Science.gov

Sample records for porcine intestinal microrna

  1. MicroRNA expression profiles of porcine skeletal muscle.

    PubMed

    Zhou, B; Liu, H L; Shi, F X; Wang, J Y

    2010-10-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs of ∼22 nucleotides in length that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. To evaluate the roles of miRNA in porcine skeletal muscle, miRNA expression profiles were investigated using longissimus muscle tissue from pigs at embryonic day 90 (E90) and postpartum day 120 (PD120). First, we used previously known miRNA sequences from humans and mice to perform blast searches against the porcine expressed sequence tag (EST) database; 98 new miRNA candidates were identified according to a range of filtering criteria. These miRNA candidates and 73 known miRNAs (miRBase 13.0) from pigs were chosen for porcine miRNA microarray analysis. A total of 16 newly identified miRNAs and 31 previously known miRNAs were detected in porcine skeletal muscle tissues. During later foetal development at E90, miR-1826, miR-26a, miR-199b and let-7 were highly expressed, whilst miR-1a, miR-133a, miR-26a and miR-1826 showed highest abundance during the fast growing stage at PD120. Using the 47 miRNAs detected by the microarray assay, we performed further investigations using the publicly available porcine mRNA database from NCBI and computed potential target hits using the software rnahybrid. This study identified 16 new miRNA candidates, computed potential target hits for 18 miRNA families and determined the miRNA expression profiles in porcine skeletal muscle tissues at different developmental stages. These results provide a valuable resource for investigators interested in post-transcriptional gene regulation in pigs and related animals. PMID:20331612

  2. Stability of Reference Gene Expression After Porcine Sapelovirus Infection in Porcine Intestinal Epithelial Cells.

    PubMed

    Huang, Yong; Chen, Yabing; Sun, Huan; Lan, Daoliang

    2016-01-01

    Intestinal epithelial cells, which serve as the first physical barrier to protect intestinal tract from external antigens, have an important role in the local innate immunity. Screening of reference genes that have stable expression levels after viral infection in porcine intestinal epithelial cells is critical for ensuring the reliability of the expression analysis on anti-infection genes in porcine intestinal epithelial cells. In this study, nine common reference genes in pigs, including ACTB, B2M, GAPDH, HMBS, SDHA, HPRT1, TBP, YWHAZ, and RPL32, were chosen as the candidate reference genes. Porcine sapelovirus (PSV) was used as a model virus to infect porcine intestinal epithelial cell line (IPEC-J2). The expression stability of the nine genes was assessed by the geNorm, NormFinder, and BestKeeper software. Moreover, RefFinder program was used to evaluate the analytical results of above three softwares, and a relative expression experiment of selected target gene was used to verify the analysis results. The comprehensive results indicated that the gene combination of TBP and RPL32 has the most stable expression, which could be considered as an appropriate reference gene for research on gene expression after PSV infection in IPEC-J2cells. The results provided essential data for expression analysis of anti-infection genes in porcine intestinal epithelial cells. PMID:27092424

  3. A novel culture system for adult porcine intestinal crypts.

    PubMed

    Khalil, Hassan A; Lei, Nan Ye; Brinkley, Garrett; Scott, Andrew; Wang, Jiafang; Kar, Upendra K; Jabaji, Ziyad B; Lewis, Michael; Martín, Martín G; Dunn, James C Y; Stelzner, Matthias G

    2016-07-01

    Porcine models are useful for investigating therapeutic approaches to short bowel syndrome and potentially to intestinal stem cell (ISC) transplantation. Whereas techniques for the culture and genetic manipulation of ISCs from mice and humans are well established, similar methods for porcine stem cells have not been reported. Jejunal crypts were isolated from murine, human, and juvenile and adult porcine small intestine, suspended in Matrigel, and co-cultured with syngeneic intestinal subepithelial myofibroblasts (ISEMFs) or cultured without feeder cells in various culture media. Media containing epidermal growth factor, noggin, and R-spondin 1 (ENR medium) were supplemented with various combinations of Wnt3a- or ISEMF-conditioned medium (CM) and with glycogen synthase kinase 3 inhibitor (GSK3i), and their effects were studied on cultured crypts. Cell lineage differentiation was assessed by immunohistochemistry and quantitative polymerase chain reaction. Cultured porcine cells were serially passaged and transduced with a lentiviral vector. Whereas ENR medium supported murine enteroid growth, it did not sustain porcine crypts beyond 5 days. Supplementation of Wnt3a-CM and GSK3i resulted in the formation of complex porcine enteroids with budding extensions. These enteroids contained a mixture of stem and differentiated cells and were successfully passaged in the presence of GSK3i. Crypts grown in media supplemented with porcine ISEMF-CM formed spheroids that were less well differentiated than enteroids. Enteroids and spheroids were transfected with a lentivirus with high efficiency. Thus, our method maintains juvenile and adult porcine crypt cells long-term in culture. Porcine enteroids and spheroids can be successfully passaged and transduced by using lentiviral vectors. PMID:26928041

  4. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices.

    PubMed

    Westerhout, Joost; van de Steeg, Evita; Grossouw, Dimitri; Zeijdner, Evelijn E; Krul, Cyrille A M; Verwei, Miriam; Wortelboer, Heleen M

    2014-10-15

    A reliable prediction of the oral bioavailability in humans is crucial and of high interest for pharmaceutical and food industry. The predictive value of currently used in silico methods, in vitro cell lines, ex vivo intestinal tissue and/or in vivo animal studies for human intestinal absorption, however, is often insufficient, especially when food-drug interactions are evaluated. Ideally, for this purpose healthy human intestinal tissue is used, but due to its limited availability there is a need for alternatives. The aim of this study was to evaluate the applicability of healthy porcine intestinal tissue mounted in a newly developed InTESTine™ system to predict human intestinal absorption of compounds with different chemical characteristics, and within biorelevant matrices. To that end, first, a representative set of compounds was chosen of which the apparent permeability (Papp) data in both Caco-2 cells and human intestinal tissue mounted in the Ussing chamber system, and absolute human oral bioavailability were reported. Thereafter, Papp values of the subset were determined in both porcine jejunal tissue and our own Caco-2 cells. In addition, the feasibility of this new approach to study regional differences (duodenum, jejunum, and ileum) in permeability of compounds and to study the effects of luminal factors on permeability was also investigated. For the latter, a comparison was made between the compatibility of porcine intestinal tissue, Caco-2 cells, and Caco-2 cells co-cultured with the mucin producing HT29-MTX cells with biorelevant samples as collected from an in vitro dynamic gastrointestinal model (TIM). The results demonstrated that for the paracellularly transported compounds atenolol, cimetidine, mannitol and ranitidine porcine Papp values are within 3-fold difference of human Papp values, whereas the Caco-2 Papp values are beyond 3-fold difference. Overall, the porcine intestinal tissue Papp values are more comparable to human Papp values (9 out

  5. Location and Pathogenic Potential of Blastocystis in the Porcine Intestine

    PubMed Central

    Wang, Wenqi; Bielefeldt-Ohmann, Helle; Traub, Rebecca J.; Cuttell, Leigh; Owen, Helen

    2014-01-01

    Blastocystis is an ubiquitous, enteric protozoan of humans and many other species. Human infection has been associated with gastrointestinal disease such as irritable bowel syndrome, however, this remains unproven. A relevant animal model is needed to investigate the pathogenesis/pathogenicity of Blastocystis. We concluded previously that pigs are likely natural hosts of Blastocystis with a potentially zoonotic, host-adapted subtype (ST), ST5, and may make suitable animal models. In this study, we aimed to characterise the host-agent interaction of Blastocystis and the pig, including localising Blastocystis in porcine intestine using microscopy, PCR and histopathological examination of tissues. Intestines from pigs in three different management systems, i.e., a commercial piggery, a small family farm and a research herd (where the animals were immunosuppressed) were examined. This design was used to determine if environment or immune status influences intestinal colonisation of Blastocystis as immunocompromised individuals may potentially be more susceptible to blastocystosis and development of associated clinical signs. Intestines from all 28 pigs were positive for Blastocystis with all pigs harbouring ST5. In addition, the farm pigs had mixed infections with STs 1 and/or 3. Blastocystis organisms/DNA were predominantly found in the large intestine but were also detected in the small intestine of the immunosuppressed and some of the farm pigs, suggesting that immunosuppression and/or husbandry factors may influence Blastocystis colonisation of the small intestine. No obvious pathology was observed in the histological sections. Blastocystis was present as vacuolar/granular forms and these were found within luminal material or in close proximity to epithelial cells, with no evidence of attachment or invasion. These results concur with most human studies, in which Blastocystis is predominantly found in the large intestine in the absence of significant organic

  6. Binding Studies on Isolated Porcine Small Intestinal Mucosa and in vitro Toxicity Studies Reveal Lack of Effect of C. perfringens Beta-Toxin on the Porcine Intestinal Epithelium

    PubMed Central

    Roos, Simone; Wyder, Marianne; Candi, Ahmet; Regenscheit, Nadine; Nathues, Christina; van Immerseel, Filip; Posthaus, Horst

