles of drought and flood than the southern equatorial ones, they were expected to be subject to population bottlenecks of increased frequency and severity and, therefore, show reduced genetic variability and elevated population differentiation. Contrary to predictions, the populations inhabiting the most northerly ecozone exhibited higher genetic diversity and lower genetic differentiation than those in the most southerly one, suggesting that elevated gene flow in this region is counteracting genetic drift.

  8. [Genetic variability and differentiation of three Russian populations of yellow potato cyst nematode Globodera rostochiensis as revealed by nuclear markers].

    PubMed

    Khrisanfova, G G; Kharchevnikov, D A; Popov, I O; Zinov'eva, S V; Semenova, S K

    2008-05-01

    Genetic variability of yellow potato cyst nematode G. rostochiensis from three Russian populations (Karelia, Vladimir oblast, and Moscow oblast) was investigated using two types of nuclear markers. Using RAPD markers identified with the help of six random primers (P-29, OPA-10, OPT-14, OPA-11, OPB-11, and OPH-20), it was possible to distinguish Karelian population from the group consisting of the populations from two adjacent regions (Moscow oblast and Vladimir oblast). Based on the combined matrix, containing 294 RAPD fragments, dendrogram of genetic differences was constructed, and the indices of genetic divergence and partition (P, H, and G(st)), as well as the gene flow indices N(m) between the nematode samples examined, were calculated. The dendrogram structure, genetic diversity indices, and variations of genetic distances between single individuals in each population from Karelia and Central Russia pointed to genetic isolation and higher genetic diversity of the nematodes from Karelia. Based on polymorphism of rDNA first intergenic spacer ITS1, attribution of all populations examined to the species G. rostochiensis was proved. Small variations of the ITS1 sequence in different geographic populations of nematodes from different regions of the species world range did not allow isolation of separate groups within the species. Possible factors (including interregional transportations of seed potato) affecting nematode population structure in Russia are discussed.

  9. Significant genetic differentiation between native and introduced silver carp (Hypophthalmichthys molitrix) inferred from mtDNA analysis

    USGS Publications Warehouse

    Li, S.-F.; Xu, J.-W.; Yang, Q.-L.; Wang, C.H.; Chapman, D.C.; Lu, G.

    2011-01-01

    Silver carp Hypophthalmichthys molitrix (Cyprinidae) is native to China and has been introduced to over 80 countries. The extent of genetic diversity in introduced silver carp and the genetic divergence between introduced and native populations remain largely unknown. In this study, 241 silver carp sampled from three major native rivers and two non-native rivers (Mississippi River and Danube River) were analyzed using nucleotide sequences of mitochondrial COI gene and D-loop region. A total of 73 haplotypes were observed, with no haplotype found common to all the five populations and eight haplotypes shared by two to four populations. As compared with introduced populations, all native populations possess both higher haplotype diversity and higher nucleotide diversity, presumably a result of the founder effect. Significant genetic differentiation was revealed between native and introduced populations as well as among five sampled populations, suggesting strong selection pressures might have occurred in introduced populations. Collectively, this study not only provides baseline information for sustainable use of silver carp in their native country (i.e., China), but also offers first-hand genetic data for the control of silver carp in countries (e.g., the United States) where they are considered invasive.

  10. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks

    USGS Publications Warehouse

    Kanno, Yoichiro; Vokoun, Jason C.; Letcher, Benjamin H.

    2011-01-01

    Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was common in both sites. In the field, many tagged individuals were recaptured in the same 50-m reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls of 1.5–2.5 m in height during summer base-flow condition) greatly reduced gene flow and perceptible spatial patterns emerged because of the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was weak at best, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the population-level movement of brook trout was limited in the study headwater stream networks, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometres, and gene flow was mitigated by ‘riverscape’ variables, particularly by physical barriers, waterway distance (i.e. isolation-by-distance) and the presence of tributaries.

  11. Population genetic diversity and structure of a naturally isolated plant species, Rhodiola dumulosa (Crassulaceae).

    PubMed

    Hou, Yan; Lou, Anru

    2011-01-01

    Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations.

  12. Population Genetic Diversity and Structure of a Naturally Isolated Plant Species, Rhodiola dumulosa (Crassulaceae)

    PubMed Central

    Hou, Yan; Lou, Anru

    2011-01-01

    Aims Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations. PMID:21909437

  13. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    PubMed

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  14. Islands within an island: Population genetic structure of the endemic Sardinian newt, Euproctus platycephalus.

    PubMed

    Ball, Sarah E; Bovero, Stefano; Sotgiu, Giuseppe; Tessa, Giulia; Angelini, Claudio; Bielby, Jon; Durrant, Christopher; Favelli, Marco; Gazzaniga, Enrico; Garner, Trenton W J

    2017-02-01

    The identification of historic and contemporary barriers to dispersal is central to the conservation of endangered amphibians, but may be hindered by their complex life history and elusive nature. The complementary information generated by mitochondrial (mtDNA) and microsatellite markers generates a valuable tool in elucidating population structure and the impact of habitat fragmentation. We applied this approach to the study of an endangered montane newt, Euproctus platycephalus . Endemic to the Mediterranean island of Sardinia, it is threatened by anthropogenic activity, disease, and climate change. We have demonstrated a clear hierarchy of structure across genetically divergent and spatially distinct subpopulations. Divergence between three main mountain regions dominated genetic partitioning with both markers. Mitochondrial phylogeography revealed a deep division dating to ca. 1 million years ago (Mya), isolating the northern region, and further differentiation between the central and southern regions ca. 0.5 Mya, suggesting an association with Pleistocene severe glacial oscillations. Our findings are consistent with a model of southward range expansion during glacial periods, with postglacial range retraction to montane habitat and subsequent genetic isolation. Microsatellite markers revealed further strong population structure, demonstrating significant divergence within the central region, and partial differentiation within the south. The northern population showed reduced genetic diversity. Discordance between mitochondrial and microsatellite markers at this scale indicated a further complexity of population structure, in keeping with male-biased dispersal and female philopatry. Our study underscores the need to elucidate cryptic population structure in the ecology and conservation strategies for endangered island-restricted amphibians, especially in the context of disease and climate change.

  15. Geographic distribution of genetic diversity in populations of Rio Grande Chub Gila pandora

    USGS Publications Warehouse

    Galindo, Rene; Wilson, Wade; Caldwell, Colleen A.

    2016-01-01

    In the southwestern United States (US), the Rio Grande chub (Gila pandora) is state-listed as a fish species of greatest conservation need and federally listed as sensitive due to habitat alterations and competition with non-native fishes. Characterizing genetic diversity, genetic population structure, and effective number of breeders will assist with conservation efforts by providing a baseline of genetic metrics. Genetic relatedness within and among G. pandora populations throughout New Mexico was characterized using 11 microsatellite loci among 15 populations in three drainage basins (Rio Grande, Pecos, Canadian). Observed heterozygosity (HO) ranged from 0.71–0.87 and was similar to expected heterozygosity (0.75–0.87). Rio Ojo Caliente (Rio Grande) had the highest allelic richness (AR = 15.09), while Upper Rio Bonito (Pecos) had the lowest allelic richness (AR = 6.75). Genetic differentiation existed among all populations with the lowest genetic variation occurring within the Pecos drainage. STRUCTURE analysis revealed seven genetic clusters. Populations of G. pandora within the upper Rio Grande drainage (Rio Ojo Caliente, Rio Vallecitos, Rio Pueblo de Taos) had high levels of admixture with Q-values ranging from 0.30–0.50. In contrast, populations within the Pecos drainage (Pecos River and Upper Rio Bonito) had low levels of admixture (Q = 0.94 and 0.87, respectively). Estimates of effective number of breeders (N b ) varied from 6.1 (Pecos: Upper Rio Bonito) to 109.7 (Rio Grande: Rio Peñasco) indicating that populations in the Pecos drainage are at risk of extirpation. In the event that management actions are deemed necessary to preserve or increase genetic diversity of G. pandora, consideration must be given as to which populations are selected for translocation.

  16. Genetic diversity and population structure of Plasmodium falciparum over space and time in an African archipelago.

    PubMed

    Salgueiro, Patrícia; Vicente, José Luís; Figueiredo, Rita Carrilho; Pinto, João

    2016-09-01

    The archipelago of São Tomé and Principe (STP), West Africa, has suffered the heavy burden of malaria since the 16th century. Until the last decade, when after a successful control program STP has become a low transmission country and one of the few nations with decreases of more than 90% in malaria admission and death rates. We carried out a longitudinal study to determine the genetic structure of STP parasite populations over time and space. Twelve microsatellite loci were genotyped in Plasmodium falciparum samples from two islands collected in 1997, 2000 and 2004. Analysis was performed on proportions of mixed genotype infections, allelic diversity, population differentiation, effective population size and bottleneck effects. We have found high levels of genetic diversity and minimal inter-population genetic differentiation typical of African continental regions with intense and stable malaria transmission. We detected significant differences between the years, with special emphasis for 1997 that showed the highest proportion of samples infected with P. falciparum and the highest mean number of haplotypes per isolate. This study establishes a comprehensive genetic data baseline of a pre-intervention scenario for future studies; taking into account the most recent and successful control intervention on the territory. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Population status and population genetics of northern leopard frogs in Arizona

    USGS Publications Warehouse

    Theimer, Tad C.; Drost, Charles A.; O'Donnell, Ryan P.; Mock, Karen E.

    2011-01-01

    Increasing isolation of populations by habitat fragmentation threatens the persistence of many species, both from stochastic loss of small isolated populations, and from inbreeding effects in populations that have become genetically isolated. In the southwestern United States, amphibian habitat is naturally patchy in occurrence because of the prevailing aridity of the region. Streams, rivers, and other wetlands are important both as habitat and as corridors that connect populations. However, populations of some species have become more fragmented and isolated by habitat degradation and loss. Northern leopard frogs (Rana pipiens) have experienced serious declines in the Southwest. We conducted an extensive survey across the known range of northern leopard frogs in Arizona to determine the current distribution and abundance of the species. From a range that once spanned much of the northern and central part of the State, northern leopard frogs have been reduced to three or four widely separated populations, near Lyman Lake in east-central Arizona, in the Stoneman Lake area south of Flagstaff, along Truxton Wash near Peach Springs, and a population of uncertain extent on Navajo Nation lands. The Lyman Lake and Truxton Wash populations are small and extremely isolated. The Stoneman Lake population, however, is an extensive metapopulation spread across several stream drainages, including numerous ponds, wetlands, and artificial tanks. This is the only population in Arizona that is increasing in extent and numbers, but there is concern about the apparent introduction of nonnative genetic stock from eastern North America into this area. We analyzed genetic diversity within and genetic divergence among populations of northern leopard frogs, across both extant and recently extirpated populations in Arizona. We also analyzed mitochondrial DNA to place these populations into a larger phylogenetic framework and to determine whether any populations contained genetic material

  18. Great influence of geographic isolation on the genetic differentiation of Myriophyllum spicatum under a steep environmental gradient

    PubMed Central

    Wu, Zhigang; Yu, Dan; Wang, Zhong; Li, Xing; Xu, Xinwei

    2015-01-01

    Understanding how natural processes affect population genetic structures is an important issue in evolutionary biology. One effective method is to assess the relative importance of environmental and geographical factors in the genetic structure of populations. In this study, we examined the spatial genetic variation of thirteen Myriophyllum spicatum populations from the Qinghai-Tibetan Plateau (QTP) and adjacent highlands (Yunnan-Guizhou Plateau, YGP) by using microsatellite loci and environmental and geographical factors. Bioclim layers, hydrological properties and elevation were considered as environmental variables and reduced by principal component analysis. The genetic isolation by geographic distance (IBD) was tested by Mantel tests and the relative importance of environmental variables on population genetic differentiation was determined by a partial Mantel test and multiple matrix regression with randomization (MMRR). Two genetic clusters corresponding to the QTP and YGP were identified. Both tests and MMRR revealed a significant and strong correlation between genetic divergence and geographic isolation under the influence of environmental heterogeneity at the overall and finer spatial scales. Our findings suggested the dominant role of geography on the evolution of M. spicatum under a steep environmental gradient in the alpine landscape as a result of dispersal limitation and genetic drift. PMID:26494202

  19. Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca).

    PubMed

    Pilot, M; Dahlheim, M E; Hoelzel, A R

    2010-01-01

    In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.

  20. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, Caviidae) in Colombia.

    PubMed

    Burgos-Paz, William; Cerón-Muñoz, Mario; Solarte-Portilla, Carlos

    2011-10-01

    The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p < 0.05), genetic differentiation between population pairs was found to be low. Genetic distance, as well as clustering of guinea-pig lines and populations, coincided with the historical and geographical distribution of the populations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogical and production records in order to reduce the inbreeding values in the populations.

  1. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, Caviidae) in Colombia

    PubMed Central

    Burgos-Paz, William; Cerón-Muñoz, Mario; Solarte-Portilla, Carlos

    2011-01-01

    The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p < 0.05), genetic differentiation between population pairs was found to be low. Genetic distance, as well as clustering of guinea-pig lines and populations, coincided with the historical and geographical distribution of the populations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogical and production records in order to reduce the inbreeding values in the populations. PMID:22215979

  2. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.

  3. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    PubMed

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the

  4. Genetic structure and diversity in natural and stocked populations of the mandarin fish (Siniperca chuatsi) in China.

    PubMed

    Yang, M; Tian, C; Liang, X-F; Zheng, H; Zhao, C; Zhu, K

    2015-05-18

    The Chinese perch, or mandarin fish (Siniperca chuatsi), is a freshwater fish that is endemic to East Asia. In this study, we investigated the genetic diversity and structure of nine natural mandarin fish populations (from the Yangtze River and Amur River basins) and six hatchery stocks (from central and south China) using microsatellite markers. The results show that the genetic diversity of the Yangtze River populations was high and stable, and genetic differences between them were not significant. In contrast, a low level of genetic diversity and strong genetic structure were detected in the Amur River population. These results suggest that the Yangtze River region and the Amur River region should be treated as two separate units in conservation programs. The hatchery stocks exhibited low genetic diversity and significant genetic differentiation compared to natural populations; this may result in a significant impact on the species if escape events occur. Therefore, a scientific aquaculture management strategy is necessary for the long-term development of hatcheries.

  5. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii.

    PubMed

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.

  6. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia.

