Science.gov

Sample records for populus tremuloides internodes

  1. Widespread Triploidy in Western North American Aspen (Populus tremuloides)

    PubMed Central

    Mock, Karen E.; Callahan, Colin M.; Islam-Faridi, M. Nurul; Shaw, John D.; Rai, Hardeep S.; Sanderson, Stewart C.; Rowe, Carol A.; Ryel, Ronald J.; Madritch, Michael D.; Gardner, Richard S.; Wolf, Paul G.

    2012-01-01

    We document high rates of triploidy in aspen (Populus tremuloides) across the western USA (up to 69% of genets), and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species), climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes. PMID:23119006

  2. Changes in Spectral Properties, Chlorophyll Content and Internal Mesophyll Structure of Senescing Populus balsamifera and Populus tremuloides Leaves

    PubMed Central

    Castro, Karen L.; Sanchez-Azofeifa, G. Arturo

    2008-01-01

    In this paper we compare leaf traits and spectral reflectance for sunlit and shafded leaves of Populus tremuloides and Populus balsamifera during autumn senescence using information derived from an Analytical Spectral Devise (ASD) Full Range spectrometer. The modified simple ratio (mSR705) and modified normalized difference index (mND705) were effective in describing changes in chlorophyll content over this period. Highly significant (P<0.01) correlation coefficients were found between the chlorophyll indices (mSR705, mND705)) and chlorophyll a, b, total chlorophyll and chlorophyll a/b. Changes in mesophyll structure were better described by the plant senescence reflectance index (PSRI) than by near-infrared wavebands. Overall, P. balsamifera exhibited lower total chlorophyll and earlier senescence than P. tremuloides. Leaves of P. balsamifera were also thicker, had a higher proportion of intercellular space in the spongy mesophyll, and higher reflectance at 800 nm. Further research, using larger sample sizes over a broader range of sites will extend our understanding of the spectral and temporal dynamics of senescence in P. tremuloides and P. balsamifera and will be particularly useful if species differences are detectable at the crown level using remotely sensed imagery.

  3. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    PubMed Central

    2009-01-01

    Background Phenylpropanoid-derived phenolic glycosides (PGs) and condensed tannins (CTs) comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM), and a negative effect on cell growth (at 10 mM). The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we identified candidate genes

  4. Populations of aspen (Populus tremuloides Michx.) with different evolutionary histories differ in their climate occupancy.

    PubMed

    Greer, Burke T; Still, Christopher; Howe, Glenn T; Tague, Christina; Roberts, Dar A

    2016-05-01

    Quaking aspens (Populus tremuloides Michx.) are found in diverse habitats throughout North America. While the biogeography of aspens' distribution has been documented, the drivers of the phenotypic diversity of aspen are still being explored. In our study, we examined differences in climate between northern and southwestern populations of aspen, finding large-scale differences between the populations. Our results suggest that northern and southwestern populations live in distinct climates and support the inclusion of genetic and phenotypic data with species distribution modeling for predicting aspens' distribution. PMID:27217950

  5. Diurnal and Seasonal Patterns of Photosynthesis and Respiration by Stems of Populus tremuloides Michx. 1

    PubMed Central

    Foote, Knowlton C.; Schaedle, Michail

    1976-01-01

    The photosynthetic and respiratory rates of 5- to 7-year-old aspen stems (Populus tremuloides Michx.) were monitored in the field for 1 year to determine the seasonal patterns. The stem was not capable of net photosynthesis, but the respiratory CO2 loss from the stem was reduced by 0 to 100% depending on the time of year and the level of illumination as a result of bark photosynthesis. The monthly dark respiratory rate ranged from 0.24 mg CO2/dm2· hr in January to a maximum 7.4 mg CO2/dm2· hr in June. Individual measurements ranged from 0.02 mg CO2/dm2· hr in February to 12.3 mg CO2/dm2· hr in June. Gross photosynthesis followed a pattern similar to the dark respiratory rate. The mean monthly rate was highest in June (1.65 mg CO2/dm2· hr) and lowest in December (0.02 mg CO2/dm2· hr). Individual measurements ranged from 0.0 mg CO2/dm2· hr in winter to 5.5 mg CO2/dm2· hr in July. Winter studies showed that stem respiration continued down to −11 C, the coldest temperature during this study. Upon warning to −3 C, the dark respiratory rate showed a sudden sharp increase (7- to 12-fold) which required many hours to return to normal levels. No measurable photosynthesis occurred below −3 C. Between −3 and 0 C, the maximal photosynthetic rate was reduced to less than 50% of the respiratory rate, but increased to 89% between 5 to 10 C. On a yearly basis, bark photosynthesis in P. tremuloides reduced the stem respiratory CO2 loss by 28.7% on a daytime basis and an estimated 16 to 18% on a 24-hour basis. PMID:16659737

  6. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado

    USGS Publications Warehouse

    Meier, Gretchen A.; Brown, Jesslyn F.; Evelsizer, Ross J.; Vogelmann, James E.

    2014-01-01

    Trembling aspen (Populus tremuloides Michx.) occurs over wide geographical, latitudinal, elevational, and environmental gradients, making it a favorable candidate for a study of phenology and climate relationships. Aspen forests and woodlands provide numerous ecosystem services, such as high primary productivity and biodiversity, retention and storage of environmental variables (precipitation, temperature, snow–water equivalent) that affect the spring and fall phenology of the aspen woodland communities of southwestern Colorado. We assessed the land surface phenology of aspen woodlands using two phenology indices, start of season time (SOST) and end of season time (EOST), from the U.S. Geological Survey (USGS) database of conterminous U.S. phenological indicators over an 11-year time period (2001–2011). These indicators were developed with 250 m resolution remotely sensed data from the Moderate Resolution Imaging Spectroradiometer processed to highlight vegetation response. We compiled data on SOST, EOST, elevation, precipitation, air temperature, and snow water equivalent (SWE) for selected sites having more than 80% cover by aspen woodland communities. In the 11-year time frame of our study, EOST had significant positive correlation with minimum fall temperature and significant negative correlation with fall precipitation. SOST had a significant positive correlation with spring SWE and spring maximum temperature.

  7. Stomatal Conductance and Sulfur Uptake of Five Clones of Populus tremuloides Exposed to Sulfur Dioxide 1

    PubMed Central

    Kimmerer, Thomas W.; Kozlowski, T. T.

    1981-01-01

    Plants of five clones of Populus tremuloides Michx. were exposed to 0, 0.2 or 0.5 microliter per liter SO2 for 8 hours in controlled environment chambers. In the absence of the pollutant, two pollution-resistant clones maintained consistently lower daytime diffusive conductance (LDC) than did a highly susceptible clone or two moderately resistant clones. Differences in LDC among the latter three clones were not significant. At 0.2 microliter per liter SO2, LDC decreased in the susceptible clone after 8 hours fumigation while the LDC of the other clones was not affected. Fumigation with 0.5 microliter per liter SO2 decreased LDC of all five clones during the fumigation. Rates of recovery following fumigation varied with the clone, but the LDC of all clones had returned to control values by the beginning of the night following fumigation. Night LDC was higher in the susceptible clone than in the other clones. Fumigation for 16 hours (14 hours day + 2 hours night) with 0.4 microliter per liter SO2 decreased night LDC by half. Sulfur uptake studies generally confirmed the results of the conductance measurements. The results show that stomatal conductance is important in determining relative susceptibility of the clones to pollution stress. PMID:16661807

  8. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae).

    PubMed

    Jelínková, Hana; Tremblay, Francine; Desrochers, Annie

    2009-08-01

    Trembling aspen (Populus tremuloides) is a clonal tree species, which regenerates mostly through root suckering. In spite of vegetative propagation, aspen maintains high levels of clonal diversity. We hypothesized that the maintenance of clonal diversity in this species can be facilitated by integrating different clones through natural root grafts into aspen's communal root system. To verify this hypothesis, we analyzed root systems of three pure aspen stands where clones had been delineated with the help of molecular markers. Grafting between roots was frequent regardless of their genotypes. Root system excavations revealed that many roots were still living below trees that had been dead for several years. Some of these roots had no root connections other than grafts to living ramets of different clones. The uncovered root systems did not include any unique genotypes that would not occur among stems. Nevertheless, acquiring roots of dead trees helps to maintain extensive root systems, which increases the chances of clone survival. Substantial interconnectivity within clones as well as between clones via interclonal grafts results in formation of large genetically diverse physiological units. Such a clonal structure can significantly affect interpretations of diverse ecophysiological processes in forests of trembling aspen. PMID:21628295

  9. Extrafloral Nectaries in Aspen (Populus tremuloides): Heritable Genetic Variation and Herbivore-induced Expression

    PubMed Central

    Wooley, Stuart C.; Donaldson, Jack R.; Gusse, Adam C.; Lindroth, Richard L.; Stevens, Michael T.

    2007-01-01

    Background and Aims A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects. Methods EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs. Key Results Broad-sense heritability for expression (0·74–0·82) and induction (0·85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than ≥10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related. Conclusions Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely

  10. Molecular cloning and biochemical characterization of carbonic anhydrase from Populus tremula x tremuloides.

    PubMed

    Larsson, S; Björkbacka, H; Forsman, C; Samuelsson, G; Olsson, O

    1997-07-01

    A leaf cDNA library from hybrid aspen, Populus tremula x tremuloides, was constructed. From this two different cDNA clones, denoted CA1a and CA1b, encoding a chloroplastic carbonic anhydrase (CA) were isolated and DNA sequenced. Analysis of the deduced amino acid sequences showed that the isolated CAs belong to the beta-CA family, and have identities around 70% to other dicotyledonous plant CAs. The two hybrid aspen cDNA clones display a high nucleotide sequence identity, only 12 nucleotides differ. Since only one gene copy of this soluble chloroplastic CA is present in the nuclear genome, we postulate that the two isolated cDNA clones are alleles. Northern blot hybridization revealed a CA transcript of ca. 1300 bases, 140 bases shorter than in pea. Western and northern blot hybridizations on crude protein extracts and on total RNA, respectively, isolated from stem and leaves, showed that hybrid aspen CA is expressed specifically in the leaf under the growth conditions used. Based on the deduced amino acid sequence, the mature hybrid aspen CA enzyme subunit has a molecular mass of 24.8 kDa. The enzyme was over-expressed in Escherichia coli, and purified by affinity chromatography. Biochemical characterization showed that the protein structure and the CO2-hydration activity are similar to the pea enzyme. Molecular characterization of a CA from a perennial plant has not previously been performed, and it demonstrates that both the structure and activity of hybrid aspen CA resembles CAs from annual plants. PMID:9247540

  11. Physiological Characteristics of Photosynthesis and Respiration in Stems of Populus tremuloides Michx. 1

    PubMed Central

    Foote, Knowlton C.; Schaedle, Michail

    1976-01-01

    The physiological responses of 6- to 8-year-old aspen (Populus tremuloides Michx.) stems to temperature, light, and CO2 concentration were investigated in the field throughout the year using infrared CO2 analysis. Light response studies showed that the rate of gross photosynthesis was linear from 0 to 400 ft-c (0 to 1.6 mw/cm2 of 400-700 nm) with light saturation being reached between 800 to 1400 ft-c (3.2 to 5.6 mw/cm2 of 400-700 nm). At this light intensity, the respiratory CO2 loss was reduced to 10 to 15% of dark rates. Net photosynthetic CO2 uptake was not observed even at intensities as high as 3400 ft-c (13.6 mw/cm2 of 400-700 nm). The light response curve was similar for both winter and summer stems. During summer months, the respiratory and photosynthetic rates of the aspen stem increased with temperature at a near constant rate between 5 and 35 C. For winter stems, the gross photosynthetic rate increased in a pattern similar to the dark respiratory rate as the temperature rose from 3 to 17 C. Below 0 C and above 17 C, however, the gross photosynthetic rate fell off in relation to the respiratory rate so that the per cent of CO2 reassimilated decreased from 75% to less than 50%. Measurable bark photosynthetic activity was not observed below —3 C. The gross photosynthetic rate of stems was not affected when the gas passing through the cuvette contained concentrations of CO2 ranging from 0 to 580 μl CO2/l air. PMID:16659628

  12. Elevated Rocky Mountain elk numbers prevent positive effects of fire on quaking aspen (Populus tremuloides) recruitment

    USGS Publications Warehouse

    Smith, David Solance; Fettig, Stephen M.; Bowker, Matthew A.

    2016-01-01

    Quaking aspen (Populus tremuloides) is the most widespread tree species in North America and has supported a unique ecosystem for tens of thousands of years, yet is currently threatened by dramatic loss and possible local extinctions. While multiple factors such as climate change and fire suppression are thought to contribute to aspen’s decline, increased browsing by elk (Cervus elaphus), which have experienced dramatic population increases in the last ∼80 years, may severely inhibit aspen growth and regeneration. Fires are known to favor aspen recovery, but in the last several decades the spatial scale and intensity of wildfires has greatly increased, with poorly understood ramifications for aspen growth. Here, focusing on the 2000 Cerro Grande fire in central New Mexico – one of the earliest fires described as a “mega-fire” - we use three methods to examine the impact of elk browsing on aspen regeneration after a mega-fire. First, we use an exclosure experiment to show that aspen growing in the absence of elk were 3× taller than trees growing in the presence of elk. Further, aspen that were both protected from elk and experienced burning were 8.5× taller than unburned trees growing in the presence of elk, suggesting that the combination of release from herbivores and stimulation from fire creates the largest aspen growth rates. Second, using surveys at the landscape level, we found a correlation between elk browsing intensity and aspen height, such that where elk browsing was highest, aspen were shortest. This relationship between elk browsing intensity and aspen height was stronger in burned (r = −0.53) compared to unburned (r = −0.24) areas. Third, in conjunction with the landscape-level surveys, we identified possible natural refugia, microsites containing downed logs, shrubs etc. that may inhibit elk browsing by physically blocking aspen from elk or by impeding elk’s ability to move through the forest patch. We did not find any

  13. Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States.

    PubMed

    Bell, David M; Bradford, John B; Lauenroth, William K

    2015-07-01

    Depending on how disease impacts tree exposure to risk, both the prevalence of disease and disease effects on survival may contribute to patterns of mortality risk across a species' range. Disease may accelerate tree species' declines in response to global change factors, such as drought, biotic interactions, such as competition, or functional traits, such as allometry. To assess the role of disease in mediating mortality risk in quaking aspen (Populus tremuloides), we developed hierarchical Bayesian models for both disease prevalence in live aspen stems and the resulting survival rates of healthy and diseased aspen near the species' southern range limit using 5088 individual trees on 281 United States Forest Service Forest Inventory and Analysis plots in the southwestern United States. We found that disease prevalence depended primarily on tree size, tree allometry, and spatial variation in precipitation, while mortality depended on tree size, allometry, competition, spatial variation in summer temperature, and both temporal and spatial variation in summer precipitation. Disease prevalence was highest in large trees with low slenderness found on dry sites. For healthy trees, mortality decreased with diameter, slenderness, and temporal variation in summer precipitation, but increased with competition and spatial variation in summer temperature. Mortality of diseased trees decreased with diameter and aspen relative basal area and increased with mean summer temperature and precipitation. Disease infection increased aspen mortality, especially in trees of intermediate size and trees on plots at climatic extremes (i.e., cool, wet and warm, dry climates). By examining variation in disease prevalence, mortality of healthy trees, and mortality of diseased trees, we showed that the role of disease in aspen tree mortality depended on the scale of inference. For variation among individuals in diameter, disease tended to expose intermediate-size trees experiencing moderate

  14. Characterizing recent phenological and climate relationships in trembling aspen (Populus tremuloides)

    NASA Astrophysics Data System (ADS)

    Meier, G.; Brown, J. F.; Vogelmann, J. E.; Evelsizer, R.

    2012-12-01

    Trembling aspen (Populus tremuloides, referred hereafter as Aspen) has an especially wide geographical distribution in North America, extending from Alaska across the Canadian provinces, the U.S., and south into Mexico. This deciduous species is successional, shade intolerant, and often exists as a dominant among other species at mid-elevations. Aspen occupies wide latitudinal, elevational, and environmental gradients making it a favorable candidate for a study of phenology and climate relationships. The phenological characterization in our Aspen study is derived from a database of conterminous U.S. phenological indicators hosted by the U.S. Geological Survey (http://phenology.cr.usgs.gov/index.php). Nine satellite-derived phenological indicators are calculated from 250m resolution Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI). From this database, we selected start of season (SOST), end of season (EOST), maximum NDVI (MaxN) and time integrated NDVI (TIN) to characterize and analyze the seasonal patterns of Aspen over a 10-year time period (2001-2010). Areas of continuous Aspen cover (≥ 80% Aspen cover type) derived from the LANDFIRE project were then used to extract elevation, precipitation, temperature, and snow water equivalent data. In the Rocky Mountains, Aspen recently suffered from multi-year drought stress accompanied by insect and disease infestations. Numerous studies have documented the existence of Sudden Aspen Decline (SAD) in Montana, Utah, Arizona, and Colorado, indicating that Aspen may be on the edge of its environmental tolerances in some areas. The satellite-derived phenology metrics, and climate and biogeographical indicators were the basis for characterizing Aspen seasonality and assessing the environmental context of SAD. Between several Aspen study areas, there was reasonably consistent progression in the SOST timing from low elevations to higher elevations. A less obvious progression was

  15. Hydraulic conductivity and aquaporin transcription in roots of trembling aspen (Populus tremuloides) seedlings colonized by Laccaria bicolor.

    PubMed

    Xu, Hao; Cooke, Janice E K; Kemppainen, Minna; Pardo, Alejandro G; Zwiazek, Janusz J

    2016-07-01

    Ectomycorrhizal fungi have been reported to increase root hydraulic conductivity (L pr) by altering apoplastic and plasma membrane intrinsic protein (PIP)-mediated cell-to-cell water transport pathways in associated roots, or to have little effect on root water transport, depending on the interacting species and imposed stresses. In this study, we investigated the water transport properties and PIP transcription in roots of aspen (Populus tremuloides) seedlings colonized by the wild-type strain of Laccaria bicolor and by strains overexpressing a major fungal water-transporting aquaporin JQ585595. Inoculation of aspen seedlings with L. bicolor resulted in about 30 % colonization rate of root tips, which developed dense mantle and the Hartig net that was restricted in the modified root epidermis. Transcript abundance of the aspen aquaporins PIP1;2, PIP2;1, and PIP2;2 decreased in colonized root tips. Root colonization by JQ585595-overexpressing strains had no significant impact on seedling shoot water potentials, gas exchange, or dry mass; however, it led to further decrease in transcript abundance of PIP1;2 and PIP2;3 and the significantly lower L pr than in non-inoculated roots. These results, taken together with our previous study that showed enhanced root water hydraulics of L. bicolor-colonized white spruce (Picea glauca), suggest that the impact of L. bicolor on root hydraulics varies by the ectomycorrhiza-associated tree species. PMID:26861480

  16. Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides).

    PubMed

    Rubert-Nason, Kennedy F; Couture, John J; Major, Ian T; Constabel, C Peter; Lindroth, Richard L

    2015-07-01

    Numerous studies have explored the impacts of intraspecific genetic variation and environment on the induction of plant chemical defenses by herbivory. Relatively few, however, have considered how those factors affect within-plant distribution of induced defenses. This work examined the impacts of plant genotype and soil nutrients on the local and systemic phytochemical responses of trembling aspen (Populus tremuloides) to defoliation by gypsy moth (Lymantria dispar). We deployed larvae onto foliage on individual tree branches for 15 days and then measured chemistry in leaves from: 1) branches receiving damage, 2) undamaged branches of insect-damaged trees, and 3) branches of undamaged control trees. The relationship between post-herbivory phytochemical variation and insect performance also was examined. Plant genotype, soil nutrients, and damage all influenced phytochemistry, with genotype and soil nutrients being stronger determinants than damage. Generally, insect damage decreased foliar nitrogen, increased levels of salicinoids and condensed tannins, but had little effect on levels of a Kunitz trypsin inhibitor, TI3. The largest damage-mediated tannin increases occurred in leaves on branches receiving damage, whereas the largest salicinoid increases occurred in leaves of adjacent, undamaged branches. Foliar nitrogen and the salicinoid tremulacin had the strongest positive and negative relationships, respectively, with insect growth. Overall, plant genetics and environment concomitantly influenced both local and systemic phytochemical responses to herbivory. These findings suggest that herbivory can contribute to phytochemical heterogeneity in aspen foliage, which may in turn influence future patterns of herbivory and nutrient cycling over larger spatial scales. PMID:26099738

  17. Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates.

    PubMed

    Haruta, Miyoshi; Pedersen, Jens A.; Constabel, C. Peter

    2001-08-01

    The biochemical anti-herbivore defense of trembling aspen (Populus tremuloides Michx.) was investigated in a molecular analysis of polyphenol oxidase (PPO; EC 1.10.3.2). A PPO cDNA was isolated from a trembling aspen wounded leaf cDNA library and its nucleotide sequence determined. Southern analysis indicated the presence of two PPO genes in the trembling aspen genome. Expression of PPO was found to be induced after herbivory by forest tent caterpillar, by wounding, and by methyl jasmonate treatment. Wound induction was systemic, and occurred in unwounded leaves on wounded plants. This pattern of expression is consistent with a role of this enzyme in insect defense. A search for potential PPO substrates in ethanolic aspen leaf extracts using electron spin resonance (ESR) found no pre-existing diphenolic compounds. However, following a brief delay and several additions of oxygen, an ESR signal specific for catechol was detected. The source of this catechol was most likely the aspen phenolic glycosides tremulacin or salicortin which decomposed during ESR experiments. This was subsequently confirmed in experiments using pure salicortin. PMID:11473716

  18. Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides).

    PubMed

    Peters, Darren J; Constabel, C Peter

    2002-12-01

    In order to study condensed tannin synthesis and its induction by herbivory, a dihydroflavonol reductase (DFR) cDNA was isolated from trembling aspen (Populus tremuloides). Bacterial overexpression demonstrated that this cDNA encodes a functional DFR enzyme, and Southern analysis revealed that DFR likely is a single-copy gene in the aspen genome. Aspen plants that were mechanically wounded showed a dramatic increase in DFR expression after 24 h in both wounded leaves and unwounded leaves on wounded trees. Feeding by forest tent caterpillar (Malacosoma disstria) and satin moth (Leucoma salicis) larvae, and treatment with methyl jasmonate, all strongly induced DFR expression. DFR enzyme activity was also induced in wounded aspen leaves, and phytochemical assays revealed that condensed tannin concentrations significantly increased in wounded and systemic leaves. The expression of other genes involved in the phenylpropanoid pathway were also induced by wounding. Our findings suggest that the induction of condensed tannins, compounds known to be important for defense against herbivores, is mediated by increased expression of DFR and other phenylpropanoid genes. PMID:12472686

  19. Disentangling herbivore impacts on Populus tremuloides: a comparison of native ungulates and cattle in Canada's Aspen Parkland.

    PubMed

    Bork, Edward W; Carlyle, Cameron N; Cahill, James F; Haddow, Rae E; Hudson, Robert J

    2013-11-01

    Ungulates impact woody species' growth and abundance but little is understood about the comparative impacts of different ungulate species on forest expansion in savanna environments. Replacement of native herbivore guilds with livestock [i.e., beef cattle (Bos taurus)] has been hypothesized as a factor facilitating trembling aspen (Populus tremuloides Michx.) encroachment into grasslands of the Northern Great Plains. We used a controlled herbivory study in the Parklands of western Canada to compare the impact of native ungulates and cattle on aspen saplings. Native ungulate treatments included a mixed species guild and sequences of herbivory by different ungulates [bison (Bison bison subsp. bison), elk (Cervus elaphus) then deer (Odocoileus hemionus); or deer, elk, then bison]. Herbivory treatments were replicated in three pastures, within which sets of 40 marked aspen saplings (<1.8 m) were tracked along permanent transects at 2-week intervals, and compared to a non-grazed aspen stand. Stems were assessed for mortality and incremental damage (herbivory, leader breakage, stem abrasion and trampling). Final mortality was greater with exposure to any type of herbivore, but remained similar between ungulate treatments. However, among all treatments, the growth of aspen was highest with exposure only to cattle. Herbivory of aspen was attributed primarily to elk within the native ungulate treatments, with other forms of physical damage, and ultimately sapling mortality, associated with exposure to bison. Overall, these results indicate that native ungulates, specifically elk and bison, have more negative impacts on aspen saplings and provide evidence that native and domestic ungulates can have different functional effects on woody plant dynamics in savanna ecosystems. PMID:23649757

  20. Growth and photosynthesis of plants in response to environmental stress. [Raphanus sativus; Glycine max; Salix nigra; Alnus serrulata; Populus tremuloides

    SciTech Connect

    Greitner, C.S.

    1991-01-01

    Environmental stresses generally decrease photosynthetic rates and growth of plants, and alter biomass partitioning. Nutrient deficiency and drought cause root:shoot ratios to increase, whereas the air pollutant ozone (O[sub 3]) causes an opposite shift in carbon allocation. Plants in nature usually grow under suboptimal conditions; therefore plants were raised with O[sub 3] combined with other stresses to analyze the mechanisms whereby multiple stresses influence gas exchange and growth. Physiological and growth responses to stress were determined for radish (raphanus sativus), soybean (Glycine max) willow (Salix nigra), alder (Alnus serrulata) and aspen (Populus tremuloides) in laboratory and field trials. In willow, high-nutrient status plants had more visible injury, but a smaller decline in leaf area with O[sub 3] than did low-nutrient plants. Ultrastructure of host plant cells in alder root nodules was disrupted by O[sub 3], suggesting that this air pollutant can affect the ability of plants to acquire nutrients via symbiosis. Biomass and root:shoot ratios decreased with O[sub 3] in radish and soy-bean. Shifts in stable carbon isotope ratios were caused by O[sub 3], and this technique was used to integrate the effects of O[sub 3] on gas exchange over time. In aspen, O[sub 3] enhanced photosynthesis and foliar areas in young leaves of well-watered aspen, partially compensating for declines in older leaves. This effect was more pronounced in plants raised at a high nitrogen level than in N-deficient plants. Carboxylation efficiency decreased in older, but increased in younger leaves with O[sub 3]. Prior exposure to drought reduced effects of O[sub 3] on photosynthesis and leaf area.

  1. Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides)

    PubMed Central

    Hajek, Peter; Hertel, Dietrich; Leuschner, Christoph

    2013-01-01

    Leaf and fine root morphology and physiology have been found to vary considerably among tree species, but not much is known about intraspecific variation in root traits and their relatedness to leaf traits. Various aspen progenies (Populus tremula and P. tremuloides) with different growth performance are used in short-rotation forestry. Hence, a better understanding of the link between root trait syndromes and the adaptation of a deme to a particular environment is essential in order to improve the match between planted varieties and their growth conditions. We examined the between-deme (genetic) and within-deme (mostly environmental) variation in important fine root traits [mean root diameter, specific root area (SRA) and specific root length (SRL), root tissue density (RTD), root tip abundance, root N concentration] and their co-variation with leaf traits [specific leaf area (SLA), leaf size, leaf N concentration] in eight genetically distinct P. tremula and P. tremuloides demes. Five of the six root traits varied significantly between the demes with largest genotypic variation in root tip abundance and lowest in mean root diameter and RTD (no significant difference). Within-deme variation in root morphology was as large as between-deme variation suggesting a relatively low genetic control. Significant relationships existed neither between SLA and SRA nor between leaf N and root N concentration in a plant. Contrary to expectation, high aboveground relative growth rates (RGR) were associated with large, and not small, fine root diameters with low SRA and SRL. Compared to leaf traits, the influence of root traits on RGR was generally low. We conclude that aspen exhibits large intraspecific variation in leaf and also in root morphological traits which is only partly explained by genetic distances. A root order-related analysis might give deeper insights into intraspecific root trait variation. PMID:24155751

  2. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    PubMed

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development. PMID:24943986

  3. Effects of canopy-deposition interaction on H+ supply to soils in Pinus banksiana and Populus tremuloides ecosystems in the Athabasca oil sands region in Alberta, Canada.