    2015-01-01

    Beta-toxin (CPB) is the essential virulence factor of C. perfringens type C causing necrotizing enteritis (NE) in different hosts. Using a pig infection model, we showed that CPB targets small intestinal endothelial cells. Its effect on the porcine intestinal epithelium, however, could not be adequately investigated by this approach. Using porcine neonatal jejunal explants and cryosections, we performed in situ binding studies with CPB. We confirmed binding of CPB to endothelial but could not detect binding to epithelial cells. In contrast, the intact epithelial layer inhibited CPB penetration into deeper intestinal layers. CPB failed to induce cytopathic effects in cultured polarized porcine intestinal epithelial cells (IPEC-J2) and primary jejunal epithelial cells. C. perfringens type C culture supernatants were toxic for cell cultures. This, however, was not inhibited by CPB neutralization. Our results show that, in the porcine small intestine, CPB primarily targets endothelial cells and does not bind to epithelial cells. An intact intestinal epithelial layer prevents CPB diffusion into underlying tissue and CPB alone does not cause direct damage to intestinal epithelial cells. Additional factors might be involved in the early epithelial damage which is needed for CPB diffusion towards its endothelial targets in the small intestine. PMID:25860161

  7. Analysis of Heparins Derived From Bovine Tissues and Comparison to Porcine Intestinal Heparins.

    PubMed

    St Ange, Kalib; Onishi, Akihiro; Fu, Li; Sun, Xiaojun; Lin, Lei; Mori, Daisuke; Zhang, Fuming; Dordick, Jonathan S; Fareed, Jawed; Hoppensteadt, Debra; Jeske, Walter; Linhardt, Robert J

    2016-09-01

    Heparin is a widely used clinical anticoagulant. It is also a linear glycosaminoglycan with an average mass between 10 and 20 kDa and is primarily made up of trisulfated disaccharides comprised of 1,4-linked iduronic acid and glucosamine residues containing some glucuronic acid residues. Heparin is biosynthesized in the Golgi of mast cells commonly found in the liver, intestines, and lungs. Pharmaceutical heparin currently used in the United States is primarily extracted from porcine intestines. Other sources of heparin including bovine intestine and bovine lung are being examined as potential substitutes for porcine intestinal heparin. These additional sources are intended to serve to diversify the heparin supply, making this lifesaving drug more secure. The current study examines bovine heparins prepared from both intestines and lung and compares these to porcine intestinal heparin. The structural properties of these heparins are examined using nuclear magnetic resonance, gel permeation chromatography, and disaccharide analysis of heparinase-catalyzed depolymerized heparin. The in vitro functional activities of these heparins have also been determined. The goal of this study is to establish the structural and functional similarities and potential differences between bovine and porcine heparins. Porcine and bovine heparins have structural and compositional similarities and differences. PMID:27084870

  8. Effects of bovine lactoferrin on the immature porcine intestine.

    PubMed

    Nguyen, Duc Ninh; Li, Yanqi; Sangild, Per T; Bering, Stine B; Chatterton, Dereck E W

    2014-01-28

    Bioactive milk proteins may be important in protecting preterm infants from developing inflammation and necrotising enterocolitis (NEC). A preterm pig model was used to investigate the protective effects of enteral bovine lactoferrin (bLF) against NEC development and inflammation. Caesarean-delivered preterm pigs were fed parenteral and minimal enteral nutrition for the first 2 d followed by 2 d of total enteral nutrition before euthanasia. Pigs were stratified into two groups and fed with either a control formula (CON, n 15) or a 10 g/l of bLF-enriched formula (LF, n 13). NEC incidence, gut functions and inflammatory cytokines were analysed. NEC incidence and nutrient absorption were similar between the two groups. In pigs that developed NEC, disease outcome was more severe in the colon accompanied by increased intestinal permeability in LF pigs. In contrary, the LF pigs had a lowered IL-1β level in the proximal small intestine. Dose-dependent effects of bLF on cell proliferation, intracellular signalling and cytokine secretion were tested in porcine intestinal epithelial cells (PsIc1) in vitro. Low doses (0·1-1 g/l) increased cell proliferation via extracellular signal-regulated kinase (ERK), limited IL-8 secretion and prevented NF-κB and hypoxia-inducible factor-1α (HIF-1α) activation, suggesting anti-inflammatory effects. In contrast, at a higher dose (10 g/l), bLF exerted adverse effects by reducing cell proliferation, stimulating IL-8 release, inhibiting ERK activation and up-regulating NF-κB and HIF-1α activation. Overall, at a dose of 10 g/l, bLF exacerbated disease severity in pigs that developed NEC, while the in vitro studies indicated the positive effects of bLF at low doses (0·1-1 g/l). Supplementation of infant formulas with bLF should therefore be optimised carefully. PMID:23915638

  9. Development of lntraepithelial Cells in the Porcine Small Intestine

    PubMed Central

    Arenas-Contreras, G.; Bailey, M.; González-Pozos, S.; Stokes, C. R.; Ortega, M. G.; Mondragón-Flores, R.

    2001-01-01

    The number, phenotype, localisation and development of intraepithelial lymphocytes (IEL) from duodenum (Du) and ileum (Il) were studied by immunohistochemistry (IHC) and light and electron microscopy in unweaned (0–7 weeks old) and six months-old pigs. Developmental changes at birth showed that 38% of the total lymphocytes in the villi were IEL, mainly of the CD2+CD4-CD8- double negative (DN) phenotype. That proportion rose to over 50% at week 5 after birth, resembling adult proportion, although still with fewer cells than in adult pigs. CD4+ cells appeared relatively early in life although they were confined to the lamina propria (LP) and CD8+ cells were found only in low numbers. In the villi of adult animals, almost half of the total number of lymphocytes were IEL (49% Du, 52% Il). Over half of these IEL (52% Du, 53% Il) showed the CD2+CD4-CD8+ phenotype and were localized at the epithelium's basement membrane. Numerous (43% Du, 42% Il) DN IEL were found grouped at the enterocyte nucleus level and relatively few (5% in Du and Il) granular IEL were found apically in the epithelium. These proportions were homogeneously maintained along the villi's tip, middle and bottom, suggesting that the IEL may have their origin in the LP. Therefore, the IEL compartment in the porcine intestine develops slowly with age and is actually composed by a heterogeneous population of cells (null, DN and CD8+). These results may explain the increased susceptibility of young animals to disease during the lactation period and should be taken into account when functional studies are carried out with IEL. The quantitative results of this paper established a model for studies on the effect of age, diet, normal flora, infection and oral immunization on the IEL of the gut. PMID:11589310

  10. Deciphering the microRNA transcriptome of skeletal muscle during porcine development.

    PubMed

    Mai, Miaomiao; Jin, Long; Tian, Shilin; Liu, Rui; Huang, Wenyao; Tang, Qianzi; Ma, Jideng; Jiang, An'an; Wang, Xun; Hu, Yaodong; Wang, Dawei; Jiang, Zhi; Li, Mingzhou; Zhou, Chaowei; Li, Xuewei

    2016-01-01

    MicroRNAs (miRNAs) play critical roles in many important biological processes, such as growth and development in mammals. Various studies of porcine muscle development have mainly focused on identifying miRNAs that are important for fetal and adult muscle development; however, little is known about the role of miRNAs in middle-aged muscle development. Here, we present a comprehensive investigation of miRNA transcriptomes across five porcine muscle development stages, including one prenatal and four postnatal stages. We identified 404 known porcine miRNAs, 118 novel miRNAs, and 101 miRNAs that are conserved in other mammals. A set of universally abundant miRNAs was found across the distinct muscle development stages. This set of miRNAs may play important housekeeping roles that are involved in myogenesis. A short time-series expression miner analysis indicated significant variations in miRNA expression across distinct muscle development stages. We also found enhanced differentiation- and morphogenesis-related miRNA levels in the embryonic stage; conversely, apoptosis-related miRNA levels increased relatively later in muscle development. These results provide integral insight into miRNA function throughout pig muscle development stages. Our findings will promote further development of the pig as a model organism for human age-related muscle disease research. PMID:26793416

  11. Porcine Intestinal Mast Cells. Evaluation of Different Fixatives for Histochemical Staining Techniques Considering Tissue Shrinkage

    PubMed Central

    Rieger, J.; Twardziok, S.; Huenigen, H.; Hirschberg, R.M.; Plendl, J.

    2013-01-01

    Staining of mast cells (MCs), including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF) has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkagedifferences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from data using different

  12. Porcine intestinal mast cells. Evaluation of different fixatives for histochemical staining techniques considering tissue shrinkage.

    PubMed

    Rieger, J; Twardziok, S; Huenigen, H; Hirschberg, R M; Plendl, J

    2013-01-01

    Staining of mast cells (MCs), including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF) has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkage-differences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from data using

  13. Certain canine weakly beta-hemolytic intestinal spirochetes are phenotypically and genotypically related to spirochetes associated with human and porcine intestinal spirochetosis.