    PubMed

    Tapio, Miika; Ozerov, Mikhail; Tapio, Ilma; Toro, Miguel A; Marzanov, Nurbiy; Cinkulov, Mirjana; Goncharenko, Galina; Kiselyova, Tatyana; Murawski, Maziek; Kantanen, Juha

    2010-08-10

    Identification of global livestock diversity hotspots and their importance in diversity maintenance is essential for making global conservation efforts. We screened 52 sheep breeds from the Eurasian subcontinent with 20 microsatellite markers. By estimating and weighting differently within- and between-breed genetic variation our aims were to identify genetic diversity hotspots and prioritize the importance of each breed for conservation, respectively. In addition we estimated how important within-species diversity hotspots are in livestock conservation. Bayesian clustering analysis revealed three genetic clusters, termed Nordic, Composite and Fat-tailed. Southern breeds from close to the region of sheep domestication were more variable, but less genetically differentiated compared with more northern populations. Decreasing weight for within-breed diversity component led to very high representation of genetic clusters or regions containing more diverged breeds, but did not increase phenotypic diversity among the high ranked breeds. Sampling populations throughout 14 regional groups was suggested for maximized total genetic diversity. During initial steps of establishing a livestock conservation program populations from the diversity hot-spot area are the most important ones, but for the full design our results suggested that approximately equal population presentation across environments should be considered. Even in this case, higher per population emphasis in areas of high diversity is appropriate. The analysis was based on neutral data, but we have no reason to think the general trend is limited to this type of data. However, a comprehensive valuation of populations should balance production systems, phenotypic traits and available genetic information, and include consideration of probability of success.

  7. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia

    PubMed Central

    2010-01-01

    Background Identification of global livestock diversity hotspots and their importance in diversity maintenance is essential for making global conservation efforts. We screened 52 sheep breeds from the Eurasian subcontinent with 20 microsatellite markers. By estimating and weighting differently within- and between-breed genetic variation our aims were to identify genetic diversity hotspots and prioritize the importance of each breed for conservation, respectively. In addition we estimated how important within-species diversity hotspots are in livestock conservation. Results Bayesian clustering analysis revealed three genetic clusters, termed Nordic, Composite and Fat-tailed. Southern breeds from close to the region of sheep domestication were more variable, but less genetically differentiated compared with more northern populations. Decreasing weight for within-breed diversity component led to very high representation of genetic clusters or regions containing more diverged breeds, but did not increase phenotypic diversity among the high ranked breeds. Sampling populations throughout 14 regional groups was suggested for maximized total genetic diversity. Conclusions During initial steps of establishing a livestock conservation program populations from the diversity hot-spot area are the most important ones, but for the full design our results suggested that approximately equal population presentation across environments should be considered. Even in this case, higher per population emphasis in areas of high diversity is appropriate. The analysis was based on neutral data, but we have no reason to think the general trend is limited to this type of data. However, a comprehensive valuation of populations should balance production systems, phenotypic traits and available genetic information, and include consideration of probability of success. PMID:20698974

  8. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border

    PubMed Central

    2013-01-01

    Background The Caribbean coast of Central America remains an area of malaria transmission caused by Plasmodium falciparum despite the fact that morbidity has been reduced in recent years. Parasite populations in that region show interesting characteristics such as chloroquine susceptibility and low mortality rates. Genetic structure and diversity of P. falciparum populations in the Honduras-Nicaragua border were analysed in this study. Methods Seven neutral microsatellite loci were analysed in 110 P. falciparum isolates from endemic areas of Honduras (n = 77) and Nicaragua (n = 33), mostly from the border region called the Moskitia. Several analyses concerning the genetic diversity, linkage disequilibrium, population structure, molecular variance, and haplotype clustering were conducted. Results There was a low level of genetic diversity in P. falciparum populations from Honduras and Nicaragua. Expected heterozigosity (He) results were similarly low for both populations. A moderate differentiation was revealed by the FST index between both populations, and two putative clusters were defined through a structure analysis. The main cluster grouped most of samples from Honduras and Nicaragua, while the second cluster was smaller and included all the samples from the Siuna community in Nicaragua. This result could partially explain the stronger linkage disequilibrium (LD) in the parasite population from that country. These findings are congruent with the decreasing rates of malaria endemicity in Central America. PMID:24093629

  9. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border.

    PubMed

    Larrañaga, Nerea; Mejía, Rosa E; Hormaza, José I; Montoya, Alberto; Soto, Aida; Fontecha, Gustavo A

    2013-10-04

    The Caribbean coast of Central America remains an area of malaria transmission caused by Plasmodium falciparum despite the fact that morbidity has been reduced in recent years. Parasite populations in that region show interesting characteristics such as chloroquine susceptibility and low mortality rates. Genetic structure and diversity of P. falciparum populations in the Honduras-Nicaragua border were analysed in this study. Seven neutral microsatellite loci were analysed in 110 P. falciparum isolates from endemic areas of Honduras (n = 77) and Nicaragua (n = 33), mostly from the border region called the Moskitia. Several analyses concerning the genetic diversity, linkage disequilibrium, population structure, molecular variance, and haplotype clustering were conducted. There was a low level of genetic diversity in P. falciparum populations from Honduras and Nicaragua. Expected heterozigosity (H(e)) results were similarly low for both populations. A moderate differentiation was revealed by the F(ST) index between both populations, and two putative clusters were defined through a structure analysis. The main cluster grouped most of samples from Honduras and Nicaragua, while the second cluster was smaller and included all the samples from the Siuna community in Nicaragua. This result could partially explain the stronger linkage disequilibrium (LD) in the parasite population from that country. These findings are congruent with the decreasing rates of malaria endemicity in Central America.

  10. Evaluation of Genetic Diversity, Population Structure, and Relationship Between Legendary Vechur Cattle and Crossbred Cattle of Kerala State, India.

    PubMed

    Radhika, G; Aravindakshan, T V; Jinty, S; Ramya, K

    2018-01-02

    The legendary Vechur cattle of Kerala, described as a very short breed, and the crossbred (CB) Sunandini cattle population exhibited great phenotypic variation; hence, the present study attempted to analyze the genetic diversity existing between them. A set of 14 polymorphic microsatellites were chosen from FAO-ISAG panel and amplified from genomic DNA isolated from blood samples of 30 Vechur and 64 unrelated crossbred cattle, using fluorescent labeled primers. Both populations revealed high genetic diversity as evidenced from high observed number of alleles, Polymorphic Information Content and expected heterozygosity. Observed heterozygosity was lesser (0.699) than expected (0.752) in Vechur population which was further supported by positive F IS value of 0.1149, indicating slight level of inbreeding in Vechur population. Overall, F ST value was 0.065, which means genetic differentiation between crossbred and Vechur population was 6.5%, indicating that the crossbred cattle must have differentiated into a definite population that is different from the indigenous Vechur cows. Structure analysis indicated that the two populations showed distinct differences, with two underlying clusters. The present study supports the separation between Taurine and Zebu cattle and throws light onto the genetic diversity and relationship between native Vechur and crossbred cattle populations in Kerala state.

  11. De novo transcriptome assembly, development of EST-SSR markers and population genetic analyses for the desert biomass willow, Salix psammophila

    PubMed Central

    Jia, Huixia; Yang, Haifeng; Sun, Pei; Li, Jianbo; Zhang, Jin; Guo, Yinghua; Han, Xiaojiao; Zhang, Guosheng; Lu, Mengzhu; Hu, Jianjun

    2016-01-01

    Salix psammophila, a sandy shrub known as desert willow, is regarded as a potential biomass feedstock and plays an important role in maintaining local ecosystems. However, a lack of genomic data and efficient molecular markers limit the study of its population evolution and genetic breeding. In this study, chromosome counts, flow cytometry and SSR analyses indicated that S. psammophila is tetraploid. A total of 6,346 EST-SSRs were detected based on 71,458 de novo assembled unigenes from transcriptome data. Twenty-seven EST-SSR markers were developed to evaluate the genetic diversity and population structure of S. psammophila from eight natural populations in Northern China. High levels of genetic diversity (mean 10.63 alleles per locus; mean HE 0.689) were dectected in S. psammophila. The weak population structure and little genetic differentiation (pairwise FST = 0.006–0.016) were found among Population 1-Population 7 (Pop1-Pop7; Inner Mongolia and Shaanxi), but Pop8 (Ningxia) was clearly separated from Pop1-Pop7 and moderate differentiation (pairwise FST = 0.045–0.055) was detected between them, which may be influenced by local habitat conditions. Molecular variance analyses indicated that most of the genetic variation (94.27%) existed within populations. These results provide valuable genetic informations for natural resource conservation and breeding programme optimisation of S. psammophila. PMID:27995985

  12. Genetic structure of four socio-culturally diversified caste populations of southwest India and their affinity with related Indian and global groups.

    PubMed

    Rajkumar, Revathi; Kashyap, V K

    2004-08-19

    A large number of microsatellites have been extensively used to comprehend the genetic diversity of different global groups. This paper entails polymorphism at 15 STR in four predominant and endogamous populations representing Karnataka, located on the southwest coast of India. The populations residing in this region are believed to have received gene flow from south Indian populations and world migrants, hence, we carried out a detailed study on populations inhabiting this region to understand their genetic structure, diversity related to geography and linguistic affiliation and relatedness to other Indian and global migrant populations. Various statistical analyses were performed on the microsatellite data to accomplish the objectives of the paper. The heretozygosity was moderately high and similar across the loci, with low average GST value. Iyengar and Lyngayat were placed above the regression line in the R-matrix analysis as opposed to the Gowda and Muslim. AMOVA indicated that majority of variation was confined to individuals within a population, with geographic grouping demonstrating lesser genetic differentiation as compared to linguistic clustering. DA distances show the genetic affinity among the southern populations, with Iyengar, Lyngayat and Vanniyar displaying some affinity with northern Brahmins and global migrant groups from East Asia and Europe. The microsatellite study divulges a common ancestry for the four diverse populations of Karnataka, with the overall genetic differentiation among them being largely confined to intra-population variation. The practice of consanguineous marriages might have attributed to the relatively lower gene flow displayed by Gowda and Muslim as compared to Iyengar and Lyngayat. The various statistical analyses strongly suggest that the studied populations could not be differentiated on the basis of caste or spatial location, although, linguistic affinity was reflected among the southern populations, distinguishing them

  13. Genetic structure of four socio-culturally diversified caste populations of southwest India and their affinity with related Indian and global groups

    PubMed Central

    Rajkumar, Revathi; Kashyap, VK

    2004-01-01

    Background A large number of microsatellites have been extensively used to comprehend the genetic diversity of different global groups. This paper entails polymorphism at 15 STR in four predominant and endogamous populations representing Karnataka, located on the southwest coast of India. The populations residing in this region are believed to have received gene flow from south Indian populations and world migrants, hence, we carried out a detailed study on populations inhabiting this region to understand their genetic structure, diversity related to geography and linguistic affiliation and relatedness to other Indian and global migrant populations. Results Various statistical analyses were performed on the microsatellite data to accomplish the objectives of the paper. The heretozygosity was moderately high and similar across the loci, with low average GST value. Iyengar and Lyngayat were placed above the regression line in the R-matrix analysis as opposed to the Gowda and Muslim. AMOVA indicated that majority of variation was confined to individuals within a population, with geographic grouping demonstrating lesser genetic differentiation as compared to linguistic clustering. DA distances show the genetic affinity among the southern populations, with Iyengar, Lyngayat and Vanniyar displaying some affinity with northern Brahmins and global migrant groups from East Asia and Europe. Conclusion The microsatellite study divulges a common ancestry for the four diverse populations of Karnataka, with the overall genetic differentiation among them being largely confined to intra-population variation. The practice of consanguineous marriages might have attributed to the relatively lower gene flow displayed by Gowda and Muslim as compared to Iyengar and Lyngayat. The various statistical analyses strongly suggest that the studied populations could not be differentiated on the basis of caste or spatial location, although, linguistic affinity was reflected among the southern

  14. Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markers.

    PubMed

    Gómez, A; González-Martínez, S C; Collada, C; Climent, J; Gil, L

    2003-10-01

    The Canary archipelago, located on the northwestern Atlantic coast of Africa, is comprised of seven islands aligned from east to west, plus seven minor islets. All the islands were formed by volcanic eruptions and their geological history is well documented providing a historical framework to study colonization events. The Canary Island pine ( Pinus canariensis C. Sm.), nowadays restricted to the westernmost Canary Islands (Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro), is considered an old (Lower Cretaceous) relic from an ancient Mediterranean evolutionary centre. Twenty seven chloroplast haplotypes were found in Canary Island pine but only one of them was common to all populations. The distribution of haplotypic variation in P. canariensis suggested the colonization of western Canary Islands from a single continental source located close to the Mediterranean Basin. Present-day populations of Canary Island pine retain levels of genetic diversity equivalent to those found in Mediterranean continental pine species, Pinus pinaster and Pinus halepensis. A hierarchical analysis of variance (AMOVA) showed high differentiation among populations within islands (approximately 19%) but no differentiation among islands. Simple differentiation models such as isolation by distance or stepping-stone colonization from older to younger islands were rejected based on product-moment correlations between pairwise genetic distances and both geographic distances and population-age divergences. However, the distribution of cpSSR diversity within the islands of Tenerife and Gran Canaria pointed towards the importance of the role played by regional Pliocene and Quaternary volcanic activity and long-distance gene flow in shaping the population genetic structure of the Canary Island pine. Therefore, conservation strategies at the population level are strongly recommended for this species.

  15. Genetic portrait of Jewish populations based on three sets of X-chromosome markers: Indels, Alu insertions and STRs.

    PubMed

    Ferragut, J F; Bentayebi, K; Pereira, R; Castro, J A; Amorim, A; Ramon, C; Picornell, A

    2017-11-01

    Population genetic data for 53 X-chromosome markers (32 X-indels, 9 X-Alu insertions and 12 X-STRs) are reported for five populations with Jewish ancestry (Sephardim, North African Jews, Middle Eastern Jews, Ashkenazim, and Chuetas) and Majorca, as the host population of Chuetas. Genetic distances between these populations demonstrated significant differences, except between Sephardic and North African Jews, with the Chuetas as the most differentiated group, in accordance with the particular demographic history of this population. X-chromosome analysis and a comparison with autosomal data suggest a generally sex-biased demographic history in Jewish populations. Asymmetry was found between female and male effective population sizes both in the admixture processes between Jewish communities, and between them and their respective non-Jewish host populations. Results further show that these X-linked markers are highly informative for forensic purposes, and highlight the need for specific databases for differentiated Jewish populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Continental-level population differentiation and environmental adaptation in the mushroom Suillus brevipes

    PubMed Central

    Branco, Sara; Bi, Ke; Liao, Hui-Ling; Gladieux, Pierre; Badouin, Hélène; Ellison, Christopher E.; Nguyen, Nhu H.; Vilgalys, Rytas; Peay, Kabir G.; Taylor, John W.; Bruns, Thomas D.