    PubMed

    Jung, Kangho; Chang, Scott X; Arshad, M A Charlie

    2011-05-01

    Soil acidification has been of concern in the oil sands region in Alberta due to increased acid deposition. Using the canopy budget model, and accounting for H(+) canopy leaching by organic acids, we determined sources and sinks of H+ in throughfall in jack pine (Pinus banksiana) and trembling aspen (Populus tremuloides) stands in two watersheds from 2006 to 2009. In pine stands, H+ deposition was greater in throughfall than in bulk precipitation while the opposite was true in aspen stands. The annual H+ interception deposition was 148.8-193.8 and 49.7-70.0 molcha(-1) in pine and aspen stands, respectively; while the annual H+ canopy leaching was 127.1-128.7 and 0.0-6.0 molcha(-1), respectively. The greater H+ supply in pine stands was caused by greater interception deposition of SO4(2-) and organic acids released from the pine canopy. Such findings have significant implications for establishing critical loads for various ecosystems in the oil sands region. PMID:21310518

  4. Genotypic variation in growth and physiological responses of Finnish hybrid aspen (Populus tremuloides x P. tremula) to elevated tropospheric ozone concentration.

    PubMed

    Oksanen, E; Amores, G; Kokko, H; Amores, J M; Kärenlampi, L

    2001-10-01

    Saplings of six Finnish hybrid aspen (Populus tremuloides Michx. x P. tremula L.) clones were exposed to 0, 50, 100 and 150 ppb ozone (O3) for 32 days in a chamber experiment to determine differences in O3 sensitivity among genotypes. Based on the chamber experiment, three clones with intermediate sensitivity to O3 were selected for a free-air O3 enrichment experiment in which plants were exposed for 2 months to either ambient air (control) or air containing 1.3 x the ambient O3 concentration. We measured stem height and radial growth, number of leaves, dry mass and relative growth rate of leaves, stem and roots, visible leaf injuries, net photosynthesis and stomatal conductance of the clones. There was high clonal variation in susceptibility to O3 in the chamber experiment, indicated by foliar injuries and differential reductions in growth and net photosynthesis. In the free-air O3 enrichment experiment, ozone caused a shift in resource allocation toward stem height growth, thereby altering the shoot to root balance. In both experiments, low O3 concentrations tended to stimulate growth of most clones, whereas 100 and 150 ppb O3 in the chamber experiment impaired growth of most clones. However, growth of the most O3-tolerant clone was not significantly affected by any O3 treatment. PMID:11600339

  5. Impacts of post-harvest slash and live-tree retention on biomass and nutrient stocks in Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    USGS Publications Warehouse

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.

    2013-01-01

    Globally, there is widespread interest in using forest-derived biomass as a source of bioenergy. While conventional timber harvesting generally removes only merchantable tree boles, harvesting biomass feedstock can remove all forms of woody biomass (i.e., live and dead standing woody vegetation, downed woody debris, and stumps) resulting in a greater loss of biomass and nutrients as well as more severe habitat alteration. To investigate the potential impacts of this practice, this study examined the initial impacts (pre- and post-harvest) of various levels of slash and live-tree retention on biomass and nutrient stocks, including carbon (C), nitrogen (N), calcium (Ca), potassium (K), and phosphorus (P), in Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Treatments examined included three levels of slash retention, whole-tree harvest (WTH), 20% slash retention (20SR), and stem-only harvest (SOH), factored with three levels of green-tree retention, no trees retained (NONE), dispersed retention (DISP), and aggregate retention (AGR). Slash retention was the primary factor affecting post-harvest biomass and nutrient stocks, including woody debris pools. Compared to the unharvested control, stocks of biomass, carbon, and nutrients, including N, Ca, K, and P, in woody debris were higher in all treatments. Stem-only harvests typically contained greater biomass and nutrient stocks than WTH, although biomass and nutrients within 20SR, a level recommended by biomass harvesting guidelines in the US and worldwide, generally did not differ from WTH or SOH. Biomass in smaller-diameter slash material (typically 2.5-22.5 cm in diameter) dominated the woody debris pool following harvest regardless of slash retention level. Trends among treatments in this diameter range were generally similar to those in the total woody debris pool. Specifically, SOH contained significantly greater amounts of biomass than WTH while 20SR was not different from either WTH or

  6. Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.).

    PubMed

    Hoenicka, Hans; Lautner, Silke; Klingberg, Andreas; Koch, Gerald; El-Sherif, Fadia; Lehnhardt, Denise; Zhang, Bo; Burgert, Ingo; Odermatt, Jürgen; Melzer, Siegbert; Fromm, Jörg; Fladung, Matthias

    2012-02-01

    Constitutive expression of the FPF1 gene in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) showed a strong effect on wood formation but no effect on flowering time. Gene expression studies showed that activity of flowering time genes PtFT1, PtCO2, and PtFUL was not increased in FPF1 transgenic plants. However, the SOC1/TM3 class gene PTM5, which has been related to wood formation and flowering time, showed a strong activity in stems of all transgenic lines studied. Wood density was lower in transgenic plants, despite significantly reduced vessel frequency which was overcompensated by thinner fibre cell walls. Chemical screening of the wood by pyrolysis GC/MS showed that FPF1 transgenics have higher fractions of cellulose and glucomannan products as well as lower lignin content. The latter observation was confirmed by UV microspectrophotometry on a cellular level. Topochemical lignin distribution revealed a slower increase of lignin incorporation in the developing xylem of the transgenics when compared with the wild-type plants. In line with the reduced wood density, micromechanical wood properties such as stiffness and ultimate stress were also significantly reduced in all transgenic lines. Thus, we provide evidence that FPF1 class genes may play a regulatory role in both wood formation and flowering in poplar. PMID:21909761

  7. Genetic variation in natural populations of Populus tremuloide

    SciTech Connect

    Cheliak, W.M.

    1980-01-01

    Vegetative reproduction results in a mosaic of clones throughout the extensive natural range of this species. An electrophoretic survey of 26 loci in 222 trees from seven natural populations in Alberta demonstrated great variability. Average observed population heterozygosity was 0.52 with an average of 2.3 alleles per locus; 84% of the loci were polymorphic. A model (for a finite population with neutral alleles) was developed to investigate the effects of partial vegetative reproduction on the amount of variation in a population. Results of the survey conformed to those predicted by the model for a population with a rate of sexual establishment greater than 1/N, where N is the population size. The model states that under these conditions, vegetative reproduction has no effect on the population. Therefore, the high level of observed variation is not an artifact of the mode of natural reproduction. These results support conclusions about high population variability based on phenotypic measurements and also suggest a genetic basis for this variation, rather than simply phenotypic plasticity.

  8. Slow lifelong growth predisposes Populus tremuloides trees to mortality.

    PubMed

    Ireland, Kathryn B; Moore, Margaret M; Fulé, Peter Z; Zegler, Thomas J; Keane, Robert E

    2014-07-01

    Widespread dieback of aspen forests, sometimes called sudden aspen decline, has been observed throughout much of western North America, with the highest mortality rates in the southwestern United States. Recent aspen mortality has been linked to drought stress and elevated temperatures characteristic of conditions expected under climate change, but the role of individual aspen tree growth patterns in contributing to recent tree mortality is less well known. We used tree-ring data to investigate the relationship between an individual aspen tree's lifetime growth patterns and mortality. Surviving aspen trees had consistently higher average growth rates for at least 100 years than dead trees. Contrary to observations from late successional species, slow initial growth rates were not associated with a longer lifespan in aspen. Aspen trees that died had slower lifetime growth and slower growth at various stages of their lives than those that survived. Differences in average diameter growth between live and dead trees were significant (α = 0.05) across all time periods tested. Our best logistical model of aspen mortality indicates that younger aspen trees with lower recent growth rates and higher frequencies of abrupt growth declines had an increased risk of mortality. Our findings highlight the need for species-specific mortality functions in forest succession models. Size-dependent mortality functions suitable for late successional species may not be appropriate for species with different life history strategies. For some early successional species, like aspen, slow growth at various stages of the tree's life is associated with increased mortality risk. PMID:24817158

  9. Microsatellite primer resource for Populus developed from

    SciTech Connect

    Yin, Tongming; Yang, Xiaohan; Gunter, Lee E; Tuskan, Gerald A; Wullschleger, Stan D; Huang, Prof. Minren; Li, Shuxian; Zhang, Xinye

    2008-01-01

    In this study, 148 428 simple sequence repeat (SSR) primer pairs were designed from the unambiguously mapped sequence scaffolds of the Nisqually-1 genome. The physical position of the priming sites were identified along each of the 19 Populus chromosomes, and it was specified whether the priming sequences belong to intronic, intergenic, exonic or UTR regions. A subset of 150 SSR loci were amplified and a high amplification success rate (72%) was obtained in P. tremuloides, which belongs to a divergent subgenus of Populus relative to Nisqually-1. PCR reactions showed that the amplification success rate of exonic primer pairs was much higher than that of the intronic/intergenic primer pairs. Applying ANOVA and regression analyses to the flanking sequences of microsatellites, the repeat lengths, the GC contents of the repeats, the repeat motif numbers, the repeat motif length and the base composition of the repeat motif, it was determined that only the base composition of the repeat motif and the repeat motif length significantly affect the microsatellite variability in P. tremuloides samples. The SSR primer resource developed in this study provides a database for selecting highly transferable SSR markers with known physical position in the Populus genome and provides a comprehensive genetic tool to extend the genome sequence of Nisqually-1 to genetic studies in different Populus species.

  10. Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2015-01-01

    By examining variation in disease prevalence, mortality of healthy trees, and mortality of diseased trees, we showed that the role of disease in aspen tree mortality depended on the scale of inference. For variation among individuals in diameter, disease tended to expose intermediate-size trees experiencing moderate risk to greater risk. For spatial variation in summer temperature, disease exposed lower risk populations to greater mortality probabilities, but the magnitude of this exposure depended on summer precipitation. Furthermore, the importance of diameter and slenderness in mediating responses to climate supports the increasing emphasis on trait variation in studies of ecological responses to global change.

  11. Growth and mortality of trembling aspen (Populus tremuloides) in response to artificial defoliation

    NASA Astrophysics Data System (ADS)

    Moulinier, Julien; Lorenzetti, François; Bergeron, Yves

    2014-02-01

    To simulate the effects of forest tent caterpillar (FTC) defoliation on trembling aspen growth and mortality, an artificial defoliation experiment was performed over three years in young aspen stands of northwestern Quebec. Defoliation plots of 15 × 15 m were established on three sites, together with associated control stands of pure trembling aspen. In 2007, root collar diameters were measured and positions of all trees were mapped prior defoliation. Severe FTC defoliation was simulated for three successive years (2007-2009) by manually removing all leaves from all but 7-10% of the trees present in the defoliation plots. Yearly surveys of growth and mortality were conducted until 2010 to evaluate defoliation effects on defoliated as well as surrounding undefoliated trees. In absence of other factors, growth and mortality of trembling aspen decreased and increased, respectively, after defoliation. Our study further revealed that small diameter trees died after one year of artificial defoliation, while larger-diameter trees died after repeated defoliations. Distributions of tree mortality tended to be aggregated at small scales (<5 m), corroborating gap patterns observed in mature stands following FTC outbreaks. This experiment revealed that trembling aspen mortality can be directly attributed solely to defoliation. Repeated defoliations during FTC outbreaks have the potential to profoundly modify stand productivity and structure by reducing tree growth and increasing tree mortality in the absence of predisposing factors.

  12. Multilocus analysis of nucleotide variation and speciation in three closely related Populus (Salicaceae) species.

    PubMed

    Du, Shuhui; Wang, Zhaoshan; Ingvarsson, Pär K; Wang, Dongsheng; Wang, Junhui; Wu, Zhiqiang; Tembrock, Luke R; Zhang, Jianguo

    2015-10-01

    Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single-copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai-Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance-driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species. PMID:26334549

  13. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera.

    PubMed

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar - Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  14. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera

    PubMed Central

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar – Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  15. Internode length in pisum: do the internode length genes effect growth in dark-grown plants?

    PubMed

    Reid, J B

    1983-07-01

    Internode length in light-grown peas (Pisum sativum L.) is controlled by the interaction of genes occupying at least five major loci, Le, La, Cry, Na, and Lm. The present work shows that the genes at all of the loci examined (Le, Cry, and Na) also exert an effect on internode length in plants grown in complete darkness. Preliminary results using pure lines were verified using either segregating progenies or near isogenic lines. The major cause of the differences was due to a change in the number of cells per internode rather than to an alteration of the cell length. Since the genes occupying at least two of these loci, Le and Na, have been shown to be directly involved with gibberellin metabolism, it appears that gibberellins are not only essential for elongation in the dark but are limiting for elongation in the nana (extremely short, na), dwarf (Na le), and tall (Na Le) phenotypes. These results are supported by the large inhibitory effects of AMO 1618 treatments on stem elongation in dwarf and tall lines grown in the dark and the fact that applied gibberellic acid could overcome this inhibition and greatly promote elongation in a gibberellin-deficient na line. It is clear that the internode length genes, and in particular the alleles at the Le locus, are not acting by simply controlling the sensitivity of the plant to light. PMID:16663081

  16. Internode data communications in a parallel computer

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Miller, Douglas R.; Parker, Jeffrey J.; Ratterman, Joseph D.; Smith, Brian E.

    2013-09-03

    Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.

  17. Internode data communications in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E

    2014-02-11

    Internode data communications in a parallel computer that includes compute nodes that each include main memory and a messaging unit, the messaging unit including computer memory and coupling compute nodes for data communications, in which, for each compute node at compute node boot time: a messaging unit allocates, in the messaging unit's computer memory, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; receives, prior to initialization of a particular process on the compute node, a data communications message intended for the particular process; and stores the data communications message in the message buffer associated with the particular process. Upon initialization of the particular process, the process establishes a messaging buffer in main memory of the compute node and copies the data communications message from the message buffer of the messaging unit into the message buffer of main memory.

  18. Population genetics of Chrysomela tremulae: a first step towards management of transgenic Bacillus thuringiensis poplars Populus tremula x .P. tremuloides.

    PubMed

    Génissel, A; Viard, F; Bourguet, D

    2000-01-01

    Many strategies have been proposed for delaying the development of insect resistance to Bacillus thuringiensis (Bt). The current paradigm for Bt resistance management is the high dose-refuge strategy. For this strategy to be successful: (i) heterozygotes must be killed in treated areas, (ii) resistant alleles must be rare (frequency < 10-3), and (iii) there must be a high level of gene flow between populations to ensure random mating. We studied gene flow within and between populations with a view to managing the resistance of Chrysomela tremulae (Coleoptera: Chrysomelidae) to new transgenic, highly toxic poplars expressing a synthetic Bt gene. In this study, we assessed the extent of gene flow in C. tremulae within and between 16 sites in France and Belgium, using allozyme markers. We found a high level of genetic variability in C. tremulae, with a mean of 0.206 +/- 0.16. There were no obvious limitations to gene flow between populations of C. tremulae over large geographical distances (several hundreds of kilometres). Nevertheless, a very low level of genetic differentiation was observed between a site located in the south of France and the sampled sites from the Centre region. PMID:11338433

  19. Spring leaf flush in aspen (Populus tremuloides) clones is altered by growth at elevated carbon dioxide and elevated ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early spring leaf out is important to the success of trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how elevated carbon dioxide concentration and elevated ozone concentration altered leaf area index development in a clos...

  20. Contrasting Strategies of Alfalfa Stem Elongation in Response to Fall Dormancy in Early Growth Stage: The Tradeoff between Internode Length and Internode Number

    PubMed Central

    Wang, Zongli; Sun, Qizhong

    2015-01-01

    Fall dormancy (FD) in alfalfa (Medicago sativa L.) can be described using 11 FD ratings, is widely used as an important indicator of stress resistance, productive performance and spring growth. However, the contrasting growth strategies in internode length and internode number in alfalfa cultivars with different FD rating are poorly understood. Here, a growth chamber study was conducted to investigate the effect of FD on plant height, aboveground biomass, internode length, and internode number in alfalfa individuals in the early growth stages. In order to simulate the alfalfa growth environment in the early stage, 11 alfalfa cultivars with FD ratings from one to 11 were chosen and seeded at the greenhouse, and then were transplanted into an artificial growth chamber. The experimental design was a randomized complete block in a split-plot arrangement with three replicates. Plant height, above-ground biomass, internode length, and internode number were measured in early growth stage in all individuals. Our findings showed that plant height and the aboveground biomass of alfalfa did not significantly differ among 11 different FD rated cultivars. Also, internode length and internode number positively affected plant height and the aboveground biomass of alfalfa individuals and the average internode length significantly increased with increasing FD rating. However, internode number tended to sharply decline when the FD rating increased. Moreover, there were no correlations, slightly negative correlations, and strongly negative correlations between internode length and internode number in alfalfa individuals among the three scales, including within-FD ratings, within-FD categories and inter-FD ratings, respectively. Therefore, our results highlighted that contrasting growth strategies in stem elongation were adopted by alfalfa with different FD ratings in the early growth stage. Alfalfa cultivars with a high FD rating have longer internodes, whereas more dormant alfalfa

  1. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species

    PubMed Central

    Wang, Jing; Street, Nathaniel R.; Scofield, Douglas G.; Ingvarsson, Pär K.

    2016-01-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. PMID:26721855

  2. Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland.

    PubMed

    Oksanen, Elina; Manninen, Sirkku; Vapaavuori, Elina; Holopainen, Toini

    2009-12-01

    In this review the main growth responses of Finnish birch (Betula pendula, B. pubescens) and aspen species (Populus tremula and P. tremuloides x P. tremula) are correlated with ozone exposure, indicated as the AOT40 value. Data are derived from 23 different laboratory, open-top chamber, and free-air fumigation experiments. Our results indicate that these tree species are sensitive to increasing ozone concentrations, though high intraspecific variation exists. The roots are the most vulnerable targets in both genera. These growth reductions, determined from trees grown under optimal nutrient and water supply, were generally accompanied by increased visible foliar injuries, carbon allocation toward defensive compounds, reduced carbohydrate contents of leaves, impaired photosynthesis processes, disturbances in stomatal function, and earlier autumn senescence. Because both genera have shown complex ozone defense and response mechanisms, which are modified by variable environmental conditions, a mechanistically based approach is necessary for accurate ozone risk assessment. PMID:20175439

  3. The impact of internodal segmentation in biophysical nerve fiber models.

    PubMed

    Dekker, David M T; Briaire, Jeroen J; Frijns, Johan H M

    2014-10-01

    Implementation of double cable models to simulate the behavior of myelinated peripheral nerve fibers requires defining a segmentation of the internode between successive nodes of Ranvier. The number of internodal segments is a model parameter that is not well agreed on, with values in the literature ranging from 1 to more than 500. Moreover, a lot of studies also lack a sensitivity study or a rationale behind the implementation used. In a model of a myelinated nerve fiber developed in our group, the segmentation scheme (i.e., the number of segments and their individual morphology) strongly influenced model outcomes such as action potential shape and velocity, stimulation threshold and absolute refractory period. In the present study these influences were investigated systematically in homogeneous neurons with different diameters. Uniformly segmented internodes were found to require several hundreds of segments (and associated computational power) to reach model outcomes differing by less than 1 % from the asymptotic value. In fact, in the majority of segmentation schemes the main determinant is not the number of segments, but the length λ of the internodal segments directly adjacent to the nodes of Ranvier. If λ is larger than approximately 10 μm, model outcomes for the tested fibers are almost independent of the total number of segments. Furthermore, λ can be optimized to enable models using just three segments per internode, to reach physiologically relevant model outcomes with limited computational resources. However, to study anatomical or physiological details of the internode itself, an appropriately detailed segmentation scheme is crucial. PMID:24827400

  4. THE BRASSICA RAPA ELONGATED INTERNODE (EIN) GENE ENCODES PHYTOCHROME B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elongated internode (ein) mutation of Brassica rapa leads to a deficiency in immunochemically detectable phytochrome B. Molecular analysis of the PHYB gene from ein indicates a deletion in the flanking DNA 5' of the ATG start codon, which could interfere either with PHYB transcription or process...

  5. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice

    PubMed Central

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-01-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. Deepwater rice obtained the ability for rapid internode elongation to avoid drowning and adapt to flooded condition. How does it regulate internode elongation? Using both physiological and genetic approach, this paper shows that the plant hormone, gibberellin (GA) regulates internode elongation. PMID:24891164

  6. Changes in myelin sheath thickness and internode geometry in the rabbit phrenic nerve during growth.

    PubMed Central

    Friede, R L; Brzoska, J; Hartmann, U

    1985-01-01

    The rabbit phrenic nerve was studied at seven phases of growth from the newborn to the adult to determine the length of the nerve fibres, the length of the internodes, the fibre calibre, the geometric proportions of the internodes and the thickness of the myelin sheaths. The elongation of the internodes corresponded precisely to the elongation of the nerve, indicating a constant number of approximately 140 internodes per fibre, each internode elongating commensurate with body growth. Internode elongation was accompanied by increases in fibre calibre, but these parameters did not change in precise proportion. The internodes of thick fibres were relatively short for calibre, as defined by the length/diameter quotient. This trend of foreshortening changed during growth. Sheath thickness, defined by the quotient axon diameter/fibre diameter, was determined with a computer-assisted method. Fibres of young rabbits had relatively thin sheaths for axon calibre, compared with adult rabbits. The changes in sheath thickness corresponded to the changes in internode geometry. This was consistent with previous studies showing that elongation or foreshortening of an internode of a given calibre has a slight, but definite effect on the thickness of its myelin sheath. PMID:3870716

  7. Proteomics of Leaf Tissues from Populus

    SciTech Connect

    Hurst, Gregory {Greg} B; Yang, Xiaohan; Tschaplinski, Timothy J; Tuskan, Gerald A; Lankford, Patricia K; Shah, Manesh B; Jawdy, Sara; Gunter, Lee E; Engle, Nancy L

    2010-01-01

    Trees of the genus Populus are farmed commercially for wood and fiber, and are a potential bioenergy crop. As a scientific model organism, P. trichocarpa was the first forest tree for which the genome sequence has been determined. Knowledge of the Populus proteome will provide a deeper understanding of gene expression patterns in various tissues of the plant. To build on our previous profile of the proteome of xylem tissue in Populus (Kalluri et al., Proteomics 2009, 9, 4871), we are currently developing methods for studying the proteome of Populus leaves.

  8. Profile based image analysis for identification of chopped biomass stem nodes and internodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of their significant variation in chemical composition, segregation of chopped biomass into nodes and internodes helps in efficient utilization of these feedstocks. Stem internodes having low ash content are a better feedstock for bioenergy and biofuel applications than nodes. However, separ...

  9. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.

    PubMed

    Kostiainen, Katri; Saranpää, Pekka; Lundqvist, Sven-Olof; Kubiske, Mark E; Vapaavuori, Elina

    2014-06-01

    We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free-air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3 ] during growing seasons 1998-2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2- and O3-exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone-specific decrease in wood density and cell wall thickness was observed under elevated CO2 . In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short-term impact studies conducted with young seedlings may not give a realistic view of long-term ecosystem responses. PMID:24372544

  10. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees

    SciTech Connect

    Potkar, Rewati; Recla, Jill; Busov, Victor

    2013-02-15

    Highlights: ► We show a novel microRNA-mediated mechanism for control of bud dormancy in trees. ► ptr-MIR169a and PtrHAP2–5 gene showed inverse expression during dormancy period. ► The PtrHAP2–5 decline in abundance correlated with high ptr-MIR169a levels. ► PtrHAP2–5 cleavage occurred at the miR169 site during PtrHAP2–5 transcript decline. ► Our results show that miR169 attenuates PtrHAP2–5 transcript during dormancy. -- Abstract: Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed in dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2–5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2–5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2–5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2–5 transcript. We experimentally verified the cleavage of PtrHAP2–5 at the predicted miR169a site at the time when PtrHAP2–5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.

  11. Characean internodal cells as a model system for the study of cell organization.

    PubMed

    Foissner, Ilse; Wasteneys, Geoffrey O

    2014-01-01

    Giant internodal cells of characean green algae have been widely used for studying cellular physiology. This review emphasizes their significance for understanding cytoarchitecture and cytoplasmic reorganization. The cytoarchitecture of internodal cells undergoes pronounced, cytoskeleton-dependent changes during development and in response to environmental cues. Under bright light, internodes develop alternating bands of acid and alkaline pH at their surface that correlate with the differential size and abundance of cortical organelles and, in the genus Chara, with the size and distribution of convoluted plasma membrane domains known as charasomes. Wounding induces responses ranging from chloroplast detachment to deposition of wound walls. These properties and the possibility for mechanical manipulation make the internodal cell ideal for exploring plasma membrane domains, organelle interactions, vesicle trafficking, and local cell wall deposition. The significance of this model system will further increase with the application of molecular biological methods in combination with metabolomics and proteomics. PMID:24952921

  12. Plasmalogen phospholipids protect internodal myelin from oxidative damage.

    PubMed

    Luoma, Adrienne M; Kuo, Fonghsu; Cakici, Ozgur; Crowther, Michelle N; Denninger, Andrew R; Avila, Robin L; Brites, Pedro; Kirschner, Daniel A

    2015-07-01

    Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin. PMID:25801291

  13. Clone history shapes Populus drought responses.

    PubMed

    Raj, Sherosha; Bräutigam, Katharina; Hamanishi, Erin T; Wilkins, Olivia; Thomas, Barb R; Schroeder, William; Mansfield, Shawn D; Plant, Aine L; Campbell, Malcolm M

    2011-07-26

    Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids. PMID:21746919

  14. Differentiation and functional connection of vascular elements in compatible and incompatible pear/quince internode micrografts.

    PubMed

    Espen, Luca; Cocucci, Maurizio; Sacchi, Gian Attilio

    2005-11-01

    Micrografts of internodes excised from in vitro grown pear plants (Pyrus communis L. cv. 'Bosc' (B) and cv. 'Butirra Hardy' (BH)) and quince (Cydonia oblonga Mill. East Malling clone C (EMC)), were cultured aseptically to test the effectiveness of their functional vascular reconnection in relation to incompatibility-compatibility relationships that these genotypes exhibit in the field. The incompatible heterograft (B/EMC) showed a marked delay in internode cohesion compared with the autografts (both B/B and BH/BH) and the compatible heterograft (BH/EMC). Even when fused, the translocation of [14C]-sorbitol from upper to lower internode was lower in B/EMC micrografts than in the other combinations. Epifluorescence studies performed with carboxyfluorescin, a specific phloem probe, indicated that the limited translocation was caused by a delay in the establishment of functional phloem continuity between the two internodes. In the B/EMC combination, new differentiated tracheary elements (TE) in the parenchyma tissue at the graft interface between the two internodes were not detected until 30 days after grafting, whereas in the BH/EMC heterograft and both autografts, new xylem connections appeared to cross the interface 20 days after grafting. Immunohistochemical detection (terminal nick-end labeling assay) of the number of cells undergoing nuclear DNA fragmentation at the graft interface confirmed that the limited and delayed TE differentiation in B/EMC heterografts was associated with a decrease in the activity of programmed cell death processes involved in the differentiation of TE. PMID:16105809

  15. The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves

    PubMed Central

    Ivanovic, Aleksandra; Horresh, Ido; Golan, Neev; Spiegel, Ivo; Sabanay, Helena; Frechter, Shahar; Ohno, Shinichi; Terada, Nobuo; Möbius, Wiebke; Rosenbluth, Jack; Brose, Nils

    2012-01-01

    Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G−/− mice, these proteins “piled up” at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface. PMID:22291039

  16. Epigenomics of Development in Populus

    SciTech Connect

    Strauss, Steve; Freitag, Michael; Mockler, Todd

    2013-01-10

    We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from eleven target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue

  17. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)

    SciTech Connect

    Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev,I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho,P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Dejardin, A.; dePamphillis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehiting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjarvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leple, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin,F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, D.; Nieminen, K.; Nilsson, O.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouze, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui,A.; Sterky, F.; Terry, A.; Tsai, C.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra,M.; Sandberg, G.; Van der Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. Over 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event, with approximately 8,000 pairs of duplicated genes from that event surviving in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication and gross chromosomal rearrangement appear to proceed substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with disease resistance, meristem development, metabolite transport and lignocellulosic wall biosynthesis.