    PubMed Central

    Duhamel, G E; Muniappa, N; Mathiesen, M R; Johnson, J L; Toth, J; Elder, R O; Doster, A R

    1995-01-01

    Four canine weakly beta-hemolytic intestinal spirochetes associated with intestinal spirochetosis (IS-associated WBHIS) were compared with IS-associated human and porcine WBHIS and the type species for Serpulina hyodysenteriae and S. innocens by using phenotypic and genotypic parameters. The IS-associated canine, human, and porcine WBHIS belonged to a phyletic group distinct from but related to previously described Serpulina type species. PMID:7559984

  14. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    PubMed

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity. PMID:27234553

  15. Porcine IPEC-J2 Intestinal Epithelial Cells in Microbiological Investigations

    PubMed Central

    Brosnahan, Amanda J.; Brown, David R.

    2011-01-01

    IPEC-J2 cells are porcine intestinal columnar epithelial cells that were isolated from neonatal piglet mid-jejunum. This cell line forms polarized monolayers with high transepithelial electrical resistance when cultured on 0.4 μm pore-size filters. The cell line is unique in that it is derived from small intestinal tissue (compared to the common human colon-derived lines HT-29, T84, and Caco-2) and is not transformed (compared to the porcine small intestinal line, IPI-2I). Porcine intestinal epithelial cells more closely mimic human physiology than analogous rodent cell lines (e.g. IEC-6 or IEC-18), which is important in studies of zoonotic infections; in addition, they provide specificity to study porcine-derived infections. IPEC-J2 cells are increasingly being used in microbiological studies to examine the interactions of various animal and human pathogens, including Salmonella enterica and pathogenic Escherichia coli, with intestinal epithelial cells. The IPEC-J2 cell line has also been employed in some probiotic studies, in which the cells have been used as an initial screening tool for adhesiveness and anti-inflammatory properties of the potential probiotic microorganisms. The validity of these studies is not clear as follow-up studies to assess the efficacy of the probiotics in vivo have not been published to date. The aims of this review are to provide a comprehensive overview of the microbiological studies that have been conducted with IPEC-J2 cells and a reference guide of key cellular and immune markers that have been identified in this cell line that may prove to be useful in future studies. PMID:22074860

  16. The microRNA expression profile in porcine skeletal muscle is changed by constant heat stress.

    PubMed

    Hao, Y; Liu, J R; Zhang, Y; Yang, P G; Feng, Y J; Cui, Y J; Yang, C H; Gu, X H

    2016-06-01

    Heat stress has profound effects on animal performance and muscle function, and microRNAs (miRNAs) play a critical role in muscle development and stress responses. To characterize the changes in miRNAs in skeletal muscle responding to heat stress, the miRNA expression profiles of longissimus dorsi muscles of pigs raised under constant heat stress (30 °C; n = 8) or control temperature (22 °C; n = 8) for 21 days were analyzed by Illumina deep sequencing. A total of 58 differentially expressed miRNAs were identified with 30 down-regulated and 28 up-regulated, and 63 differentially expressed target genes were predicted by miRNA-mRNA joint analysis. GO and KEGG analyses showed that the genes regulated by differentially expressed miRNAs were enriched in glucose metabolism, cytoskeletal structure and function and stress response. Real-time PCR showed that the mRNA levels of PDK4, HSP90 and DES were significantly increased, whereas those of SCD and LDHA significantly decreased by heat exposure. The protein levels of CALM1, DES and HIF1α were also significantly increased by constant heat. These results demonstrated that the change in miRNA expression in porcine longissimus dorsi muscle underlies the changes in muscle structure and metabolism in porcine skeletal muscle affected by constant heat stress. PMID:26857849

  17. Computational identification of new porcine microRNAs and their targets.

    PubMed

    Zhou, Bo; Liu, Hong-Lin

    2010-06-01

    MicroRNAs (miRNAs) represent a newly identified class of non-protein-coding approximately 22 nt small RNAs which play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Here we present an expressed sequence tag (EST)-based combined approach for the detection of novel porcine miRNAs. This was initiated by using previously known miRNA sequences from Homo sapiens (human) and Mus musculus (mouse) to blast the databases of Sus scrofa (pig) EST. A total of 65 new miRNAs were detected following a range of filtering criteria. Using these new potential miRNA sequences, we further obtained the publicly available porcine mRNA database from NCBI and detected 48 586 potential target hits using a software RNA hybrid. So far, compared to human and mouse, fewer miRNAs (only 54 miRNAs) were identified in Sus scrofa species. These 65 new miRNAs and their targets in pig have been run through miRHelper to yield data that may help us better understand the possible role of miRNAs in regulating the growth and development of pigs. These findings suggest that EST analysis is a good alternative strategy for identifying new miRNA candidates, their targets and other genes. PMID:20597884

  18. A Comprehensive Expression Profile of MicroRNAs in Porcine Pituitary

    PubMed Central

    Cheng, Xiao; Qi, Qien; Yang, Lin; Shu, Gang; Wang, Songbo; Wang, Lina; Gao, Ping; Zhu, Xiaotong; Jiang, Qingyan; Zhang, Yongliang; Yuan, Li

    2011-01-01

    MicroRNAs (miRNAs) are an abundant class of small RNAs that regulate expressions of most genes. miRNAs play important roles in the pituitary, the “master” endocrine organ.However, we still don't know which role miRNAs play in the development of pituitary tissue or how much they contribute to the pituitary function. By applying a combination of microarray analysis and Solexa sequencing, we detected a total of 450 miRNAs in the porcine pituitary. Verification with RT-PCR showed a high degree of confidence for the obtained data. According to the current miRBase release17.0, the detected miRNAs included 169 known porcine miRNAs, 163 conserved miRNAs not yet identified in the pig, and 12 potentially new miRNAs not yet identified in any species, three of which were revealed using Northern blot. The pituitary might contain about 80.17% miRNA types belonging to the animal. Analysis of 10 highly expressed miRNAs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the enriched miRNAs were involved not only in the development of the organ but also in a variety of inter-cell and inner cell processes or pathways that are involved in the function of the organ. We have revealed the existence of a large number of porcine miRNAs as well as some potentially new miRNAs and established for the first time a comprehensive miRNA expression profile of the pituitary. The pituitary gland contains unexpectedly many miRNA types and miRNA actions are involved in important processes for both the development and function of the organ. PMID:21969866

  19. MicroRNA expression profiling of the porcine developing hypothalamus and pituitary tissue.

    PubMed

    Zhang, Lifan; Cai, Zhaowei; Wei, Shengjuan; Zhou, Huiyun; Zhou, Hongmei; Jiang, Xiaoling; Xu, Ningying

    2013-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play important roles in gene expressions at transcriptional and post-transcriptional stages in mammalian brain. So far, a growing number of porcine miRNAs and their function have been identified, but little is known regarding the porcine developing hypothalamus and pituitary. In the present study, Solexa sequencing analysis showed 14,129,397 yielded reads, 6,680,678 of which were related to 674 unique miRNAs. After a microarray assay, we detected 175 unique miRNAs in the hypothalamus, including 136 previously known miRNAs and 39 novel candidates, while a total of 140 miRNAs, including 104 known and 36 new candidate miRNAs, were discovered in pituitary. More importantly, 37 and 30 differentially expressed miRNAs from several developmental stages of hypothalamus and pituitary were revealed, respectively. The 37 differentially expressed miRNAs in hypothalamus represented 6 different expression patterns, while the 30 differentially expressed miRNAs in pituitary represented 7 different expression patterns. To clarify potential target genes and specific functions of these differentially expressed miRNAs in hypothalamus and pituitary, TargetScan and Gorilla prediction tools were then applied. The current functional analysis showed that the differentially expressed miRNAs in hypothalamus and pituitary shared many biological processes, with the main differences being found in tissue-specific processes including: CDP-diacylglycerol biosynthetic/metabolic process; phosphatidic acid biosynthetic/metabolic process; energy reserve metabolic process for hypothalamus; adult behavior; sterol transport/homeostasis; and cholesterol/reverse cholesterol transport for pituitary. Overall, this study identified miRNA profiles and differentially expressed miRNAs among various developmental stages in hypothalamus and pituitary and indicated miRNA profiles change with age and brain location, enhancing our knowledge about spatial