    2016-01-01

    Recent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation. We found that S. brevipes exhibited overall strong population differentiation, with potential admixture in Canadian populations. This species also displayed genomic signatures of positive selection as well as genomic sites significantly associated with distinct climatic regimes and abiotic environmental parameters. These genomic regions included genes involved in transmembrane transport of substances and helicase activity potentially involved in cold stress response. Our study sheds light on large-scale environmental adaptation in fungi by identifying putative adaptive genes and providing a framework to further investigate the genetic basis of fungal adaptation. PMID:27761941

  17. Genetic and morphological divergence among Cooper's Hawk (Accipiter cooperii) populations breeding in north-central and western North America

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Rosenfield, Robert N.; Bielefeldt, John; Murphy, Robert K.; Stewart, Andrew C.; Stout, William C.; Driscoll, Timothy G.; Bozek, Michael A.; Sloss, Brian L.; Talbot, Sandra L.

    2012-01-01

    Cooper's Hawk (Accipiter cooperii) populations breeding in the northern portion of the species' range exhibit variation in morphological traits that conforms to predictions based on differences in prey size, tree stand density, and migratory behavior. We examined genetic structure and gene flow and compared divergence at morphological traits (PST) and genetic markers (FST) to elucidate mechanisms (selection or genetic drift) that promote morphological diversification among Cooper's Hawk populations. Cooper's Hawks appear to conform to the genetic pattern of an east-west divide. Populations in British Columbia are genetically differentiated from north-central populations (Wisconsin, Minnesota, and North Dakota; pairwise microsatellite FST= 0.031-0.050; mitochondrial DNA ΦST = 0.177-0.204), which suggests that Cooper's Hawks were restricted to at least two Pleistocene glacial refugia. The strength of the Rocky Mountains—Great Plains area as a barrier to dispersal is further supported by restricted gene-flow rates between British Columbia and other sampled breeding populations. Divergence in morphological traits (PST) was also observed across study areas, but with British Columbia and North Dakota differentiated from Wisconsin and Minnesota, a pattern not predicted on the basis of FST and ΦST interpopulation estimates. Comparison of PSTand FSTestimates suggests that heterogeneous selection may be acting on Cooper's Hawks in the northern portion of their distribution, which is consistent with hypotheses that variation in prey mass and migratory behavior among populations may be influencing overall body size and wing chord. We were unable to distinguish between the effects of genetic drift and selection on tail length in the study populations.

  18. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Vilà, C; Geffen, E; Creel, S; Mills, M G; McNutt, J W; Ginsberg, J; Kat, P W; Mamiya, K H; Wayne, R K

    2001-07-01

    African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.

  19. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae): effects of reproductive strategy.

    PubMed

    Wang, Ting; Su, Yingjuan; Li, Yuan

    2012-01-01

    Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG) in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  20. Species differentiation on a dynamic landscape: shifts in metapopulation genetic structure using the chronology of the Hawaiian Archipelago

    USGS Publications Warehouse

    Roderick, George K.; Croucher, Peter J.P.; Vandergast, Amy G.; Gillespie, Rosemary G.

    2012-01-01

    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation.

  1. Predicting local adaptation in fragmented plant populations: implications for restoration genetics

    PubMed Central

    Pickup, Melinda; Field, David L; Rowell, David M; Young, Andrew G

    2012-01-01

    Understanding patterns and correlates of local adaptation in heterogeneous landscapes can provide important information in the selection of appropriate seed sources for restoration. We assessed the extent of local adaptation of fitness components in 12 population pairs of the perennial herb Rutidosis leptorrhynchoides (Asteraceae) and examined whether spatial scale (0.7–600 km), environmental distance, quantitative (QST) and neutral (FST) genetic differentiation, and size of the local and foreign populations could predict patterns of adaptive differentiation. Local adaptation varied among populations and fitness components. Including all population pairs, local adaptation was observed for seedling survival, but not for biomass, while foreign genotype advantage was observed for reproduction (number of inflorescences). Among population pairs, local adaptation increased with QST and local population size for biomass. QST was associated with environmental distance, suggesting ecological selection for phenotypic divergence. However, low FST and variation in population structure in small populations demonstrates the interaction of gene flow and drift in constraining local adaptation in R. leptorrhynchoides. Our study indicates that for species in heterogeneous landscapes, collecting seed from large populations from similar environments to candidate sites is likely to provide the most appropriate seed sources for restoration. PMID:23346235

  2. Dispersal Pathways and Genetic Differentiation among Worldwide Populations of the Invasive Weed Centaurea solstitialis L. (Asteraceae)

    PubMed Central

    Eriksen, Renée L.; Hierro, José L.; Eren, Özkan; Andonian, Krikor; Török, Katalin; Becerra, Pablo I.; Montesinos, Daniel; Khetsuriani, Liana; Diaconu, Alecu; Kesseli, Rick

    2014-01-01

    The natural history of introduced species is often unclear due to a lack of historical records. Even when historical information is readily available, important factors of the invasions such as genetic bottlenecks, hybridization, historical relationships among populations and adaptive changes are left unknown. In this study, we developed a set of nuclear, simple sequence repeat markers and used these to characterize the genetic diversity and population structure among native (Eurasian) and non-native (North and South American) populations of Centaurea solstitialis L., (yellow starthistle). We used these data to test hypotheses about the invasion pathways of the species that were based on historical and geographical records, and we make inferences about historical relationships among populations and demographic processes following invasion. We confirm that the center of diversity and the native range of the species is likely the eastern Mediterranean region in the vicinity of Turkey. From this region, the species likely proceeded to colonize other parts of Europe and Asia via a slow, stepwise range expansion. Spanish populations were the primary source of seed to invade South America via human-mediated events, as was evident from historical records, but populations from the eastern Mediterranean region were also important. North American populations were largely derived from South America, but had secondary contributors. We suggest that the introduction history of non-native populations from disparate parts of the native range have allowed not just one, but multiple opportunities first in South America then again in North America for the creation of novel genotypes via intraspecific hybridization. We propose that multiple intraspecific hybridization events may have created especially potent conditions for the selection of a noxious invader, and may explain differences in genetic patterns among North and South America populations, inferred differences in demographic

  3. Population Genetic Structure in Hyacinth Macaws (Anodorhynchus hyacinthinus) and Identification of the Probable Origin of Confiscated Individuals.

    PubMed

    Presti, Flavia T; Guedes, Neiva M R; Antas, Paulo T Z; Miyaki, Cristina Y

    2015-01-01

    Understanding the intraspecific genetic composition of populations in different geographic locations is important for the conservation of species. If genetic variability is structured, conservation strategies should seek to preserve the diversity of units. Also, origin of individuals can be determined, which is important for guiding actions against animal trafficking. The hyacinth macaw (Anodorhynchus hyacinthinus) is located in allopatric regions, vulnerable to extinction and suffering animal trafficking pressure. Therefore, we characterized its population genetic structure based on 10 microsatellites from 98 individuals and 2123bp of mitochondrial sequence (ND5, cytochrome b, and ND2) from 80 individuals. Moderate to high levels of differentiation were observed among 3 geographic regions of Brazil: the north/northeast of the country, the north Pantanal, and the south Pantanal. Differentiation between the 2 regions within the Pantanal was not expected, as they are relatively close and there is no known barrier to macaw movement between these regions. These genetically differentiated groups were estimated to have diverged 16000 to 42000 years ago. The low genetic variability observed seems not to be the result of past bottlenecks, although a star-shaped haplotype network and the mismatch distribution suggest that there was recent demographic expansion in the north and northeast. Environmental changes in the Holocene could have caused this expansion. Given the genetic structure observed, the most probable regions of origin of 24 confiscated individuals were identified. Thus, these data helped to trace illegal traffic routes and identify natural populations that are being illegally harvested. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Genetic diversity and population structure of Vriesea reitzii (Bromeliaceae), a species from the Southern Brazilian Highlands

    PubMed Central

    Soares, Luis Eduardo; Goetze, Márcia; Zanella, Camila M.; Bered, Fernanda

    2018-01-01

    Abstract The Southern Brazilian Highlands are composed by a mosaic of Mixed Ombrophilous Forest (MOF) and grassland formations, an interesting landscape for the study of population structure. We analyzed the genetic diversity within and among populations of the MOF-endemic bromeliad Vriesea reitzii by genotyping seven nuclear microsatellite loci in 187 individuals from six populations. We characterized levels of genetic diversity and assessed the genetic structure among populations. Vriesea reitzii populations showed high levels of genetic variation (number of alleles 28 - 43, allelic richness 3.589 - 5.531) and moderate levels of genetic differentiation (F ST = 0.123, R ST = 0.096). The high levels of genetic diversity may be explained by species life-history traits, such as habit and mating system. The moderate structure may be a product of the combination of ancient and contemporary gene flow, resulting from the expansion of the forest in the Holocene, and/or due to facilitated dispersal mediated by the MOF’s mosaic landscape. The genetic results indicated no imminent threat to this bromeliad. However, the species is highly associated with the MOF, putting landscape conservation at the center of conservation efforts for the species’ maintenance. PMID:29583153

  5. The influence of the arid Andean high plateau on the phylogeography and population genetics of guanaco (Lama guanicoe) in South America

    PubMed Central

    MARIN, JUAN C.; GONZÁLEZ, BENITO A.; POULIN, ELIE; CASEY, CIARA S.; JOHNSON, WARREN E.

    2012-01-01

    A comprehensive study of the phylogeography and population genetics of the largest wild artiodactyl in the arid and cold-temperate South American environments, the guanaco (Lama guanicoe) was conducted. Patterns of molecular genetic structure were described using 514 bp of mtDNA sequence and 14 biparentally-inherited microsatellite markers from 314 samples. These individuals originated from 17 localities throughout the current distribution across Peru, Bolivia, Argentina and Chile. This confirmed well-defined genetic differentiation and subspecies designation of populations geographically separated to the northwest (L. g. cacsilensis) and southeast (L. g. guanicoe) of the central Andes plateau. However, these populations are not completely isolated, as shown by admixture prevalent throughout a limited contact zone, and a strong signal of expansion from north to south in the beginning of the Holocene. Microsatellite analyses differentiated 3 northwestern and 4-5 southeastern populations, suggesting patterns of genetic contact among these populations. Possible genetic refuges were identified, as were source-sink patterns of gene flow at historical and recent time scales. Conservation and management of guanaco should be implemented with an understanding of these local population dynamics while also considering the preservation of broader adaptive variation and evolutionary processes. PMID:23206254

  6. Microsatellite data analysis for population genetics

    USDA-ARS?s Scientific Manuscript database

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of ...

  7. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    PubMed

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and

  8. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA

    PubMed Central

    2012-01-01

    Background Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII) gene. Methods Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. Results A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP) in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. Conclusions The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be confirmed and its

  9. Significant genetic differentiation among populations of Anomalocardia brasiliana (Gmelin, 1791): A bivalve with planktonic larval dispersion

    PubMed Central

    2009-01-01

    Four Brazilian populations of Anomalocardia brasiliana were tested for mutual genetic homogeneity, using data from 123 sequences of the mtDNA cytochrome oxidase c subunit I gene. A total of 36 haplotypes were identified, those shared being H3 (Canela Island, Prainha and Acupe) and both H5 and H9 (Prainha and Acupe). Haplotype diversity values were high, except for the Camurupim population, whereas nucleotide values were low in all the populations, except for that of Acupe. Only the Prainha population showed a deviation from neutrality and the SSD test did not reject the demographic expansion hypothesis. Fst values showed that the Prainha and Acupe populations represent a single stock, whereas in both the Canela Island and Camurupim stocks, population structures are different and independent. The observed structure at Canela Island may be due to the geographic distance between this population and the remainder. The Camurupim population does not share any haplotype with the remaining populations in northeastern Brazil. The apparent isolation could be due to the rocky barrier located facing the mouth of the Mamanguape River. The results highlight the importance of wide-scale studies to identify and conserve local genetic diversity, especially where migration is restricted. PMID:21637701

  10. Variation in functional responses to water stress and differentiation between natural allopolyploid populations in the Brachypodium distachyon species complex.

    PubMed

    Martínez, Luisa M; Fernández-Ocaña, Ana; Rey, Pedro J; Salido, Teresa; Amil-Ruiz, Francisco; Manzaneda, Antonio J

    2018-06-08

    Some polyploid species show enhanced physiological tolerance to drought compared with their progenitors. However, very few studies have examined the consistency of physiological drought response between genetically differentiated natural polyploid populations, which is key to evaluation of the importance of adaptive evolution after polyploidization in those systems where drought exerts a selective pressure. A comparative functional approach was used to investigate differentiation of drought-tolerance-related traits in the Brachypodium species complex, a model system for grass polyploid adaptive speciation and functional genomics that comprises three closely related annual species: the two diploid parents, B. distachyon and B. stacei, and the allotetraploid derived from them, B. hybridum. Differentiation of drought-tolerance-related traits between ten genetically distinct B. hybridum populations and its ecological correlates was further analysed. The functional drought response is overall well differentiated between Brachypodium species. Brachypodium hybridum allotetraploids showed a transgressive expression pattern in leaf phytohormone content in response to drought. In contrast, other B. hybridum physiological traits correlated to B. stacei ones. Particularly, proline and water content were the traits that best discriminated these species from B. distachyon under drought. After polyploid formation and/or colonization, B. hybridum populations have adaptively diverged physiologically and genetically in response to variations in aridity.

  11. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines

    PubMed Central

    Sayson, S. L.; Gloria-Soria, A.; Powell, J. R.; Edillo, F. E.

    2015-01-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  12. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish.

    PubMed

    Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P

    2018-06-01

    Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (<13 km) genetic structure within reaches unimpeded by barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST  = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (<100). Our study highlights that, in structured populations, the ability to detect short-term genetic effects from barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.

  13. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient

    PubMed Central

    Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A

    2015-01-01

    Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181

  14. Genetic relationships among American donkey populations: insights into the process of colonization.

    PubMed

    Jordana, J; Ferrando, A; Miró, J; Goyache, F; Loarca, A; Martínez López, O R; Canelón, J L; Stemmer, A; Aguirre, L; Lara, M A C; Álvarez, L A; Llambí, S; Gómez, N; Gama, L T; Nóvoa, M F; Martínez, R D; Pérez, E; Sierra, A; Contreras, M A; Guastella, A M; Marletta, D; Arsenos, G; Curik, I; Landi, V; Martínez, A; Delgado, J V

    2016-04-01

    This study presents the first insights into the genetic diversity and structure of the American donkey metapopulation. The primary objectives were to detect the main structural features underlying variability among American donkey populations, identify boundaries between differentiated gene pools, and draw the main colonization pathways since the introduction of donkeys into America in the 15th century. A panel of 14 microsatellite markers was applied for genotyping 350 American donkeys from 13 countries. The genetic structure of this metapopulation was analysed using descriptive statistics and Bayesian model-based methods. These populations were then compared to a database containing information on 476 individuals from 11 European breeds to identify the most likely ancestral donor populations. Results showed the presence of two distinct genetic pools, with confluence of the two in Colombia. The southern pool showed a unique genetic signature subsequent to an older founder event, but lacked any significant influence of modern gene flow from Europe. The northern pool, conversely, may have retained more ancestral polymorphisms and/or have experienced modern gene flow from Spanish breeds. The Andalusian and, to a lesser extent, the Catalan breeds have left a more pronounced footprint in some of the American donkey populations analysed. © 2015 Blackwell Verlag GmbH.