  18. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)

    SciTech Connect

    Tuskan, Gerald A; DiFazio, Stephen P; Jansson, Bo S; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putman, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R. R.; Bhalerao, Rishikesh P; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Larimer, Frank W; Detter, J C; Richardson, P M; Chen, Gwo-Liang; Gunter, Lee E; Kalluri, Udaya C; LoCascio, Philip F; Uberbacher, Edward C; Yin, Tongming

    2006-01-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

  19. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)

    NASA Astrophysics Data System (ADS)

    Tuskan, G. A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R. R.; Bhalerao, R. P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho, P. M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Déjardin, A.; dePamphilis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehlting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjärvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leplé, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin, F.; Montanini, B.; Napoli, C.; Nelson, D. R.; Nelson, C.; Nieminen, K.; Nilsson, O.; Pereda, V.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouzé, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui, A.; Sterky, F.; Terry, A.; Tsai, C.-J.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra, M.; Sandberg, G.; Van de Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

  20. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing

    PubMed Central

    Ford, Marc C.; Alexandrova, Olga; Cossell, Lee; Stange-Marten, Annette; Sinclair, James; Kopp-Scheinpflug, Conny; Pecka, Michael; Attwell, David; Grothe, Benedikt

    2015-01-01

    Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing. PMID:26305015

  1. The role of nodal and internodal responses in gravitropism and autotropism in Galium aparine L

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Brown, A. H. (Principal Investigator)

    1987-01-01

    This time course and location of gravitropically induced curvatures in stems of goosegrass (Gallium aparine L.), a member of the Rubiaceae, have been investigated. In the early stages of the response (0-5 h), curvature develops throughout the growing region, and is followed by an autotropic straightening which affects the internodes only, leading to the production of essentially straight internodes some 15 h after the onset of gravistimulation. Curvatures developing in the nodal regions, however, continue to increase over this period, and are not subject to reversal by autotropism. The nodal curvatures are not entirely dependent on the presence of any other part of the plant, since marked curvatures can be induced in isolated nodal segments. This pattern of response leads ultimately to correction of the growth direction of the plant by means of curvature responses confined exclusively to the nodes, despite the initial participation of both nodes and internodes in the gravitropic reaction.

  2. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing.

    PubMed

    Ford, Marc C; Alexandrova, Olga; Cossell, Lee; Stange-Marten, Annette; Sinclair, James; Kopp-Scheinpflug, Conny; Pecka, Michael; Attwell, David; Grothe, Benedikt

    2015-01-01

    Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing. PMID:26305015

  3. Terra Populus and DataNet Collaboration

    NASA Astrophysics Data System (ADS)

    Kugler, T.; Ruggles, S.; Fitch, C. A.; Clark, P. D.; Sobek, M.; Van Riper, D.

    2012-12-01

    Terra Populus, part of NSF's new DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. Terra Populus will incorporate large microdata and aggregate census datasets from the United States and around the world, as well as land use, land cover, climate and other environmental datasets. These data are widely dispersed, exist in a variety of data structures, have incompatible or inadequate metadata, and have incompatible geographic identifiers. Terra Populus is developing methods of integrating data from different domains and translating across data structures based on spatio-temporal linkages among data contents. The new infrastructure will enable researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world. Terra Populus will partner with data archives, data producers, and data users to create a sustainable international organization that will guarantee preservation and access over multiple decades. Terra Populus is also collaborating with the other projects in the DataNet initiative - DataONE, the DataNet Federation Consortium (DFC) and Sustainable Environment-Actionable Data (SEAD). Taken together, the four projects address aspects of the entire data lifecycle, including planning, collection, documentation, discovery, integration, curation, preservation, and collaboration; and encompass a wide range of disciplines including earth sciences, ecology, social sciences, hydrology, oceanography, and engineering. The four projects are pursuing activities to share data, tools, and expertise between pairs of projects as well as collaborating across the DataNet program on issues of cyberinfrastructure and community engagement. Topics to be addressed through program-wide collaboration include technical, organizational, and financial sustainability; semantic

  4. Identification of nodes and internodes of chopped biomass stems by Image analysis using profile curvature and slope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Morphological components of biomass stems vary in their chemical composition and they can be better utilized when processed after segregation. Within the stem, nodes and internodes have significantly different compositions. The internodes have low ash content and are a better feedstock for bioenergy...

  5. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa x P. deltoides clones.

    PubMed

    Bassman, J H; Zwier, J C

    1991-03-01

    Responses of net photosynthesis, dark respiration, photorespiration, transpiration, and stomatal conductance to irradiance, temperature, leaf-to-air vapor density difference (VDD), and plant water stress were examined in two Populus trichocarpa clones (one from a moist, coastal climate in western Washington and one from a dry, continental climate in eastern Washington), one P. deltoides clone, and two P. trichocarpa x P. deltoides clones. Light saturation of photosynthesis in greenhouse-grown trees occurred at about 800 micromol m(-2) s(-1) for P. deltoides, P. trichocarpa x P. deltoides, and the eastern Washington ecotype of P. trichocarpa, but at about 600 micromol m(-2) s(-1) for the western Washington ecotype of P. trichocarpa. Average net photosynthesis (at saturating irradiance and the optimum temperature of 25 degrees C) was 20.7, 18.8, 18.2 and 13.4 micromol CO(2) m(-2) s(-1) for P. deltoides, P. trichocarpa x P. deltoides, and the eastern and western Washington clones of P. trichocarpa, respectively. In all clones, net photosynthesis decreased about 14% as VDD increased from 3 to 18 g H(2)O m(-3). Stomatal conductance decreased sharply with decreasing xylem pressure potential (XPP) in all clones except the western Washington clone of P. trichocarpa. Stomata in this clone were insensitive to changes in XPP and did not control water loss. Complete stomatal closure (stomatal conductance < 0.05 cm s(-1)) occurred at about -2.0 MPa in the eastern Washington clone of P. trichocarpa and around -1.25 MPa in the P. deltoides and P. trichocarpa x P. deltoides clones. Transpiration rates were highest in the P. trichocarpa x P. deltoides clone and lowest in the western Washington clone of P. trichocarpa. The P. deltoides clone and eastern Washington clone of P. trichocarpa had the highest water use efficiency (WUE) and the western Washington clone of P. trichocarpa had the lowest WUE. The hybrids were intermediate. It was concluded that: (1) gas exchange

  6. Populus species from diverse habitats maintain high night-time conductance under drought.

    PubMed

    Cirelli, Damián; Equiza, María Alejandra; Lieffers, Victor James; Tyree, Melvin Thomas

    2016-02-01

    We investigated the interspecific variability in nocturnal whole-plant stomatal conductance under well-watered and drought conditions in seedlings of four species of Populus from habitats characterized by abundant water supply (mesic and riparian) or from drier upland sites. The study was carried out to determine whether (i) nocturnal conductance varies across different species of Populus according to their natural habitat, (ii) nocturnal conductance is affected by water stress similarly to daytime conductance based on species habitat and (iii) differences in conductance among species could be explained partly by differences in stomatal traits. We measured whole-plant transpiration and conductance (G) of greenhouse-grown seedlings using an automated high-resolution gravimetric technique. No relationship was found between habitat preference and daytime G (GD), but night-time G (GN) was on average 1.5 times higher in riparian and mesic species (P. deltoides Bartr. ex Marsh. and P. trichocarpa Torr. & Gray) than in those from drier environments (P. tremuloides Michx. and P. × petrowskyana Schr.). GN was not significantly reduced under drought in riparian species. Upland species restricted GN significantly in response to drought, but it was still at least one order of magnitude greater that the cuticular conductance until leaf death was imminent. Under both well-watered and drought conditions, GN declined with increasing vapour pressure deficit (D). Also, a small increase in GN towards the end of the night period was observed in P. deltoides and P. × petrowskyana, suggesting the involvement of endogenous regulation. The anatomical analyses indicated a positive correlation between G and variable stomatal pore index among species and revealed that stomata are not likely to be leaky but instead seem capable of complete occlusion, which raises the question of the possible physiological role of the significant GN observed under drought. Further comparisons among

  7. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    PubMed

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice. PMID:22286805

  8. Identification of nodes and internodes of chopped biomass stems by Image analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Separating the morphological components of biomass leads to better handling, more efficient processing as well as value added product generation, as these components vary in their chemical composition and can be preferentially utilized. Nodes and internodes of biomass stems have distinct chemical co...

  9. Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning.

    PubMed

    Yamamoto, Kyosuke; Guo, Wei; Ninomiya, Seishi

    2016-01-01

    Seedling vigor in tomatoes determines the quality and growth of fruits and total plant productivity. It is well known that the salient effects of environmental stresses appear on the internode length; the length between adjoining main stem node (henceforth called node). In this study, we develop a method for internode length estimation using image processing technology. The proposed method consists of three steps: node detection, node order estimation, and internode length estimation. This method has two main advantages: (i) as it uses machine learning approaches for node detection, it does not require adjustment of threshold values even though seedlings are imaged under varying timings and lighting conditions with complex backgrounds; and (ii) as it uses affinity propagation for node order estimation, it can be applied to seedlings with different numbers of nodes without prior provision of the node number as a parameter. Our node detection results show that the proposed method can detect 72% of the 358 nodes in time-series imaging of three seedlings (recall = 0.72, precision = 0.78). In particular, the application of a general object recognition approach, Bag of Visual Words (BoVWs), enabled the elimination of many false positives on leaves occurring in the image segmentation based on pixel color, significantly improving the precision. The internode length estimation results had a relative error of below 15.4%. These results demonstrate that our method has the ability to evaluate the vigor of tomato seedlings quickly and accurately. PMID:27399708

  10. Catalyst Transport in Corn Stover Internodes: Elucidating Transport Mechanisms Using Direct Blue-I

    SciTech Connect

    Viamajala, S.; Selig, M. J.; Vinzant, T. B.; Tucker, M. P.; Himmel, M. E.; McMillan, J. D.; Decker, S. R.

    2006-04-01

    The transport of catalysts (chemicals and enzymes) within plant biomass is believed to be a major bottleneck during thermochemical pretreatment and enzymatic conversion of lignocellulose. Subjecting biomass to size reduction and mechanical homogenization can reduce catalyst transport limitations; however, such processing adds complexity and cost to the over-all process. Using high-resolution light microscopy, we have monitored the transport of an aqueous solution of Direct Blue-I (DB-I) dye through intact corn internodes under a variety of impregnation conditions. DB-I is a hydrophilic anionic dye with affinity for cellulose. This model system has enabled us to visualize likely barriers and mechanisms of catalyst transport in corn stems. Microscopic images were compared with calculated degrees of saturation (i.e., volume fraction of internode void space occupied by dye solution) to correlate impregnation strategies with dye distribution and transport mechanisms. Results show the waxy rind exterior and air trapped within individual cells to be the major barriers to dye transport, whereas the vascular bundles, apoplastic continuum (i.e., the intercellular void space at cell junctions), and fissures formed during the drying process provided the most utilized pathways for transport. Although representing only 20-30% of the internode volume, complete saturation of the apoplast and vascular bundles by fluid allowed dye contact with a majority of the cells in the internode interior.

  11. Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning

    PubMed Central

    Yamamoto, Kyosuke; Guo, Wei; Ninomiya, Seishi

    2016-01-01

    Seedling vigor in tomatoes determines the quality and growth of fruits and total plant productivity. It is well known that the salient effects of environmental stresses appear on the internode length; the length between adjoining main stem node (henceforth called node). In this study, we develop a method for internode length estimation using image processing technology. The proposed method consists of three steps: node detection, node order estimation, and internode length estimation. This method has two main advantages: (i) as it uses machine learning approaches for node detection, it does not require adjustment of threshold values even though seedlings are imaged under varying timings and lighting conditions with complex backgrounds; and (ii) as it uses affinity propagation for node order estimation, it can be applied to seedlings with different numbers of nodes without prior provision of the node number as a parameter. Our node detection results show that the proposed method can detect 72% of the 358 nodes in time-series imaging of three seedlings (recall = 0.72, precision = 0.78). In particular, the application of a general object recognition approach, Bag of Visual Words (BoVWs), enabled the elimination of many false positives on leaves occurring in the image segmentation based on pixel color, significantly improving the precision. The internode length estimation results had a relative error of below 15.4%. These results demonstrate that our method has the ability to evaluate the vigor of tomato seedlings quickly and accurately. PMID:27399708

  12. Morpho-anatomical traits of two lowest internodes related to lodging resistance in selected genotypes of Triticum

    NASA Astrophysics Data System (ADS)

    Packa, Danuta; Wiwart, Marian; Suchowilska, Elżbieta; Bieńkowska, Teresa

    2015-10-01

    The cross-sections of first and second internodes were analyzed under a light and fluorescence microscopes in six varieties of Triticum spelta, two varieties of T. polonicum, and one variety of T. aestivum. The morphometric parameters of stem cross-sections were measured. The analyzed wheats were characterized by significant differences in traits associated with lodging resistance ie: internode diameter, lumen diameter, stem wall thickness, mechanical layer thickness, area of transverse section, and area of lumen for the first and second internode and between the internodes. In all varieties, the values of internode diameter, lumen diameter, area of transverse section and area of lumen were higher for the second internode than for the first internode, whereas the reverse was reported for stem wall thickness and mechanical layer thickness The results of the principal component analysis and section modulus values revealed similarities between spring spelt Wirtas and Rubinas and between common wheat Kontesa and winter spelt Poeme and Epanis. The number of large vascular bundles varied across the studied varieties. The average number of vascular bundles in common wheat Kontesa was significantly higher than in spring spelt Rubinas and Wirtas and significantly lower than in Polish wheat Pol-3 and winter spelt Epanis and Poeme.

  13. Rose bush leaf and internode expansion dynamics: analysis and development of a model capturing interplant variability

    PubMed Central

    Demotes-Mainard, Sabine; Bertheloot, Jessica; Boumaza, Rachid; Huché-Thélier, Lydie; Guéritaine, Gaëlle; Guérin, Vincent; Andrieu, Bruno

    2013-01-01

    Rose bush architecture, among other factors, such as plant health, determines plant visual quality. The commercial product is the individual plant and interplant variability may be high within a crop. Thus, both mean plant architecture and interplant variability should be studied. Expansion is an important feature of architecture, but it has been little studied at the level of individual organs in rose bushes. We investigated the expansion kinetics of primary shoot organs, to develop a model reproducing the organ expansion of real crops from non-destructive input variables. We took interplant variability in expansion kinetics and the model's ability to simulate this variability into account. Changes in leaflet and internode dimensions over thermal time were recorded for primary shoot expansion, on 83 plants from three crops grown in different climatic conditions and densities. An empirical model was developed, to reproduce organ expansion kinetics for individual plants of a real crop of rose bush primary shoots. Leaflet or internode length was simulated as a logistic function of thermal time. The model was evaluated by cross-validation. We found that differences in leaflet or internode expansion kinetics between phytomer positions and between plants at a given phytomer position were due mostly to large differences in time of organ expansion and expansion rate, rather than differences in expansion duration. Thus, in the model, the parameters linked to expansion duration were predicted by values common to all plants, whereas variability in final size and organ expansion time was captured by input data. The model accurately simulated leaflet and internode expansion for individual plants (RMSEP = 7.3 and 10.2% of final length, respectively). Thus, this study defines the measurements required to simulate expansion and provides the first model simulating organ expansion in rosebush to capture interplant variability. PMID:24167509

  14. Simplification of a light-based model for estimating final internode length in greenhouse cucumber canopies

    PubMed Central

    Kahlen, Katrin; Stützel, Hartmut

    2011-01-01

    Background and Aims Light quantity and quality affect internode lengths in cucumber (Cucumis sativus), whereby leaf area and the optical properties of the leaves mainly control light quality within a cucumber plant community. This modelling study aimed at providing a simple, non-destructive method to predict final internode lengths (FILs) using light quantity and leaf area data. Methods Several simplifications of a light quantity and quality sensitive model for estimating FILs in cucumber have been tested. The direct simplifications substitute the term for the red : far-red (R : FR) ratios, by a term for (a) the leaf area index (LAI, m2 m−2) or (b) partial LAI, the cumulative leaf area per m2 ground, where leaf area per m2 ground is accumulated from the top of each plant until a number, n, of leaves per plant is reached. The indirect simplifications estimate the input R : FR ratio based on partial leaf area and plant density. Key Results In all models, simulated FILs were in line with the measured FILs over various canopy architectures and light conditions, but the prediction quality varied. The indirect simplification based on leaf area of ten leaves revealed the best fit with measured data. Its prediction quality was even higher than of the original model. Conclusions This study showed that for vertically trained cucumber plants, leaf area data can substitute local light quality data for estimating FIL data. In unstressed canopies, leaf area over the upper ten ranks seems to represent the feedback of the growing architecture on internode elongation with respect to light quality. This highlights the role of this domain of leaves as the primary source for the specific R : FR signal controlling the final length of an internode and could therefore guide future research on up-scaling local processes to the crop level. PMID:21642233

  15. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis

    PubMed Central

    Chen, Jun; Shen, Jinbo; Zhang, Baocai; Ren, Yulong; Ding, Yu; Zhou, Yihua; Zhang, Huan; Zhou, Kunneng; Wang, Jiu-Lin; Lei, Cailin; Zhang, Xin; Guo, Xiuping; Gao, He; Bao, Yiqun; Wan, Jian-Min

    2016-01-01

    The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components. PMID:27055010

  16. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis.

    PubMed

    Ma, Jin; Cheng, Zhijun; Chen, Jun; Shen, Jinbo; Zhang, Baocai; Ren, Yulong; Ding, Yu; Zhou, Yihua; Zhang, Huan; Zhou, Kunneng; Wang, Jiu-Lin; Lei, Cailin; Zhang, Xin; Guo, Xiuping; Gao, He; Bao, Yiqun; Wan, Jian-Min

    2016-01-01

    The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components. PMID:27055010

  17. Differences in Membrane Properties in Simulated Cases of Demyelinating Neuropathies: Internodal Focal Demyelinations with Conduction Block

    PubMed Central

    Daskalova, M. S.; Alexandrov, A. S.

    2006-01-01

    The aim of this study is to investigate the membrane properties (potentials and axonal excitability indices) in the case of myelin wrap reduction (96%) in one, two and three consecutive internodes along the length of human motor nerve fibre. The internodally focally demyelinated cases (termed as IFD1, IFD2 and IFD3, respectively, with one, two and three demyelinated internodes are simulated using our previous double cable model of the fibre. The progressively greater increase of focal loss of myelin lamellae blocks the invasion of the intracellular potentials into the demyelinated zones. For all investigated cases, the radial decline of the extracellular potential amplitudes increases with the increase of the radial distance and demyelination, whereas the electrotonic potentials show a decrease in the slow part of the depolarizing and hyperpolarizing responses. The time constants are shorter and the rheobases higher for the IFD2 and IFD3 cases than for the normal case. In the recovery cycles, the same cases have less refractoriness, greater supernormality and less late subnormality than the normal case. The simulated membrane abnormalities can be observed in vivo in patients with demyelinating forms of Guillain-Barré syndrome. The study provides new information about the pathophysiology of acquired demyelinating neuropathies. PMID:19669456

  18. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize

    PubMed Central

    Avila, Luis M.; Cerrudo, Diego; Swanton, Clarence

    2016-01-01

    In maize (Zea mays L.), as in other grass species, stem elongation occurs during growth and most noticeably upon the transition to flowering. Genes that reduce stem elongation have been important to reduce stem breakage, or lodging. Stem elongation has been mediated by dwarf and brachytic/brevis plant mutants that affect giberellic acid and auxin pathways, respectively. Maize brevis plant1 (bv1) mutants, first identified over 80 years ago, strongly resemble brachytic2 mutants that have shortened internodes, short internode cells, and are deficient in auxin transport. Here, we characterized two novel bv1 maize mutants. We found that an inositol polyphosphate 5-phosphatase orthologue of the rice gene dwarf50 was the molecular basis for the bv1 phenotype, implicating auxin-mediated inositol polyphosphate and/or phosphoinositide signalling in stem elongation. We suggest that auxin-mediated internode elongation involves processes that also contribute to stem gravitropism. Genes misregulated in bv1 mutants included genes important for cell wall synthesis, transmembrane transport, and cytoskeletal function. Mutant and wild-type plants were indistinguishable early in development, responded similarly to changes in light quality, had unaltered flowering times, and had normal flower development. These attributes suggest that breeding could utilize bv1 alleles to increase crop grain yields. PMID:26767748

  19. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize.

    PubMed

    Avila, Luis M; Cerrudo, Diego; Swanton, Clarence; Lukens, Lewis

    2016-03-01

    In maize (Zea mays L.), as in other grass species, stem elongation occurs during growth and most noticeably upon the transition to flowering. Genes that reduce stem elongation have been important to reduce stem breakage, or lodging. Stem elongation has been mediated by dwarf and brachytic/brevis plant mutants that affect giberellic acid and auxin pathways, respectively. Maize brevis plant1 (bv1) mutants, first identified over 80 years ago, strongly resemble brachytic2 mutants that have shortened internodes, short internode cells, and are deficient in auxin transport. Here, we characterized two novel bv1 maize mutants. We found that an inositol polyphosphate 5-phosphatase orthologue of the rice gene dwarf50 was the molecular basis for the bv1 phenotype, implicating auxin-mediated inositol polyphosphate and/or phosphoinositide signalling in stem elongation. We suggest that auxin-mediated internode elongation involves processes that also contribute to stem gravitropism. Genes misregulated in bv1 mutants included genes important for cell wall synthesis, transmembrane transport, and cytoskeletal function. Mutant and wild-type plants were indistinguishable early in development, responded similarly to changes in light quality, had unaltered flowering times, and had normal flower development. These attributes suggest that breeding could utilize bv1 alleles to increase crop grain yields. PMID:26767748

  20. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    SciTech Connect

    Labbe, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-10-24

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite trophic interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two other Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were also included as reference in the screening process. We analyzed Laccaria bicolor S238N growth rate, mycelial architecture and transcriptional changes induced by the contrasting Pseudomonas strains (i.e., inhibitory, neutral and beneficial). We characterized 17 out of the 21 Pseudomonas strains from the Populus rhizosphere with positive effects on L. bicolor S238N growth, as well as on Populus root architecture and colonization by L. bicolor S238N across three Populus species. Four of seven reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be specific to the interaction with strain BBc6R8, were induced or repressed while interacting with six (i.e., GM17, GM33, GM41, GM48, Pf-5 and BBc6R8) of the tested Pseudomonas strains. GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise, poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve roots colonization. This tripartite relationship could be exploited in nursery production for target Populus species/genotypes as a means of improving establishment and survival in marginal lands.

  1. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    DOE PAGESBeta

    Labbe, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-10-24

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite trophic interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two other Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were also included as reference in the screening process. We analyzed Laccaria bicolor S238N growth rate, mycelial architecture and transcriptional changes induced by the contrasting Pseudomonas strains (i.e., inhibitory, neutral and beneficial).more » We characterized 17 out of the 21 Pseudomonas strains from the Populus rhizosphere with positive effects on L. bicolor S238N growth, as well as on Populus root architecture and colonization by L. bicolor S238N across three Populus species. Four of seven reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be specific to the interaction with strain BBc6R8, were induced or repressed while interacting with six (i.e., GM17, GM33, GM41, GM48, Pf-5 and BBc6R8) of the tested Pseudomonas strains. GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise, poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve roots colonization. This tripartite relationship could be exploited in nursery production for target Populus species/genotypes as a means of improving establishment and survival in marginal lands.« less

  2. Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L.. Differentiation between Populus nigra, Populus alba and Populus tremula.

    PubMed

    Alcalde-Eon, Cristina; García-Estévez, Ignacio; Rivas-Gonzalo, Julián C; Rodríguez de la Cruz, David; Escribano-Bailón, María Teresa

    2016-08-01

    Three main species of Popululs L. (Salicaceae) have been reported to occur in the Iberian Peninsula: Populus nigra L., Populus alba L. and Populus tremula L. The degree of pilosity of the bracts of the male catkins is a key character for their differentiation. The anthers of these poplar species possess anthocyanins that provide them a red colouration. Since these poplars are wind-pollinated and, consequently, do not need to attract pollinators, anthocyanins in the anthers might be acting as photoprotectors, shielding pollen grains from excessive sunlight. In order to verify this hypothesis, the first objective of this study was to establish if there is any relationship between the degree of pilosity of the bracts (related to the physical shading of the pollen grains) and the levels and types of anthocyanins in the anthers of these three species. This study also aimed to check the usefulness of the anthocyanins of the anthers as chemotaxonomic markers, through the study of the differences in the anthocyanin composition between these poplar species. Anthocyanins were identified from the data supplied by HPLC-DAD-MS(n) analyses. Seventeen different compounds, including mono-, di- and triglycosides and anthocyanin-derived pigments (F-A(+) dimers) have been identified. Cyanidin 3-O-glucoside was the major compound in all the samples (>60% of the total content), which may be in accordance with the photoprotective role proposed for them. However, qualitative and quantitative differences were detected among samples. Cyanidin and delphinidin 3-O-sambubiosides have been detected only in the anthers of P. tremula as well as cyanidin 3-O-(2″-O-xyloxyl)rutinoside, making them valuable chemotaxonomic markers for this species. Hierarchical Cluster and Principal Components Analyses (HCA and PCA) carried out with the anthocyanin percent composition data have allowed a separation of the samples that is in accordance with the initial classification of the samples made from the

  3. Predicting Plant Performance Under Simultaneously Changing Environmental Conditions—The Interplay Between Temperature, Light, and Internode Growth

    PubMed Central

    Kahlen, Katrin; Chen, Tsu-Wei

    2015-01-01

    Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates, and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system's analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modeling temperature effects on plant development and growth is discussed. PMID:26734036

  4. Populus: arabidopsis for forestry. Do we need a model tree?

    PubMed

    Taylor, Gail

    2002-12-01

    Trees are used to produce a variety of wood-based products including timber, pulp and paper. More recently, their use as a source of renewable energy has also been highlighted, as has their value for carbon mitigation within the Kyoto Protocol. Relative to food crops, the domestication of trees has only just begun; the long generation time and complex nature of juvenile and mature growth forms are contributory factors. To accelerate domestication, and to understand further some of the unique processes that occur in woody plants such as dormancy and secondary wood formation, a 'model' tree is needed. Here it is argued that Populus is rapidly becoming accepted as the 'model' woody plant and that such a 'model' tree is necessary to complement the genetic resource being developed in arabidopsis. The genus Populus (poplars, cottonwoods and aspens) contains approx. 30 species of woody plant, all found in the Northern hemisphere and exhibiting some of the fastest growth rates observed in temperate trees. Populus is fulfilling the 'model' role for a number of reasons. First, and most important, is the very recent commitment to sequence the Populus genome, a project initiated in February 2002. This will be the first woody plant to be sequenced. Other reasons include the relatively small genome size (450-550 Mbp) of Populus, the large number of molecular genetic maps and the ease of genetic transformation. Populus may also be propagated vegetatively, making mapping populations immortal and facilitating the production of large amounts of clonal material for experimentation. Hybridization occurs routinely and, in these respects, Populus has many similarities to arabidopsis. However, Populus also differs from arabidopsis in many respects, including being dioecious, which makes selfing and back-cross manipulations impossible. The long time-to-flower is also a limitation, whilst physiological and biochemical experiments are more readily conducted in Populus compared with the

  5. Differences in Membrane Properties in Simulated Cases of Demyelinating Neuropathies: Internodal Focal Demyelinations without Conduction Block

    PubMed Central

    Daskalova, M. S.; Alexandrov, A. S.