  20. Characteristic and Functional Analysis of a Newly Established Porcine Small Intestinal Epithelial Cell Line

    PubMed Central

    Wang, Jing; Hu, Guangdong; Lin, Zhi; He, Lei; Xu, Lei; Zhang, Yanming

    2014-01-01

    The mucosal surface of intestine is continuously exposed to both potential pathogens and beneficial commensal microorganisms. Recent findings suggest that intestinal epithelial cells, which once considered as a simple physical barrier, are a crucial cell lineage necessary for maintaining intestinal immune homeostasis. Therefore, establishing a stable and reliable intestinal epithelial cell line for future research on the mucosal immune system is necessary. In the present study, we established a porcine intestinal epithelial cell line (ZYM-SIEC02) by introducing the human telomerase reverse transcriptase (hTERT) gene into small intestinal epithelial cells derived from a neonatal, unsuckled piglet. Morphological analysis revealed a homogeneous cobblestone-like morphology of the epithelial cell sheets. Ultrastructural indicated the presence of microvilli, tight junctions, and a glandular configuration typical of the small intestine. Furthermore, ZYM-SIEC02 cells expressed epithelial cell-specific markers including cytokeratin 18, pan-cytokeratin, sucrase-isomaltase, E-cadherin and ZO-1. Immortalized ZYM-SIEC02 cells remained diploid and were not transformed. In addition, we also examined the host cell response to Salmonella and LPS and verified the enhanced expression of mRNAs encoding IL-8 and TNF-α by infection with Salmonella enterica serovars Typhimurium (S. Typhimurium). Results showed that IL-8 protein expression were upregulated following Salmonella invasion. TLR4, TLR6 and IL-6 mRNA expression were upregulated following stimulation with LPS, ZYM-SIEC02 cells were hyporeponsive to LPS with respect to IL-8 mRNA expression and secretion. TNFα mRNA levels were significantly decreased after LPS stimulation and TNF-α secretion were not detected challenged with S. Typhimurium neither nor LPS. Taken together, these findings demonstrate that ZYM-SIEC02 cells retained the morphological and functional characteristics typical of primary swine intestinal epithelial

  1. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications

    PubMed Central

    Chang, Chia Wei; Petrie, Tye; Clark, Alycia; Lin, Xin; Sondergaard, Claus S.; Griffiths, Leigh G.

    2016-01-01

    In this study, we investigate the translational potential of a novel combined construct using an FDA-approved decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) seeded with human or porcine mesenchymal stem cells (MSCs) for cardiovascular indications. With the emerging success of individual component in various clinical applications, the combination of SIS-ECM with MSCs could provide additional therapeutic potential compared to individual components alone for cardiovascular repair. We tested the in vitro effects of MSC-seeding on SIS-ECM on resultant construct structure/function properties and MSC phenotypes. Additionally, we evaluated the ability of porcine MSCs to modulate recipient graft-specific response towards SIS-ECM in a porcine cardiac patch in vivo model. Specifically, we determined: 1) in vitro loading-capacity of human MSCs on SIS-ECM, 2) effect of cell seeding on SIS-ECM structure, compositions and mechanical properties, 3) effect of SIS-ECM seeding on human MSC phenotypes and differentiation potential, and 4) optimal orientation and dose of porcine MSCs seeded SIS-ECM for an in vivo cardiac application. In this study, histological structure, biochemical compositions and mechanical properties of the FDA-approved SIS-ECM biomaterial were retained following MSCs repopulation in vitro. Similarly, the cellular phenotypes and differentiation potential of MSCs were preserved following seeding on SIS-ECM. In a porcine in vivo patch study, the presence of porcine MSCs on SIS-ECM significantly reduced adaptive T cell response regardless of cell dose and orientation compared to SIS-ECM alone. These findings substantiate the clinical translational potential of combined SIS-ECM seeded with MSCs as a promising therapeutic candidate for cardiac applications. PMID:27070546

  2. Comparison of Low-Molecular-Weight Heparins Prepared From Bovine Lung Heparin and Porcine Intestine Heparin.

    PubMed

    Guan, Yudong; Xu, Xiaohui; Liu, Xinyue; Sheng, Anran; Jin, Lan; Linhardt, Robert J; Chi, Lianli

    2016-06-01

    Currently porcine intestine is the only approved source for producing pharmaceutical heparin in most countries. Enoxaparin, prepared by benzylation and alkaline depolymerization from porcine intestine heparin, is prevalent in the anticoagulant drug market. It is predicted that porcine intestine heparin-derived enoxaparin (PIE) will encounter shortage, and expanding its production from heparins obtained from other animal tissues may, therefore, be inevitable. Bovine lung heparin is a potential alternative source for producing enoxaparin. Critical processing parameters for producing bovine lung heparin-derived enoxaparin (BLE) are discussed. Three batches of BLEs were prepared and their detailed structures were compared with PIEs using modern analytical techniques, including disaccharide composition, intact chain mapping by liquid chromatography-mass spectrometry and 2-dimensional nuclear magnetic resonance spectroscopy. The results suggested that the differences between PIEs and BLEs mainly result from N-acetylation differences derived from the parent heparins. In addition, bioactivities of BLEs were about 70% of PIEs based on anti-factor IIa and Xa chromogenic assays. We conclude that BLE has the potential to be developed as an analogue of PIE, although some challenges still remain. PMID:27238483

  3. Reconstructive cranioplasty using a porcine small intestinal submucosal graft.

    PubMed

    Sheahan, D E; Gillian, T D

    2008-05-01

    A six-year-old border collie was presented with a solid mass on the dorsal cranium. Histological examination showed the mass to be a multilobular tumour of bone. A magnetic resonance imaging scan confirmed deformation of the dorsal cranium with compression of the cerebral hemispheres. A craniotomy was performed to excise the mass and overlying skin, resulting in a substantial deficit of calvarium and skin. A cranioplasty using a small intestinal submucosal (SIS) graft was performed to reconstruct the calvarial defect. A local myocutaneous advancement flap was elevated and positioned over the cranioplasty to close the skin deficit. The outcome of this reconstruction was aesthetic and functional. The small intestinal submucosal graft provided satisfactory mechanical support and was a suitable physical barrier in place of the calvarial bone. Histological examination of the small intestinal submucosal graft 128 days after implantation showed that the graft had been replaced by a dense network of collagenous tissue, with small focal areas of partially mineralised woven bone merging with a fibrocartilaginous matrix of the deeper margin. Histological examination also confirmed regrowth of the multilobular tumour of bone in the region of the small intestinal submucosal graft indicating that it is only a suitable implant if adequate surgical margins are obtained. PMID:18373537

  4. Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins.

    PubMed

    Hong, Jae-Sang; Kim, Nam-Hoon; Choi, Chang-Yong; Lee, Jun-Seong; Na, Dokyun; Chun, Taehoon; Lee, Young Sik

    2015-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome, which leads to serious economic losses in the pig industry worldwide. While the molecular basis of PCV2 replication and pathogenicity remains elusive, it is increasingly apparent that the microRNA (miRNA) pathway plays a key role in controlling virus-host interactions, in addition to a wide range of cellular processes. Here, we employed Solexa deep sequencing technology to determine which cellular miRNAs were differentially regulated after expression of each of three PCV2-encoded open reading frames (ORFs) in porcine kidney epithelial (PK15) cells. We identified 51 ORF1-regulated miRNAs, 74 ORF2-regulated miRNAs, and 32 ORF3-regulated miRNAs that differed in abundance compared to the control. Gene ontology analysis of the putative targets of these miRNAs identified transcriptional regulation as the most significantly enriched biological process, while KEGG pathway analysis revealed significant enrichment for several pathways including MAPK signaling, which is activated during PCV2 infection. Among the potential target genes of ORF-regulated miRNAs, two genes encoding proteins that are known to interact with PCV2-encoded proteins, zinc finger protein 265 (ZNF265) and regulator of G protein signaling 16 (RGS16), were selected for further analysis. We provide evidence that ZNF265 and RGS16 are direct targets of miR-139-5p and let-7e, respectively, which are both down-regulated by ORF2. Our data will initiate further studies to elucidate the roles of ORF-regulated cellular miRNAs in PCV2-host interactions. PMID:25885539

  5. Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis

    PubMed Central

    Rathan, Swetha; Ankeny, Casey J.; Arjunon, Sivakkumar; Ferdous, Zannatul; Kumar, Sandeep; Fernandez Esmerats, Joan; Heath, Jack M.; Nerem, Robert M.; Yoganathan, Ajit P.; Jo, Hanjoong

    2016-01-01

    Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis. Validation using qPCR confirmed significantly higher expression of 7 miRNAs (miR-100, -130a, -181a/b, -199a-3p, -199a-5p, and -214) in the fibrosa versus the ventricularis. Upon bioinformatics analysis, miR-214 was selected for further investigation using porcine AV leaflets in an ex vivo shear system. Fibrosa and ventricularis sides were exposed to either oscillatory or unidirectional pulsatile shear for 2 days and 3 & 7 days in regular and osteogenic media, respectively. Higher expression of miR-214, increased thickness of the fibrosa, and calcification was observed when the fibrosa was exposed to OS compared to the ventricularis. Silencing of miR-214 by anti-miR-214 in whole AV leaflets with the fibrosa exposed to OS significantly increased the protein expression of TGFβ1 and moderately increased collagen content but did not affect AV calcification. Thus, miR-214 is identified as a side- and shear-dependent miRNA that regulates key mechanosensitive gene in AV such as TGFβ1. PMID:27151744

  6. Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis

    NASA Astrophysics Data System (ADS)

    Rathan, Swetha; Ankeny, Casey J.; Arjunon, Sivakkumar; Ferdous, Zannatul; Kumar, Sandeep; Fernandez Esmerats, Joan; Heath, Jack M.; Nerem, Robert M.; Yoganathan, Ajit P.; Jo, Hanjoong

    2016-05-01

    Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis. Validation using qPCR confirmed significantly higher expression of 7 miRNAs (miR-100, -130a, -181a/b, -199a-3p, -199a-5p, and -214) in the fibrosa versus the ventricularis. Upon bioinformatics analysis, miR-214 was selected for further investigation using porcine AV leaflets in an ex vivo shear system. Fibrosa and ventricularis sides were exposed to either oscillatory or unidirectional pulsatile shear for 2 days and 3 & 7 days in regular and osteogenic media, respectively. Higher expression of miR-214, increased thickness of the fibrosa, and calcification was observed when the fibrosa was exposed to OS compared to the ventricularis. Silencing of miR-214 by anti-miR-214 in whole AV leaflets with the fibrosa exposed to OS significantly increased the protein expression of TGFβ1 and moderately increased collagen content but did not affect AV calcification. Thus, miR-214 is identified as a side- and shear-dependent miRNA that regulates key mechanosensitive gene in AV such as TGFβ1.