  15. Genetic Variation of 17 Wild Yellow Perch Populations from the Midwest and East Coast Analyzed Via Microsatellites

    USDA-ARS?s Scientific Manuscript database

    We used microsatellite loci, including seven newly developed by us, to analyze the population genetic structure of wild yellow perch Perca flavescens from 17 sampling areas in the Upper Midwest and East Coast of the United States. Our results revealed greater genetic differentiation and finer-scale ...

  16. Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae)

    NASA Astrophysics Data System (ADS)

    Jin, Yuqing; Ma, Yongpeng; Wang, Shun; Hu, Xian-Ge; Huang, Li-Sha; Li, Yue; Wang, Xiao-Ru; Mao, Jian-Feng

    2016-10-01

    Platycladus orientalis, a widespread conifer with long lifespan and significant adaptability. It is much used in reforestation in north China and commonly planted in central Asia. With the increasing demand for plantation forest in central to north China, breeding programs are progressively established for this species. Efficient use of breeding resources requires good understanding of the genetic value of the founder breeding materials. This study investigated the distribution of genetic variation in 192 elite trees collected for the breeding program for the central range of the species. We developed first set of 27 polymorphic EST-derived SSR loci for the species from transcriptome/genome data. After examination of amplification quality, 10 loci were used to evaluate the genetic variation in the breeding population. We found moderate genetic diversity (average He = 0.348) and low population differentiation (Fst = 0.011). Extensive admixture and no significant geographic population structure characterized this set of collections. Our analyses of the diversity and population structure are important steps toward a long-term sustainable deployment of the species and provide valuable genetic information for conservation and breeding applications.

  17. The Use of Carcasses for the Analysis of Cetacean Population Genetic Structure: A Comparative Study in Two Dolphin Species

    PubMed Central

    Bilgmann, Kerstin; Möller, Luciana M.; Harcourt, Robert G.; Kemper, Catherine M.; Beheregaray, Luciano B.

    2011-01-01

    Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully

  18. Structure and genetic diversity of natural populations of Morus alba in the trans-Himalayan Ladakh region.

    PubMed

    Bajpai, Prabodh K; Warghat, Ashish R; Sharma, Ram Kumar; Yadav, Ashish; Thakur, Anil K; Srivastava, Ravi B; Stobdan, Tsering

    2014-04-01

    Sequence-related amplified polymorphism markers were used to assess the genetic structure in three natural populations of Morus alba from trans-Himalaya. Multilocation sampling was conducted across 14 collection sites. The overall genetic diversity estimates were high: percentage polymorphic loci 89.66%, Nei's gene diversity 0.2286, and Shannon's information index 0.2175. At a regional level, partitioning of variability assessed using analysis of molecular variance (AMOVA), revealed 80% variation within and 20% among collection sites. Pattern appeared in STRUCTURE, BARRIER, and AMOVA, clearly demonstrating gene flow between the Indus and Suru populations and a geographic barrier between the Indus-Suru and Nubra populations, which effectively hinders gene flow. The results showed significant genetic differentiation, population structure, high to restricted gene flow, and high genetic diversity. The assumption that samples collected from the three valleys represent three different populations does not hold true. The fragmentation present in trans-Himalaya was more natural and less anthropogenic.

  19. A comparative analysis of genetic diversity of candidate genes associated with type 2 diabetes in worldwide populations.

    PubMed

    Gong, Xian; Zhang, Chao; Yiliyasi·Aisa, Yiliyasi·Aisa; Shi, Ying; Yang, Xue-wei; NuersimanguliAosiman, NuersimanguliAosiman; Guan, Ya-qun; Xu, Shu-hua

    2016-06-20

    Over the last decade, a larger number of type 2 diabetes mellitus (T2DM) susceptible candidate genes have been reported by numerous genome-wide association studies (GWAS). Understanding the genetic diversity of these candidate genes among worldwide populations not only facilitates to elucidating the genetic mechanism of T2DM, but also provides guidance to further studies of pathogenesis of T2DM in any certain population. In this study, we identified 170 genes or genomic regions associated with T2DM by searching the GWAS databases and related literatures. We next analyzed the genetic diversity of these genes (or genomic regions) among present-day human populations by curetting the 1000 Genomes Projects phase1 dataset covering 14 worldwide populations. We further compared the characteristics of T2DM genes in different populations. No significant differences of genetic diversity were observed among the 14 worldwide populations between the T2DM candidate genes and the non-T2DM genes in terms of overall pattern. However, we observed some genes, such as IL20RA, RNMTL1-NXN, NOTCH2, ADRA2A-BTBD7P2, TBC1D4, RBM38-HMGB1P1, UBE2E2, and PPARD, show considerable differentiation between populations. In particular, IL20RA (FST=0.1521) displays the greatest population difference which is mainly contributed by that between Africans and non-Africans. Moreover, we revealed genetic differences between East Asians and Europeans on some candidate genes such as DGKB-AGMO (FST=0.173) and JAZF1 (FST=0.182). Our results indicate that some T2DM susceptible candidate genes harbor highly-differentiated variants between populations. These analyses, despite preliminary, should advance our understanding of the population difference of susceptibility to T2DM and provide insightful reference that future studies can relay on.

  20. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp).

    PubMed

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research.

  1. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp)

    PubMed Central

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research. PMID:27509049

  2. Genetic diversity and population structure of Mongolian domestic Bactrian camels (Camelus bactrianus).

    PubMed

    Chuluunbat, B; Charruau, P; Silbermayr, K; Khorloojav, T; Burger, P A

    2014-08-01

    The tradition of animal husbandry in the context of a nomadic lifestyle has been of great significance in the Mongolian society. Both Bactrian camels and horses have been invaluable for the survival and development of human activities in the harsh arid environment of the Mongolian steppe. As camels offer unique and sustainable opportunities for livestock production in marginal agro-ecological zones, we investigated the current genetic diversity of three local Mongolian camel breeds and compared their levels of variation with common native Mongolian camels distributed throughout the country. Based on mitochondrial and nuclear markers, we found levels of genetic diversity in Mongolian populations similar to that reported for Chinese Bactrian camels and for dromedaries. Little differentiation was detected between single breeds, except for a small group originating from the northwestern Mongolian Altai. We found neither high inbreeding levels in the different breeds nor evidence for a population decline. Although the Mongolian camel census size has severely declined over the past 20 years, our analyses suggest that there still exists a stable population with adequate genetic variation for continued sustainable utilization. © 2014 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  3. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    PubMed

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  4. Population genetics of seaside Sparrow (Ammodramus maritimus) subspecies along the gulf of Mexico.

    PubMed

    Woltmann, Stefan; Stouffer, Philip C; Bergeon Burns, Christine M; Woodrey, Mark S; Cashner, Mollie F; Taylor, Sabrina S

    2014-01-01

    Seaside Sparrows (Ammodramus maritimus) along the Gulf of Mexico are currently recognized as four subspecies, including taxa in Florida (A. m. juncicola and A. m. peninsulae) and southern Texas (Ammodramus m. sennetti), plus a widespread taxon between them (A. m. fisheri). We examined population genetic structure of this "Gulf Coast" clade using microsatellite and mtDNA data. Results of Bayesian analyses (Structure, GeneLand) of microsatellite data from nine locations do not entirely align with current subspecific taxonomy. Ammodramus m. sennetti from southern Texas is significantly differentiated from all other populations, but we found evidence of an admixture zone with A. m. fisheri near Corpus Christi. The two subspecies along the northern Gulf Coast of Florida are significantly differentiated from both A. m. sennetti and A. m. fisheri, but are not distinct from each other. We found a weak signal of isolation by distance within A. m. fisheri, indicating this population is not entirely panmictic throughout its range. Although continued conservation concern is warranted for all populations along the Gulf Coast, A. m. fisheri appears to be more secure than the far smaller populations in south Texas and the northern Florida Gulf Coast. In particular, the most genetically distinct populations, those in Texas south of Corpus Christi, occupy unique habitats within a very small geographic range.

  5. Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean

    USGS Publications Warehouse

    Morrison, C.L.; Ross, Steve W.; Nizinski, M.S.; Brooke, S.; Jarnegren, J.; Waller, R.G.; Johnson, Robin L.; King, T.L.

    2011-01-01

    Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U.S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average F ST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (F ST = 0.085), and smallest between southeastern U.S. and Gulf of Mexico populations (F ST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks.

  6. Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis

    PubMed Central

    Ducrot, Virginie; Péry, Alexandre R. R.; Lagadic, Laurent

    2010-01-01

    Pesticide use leads to complex exposure and response patterns in non-target aquatic species, so that the analysis of data from standard toxicity tests may result in unrealistic risk forecasts. Developing models that are able to capture such complexity from toxicity test data is thus a crucial issue for pesticide risk assessment. In this study, freshwater snails from two genetically differentiated populations of Lymnaea stagnalis were exposed to repeated acute applications of environmentally realistic concentrations of the herbicide diquat, from the embryo to the adult stage. Hatching rate, embryonic development duration, juvenile mortality, feeding rate and age at first spawning were investigated during both exposure and recovery periods. Effects of diquat on mortality were analysed using a threshold hazard model accounting for time-varying herbicide concentrations. All endpoints were significantly impaired at diquat environmental concentrations in both populations. Snail evolutionary history had no significant impact on their sensitivity and responsiveness to diquat, whereas food acted as a modulating factor of toxicant-induced mortality. The time course of effects was adequately described by the model, which thus appears suitable to analyse long-term effects of complex exposure patterns based upon full life cycle experiment data. Obtained model outputs (e.g. no-effect concentrations) could be directly used for chemical risk assessment. PMID:20921047

  7. Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis.

    PubMed

    Ducrot, Virginie; Péry, Alexandre R R; Lagadic, Laurent

    2010-11-12

    Pesticide use leads to complex exposure and response patterns in non-target aquatic species, so that the analysis of data from standard toxicity tests may result in unrealistic risk forecasts. Developing models that are able to capture such complexity from toxicity test data is thus a crucial issue for pesticide risk assessment. In this study, freshwater snails from two genetically differentiated populations of Lymnaea stagnalis were exposed to repeated acute applications of environmentally realistic concentrations of the herbicide diquat, from the embryo to the adult stage. Hatching rate, embryonic development duration, juvenile mortality, feeding rate and age at first spawning were investigated during both exposure and recovery periods. Effects of diquat on mortality were analysed using a threshold hazard model accounting for time-varying herbicide concentrations. All endpoints were significantly impaired at diquat environmental concentrations in both populations. Snail evolutionary history had no significant impact on their sensitivity and responsiveness to diquat, whereas food acted as a modulating factor of toxicant-induced mortality. The time course of effects was adequately described by the model, which thus appears suitable to analyse long-term effects of complex exposure patterns based upon full life cycle experiment data. Obtained model outputs (e.g. no-effect concentrations) could be directly used for chemical risk assessment.

  8. [Far Eastern mullet Mugil soiuy Basilewsky (Mugilidae, Mugiliformes): the genetic structure of populations and its change under acclimatization].

    PubMed

    Omel'chenko, V T; Salmenkova, E A; Makhotkin, M A; Romanov, N S; Altukhov, Iu P; Dudkin, S I; Dekhta, V A; Rubtsova, G A; Kovalev, M Iu

    2004-08-01

    The introduction of Far Eastern mullet (pilengas) in the Azov Sea in the 1970s-1980s has resulted in the formation of a self-reproducing commercial population. We have carried out a comparative population-genetic analysis of the mullet from the native (Primorye, the Sea of Japan basin) and the new (The Azov Sea basin) ranges. Genetic characteristics of three Primorye and three Azov local samples were studied using electrophoretic analysis of 15 enzymes encoded by 21 gene loci. In the Azov mullet, the initial heterozygosity characteristic of the donor population was preserved while the genotype and the allele compositions changed; the changes included a 1.9-fold reduction in the percentage of polymorphic loci and 1.5-fold reduction in the mean number of alleles per locus. The genetic differences between the Azov and the Primorye sample groups were highly significant. In the native range, no genetic differentiation among the mullet samples from different areas was found (Gst = 0.42%), whereas in the Azov Sea basin, the samples from spatially isolated populations (ecological groups) exhibited genetic differences (Gst = 1.38). The genetic divergence of the subpopulations and the excess of heterozygotes at some loci in the Azov mullet suggest selection processes that formed genetically divergent groups associated with the areas of different salinity in the new range. The salinity level is assumed to be the most probable factor of local differentiating selection during fast adaptation and naturalization of the introduced mullet.

  9. Contrasting geographic patterns of genetic differentiation in body size and development time with reproductive isolation in Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Ryan R. Bracewell; Michael E. Pfrender; Karen E. Mock; Barbara J. Bentz

    2013-01-01

    Body size and development time are two critical phenotypic traits that can be highly adaptive in insects. Recent population genetic analyses and crossing experiments with the mountain pine beetle (Dendroctonus ponderosae Hopkins) have described substantial levels of neutral molecular genetic differentiation, genetic differences in phenotypic traits, and reproductive...

  10. Genetic relatedness of indigenous ethnic groups in northern Borneo to neighboring populations from Southeast Asia, as inferred from genome-wide SNP data.