    2006-01-01

    The membrane properties (intracellular, extracellular, electrotonic potentials, strength-duration time constants, rheobasic currents and recovery cycles), which can now be measured in healthy subjects and patients with demyelinating neuropathies, are investigated in simulated cases of focal reduction (70%) of the myelin sheath in one, two and three successive internodal segments along the length of human motor fibres. The internodally focally demyelinated cases (termed as IFD1, IFD2 and IFD3, respectively) are simulated using our previous double cable model of the fibres. The results show that the intracellular potentials are with reduced amplitude and slowed conduction velocity in the vicinity of demyelinated segments, however the segmental conduction block is not achieved. The radial decline of the extracellular potential amplitudes slightly increases with the increase of the radial distance and demyelination. In contrast, the electrotonic potentials, strength-duration time constants and rheobases are normal. In the recovery cycles, the refractoriness, supernormality and less late subnormality are close to the normal, showing that the pathology is relatively minor. The obtained abnormalities in the potentials and excitability properties provide new information about the pathophysiology of the demyelinated human motor axons and can be observed in vivo in patients with acquired demyelinating neuropathies. PMID:19669452

  6. Promotion by gibberellic Acid of polyamine biosynthesis in internodes of light-grown dwarf peas.

    PubMed

    Dai, Y R; Kaur-Sawhney, R; Galston, A W

    1982-01-01

    When gibberellic acid (GA(3); 5-35 micrograms per milliliter) is sprayed on 9-day-old light-grown dwarf Progress pea (Pisum sativum) seedlings, it causes a marked increase in the activity of arginine decarboxylase (ADC; EC 4.1.1.9) in the fourth internodes. The titer of putrescine and spermidine, polyamines produced indirectly as a result of ADC action, also rises markedly, paralleling the effect of GA(3) on internode growth. Ammonium (5-hydroxycarvacryl) trimethyl chloride piperidine carboxylate (AMO-1618; 100-200 micrograms per milliliter) causes changes in the reverse direction for enzyme activity, polyamine content, and growth. GA(3) also reverses the red-light-induced inhibition of ADC activity in etiolated Alaska pea epicotyls; this is additional evidence for gibberellin-light interaction in the control of polyamine biosynthesis. The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17), an alternate source of putrescine arising from arginine, is not increased by GA(3) or by AMO-1618.The results support the hypothesis that ADC and polyamine content are important regulators of plant growth. PMID:16662137

  7. Rice HOX12 Regulates Panicle Exsertion by Directly Modulating the Expression of ELONGATED UPPERMOST INTERNODE1.

    PubMed

    Gao, Shaopei; Fang, Jun; Xu, Fan; Wang, Wei; Chu, Chengcai

    2016-03-01

    Bioactive gibberellins (GAs) are key endogenous regulators of plant growth. Previous work identified ELONGATED UPPERMOST INTERNODE1 (EUI1) as aGA-deactivating enzyme that plays an important role in panicle exsertion from the flag leaf sheath in rice (Oryza sativa). However, the mechanism that regulates EUI1 activity during development is still largely unexplored. In this study, we identified the dominant panicle enclosure mutantregulator of eui1(ree1-D), whose phenotype is caused by the activation of the homeodomain-leucine zipper transcription factor HOX12. DiminishedHOX12expression by RNA interference enhanced panicle exsertion, mimicking theeui1phenotype.HOX12knockdown plants contain higher levels of the major biologically activeGAs(such as GA1and GA4) than the wild type. The expression ofEUI1is elevated in theree1-Dmutant but reduced inHOX12knockdown plants. Interestingly, bothHOX12andEUI1are predominantly expressed in panicles, where GA4is highly accumulated. Yeast one-hybrid, electrophoretic mobility shift assay, and chromatin immunoprecipitation analyses showed that HOX12 physically interacts with theEUI1promoter both in vitro and in vivo. Furthermore, plants overexpressingHOX12in theeui1mutant background retained the elongated uppermost internode phenotype. These results indicate that HOX12 acts directly throughEUI1to regulate panicle exsertion in rice. PMID:26977084

  8. Genetic Dissection of Internode Length Above the Uppermost Ear in Four RIL Populations of Maize (Zea mays L.)

    PubMed Central

    Ku, Lixia; Cao, Liru; Wei, Xiaomin; Su, Huihui; Tian, Zhiqiang; Guo, Shulei; Zhang, Liangkun; Ren, Zhenzhen; Wang, Xiaobo; Zhu, Yuguang; Li, Guohui; Wang, Zhiyong; Chen, Yanhui

    2014-01-01

    The internode length above the uppermost ear (ILAU) is an important influencing factor for canopy architecture in maize. Analyzing the genetic characteristics of internode length is critical for improving plant population structure and increasing photosynthetic efficiency. However, the genetic control of ILAU has not been determined. In this study, quantitative trait loci (QTL) for internode length at five positions above the uppermost ear were identified using four sets of recombinant inbred line (RIL) populations in three environments. Genetic maps and initial QTL were integrated using meta-analyses across the four populations. Seventy QTL were identified: 16 in population 1; 14 in population 2; 25 in population 3; and 15 in population 4. Individual effects ranged from 5.36% to 26.85% of phenotypic variation, with 27 QTL >10%. In addition, the following common QTL were identified across two populations: one common QTL for the internode length of all five positions; one common QTL for the internode length of three positions; and one common QTL for the internode length of one position. In addition, four common QTL for the internode length of four positions were identified in one population. The results indicated that the ILAU at different positions above the uppermost ear could be affected by one or several of the same QTL. The traits may also be regulated by many different QTL. Of the 70 initial QTL, 46 were integrated in 14 meta-QTL (mQTLs) by meta-analysis, and 17 of the 27 initial QTL with R2 >10% were integrated in 7 mQTLs. Four of the key mQTLs (mQTL2-2, mQTL3-2, mQTL5-1, mQTL5-2, and mQTL9) in which the initial QTL displayed R2 >10% included four to 11 initial QTL for an internode length of four to five positions from one or two populations. These results may provide useful information for marker-assisted selection to improve canopy architecture. PMID:25538101

  9. Rooting greenwood tip cuttings of several Populus clones hydroponically (hydroponic rooting of Populus cuttings)

    SciTech Connect

    Phipps, H.M.; Hansen, E.A.; Tolsted, D.N.

    1980-01-01

    Greenwood cuttings of several Populus clones were successfully rooted with a relatively simple hydroponic method. Indolebutyric acid and naphthaleneacetic acid at concentrations of 500 to 5000 ppM applied as a quick dip to the cutting bases, a complete nutrient solution at 20 to 40% of full strength, and a solution temperature between 27 and 30/sup 0/C generally produced the best rooting performance of most clones. Cuttings propagated by the hydroponic procedure rooted faster and generally outgrew those produced by a standard method after being transplanted to pots and grown in the greenhouse.

  10. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    PubMed Central

    Labbé, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-01-01

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two additional Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were included for comparative purposes. We analyzed the effect of co-cultivation of these 23 individual Pseudomonas strains on Laccaria bicolor “S238N” growth rate, mycelial architecture and transcriptional changes. Nineteen of the 23 Pseudomonas strains tested had positive effects on L. bicolor S238N growth, as well as on mycelial architecture, with strains GM41 and GM18 having the most significant effect. Four of seven L. bicolor reporter genes, Tra1, Tectonin2, Gcn5, and Cipc1, thought to be regulated during the interaction with MHB strain BBc6R8, were induced or repressed, while interacting with Pseudomonas strains GM17, GM33, GM41, GM48, Pf-5, and BBc6R8. Strain GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve L. bicolor root colonization on Populus. This tripartite relationship could be exploited for Populus species/genotypes nursery production as a means of improving establishment and survival in marginal lands. PMID:25386184

  11. Highly Efficient Isolation of Populus Mesophyll Protoplasts and Its Application in Transient Expression Assays

    PubMed Central

    Guo, Jianjun; Morrell-Falvey, Jennifer L.; Labbé, Jessy L.; Muchero, Wellington; Kalluri, Udaya C.; Tuskan, Gerald A.; Chen, Jin-Gui

    2012-01-01

    Background Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. Methodology/Principal Findings We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. Conclusions/Significance This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways. PMID:23028673

  12. Highly Efficient Isolation of Populus Mesophyll Protoplasts and Its Application in Transient Expression Assays

    SciTech Connect

    Guo, Jianjun; Morrell-Falvey, Jennifer L; Labbe, Jessy L; Muchero, Wellington; Kalluri, Udaya C; Tuskan, Gerald A; Chen, Jay

    2012-01-01

    Background: Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. Methodology/Principal Findings: We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. Conclusions/Significance: This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.

  13. Is the basal area of maize internodes involved in borer resistance?

    PubMed Central

    2011-01-01

    Background To elucidate the role of the length of the internode basal ring (LIBR) in resistance to the Mediterranean corn borer (MCB), we carried out a divergent selection program to modify the LIBR using two maize synthetic varieties (EPS20 and EPS21), each with a different genetic background. We investigated the biochemical mechanisms underlying the relationship between the LIBR and borer resistance. Selection to lengthen or shorten the LIBR was achieved for each synthetic variety. The resulting plants were analyzed to determine their LIBR response, growth, yield, and borer resistance. Results In the synthetic variety EPS20 (Reid germplasm), reduction of the LIBR improved resistance against the MCB. The LIBR selection was also effective in the synthetic variety EPS21 (non-Reid germplasm), although there was no relationship detected between the LIBR and MCB resistance. The LIBR did not show correlations with agronomic traits such as plant height and yield. Compared with upper sections, the internode basal ring area contained lower concentrations of cell wall components such as acid detergent fiber (ADF), acid detergent lignin (ADL), and diferulates. In addition, some residual 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3-(4H)-one (DIMBOA), a natural antibiotic compound, was detected in the basal area at 30 days after silking. Conclusion We analyzed maize selections to determine whether the basal area of maize internodes is involved in borer resistance. The structural reinforcement of the cell walls was the most significant trait in the relationship between the LIBR and borer resistance. Lower contents of ADF and ADL in the rind of the basal section facilitated the entry of larvae in this area in both synthetic varieties, while lower concentrations of diferulates in the pith basal section of EPS20 facilitated larval feeding inside the stem. The higher concentrations of DIMBOA may have contributed to the lack of correlation between the LIBR and borer resistance in

  14. Pleistocene Speciation in the Genus Populus (Salicaceae)

    PubMed Central

    Levsen, Nicholas D.; Tiffin, Peter; Olson, Matthew S.

    2012-01-01

    The macroevolutionary consequences of recent climate change remain controversial, and there is little paleobotanical or morphological evidence that Pleistocene (1.8–0.12 Ma) glacial cycles acted as drivers of speciation, especially among lineages with long generation times, such as trees. We combined genetic and ecogeographic data from 2 closely related North American tree species, Populus balsamifera and P. trichocarpa (Salicacaeae), to determine if their divergence coincided with and was possibly caused by Pleistocene climatic events. We analyzed 32 nuclear loci from individuals of P. balsamifera and P. trichocarpa to produce coalescent-based estimates of the divergence time between the 2 species. We coupled the coalescent analyses with paleodistribution models to assess the influence of climate change on species' range. Furthermore, measures of niche overlap were used to investigate patterns of ecological differentiation between species. We estimated the divergence date of P. balsamifera and P. trichocarpa at approximately 75 Ka, which corresponds closely with the onset of Marine Isotope Stage 4 (∼76 Ka) and a rapid increase in global ice volume. Significance tests of niche overlap, in conjunction with genetic estimates of migration, suggested that speciation occurred in allopatry, possibly resulting from the environmental effects of Pleistocene glacial cycles. Our results indicate that the divergence of keystone tree species, which have shaped community diversity in northern North American ecosystems, was recent and may have been a consequence of Pleistocene-era glaciation and climate change. PMID:22213709

  15. The CLE gene family in Populus trichocarpa.

    PubMed

    Liu, Zhijun; Yang, Nan; Lv, Yanting; Pan, Lixia; Lv, Shuo; Han, Huibin; Wang, Guodong

    2016-06-01

    The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa. The potential roles of PtCLE genes were studied by comparative analysis and transcriptional profiling. Among fifty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These findings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants. PMID:27232947

  16. Variable Nitrogen Fixation in Wild Populus

    PubMed Central

    Doty, Sharon L.; Sher, Andrew W.; Fleck, Neil D.; Khorasani, Mahsa; Bumgarner, Roger E.; Khan, Zareen; Ko, Andrew W. K.; Kim, Soo-Hyung; DeLuca, Thomas H.

    2016-01-01

    The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N) is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees. PMID:27196608

  17. Comparative analysis of the transcriptomes of Populus

    SciTech Connect

    Tuskan, Gerald A; Davis, John M

    2008-01-01

    Sequencing of the Populus trichocarpa genome creates an opportunity to describe the transcriptome of a woody perennial species and establish an atlas of gene expression. A comparison with the transcriptomes of other species can also define genes that are conserved or diverging in plant species. Here, the transcriptome in vegetative organs of the P. trichocarpa reference genotype Nisqually-1 was characterized. A comparison with Arabidopsis thaliana orthologs was used to distinguish gene functional categories that may be evolving differently in a woody perennial and an annual herbaceous species. A core set of genes expressed in common among vegetative organs was detected, as well as organ-specific genes. Statistical tests identified chromatin domains, where adjacent genes were expressed more frequently than expected by chance. Extensive divergence was detected in the expression patterns of A. thaliana and P. trichocarpa orthologs, but transcription of a small number of genes appeared to have remained conserved in the two species. Despite separation of lineages for over 100 million yr, these results suggest that selection has limited transcriptional divergence of genes associated with some essential functions in A. thaliana and P. trichocarpa. However, extensive remodeling of transcriptional networks indicates that expression regulation may be a key determinant of plant diversity.

  18. Shotgun proteome profile of Populus developing xylem

    SciTech Connect

    Kalluri, Udaya C; Hurst, Gregory {Greg} B; Lankford, Patricia K; Ranjan, Priya; Pelletier, Dale A

    2009-01-01

    Understanding the molecular pathways of plant cell wall biosynthesis and remodeling is central to interpreting biological mechanisms underlying plant growth and adaptation as well as leveraging that knowledge towards development of improved bioenergy feedstocks. Here we report the application of shotgun tandem mass spectrometry profiling to the proteome of Populus developing xylem. Additionally, we mined public databases to obtain information in support of subcellular localization, transcript-level expression, and functional categorization of these proteins. Nearly 6000 different proteins were identified from the xylem proteome, with over 4400 proteins identified from one or more unique peptides. In addition to finding protein-level evidence of candidate wall biosynthesis genes from xylem (wood) tissue such as cellulose synthase, phenylalanine ammonia-lyase, and 4-coumarate:CoA ligase, several other potentially new candidate genes in the pathway were discovered. In order to identify low-abundance DNA-regulatory proteins from the developing xylem, a selective nuclear proteome profiling method was developed. Several putative transcription factor and chromatin remodeling proteins were identified using this method, such as LIM and NAC domain transcription factors and CHB3-SWI/SNF-related proteins. Further application of these proteomics methods will enhance understanding not only of cell wall biosynthesis in system biology modeling, but also other plant developmental and physiological pathways.

  19. Characterization of DWARF14 Genes in Populus

    DOE PAGESBeta

    Zheng, Kaijie; Wang, Xiaoping; Weighill, Deborah A.; Guo, Hao-Bo; Xie, Meng; Yang, Yongil; Yang, Jun; Wang, Shucai; Jacobson, Daniel A.; Guo, Hong; et al

    2016-02-15

    Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95%more » similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. Ultimately, we find this study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.« less

  20. Characterization of DWARF14 Genes in Populus

    PubMed Central

    Zheng, Kaijie; Wang, Xiaoping; Weighill, Deborah A.; Guo, Hao-Bo; Xie, Meng; Yang, Yongil; Yang, Jun; Wang, Shucai; Jacobson, Daniel A.; Guo, Hong; Muchero, Wellington; Tuskan, Gerald A.; Chen, Jin-Gui

    2016-01-01

    Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95% similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. This study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants. PMID:26875827

  1. Variable Nitrogen Fixation in Wild Populus.

    PubMed

    Doty, Sharon L; Sher, Andrew W; Fleck, Neil D; Khorasani, Mahsa; Bumgarner, Roger E; Khan, Zareen; Ko, Andrew W K; Kim, Soo-Hyung; DeLuca, Thomas H

    2016-01-01

    The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N) is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees. PMID:27196608

  2. Validation of Bayesian kriging of arsenic, chromium, lead and mercury surface soil concentrations based on internode sampling

    PubMed Central

    Aelion, C.M.; Davis, H.T.; Liu, Y.; Lawson, A.B.; McDermott, S.

    2009-01-01

    Bayesian kriging is a useful tool for estimating spatial distributions of metals; however, estimates are generally only verified statistically. In this study surface soil samples were collected on a uniform grid and analyzed for As, Cr, Pb, and Hg. The data were interpolated at individual locations by Bayesian kriging. Estimates were validated using a leave-one-out cross validation (LOOCV) statistical method which compared the measured and LOOCV predicted values. Validation also was carried out using additional field sampling of soil metal concentrations at points between original sampling locations, which were compared to kriging prediction distributions. LOOCV results suggest that Bayesian kriging was a good predictor of metal concentrations. When measured internode metal concentrations and estimated kriged values were compared, the measured values were located within the 5th – 95th percentile prediction distributions in over half of the internode locations. Estimated and measured internode concentrations were most similar for As and Pb. Kriged estimates did not compare as well to measured values for concentrations below the analytical minimum detection limit, or for internode samples that were very close to the original sampling node. Despite inherent variability in metal concentrations in soils, the kriged estimates were validated statistically and by in situ measurement. PMID:19603658

  3. Internode and petiole elongation of soybean in response to photoperiod and end-of-day light quality

    NASA Technical Reports Server (NTRS)

    Thomas, J. F.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1985-01-01

    Elongation of main stem internodes and petioles of soybeans, Glycine max 'Ransom,' was examined in response to various photoperiod/temperature combinations and to end-of-day (EOD) light quality. Photoperiod treatments consisted of 10, 14, and 16 h in combination with day/night temperatures of 18/14, 22/18, 26/22, 30/26, and 34/30 C. The EOD treatments consisted of exposing plants to illumination from either incandescent (high far-red component, FR) or fluorescent (high red component, R) lamps during the final 0.5 h of a 10-h photoperiod. Internode elongation was not significantly promoted by the photoperiod treatments, and, in fact, under the two highest temperature regimes, internode elongation was suppressed under the longer photoperiods. Petiole elongation, however, was enhanced under the longer photoperiods at all temperatures. In the EOD light study, internode and petiole elongation was significantly greater on plants exposed to 0.5 h EOD from incandescent lamps than from fluorescent. Under the incandescent EOD treatment, plants increased dry matter production by 41% and exhibited greater partitioning of assimilates in stem and root portions than under fluorescent EOD.

  4. Investigation of Inter-Node B Macro Diversity for Single-Carrier Based Radio Access in Evolved UTRA Uplink

    NASA Astrophysics Data System (ADS)

    Kawai, Hiroyuki; Morimoto, Akihito; Higuchi, Kenichi; Sawahashi, Mamoru

    This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.

  5. The aquatic communities inhabiting internodes of two sympatric bamboos in Argentinean subtropical forest.

    PubMed

    Campos, Raúl E

    2013-01-01

    In order to determine if phytotelmata in sympatric bamboos of the genus Guadua might be colonized by different types of arthropods and contain communities of different complexities, the following objectives were formulated: (1) to analyze the structure and species richness of the aquatic macroinvertebrate communities, (2) to comparatively analyze co-occurrences; and (3) to identify the main predators. Field studies were conducted in a subtropical forest in Argentina, where 80 water-filled bamboo internodes of Guadua chacoensis (Rojas Acosta) Londoño and Peterson (Poales: Poaceae) and G. trinii (Nees) Nees and Rupr. were sampled. Morphological measurements indicated that G. chacoensis held more fluid than G. trinii. The communities differed between Guadua species, but many macroinvertebrate species used both bamboo species. The phytotelmata were mainly colonized by Diptera of the families Culicidae and Ceratopogonidae. PMID:24224775

  6. Computing the Internode Certainty and Related Measures from Partial Gene Trees

    PubMed Central

    Kobert, Kassian; Salichos, Leonidas; Rokas, Antonis; Stamatakis, Alexandros

    2016-01-01

    We present, implement, and evaluate an approach to calculate the internode certainty (IC) and tree certainty (TC) on a given reference tree from a collection of partial gene trees. Previously, the calculation of these values was only possible from a collection of gene trees with exactly the same taxon set as the reference tree. An application to sets of partial gene trees requires mathematical corrections in the IC and TC calculations. We implement our methods in RAxML and test them on empirical datasets. These tests imply that the inclusion of partial trees does matter. However, in order to provide meaningful measurements, any dataset should also include trees containing the full species set. PMID:26915959

  7. Conversion of the proprietary ROLM (tm) inter-node link from multimode to singlemode operation

    NASA Technical Reports Server (NTRS)

    Boucher, Larry

    1993-01-01

    Many NASA centers have selected ROLM(TM) Computerized Branch Exchanges (CBX's) as their standard telephone exchange. The ROLM 9751 CBX Model 70 with ROLM software release 9005 can inter-communicate as a 'multi-node' system over a multimode fiber optic link of 450 to 6,000 meters. Singlemode fiber installations are not supported by ROLM. Two New Mexico-based NASA satellite ground terminals were already connected via a 6 kilometer singlemode fiber optic link. The ROLM Inter-Node Link (INL) was converted from multimode LED transmitters to singlemode laser transmitters and two ROLM CBX systems were interconnected using the modified INL. On activation, the system operated normally and has done so for six months. System testing indicates sufficient margin to drive 45 kilometers of singlemode fiber, an important benefit for widely separated facilities.

  8. The Aquatic Communities Inhabiting Internodes of Two Sympatric Bamboos in Argentinean Subtropical Forest

    PubMed Central

    Campos, Raúl E.

    2013-01-01

    In order to determine if phytotelmata in sympatric bamboos of the genus Guadua might be colonized by different types of arthropods and contain communities of different complexities, the following objectives were formulated: (1) to analyze the structure and species richness of the aquatic macroinvertebrate communities, (2) to comparatively analyze co-occurrences; and (3) to identify the main predators. Field studies were conducted in a subtropical forest in Argentina, where 80 water-filled bamboo internodes of Guadua chacoensis (Rojas Acosta) Londoño and Peterson (Poales: Poaceae) and G. trinii (Nees) Nees and Rupr. were sampled. Morphological measurements indicated that G. chacoensis held more fluid than G. trinii. The communities differed between Guadua species, but many macroinvertebrate species used both bamboo species. The phytotelmata were mainly colonized by Diptera of the families Culicidae and Ceratopogonidae. PMID:24224775

  9. Immunocytochemical investigations of sodium channels along nodal and internodal portions of demyelinated axons.

    PubMed

    England, J D; Levinson, S R; Shrager, P

    1996-08-01

    Voltage-gated sodium channels are largely localized to the nodes of Ranvier in myelinated axons, providing the physiological basis for saltatory conduction. Studies using antisodium channel antibodies have shown that along demyelinated axons sodium channels form new distributions. The nature of this changed distribution appears to vary with the time course and mechanism of demyelination. In chronic demyelination, sodium channels increase in number and redistribute along previously internodal axon segments. In chronic demyelination produced by doxorubicin, the increase in sodium channels appeared independently of Schwann cells, suggesting increased neuronal synthesis. In acute demyelination produced by lysolecithin new clusters of sodium channels developed but only in association with the edges of remyelinating Schwann cells, which appeared to control the distribution and mobility of the channels. These findings affirm the plasticity of sodium channels in demyelinated axons and are relevant to understanding how these axons recover conduction. PMID:8837020

  10. Managing internode data communications for an uninitialized process in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Parker, Jeffrey J; Ratterman, Joseph D; Smith, Brian E

    2014-05-20

    A parallel computer includes nodes, each having main memory and a messaging unit (MU). Each MU includes computer memory, which in turn includes, MU message buffers. Each MU message buffer is associated with an uninitialized process on the compute node. In the parallel computer, managing internode data communications for an uninitialized process includes: receiving, by an MU of a compute node, one or more data communications messages in an MU message buffer associated with an uninitialized process on the compute node; determining, by an application agent, that the MU message buffer associated with the uninitialized process is full prior to initialization of the uninitialized process; establishing, by the application agent, a temporary message buffer for the uninitialized process in main computer memory; and moving, by the application agent, data communications messages from the MU message buffer associated with the uninitialized process to the temporary message buffer in main computer memory.

  11. Computing the Internode Certainty and Related Measures from Partial Gene Trees.

    PubMed

    Kobert, Kassian; Salichos, Leonidas; Rokas, Antonis; Stamatakis, Alexandros

    2016-06-01

    We present, implement, and evaluate an approach to calculate the internode certainty (IC) and tree certainty (TC) on a given reference tree from a collection of partial gene trees. Previously, the calculation of these values was only possible from a collection of gene trees with exactly the same taxon set as the reference tree. An application to sets of partial gene trees requires mathematical corrections in the IC and TC calculations. We implement our methods in RAxML and test them on empirical datasets. These tests imply that the inclusion of partial trees does matter. However, in order to provide meaningful measurements, any dataset should also include trees containing the full species set. PMID:26915959

  12. Identification of Dw1, a Regulator of Sorghum Stem Internode Length

    PubMed Central

    Hilley, Josie; Truong, Sandra; Olson, Sara; Morishige, Daryl; Mullet, John

    2016-01-01

    Sorghum is an important C4 grain and grass crop used for food, feed, forage, sugar, and biofuels. In its native Africa, sorghum landraces often grow to approximately 3–4 meters in height. Following introduction into the U.S., shorter, early flowering varieties were identified and used for production of grain. Quinby and Karper identified allelic variation at four loci designated Dw1-Dw4 that regulated plant height by altering the length of stem internodes. The current study used a map-based cloning strategy to identify the gene corresponding to Dw1. Hegari (Dw1dw2Dw3dw4) and 80M (dw1dw2Dw3dw4) were crossed and F2 and HIF derived populations used for QTL mapping. Genetic analysis identified four QTL for internode length in this population, Dw1 on SBI-09, Dw2 on SBI-06, and QTL located on SBI-01 and SBI-07. The QTL on SBI-07 was ~3 Mbp upstream of Dw3 and interacted with Dw1. Dw1 was also found to contribute to the variation in stem weight in the population. Dw1 was fine mapped to an interval of ~33 kbp using HIFs segregating only for Dw1. A polymorphism in an exon of Sobic.009G229800 created a stop codon that truncated the encoded protein in 80M (dw1). This polymorphism was not present in Hegari (Dw1) and no other polymorphisms in the delimited Dw1 locus altered coding regions. The recessive dw1 allele found in 80M was traced to Dwarf Yellow Milo, the progenitor of grain sorghum genotypes identified as dw1. Dw1 encodes a putative membrane protein of unknown function that is highly conserved in plants. PMID:26963094

  13. Identification of Dw1, a Regulator of Sorghum Stem Internode Length.

    PubMed

    Hilley, Josie; Truong, Sandra; Olson, Sara; Morishige, Daryl; Mullet, John

    2016-01-01

    Sorghum is an important C4 grain and grass crop used for food, feed, forage, sugar, and biofuels. In its native Africa, sorghum landraces often grow to approximately 3-4 meters in height. Following introduction into the U.S., shorter, early flowering varieties were identified and used for production of grain. Quinby and Karper identified allelic variation at four loci designated Dw1-Dw4 that regulated plant height by altering the length of stem internodes. The current study used a map-based cloning strategy to identify the gene corresponding to Dw1. Hegari (Dw1dw2Dw3dw4) and 80M (dw1dw2Dw3dw4) were crossed and F2 and HIF derived populations used for QTL mapping. Genetic analysis identified four QTL for internode length in this population, Dw1 on SBI-09, Dw2 on SBI-06, and QTL located on SBI-01 and SBI-07. The QTL on SBI-07 was ~3 Mbp upstream of Dw3 and interacted with Dw1. Dw1 was also found to contribute to the variation in stem weight in the population. Dw1 was fine mapped to an interval of ~33 kbp using HIFs segregating only for Dw1. A polymorphism in an exon of Sobic.009G229800 created a stop codon that truncated the encoded protein in 80M (dw1). This polymorphism was not present in Hegari (Dw1) and no other polymorphisms in the delimited Dw1 locus altered coding regions. The recessive dw1 allele found in 80M was traced to Dwarf Yellow Milo, the progenitor of grain sorghum genotypes identified as dw1. Dw1 encodes a putative membrane protein of unknown function that is highly conserved in plants. PMID:26963094

  14. Osmotic properties of pea internodes in relation to growth and auxin action

    SciTech Connect

    Cosgrove, D.J.; Cleland, R.E.