  7. Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira hyodysenteriae Reveals Adaptations to Its Lifestyle in the Porcine Large Intestine

    PubMed Central

    La, Tom; Ryan, Karon; Moolhuijzen, Paula; Albertyn, Zayed; Shaban, Babak; Motro, Yair; Dunn, David S.; Schibeci, David; Hunter, Adam; Barrero, Roberto; Phillips, Nyree D.; Hampson, David J.

    2009-01-01

    Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine. PMID:19262690

  8. Lactation-Related MicroRNA Expression Profiles of Porcine Breast Milk Exosomes

    PubMed Central

    Liang, Yan; Zhong, Zhijun; Wang, Xiaoyan; Zhou, Qi; Chen, Lei; Lang, Qiulei; He, Zhiping; Chen, Xiaohui; Gong, Jianjun; Gao, Xiaolian; Li, Xuewei; Lv, Xuebin

    2012-01-01

    Breast milk is the primary source of nutrition for newborns, and is rich in immunological components. MicroRNAs (miRNAs) are present in various body fluids and are selectively packaged inside the exosomes, a type of membrane vesicles, secreted by most cell types. These exosomal miRNAs could be actively delivered into recipient cells, and could regulate target gene expression and recipient cell function. Here, we analyzed the lactation-related miRNA expression profiles in porcine milk exosomes across the entire lactation period (newborn to 28 days after birth) by a deep sequencing. We found that immune-related miRNAs are present and enriched in breast milk exosomes (p<10−16, χ2 test) and are generally resistant to relatively harsh conditions. Notably, these exosomal miRNAs are present in higher numbers in the colostrums than in mature milk. It was higher in the serum of colostrum-only fed piglets compared with the mature milk-only fed piglets. These immune-related miRNA-loaded exosomes in breast milk may be transferred into the infant body via the digestive tract. These observations are a prelude to in-depth investigations of the essential roles of breast milk in the development of the infant’s immune system. PMID:22937080

  9. Food contaminant zearalenone and its metabolites affect cytokine synthesis and intestinal epithelial integrity of porcine cells.

    PubMed

    Marin, Daniela E; Motiu, Monica; Taranu, Ionelia

    2015-06-01

    The intestinal epithelium is the first barrier against food contaminants. Zearalenone (ZEN) is an estrogenic mycotoxin that was identified as a common contaminant of cereal grains and food and feedstuffs. In the present study, we have investigated the in vitro effects of ZEN and some of its metabolites (α-ZOL, β-ZOL) in concentrations of 10-100 µM on a swine epithelial cell line: Intestinal porcine epithelial cells (IPEC-1). We demonstrated that both ZEN metabolites were more toxic for IPEC cells as resulted from the XTT test, while for doses lower than 10 µM, only β-ZOL showed a more pronounced cytotoxicity versus epithelial cells as resulted from neutral red assay. ZEN has no effect on TER values, while α-ZOL significantly decreased the TER values, starting with day 4 of treatment. β-ZOL had a dual effect, firstly it induced a significant increase of TER, and then, starting on day 6, it induced a dramatic decrease of TER values as compared with on day 0. Concerning the cytokine synthesis, our results showed that ZEN has a tendency to increase the synthesis of IL-8 and IL-10. By contrast, α- and β-ZOL decreased the expression of both IL-8 and IL-10, in a dose dependent manner. In conclusion, our results showed that ZEN and its metabolites differently affected porcine intestinal cell viability, transepithelial resistance and cytokine synthesis with important implication for gut health. PMID:26035492

  10. Food Contaminant Zearalenone and Its Metabolites Affect Cytokine Synthesis and Intestinal Epithelial Integrity of Porcine Cells

    PubMed Central

    Marin, Daniela E.; Motiu, Monica; Taranu, Ionelia

    2015-01-01

    The intestinal epithelium is the first barrier against food contaminants. Zearalenone (ZEN) is an estrogenic mycotoxin that was identified as a common contaminant of cereal grains and food and feedstuffs. In the present study, we have investigated the in vitro effects of ZEN and some of its metabolites (α-ZOL, β-ZOL) in concentrations of 10–100 µM on a swine epithelial cell line: Intestinal porcine epithelial cells (IPEC-1). We demonstrated that both ZEN metabolites were more toxic for IPEC cells as resulted from the XTT test, while for doses lower than 10 µM, only β-ZOL showed a more pronounced cytotoxicity versus epithelial cells as resulted from neutral red assay. ZEN has no effect on TER values, while α-ZOL significantly decreased the TER values, starting with day 4 of treatment. β-ZOL had a dual effect, firstly it induced a significant increase of TER, and then, starting on day 6, it induced a dramatic decrease of TER values as compared with on day 0. Concerning the cytokine synthesis, our results showed that ZEN has a tendency to increase the synthesis of IL-8 and IL-10. By contrast, α- and β-ZOL decreased the expression of both IL-8 and IL-10, in a dose dependent manner. In conclusion, our results showed that ZEN and its metabolites differently affected porcine intestinal cell viability, transepithelial resistance and cytokine synthesis with important implication for gut health. PMID:26035492

  11. Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa.

    PubMed

    Doede, Thorsten; Bondartschuk, Michail; Joerck, Carsten; Schulze, Eberhard; Goernig, Matthias

    2009-04-01

    In general, there is no perfect method for esophageal replacement under consideration of the numerous associated risks and complications. The aim of this study was to examine a new material--small intestinal submucosa (SIS)--in alloplastic esophageal replacement. We implanted tubular SIS prosthesis about 4 cm in length in the cervical esophagus of 14 piglets (weight 9-13 kg). For the first 10 days, the animals were fed parenterally, supplemented by free given water, followed by an oral feeding phase. Four weeks after surgery, the animals were sacrificed. Only 1 of the 14 animals survived the study period of 4 weeks. The other piglets had to be sacrificed prematurely because of severe esophageal stenosis. On postmortem exploration, the prosthesis could not be found either macroscopically or histologically. Sutures between the prosthesis and the cervical muscles did not improve the results. Until now, the use of alloplastic materials in esophageal replacement has failed irrespective of the kind of material. As well as in our experiments, severe stenosis had been reported in several animal studies. The reasons for this unacceptable high rate of stenosis after alloplastic esophageal replacement seem to be multifactorial. Possible solutions could be transanastomotic splints, less inert materials, the decrease of anastomotic tension by stay sutures, the use of adult stem cells, and tissue engineering. PMID:19335409

  12. Topography of the enteric nervous system in Peyer's patches of the porcine small intestine.

    PubMed

    Krammer, H J; Kühnel, W

    1993-05-01

    The mechanisms of intercommunication between the immune and nervous systems are not fully understood. In the case of the intestine, the enteric nervous system is involved in the regulation of immune responses. It was therefore decided to employ immuno-histochemical techniques to investigate the structural organization of the enteric nervous system in Peyer's patches of the porcine small intestine. Using antibodies against various nervous system-specific markers (protein gene product 9.5, neuron-specific enolase, neurofilament 200, S-100 protein and the glial fibrillary acidic protein), an intimate and specific structural association could be demonstrated between enteric nerves and the compartments of Peyer's patches: follicles, interfollicular regions and domes. Peyer's patches have a close topographical relationship to the two submucosal plexuses. Enteric nerves are located around the follicle in the interfollicular area--the so-called "traffic area"--and in the dome area, which plays an important role in the uptake and presentation of antigens. PMID:8513481

  13. MicroRNA-682-mediated downregulation of PTEN in intestinal epithelial cells ameliorates intestinal ischemia–reperfusion injury