    PubMed

    Yew, Chee Wei; Hoque, Mohd Zahirul; Pugh-Kitingan, Jacqueline; Minsong, Alexander; Voo, Christopher Lok Yung; Ransangan, Julian; Lau, Sophia Tiek Ying; Wang, Xu; Saw, Woei Yuh; Ong, Rick Twee-Hee; Teo, Yik-Ying; Xu, Shuhua; Hoh, Boon-Peng; Phipps, Maude E; Kumar, S Vijay

    2018-07-01

    The region of northern Borneo is home to the current state of Sabah, Malaysia. It is located closest to the southern Philippine islands and may have served as a viaduct for ancient human migration onto or off of Borneo Island. In this study, five indigenous ethnic groups from Sabah were subjected to genome-wide SNP genotyping. These individuals represent the "North Borneo"-speaking group of the great Austronesian family. They have traditionally resided in the inland region of Sabah. The dataset was merged with public datasets, and the genetic relatedness of these groups to neighboring populations from the islands of Southeast Asia, mainland Southeast Asia and southern China was inferred. Genetic structure analysis revealed that these groups formed a genetic cluster that was independent of the clusters of neighboring populations. Additionally, these groups exhibited near-absolute proportions of a genetic component that is also common among Austronesians from Taiwan and the Philippines. They showed no genetic admixture with Austro-Melanesian populations. Furthermore, phylogenetic analysis showed that they are closely related to non-Austro-Melansian Filipinos as well as to Taiwan natives but are distantly related to populations from mainland Southeast Asia. Relatively lower heterozygosity and higher pairwise genetic differentiation index (F ST ) values than those of nearby populations indicate that these groups might have experienced genetic drift in the past, resulting in their differentiation from other Austronesians. Subsequent formal testing suggested that these populations have received no gene flow from neighboring populations. Taken together, these results imply that the indigenous ethnic groups of northern Borneo shared a common ancestor with Taiwan natives and non-Austro-Melanesian Filipinos and then isolated themselves on the inland of Sabah. This isolation presumably led to no admixture with other populations, and these individuals therefore underwent

  11. Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of Aedes albopictus from Brazil, the United States, and the Cayman Islands.

    PubMed

    Lourenço de Oliveira, Ricardo; Vazeille, Marie; de Filippis, Ana Maria Bispo; Failloux, Anna-Bella

    2003-07-01

    We conducted a population genetic analysis of Aedes albopictus collected from 20 sites in Brazil, the United States (Florida, Georgia, and Illinois), and the Cayman Islands. Using isoenzyme analysis, we examined genetic diversity and patterns of gene flow. High genetic differentiation was found among Brazilian samples, and between them and North American samples. Regression analysis of genetic differentiation according to geographic distances indicated that Ae. albopictus samples from Florida were genetically isolated by distance. Infection rates with dengue and yellow fever viruses showed greater differences between two Brazilian samples than between the two North American samples or between a Brazilian sample and a North American sample. Introductions and establishments of new Ae. albopictus populations in the Americas are still in progress, shaping population genetic composition and potentially modifying both dengue and yellow fever transmission patterns.

  12. Defining population structure and genetic signatures of decline in the giant garter snake (Thamnophis gigas): implications for conserving threatened species within highly altered landscapes

    USGS Publications Warehouse

    Wood, Dustin A.; Halstead, Brian J.; Casazza, Michael L.; Hansen, Eric C.; Wylie, Glenn D.; Vandergast, Amy

    2015-01-01

    Anthropogenic habitat fragmentation can disrupt the ability of species to disperse across landscapes, which can alter the levels and distribution of genetic diversity within populations and negatively impact long-term viability. The giant gartersnake (Thamnophis gigas) is a state and federally threatened species that historically occurred in the wetland habitats of California’s Great Central Valley. Despite the loss of 93 % of historic wetlands throughout the Central Valley, giant gartersnakes continue to persist in relatively small, isolated patches of highly modified agricultural wetlands. Gathering information regarding genetic diversity and effective population size represents an essential component for conservation management programs aimed at this species. Previous mitochondrial sequence studies have revealed historical patterns of differentiation, yet little is known about contemporary population structure and diversity. On the basis of 15 microsatellite loci, we estimate population structure and compare indices of genetic diversity among populations spanning seven drainage basins within the Central Valley. We sought to understand how habitat loss may have affected genetic differentiation, genetic diversity and effective population size, and what these patterns suggest in terms of management and restoration actions. We recovered five genetic clusters that were consistent with regional drainage basins, although three northern basins within the Sacramento Valley formed a single genetic cluster. Our results show that northern drainage basin populations have higher connectivity than among central and southern basins populations, and that greater differentiation exists among the more geographically isolated populations in the central and southern portion of the species’ range. Genetic diversity measures among basins were significantly different, and were generally lower in southern basin populations. Levels of inbreeding and evidence of population

  13. Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic Bluefin tuna of the Mediterranean Sea

    PubMed Central

    Riccioni, Giulia; Landi, Monica; Ferrara, Giorgia; Milano, Ilaria; Cariani, Alessia; Zane, Lorenzo; Sella, Massimo; Barbujani, Guido; Tinti, Fausto

    2010-01-01

    Fishery genetics have greatly changed our understanding of population dynamics and structuring in marine fish. In this study, we show that the Atlantic Bluefin tuna (ABFT, Thunnus thynnus), an oceanic predatory species exhibiting highly migratory behavior, large population size, and high potential for dispersal during early life stages, displays significant genetic differences over space and time, both at the fine and large scales of variation. We compared microsatellite variation of contemporary (n = 256) and historical (n = 99) biological samples of ABFTs of the central-western Mediterranean Sea, the latter dating back to the early 20th century. Measures of genetic differentiation and a general heterozygote deficit suggest that differences exist among population samples, both now and 96–80 years ago. Thus, ABFTs do not represent a single panmictic population in the Mediterranean Sea. Statistics designed to infer changes in population size, both from current and past genetic variation, suggest that some Mediterranean ABFT populations, although still not severely reduced in their genetic potential, might have suffered from demographic declines. The short-term estimates of effective population size are straddled on the minimum threshold (effective population size = 500) indicated to maintain genetic diversity and evolutionary potential across several generations in natural populations. PMID:20080643

  14. Population genetic structure of the rock outcrop species Encholirium spectabile (Bromeliaceae): The role of pollination vs. seed dispersal and evolutionary implications.

    PubMed

    Gonçalves-Oliveira, Rodrigo C; Wöhrmann, Tina; Benko-Iseppon, Ana M; Krapp, Florian; Alves, Marccus; Wanderley, Maria das Graças L; Weising, Kurt

    2017-06-01

    Inselbergs are terrestrial, island-like rock outcrop environments that present a highly adapted flora. The epilithic bromeliad Encholirium spectabile is a dominant species on inselbergs in the Caatinga of northeastern Brazil. We conducted a population genetic analysis to test whether the substantial phenotypic diversity of E. spectabile could be explained by limited gene flow among populations and to assess the relative impact of pollen vs. seed dispersal on the genetic structure of the species. Nuclear and chloroplast microsatellite markers were used to genotype E. spectabile individuals from 20 rock outcrop locations, representing four geographic regions: northern Espinhaço Range, Borborema Plateau, southwestern Caatinga and southeastern Caatinga. F -statistics, structure, and other tools were applied to evaluate the genetic makeup of populations. Considerable levels of genetic diversity were revealed. Genetic structuring among populations was stronger on the plastid as compared with the nuclear level, indicating higher gene flow via bat pollination as compared with seed dispersal by wind. structure and AMOVA analyses of the nuclear data suggested a high genetic differentiation between two groups, one containing all populations from the southeastern Caatinga and the other one comprising all remaining samples. The strong genetic differentiation between southeastern Caatinga and the remaining regions may indicate the occurrence of a cryptic species in E. spectabile . The unique genetic composition of each inselberg population suggests in situ conservation as the most appropriate protection measure for this plant lineage. © 2017 Botanical Society of America.

  15. Genetic Variation of Beet Armyworm (Lepidoptera: Noctuidae) Populations Detected Using Microsatellite Markers in Iran.

    PubMed

    Golikhajeh, Neshat; Naseri, Bahram; Razmjou, Jabraeil; Hosseini, Reza; Aghbolaghi, Marzieh Asadi

    2018-05-28

    In order to understand the population genetic diversity and structure of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), a serious pest of sugar beet in Iran and the world, we genotyped 133 individuals from seven regions in Iran using four microsatellite loci. Significant difference was seen between the observed and expected heterozygosity in all loci. A lower observed heterozygosity than expected heterozygosity indicated a low heterozygosity in these populations. The value of F showed a high genetic differentiation, so that the mean of Fst was 0.21. Molecular analysis variance showed significant differences within and among populations with group variance accounted for 71 and 21%, respectively. No correlation was found between pair-wise Fst and geographic distance by Mantel test. Bayesian clustering analysis grouped all regions to two clusters. These data suggested that a combination of different factors, such as geographic distance, environmental condition, and physiological behavior in addition to genetic factors, could play an important role in forming variation within and between S. exigua populations.

  16. Genetic differentiation of Mexican Holstein cattle and its relationship with Canadian and U.S. Holsteins

    PubMed Central

    García-Ruiz, Adriana; Ruiz-López, Felipe de J.; Van Tassell, Curtis P.; Montaldo, Hugo H.; Huson, Heather J.

    2015-01-01

    The Mexican Holstein (HO) industry has imported Canadian and US (CAN + USA) HO germplasm for use in two different production systems, the conventional (Conv) and the low income (Lowi) system. The objective of this work was to study the genetic composition and differentiation of the Mexican HO cattle, considering the production system in which they perform and their relationship with the Canadian and US HO populations. The analysis included information from 149, 303, and 173 unrelated or with unknown pedigree HO animals from the Conv, Lowi, and CAN + USA populations, respectively. Canadian and US Jersey (JE) and Brown Swiss (BS) genotypes (162 and 86, respectively) were used to determine if Mexican HOs were hybridized with either of these breeds. After quality control filtering, a total of 6,617 out of 6,836 single nucleotide polymorphism markers were used. To describe the genetic diversity across the populations, principal component (PC), admixture composition, and linkage disequilibrium (LD; r2) analyses were performed. Through the PC analysis, HO × JE and HO × BS crossbreeding was detected in the Lowi system. The Conv system appeared to be in between Lowi and CAN + USA populations. Admixture analysis differentiated between the genetic composition of the Conv and Lowi systems, and five ancestry groups associated to sire’s country of origin were identified. The minimum distance between markers to estimate a useful LD was found to be 54.5 kb for the Mexican HO populations. At this average distance, the persistence of phase across autosomes of Conv and Lowi systems was 0.94, for Conv and CAN + USA was 0.92 and for the Lowi and CAN + USA was 0.91. Results supported the flow of germplasm among populations being Conv a source for Lowi, and dependent on migration from CAN + USA. Mexican HO cattle in Conv and Lowi populations share common ancestry with CAN + USA but have different genetic signatures. PMID:25709615

  17. Genetic differentiation of Mexican Holstein cattle and its relationship with Canadian and U.S. Holsteins.

    PubMed

    García-Ruiz, Adriana; Ruiz-López, Felipe de J; Van Tassell, Curtis P; Montaldo, Hugo H; Huson, Heather J

    2015-01-01

    The Mexican Holstein (HO) industry has imported Canadian and US (CAN + USA) HO germplasm for use in two different production systems, the conventional (Conv) and the low income (Lowi) system. The objective of this work was to study the genetic composition and differentiation of the Mexican HO cattle, considering the production system in which they perform and their relationship with the Canadian and US HO populations. The analysis included information from 149, 303, and 173 unrelated or with unknown pedigree HO animals from the Conv, Lowi, and CAN + USA populations, respectively. Canadian and US Jersey (JE) and Brown Swiss (BS) genotypes (162 and 86, respectively) were used to determine if Mexican HOs were hybridized with either of these breeds. After quality control filtering, a total of 6,617 out of 6,836 single nucleotide polymorphism markers were used. To describe the genetic diversity across the populations, principal component (PC), admixture composition, and linkage disequilibrium (LD; r(2) ) analyses were performed. Through the PC analysis, HO × JE and HO × BS crossbreeding was detected in the Lowi system. The Conv system appeared to be in between Lowi and CAN + USA populations. Admixture analysis differentiated between the genetic composition of the Conv and Lowi systems, and five ancestry groups associated to sire's country of origin were identified. The minimum distance between markers to estimate a useful LD was found to be 54.5 kb for the Mexican HO populations. At this average distance, the persistence of phase across autosomes of Conv and Lowi systems was 0.94, for Conv and CAN + USA was 0.92 and for the Lowi and CAN + USA was 0.91. Results supported the flow of germplasm among populations being Conv a source for Lowi, and dependent on migration from CAN + USA. Mexican HO cattle in Conv and Lowi populations share common ancestry with CAN + USA but have different genetic signatures.

  18. [Genogeographic variability and genetic differentiation of the root vole (Microtus oeconomus Pallas, 1776, Cricetidae, Rodentia) from the Kuril Islands].

    PubMed

    Frisman, L V; Kartavtseva, I V; Kostenko, V A; Sheremet'eva, I N; Cherniavskiĭ, F B

    2003-10-01

    Electrophoretic analysis of 12 enzyme systems and 3 nonenzyme proteins (in all, 24 interpretable loci) was carried out for Microtus oeconomus from ten Kuril islands, Kamchatka Peninsula, and the vicinity of the city of Magadan. Gene geographic variation was examined and the coefficients of genetic variation and differentiation were estimated. The inter-population allozyme differentiation was low (DNEI, 1972 not higher than 0.053) and caused by variation in the allele frequencies of polymorphic loci. The greatest genetic distances were found between the populations belonging to different subspecies. Allozyme differentiation of Far Eastern M. oeconomus and M. fortis are discussed in relation to the data on the age of the island isolation and paleontological records. Karyological analysis (G-, C-, and NOR-banding) demonstrated the absence of differences between M. oeconomus from Kamchatka and the vicinity of Magadan.

  19. Population genetic structure and Wolbachia infection in an endangered butterfly, Zizina emelina (Lepidoptera, Lycaenidae), in Japan.

    PubMed

    Sakamoto, Y; Hirai, N; Tanikawa, T; Yago, M; Ishii, M

    2015-04-01

    Zizina emelina (de l'Orza) is listed on Japan's Red Data List as an endangered species because of loss of its principal food plant and habitat. We compared parts of the mitochondrial and nuclear genes of this species to investigate the level of genetic differentiation among the 14 extant populations. We also examined infection of the butterfly with the bacterium Wolbachia to clarify the bacterium's effects on the host population's genetic structure. Mitochondrial and nuclear DNA analyses revealed that haplotype composition differed significantly among most of the populations, and the fixation index F ST was positively correlated with geographic distance. In addition, we found three strains of Wolbachia, one of which was a male killer; these strains were prevalent in several populations. There was linkage between some host mitochondrial haplotypes and the three Wolbachia strains, although no significant differences were found in a comparison of host mitochondrial genetic diversity with nuclear genetic diversity in Wolbachia-infected or -uninfected populations. These genetic analyses and Wolbachia infection findings show that Z. emelina has little migratory activity and that little gene flow occurs among the current populations.