    1983-01-01

    The water transport properties of etiolated pea (Pisum sativum L.) internodes were studied using both dynamic and steady-state methods to determine (a) whether water transport through the growing tissue limits the rate of cell enlargement, and (b) whether auxin stimulates growth in part by increasing the hydraulic conductance of the growing tissue. Measurements using the pressure probe technique showed that the hydraulic conductivity of cortical cell membranes was the same for both slowly growing and auxin-induced rapidly growing cells (membrane hydraulic conductivity, about 1.5 x 10/sup -5/ centimeters per second per bar). In a second technique which measured the rate of water movement through the entire pea internode, the half-time for radial water flow was about 60 seconds and was not altered by auxin application. These results indicate that auxin does not alter the hydraulic conductance of pea stem tissue, either at the cellular or the whole tissue level. When the growth rate was altered by various treatments, including decapitation, auxin application, cold temperature, and KCN treatment, the water potential was independent of the growth rate of the stem. We attribute the depression of the water potential in young pea stems to the presence of solutes in the cell wall free space of the tissue. From the results of these dynamic and steady-state experiments, we conclude that the internal gradient in water potential (from the xylem to the epidermis) needed to sustain cell enlargement is small (no greater than 0.5 bar). Thus, the hydraulic conductance of the tissue is sufficiently large that it does not control or limit the rate of cell enlargement. 30 references, 5 figures, 4 tables.

  15. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling1[OPEN

    PubMed Central

    Zhou, Xin; Zhang, Zhong-Lin; Tyler, Ludmila; Yusuke, Jikumaru; Qiu, Kai; Lumba, Shelley; Desveaux, Darrell; McCourt, Peter; Sun, Tai-ping

    2016-01-01

    The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6. AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways. PMID:27255484

  16. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling.

    PubMed

    Zhou, Xin; Zhang, Zhong-Lin; Park, Jeongmoo; Tyler, Ludmila; Yusuke, Jikumaru; Qiu, Kai; Nam, Edward A; Lumba, Shelley; Desveaux, Darrell; McCourt, Peter; Kamiya, Yuji; Sun, Tai-Ping

    2016-08-01

    The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways. PMID:27255484

  17. Evolutionary Quantitative Genomics of Populus trichocarpa

    PubMed Central

    McKown, Athena D.; La Mantia, Jonathan; Guy, Robert D.; Ingvarsson, Pär K.; Hamelin, Richard; Mansfield, Shawn D.; Ehlting, Jürgen; Douglas, Carl J.; El-Kassaby, Yousry A.

    2015-01-01

    Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST -FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to

  18. Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments

    SciTech Connect

    Chen, F.; Liu, C.; Tschaplinski, T. J.; Zhao, N.

    2009-09-01

    Populus trees face constant challenges from the environment during their life cycle. To ensure their survival and reproduction, Populus trees deploy various types of defenses, one of which is the production of a myriad of secondary metabolites. Compounds derived from the shikimate-phenylpropanoid pathway are the most abundant class of secondary metabolites synthesized in Populus. Among other major classes of secondary metabolites in Populus are terpenoids and fatty acid-derivatives. Some of the secondary metabolites made by Populus trees have been functionally characterized. Some others have been associated with certain biological/ecological processes, such as defense against insects and microbial pathogens or acclimation or adaptation to abiotic stresses. Functions of many Populus secondary metabolites remain unclear. The advent of various novel genomic tools will enable us to explore in greater detail the complexity of secondary metabolism in Populus. Detailed data mining of the Populus genome sequence can unveil candidate genes of secondary metabolism. Metabolomic analysis will continue to identify new metabolites synthesized in Populus. Integrated genomics that combines various 'omics' tools will prove to be the most powerful approach in revealing the molecular and biochemical basis underlying the biosynthesis of secondary metabolites in Populus. Characterization of the biological/ecological functions of secondary metabolites as well as their biosynthesis will provide knowledge and tools for genetically engineering the production of seconday metabolites that can lead to the generation of novel, improved Populus varieties.

  19. Assessment of Populus Wood Chemistry Following the Introduction of a Bt Toxin Gene

    SciTech Connect

    Davis, M. F.; Tuskan, G. A.; Payne, P.; Tschaplinski, T. J.; Meilan, R.

    2006-01-01

    Unintended changes in plant physiology, anatomy and metabolism as a result of genetic engineering are a concern as more transgenic plants are commercially deployed in the ecosystem. We compared the cell wall chemical composition of three Populus lines (Populus trichocarpa Torr. and A. Gray x Populus deltoides Bartr. ex Marsh., Populus trichocarpa x Populus nigra L. and Populus deltoides x Populus nigra) genetically modified to express the Cry3A or Cry3B2 protein of Bacillus thuringiensis (Bt) with the cellwall chemistry of non-transformed isogenic control lines. Three genetically modified clones, each represented by 10 independent transgenic lines, were analyzed by pyrolysis molecular beam mass spectrometry, gas chromatography/mass spectrometry and traditional wet chemical analytical methods to assess changes in cell wall composition. Based on the outcome of these techniques, there were no comprehensive differences in chemical composition between the transgenic and control lines for any of the studied clones.

  20. Assessment of Populus wood chemistry following the introduction of a Bt toxin gene

    SciTech Connect

    Tschaplinski, Timothy J; Davis, M F; Tuskan, Gerald A; Payne, M M; Meilan, R

    2006-01-01

    Unintended changes in plant physiology, anatomy and metabolism as a result of genetic engineering are a concern as more transgenic plants are commercially deployed in the ecosystem. We compared the cell wall chemical composition of three Populus lines (Populus trichocarpa Torr. & A. Gray x Populus trichocarpa Bartr. ex Marsh., Populus trichocarpa x Populus nigra L. and Populus deltoides x Populus nigra) genetically modified to express the Cry3A or Cry3B2 protein of Bacillus thuringiensis (Bt) with the cell wall chemistry of non-transformed isogenic control lines. Three genetically modified clones, each represented by 10 independent transgenic lines, were analyzed by pyrolysis molecular beam mass spectrometry, gas chromatography/mass spectrometry and traditional wet chemical analytical methods to assess changes in cell wall composition. Based on the outcome of these techniques, there were no comprehensive differences in chemical composition between the transgenic and control lines for any of the studied clones.

  1. Genome structure and primitive sex chromosome revealed in Populus

    SciTech Connect

    Tuskan, Gerald A; Yin, Tongming; Gunter, Lee E; Blaudez, D

    2008-01-01

    We constructed a comprehensive genetic map for Populus and ordered 332 Mb of sequence scaffolds along the 19 haploid chromosomes in order to compare chromosomal regions among diverse members of the genus. These efforts lead us to conclude that chromosome XIX in Populus is evolving into a sex chromosome. Consistent segregation distortion in favor of the sub-genera Tacamahaca alleles provided evidence of divergent selection among species, particularly at the proximal end of chromosome XIX. A large microsatellite marker (SSR) cluster was detected in the distorted region even though the genome-wide distribute SSR sites was uniform across the physical map. The differences between the genetic map and physical sequence data suggested recombination suppression was occurring in the distorted region. A gender-determination locus and an overabundance of NBS-LRR genes were also co-located to the distorted region and were put forth as the cause for divergent selection and recombination suppression. This hypothesis was verified by using fine-scale mapping of an integrated scaffold in the vicinity of the gender-determination locus. As such it appears that chromosome XIX in Populus is in the process of evolving from an autosome into a sex chromosome and that NBS-LRR genes may play important role in the chromosomal diversification process in Populus.

  2. Drought induces alterations in the stomatal development program in Populus

    PubMed Central

    Campbell, Malcolm M

    2012-01-01

    Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar. PMID:22760471

  3. Why and How Populus Became a "Model Tree"

    SciTech Connect

    Tuskan, Gerald A; Ellis, Brian; Jansson, Bo S; Strauss, S

    2010-01-01

    Although Populus was not a favored experimental system for very many plant biologists in 2000, P. trichocarpa ultimately became only the third plant species to have its genome fully sequenced. Here we examine the many different factors that came into play when this species was abruptly elevated to the status of a new 'model organism'.

  4. GENETICAL METABOLOMICS OF FLAVONOID BIOSYNTHESIS IN POPULUS: A CASE STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetical metabolomics (metabolite profiling combined with quantitative trait locus [QTL] analysis) is proposed as a new tool to identify loci that control metabolite abundances. This concept was evaluated in a case study with the model tree Populus. By using HPLC, the peak abundances were analyzed ...

  5. Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice

    PubMed Central

    Kurotani, Ken-Ich; Hattori, Tsukaho; Takeda, Shin

    2015-01-01

    Plant growth is controlled by intrinsic developmental programmes and environmental cues. Jasmonate (JA) has important roles in both processes, by regulating cell division and differentiation, as well as in defense responses and senescence. We report an increase in rice plant height caused by overexpression of a gene encoding a cytochrome P450 enzyme, CYP94C2b, which promoted deactivation of JA-Ile. The height increase occurred through enhanced elongation of internodes in the absence of concomitant cell elongation, unlike previous findings with coi1 knock-down plants. Thus, modulating JA metabolism can increase the number of elongated cells in an internode. Based on these and previous findings, we discuss the difference in the effects of CYP94C2b overexpression vs. coi1 knock-down. PMID:26251886

  6. The excitability of plant cells: with a special emphasis on characean internodal cells

    NASA Technical Reports Server (NTRS)

    Wayne, R.

    1994-01-01

    This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development. My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on "plant action potentials"). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.

  7. Effect of inhibitors of polyamine biosynthesis on gibberellin-induced internode growth in light-grown dwarf peas

    NASA Technical Reports Server (NTRS)

    Kaur-Sawhney, R.; Dai, Y. R.; Galston, A. W.

    1986-01-01

    When gibberellic acid (GA3) is sprayed on 9-day-old light-brown dwarf Progress pea (Pisum sativum) seedlings, arginine decarboxylase (ADC; EC 4.1.1.9) activity increases within 3 h and peaks at about 9 h after GA3 application. This is followed by a second lower peak at about 30 h; both peaks were higher than the corresponding peaks in the controls. In contrast, no appreciable effect of GA3 on internode length was observed until about 12 h, after which time a dramatic increase in growth rate occurred and persisted for about 12 h. Specific (DL-alpha-difluoromethylarginine) and non-specific (D-arginine and L-canavanine) inhibitors of ADC strongly inhibited ADC activity and to a lesser extent internode growth. The inhibition was reversed only slightly by the addition of polyamines. Actinomycin D and cycloheximide inhibited the rise in ADC activity induced by GA3. The half-life of the enzyme was increased by GA3 treatment. The results suggest that part of the GA3-induced increase in internode growth may result from enhanced polyamine biosynthesis through the ADC pathway. Furthermore, the GA3 induced increase in ADC activity probably requires de novo synthesis of both RNA and protein.

  8. Effect of inhibitors of polyamine biosynthesis on gibberellin-induced internode growth in light-grown dwarf peas.

    PubMed

    Kaur-Sawhney, R; Dai, Y R; Galston, A W

    1986-01-01

    When gibberellic acid (GA3) is sprayed on 9-day-old light-brown dwarf Progress pea (Pisum sativum) seedlings, arginine decarboxylase (ADC; EC 4.1.1.9) activity increases within 3 h and peaks at about 9 h after GA3 application. This is followed by a second lower peak at about 30 h; both peaks were higher than the corresponding peaks in the controls. In contrast, no appreciable effect of GA3 on internode length was observed until about 12 h, after which time a dramatic increase in growth rate occurred and persisted for about 12 h. Specific (DL-alpha-difluoromethylarginine) and non-specific (D-arginine and L-canavanine) inhibitors of ADC strongly inhibited ADC activity and to a lesser extent internode growth. The inhibition was reversed only slightly by the addition of polyamines. Actinomycin D and cycloheximide inhibited the rise in ADC activity induced by GA3. The half-life of the enzyme was increased by GA3 treatment. The results suggest that part of the GA3-induced increase in internode growth may result from enhanced polyamine biosynthesis through the ADC pathway. Furthermore, the GA3 induced increase in ADC activity probably requires de novo synthesis of both RNA and protein. PMID:11538869

  9. Plasma membrane domains participate in pH banding of Chara internodal cells.

    PubMed

    Schmölzer, Patric M; Höftberger, Margit; Foissner, Ilse

    2011-08-01

    We investigated the identity and distribution of cortical domains, stained by the endocytic marker FM 1-43, in branchlet internodal cells of the characean green algae Chara corallina and Chara braunii. Co-labeling with NBD C(6)-sphingomyelin, a plasma membrane dye, which is not internalized, confirmed their location in the plasma membrane, and co-labelling with the fluorescent pH indicator Lysotracker red indicated an acidic environment. The plasma membrane domains co-localized with the distribution of an antibody against a proton-translocating ATPase, and electron microscopic data confirmed their identity with elaborate plasma membrane invaginations known as charasomes. The average size and the distribution pattern of charasomes correlated with the pH banding pattern of the cell. Charasomes were larger and more frequent at the acidic regions than at the alkaline bands, indicating that they are involved in outward-directed proton transport. Inhibition of photosynthesis by DCMU prevented charasome formation, and incubation in pH buffers resulted in smaller, homogenously distributed charasomes irrespective of whether the pH was clamped at 5.5 or 8.5. These data indicate that the differential size and distribution of charasomes is not due to differences in external pH but reflects active, photosynthesis-dependent pH banding. The fact that pH banding recovered within several minutes in unbuffered medium, however, confirms that pH banding is also possible in cells with evenly distributed charasomes or without charasomes. Cortical mitochondria were also larger and more abundant at the acid bands, and their intimate association with charasomes and chloroplasts suggests an involvement in carbon uptake and photorespiration. PMID:21659328

  10. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis

    PubMed Central

    Kieffer, Martin; Master, Vera; Waites, Richard; Davies, Brendan

    2011-01-01

    TCP transcription factors constitute a small family of plant-specific bHLH-containing, DNA-binding proteins that have been implicated in the control of cell proliferation in plants. Despite the significant role that is likely to be played by genes that control cell division in the elaboration of plant architecture, functional analysis of this family by forward and reverse genetics has been hampered by genetic redundancy. Here we show that mutants in two related class I TCP genes display a range of growth-related phenotypes, consistent with their dynamic expression patterns; these phenotypes are enhanced in the double mutant. Together, the two genes influence plant stature by promoting cell division in young internodes. Reporter gene analysis and use of SRDX fusions suggested that TCP14 and TCP15 modulate cell proliferation in the developing leaf blade and specific floral tissues; a role that was not apparent in our phenotypic analysis of single or double mutants. However, when the relevant mutants were subjected to computer-aided morphological analysis of the leaves, the consequences of loss of either or both genes became obvious. The effects on cell proliferation of perturbing the function of TCP14 and TCP15 vary with tissue, as has been suggested for other TCP factors. These findings indicate that the precise elaboration of plant form is dependent on the cumulative influence of many TCP factors acting in a context-dependent fashion. The study highlights the need for advanced methods of phenotypic analysis in order to characterize phenotypes and to construct a dynamic model for TCP gene function. PMID:21668538

  11. The characean internodal cell as a model system for studying wound healing

    PubMed Central

    Foissner, I.; Wasteneys, G.O.

    2012-01-01

    Summary This work describes the characean internodal cell as a model system for the study of wound healing and compares wounds induced by certain chemicals and UV irradiation with wounds occurring in the natural environment. We review the existing literature and define three types of wound response: 1) cortical window formation characterized by disassembly of microtubules, transient inhibition of actin-dependent cytoplasmic streaming and chloroplast detachment, 2) fibrillar wound walls characterized by exocytosis of vesicles carrying wall polysaccharides and membrane-bound cellulose synthase complexes coupled with endocytosis of surplus membrane and 3) amorphous, callose- and membrane-containing wound walls characterized by exocytosis of vesicles and endoplasmic reticulum (ER) cisternae in the absence of membrane recycling. We hypothesize that these three wound responses reflect the extent of damage, probably Ca2+ influx, and that the secretion of Ca2+ - loaded ER cisternae is an emergency reaction in case of severe Ca2+ load. Microtubules are not required for wound healing but their disassembly could have a signalling function. Transient reorganization of the actin cytoskeleton into a meshwork of randomly oriented filaments is required for the migration of wound wall forming organelles, just as occurs in tip-growing plant cells. New data presented in this study show that during the deposition of an amorphous wound wall numerous actin rings are present, which may indicate specific ion fluxes and/or a storage form for actin. In addition, we present new evidence for the exocytosis of FM1-43-stained organelles, putative endosomes, required for plasma membrane repair during wound healing. Finally we show that quickly growing fibrillar wound walls, even when deposited in the absence of microtubules, have a highly ordered helical structure of consistent handedness comprised of cellulose microfibrils. PMID:22118365

  12. Rapid auxin-induced stimulation of cell wall synthesis in pea internodes

    SciTech Connect

    Kutschera, U.; Briggs, W.R.

    1987-05-01

    The effect of auxin (indole-3-acetic acid; IAA) on growth and incorporation of myo-(2-/sup 3/H(N)) inositol ((/sup 3/H)Ins) into noncellulosic polysacchharides in the cell walls of third internode sections from red light-grown pea seedlings (Pisum sativum L. cv. Alaska) was investigated. Intact section were incubated on (/sup 3/H)Ins for 4 hr to permit uptake of the tracer and then IAA was added. Growth started after a lag phase of 15 min under these conditions. The sections were removed from the tracer and separated into epidermis and cortical cylinder (cortex plus vascular tissue). In the epidermis, IAA-induced stimulation of (/sup 3/H)Ins incorporation started after a lag of 15 min. The amount of incorporation was 15% higher after 30 min and 24% higher after 2 hr than in the control. In the cortical cylinder, IAA-induced stimulation of (/sup 3/H)Ins incorporation started only approx. = 1 hr after adding IAA. The ionophore monensin (20 ..mu..M) inhibited the IAA-induced growth by 95%. Under these conditions, the IAA-induced stimulation of (/sup 3/H)Ins incorporation and the IAA-induced increase in in vivo extensibility of the sections was almost completely inhibited, although oxygen uptake was unaffected. The authors suggest that wall synthesis (as represented by (/sup 3/H)Ins incorporation) and wall loosening (increase in in vivo extensibility) are related processes. The results support the hypothesis that IAA induces growth by rapid simulation of cell wall synthesis in the growth-limiting epidermal cell layer.

  13. Physical basis for altered stem elongation rates in internode length mutants of Pisum

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Cosgrove, D. J.; Reid, J. B.; Davies, P. J.

    1990-01-01

    Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (lka and lkb, respectively) and the slender' line L197 (la crys), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though lka reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, lka and lkb, the wall yield threshold is substantially elevated. Plants possessing lka may also possess a reduced wall yield coefficient.

  14. Increasing the productivity of short-rotation Populus plantations. Final report

    SciTech Connect

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C.

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  15. Using Populus as a lignocellulosic feedstock for bioethanol.

    PubMed

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome. PMID:25676392

  16. Functional Characterization and Subcellular Localization of Poplar (Populus trichocarpa × Populus deltoides) Cinnamate 4-Hydroxylase1

    PubMed Central

    Ro, Dae Kyun; Mah, Nancy; Ellis, Brian E.; Douglas, Carl J.

    2001-01-01

    Cinnamic acid 4-hydroxylase (C4H), a member of the cytochrome P450 monooxygenase superfamily, plays a central role in phenylpropanoid metabolism and lignin biosynthesis and possibly anchors a phenylpropanoid enzyme complex to the endoplasmic reticulum (ER). A full-length cDNA encoding C4H was isolated from a hybrid poplar (Populus trichocarpa × P. deltoides) young leaf cDNA library. RNA-blot analysis detected C4H transcripts in all organs tested, but the gene was most highly expressed in developing xylem. C4H expression was also strongly induced by elicitor-treatment in poplar cell cultures. To verify the catalytic activity of the putative C4H cDNA, two constructs, C4H and C4H fused to the FLAG epitope (C4H::FLAG), were expressed in yeast. Immunoblot analysis showed that C4H was present in the microsomal fraction and microsomal preparations from strains expressing both enzymes efficiently converted cinnamic acid to p-coumaric acid with high specific activities. To investigate the subcellular localization of C4H in vivo, a chimeric C4H-green fluorescent protein (GFP) gene was engineered and stably expressed in Arabidopsis. Confocal laser microscopy analysis clearly showed that in Arabidopsis the C4H::GFP chimeric enzyme was localized to the ER. When expressed in yeast, the C4H::GFP fusion enzyme was also active but displayed significantly lower specific activity than either C4H or C4H::FLAG in in vitro and in vivo enzyme assays. These data definitively show that C4H is localized to the ER in planta. PMID:11351095

  17. Regulatory Mechanisms in Anthocyanin Biosynthesis in First Internodes of Sorghum vulgare: Effect of Presumed Inhibitors of Protein Synthesis 1

    PubMed Central

    Stafford, Helen A.

    1966-01-01

    There was a 6 to 24-hour lag in the production of anthocyanins in the light after excision of 4-day-old etiolated internodes of Sorghum vulgare variety Wheatland milo. In internodes infiltrated with water, apigeninidin was formed first at 12 to 24 hours and continued to be produced slowly. Luteolinidin was formed slightly later, but its formation rapidly exceeded that of apigeninidin. Cyanidin was the last type to be produced, but equaled the amounts of luteolinidin by 4 days. In noninfiltrated internodes, the production of cyanidin was greatly accelerated, beginning at about 6 hours. Data from experiments with inhibitors that presumably affect protein synthesis at different loci indicated that protein synthesis was necessary for maximum production of all 3 anthocyanins, but that different steps were rate limiting. Light independent synthesis of apigeninidin and luteolinidin was inhibited by chloramphenicol and l-ethionine but not by actinomycin D and 8-azaguanine. However, the synthesis of these 2 anthocyanins was not inhibited by puromycin, but was sometimes stimulated. The light-induced synthesis of cyanidin was inhibited by actinomycin, azaguanine, chloramphenicol and ethionine. Actinomycin no longer was inhibitory if added after incubation for 6 hours in air. All inhibitors were capable of inhibiting to various degrees either the incorporation of 14C-uracil into RNA or 14C-leucine into protein. The inhibitor data suggest that the light insensitive synthesis of apigeninidin and luteolinidin may be controlled by enzyme synthesis at the level of ribosomes via stable mRNA, while the light-induced production of cyanidin is dependent initially on the production of mRNA. The latter hypothesis is similar to that recently proposed by Lange and Mohr for a cyanidin produced in Sinapis seedlings. PMID:16656361

  18. 14C/C measurements support Andreev's internode method to determine lichen growth rates in Cladina stygia (Fr.) Ahti

    SciTech Connect

    Holt, E; Bench, G

    2007-12-05

    Growth rates and the ability to date an organism can greatly contribute to understanding its population biology and community dynamics. 1n 1954, Andreev proposed a method to date Cladina, a fruticose lichen, using total thallus length and number of internodes. No research, however, has demonstrated the reliability of this technique or compared its estimates to those derived by other means. In this study, we demonstrate the utility of {sup 14}C/C ratios to determine lichen age and growth rate in Cladina stygia (Fr.) Ahti collected from northwestern Alaska, USA. The average growth rate using {sup 14}C/C ratios was 6.5 mm {center_dot} yr{sup -1}, which was not significantly different from growth rates derived by Andreev's internode method (average = 6.2 mm {center_dot} yr{sup -1}); thus, suggesting the reliability of Andreev's simple field method for dating lichens. In addition, we found lichen growth rates appeared to differ with geographic location, yet did not seem related to ambient temperature and total precipitation.

  19. Rice HOX12 Regulates Panicle Exsertion by Directly Modulating the Expression of ELONGATED UPPERMOST INTERNODE1[OPEN

    PubMed Central

    Gao, Shaopei; Fang, Jun; Xu, Fan; Wang, Wei

    2016-01-01

    Bioactive gibberellins (GAs) are key endogenous regulators of plant growth. Previous work identified ELONGATED UPPERMOST INTERNODE1 (EUI1) as a GA-deactivating enzyme that plays an important role in panicle exsertion from the flag leaf sheath in rice (Oryza sativa). However, the mechanism that regulates EUI1 activity during development is still largely unexplored. In this study, we identified the dominant panicle enclosure mutant regulator of eui1 (ree1-D), whose phenotype is caused by the activation of the homeodomain-leucine zipper transcription factor HOX12. Diminished HOX12 expression by RNA interference enhanced panicle exsertion, mimicking the eui1 phenotype. HOX12 knockdown plants contain higher levels of the major biologically active GAs (such as GA1 and GA4) than the wild type. The expression of EUI1 is elevated in the ree1-D mutant but reduced in HOX12 knockdown plants. Interestingly, both HOX12 and EUI1 are predominantly expressed in panicles, where GA4 is highly accumulated. Yeast one-hybrid, electrophoretic mobility shift assay, and chromatin immunoprecipitation analyses showed that HOX12 physically interacts with the EUI1 promoter both in vitro and in vivo. Furthermore, plants overexpressing HOX12 in the eui1 mutant background retained the elongated uppermost internode phenotype. These results indicate that HOX12 acts directly through EUI1 to regulate panicle exsertion in rice. PMID:26977084

  20. Blockage by gibberellic Acid of phytochrome effects on growth, auxin responses, and flavonoid synthesis in etiolated pea internodes.

    PubMed

    Russell, D W; Galston, A W

    1969-09-01

    Red light inhibits the growth of etiolated pea internodes, causes a shift toward higher indoleacetic acid (IAA) concentrations in the IAA dose-response curve of excised sections, and promotes the synthesis in intact internodes of kaempferol-3-triglucoside. Gibberellic acid (GA(3)) prevents all 3 effects, the first effect substantially and the last 2 completely. This suggests GA(3) blockage of an early or basic event initiated by the active form of phytochrome. The red light-induced shift in the IAA dose-response curve of excised sections is consistent with a light-induced increase in the activity of an IAA destruction system, since the magnitude of the red light inhibition varied with IAA concentration. The red light and GA(3) effects on growth and on flavonoid synthesis are consistent with the view that phytochrome may control growth by regulating the synthesis of phenolic compounds which act as cofactors in an IAA-oxidase system. GA(3) reversal of the red light-induced shift in the IAA dose-response curve involves both growth promotion and inhibition by GA(3) at different IAA concentrations and this, together with the GA(3) reversal of light-induced flavonoid synthesis, supports the suggested regulatory role of phenolic compounds in growth. PMID:16657193

  1. Water use sources of desert riparian Populus euphratica forests.

    PubMed

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies. PMID:24816539

  2. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    SciTech Connect

    Karve, Abhijit A; Weston, David; Jawdy, Sara; Gunter, Lee E; Allen, Sara M; Yang, Xiaohan; Wullschleger, Stan D; Tuskan, Gerald A

    2012-01-01

    Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosol in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.