    PubMed Central

    Liu, Z; Jiang, J; Yang, Q; Xiong, Y; Zou, D; Yang, C; Xu, J; Zhan, H

    2016-01-01

    Intestinal ischemia–reperfusion (I/R) injury causes inflammation and tissue damage and contributes to high morbidity and mortality, but the underlying mechanism remains elusive and effective therapies are still lacking. We report here a critical role of the microRNA 682 (miR-682) as a key regulator and therapeutic target in intestinal I/R injury. MiR-682 was markedly induced in intestinal epithelial cells (IECs) during intestinal ischemia in mice and in the human colonic epithelial cells during hypoxia, but was undetected rapidly after intestinal reperfusion in IEC of mice. MiR-682 induction during hypoxia was modulated by hypoxia-inducible factor-1α (HIF-1α). On lentivirus-mediated miR-682 overexpression in vivo during intestinal reperfusion or miR-682 mimic transfection in vitro during hypoxia, miR-682 decreased the expression of phosphatase and tensin homolog (PTEN) and subsequently activated nuclear translocation of nuclear factor kappa B (NF-κB) p65. Consequently, NF-κB activation by miR-682-mediated PTEN downregulation prevented reactive oxygen species (ROS) induction, inflammatory reaction, mitochondrial-mediated apoptosis and IEC apoptosis. The effect of miR-682-mediated PTEN/NF-κB pathway on IECs resulted in protection against intestinal I/R injury in mice. However, NF-κB chemical inhibitor reversed miR-682-mediated decreased PTEN expression, ROS induction, inflammation and IEC apoptosis. Collectively, these results identify a novel miR-682/PTEN/NF-κBp65 signaling pathway in IEC injury induced by I/R that could be targeted for therapy. PMID:27124584

  14. Myocardial regeneration after implantation of porcine small intestinal submucosa in the left ventricle

    PubMed Central

    Ramos, Cassiana Maria Garcez; Francisco, Julio César; Olandoski, Marcia; de Carvalho, Katherine Athayde Teixeira; Cunha, Ricardo; Erbano, Bruna Olandoski; Jorge, Lianna Ferrari; Baena, Cristina Pellegrino; do Amaral, Vivian Ferreira; Noronha, Lucia; de Macedo, Rafael Michel; Faria-Neto, José Rocha; Guarita-Souza, Luiz César

    2014-01-01

    Introduction Most cardiomyocytes do not regenerate after myocardial infarction. Porcine small intestinal submucosa has been shown to be effective in tissue repair. Objective To evaluate myocardial tissue regeneration and functional effects of SIS implantation in pigs after left ventriculotomy. Methods Fifteen pigs were assigned to two groups: porcine small intestinal submucosa (SIS) (N=10) and control (N=5). The SIS group underwent a mini sternotomy, left ventriculotomy and placement of a SIS patch. The control group underwent a sham procedure. Echocardiography was performed before and 60 days after the surgical procedure. Histological analysis was performed with hematoxylin-eosin stain and markers for actin 1A4, anti sarcomeric actin, connexin43 and factor VIII. Results Weight gain was similar in both groups. Echocardiography analysis revealed no difference between groups regarding end diastolic and systolic diameters and left ventricular ejection fraction, both pre (P=0.118, P=0.313, P=0.944) and post procedure (P=0.333, P=0.522, P=0.628). Both groups showed an increase in end diastolic (P<0,001 for both) and systolic diameter 60 days after surgery (P=0.005, SIS group and P=0.004, control group). New cardiomyocytes, blood vessels and inflammatory reactions were histologically identified in the SIS group. Conclusion SIS implantation in pigs after left ventriculotomy was associated with angiomuscular regeneration and no damage in cardiac function. PMID:25140470

  15. Identification and Analysis of the Porcine MicroRNA in Porcine Cytomegalovirus-Infected Macrophages Using Deep Sequencing

    PubMed Central

    Liu, Xiao; Liao, Shan; Xu, Zhiwen; Zhu, Ling; Yang, Fan; Guo, Wanzhu

    2016-01-01

    Porcine cytomegalovirus (PCMV; genus Cytomegalovirus, subfamily Betaherpesvirinae, family Herpesviridae) is an immunosuppressive virus that mainly inhibits the immune function of T lymphocytes and macrophages, which has caused substantial damage in the farming industry. In this study, we obtained the miRNA expression profiles of PCMV-infected porcine macrophages via high-throughput sequencing. The comprehensive analysis of miRNA profiles showed that 239 miRNA database-annotated and 355 novel pig-encoded miRNAs were detected. Of these, 130 miRNAs showed significant differential expression between the PCMV-infected and uninfected porcine macrophages. The 10 differentially expressed pig-encoded miRNAs were further determined by stem-loop reverse-transcription polymerase chain reaction, and the results were consistent with the high-throughput sequencing. Gene Ontology analysis of the target genes of miRNAs in PCMV-infected porcine macrophages showed that the differentially expressed miRNAs are mainly involved in immune and metabolic processes. This is the first report of the miRNA transcriptome in porcine macrophages and an analysis of the miRNA regulatory mechanisms during PCMV infection. Further research into the regulatory mechanisms of miRNAs during immunosuppressive viral infections should contribute to the treatment and prevention of immunosuppressive viruses. PMID:26943793

  16. Neonatal Fc Receptor-Mediated IgG Transport Across Porcine Intestinal Epithelial Cells: Potentially Provide the Mucosal Protection.

    PubMed

    Guo, Jinyue; Li, Fei; He, Qigai; Jin, Hui; Liu, Mei; Li, Shaowen; Hu, Sishun; Xiao, Yuncai; Bi, Dingren; Li, Zili

    2016-06-01

    It has been well characterized that piglets can absorb colostrum IgG across the intestine to neonatal bloodstream and a certain level of IgG has been found in the mucosal secretions of the porcine intestinal tract. However, little is known about how the maternal IgG transport across the intestinal barrier and how IgG enter the lumen of intestinal tract. In this study, we demonstrated that the porcine neonatal Fc receptor (pFcRn) was expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2) as well as in kidney cells (PK-15), and pFcRn was mainly distributed in the apical side of the polarized IPEC-J2 cells. Analyzing the phylogenetic relatedness of this gene we found that swine and human neonatal Fc receptor (FcRn) amino acid sequence are closer than rodents. We also showed that pFcRn mediated bidirectional IgG transport across polarized IPEC-J2 cells and bound to IgG in a pH-dependent manner. Furthermore, pFcRn-transcytosed viral-specific IgG reduced the transmissible gastroenteritis virus (TGEV) yield from the luminal direction by a 50% tissue culture infective dose (TCID50) assay. Our results indicate that pFcRn-dependent bidirectional IgG transport across the intestinal epithelium plays critical role in the acquisition of humoral immunity in early life and in host defense at mucosal surfaces. PMID:26982157

  17. Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism

    PubMed Central

    Nossol, Constanze; Barta-Böszörményi, Anicò; Kahlert, Stefan; Zuschratter, Werner; Faber-Zuschratter, Heidi; Reinhardt, Nicole; Ponsuksili, Siriluk; Wimmers, Klaus; Diesing, Anne-Kathrin; Rothkötter, Hermann-Josef

    2015-01-01

    The pig shows genetical and physiological resemblance to human, which predestines it as an experimental animal model especially for mucosal physiology. Therefore, the intestinal epithelial cell lines 1 and J2 (IPEC-1, IPEC-J2) - spontaneously immortalised cell lines from the porcine intestine - are important tools for studying intestinal function. A microarray (GeneChip Porcine Genome Array) was performed to compare the genome wide gene expression of IPECs. Different significantly up-regulated pathways were identified, like “lysosome”, “pathways in cancer”, “regulation of actin cytoskeleton” and “oxidative phosphorylation” in IPEC-J2 in comparison to IPEC-1. On the other hand, “spliceosome”, “ribosome”, “RNA-degradation” and “tight junction” are significantly down-regulated pathways in IPEC-J2 in comparison to IPEC-1. Examined pathways were followed up by functional analyses. ATP-, oxygen, glucose and lactate-measurement provide evidence for up-regulation of oxidative phosphorylation in IPEC-J2. These cells seem to be more active in their metabolism than IPEC-1 cells due to a significant higher ATP-content as well as a higher O2- and glucose-consumption. The down-regulated pathway “ribosome” was followed up by measurement of RNA- and protein content. In summary, IPEC-J2 is a morphologically and functionally more differentiated cell line in comparison to IPEC-1. In addition, IPEC-J2 cells are a preferential tool for in vitro studies with the focus on metabolism. PMID:26147118

  18. FUT1 genetic variants impact protein glycosylation of porcine intestinal mucosa.

    PubMed

    Hesselager, Marianne O; Everest-Dass, Arun V; Thaysen-Andersen, Morten; Bendixen, Emøke; Packer, Nicolle H

    2016-06-01

    A massive use of antibiotics in industrial pig production is a major cause of the rapidly rising bacterial resistance to antibiotics. An enhanced understanding of infectious diseases and of host-microbe interactions has the potential to explore alternative ways to improve pig health and reduce the need for antibiotics. Host-microbe interactions depend on host-expressed glycans and microbe-carrying lectins. In this study, a G > A (nucleotide 307) missense mutation in the porcine α1,2fucosyltransferase 1 gene (FUT1), which has been reported to prevent infections by the common porcine enteric pathogen F18 fimbriated Escherichia coli, provided a unique opportunity to study glycan structures potentially involved in intestinal infections. N- and O-Linked glycans of the intestinal mucosa proteins were characterized in detail using LC-MS/MS. Relative abundances of all glycans were determined and compared between four heterozygous pigs (FUT1-307(A/G)) and four age-matched homozygous pigs from the same 2 litters carrying the missense FUT1 gene constellation (FUT1-307(A/A)). None of the characterized 48 N-linked glycans was found to be regulated by the FUT1 missense mutation, while 11 of the O-linked glycans showed significantly altered abundances between the two genotypes. The overall abundance of H-antigen carrying structures was decreased fivefold, while H-antigen precursors and sialylated structures were relatively more abundant in pigs with the FUT1 missense mutation. These results provide insight into the role of FUT1 on intestinal glycosylation, improve our understanding of how variation in FUT1 can modulate host-microbe interactions, and suggest that the FUT1 genetic variant may help to improve pig gut health. PMID:26858341

  19. In vitro permeation of mesembrine alkaloids from Sceletium tortuosum across porcine buccal, sublingual, and intestinal mucosa.