  20. Genetic structure of coexisting wild and managed agave populations: implications for the evolution of plants under domestication

    PubMed Central

    Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M.; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor

    2015-01-01

    Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19–30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73–35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour

  1. Population Genetics of Plasmodium vivax in Four Rural Communities in Central Vietnam

    PubMed Central

    Hong, Nguyen Van; Delgado-Ratto, Christopher; Thanh, Pham Vinh; Van den Eede, Peter; Guetens, Pieter; Binh, Nguyen Thi Huong; Phuc, Bui Quang; Duong, Tran Thanh; Van Geertruyden, Jean Pierre; D’Alessandro, Umberto; Erhart, Annette; Rosanas-Urgell, Anna

    2016-01-01

    Background The burden of malaria in Vietnam has drastically reduced, prompting the National Malaria Control Program to officially engage in elimination efforts. Plasmodium vivax is becoming increasingly prevalent, remaining a major problem in the country's central and southern provinces. A better understanding of P. vivax genetic diversity and structure of local parasite populations will provide baseline data for the evaluation and improvement of current efforts for control and elimination. The aim of this study was to examine the population genetics and structure of P. vivax isolates from four communities in Tra Leng commune, Nam Tra My district in Quang Nam, Central Vietnam. Methodology/Principal Findings P. vivax mono infections collected from 234 individuals between April 2009 and December 2010 were successfully analyzed using a panel of 14 microsatellite markers. Isolates displayed moderate genetic diversity (He = 0.68), with no significant differences between study communities. Polyclonal infections were frequent (71.4%) with a mean multiplicity of infection of 1.91 isolates/person. Low but significant genetic differentiation (FST value from -0.05 to 0.18) was observed between the community across the river and the other communities. Strong linkage disequilibrium (IAS = 0.113, p < 0.001) was detected across all communities, suggesting gene flow within and among them. Using multiple approaches, 101 haplotypes were grouped into two genetic clusters, while 60.4% of haplotypes were admixed. Conclusions/Significance In this area of Central Vietnam, where malaria transmission has decreased significantly over the past decade, there was moderate genetic diversity and high occurrence of polyclonal infections. Local human populations have frequent social and economic interactions that facilitate gene flow and inbreeding among parasite populations, while decreasing population structure. Findings provide important information on parasites populations circulating in the

  2. Temporal genetic population structure and interannual variation in migration behavior of Pacific Lamprey Entosphenus tridentatus

    USGS Publications Warehouse

    Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.

    2017-01-01

    Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.

  3. Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation

    USGS Publications Warehouse

    Tucker, Kimberly Pause; Hunter, Margaret E.; Bonde, Robert K.; Austin, James D.; Clark, Ann Marie; Beck, Cathy A.; McGuire, Peter M.; Oli, Madan K.

    2012-01-01

    Species of management concern that have been affected by human activities typically are characterized by low genetic diversity, which can adversely affect their ability to adapt to environmental changes. We used 18 microsatellite markers to genotype 362 Florida manatees (Trichechus manatus latirostris), and investigated genetic diversity, population structure, and estimated genetically effective population size (Ne). The observed and expected heterozygosity and average number of alleles were 0.455 ± 0.04, 0.479 ± 0.04, and 4.77 ± 0.51, respectively. All measures of Florida manatee genetic diversity were less than averages reported for placental mammals, including fragmented or nonideal populations. Overall estimates of differentiation were low, though significantly greater than zero, and analysis of molecular variance revealed that over 95% of the total variance was among individuals within predefined management units or among individuals along the coastal subpopulations, with only minor portions of variance explained by between group variance. Although genetic issues, as inferred by neutral genetic markers, appear not to be critical at present, the Florida manatee continues to face demographic challenges due to anthropogenic activities and stochastic factors such as red tides, oil spills, and disease outbreaks; these can further reduce genetic diversity of the manatee population.

  4. Genetic diversity and population structure of Mongolian domestic Bactrian camels (Camelus bactrianus)

    PubMed Central

    Chuluunbat, B; Charruau, P; Silbermayr, K; Khorloojav, T; Burger, P A

    2014-01-01

    The tradition of animal husbandry in the context of a nomadic lifestyle has been of great significance in the Mongolian society. Both Bactrian camels and horses have been invaluable for the survival and development of human activities in the harsh arid environment of the Mongolian steppe. As camels offer unique and sustainable opportunities for livestock production in marginal agro-ecological zones, we investigated the current genetic diversity of three local Mongolian camel breeds and compared their levels of variation with common native Mongolian camels distributed throughout the country. Based on mitochondrial and nuclear markers, we found levels of genetic diversity in Mongolian populations similar to that reported for Chinese Bactrian camels and for dromedaries. Little differentiation was detected between single breeds, except for a small group originating from the northwestern Mongolian Altai. We found neither high inbreeding levels in the different breeds nor evidence for a population decline. Although the Mongolian camel census size has severely declined over the past 20 years, our analyses suggest that there still exists a stable population with adequate genetic variation for continued sustainable utilization. PMID:24749721

  5. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations.

    PubMed

    Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne

    2017-04-01

    Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure. © 2017 Wiley Periodicals, Inc.

  6. Landscape attributes and life history variability shape genetic structure of trout populations in a stream network

    USGS Publications Warehouse

    Neville, H.M.; Dunham, J.B.; Peacock, M.M.

    2006-01-01

    Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.

  7. Population genetic structure of Patagonian toothfish (Dissostichus eleginoides) in the Southeast Pacific and Southwest Atlantic Ocean

    PubMed Central

    Canales-Aguirre, Cristian B.; Galleguillos, Ricardo; Oyarzun, Fernanda X.; Hernández, Cristián E.

    2018-01-01

    Previous studies of population genetic structure in Dissostichus eleginoides have shown that oceanographic and geographic discontinuities drive in this species population differentiation. Studies have focused on the genetics of D. eleginoides in the Southern Ocean; however, there is little knowledge of their genetic variation along the South American continental shelf. In this study, we used a panel of six microsatellites to test whether D. eleginoides shows population genetic structuring in this region. We hypothesized that this species would show zero or very limited genetic structuring due to the habitat continuity along the South American shelf from Peru in the Pacific Ocean to the Falkland Islands in the Atlantic Ocean. We used Bayesian and traditional analyses to evaluate population genetic structure, and we estimated the number of putative migrants and effective population size. Consistent with our predictions, our results showed no significant genetic structuring among populations of the South American continental shelf but supported two significant and well-defined genetic clusters of D. eleginoides between regions (South American continental shelf and South Georgia clusters). Genetic connectivity between these two clusters was 11.3% of putative migrants from the South American cluster to the South Georgia Island and 0.7% in the opposite direction. Effective population size was higher in locations from the South American continental shelf as compared with the South Georgia Island. Overall, our results support that the continuity of the deep-sea habitat along the continental shelf and the biological features of the study species are plausible drivers of intraspecific population genetic structuring across the distribution of D. eleginoides on the South American continental shelf. PMID:29362690

  8. Population genetic diversity and genetic structure of Spodoptera exigua around the Bohai Gulf area of China based on mitochondrial DNA signatures.

    PubMed

    Zhou, L-H; Wang, X-Y; Lei, J-J

    2016-09-30

    The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), is an economically important pest that causes major losses in some main crop-producing areas of China. To control this pest effectively, it is necessary to investigate its population genetic diversity and genetic structure around the Bohai Gulf area of China. In this study, we used two mitochondrial genes, COI (578 bp) and Cytb (724 bp), to investigate its genetic diversity. We obtained 622 COI sequences and 462 Cytb sequences from 23 populations, and 28 and 73 haplotypes, respectively, were identified. Low to moderate levels of genetic diversity (COI: Hd = 0.267 ± 0.023, Pi = 0.00082 ± 0.00010; Cytb: Hd = 0.689 ± 0.018, Pi = 0.00255 ± 0.00029) for the total populations were observed. Phylogenetic and median-joining network analyses indicated no distinct geographical distribution pattern among the haplotypes. Overall, this study revealed that there was significant differentiation among the populations (COI: F ST = 0.158, P < 0.001; Cytb: F ST = 0.148, P < 0.001). F ST values for Shenyang, Baoding, and Funing were significantly different to those for most of the other populations. Finally, unimodal mismatch distribution analysis, combined with negative neutrality test results, showed a recent population expansion of the beet armyworm around the Bohai Gulf area of China.

  9. Using classical population genetics tools with heterochroneous data: time matters!

    PubMed

    Depaulis, Frantz; Orlando, Ludovic; Hänni, Catherine

    2009-01-01

    New polymorphism datasets from heterochroneous data have arisen thanks to recent advances in experimental and microbial molecular evolution, and the sequencing of ancient DNA (aDNA). However, classical tools for population genetics analyses do not take into account heterochrony between subsets, despite potential bias on neutrality and population structure tests. Here, we characterize the extent of such possible biases using serial coalescent simulations. We first use a coalescent framework to generate datasets assuming no or different levels of heterochrony and contrast most classical population genetic statistics. We show that even weak levels of heterochrony ( approximately 10% of the average depth of a standard population tree) affect the distribution of polymorphism substantially, leading to overestimate the level of polymorphism theta, to star like trees, with an excess of rare mutations and a deficit of linkage disequilibrium, which are the hallmark of e.g. population expansion (possibly after a drastic bottleneck). Substantial departures of the tests are detected in the opposite direction for more heterochroneous and equilibrated datasets, with balanced trees mimicking in particular population contraction, balancing selection, and population differentiation. We therefore introduce simple corrections to classical estimators of polymorphism and of the genetic distance between populations, in order to remove heterochrony-driven bias. Finally, we show that these effects do occur on real aDNA datasets, taking advantage of the currently available sequence data for Cave Bears (Ursus spelaeus), for which large mtDNA haplotypes have been reported over a substantial time period (22-130 thousand years ago (KYA)). Considering serial sampling changed the conclusion of several tests, indicating that neglecting heterochrony could provide significant support for false past history of populations and inappropriate conservation decisions. We therefore argue for systematically

  10. Using Classical Population Genetics Tools with Heterochroneous Data: Time Matters!

    PubMed Central

    Depaulis, Frantz; Orlando, Ludovic; Hänni, Catherine

    2009-01-01

    Background New polymorphism datasets from heterochroneous data have arisen thanks to recent advances in experimental and microbial molecular evolution, and the sequencing of ancient DNA (aDNA). However, classical tools for population genetics analyses do not take into account heterochrony between subsets, despite potential bias on neutrality and population structure tests. Here, we characterize the extent of such possible biases using serial coalescent simulations. Methodology/Principal Findings We first use a coalescent framework to generate datasets assuming no or different levels of heterochrony and contrast most classical population genetic statistics. We show that even weak levels of heterochrony (∼10% of the average depth of a standard population tree) affect the distribution of polymorphism substantially, leading to overestimate the level of polymorphism θ, to star like trees, with an excess of rare mutations and a deficit of linkage disequilibrium, which are the hallmark of e.g. population expansion (possibly after a drastic bottleneck). Substantial departures of the tests are detected in the opposite direction for more heterochroneous and equilibrated datasets, with balanced trees mimicking in particular population contraction, balancing selection, and population differentiation. We therefore introduce simple corrections to classical estimators of polymorphism and of the genetic distance between populations, in order to remove heterochrony-driven bias. Finally, we show that these effects do occur on real aDNA datasets, taking advantage of the currently available sequence data for Cave Bears (Ursus spelaeus), for which large mtDNA haplotypes have been reported over a substantial time period (22–130 thousand years ago (KYA)). Conclusions/Significance Considering serial sampling changed the conclusion of several tests, indicating that neglecting heterochrony could provide significant support for false past history of populations and inappropriate

  11. Landscape-scale evaluation of genetic structure among barrier-isolated populations of coastal cutthroat trout, Oncorhynchus clarkii clarkii

    USGS Publications Warehouse

    Guy, T.J.; Gresswell, R.E.; Banks, M.A.

    2008-01-01

    Relationships among landscape structure, stochastic disturbance, and genetic diversity were assessed by examining interactions between watershed-scale environmental factors and genetic diversity of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in 27 barrier-isolated watersheds from western Oregon, USA. Headwater populations of coastal cutthroat trout were genetically differentiated (mean FST = 0.33) using data from seven microsatellite loci (2232 individuals), but intrapopulation microsatellite genetic diversity (mean number of alleles per locus = 5, mean He = 0.60) was only moderate. Genetic diversity of coastal cutthroat trout was greater (P = 0.02) in the Coast Range ecoregion (mean alleles = 47) than in the Cascades ecoregion (mean alleles = 30), and differences coincided with indices of regional within-watershed complexity and connectivity. Furthermore, regional patterns of diversity evident from isolation-by-distance plots suggested that retention of within-population genetic diversity in the Coast Range ecoregion is higher than that in the Cascades, where genetic drift is the dominant factor influencing genetic patterns. Thus, it appears that physical landscape features have influenced genetic patterns in these populations isolated from short-term immigration. ?? 2008 NRC.

  12. The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis.

    PubMed

    Jolley, K A; Wilson, D J; Kriz, P; McVean, G; Maiden, M C J

    2005-03-01

    Patterns of genetic diversity within populations of human pathogens, shaped by the ecology of host-microbe interactions, contain important information about the epidemiological history of infectious disease. Exploiting this information, however, requires a systematic approach that distinguishes the genetic signal generated by epidemiological processes from the effects of other forces, such as recombination, mutation, and population history. Here, a variety of quantitative techniques were employed to investigate multilocus sequence information from isolate collections of Neisseria meningitidis, a major cause of meningitis and septicemia world wide. This allowed quantitative evaluation of alternative explanations for the observed population structure. A coalescent-based approach was employed to estimate the rate of mutation, the rate of recombination, and the size distribution of recombination fragments from samples from disease-associated and carried meningococci obtained in the Czech Republic in 1993 and a global collection of disease-associated isolates collected globally from 1937 to 1996. The parameter estimates were used to reject a model in which genetic structure arose by chance in small populations, and analysis of molecular variation showed that geographically restricted gene flow was unlikely to be the cause of the genetic structure. The genetic differentiation between disease and carriage isolate collections indicated that, whereas certain genotypes were overrepresented among the disease-isolate collections (the "hyperinvasive" lineages), disease-associated and carried meningococci exhibited remarkably little differentiation at the level of individual nucleotide polymorphisms. In combination, these results indicated the repeated action of natural selection on meningococcal populations, possibly arising from the coevolutionary dynamic of host-pathogen interactions.