  3. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa)

    PubMed Central

    2012-01-01

    Background CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date. Results In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X11-C-X6-C-X3-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue

  4. Genome Analyses and Supplement Data from the International Populus Genome Consortium (IPGC)

    DOE Data Explorer

    International Populus Genome Consortium (IPGC)

    The sequencing of the first tree genome, that of Populus, was a project initiated by the Office of Biological and Environmental Research in DOE’s Office of Science. The International Populus Genome Consortium (IPGC) was formed to help develop and guide post-sequence activities. The IPGC website, hosted at the Oak Ridge National Laboratory, provides draft sequence data as it is made available from DOE Joint Genome Institute, genome analyses for Populus, lists of related publications and resources, and the science plan. The data are available at http://www.ornl.gov/sci/ipgc/ssr_resource.htm.

  5. A simple shoot multiplication procedure using internode explants, and its application for particle bombardment and Agrobacterium-mediated transformation in watercress.

    PubMed

    Ogita, Shinjiro; Usui, Miki; Shibutani, Nanae; Kato, Yasuo

    2009-07-01

    A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 muM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1-2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 muM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene. PMID:19308313

  6. Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa: ein Mutant Lacks a Detectable Phytochrome B-Like Polypeptide.

    PubMed

    Devlin, P F; Rood, S B; Somers, D E; Quail, P H; Whitelam, G C

    1992-11-01

    Several phytochrome-controlled processes have been examined in etiolated and light-grown seedlings of a normal genotype and the elongated internode (ein/ein) mutant of rapid-cycling Brassica rapa. Although etiolated ein seedlings displayed normal sensitivity to prolonged far-red light with respect to inhibition of hypocotyl elongation, expansion of cotyledons, and synthesis of anthocyanin, they displayed reduced sensitivity to prolonged red light for all three of these deetiolation responses. In contrast to normal seedlings, light-grown ein seedlings did not show a growth promotion in response to end-of-day far-red irradiation. Additionally, whereas the first internode of light-grown normal seedlings showed a marked increase in elongation in response to reduced ratio of red to far-red light, ein seedlings showed only a small elongation response. When blots of protein extracts from etiolated and light-treated ein and normal seedlings were probed with monoclonal antibody to phytochrome A, an immunostaining band at about 120 kD was observed for both extracts. The immunostaining intensity of this band was substantially reduced for extracts of light-treated normal and ein seedlings. A mixture of three monoclonal antibodies directed against phytochrome B from Arabidopsis thaliana immunostained a band at about 120 kD for extracts of etiolated and light-treated normal seedlings. This band was undetectable in extracts of ein seedlings. We propose that ein is a photoreceptor mutant that is deficient in a light-stable phytochrome B-like species. PMID:16653143

  7. Relationships of the internodal distance of biological tissue with its sound velocity and attenuation at high frequency in doublet mechanics

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-Xuan; Wu, Rong-Rong; Liu, Xiao-Zhou; Liu, Jie-Hui; Gong, Xiu-Fen; Wu, Jun-Ru

    2015-04-01

    In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (> 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 1113020403 and 1101020402), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), the China Postdoctoral Science Foundation (Grant No. 2013M531313), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, and the Project of Interdisciplinary Center of Nanjing University, China (Grant No. NJUDC2012004).

  8. Photosynthesis-dependent formation of convoluted plasma membrane domains in Chara internodal cells is independent of chloroplast position.

    PubMed

    Foissner, Ilse; Sommer, Aniela; Hoeftberger, Margit

    2015-07-01

    The characean green alga Chara australis forms complex plasma membrane convolutions called charasomes when exposed to light. Charasomes are involved in local acidification of the surrounding medium which facilitates carbon uptake required for photosynthesis. They have hitherto been only described in the internodal cells and in close contact with the stationary chloroplasts. Here, we show that charasomes are not only present in the internodal cells of the main axis, side branches, and branchlets but that the plasma membranes of chloroplast-containing nodal cells, protonemata, and rhizoids are also able to invaginate into complex domains. Removal of chloroplasts by local irradiation with intense light revealed that charasomes can develop at chloroplast-free "windows" and that the resulting pH banding pattern is independent of chloroplast or window position. Charasomes were not detected along cell walls containing functional plasmodesmata. However, charasomes formed next to a smooth wound wall which was deposited onto the plasmodesmata-containing wall when the neighboring cell was damaged. In contrast, charasomes were rarely found at uneven, bulged wound walls which protrude into the streaming endoplasm and which were induced by ligation or puncturing. The results of this study show that charasome formation, although dependent on photosynthesis, does not require intimate contact with chloroplasts. Our data suggest further that the presence of plasmodesmata inhibits charasome formation and/or that exposure to the outer medium is a prerequisite for charasome formation. Finally, we hypothesize that the absence of charasomes at bulged wound walls is due to the disturbance of uniform laminar mass streaming. PMID:25524777

  9. Nanometrology of delignified Populus using mode synthesizing atomic force microscopy

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R H; Davison, Brian H; Jung, S; Ragauskas, A J; Lereu, Aude; Thundat, Thomas George

    2011-01-01

    The study of the spatially resolved physical and compositional properties of materials at the nanoscale is increasingly challenging due to the level of complexity of biological specimens such as those of interest in bioenergy production. Mode synthesizing atomic force microscopy (MSAFM) has emerged as a promising metrology tool for such studies. It is shown that, by tuning the mechanical excitation of the probe-sample system, MSAFM can be used to dynamically investigate the multifaceted complexity of plant cells. The results are argued to be of importance both for the characteristics of the invoked synthesized modes and for accessing new features of the samples. As a specific system to investigate, we present images of Populus, before and after a holopulping treatment, a crucial step in the biomass delignification process.

  10. Genome-wide profiling of Populus small RNAs

    PubMed Central

    2009-01-01

    Background Short RNAs, and in particular microRNAs, are important regulators of gene expression both within defined regulatory pathways and at the epigenetic scale. We investigated the short RNA (sRNA) population (18-24 nt) of the transcriptome of green leaves from the sequenced Populus trichocarpa using a concatenation strategy in combination with 454 sequencing. Results The most abundant size class of sRNAs were 24 nt. Long Terminal Repeats were particularly associated with 24 nt sRNAs. Additionally, some repetitive elements were associated with 22 nt sRNAs. We identified an sRNA hot-spot on chromosome 19, overlapping a region containing both the proposed sex-determining locus and a major cluster of NBS-LRR genes. A number of phased siRNA loci were identified, a subset of which are predicted to target PPR and NBS-LRR disease resistance genes, classes of genes that have been significantly expanded in Populus. Additional loci enriched for sRNA production were identified and characterised. We identified 15 novel predicted microRNAs (miRNAs), including miRNA*sequences, and identified a novel locus that may encode a dual miRNA or a miRNA and short interfering RNAs (siRNAs). Conclusions The short RNA population of P. trichocarpa is at least as complex as that of Arabidopsis thaliana. We provide a first genome-wide view of short RNA production for P. trichocarpa and identify new, non-conserved miRNAs. PMID:20021695

  11. Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus

    PubMed Central

    Babst, Benjamin A.; Chen, Han-Yi; Wang, Hong-Qiang; Payyavula, Raja S.; Thomas, Tina P.; Harding, Scott A.; Tsai, Chung-Jui

    2014-01-01

    The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues. PMID:24803501

  12. Expansion and diversification of the Populus R2R3-MYB family of transcription factors.

    PubMed

    Wilkins, Olivia; Nahal, Hardeep; Foong, Justin; Provart, Nicholas J; Campbell, Malcolm M

    2009-02-01

    The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. R2R3-MYB family members regulate plant-specific processes, such as the elaboration of specialized cell types, including xylem, guard cells, trichomes, and root hairs, and the biosynthesis of specialized branches of metabolism, including phenylpropanoid biosynthesis. As such, R2R3-MYB family members are hypothesized to contribute to the emergence of evolutionary innovations that have arisen in specific plant lineages. As a first step in determining the role played by R2R3-MYB family members in the emergence of lineage-specific innovations in the genus Populus, the entire Populus trichocarpa R2R3-MYB family was characterized. The Populus R2R3-MYB complement is much larger than that found in other angiosperms with fully sequenced genomes. Phylogenetic analyses, together with chromosome placement, showed that the expansion of the Populus R2R3-MYB family was not only attributable to whole genome duplication but also involved selective expansion of specific R2R3-MYB clades. Expansion of the Populus R2R3-MYB family prominently involved members with expression patterns that suggested a role in specific components of Populus life history, including wood formation and reproductive development. An expandable compendium of microarray-based expression data (PopGenExpress) and associated Web-based tools were developed to better enable within- and between-species comparisons of Populus R2R3-MYB gene expression. This resource, which includes intuitive graphic visualization of gene expression data across multiple tissues, organs, and treatments, is freely available to, and expandable by, scientists wishing to better understand the genome biology of Populus, an ecologically dominant and economically important forest tree genus. PMID:19091872

  13. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus.

    PubMed

    Tingting, Liu; Di, Fan; Lingyu, Ran; Yuanzhong, Jiang; Rui, Liu; Keming, Luo

    2015-10-01

    The typeⅡCRISPR/Cas9 system (Clustered regularly interspaced short palindromic repeats /CRISPR-associated 9) has been widely used in bacteria, yeast, animals and plants as a targeted genome editing technique. In previous work, we have successfully knocked out the endogenous phytoene dehydrogenase (PDS) gene in Populus tomentosa Carr. using this system. To study the effect of target design on the efficiency of CRISPR/Cas9-mediated gene knockout in Populus, we analyzed the efficiency of mutagenesis using different single-guide RNA (sgRNA) that target PDS DNA sequence. We found that mismatches between the sgRNA and the target DNA resulted in decreased efficiency of mutagenesis and even failed mutagenesis. Moreover, complementarity between the 3' end nucleotide of sgRNA and target DNA is especially crucial for efficient mutagenesis. Further sequencing analysis showed that two PDS homologs in Populus, PtPDS1 and PtPDS2, could be knocked out simultaneously using this system with 86.4% and 50% efficiency, respectively. These results indicated the possibility of introducing mutations in two or more endogenous genes efficiently and obtaining multi-mutant strains of Populus using this system. We have indeed generated several knockout mutants of transcription factors and structural genes in Populus, which establishes a foundation for future studies of gene function and genetic improvement of Populus. PMID:26496757

  14. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    SciTech Connect

    Tuskan, Gerry

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on "Resequencing in Populus: Towards Genome Wide Association Genetics" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  15. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    ScienceCinema

    Tuskan, Gerry

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on "Resequencing in Populus: Towards Genome Wide Association Genetics" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  16. Characterization of internodal collecting lymphatic vessel function after surgical removal of an axillary lymph node in mice.

    PubMed

    Kwon, Sunkuk; Price, Roger E

    2016-04-01

    Secondary lymphedema is an acquired lymphatic disorder, which occurs because of damage to the lymphatic system from surgery and/or radiation therapy for cancer treatment. However, it remains unknown how post-nodal collecting lymphatic vessels (CLVs) draining to the surgical wound area change in response to lymphadenectomy. We investigated functional and architectural changes of inguinal-to-axillary internodal CLVs (ICLVs) in mice after a single axillary LN (ALN) dissection using near-infrared fluorescence imaging. Our data showed no lymph flow in the ICLVs draining from the inguinal LN (ILN) at 2 days post-surgery. External compression enabled visualization of a small segment of contractile fluorescent ICLVs, but not all the way to the axillary region. At day 6, abnormal lymphatic drainage patterns, including lateral and retrograde lymph flow via vessels branching off the ICLVs were observed, which started to disappear beginning 9 days after surgery. The administration of vascular endothelial growth factor (VEGF)-C into the wound increased resolution of altered lymphatic drainage. Lymphatic drainage from the base of the tail to the ILN did not significantly change over time. These results demonstrate that lymph flow in the CLVs is dramatically affected by a LN dissection and long-term interruption of lymph flow might cause CLV dysfunction and thus contribute to chronic lymphatic disorders. PMID:27446639

  17. Characterization of internodal collecting lymphatic vessel function after surgical removal of an axillary lymph node in mice

    PubMed Central

    Kwon, Sunkuk; Price, Roger E.

    2016-01-01

    Secondary lymphedema is an acquired lymphatic disorder, which occurs because of damage to the lymphatic system from surgery and/or radiation therapy for cancer treatment. However, it remains unknown how post-nodal collecting lymphatic vessels (CLVs) draining to the surgical wound area change in response to lymphadenectomy. We investigated functional and architectural changes of inguinal-to-axillary internodal CLVs (ICLVs) in mice after a single axillary LN (ALN) dissection using near-infrared fluorescence imaging. Our data showed no lymph flow in the ICLVs draining from the inguinal LN (ILN) at 2 days post-surgery. External compression enabled visualization of a small segment of contractile fluorescent ICLVs, but not all the way to the axillary region. At day 6, abnormal lymphatic drainage patterns, including lateral and retrograde lymph flow via vessels branching off the ICLVs were observed, which started to disappear beginning 9 days after surgery. The administration of vascular endothelial growth factor (VEGF)-C into the wound increased resolution of altered lymphatic drainage. Lymphatic drainage from the base of the tail to the ILN did not significantly change over time. These results demonstrate that lymph flow in the CLVs is dramatically affected by a LN dissection and long-term interruption of lymph flow might cause CLV dysfunction and thus contribute to chronic lymphatic disorders.

  18. Spatiotemporal distribution of essential elements through Populus leaf ontogeny.

    PubMed

    Carvalho, Mónica R; Woll, Arthur; Niklas, Karl J

    2016-04-01

    We examined the spatiotemporal distribution and accumulation of calcium (Ca), potassium (K), and zinc (Zn) during the growth and maturation of grey poplar (Populus tremula × alba) leaves covering plastochrons 01 through 10. This period spans the sugar sink-to-source transition and requires coordinated changes of multiple core metabolic processes that likely involve alterations in essential and non-essential element distributions as tissues mature and effect a reversal in phloem flow direction. Whole-leaf elemental maps were obtained from dried specimens using micro X-ray fluorescence spectroscopy. Additional cross-sections of fresh leaves were scanned to check for tissue specificity in element accumulation. The anatomical distribution of Zn and K remains relatively consistent throughout leaf development; Ca accumulation varied across leaf developmental stages. The basipetal allocation of Ca to the leaf mesophyll matched spatially and temporally the sequence of phloem maturation, positive carbon balance, and sugar export from leaves. The accumulation of Ca likely reflects the maturation of xylem in minor veins and the enhancement of the transpiration stream. Our results independently confirm that xylem and phloem maturation are spatially and temporally coordinated with the onset of sugar export in leaves. PMID:26985054

  19. Characterization and ectopic expression of a populus hydroxyacid hydroxycinnamoyltransferase.

    PubMed

    Cheng, Ai-Xia; Gou, Jin-Ying; Yu, Xiao-Hong; Yang, Huijun; Fang, Xin; Chen, Xiao-Ya; Liu, Chang-Jun

    2013-11-01

    Cutinized and suberized cell walls in plants constitute physiologically important environment interfaces. They act as barriers limiting the loss of water and nutrients and protecting against radiation and invasion of pathogens. The roles of cutin- and suberin polyesters are often attributed to their dominant aliphatic components, but the contribution of aromatic composition to their physiological function remains unclear. By functionally screening a subset of Populus trichocarpa BAHD/HXXXD acyltransferases, we identified a hydroxycinnamoyltransferase that shows specific transacylation activity on ω-hydroxyacids using both feruloyl- and p-coumaroyl- CoA as the acyl donors. We named this enzyme P. trichocarpa hydroxyacid/fatty alcohol hydroxycinnamoyltransferase 1 (PtFHT1). The ectopic expression of the PtFHT1 gene in Arabidopsis increased the incorporation of ferulate in root and seed suberins and in leaf cutin, but not that of p-coumarate, while the aliphatic load in both suberin and cutin polyesters essentially remained unaffected. The overaccumulation of ferulate in lipophilic polyester significantly increased the tolerance of transgenic plants to salt stress treatment; under sub-lethal conditions of salt stress, the ratios of their seed germination and seedling establishment were 50% higher than those of wild-type plants. Our study suggests that, although aromatics are the minor component of polyesters, they play important role in the sealing function of lipidic polymers in planta. PMID:23709341

  20. The genetics and genomics of the drought response in Populus.

    PubMed

    Street, Nathaniel Robert; Skogström, Oskar; Sjödin, Andreas; Tucker, James; Rodríguez-Acosta, Maricela; Nilsson, Peter; Jansson, Stefan; Taylor, Gail

    2006-11-01

    The genetic nature of tree adaptation to drought stress was examined by utilizing variation in the drought response of a full-sib second generation (F(2)) mapping population from a cross between Populus trichocarpa (93-968) and P. deltoides Bart (ILL-129) and known to be highly divergent for a vast range of phenotypic traits. We combined phenotyping, quantitative trait loci (QTL) analysis and microarray experiments to demonstrate that 'genetical genomics' can be used to provide information on adaptation at the species level. The grandparents and F(2) population were subjected to soil drying, and contrasting responses to drought across genotypes, including leaf coloration, expansion and abscission, were observed, and QTL for these traits mapped. A subset of extreme genotypes exhibiting extreme sensitivity and insensitivity to drought on the basis of leaf abscission were defined, and microarray experiments conducted on these genotypes and the grandparent species. The extreme genotype groups induced a different set of genes: 215 and 125 genes differed in their expression response between groups in control and drought, respectively, suggesting species adaptation at the gene expression level. Co-location of differentially expressed genes with drought-specific and drought-responsive QTLs was examined, and these may represent candidate genes contributing to the variation in drought response. PMID:17005011

  1. Spatiotemporal distribution of essential elements through Populus leaf ontogeny

    PubMed Central

    Carvalho, Mónica R.; Woll, Arthur; Niklas, Karl J.

    2016-01-01

    We examined the spatiotemporal distribution and accumulation of calcium (Ca), potassium (K), and zinc (Zn) during the growth and maturation of grey poplar (Populus tremula × alba) leaves covering plastochrons 01 through 10. This period spans the sugar sink-to-source transition and requires coordinated changes of multiple core metabolic processes that likely involve alterations in essential and non-essential element distributions as tissues mature and effect a reversal in phloem flow direction. Whole-leaf elemental maps were obtained from dried specimens using micro X-ray fluorescence spectroscopy. Additional cross-sections of fresh leaves were scanned to check for tissue specificity in element accumulation. The anatomical distribution of Zn and K remains relatively consistent throughout leaf development; Ca accumulation varied across leaf developmental stages. The basipetal allocation of Ca to the leaf mesophyll matched spatially and temporally the sequence of phloem maturation, positive carbon balance, and sugar export from leaves. The accumulation of Ca likely reflects the maturation of xylem in minor veins and the enhancement of the transpiration stream. Our results independently confirm that xylem and phloem maturation are spatially and temporally coordinated with the onset of sugar export in leaves. PMID:26985054

  2. SEXUAL DEMOGRAPHICS OF RIPARIAN POPULATIONS OF POPULUS DELTOIDES: CAN MORTALITY BE PREDICTED FROM A CHANGE IN REPRODUCTIVE STATUS?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Populus deltoides forests along the Rio Grande river drainage are predicted to disappear within this century. We evaluated stand health over three years by examining the sex ratio, size, and spatial distribution of male, female, and non-reproductive trees in six even-aged stands of Populus deltoide...

  3. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C; DiFazio, Stephen P; Brunner, A.; Tuskan, Gerald A

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  4. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    SciTech Connect

    Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J; Tuskan, Gerald A

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifs in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.

  5. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding

    PubMed Central

    Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future. PMID:26800039

  6. [Sexual differences in climatic response of dioecious Populus davidiana tree].

    PubMed

    Gao, Lu-Shuang; Zhao, Xiu-Hai; Wang, Xiao-Ming; Zhang, Chun-Yu

    2014-07-01

    The tree-ring width series and standardized chronologies of Populus davidiana trees in broad-leaved and Korean pine forest in Changbai Mountains were developed separately for male and female trees. Their differential radial growth and their relationship with climatic conditions were analyzed to reveal the effect of gender on radial growth and their climatic responses. It was found that there was a significant differential growth pattern before and after climate change for dioecious trees. The differential responses of the females and males to climate were also observed. The radial increment of female trees before 1980 was significantly higher than that of male trees, and the growth of female was negatively related with the monthly minimum temperature at the end of current growing season and precipitation in the previous and current growing season. The male was significantly positively related with the current growing season temperature. After 1980, the monthly temperature significantly increased, especially the monthly minimum temperature. The increment of dioecious trees decreased. The annual radial growth rate of the female was significantly lower than that of the male. Compared with the male tree, the female was more sensitive to the monthly minimum temperature. The female was significantly positively related with the spring minimum temperature and significantly negatively with the minimum temperature at the end of previous growing season. There was no significant correlation between the male and monthly minimum temperature. The monthly minimum temperature had an important impact on female P. davidiana trees in Changbai Mountains. Under the condition of stable precipitation, the increase of minimum temperature would restrain the growth of females, but lightly influenced the males' growth. PMID:25345033

  7. Transcriptome Profiles of Populus euphratica upon Heat Shock stress

    PubMed Central

    Chen, Jinhuan; Yin, Weilun; Xia, Xinli

    2014-01-01

    Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (–40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica. PMID:25435796

  8. Lignin content in natural Populus variants affects sugar release

    PubMed Central

    Studer, Michael H.; DeMartini, Jaclyn D.; Davis, Mark F.; Sykes, Robert W.; Davison, Brian; Keller, Martin; Tuskan, Gerald A.; Wyman, Charles E.

    2011-01-01

    The primary obstacle to producing renewable fuels from lignocellulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell wall. From a sample set of wood cores representing 1,100 individual undomesticated Populus trichocarpa trees, 47 extreme phenotypes were selected across measured lignin content and ratio of syringyl and guaiacyl units (S/G ratio). This subset was tested for total sugar release through enzymatic hydrolysis alone as well as through combined hot-water pretreatment and enzymatic hydrolysis using a high-throughput screening method. The total amount of glucan and xylan released varied widely among samples, with total sugar yields of up to 92% of the theoretical maximum. A strong negative correlation between sugar release and lignin content was only found for pretreated samples with an S/G ratio < 2.0. For higher S/G ratios, sugar release was generally higher, and the negative influence of lignin was less pronounced. When examined separately, only glucose release was correlated with lignin content and S/G ratio in this manner, whereas xylose release depended on the S/G ratio alone. For enzymatic hydrolysis without pretreatment, sugar release increased significantly with decreasing lignin content below 20%, irrespective of the S/G ratio. Furthermore, certain samples featuring average lignin content and S/G ratios exhibited exceptional sugar release. These facts suggest that factors beyond lignin and S/G ratio influence recalcitrance to sugar release and point to a critical need for deeper understanding of cell-wall structure before plants can be rationally engineered for reduced recalcitrance and efficient biofuels production. PMID:21444820

  9. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    PubMed Central

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-01-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome. PMID:11404342

  10. The obscure events contributing to the evolution of an incipient sex chromosome in Populus A retrospective working hypothesis.

    SciTech Connect

    Tuskan, Gerald A; Tschaplinski, Timothy J; Chen, Jay; Labbe, Jessy L; Ranjan, Priya; DiFazio, Steven P; Slavov, Goncho T.; Yin, Tongming

    2012-01-01

    Genetic determination of gender is a fundamental developmental and evolutionary process in plants. Although it appears that dioecy in Populus is partially genetically controlled, the precise gender-determining systems remain unclear. The recently-released second draft assembly and annotated gene set of the Populus genome provided an opportunity to re-visit this topic. We hypothesized that over evolutionary time, selective pressure has reformed the genome structure and gene composition in the peritelomeric region of the chromosome XIX which has resulted in a distinctive genome structure and cluster of genes contributing to gender determination in Populus. Multiple lines of evidence support this working hypothesis. First, the peritelomeric region of the chromosome XIX contains significantly fewer single nucleotide polymorphisms than the rest of Populus genome and has a distinct evolutionary history. Second, the peritelomeric end of chromosome XIX contains the largest cluster of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistances genes in the entire Populus genome. Third, there is a high occurrence of small microRNAs on chromosome XIX coincident to the region containing the putative gender-determining locus and the major cluster of NBS-LRR genes. Further, by analyzing the metabolomic profiles of floral bud in male and female Populus trees using a gas chromatography-mass spectrometry, we found there are gender-specific accumulations of phenolic glycosides. Taken together, these findings provide new insights into the genetic control of gender determination in Populus.

  11. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by routing through transporter nodes

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-11-16

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a destination. Some packets are constrained to be routed through respective designated transporter nodes, the automated routing strategy determining a path from a respective source node to a respective transporter node, and from a respective transporter node to a respective destination node. Preferably, the source node chooses a routing policy from among multiple possible choices, and that policy is followed by all intermediate nodes. The use of transporter nodes allows greater flexibility in routing.

  12. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by employing bandwidth shells at areas of overutilization

    SciTech Connect

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-04-27

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a final destination. The default routing strategy is altered responsive to detection of overutilization of a particular path of one or more links, and at least some traffic is re-routed by distributing the traffic among multiple paths (which may include the default path). An alternative path may require a greater number of link traversals to reach the destination node.

  13. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by dynamically adjusting local routing strategies

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-03-16

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Each node implements a respective routing strategy for routing data through the network, the routing strategies not necessarily being the same in every node. The routing strategies implemented in the nodes are dynamically adjusted during application execution to shift network workload as required. Preferably, adjustment of routing policies in selective nodes is performed at synchronization points. The network may be dynamically monitored, and routing strategies adjusted according to detected network conditions.

  14. Environmental Influences on Wood Chemistry and Density of Populus and Loblolly Pine

    SciTech Connect

    Tuskan, G.A.

    2006-08-11

    The objectives of the study are to: (1) determine the degree to which physical and chemical wood properties vary in association with environmental and silvicultural practices in Populus and loblolly pine and (2) develop and verify species-specific empirical models in an effort to create a framework for understanding environmental influences on wood quality.

  15. Cryopreservation of Populus trichocarpa and Salix using dormant buds with recovery by grafting or direct rooting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Populus trichocarpa and Salix can be successfully cryopreserved by using dormant scions as the source explants. These scions (either at their original moisture content of 48 to 60% or dried to 30%) were slowly cooled to –35 degree Celsius, transferred to the vapor phase of liquid nitrogen (LNV,-160...

  16. Draft Genome Sequences of Four Streptomyces Isolates from the Populus trichocarpa Root Endosphere and Rhizosphere

    PubMed Central

    Klingeman, Dawn M.; Utturkar, Sagar; Lu, Tse-Yuan S.; Schadt, Christopher W.; Pelletier, Dale A.

    2015-01-01

    Draft genome sequences for four Actinobacteria from the genus Streptomyces are presented. Streptomyces is a metabolically diverse genus that is abundant in soils and has been reported in association with plants. The strains described in this study were isolated from the Populus trichocarpa endosphere and rhizosphere. PMID:26564053

  17. Draft Genome Sequence of the Growth-Promoting Endophyte Paenibacillus sp. P22, Isolated from Populus

    PubMed Central

    Hanak, Anne M.; Nagler, Matthias; Weinmaier, Thomas; Sun, Xiaoliang; Fragner, Lena; Schwab, Clarissa; Rattei, Thomas; Ulrich, Kristina; Ewald, Dietrich; Engel, Marion; Schloter, Michael; Bittner, Romana; Schleper, Christa

    2014-01-01

    Paenibacillus sp. P22 is a Gram-negative facultative anaerobic endospore-forming bacterium isolated from poplar hybrid 741 (♀[Populus alba × (P. davidiana + P. simonii) × P. tomentosa]). This bacterium shows strong similarities to Paenibacillus humicus, and important growth-promoting effects on in vitro grown explants of poplar hybrid 741 have been described. PMID:24723717

  18. Genome structure and emerging evidence of an incipient sex chromosome in Populus

    SciTech Connect

    Yin, Tongming; DiFazio, Stephen P; Gunter, Lee E; Zhang, Xinye; Sewell, Mitchell; Woolbright, Dr. Scott; Allan, Dr. Gery; Kelleher, Colin; Douglas, Carl; Wang, Prof. Mingxiu; Tuskan, Gerald A

    2008-01-01

    The genus Populus consists of dioecious woody species with largely unknown genetic mechanisms for gender determination. We have discovered genetic and genomic features in the peritelomeric region of chromosome XIX that suggest this region of the Populus genome is in the process of developing characteristics of a sex chromosome. We have identified a gender-associated locus that consistently maps to this region. Furthermore, comparison of genetic maps across multiple Populus families reveals consistently distorted segregation within this region. We have intensively characterized this region using an F1 interspecific cross involving the female genotype that was used for genome sequencing. This region shows suppressed recombination and high divergence between the alternate haplotypes, as revealed by dense map-based genome assembly using microsatellite markers. The suppressed recombination, distorted segregation, and haplotype divergence were observed only for the maternal parent in this cross. Furthermore, the progeny of this cross showed a strongly male-biased sex ratio, in agreement with Haldane's rule that postulates that the heterogametic sex is more likely to be absent, rare, or sterile in interspecific crosses. Together, these results support the role of chromosome XIX in sex determination and suggest that sex determination in Populus occurs through a ZW system in which the female is the heterogametic gender.