    PubMed

    Shikanga, Emmanuel A; Hamman, Josias H; Chen, Weiyang; Combrinck, Sandra; Gericke, Nigel; Viljoen, Alvaro M

    2012-02-01

    Sceletium tortuosum is an indigenous South African plant that has traditionally been used for its mood-enhancing properties. Recently, products containing S. tortuosum have become increasingly popular and are commonly administered as tablets, capsules, teas, decoctions, or tinctures, while traditionally the dried plant material has been masticated. This study evaluated the in vitro permeability of the four major S. tortuosum alkaloids (i.e., mesembrine, mesembrenone, mesembrenol, and mesembranol) across porcine intestinal, sublingual, and buccal tissues in their pure form and in the form of three different crude plant extracts, namely water, methanol, and an acid-base alkaloid-enriched extract. The permeability of mesembrine across intestinal tissue was higher than that of the highly permeable reference compound caffeine (which served as a positive control for membrane permeability) both in its pure form, as well as in the form of crude extracts. The intestinal permeability of mesembranol was similar to that of caffeine, while those of mesembrenol and mesembrenone were lower than that of caffeine, but much higher than that of the poorly permeable reference compound atenolol (which served as a negative control for membrane permeability). In general, the permeabilities of the alkaloids were lower across the sublingual and the buccal tissues than across the intestinal tissue. However, comparing the transport of the alkaloids with that of the reference compounds, there are indications that transport across the membranes of the oral cavity may contribute considerably to the overall bioavailability of the alkaloids, depending on pre-systemic metabolism, when the plant material is chewed and kept in the mouth for prolonged periods. The results from this study confirmed the ability of the alkaloids of S. tortuosum in purified or crude extract form to permeate across intestinal, buccal, and sublingual mucosal tissues. PMID:22105579

  20. Porcine intestinal glycosphingolipids recognized by F6-fimbriated enterotoxigenic Escherichia coli.

    PubMed

    Madar Johansson, Miralda; Coddens, Annelies; Benktander, John; Cox, Eric; Teneberg, Susann

    2014-11-01

    One important virulence factor of enterotoxigenic Escherichia coli is their ability to adhere via fimbrial adhesins to specific receptors located on the intestinal mucosa. Here, the potential glycosphingolipid receptors of enterotoxigenic F6-fimbriated E. coli were examined by binding of purified F6 fimbriae, and F6-expressing bacteria, to glycosphingolipids on thin-layer chromatograms. When intestinal mucosal non-acid glycosphingolipids from single pigs were assayed for F6 binding capacity, a selective interaction with two glycosphingolipids was observed. The binding-active glycosphingolipids were isolated and characterized as lactotriaosylceramide (GlcNAcβ3Galβ4Glcβ1Cer) and lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer). Further binding assays using a panel of reference glycosphingolipids showed a specific interaction between the F6 fimbriae and a number of neolacto core chain (Galβ4GlcNAc) glycosphingolipids. In addition, an occasional binding of the F6 fimbriae to sulfatide, galactosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, isoglobotriaosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide was obtained. From the results we conclude that lactotriaosylceramide and lactotetraosylceramide are major porcine intestinal receptors for F6-fimbriated E. coli. PMID:25241919

  1. In vitro effects of cysteine protease inhibitors on Trichomonas foetus-induced cytopathic changes in porcine intestinal epithelial cells.

    PubMed

    Tolbert, M Katherine; Brand, Mabre D; Gould, Emily N

    2016-08-01

    OBJECTIVE To investigate the effects of specific cysteine protease (CP) inhibitors on cytopathic changes to porcine intestinal epithelial cells induced by Tritrichomonas foetus isolated from naturally infected cats. SAMPLE T foetus isolates from 4 naturally infected cats and nontransformed porcine intestinal epithelial cells. PROCEDURES T foetus isolates were treated with or without 0.1 to 1.0mM of the CP inhibitors antipain, cystatin, leupeptin, and chymostatin and the vinyl sulfone inhibitors WRR-483 and K11777. In-gel gelatin zymography was performed to evaluate the effects of these inhibitors on CP activity of T foetus isolates. Each treated or untreated isolate was also cocultured with monolayers of porcine intestinal epithelial cells for 24 hours, and cytopathic effects of T foetus were evaluated by light microscopy and crystal violet spectrophotometry. RESULTS Results of in-gel gelatin zymography suggested an ability of WRR-483, K11777, and cystatin to target specific zones of CP activity of the T foetus isolates. These inhibitors had no effect on T foetus growth, and the cytopathic changes to the intestinal epithelium induced by all 4 T foetus isolates were significantly inhibited. CONCLUSIONS AND CLINICAL RELEVANCE This study revealed that certain protease inhibitors were capable of inhibiting regions of CP activity (which has been suggested to cause intestinal cell damage in cats) in T foetus organisms and of ameliorating T foetus-induced cytopathic changes to porcine intestinal epithelium in vitro. Although additional research is needed, these inhibitors might be useful in the treatment of cats with trichomonosis. PMID:27463553

  2. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling

    PubMed Central

    Miyazaki, Ayako; Soma, Junichi; Suda, Yoshihito; Aso, Hisashi; Nochi, Tomonori; Iwabuchi, Noriyuki; Xiao, Jin-zhong; Saito, Tadao; Villena, Julio; Kitazawa, Haruki

    2016-01-01

    In this work, we aimed to characterize the antiviral response of an originally established porcine intestinal epithelial cell line (PIE cells) by evaluating the molecular innate immune response to rotavirus (RVs). In addition, we aimed to select immunomodulatory bacteria with antiviral capabilities. PIE cells were inoculated with RVs isolated from different host species and the infective titers and the molecular innate immune response were evaluated. In addition, the protection against RVs infection and the modulation of immune response by different lactic acid bacteria (LAB) strains was studied. The RVs strains OSU (porcine) and UK (bovine) effectively infected PIE cells. Our results also showed that RVs infection in PIE cells triggered TLR3-, RIG-I- and MDA-5-mediated immune responses with activation of IRF3 and NF-κB, induction of IFN-β and up-regulation of the interferon stimulated genes MxA and RNase L. Among the LAB strains tested, Bifidobacterium infantis MCC12 and B. breve MCC1274 significantly reduced RVs titers in infected PIE cells. The beneficial effects of both bifidobacteria were associated with reduction of A20 expression, and improvements of IRF-3 activation, IFN-β production, and MxA and RNase L expressions. These results indicate the value of PIE cells for studying RVs molecular innate immune response in pigs and for the selection of beneficial bacteria with antiviral capabilities. PMID:27023883

  3. Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression.

    PubMed

    Taranu, Ionelia; Braicu, Cornelia; Marin, Daniela Eliza; Pistol, Gina Cecilia; Motiu, Monica; Balacescu, Loredana; Beridan Neagoe, Ioana; Burlacu, Radu

    2015-01-01

    The gut represents the main route of intoxication with mycotoxins. To evaluate the effect and the underlying molecular changes that occurred when the intestine is exposed to zearalenone, a Fusarium sp mycotoxin, porcine epithelial cells (IPEC-1) were treated with 10μM of ZEA for 24h and analysed by microarray using Gene Spring GX v.11.5. Our results showed that 10μM of ZEA did not affect cell viability, but can increase the expression of toll like receptors (TLR1-10) and of certain cytokines involved in inflammation (TNF-α, IL-1β, IL-6, IL-8, MCP-1, IL-12p40, CCL20) or responsible for the recruitment of immune cells (IL-10, IL-18). Microarray results identified 190 genes significantly and differentially expressed, of which 70% were up-regulated. ZEA determined the over expression of ITGB5 gene, essential against the attachment and adhesion of ETEC to porcine jejunal cells and of TFF2 implicated in mucosal protection. An up-regulation of glutathione peroxidase enzymes (GPx6, GPx2, GPx1) was also observed. Upon ZEA challenge, genes like GTF3C4 responsible for the recruitment of polymerase III and initiation of tRNA transcription in eukaryotes and STAT5B were significantly higher induced. The up-regulation of CD97 gene and the down-regulation of tumour suppressor genes (DKK-1, PCDH11X and TC531386) demonstrates the carcinogenic potential of ZEA. PMID:25455459