  13. Temporal differentiation across a West-European Y-chromosomal cline: genealogy as a tool in human population genetics

    PubMed Central

    Larmuseau, Maarten HD; Ottoni, Claudio; Raeymaekers, Joost AM; Vanderheyden, Nancy; Larmuseau, Hendrik FM; Decorte, Ronny

    2012-01-01

    The pattern of population genetic variation and allele frequencies within a species are unstable and are changing over time according to different evolutionary factors. For humans, it is possible to combine detailed patrilineal genealogical records with deep Y-chromosome (Y-chr) genotyping to disentangle signals of historical population genetic structures because of the exponential increase in genetic genealogical data. To test this approach, we studied the temporal pattern of the ‘autochthonous' micro-geographical genetic structure in the region of Brabant in Belgium and the Netherlands (Northwest Europe). Genealogical data of 881 individuals from Northwest Europe were collected, from which 634 family trees showed a residence within Brabant for at least one generation. The Y-chr genetic variation of the 634 participants was investigated using 110 Y-SNPs and 38 Y-STRs and linked to particular locations within Brabant on specific time periods based on genealogical records. Significant temporal variation in the Y-chr distribution was detected through a north–south gradient in the frequencies distribution of sub-haplogroup R1b1b2a1 (R-U106), next to an opposite trend for R1b1b2a2g (R-U152). The gradient on R-U106 faded in time and even became totally invisible during the Industrial Revolution in the first half of the nineteenth century. Therefore, genealogical data for at least 200 years are required to study small-scale ‘autochthonous' population structure in Western Europe. PMID:22126748

  14. Temporal differentiation across a West-European Y-chromosomal cline: genealogy as a tool in human population genetics.

    PubMed

    Larmuseau, Maarten H D; Ottoni, Claudio; Raeymaekers, Joost A M; Vanderheyden, Nancy; Larmuseau, Hendrik F M; Decorte, Ronny

    2012-04-01

    The pattern of population genetic variation and allele frequencies within a species are unstable and are changing over time according to different evolutionary factors. For humans, it is possible to combine detailed patrilineal genealogical records with deep Y-chromosome (Y-chr) genotyping to disentangle signals of historical population genetic structures because of the exponential increase in genetic genealogical data. To test this approach, we studied the temporal pattern of the 'autochthonous' micro-geographical genetic structure in the region of Brabant in Belgium and the Netherlands (Northwest Europe). Genealogical data of 881 individuals from Northwest Europe were collected, from which 634 family trees showed a residence within Brabant for at least one generation. The Y-chr genetic variation of the 634 participants was investigated using 110 Y-SNPs and 38 Y-STRs and linked to particular locations within Brabant on specific time periods based on genealogical records. Significant temporal variation in the Y-chr distribution was detected through a north-south gradient in the frequencies distribution of sub-haplogroup R1b1b2a1 (R-U106), next to an opposite trend for R1b1b2a2g (R-U152). The gradient on R-U106 faded in time and even became totally invisible during the Industrial Revolution in the first half of the nineteenth century. Therefore, genealogical data for at least 200 years are required to study small-scale 'autochthonous' population structure in Western Europe.

  15. Global population genetic dynamics of a highly migratory, apex predator shark.

    PubMed

    Bernard, Andrea M; Feldheim, Kevin A; Heithaus, Michael R; Wintner, Sabine P; Wetherbee, Bradley M; Shivji, Mahmood S

    2016-11-01

    Knowledge of genetic connectivity dynamics in the world's large-bodied, highly migratory, apex predator sharks across their global ranges is limited. One such species, the tiger shark (Galeocerdo cuvier), occurs worldwide in warm temperate and tropical waters, uses remarkably diverse habitats (nearshore to pelagic) and possesses a generalist diet that can structure marine ecosystems through top-down processes. We investigated the phylogeography and the global population structure of this exploited, phylogenetically enigmatic shark by using 10 nuclear microsatellites (n = 380) and sequences from the mitochondrial control region (CR, n = 340) and cytochrome oxidase I gene (n = 100). All three marker classes showed the genetic differentiation between tiger sharks from the western Atlantic and Indo-Pacific ocean basins (microsatellite F ST  > 0.129; CR Φ ST  > 0.497), the presence of North vs. southwestern Atlantic differentiation and the isolation of tiger sharks sampled from Hawaii from other surveyed locations. Furthermore, mitochondrial DNA revealed high levels of intraocean basin matrilineal population structure, suggesting female philopatry and sex-biased gene flow. Coalescent- and genetic distance-based estimates of divergence from CR sequences were largely congruent (d corr  = 0.0015-0.0050), indicating a separation of Indo-Pacific and western Atlantic tiger sharks <1 million years ago. Mitochondrial haplotype relationships suggested that the western South Atlantic Ocean was likely a historical connection for interocean basin linkages via the dispersal around South Africa. Together, the results reveal unexpectedly high levels of population structure in a highly migratory, behaviourally generalist, cosmopolitan ocean predator, calling for management and conservation on smaller-than-anticipated spatial scales. © 2016 John Wiley & Sons Ltd.

  16. The relationships between chemical and genetic differentiation and environmental factors across the distribution of Erigeron breviscapus (Asteraceae).

    PubMed

    Li, Xiang; Peng, Li-yan; Zhang, Shu-dong; Zhao, Qin-shi; Yi, Ting-shuang

    2013-01-01

    Erigeron breviscapus (Vant.) Hand.-Mazz. is an important, widely used Chinese herb with scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B being its major active compounds. We aimed to resolve the influence of biotic and abiotic factors on the concentrations of these compounds and to determine appropriate cultivation methods to improve the yields of the four compounds in this herb. In order to detect the major genetic and natural environmental factors affecting the yields of these four compounds, we applied AFLP markers to investigate the population genetic differentiation and HPLC to measure the concentrations of four major active compounds among 23 wild populations which were located across almost the entire distribution of this species in China. The meteorological data including annual average temperature, annual average precipitation and annual average hours of sunshine were collected. The relationships among the concentrations of four compounds and environmental factors and genetic differentiation were studied. Low intraspecific genetic differentiation is detected, and there is no obvious correlation between the genetic differentiation and the contents of the chemical compounds. We investigated the correlation between the concentrationsof four compounds (scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B) and environmental factors. Concentrations of two compounds (1,5-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid) were correlated with environmental factors. The concentration of 1,5-dicaffeoylquinic acid is positively correlated with latitude, and is negatively correlated with the annual average temperature. The concentration of 3,5-dicaffeoylquinic acid is positively correlated with annual average precipitation. Therefore, changing cultivation conditions may significantly improve the yields of these two compounds. We found the concentration of scutellarin positively correlated with that of

  17. Phylogeography and population genetic structure of double-crested cormorants (Phalacrocorax auritus)

    USGS Publications Warehouse

    Mercer, Dacey; Haig, Susan M.; Roby, Daniel D.

    2013-01-01

    is genetically divergent from other populations in North America (net sequence divergence = 5.85 %;UST for mitochondrial control region = 0.708; FST for microsatellite loci = 0.052). Historical records, contemporary population estimates, and field observations are consistent with recognition of the Alaskan subspecies as distinct and potentially of conservation interest. Our data also indicated the presence of another divergent lineage, associated with the southwestern portion of the species range, as evidenced by highly unique haplotypes sampled in southern California. In contrast, there was little support for recognition of subspecies within the conterminous U.S. and Canada. Rather than genetically distinct regions corresponding to the putative subspecies [P. a. albociliatus (Pacific), P. a. auritus (Interior and North Atlantic), and P. a. floridanus (Southeast)], we observed a distribution of genetic variation consistent with a pattern of isolation by distance. This pattern implies that genetic differences across the range are due to geographic distance, rather than discrete subspecific breaks. Although three of the four traditional subspecies were not genetically distinct, possible demographic separation, habitat differences, and documented declines at some colonies within the regions, suggests that the Pacific and possibly North Atlantic portions of the breeding range may warrant differential consideration from the Interior and Southeast breeding regions.

  18. The congruence between matrilineal genetic (mtDNA) and geographic diversity of Iranians and the territorial populations

    PubMed Central

    Bahmanimehr, Ardeshir; Eskandari, Ghafar; Nikmanesh, Fatemeh

    2015-01-01

    Objective(s): From the ancient era, emergence of Agriculture in the connecting region of Mesopotamia and the Iranian plateau at the foothills of the Zagros Mountains, made Iranian gene pool as an important source of populating the region. It has differentiated the population spread and different language groups. In order to trace the maternal genetic affinity between Iranians and other populations of the area and to establish the place of Iranians in a broad framework of ethnically and linguistically diverse groups of Middle Eastern and South Asian populations, a comparative study of territorial groups was designed and used in the population statistical analysis. Materials and Methods: Mix of 616 samples was sequenced for complete mtDNA or hyper variable regions in this study. A published dataset of neighboring populations was used as a comparison in the Iranian matrilineal lineage study based on mtDNA haplogroups. Results: Statistical analyses data, demonstrate a close genetic structure of all Iranian populations, thus suggesting their origin from a common maternal ancestral gene pool and show that the diverse maternal genetic structure does not reflect population differentiation in the region in their language. Conclusion: In the aggregate of the eastward spreads of proto-Elamo-Dravidian language from the Southwest region of Iran, the Elam province, a reasonable degree of homogeneity has been observed among Iranians in this study. The approach will facilitate our perception of the more detailed relationship of the ethnic groups living in Iran with the other ancient peoples of the area, testing linguistic hypothesis and population movements. PMID:25810873

  19. Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China

    PubMed Central

    2013-01-01

    Background Anopheles sinensis is a principal vector for Plasmodium vivax malaria in most parts of China. Understanding of genetic structure and genetic differentiation of the mosquito should contribute to the vector control and malaria elimination in China. Methods The present study investigated the genetic structure of An. sinensis populations using a 729 bp fragment of mtDNA ND5 among 10 populations collected from seven provinces in China. Results ND5 was polymorphic by single mutations within three groups of An. sinensis that were collected from 10 different geographic populations in China. Out of 140 specimens collected from 10 representative sites, 84 haplotypes and 71 variable positions were determined. The overall level of genetic differentiation of An. sinensis varied from low to moderate across China and with a FST range of 0.00065 – 0.341. Genealogy analysis clustered the populations of An. sinensis into three main clusters. Each cluster shared one main haplotype. Pairwise variations within populations were higher (68.68%) than among populations (31.32%) and with high fixation index (FST = 0.313). The results of the present study support population growth and expansion in the An. sinensis populations from China. Three clusters of An. sinensis populations were detected in this study with each displaying different proportion patterns over seven Chinese provinces. No correlation between genetic and geographic distance was detected in overall populations of An. sinensis (R2 = 0.058; P = 0.301). Conclusions The results indicate that the ND5 gene of mtDNA is highly polymorphic in An. sinensis and has moderate genetic variability in the populations of this mosquito in China. Demographic and spatial results support evidence of expansion in An. sinensis populations. PMID:24192424

  20. Differential Natural Selection of Human Zinc Transporter Genes between African and Non-African Populations

    PubMed Central

    Zhang, Chao; Li, Jing; Tian, Lei; Lu, Dongsheng; Yuan, Kai; Yuan, Yuan; Xu, Shuhua

    2015-01-01

    Zinc transporters play important roles in all eukaryotes by maintaining the rational zinc concentration in cells. However, the diversity of zinc transporter genes (ZTGs) remains poorly studied. Here, we investigated the genetic diversity of 24 human ZTGs based on the 1000 Genomes data. Some ZTGs show small population differences, such as SLC30A6 with a weighted-average FST (WA-FST = 0.015), while other ZTGs exhibit considerably large population differences, such as SLC30A9 (WA-FST = 0.284). Overall, ZTGs harbor many more highly population-differentiated variants compared with random genes. Intriguingly, we found that SLC30A9 was underlying natural selection in both East Asians (EAS) and Africans (AFR) but in different directions. Notably, a non-synonymous variant (rs1047626) in SLC30A9 is almost fixed with 96.4% A in EAS and 92% G in AFR, respectively. Consequently, there are two different functional haplotypes exhibiting dominant abundance in AFR and EAS, respectively. Furthermore, a strong correlation was observed between the haplotype frequencies of SLC30A9 and distributions of zinc contents in soils or crops. We speculate that the genetic differentiation of ZTGs could directly contribute to population heterogeneity in zinc transporting capabilities and local adaptations of human populations in regard to the local zinc state or diets, which have both evolutionary and medical implications. PMID:25927708

  1. Different level of population differentiation among human genes.

    PubMed

    Wu, Dong-Dong; Zhang, Ya-Ping

    2011-01-14

    During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  2. Microbial diversity--insights from population genetics.

    PubMed

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  3. RAD SNP markers as a tool for conservation of dolphinfish Coryphaena hippurus in the Mediterranean Sea: Identification of subtle genetic structure and assessment of populations sex-ratios.

    PubMed

    Maroso, Francesco; Franch, Rafaella; Dalla Rovere, Giulia; Arculeo, Marco; Bargelloni, Luca

    2016-08-01

    Dolphinfish is an important fish species for both commercial and sport fishing, but so far limited information is available on genetic variability and pattern of differentiation of dolphinfish populations in the Mediterranean basin. Recently developed techniques allow genome-wide identification of genetic markers for better understanding of population structure in species with limited genome information. Using restriction-site associated DNA analysis we successfully genotyped 140 individuals of dolphinfish from eight locations in the Mediterranean Sea at 3324 SNP loci. We identified 311 sex-related loci that were used to assess sex-ratio in dolphinfish populations. In addition, we identified a weak signature of genetic differentiation of the population closer to Gibraltar Strait in comparison to other Mediterranean populations, which might be related to introgression of individuals from Atlantic. No further genetic differentiation could be detected in the other populations sampled, as expected considering the known highly mobility of the species. The results obtained improve our knowledge of the species and can help managing dolphinfish stock in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations.

    PubMed

    Ferrero, Victoria; Barrett, Spencer C H; Castro, Sílvia; Caldeirinha, Patrícia; Navarro, Luis; Loureiro, João; Rodríguez-Echeverría, Susana

    2015-05-01

    Genetic diversity in populations of invasive species is influenced by a variety of factors including reproductive systems, ploidy level, stochastic forces associated with colonization and multiple introductions followed by admixture. Here, we compare genetic variation in native and introduced populations of the clonal plant Oxalis pes-caprae to investigate the influence of reproductive mode and ploidy on levels of diversity. This species is a tristylous geophyte native to South Africa. Invasive populations throughout much of the introduced range are composed of a sterile clonal pentaploid short-styled form. We examined morph ratios, ploidy level, reproductive mode and genetic diversity at nuclear microsatellite loci in 10 and 12 populations from South Africa and the Western Mediterranean region, respectively. Flow cytometry confirmed earlier reports of diploids and tetraploids in the native range, with a single population containing pentaploid individuals. Introduced populations were composed mainly of pentaploids, but sexual tetraploids were also found. There was clear genetic differentiation between ploidy levels, but sexual populations from both regions were not significantly different in levels of diversity. Invasive populations of the pentaploid exhibited dramatically reduced levels of diversity but were not genetically uniform. The occurrence of mixed ploidy levels and stylar polymorphism in the introduced range is consistent with multiple introductions to the Western Mediterranean. This inference was supported by variation patterns at microsatellite loci. Our study indicates that some invasive populations of Oxalis pes-caprae are not entirely clonal, as often assumed, and multiple introductions and recombination have the potential to increase genetic variation in the introduced range. © 2014 John Wiley & Sons Ltd.