  19. RepPop: A Database for Repetitive Elements in Populus Trichocarpa

    DOE Data Explorer

    Zhou, Fengfeng; Xu, Ying

    The populus was selected as the first tree with the genome to be sequenced, mainly due to its small genome size, the wide deployment worldwide (30+ species), and its short juvenile period. Its rich content of cellulose, which is one of the most important source for biofuel. A female clone of P. trichocarpa was chosen to be sequenced. The current assembly of Populus genome is release 1.0, whose small insert end-sequence coverage is 7.5X, and it was released in June 2004. It consists of 22,012 sequences (including the 19 chromosomes) and the total length is 485,510,911 bps. The data was downloaded from the offical site of the Populus trichocarpa genome sequencing project. The latest version of the genome can be found at the Poplar Genome Project at JGI Eukaryotic Genomics. Duplication regions introduce significant difficulties into the correct assemblying of sequence contigs. We identified all the repetitive elements in the populus genome. We further assign each of them as different classes of repetitive elements, including DNA transposons, RNA retrotransposons, Miniature Inverted-repeat Transposable Elements (MITE), Simple Sequence Repeats (SSR), and Segmental Duplications (SD), etc. We organized the annotations into this easily browsable, searchable, and blastable database, RepPop, for the whole community.[From website for RepPop at http://csbl.bmb.uga.edu/~ffzhou/RepPop/

  20. Genome structure and emerging evidence of an incipient sex chromosome in Populus

    PubMed Central

    Yin, Tongming; DiFazio, Stephen P.; Gunter, Lee E.; Zhang, Xinye; Sewell, Michell M.; Woolbright, Scott A.; Allan, Gery J.; Kelleher, Collin T.; Douglas, Carl J.; Wang, Mingxiu; Tuskan, Gerald A.

    2008-01-01

    The genus Populus consists of dioecious woody species with largely unknown genetic mechanisms for gender determination. We have discovered genetic and genomic features in the peritelomeric region of chromosome XIX that suggest this region of the Populus genome is in the process of developing characteristics of a sex chromosome. We have identified a gender-associated locus that consistently maps to this region. Furthermore, comparison of genetic maps across multiple Populus families reveals consistently distorted segregation within this region. We have intensively characterized this region using an F1 interspecific cross involving the female genotype that was used for genome sequencing. This region shows suppressed recombination and high divergence between the alternate haplotypes, as revealed by dense map-based genome assembly using microsatellite markers. The suppressed recombination, distorted segregation, and haplotype divergence were observed only for the maternal parent in this cross. Furthermore, the progeny of this cross showed a strongly male-biased sex ratio, in agreement with Haldane’s rule that postulates that the heterogametic sex is more likely to be absent, rare, or sterile in interspecific crosses. Together, these results support the role of chromosome XIX in sex determination and suggest that sex determination in Populus occurs through a ZW system in which the female is the heterogametic gender. PMID:18256239

  1. Draft genome sequences of four Streptomyces isolates from the Populus trichocarpa root endosphere and rhizosphere

    DOE PAGESBeta

    Klingeman, Dawn M.; Utturkar, Sagar; Lu, Tse -Yuan S.; Schadt, Christopher W.; Pelletier, Dale A.; Brown, Steve D.

    2015-11-12

    Draft genome sequences for four Actinobacteria from the genus Streptomyces are presented. Streptomyces is a metabolically diverse genus that is abundant in soils and has been reported in association with plants. The strains described in this study were isolated from the Populus trichocarpa endosphere and rhizosphere.

  2. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    SciTech Connect

    Tschaplinski, Timothy J; Tsai, Chung-Jui; Harding, Scott A; Lindroth, richard L; Yuan, Yinan

    2006-01-01

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.

  3. [Sequence analysis of bacterial transposon in NHX gene of Populus euphratica].

    PubMed

    Li, Jin-Yao; Ma, Ji; Cai, Lun; Zeng, You-Ling; Mei, Xin-Di; Zhang, Fu-Chun

    2003-09-01

    The United Nations Environment Program estimates that approximately 20% of agricultural land and 50% of cropland in the world is salt-stressed. The gene NHX (Na+/H+ exchanger) encodes functional protein that catalyzes the countertransport of Na+ and H+ across membranes and may play an important role in plant salt tolerance. To clone the NHX from the wild plant Populus euphratica collected in Tarim basin and Xinjiang Wujiaqu district into a T-vector, designed primer was used to amplify 1kb NHX cDNA fragment with RT-PCR. Total RNA was extracted from Populus euphratica tissue (plant tissue was collected from Tarim basin and Xinjiang Wujiaqu district and stored in liquid nitrogen) according to the Plant RNA Mini Kits of Omega. First cDNAs were synthesized from 1 microg total RNA of Populus euphratica seedling. A pair of primers were used to perform RT-PCR. The amplified DNA fragment was purified and cloned into pMD18-T vector. However, 1kb and 2.3kb fragment were obtained from Tarim basin and Xinjiang Wujiaqu district and named as PtNHX and PwNHX, respectively. Sequence analysis reveals that the cloned PtNHX fragment of Populus euphratica contains partial NHX coding region with 98%, 86%, 84% and 80% identity comparing with Atriplex gemelini, Suaeda maritima, Arabidopsis thaliana and Oryza sativa, respectively. This analysis suggests that NHX gene would be highly conserved in terms of evolution in plant; and it also suggests that the NHX gene of Populus euphratica also would have the similarity with that of Arabidopsis. It may be of great importance in improvement of the plant salt tolerance and breed of crop. At the same time, sequence analysis shows that PwNHX gene includes a coding region about 1350bp with 99% identity comparing with transposon Tn10 IS10-left transposase of Shigella flexneri. On the one hand, the NHX gene may lose its function because it was inserted a fragment in coding region. On the other hand, its product may play a important role in salt

  4. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain

    PubMed Central

    2014-01-01

    Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell

  5. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs

    PubMed Central

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants. PMID:25909656

  6. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    SciTech Connect

    Induri, Brahma R; Ellis, Danielle R; Slavov, Gancho; Yin, Tongming; Muchero, Wellington; Tuskan, Gerald A; DiFazio, Stephen P

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  7. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid.

    PubMed

    Wang, Li; Mu, Chun; Du, Mingwei; Chen, Yin; Tian, Xiaoli; Zhang, Mingcai; Li, Zhaohu

    2014-08-01

    The growth regulator mepiquat chloride (MC) is globally used in cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield loss. However, little information is available as to whether the modification of plant architecture by MC is related to alterations in gibberellic acid (GA) metabolism and signaling. Here, the role of GA metabolism and signaling was investigated in cotton seedlings treated with MC. The MC significantly decreased endogenous GA3 and GA4 levels in the elongating internode, which inhibited cell elongation by downregulating GhEXP and GhXTH2, and then reducing plant height. Biosynthetic and metabolic genes of GA were markedly suppressed within 2-10d of MC treatment, which also downregulated the expression of DELLA-like genes. A remarkable feedback regulation was observed at the early stage of MC treatment when GA biosynthetic and metabolic genes expression was evidently upregulated. Mepiquat chloride action was controlled by temporal translocation and spatial accumulation which regulated GA biosynthesis and signal expression for maintaining GA homeostasis. The results suggested that MC application could reduce endogenous GA levels in cotton through controlled GA biosynthetic and metabolic genes expression, which might inhibit cell elongation, thereby shortening the internode and reducing plant height. PMID:25017155

  8. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    SciTech Connect

    Muchero, Wellington; Labbe, Jessy L; Priya, Ranjan; DiFazio, Steven P; Tuskan, Gerald A

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel and fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.

  9. Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides x Populus trichocarpa F1 progeny.

    PubMed

    Monclus, R; Villar, M; Barbaroux, C; Bastien, C; Fichot, R; Delmotte, F M; Delay, D; Petit, J-M; Bréchet, C; Dreyer, E; Brignolas, F

    2009-11-01

    Genotypic variability for productivity, water-use efficiency and leaf traits in 33 genotypes selected from an F1 progeny of Populus deltoides Bartr. ex Marsh x Populus trichocarpa L. was explored under optimal and moderate water-deficit conditions. Saplings of the 33 genotypes were grown in a two-plot open field at INRA Orléans (France) and coppiced every year. A moderate water deficit was induced during two successive years on one plot by withholding irrigation, while the second one remained irrigated (control). Stem biomass and leaf structure (e.g., specific leaf area and leaf area) were measured in 2004 and 2005 and functional leaf traits (e.g., carbon isotope discrimination, Delta) were measured only in 2004. Tolerance to water deficit was estimated at genotype level as the ability to limit losses in biomass production in water deficit versus control trees. Stem biomass, leaf structure and Delta displayed a significant genotypic variability whatever the irrigation regime. For all traits, genotype ranks remained stable across years for similar irrigation conditions. Carbon isotope discrimination scaled negatively with productivity and leaf nitrogen content in controls. The most productive genotypes were the least tolerant to moderate water deficit. No relationship was evidenced between Delta and the level of tolerance to water deficit. The relationships between traits evidenced in this collection of P. deltoides x P. trichocarpa F1 genotypes contrast with the ones that were previously detected in a collection of P. deltoides x Populus nigra L. cultivars tested in the same field trial. PMID:19773340

  10. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    SciTech Connect

    Tschaplinski, T.J.; Tuskan, G.A.; Wierman, C.

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  11. Enzymatic Properties of Populus α- and β-NAD-ME Recombinant Proteins

    PubMed Central

    Liu, Jinwen; Yu, Qiguo; Elsheery, Nabil I.; Cheng, Yuxiang

    2013-01-01

    Plant mitochondrial NAD-malic enzyme (NAD-ME), which is composed of α- and β-subunits in many species, participates in many plant biosynthetic pathways and in plant respiratory metabolism. However, little is known about the properties of woody plant NAD-MEs. In this study, we analyzed four NAD-ME genes (PtNAD-ME1 through PtNAD-ME4) in the genome of Populus trichocarpa. PtNAD-ME1 and -2 encode putative α-subunits, while PtNAD-ME3 and -4 encode putative β-subunits. The Populus NAD-MEs were expressed in Escherichia coli cells as GST-tagged fusion proteins. Each recombinant GST-PtNAD-ME protein was purified to near homogeneity by glutathione-Sepharose 4B affinity chromatography. Milligram quantities of each native protein were obtained from 1 L bacterial cultures after cleavage of the GST tag. Analysis of the enzymatic properties of these proteins in vitro indicated that α-NAD-MEs are more active than β-NAD-MEs and that α- and β-NAD-MEs presented different kinetic properties (Vmax, kcat and kcat/Km). The effect of different amounts of metabolites on the activities of Populus α- and β-NAD-MEs was assessed in vitro. While none of the metabolites evaluated in our assays activated Populus NAD-ME, oxalacetate and citrate inhibited all α- and β-NAD-MEs and glucose-6-P and fructose inhibited only the α-NAD-MEs. PMID:23797660

  12. Identification and Biochemical Characterization of Four Wood-Associated Glucuronoxylan Methyltransferases in Populus

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Wood is one of the promising bioenergy feedstocks for lignocellulosic biofuel production. Understanding how wood components are synthesized will help us design strategies for better utilization of wood for biofuel production. One of the major wood components is xylan, in which about 10% of xylosyl residues are substituted with glucuronic acid (GlcA) side chains. All the GlcA side chains of xylan in wood of Populus trichocarpa are methylated, which is different from Arabidopsis xylan in which about 60% of GlcA side chains are methylated. Genes responsible for methylation of GlcA side chains in Populus xylan have not been identified. Here, we report genetic and biochemical analyses of four DUF579 domain-containing proteins, PtrGXM1, PtrGXM2, PtrGXM3 and PtrGXM4, from Populus trichocarpa and their roles in GlcA methylation in xylan. The PtrGXM genes were found to be highly expressed in wood-forming cells and their encoded proteins were shown to be localized in the Golgi. When overexpressed in the Arabidopsis gxm1/2/3 triple mutant, PtrGXMs were able to partially complement the mutant phenotypes including defects in glucuronoxylan methyltransferase activity and GlcA methylation in xylan, indicating that PtrGXMs most likely function as glucuronoxylan methyltransferases. Direct evidence was provided by enzymatic analysis of recombinant PtrGXM proteins showing that they possessed a methyltransferase activity capable of transferring the methyl group onto GlcA-substituted xylooligomers. Kinetic analysis showed that PtrGXMs exhibited differential affinities toward the GlcA-substituted xylooligomer acceptor with PtrGXM3 and PtrGXM4 having 10 times higher Km values than PtrGXM1 and PtrGXM2. Together, these findings indicate that PtrGXMs are methyltransferases mediating GlcA methylation in Populus xylan during wood formation. PMID:24523868

  13. Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation.

    PubMed

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    The success of using Populus and Salix for phytoremediation has prompted further use of leachate as a combination of irrigation and fertilization for the trees. A common protocol for such efforts has been to utilize a limited number of readily-available genotypes with decades of deployment in other applications, such as fiber or windbreaks. However, it may be possible to increase phytoremediation success with proper genotypic screening and selection, followed by the field establishment of clones that exhibited favorable potential for cleanup of specific contaminants. There is an overwhelming need for testing and subsequent deployment of diverse Populus and Salix genotypes, given current availability of clonal material and the inherent genetic variation among and within these genera. Therefore, we detail phyto-recurrent selection, a method that consists of revising and combining crop and tree improvement protocols to meet the objective of utilizing superior Populus and Salix clones for remediation applications. Although such information is lacking for environmental clean-up technologies, centuries of plant selection success in agronomy, horticulture, and forestry validate the need for similar approaches in phytoremediation. We bridge the gap between these disciplines by describing project development, clone selection, tree establishment, and evaluation of success metrics in the context of their importance to utilizing trees for phytoremediation. PMID:18246776

  14. Genome-Wide Identification of the Invertase Gene Family in Populus

    PubMed Central

    Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  15. Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Sümeghy, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Tusnády, Gábor

    2015-10-01

    After extreme dry (wet) summers or years, pollen production of different taxa may decrease (increase) substantially. Accordingly, studying effects of current and past meteorological conditions on current pollen concentrations for different taxa have of major importance. The purpose of this study is separating the weight of current and past weather conditions influencing current pollen productions of three taxa. Two procedures, namely multiple correlations and factor analysis with special transformation are used. The 11-year (1997-2007) data sets include daily pollen counts of Ambrosia (ragweed), Poaceae (grasses) and Populus (poplar), as well as daily values of four climate variables (temperature, relative humidity, global solar flux and precipitation). Multiple correlations of daily pollen counts with simultaneous values of daily meteorological variables do not show annual course for Ambrosia, but do show definite trends for Populus and Poaceae. Results received using the two methods revealed characteristic similarities. For all the three taxa, the continental rainfall peak and additional local showers in the growing season can strengthen the weight of the current meteorological elements. However, due to the precipitation, big amount of water can be stored in the soil contributing to the effect of the past climate elements during dry periods. Higher climate sensitivity (especially water sensitivity) of the herbaceous taxa ( Ambrosia and Poaceae) can be definitely established compared to the arboreal Populus. Separation of the weight of the current and past weather conditions for different taxa involves practical importance both for health care and agricultural production.

  16. Dendrochronological and palynological observations on Populus balsamifera in northern Alaska, USA

    SciTech Connect

    Edwards, M.E.; Dunwiddie, P.W.

    1985-01-01

    Sexual and clonal reproduction is occurring in a stand of Populus balsamifera on the Alaskan North Slope. Both even-aged and gradually expanding clones were observed. Trees attain ages in excess of 230 yr, but are slender due to slow diametrical growth (1.4 to 2.5 mm yr/sup -1/). A tree-ring chronology developed using 16 trees exhibited higher mean sensitivity (0.48) and lower first-order autocorrelation (0.43) than other high-latitude chronologies. Ring-width indices were most highly correlated with June temperature (r = 0.50). This species may be useful in expanding the array of climatically sensitive tree-ring sites in the Arctic. Moss polster samples in the vicinity of the stand indicate that although abundant Populus pollen is produced, little is found in surface samples > 30 m from the trees. It is suggested that Populus balsamifera was considerably more abundant in Beringia during the early Holocene due to warm early summer temperatures and widespread substrates favorable for its growth.

  17. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    DOE PAGESBeta

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; Sykes, Robert; Tuskan, Gerald A.; Kalluri, Udaya C.

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less

  18. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    SciTech Connect

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; Sykes, Robert; Tuskan, Gerald A.; Kalluri, Udaya C.

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations in primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.

  19. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria).

    PubMed

    Wang, Jiehua; Constabel, C Peter

    2004-11-01

    In order to functionally analyze the predicted defensive role of leaf polyphenol oxidase (PPO; EC 1.10.3.1) in Populus, transgenic hybrid aspen (Populus tremula x P. alba) plants overexpressing a hybrid poplar (Populus trichocarpa x P. deltoides) PtdPPO1 gene were constructed. Regenerated transgenic plants showed high PPO enzyme activity, PtdPPO1 mRNA levels and PPO protein accumulation. In leaf disk bioassays, forest tent caterpillar (Malacosoma disstria) larvae feeding on PPO-overexpressing transgenics experienced significantly higher mortality and reduced average weight gain compared to larvae feeding on control leaves. However, this effect was observed only when older egg masses were used and the resulting larvae showed reduced growth and vigor. In choice tests, no effect of PPO overexpression was detected. Although PPO in poplar leaves is latent and requires activation with detergents or trypsin for full enzymatic activity, in caterpillar frass the enzyme was extracted in the fully activated form. This activation correlated with partial proteolytic cleavage, suggesting that PPO latency and activation during digestion could be an adaptive and defense-related feature of poplar PPO. PMID:15309534

  20. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  1. Genome-Wide Identification of the Invertase Gene Family in Populus.

    PubMed

    Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  2. Expression of two PIP genes in rapidly growing internodes of rice is not primarily controlled by meristem activity or cell expansion.

    PubMed

    Malz, S; Sauter, M

    1999-08-01

    Membrane intrinsic proteins facilitate movement of small molecules often times functioning as water channels. We have identified two genes from rice which encode proteins with characteristic features of plasma membrane intrinsic proteins (PIP). They possess six membrane-spanning domains, an NPA repeat, overall high sequence homologies and characteristic C- and N-terminal hallmark motifs which allowed assignment of OsPIP1a to the PIP1 subfamily and of OsPIP2a to the PIP2 subfamily. OsPIP1a and OsPIP2a showed similar but not identical expression patterns. The two genes were expressed at higher levels in seedlings than in adult plants and expression in the primary root was regulated by light. In internodes of deepwater rice plants which were induced to grow rapidly by submergence, transcript levels were slightly induced in the intercalary meristem (IM) and slightly reduced in the elongation zone (EZ) after 18 h. In internodes of GA-induced excised stem sections transcript levels transiently declined in the IM and EZ after 1 h and subsequently recovered to elevated levels after 18 h. GA also induced OsPIP expression in non-growing tissue after 18 h. In the IM of submergence-induced stem sections transcript levels remained constitutive. The different growth-promoting treatments showed no direct correlation between growth rate and OsPIP gene expression in dividing or expanding cells. In fact, treatment of excised stem sections with ABA or drought stress induced similar changes in OsPIP expression in the growing zone during the first 6 h as GA did. We conclude that regulation of OsPIP1a and OsPIP2a expression is not primarily controlled by growth. GA-induced growth may however change the water status of cells which in turn results in altered PIP abundance. PMID:10527423

  3. Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom

    PubMed Central

    2013-01-01

    Background Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling. Results We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses. Conclusion In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously

  4. A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the first maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2,...

  5. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    SciTech Connect

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn Marie; Johnson, Courtney M; Martin, Stanton; Land, Miriam L; Lu, Tse-Yuan; Schadt, Christopher Warren; Doktycz, Mitchel John; Pelletier, Dale A

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  6. Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus

    PubMed Central

    Carraro, Nicola; Tisdale-Orr, Tracy Eizabeth; Clouse, Ronald Matthew; Knöller, Anne Sophie; Spicer, Rachel

    2012-01-01

    Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization. PMID:22645571

  7. Condensed tannin biosynthesis and polymerization synergistically condition carbon use, defense, sink strength and growth in Populus.

    PubMed

    Harding, Scott A; Xue, Liang-Jiao; Du, Lei; Nyamdari, Batbayar; Lindroth, Richard L; Sykes, Robert; Davis, Mark F; Tsai, Chung-Jui

    2014-11-01

    The partitioning of carbon for growth, storage and constitutive chemical defenses is widely framed in terms of a hypothetical sink-source differential that varies with nutrient supply. According to this framework, phenolics accrual is passive and occurs in source leaves when normal sink growth is not sustainable due to a nutrient limitation. In assessing this framework, we present gene and metabolite evidence that condensed tannin (CT) accrual is strongest in sink leaves and sequesters carbon in a way that impinges upon foliar sink strength and upon phenolic glycoside (PG) accrual in Populus. The work was based on two Populus fremontii × angustifolia backcross lines with contrasting rates of CT accrual and growth, and equally large foliar PG reserves. However, foliar PG accrual was developmentally delayed in the high-CT, slow-growth line (SG), and nitrogen-limitation led to increased foliar PG accrual only in the low-CT, fast-growth line (FG). Metabolite profiling of developing leaves indicated comparatively carbon-limited amino acid metabolism, depletion of several Krebs cycle intermediates and reduced organ sink strength in SG. Gene profiling indicated that CT synthesis decreased as leaves expanded and PGs increased. A most striking finding was that the nitrogenous monoamine phenylethylamine accumulated only in leaves of SG plants. The potential negative impact of CT hyper-accumulation on foliar sink strength, as well as a mechanism for phenylethylamine involvement in CT polymerization in Populus are discussed. Starch accrual in source leaves and CT accrual in sink leaves of SG may both contribute to the maintenance of a slow-growth phenotype suited to survival in nutrient-poor habitats. PMID:24336515

  8. Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in populus.

    PubMed

    Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

    2010-03-01

    Salicylate-containing phenolic glycosides (PGs) are abundant and often play a dominant role in plant-herbivore interactions of Populus and Salix species (family Salicaceae), but the biosynthetic pathway to PGs remains unclear. Cinnamic acid (CA) is thought to be a precursor of the salicyl moiety of PGs. However, the origin of the 6-hydroxy-2-cyclohexen-on-oyl (HCH) moiety found in certain PGs, such as salicortin, is not known. HCH is of interest because it confers toxicity and antifeedant properties against herbivores. We incubated Populus nigra leaf tissue with stable isotope-labeled CA, benzoates, and salicylates, and measured isotopic incorporation levels into both salicin, the simplest PG, and salicortin. Labeling of salicortin from [13C6]-CA provided the first evidence that HCH, like the salicyl moiety, is a phenylpropanoid derivative. Benzoic acid and benzaldehyde also labeled both salicyl and HCH, while benzyl alcohol labeled only the salicyl moiety in salicortin. Co-administration of unlabeled benzoates with [13C6]-CA confirmed their contribution to the biosynthesis of the salicyl but not the HCH moiety of salicortin. These data suggest that benzoate interconversions may modulate partitioning of phenylpropanoids to salicyl and HCH moieties, and hence toxicity of PGs. Surprisingly, labeled salicyl alcohol and salicylaldehyde were readily converted to salicin, but did not result in labeled salicortin. Co-administration of unlabeled salicylates with labeled CA suggested that salicyl alcohol and salicylaldehyde may have inhibited salicortin biosynthesis. A revised metabolic grid model of PG biosynthesis in Populus is proposed, providing a guide for functional genomic analysis of the PG biosynthetic pathway. PMID:20177744

  9. Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure

    DOE PAGESBeta

    Dumitrache, Alexandru; Akinosho, Hannah; Rodriguez, Miguel; Meng, Xianzhi; Yoo, Chang Geun; Natzke, Jace; Engle, Nancy L.; Sykes, Robert W.; Tschaplinski, Timothy J.; Muchero, Wellington; et al

    2016-02-04

    Background: Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be significantly influenced by the ratio of different monolignol types in Populus biomass. Hydrolysis and fermentation of autoclaved, but otherwise not pretreated Populus trichocarpa by Clostridium thermocellum ATCC 27405 was compared using feedstocks that had similar carbohydrate and total lignin contents but differed in S/G ratios. Results: Populus with an S/G ratio of 2.1 was converted moremore » rapidly and to a greater extent compared to similar biomass that had a ratio of 1.2. For either microbes or commercial enzymes, an approximate 50% relative difference in total solids solubilization was measured for both biomasses, which suggests that the differences and limitations in the microbial breakdown of lignocellulose may be largely from the enzymatic hydrolytic process. Unexpectedly, the reduction in glucan content per gram solid in the residual microbially processed biomass was similar (17–18%) irrespective of S/G ratio, pointing to a similar mechanism of solubilization that proceeded at different rates. Fermentation metabolome testing did not reveal the release of known biomass-derived alcohol and aldehyde inhibitors that could explain observed differences in microbial hydrolytic activity. Biomass-derived p-hydroxybenzoic acid was up to ninefold higher in low S/G ratio biomass fermentations, but was not found to be inhibitory in subsequent test fermentations. Cellulose crystallinity and degree of polymerization did not vary between Populus lines and had minor changes after fermentation. However, lignin molecular weights and cellulose accessibility determined by Simons’ staining were positively correlated to the S/G content. Conclusions: Higher

  10. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    SciTech Connect

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; Hauser, Loren John; Wanchai, Visanu; Land, Miriam L.; Timm, Collin M.; Lu, Tse-Yuan S.; Schadt, Christopher Warren; Doktycz, Mitchel John; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The species P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but this

  11. Characterization of the NADP-malic enzymes in the woody plant Populus trichocarpa.

    PubMed

    Yu, Qiguo; Liu, Jinwen; Wang, Zhifeng; Nai, Jiefei; Lü, Mengyan; Zhou, Xiying; Cheng, Yuxiang

    2013-02-01

    Plant NADP-malic enzyme (NADP-ME, EC 1.1.1.40) participates in a large number of metabolic pathways, but little is known about the NADP-ME family in woody plants or trees. Here, we characterized the tree Populus trichocarpa NADP-ME (PtNADP-ME) family and the properties of the family members. Five NADP-ME genes (PtNADP-ME1-PtNADP-ME5) were found in the genome of Populus. Semi-quantitative RT-PCR analysis show that the transcription levels of PtNADP-ME1 in lignified stems and roots are clearly higher than in other tissues, and PtNADP-ME2, PtNADP-ME3, PtNADP-ME4 and PtNADP-ME5 are broadly expressed in various tissues. PtNADP-ME gene expression was found to respond to salt and osmotic stresses, and NaCl salts upregulated the transcripts of putative plastidic ones (PtNADP-ME4 and PtNADP-ME5) significantly. Further, the NADP-ME activities of Populus seedlings increased at least two-fold under NaCl, mannitol and PEG treatments. Also, the expression of PtNADP-ME2 and PtNADP-ME3 increased during the course of leaf wounding. Each recombinant PtNADP-ME proteins were expressed and purified from Escherichia coli, respectively. Coomassie brilliant blue and NADP-ME activity staining on native polyacrylamide gels showed different oligomeric states of the recombinant PtNADP-MEs in vitro. Noticeably, the cytosolic PtNADP-ME2 aggregates as octamers and hexadecamers while the plastidic PtNADP-ME4 resembles hexamers and octamers. The four PtNADP-ME proteins except for PtNADP-ME1 have high activities on native polyacrylamide gels including different forms for PtNADP-ME2 (octamers and hexadecamers) or for PtNADP-ME4 (hexamers and octamers). High concentrations of NADP substrate decreased the activities of all PtNADP-MEs slightly, while the malate had no effect on them. The kinetic parameters (V (max), K (m), K (cat), and K (cat)/K (m)) of each isoforms were summarized. Our data show the different effects of metabolites (influx into tricarboxylic acid cycle or Calvin cycle) on the

  12. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    DOE PAGESBeta

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; Hauser, Loren John; Wanchai, Visanu; Land, Miriam L.; Timm, Collin M.; Lu, Tse-Yuan S.; Schadt, Christopher Warren; Doktycz, Mitchel John; et al

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but

  13. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence.

    PubMed

    Jost, Matthias; Taketa, Shin; Mascher, Martin; Himmelbach, Axel; Yuo, Takahisa; Shahinnia, Fahimeh; Rutten, Twan; Druka, Arnis; Schmutzer, Thomas; Steuernagel, Burkhard; Beier, Sebastian; Taudien, Stefan; Scholz, Uwe; Morgante, Michele; Waugh, Robbie; Stein, Nils

    2016-06-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  14. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence1[OPEN

    PubMed Central

    Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele

    2016-01-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  15. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert

    PubMed Central

    Brosché, Mikael; Vinocur, Basia; Alatalo, Edward R; Lamminmäki, Airi; Teichmann, Thomas; Ottow, Eric A; Djilianov, Dimitar; Afif, Dany; Bogeat-Triboulot, Marie-Béatrice; Altman, Arie; Polle, Andrea; Dreyer, Erwin; Rudd, Stephen; Paulin, Lars; Auvinen, Petri; Kangasjärvi, Jaakko

    2005-01-01

    Background Plants growing in their natural habitat represent a valuable resource for elucidating mechanisms of acclimation to environmental constraints. Populus euphratica is a salt-tolerant tree species growing in saline semi-arid areas. To identify genes involved in abiotic stress responses under natural conditions we constructed several normalized and subtracted cDNA libraries from control, stress-exposed and desert-grown P. euphratica trees. In addition, we identified several metabolites in desert-grown P. euphratica trees. Results About 14,000 expressed sequence tag (EST) sequences were obtained with a good representation of genes putatively involved in resistance and tolerance to salt and other abiotic stresses. A P. euphratica DNA microarray with a uni-gene set of ESTs representing approximately 6,340 different genes was constructed. The microarray was used to study gene expression in adult P. euphratica trees growing in the desert canyon of Ein Avdat in Israel. In parallel, 22 selected metabolites were profiled in the same trees. Conclusion Of the obtained ESTs, 98% were found in the sequenced P. trichocarpa genome and 74% in other Populus EST collections. This implies that the P. euphratica genome does not contain different genes per se, but that regulation of gene expression might be different and that P. euphratica expresses a different set of genes that contribute to adaptation to saline growth conditions. Also, all of the five measured amino acids show increased levels in trees growing in the more saline soil. PMID:16356264

  16. Differential detection of genetic loci underlying stem and root lignin content in Populus

    SciTech Connect

    Tuskan, Gerald A; Yin, Tongming; Zhang, Xinye; Gunter, Lee E; Ranjan, Priya; Sykes, Robert; Davis, Dr. Mark F.; Wullschleger, Stan D

    2010-11-01

    For simultaneous applications directed towards improved pulp yields, enhanced bioethanol production and increased carbon sequestration, it would be desirable to reduce lignin in the harvested stem while increasing the lignin content in nonharvested roots. In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.

  17. Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus

    PubMed Central

    Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Sykes, Robert; Davis, Mark; Wullschleger, Stan D.; Tuskan, Gerald A.

    2010-01-01

    In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration. PMID:21151641

  18. Methylation of miRNA genes in the response to temperature stress in Populus simonii.

    PubMed

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  19. Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration

    SciTech Connect

    Reichenbacker, R.R.; Hart, E.R.; Schultz, R.C.

    1996-06-01

    The impact of artificial defoliation on Populus growth, biomass production, and total nonstructural carbohydrate concentration was examined. Four Populus clones were field planted and artificially defoliated. Assigned defoliation levels (0, 25, 50, or 75%) were applied to leaves of leaf plastochron index 0 through 8 during a 6-d period in a 3-step incremental manner to simulate cottonwood leaf beetle, Chrysomela scripta F., larval feeding patterns. Artificial defoliations were timed to coincide with the outbreaks of natural beetle populations in adjacent areas. After 2 growing seasons, trees were measured for height, diameter, and biomass accumulation. Root samples were collected from 0 and 75% defoliation treatments for each clone. Biomass was reduced an average of 33% as defoliation level increased from 0 to 75%. As defoliation level increased from 0 to 75%, a consistent allocation ratio of biomass to 2/3 above and 1/3 below ground components continued in all clones. An overcompensation response occurred in above ground biomass when a defoliation level of 25% was applied. Between 25 and 75% a strong linear trend of decreasing biomass as defoliation increased was indicated. Vitality of the tree, as indicated by total nonstructural carbohydrate content, was affected only slightly by increasing defoliation. 26 refs., 1 fig., 6 tabs.

  20. Effect of rotation, site, and clone on the chemical composition of Populus hybrids

    SciTech Connect

    Blanckenhorn, P.R.; Bowersox, T.W.; Kuklewski, K.M.; Stimely, S.L.

    1985-01-01

    Chemical content values were determined for three Populus clones grown on two dissimilar sites by component (wood, bark, and wood/bark specimens), tissue age (1-, 2- and 4-year-old), and rotation. The chemical content values obtained included extractives, holocellulose, ..alpha..-cellulose, and lignin. In general, analysis of the data for the wood, bark, and wood/bark specimens indicated that: 1) wood was high in holocellulose and ..alpha..-cellulose content compared to bark, 2) bark was high in lignin and extractive content values compared to wood, and 3) wood/bark chemical content values were between the values for the wood and bark specimens. The chemical content data were analyzed to identify: 1) significant differences between rotations by component (wood, bark and wood/bark) for a given age, clone, and site, and 2) significant differences between sites for four-year-old wood, bark and wood/bark specimens of a given rotation, and clone. Statistical analyses indicated that significant differences existed among clones, sites, ages, and rotations. Within the wood, bark and wood/bark specimens, tissue age, rotation, and site influenced the chemical content values more than the parentage. Potential chemical yields derived from the three Populus hybrid clones investigated will depend on component, age, rotation, and site with limited parentage effects.

  1. Comparison of selected fuel and chemical content values for seven Populus hybrid clones

    SciTech Connect

    Blankenhorn, P.R.; Bowersox, T.W.; Kuklewski, K.M.; Stimely, G.L.; Murphey, W.K.

    1985-04-01

    Fuel and chemical content values were determined for seven Populus clones by component (wood, bark, and wood/bark specimens) and tissue age (1 to 8 years old). The fuel and chemical content values obtained included: gross heat of combustion, extractives, holocellulose, alpha-cellulose, lignin and ash. In general, analysis of the data for the wood, bark, and wood/bark specimens indicated that: 1) wood was higher in holocellulose and alpha-cellulose content than bark; 2) bark was higher in gross heat of combustion, lignin, extractive, and ash content values than wood; and 3) combined wood/bark fuel and chemical content values were usually between the individual values for the wood and bark. Statistical analyses indicated that significant differences existed within and among clones. Within the wood, bark, and wood/bark specimens, tissue age influenced the chemical content values more than the parentage. Potential chemical yields derived from the seven Populus hybrid clones investigated will depend on component and age with limited parentage effects. 15 references.

  2. Phylogenetic, Expression, and Bioinformatic Analysis of the ABC1 Gene Family in Populus trichocarpa

    PubMed Central

    Zhang, Haizhen; Chen, Yunlin; Xu, Xuemei; Mao, Xuliang; Li, Chenghao

    2013-01-01

    We studied 17 ABC1 genes in Populus trichocarpa, all of which contained an ABC1 domain consisting of about 120 amino acid residues. Most of the ABC1 gene products were located in the mitochondria or chloroplasts. All had a conserved VAVK-like motif and a DFG motif. Phylogenetic analysis grouped the genes into three subgroups. In addition, the chromosomal locations of the genes on the 19 Populus chromosomes were determined. Gene structure was studied through exon/intron organization and the MEME motif finder, while heatmap was used to study the expression diversity using EST libraries. According to the heatmap, PtrABC1P14 was highlighted because of the high expression in tension wood which related to secondary cell wall formation and cellulose synthesis, thus making a contribution to follow-up experiment in wood formation. Promoter cis-element analysis indicated that almost all of the ABC1 genes contained one or two cis-elements related to ABA signal transduction pathway and drought stress. Quantitative real-time PCR was carried out to evaluate the expression of all of the genes under abiotic stress conditions (ABA, CdCl2, high temperature, high salinity, and drought); the results showed that some of the genes were affected by these stresses and confirmed the results of promoter cis-element analysis. PMID:24163630

  3. Transport and use of CO sub 2 in the xylem sap of Populus deltoides

    SciTech Connect

    Stringer, J.W.; Kimmerer, T.W. )

    1990-05-01

    Results of recent experiments indicate an internal cycling of respiratory CO{sub 2} in woody plants. The CO{sub 2} concentration of xylem sap expressed from the twigs of field grown Populus deltoides ranged from .14 to .50 mM. The pH of the xylem sap was 5.7 to 6.7, providing a significant bicarbonate concentration in many samples. Total dissolved inorganic carbon (DIC = CO{sub 2} + H{sub 2}CO{sub 3} + HCO{sub 3}{sup {minus}}) was 0.5 mM to 1.3 mM. Results from the analysis of xylem sap of 10 other species of woody plants were similar. To determine the fate of DIC delivered to the leaves of Populus deltoides, excised leaves were fed 1mM NaHCO{sub 3} (2 {mu}Ci NaH{sup 14}CO{sub 3} ml{sup {minus}1}). Less than 0.4% of the label escaped from the leaves, and {ge}93% was fixed. Of the carbon fixed 56% of the {sup 14}C was found in the petiole and midrib, and 14% was in the major veins, with the remaining 30% in the minor veins and lamina. Shading of the peptiole and midrib of leaves decreased the amount of fixed carbon in these tissues to 38% and increased the amount in the lamina to 55%.

  4. Fermentation of dilute acid pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis

    DOE PAGESBeta

    Yee, Kelsey L.; Rodriguez, Jr., Miguel; Hamilton, Choo Yieng; Hamilton-Brehm, Scott D.; Thompson, Olivia A.; Elkins, James G.; Davison, Brian H.; Mielenz, Jonathan R.

    2015-07-25

    Consolidated bioprocessing (CBP), which merges enzyme production, biomass hydrolysis, and fermentation into a single step, has the potential to become an efficient and economic strategy for the bioconversion of lignocellulosic feedstocks to transportation fuels or chemicals. In this study, we evaluated Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis, three , thermophilic,cellulolytic, mixed-acid fermenting candidate CBP microorganisms, for their fermentation capabilities using dilute acid pretreated Populus as a model biomass feedstock. Under pH controlled, anaerobic fermentation conditions, each candidate successfully digested a minimum of 75% of the cellulose from dilute acid pretreated Populus, as indicated by an increase in planktonic cellsmore » and end-product metabolites and a concurrent decrease in glucan content. C. thermocellum, which employs a cellulosomal approach to biomass degradation, required 120 hours to achieve 75% cellulose utilization. In contrast, the non-cellulosomal, secreted hydrolytic enzyme system of the Caldicellulosiruptor sp. required 300 hours to achieve similar results. End-point fermentation conversions for C. thermocellum, C. bescii, and C. obsidiansis were determined to be 0.29, 0.34, and 0.38 grams of total metabolites per gram of loaded glucan, respectively. This data provide a starting point for future strain engineering efforts that can serve to improve the biomass fermentation capabilities of these three promising candidate CBP platforms.« less

  5. Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis

    DOE PAGESBeta

    Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.; Yang, Zamin Koo; Klingeman, Dawn Marie; Land, Miriam L.; Allman, Steve L.; Lu, Tse-Yuan S.; Brown, Steven D.; Schadt, Christopher Warren; et al

    2016-07-15

    Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less

  6. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence

    SciTech Connect

    Tallis, M.J.; Rogers, A.; Lin, Y.; Zhang, J.; Street, N. R.; Miglietta, F.; Karnosky, D. F.; Angelis, P. D.; Calfapietra, C.; Taylor, G.

    2010-03-01

    The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO{sub 2} may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO{sub 2}] (e[CO{sub 2}]) with free-air CO{sub 2} enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO{sub 2}] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO{sub 2}] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO{sub 2}], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO{sub 2}]/ambient CO{sub 2} (a[CO{sub 2}])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO{sub 2}] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

  7. Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem

    USGS Publications Warehouse

    Beauchamp, Vanessa B.; Stromberg, J.C.; Stutz, J.C.

    2006-01-01

    ??? This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. ??? Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. ??? AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. ??? Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert. ?? New Phytologist (2006).

  8. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas

    PubMed Central

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-01-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15–20 days and an intensity of 25–30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0–5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311–320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world. PMID:26481290

  9. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas

    NASA Astrophysics Data System (ADS)

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-10-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15-20 days and an intensity of 25-30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0-5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311-320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world.

  10. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas.

    PubMed

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-01-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15-20 days and an intensity of 25-30 m(3)/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0-5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311-320 million m(3) in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world. PMID:26481290

  11. Methylation of miRNA genes in the response to temperature stress in Populus simonii

    PubMed Central

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  12. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    SciTech Connect

    Yang, Xiaohan; Ye, Chuyu; Bisaria, Anjali; Tuskan, Gerald A; Kalluri, Udaya C

    2011-01-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

  13. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina basin, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ejina Basin is an extremely arid subwatershed in Northwest China. The predominant natural tree species in the area, Populus euphratica (P. euphratica), depends on groundwater for sustenance. In recent decades, groundwater overdraft and increased water diversions from the Heihe River caused wat...

  14. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens

    PubMed Central

    Soolanayakanahally, Raju Y.; Guy, Robert D.; Street, Nathaniel R.; Robinson, Kathryn M.; Silim, Salim N.; Albrectsen, Benedicte R.; Jansson, Stefan

    2015-01-01

    Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (gs) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ13C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects. PMID:26236324

  15. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    PubMed Central

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  16. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens.

    PubMed

    Soolanayakanahally, Raju Y; Guy, Robert D; Street, Nathaniel R; Robinson, Kathryn M; Silim, Salim N; Albrectsen, Benedicte R; Jansson, Stefan

    2015-01-01

    Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (g s) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ(13)C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects. PMID:26236324

  17. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants

    PubMed Central

    Guillaumie, Sabine; Goffner, Deborah; Barbier, Odile; Martinant, Jean-Pierre; Pichon, Magalie; Barrière, Yves

    2008-01-01

    Background Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3) mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT) gene. Results Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225), and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying) and ear (younger lignifying) internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. Conclusion Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the different events leading

  18. The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity.

    PubMed

    Miguel, Andreia; Milhinhos, Ana; Novák, Ondřej; Jones, Brian; Miguel, Célia M

    2016-03-01

    SHORT-ROOT (SHR) is a GRAS transcription factor first characterized for its role in the specification of the stem cell niche and radial patterning in Arabidopsis thaliana (At) roots. Three SHR-like genes have been identified in Populus trichocarpa (Pt). PtSHR1 shares high similarity with AtSHR over the entire length of the coding sequence. The two other Populus SHR-like genes, PtSHR2A and PtSHR2B, are shorter in their 5' ends when compared with AtSHR. Unlike PtSHR1, that is expressed throughout the cambial zone of greenhouse-grown Populus trees, PtSHR2Bprom:uidA expression was detected in the phellogen. Additionally, PtSHR1 and PtSHR2B expression patterns markedly differ in the shoot apex and roots of in vitro plants. Transgenic hybrid aspen expressing PtSHR2B under the 35S constitutive promoter showed overall reduced tree growth while the proportion of bark increased relative to the wood. Reverse transcription-quantitative PCR (RT-qPCR) revealed increased transcript levels of cytokinin metabolism and response-related genes in the transgenic plants consistent with an increase of total cytokinin levels. This was confirmed by cytokinin quantification by LC-MS/MS. Our results indicate that PtSHR2B appears to function in the phellogen and therefore in the regulation of phellem and periderm formation, possibly acting through modulation of cytokinin homeostasis. Furthermore, this work points to a functional diversification of SHR after the divergence of the Populus and Arabidopsis lineages. This finding may contribute to selection and breeding strategies of cork oak in which, unlike Populus, the phellogen is active throughout the entire tree lifespan, being at the basis of a highly profitable cork industry. PMID:26709311

  19. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp.

    PubMed

    Benedict, Catherine; Skinner, Jeffrey S; Meng, Rengong; Chang, Yongjian; Bhalerao, Rishikesh; Huner, Norman P A; Finn, Chad E; Chen, Tony H H; Hurry, Vaughan

    2006-07-01

    The meristematic tissues of temperate woody perennials must acclimate to freezing temperatures to survive the winter and resume growth the following year. To determine whether the C-repeat binding factor (CBF) family of transcription factors contributing to this process in annual herbaceous species also functions in woody perennials, we investigated the changes in phenotype and transcript profile of transgenic Populus constitutively expressing CBF1 from Arabidopsis (AtCBF1). Ectopic expression of AtCBF1 was sufficient to significantly increase the freezing tolerance of non-acclimated leaves and stems relative to wild-type plants. cDNA microarray experiments identified genes up-regulated by ectopic AtCBF1 expression in Populus, demonstrated a strong conservation of the CBF regulon between Populus and Arabidopsis and identified differences between leaf and stem regulons. We studied the induction kinetics and tissue specificity of four CBF paralogues identified from the Populus balsamifera subsp. trichocarpa genome sequence (PtCBFs). All four PtCBFs are cold-inducible in leaves, but only PtCBF1 and PtCBF3 show significant induction in stems. Our results suggest that the central role played by the CBF family of transcriptional activators in cold acclimation of Arabidopsis has been maintained in Populus. However, the differential expression of the PtCBFs and differing clusters of CBF-responsive genes in annual (leaf) and perennial (stem) tissues suggest that the perennial-driven evolution of winter dormancy may have given rise to specific roles for these 'master-switches' in the different annual and perennial tissues of woody species. PMID:17080948

  20. On the irrigation requirements of cottonwood (Populus fremontii and Populus deltoides var. wislizenii) and willow (Salix gooddingii) grown in a desert environment

    USGS Publications Warehouse

    Hartwell, S.; Morino, K.; Nagler, P.L.; Glenn, E.P.

    2010-01-01

    Native tree plots have been established in river irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the effective irrigation requirements of the target species. Cottonwood (Populus spp.) and willow (Salix gooddingii) trees were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three daily summer irrigation schedules of 6.20??mm??d-1; 8.26??mm??d-1 and 15.7??mm??d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, while willows suffered considerable die-back on this rate in years six and seven. These irrigation rates were applied April 15-September 15, but only 0.88??mm??d-1 was applied during the dormant period of the year. Expressed as a fraction of reference crop evapotranspiration (ETo), recommended annual water applications plus precipitation (and including some deep drainage) were 0.83 ETo for cottonwood and 1.01 ETo for willow. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use. ?? 2010 Elsevier Ltd.

  1. Investigating the Relationship Between Liquid Water and Leaf Area in Clonal Populus

    NASA Technical Reports Server (NTRS)

    Roberts, Dar; Brown, K.; Green, R.; Ustin, S.; Hinckley, T.

    1998-01-01

    to increase following a gradient of increasing LAI ranging from grasslands to coniferous forests. In that study, it was observed that forests, which showed little variation in NDVI, showed significant variation in liquid water. In order to test this hypothesis, we analyzed field spectra measured over Populus resprouts of known LAI and monitored changes in liquid water in young Populus stands as they aged over a 4-year time span. The study was conducted in south-central Washington, in a clonal Populus fiber farm owned and operated by Boise-Cascade near the town of Wallula.

  2. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency.

    PubMed

    Chen, Min; Wang, Chenlu; Bao, Hai; Chen, Hui; Wang, Yanwei

    2016-08-01

    Long non-coding RNAs (lncRNAs) have been identified as important regulatory factors of gene expression in eukaryotic species, such as Homo sapiens, Arabidopsis thaliana, and Oryza sativa. However, the systematic identification of potential lncRNAs in trees is comparatively rare. In particular, the characteristics, expression, and regulatory roles of lncRNAs in trees under nutrient stress remain largely unknown. A genome-wide strategy was used in this investigation to identify and characterize novel and low-nitrogen (N)-responsive lncRNAs in Populus tomentosa; 388 unique lncRNA candidates belonging to 380 gene loci were detected and only seven lncRNAs were found to belong to seven conserved non-coding RNA families indicating the majority of P. tomentosa lncRNAs are species-specific. In total, 126 lncRNAs were significantly altered under low-N stress; 8 were repressed, and 118 were induced. Furthermore, 9 and 5 lncRNAs were detected as precursors of 11 known and 14 novel Populus miRNAs, respectively, whereas 4 lncRNAs were targeted by 29 miRNAs belonging to 5 families, including 22 conserved and 7 non-conserved miRNAs. In addition, 15 antisense lncRNAs were identified to be generated from opposite strands of 14 corresponding protein-coding genes. In total, 111 protein-coding genes with regions complementary to 38 lncRNAs were also predicted with some lncRNAs corresponding to multiple genes and vice versa, and their functions were annotated, which further demonstrated the complex regulatory relationship between lncRNAs and protein-coding genes in plants. Moreover, an interaction network among lncRNAs, miRNAs, and mRNAs was investigated. These findings enrich our understanding of lncRNAs in Populus, expand the methods of miRNA identification. Our results present the first global characterization of lncRNAs and their potential target genes in response to nitrogen stress in trees, which provides more information on low-nutrition adaptation mechanisms in woody plants

  3. Propagation of photoinduced signals with the cytoplasmic flow along Characean internodes: evidence from changes in chloroplast fluorescence and surface pH.

    PubMed

    Bulychev, Alexander A; Alova, Anna V; Rubin, Andrey B

    2013-06-01

    Emerging evidence suggests that cytoplasmic streaming can regulate the plasma-membrane H(+) transport and photosynthetic electron flow. Microfluorometric and surface pH measurements on Chara corallina internodes revealed the transmission of photoinduced signals by the cytoplasmic flow for a distance of few millimeters from the site of stimulus application. When a 30-s pulse of bright light was locally applied, the downstream cell regions responded with either release or enhancement of non-photochemical quenching of chlorophyll fluorescence, depending on the background irradiance of the analyzed cell area. Under dim background irradiance (<20 μmol m(-2) s(-1)), the arrival of the distant signal from the brightly illuminated 400-μm-wide zone elevated the maximal fluorescence F m (') in the analyzed downstream area, whereas at higher background irradiances it induced strong quenching of F m (') . At intermediate irradiances the increase and decrease in F m (') appeared as two successive waves. The transition between the F m (') responses of opposite polarities occurred at a narrow threshold range of irradiances. This indicates that inevitable slight variations in irradiance at the bottom chloroplast layer combined with the cyclosis-transmitted signals may contribute to the formation of a photosynthetic activity pattern. The rapid cyclosis-mediated release of non-photochemical quenching, unlike the delayed response of opposite polarity, was associated with opening of H(+) (OH(-))-conducting plasma membrane channels, as evidenced by the concurrent alkaline pH shift on the cell surface. It is proposed that the initial increase in F m (') after application of a distant photostimulus is determined, among other factors, by the wave of alkaline cytoplasmic pH. PMID:23467782

  4. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Muchero, Wellington [Oak Ridge National Laboratory

    2013-01-22

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  5. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Muchero, Wellington

    2012-03-22

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  6. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations

    SciTech Connect

    Evans, Luke M; Slavov, Gancho; Rodgers-Melnick, Eli; Martin, Joel; Ranjan, Priya; Muchero, Wellington; Brunner, Amy M.; Schackwitz, Wendy; Gunter, Lee E; Chen, Jay; Tuskan, Gerald A; Difazio, Stephen P.

    2014-01-01

    Forest trees are dominant components of terrestrial ecosystems that have global ecological and economic importance. Despite distributions that span wide environmental gradients, many tree populations are locally adapted, and mechanisms underlying this adaptation are poorly understood. Here we use a combination of whole-genome selection scans and association analyses of 544 Populus trichocarpa trees to reveal genomic bases of adaptive variation across a wide latitudinal range. Three hundred ninety-seven genomic regions showed evidence of recent positive and/or divergent selection and enrichment for associations with adaptive traits that also displayed patterns consistent with natural selection. These regions also provide unexpected insights into the evolutionary dynamics of duplicated genes and their roles in adaptive trait variation.

  7. A Putative PP2C-Encoding Gene Negatively Regulates ABA Signaling in Populus euphratica.

    PubMed

    Chen, Jinhuan; Zhang, Dongzhi; Zhang, Chong; Xia, Xinli; Yin, Weilun; Tian, Qianqian

    2015-01-01

    A PP2C homolog gene was cloned from the drought-treated cDNA library of Populus euphratica. Multiple sequence alignment analysis suggested that the gene is a potential ortholog of HAB1. The expression of this HAB1 ortholog (PeHAB1) was markedly induced by drought and moderately induced by ABA. To characterize its function in ABA signaling, we generated transgenic Arabidopsis thaliana plants overexpressing this gene. Transgenic lines exhibited reduced responses to exogenous ABA and reduced tolerance to drought compared to wide-type lines. Yeast two-hybrid analyses indicated that PeHAB1 could interact with the ABA receptor PYL4 in an ABA-independent manner. Taken together; these results indicated that PeHAB1 is a new negative regulator of ABA responses in poplar. PMID:26431530

  8. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations.

    PubMed

    Evans, Luke M; Slavov, Gancho T; Rodgers-Melnick, Eli; Martin, Joel; Ranjan, Priya; Muchero, Wellington; Brunner, Amy M; Schackwitz, Wendy; Gunter, Lee; Chen, Jin-Gui; Tuskan, Gerald A; DiFazio, Stephen P

    2014-10-01

    Forest trees are dominant components of terrestrial ecosystems that have global ecological and economic importance. Despite distributions that span wide environmental gradients, many tree populations are locally adapted, and mechanisms underlying this adaptation are poorly understood. Here we use a combination of whole-genome selection scans and association analyses of 544 Populus trichocarpa trees to reveal genomic bases of adaptive variation across a wide latitudinal range. Three hundred ninety-seven genomic regions showed evidence of recent positive and/or divergent selection and enrichment for associations with adaptive traits that also displayed patterns consistent with natural selection. These regions also provide unexpected insights into the evolutionary dynamics of duplicated genes and their roles in adaptive trait variation. PMID:25151358

  9. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes

    PubMed Central

    Davies, Chantel; Ellis, Christopher J.; Iason, Glenn R.; Ennos, Richard A.

    2014-01-01

    Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity. PMID:24789141

  10. Towards a holistic understanding of the beneficial interactions across the Populus microbiome

    DOE PAGESBeta

    Hacquard, Stéphane; Schadt, Christopher W.

    2014-11-24

    Interactions between trees and microorganisms are extremely complex and the multispecies networks resulting from these associations have consequences for plant growth and productivity. However, a more holistic view is needed to better understand trees as ecosystems and superorganisms, where many interacting species contribute to the overall stability of the system. While much progress has been made on microbial communities associated with individual tree niches and the molecular interactions between model symbiotic partners, there is still a lack of knowledge of the multi-component interactions necessary for holistic ecosystem-level understanding. Finally, we review recent studies in Populus to emphasize the importance ofmore » such holistic efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these important ecosystems.« less