  5. Genetic differences among Haplorchis taichui populations in Indochina revealed by mitochondrial COX1 sequences.

    PubMed

    Thaenkham, U; Phuphisut, O; Nuamtanong, S; Yoonuan, T; Sa-Nguankiat, S; Vonghachack, Y; Belizario, V Y; Dung, D T; Dekumyoy, P; Waikagul, J

    2017-09-01

    Haplorchis taichui is an intestinal heterophyid fluke that is pathogenic to humans. It is widely distributed in Asia, with a particularly high prevalence in Indochina. Previous work revealed that the lack of gene flow between three distinct populations of Vietnamese H. taichui can be attributed to their geographic isolation with no interconnected river basins. To test the hypothesis that interconnected river basins allow gene flow between otherwise isolated populations of H. taichui, as previously demonstrated for another trematode, Opisthorchis viverrini, we compared the genetic structures of seven populations of H. taichui from various localities in the lower Mekong Basin, in Thailand and Laos, with those in Vietnam, using the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene. To determine the gene flow between these H. taichui populations, we calculated their phylogenetic relationships, genetic distances and haplotype diversity. Each population showed very low nucleotide diversity at this locus. However, high levels of genetic differentiation between the populations indicated very little gene flow. A phylogenetic analysis divided the populations into four clusters that correlated with the country of origin. The negligible gene flow between the Thai and Laos populations, despite sharing the Mekong Basin, caused us to reject our hypothesis. Our data suggest that the distribution of H. taichui populations was incidentally associated with national borders.

  6. Genetic variation in Pinus strobiformis growth and drought tolerance from southwestern US populations.

    PubMed

    Goodrich, Betsy A; Waring, Kristen M; Kolb, Thomas E

    2016-10-01

    The persistence of some tree species is threatened by combinations of novel abiotic and biotic stressors. To examine the hypothesis that Pinus strobiformis Engelm., a tree threatened by an invasive forest pathogen and a changing climate, exhibits intraspecific genetic variation in adaptive traits, we conducted a common garden study of seedlings at one location with two watering regimes using 24 populations. Four key findings emerged: (i) growth and physiological traits were low to moderately differentiated among populations but differentiation was high for some traits in water-stressed populations; (ii) seedlings from warmer climates grew larger, had higher stomatal density and were more water-use efficient (as measured by the carbon isotope ratio) than populations from colder climates; (iii) seedlings from the northern edge of the species' distribution had lower water-use efficiency, higher stomatal conductance, slower growth and longer survival in a lethal drought experiment compared with seedlings from more southern populations; and (iv) based on non-metric multidimensional scaling analyses, populations clustered into southern and northern groups, which did not correspond to current seed transfer zones. Our discovery of a clinal geographic pattern of genetic variation in adaptive traits of P. strobiformis seedlings will be useful in developing strategies to maintain the species during ongoing climate change and in the face of an invasive pathogen. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Population genetics of the wild yeast Saccharomyces paradoxus.

    PubMed Central

    Johnson, Louise J; Koufopanou, Vassiliki; Goddard, Matthew R; Hetherington, Richard; Schäfer, Stefanie M; Burt, Austin

    2004-01-01

    Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km(2) sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population structure, and linkage disequilibrium. Synonymous site diversity is approximately 0.3%. Extensive incompatibilities between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species. PMID:15020405

  8. Population genetic data and forensic parameters of 30 autosomal InDel markers in Santa Catarina State population, Southern Brazil.

    PubMed

    Torres, Sandra Regina Rachadel; Uehara, Clineu Julien Seki; Sutter-Latorre, Ana Frederica; de Almeida, Bibiana Sgorla; Sauerbier, Tania Streck; Muniz, Yara Costa Netto; Marrero, Andrea Rita; de Souza, Ilíada Rainha

    2014-08-01

    The application of DNA technology in forensic investigations has grown rapidly in the last 25 years and with an exponential increase of short tandem repeats (STRs) data, usually presented as allele frequencies, that may be later used as databases for forensic and population genetics purposes. Thereby, classes of molecular markers such as single nucleotide polymorphisms and insertions/deletions (InDels) have been presented as another option of genetic marker sets. These markers can be used in paternity cases, when mutations in STR polymorphisms are present, as well as in highly degraded DNA analysis. In the present study, the allele frequencies and heterozygosity (H) of a 30 InDel markers set were determined and the forensic efficacy was evaluated through estimation of discrimination power (DP), match probability, typical paternity index and power of paternity exclusion in 108 unrelated volunteers from the State of Santa Catarina (South Brazil). The observed H per locus showed a range between 0.370 and 0.574 (mean = 0.479). HLD128 was the locus with the highest DP (DP = 0.656). DP for all markers combined was greater than 99.9999999999646 % which provides satisfactory levels of information for forensic demands. Genetic comparisons (exact tests of population differentiation and pairwise genetic distances) revealed that the population of Santa Catarina State differs from Korea and USA Afro-American populations but is similar to the Portuguese, German, Polish, Spanish and Basque populations.

  9. Intraspecific Genetic Admixture and the Morphological Diversification of an Estuarine Fish Population Complex

    PubMed Central

    Legault, Michel

    2015-01-01

    The North-east American Rainbow smelt (Osmerus mordax) is composed of two glacial races first identified through the spatial distribution of two distinct mtDNA lineages. Contemporary breeding populations of smelt in the St. Lawrence estuary comprise contrasting mixtures of both lineages, suggesting that the two races came into secondary contact in this estuary. The overall objective of this study was to assess the role of intraspecific genetic admixture in the morphological diversification of the estuarine rainbow smelt population complex. The morphology of mixed-ancestry populations varied as a function of the relative contribution of the two races to estuarine populations, supporting the hypothesis of genetic admixture. Populations comprising both ancestral mtDNA races did not exhibit intermediate morphologies relative to pure populations but rather exhibited many traits that exceeded the parental trait values, consistent with the hypothesis of transgressive segregation. Evidence for genetic admixture at the level of the nuclear gene pool, however, provided only partial support for this hypothesis. Variation at nuclear AFLP markers revealed clear evidence of the two corresponding mtDNA glacial races. The admixture of the two races at the nuclear level is only pronounced in mixed-ancestry populations dominated by one of the mtDNA lineages, the same populations showing the greatest degree of morphological diversification and population structure. In contrast, mixed-ancestry populations dominated by the alternate mtDNA lineage showed little evidence of introgression of the nuclear genome, little morphological diversification and little contemporary population genetic structure. These results only partially support the hypothesis of transgressive segregation and may be the result of the differential effects of natural selection acting on admixed genomes from different sources. PMID:25856193

  10. Genetic aspects of population policy.

    PubMed

    Morton, N E

    1999-08-01

    Every science begins in folklore and matures as it reacts against dogma and myth. Astronomy developed in the Neolithic, but it did not outgrow astrology until the sixteenth century. Chemistry discarded alchemy at about the same time. On the contrary, the short history of genetics has been concurrent with the pseudo-science of eugenics, which, at times, has been widely accepted and incorporated in population policy and directive genetic counselling, with rare opposition by geneticists. Societal pressures are likely to increase with the power of genetic technology, the fear it generates and the perception that population growth threatens human welfare. Without a pertinent ethical code, geneticists are vulnerable to both temptation and opprobrium. The intrusion of eugenics into genetic counselling has been a recent source of concern to societies and congresses of genetics. This review traces the causes of this concern and the manner of its expression in the absence of an international voice for genetics that could address ethical and other common interests.

  11. Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, Eastern White Pine (Pinus strobus) from Northern Ontario.

    PubMed

    Chhatre, Vikram E; Rajora, Om P

    2014-01-01

    Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (Ne) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and Ne than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and Ne between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance.

  12. Genetic Divergence and Signatures of Natural Selection in Marginal Populations of a Keystone, Long-Lived Conifer, Eastern White Pine (Pinus strobus) from Northern Ontario

    PubMed Central

    Chhatre, Vikram E.; Rajora, Om P.

    2014-01-01

    Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (N e) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and N e than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and N e between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance. PMID:24859159

  13. Variation in migratory behavior influences regional genetic diversity and structure among American kestrel populations (Falco sparverius) in North America

    USGS Publications Warehouse

    Miller, Mark P.; Mullins, Thomas D.; Parrish, John G.; Walters, Jeffrey R.; Haig, Susan M.

    2012-01-01

    Birds employ numerous strategies to cope with seasonal fluctuations in high-quality habitat availability. Long distance migration is a common tactic; however, partial migration is especially common among broadly distributed species. Under partial migration systems, a portion of a species migrates, whereas the remainder inhabits breeding grounds year round. In this study, we identified effects of migratory behavior variation on genetic structure and diversity of American Kestrels (Falco sparverius), a widespread partial migrant in North America. American Kestrels generally migrate; however, a resident group inhabits the southeastern United States year round. The southeastern group is designated as a separate subspecies (F. s. paulus) from the migratory group (F. s. sparverius). Using mitochondrial DNA and microsatellites from 183 and 211 individuals, respectively, we illustrate that genetic structure is stronger among nonmigratory populations, with differentiation measures ranging from 0.060 to 0.189 depending on genetic marker and analysis approach. In contrast, measures from western North American populations ranged from 0 to 0.032. These findings suggest that seasonal migratory behavior is also associated with natal and breeding dispersal tendencies. We likewise detected significantly lower genetic diversity within nonmigratory populations, reflecting the greater influence of genetic drift in small populations. We identified the signal of population expansion among nonmigratory populations, consistent with the recent establishment of higher latitude breeding locations following Pleistocene glacial retreat. Differentiation of F. s. paulus and F. s. sparverius reflected subtle differences in allele frequencies. Because migratory behavior can evolve quickly, our analyses suggest recent origins of migratory American Kestrel populations in North America.

  14. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    PubMed

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  15. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae) on the Canary Islands.

    PubMed

    Sun, Ye; Vargas-Mendoza, Carlos F

    2017-01-01

    Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west-east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  16. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae) on the Canary Islands

    PubMed Central

    Sun, Ye; Vargas-Mendoza, Carlos F.

    2017-01-01

    Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west–east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago. PMID:28713419

  17. Genetic diversity of Pinus nigra Arn. populations in Southern Spain and Northern Morocco revealed by inter-simple sequence repeat profiles.

    PubMed

    Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E; Tiscar, Pedro A; Viñegla, Benjamin; Linares, Juan C; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2012-01-01

    Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei's genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei's genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups-Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco-while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.

  18. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains.

    PubMed

    Dechaine, Eric G; Martin, Andrew P

    2005-03-01

    Climate change during the Quaternary played an important role in the differentiation and evolution of plants. A prevailing hypothesis is that alpine and arctic species survived glacial periods in refugia at the periphery of glaciers. Though the Rocky Mountains, south of the southernmost extent of continental ice, served as an important glacial refuge, little is known about how climate cycles influenced populations within this region. We inferred the phylogeography of Sedum lanceolatum (Crassulaceae) within the Rocky Mountain refugium to assess how this high-elevation plant responded to glacial cycles. We sequenced 884 base pairs (bp) of cpDNA intergenic spacers (tRNA-L to tRNA-F and tRNA-S to tRNA-G) for 333 individuals from 18 alpine populations. Our highly variable markers allowed us to infer that populations persisted across the latitudinal range throughout the climate cycles, exhibited significant genetic structure, and experienced cycles of range expansion and fragmentation. Genetic differentiation in S. lanceolatum was most likely a product of short-distance elevational migration in response to climate change, low seed dispersal, and vegetative reproduction. To the extent that Sedum is a good model system, paleoclimatic cycles were probably a major factor preserving genetic variation and promoting divergence in high-elevation flora of the Rocky Mountains.

  19. Cytonuclear genetic architecture in mosquitofish populations and the possible roles of introgressive hybridization

    USGS Publications Warehouse

    Scribner, Kim T.; Avise, John C.

    1993-01-01

    Spatial genetic structure in populations of mosquitofish (Gambusia) sampled throughout the south-eastern United States was characterized using mitochondrial (mt) DNA and allozyme markers. Both sets of data revealed a pronounced genetic discontinuity (along a broad path extending from south-eastern Mississippi to north-eastern Georgia) that corresponds to a recently recognized distinction between the nominal forms G. affinis to the west and G. holbrookito the east. However, several populations from the general contact region exhibited unusual allelic associations in high frequency, suggestive of evolutionary processes within a zone of introgressive hybridization. These involve: (i) cytonuclear profiles representing combinations of nuclear and mitochondrial genotypes that tended to be more nearly species-specific and concordant elsewhere; and (ii) significant nuclear gametic disequilibria, perhaps attributable to positive assortative mating and/or differential fitnesses of homospecific vs. recombinant genotypes. However, outside this suspected hybrid region, ‘heterospecific’ genetic markers also appeared in low frequency, thus complicating interpretations. These discordant alleles on a broader geographic scale may reflect: (a) the retention of polymorphisms from an ancestral gene pool; (b) occasional evolutionary convergence (especially with respect to electrophoretic mobility of allozyme alleles); (c) the ‘footprints’ of a moving hybrid zone; or (d) differential introgressive penetrance across the current hybrid region.

  20. Estimating black bear population density and genetic diversity at Tensas River, Louisiana using microsatellite DNA markers

    USGS Publications Warehouse

    Boersen, Mark R.; Clark, Joseph D.; King, Tim L.

    2003-01-01

    The Recovery Plan for the federally threatened Louisiana black bear (Ursus americanus luteolus) mandates that remnant populations be estimated and monitored. In 1999 we obtained genetic material with barbed-wire hair traps to estimate bear population size and genetic diversity at the 329-km2 Tensas River Tract, Louisiana. We constructed and monitored 122 hair traps, which produced 1,939 hair samples. Of those, we randomly selected 116 subsamples for genetic analysis and used up to 12 microsatellite DNA markers to obtain multilocus genotypes for 58 individuals. We used Program CAPTURE to compute estimates of population size using multiple mark-recapture models. The area of study was almost entirely circumscribed by agricultural land, thus the population was geographically closed. Also, study-area boundaries were biologically discreet, enabling us to accurately estimate population density. Using model Chao Mh to account for possible effects of individual heterogeneity in capture probabilities, we estimated the population size to be 119 (SE=29.4) bears, or 0.36 bears/km2. We were forced to examine a substantial number of loci to differentiate between some individuals because of low genetic variation. Despite the probable introduction of genes from Minnesota bears in the 1960s, the isolated population at Tensas exhibited characteristics consistent with inbreeding and genetic drift. Consequently, the effective population size at Tensas may be as few as 32, which warrants continued monitoring or possibly genetic augmentation.