  4. The Intestinal Microbiota Interferes with the microRNA Response upon Oral Listeria Infection

    PubMed Central

    Archambaud, Cristel; Sismeiro, Odile; Toedling, Joern; Soubigou, Guillaume; Bécavin, Christophe; Lechat, Pierre; Lebreton, Alice; Ciaudo, Constance; Cossart, Pascale

    2013-01-01

    ABSTRACT The intestinal tract is the largest reservoir of microbes in the human body. The intestinal microbiota is thought to be able to modulate alterations of the gut induced by enteropathogens, thereby maintaining homeostasis. Listeria monocytogenes is the agent of listeriosis, an infection transmitted to humans upon ingestion of contaminated food. Crossing of the intestinal barrier is a critical step of the infection before dissemination into deeper organs. Here, we investigated the role of the intestinal microbiota in the regulation of host protein-coding genes and microRNA (miRNA or miR) expression during Listeria infection. We first established the intestinal miRNA signatures corresponding to the 10 most highly expressed miRNAs in the murine ileum of conventional and germfree mice, noninfected and infected with Listeria. Next, we identified 6 miRNAs whose expression decreased upon Listeria infection in conventional mice. Strikingly, five of these miRNA expression variations (in miR-143, miR-148a, miR-200b, miR-200c, and miR-378) were dependent on the presence of the microbiota. In addition, as is already known, protein-coding genes were highly affected by infection in both conventional and germfree mice. By crossing bioinformatically the predicted targets of the miRNAs to our whole-genome transcriptomic data, we revealed an miRNA-mRNA network that suggested miRNA-mediated global regulation during intestinal infection. Other recent studies have revealed an miRNA response to either bacterial pathogens or commensal bacteria. In contrast, our work provides an unprecedented insight into the impact of the intestinal microbiota on host transcriptional reprogramming during infection by a human pathogen. PMID:24327339

  5. Comparative in vitro cytotoxicity of modified deoxynivalenol on porcine intestinal epithelial cells.

    PubMed

    Broekaert, Nathan; Devreese, Mathias; Demeyere, Kristel; Berthiller, Franz; Michlmayr, Herbert; Varga, Elisabeth; Adam, Gerhard; Meyer, Evelyne; Croubels, Siska

    2016-09-01

    The gastrointestinal tract is the first target after ingestion of the mycotoxin deoxynivalenol (DON) via feed and food. Deoxynivalenol is known to affect the proliferation and viability of animal and human intestinal epithelial cells. In addition to DON, feed and food is often co-contaminated with modified forms of DON, such as 3-acetyldeoxynivalenol (3ADON), 15-acetyl-deoxynivalenol (15ADON) and deoxynivalenol-3-β-D-glucoside (DON3G). The goal of this study was to determine the in vitro intrinsic cytotoxicity of these modified forms towards differentiated and proliferative porcine intestinal epithelial cells by means of flow cytometry. Cell death was assessed by dual staining with Annexin-V-fluorescein isothiocyanate (FITC) and propidium iodide (PI), which allows the discrimination of viable (FITC-/PI-), apoptotic (FITC+/PI-) and necrotic cells (FITC+/PI+). Based on the data from the presented pilot in vitro study, it is concluded that cytotoxicity for proliferative cells can be ranked as follows: DON3G ≪ 3ADON < DON≈15ADON. PMID:27338712

  6. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol.

    PubMed

    Gu, Min Jeong; Song, Sun Kwang; Lee, In Kyu; Ko, Seongyeol; Han, Seung Eun; Bae, Suhan; Ji, Sang Yun; Park, Byung-Chul; Song, Ki-Duk; Lee, Hak-Kyo; Han, Seung Hyun; Yun, Cheol-Heui

    2016-01-01

    Intestinal barrier is the first line of defense inside the body and comprises intercellular tight junction (TJ) proteins that regulate paracellular permeability. Deoxynivalenol (DON), a fungal metabolite often found in the contaminated food of domestic animals, is known to impair intestinal barrier function and may be involved in intestinal inflammation. Unlike in humans and mice, the importance of Toll-like receptor (TLR) 2 expressed in porcine intestinal epithelial cells is largely unclear. Therefore, the aim of the present study was to investigate whether TLR2 stimulation enhances intestinal barrier function and protects against DON exposure. We found that the cells treated with TLR2 ligands decreased the epithelial barrier permeability and enhanced TJ protein expression in intestinal porcine epithelial cells (IPEC-J2). In addition, pretreatment with TLR2 ligand, including Pam3CSK4 (PCSK) and lipoteichoic acid from Bacillus subtilis, prevented DON-induced barrier dysfunction by increasing the expression of TJ proteins via the PI3K-Akt-dependent pathway. It is likely that the DON-disrupted intestinal barrier caused biological changes of immune cells in the lamina propria. Thus, we conducted co-culture of differentiated IPEC-J2 cells in the upper well together with peripheral blood mononuclear cells in the bottom well and found that apical TLR2 stimulation of IPEC-J2 cells could alleviate the reduction in cell survival and proliferation of immune cells. Conclusively, TLR2 signaling on intestinal epithelial cells may enhance intestinal barrier function and prevent DON-induced barrier dysfunction of epithelial cells. PMID:26857454

  7. Early weaning stress impairs development of mucosal barrier function in the porcine intestine

    PubMed Central

    Smith, Feli; Clark, Jessica E.; Overman, Beth L.; Tozel, Christena C.; Huang, Jennifer H.; Rivier, Jean E. F.; Blisklager, Anthony T.

    2010-01-01

    Early life stress is a predisposing factor for the development of chronic intestinal disorders in adult life. Here, we show that stress associated with early weaning in pigs leads to impaired mucosal barrier function. Early weaning (15- to 21-day weaning age) resulted in sustained impairment in intestinal barrier function, as indicated by reductions in jejunal transepithelial electrical resistance and elevations in mucosal-to-serosal flux of paracellular probes [3H]mannitol and [14C]inulin measured at 5 and 9 wk of age, compared with that shown in late-weaned pigs (23- to 28-day weaning age). Elevated baseline short-circuit current was observed in jejunum from early-weaned pigs and was shown to be mediated via enhanced Cl− secretion. Jejunal barrier dysfunction in early-weaned pigs coincided with increased lamina propria immune cell density particularly mucosal mast cells. The mast cell stabilizer drug sodium cromoglycolate ameliorated barrier dysfunction and hypersecretion in early-weaned pigs, demonstrating an important role of mast cells. Furthermore, activation of mast cells ex vivo with c48/80 and corticotrophin-releasing factor (CRF) in pig jejunum mounted in Ussing chambers induced barrier dysfunction and elevations in short-circuit current that were inhibited with mast cell protease inhibitors. Experiments in which selective CRF receptor antagonists were administered to early-weaned pigs revealed that CRF receptor 1 (CRFr1) activation mediates barrier dysfunction and hypersecretion, whereas CRFr2 activation may be responsible for novel protective properties in the porcine intestine in response to early life stress. PMID:19926814

  8. Gut feeling: MicroRNA discriminators of the intestinal TLR9-cholinergic links.

    PubMed

    Nadorp, Bettina; Soreq, Hermona

    2015-11-01

    The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TLR9) oligonucleotide (ODN) aptamer activators or blockers. Stressful intraperitoneal injection of saline, the anti-inflammatory TLR9 agonist mEN101 aptamer or the inflammation-activating TLR9 aptamer ODN 1826 all increased the expression of the acetylcholinesterase (AChE)-targeting miR-132. In comparison, mEN101 but neither ODN 1826 nor saline injections elevated intestinal miR-129-5p, miR-186 and miR-200c, all predicted to target both AChE and the homologous enzyme butyrylcholinesterase (BChE). In cultured immune cells, BL-7040, the human counterpart of mEN101, reduced AChE activity reflecting inflammatory reactions in a manner preventable by the TLR9 blocking ODN 2088. Furthermore, the anti-inflammatory BL-7040 TLR9 aptamer caused reduction in nitric oxide and AChE activity in both murine splenocytes and human mononuclear cells at molar concentrations four orders of magnitude lower than ODN 1826. Our findings demonstrate differential reaction of cholinesterase-targeting miRNAs to distinct TLR9 challenges, indicating upstream miRNA co-regulation of the intestinal alternative NFκB pathway and cholinergic signaling. TLR9 aptamers may hence potentiate miRNA regulation that enhances cholinergic signaling and the resolution of inflammation, which opens new venues for manipulating bowel diseases. PMID:26003847

  9. Gut feeling: MicroRNA discriminators of the intestinal TLR9–cholinergic links

    PubMed Central

    Nadorp, Bettina; Soreq, Hermona

    2015-01-01

    The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TLR9) oligonucleotide (ODN) aptamer activators or blockers. Stressful intraperitoneal injection of saline, the anti-inflammatory TLR9 agonist mEN101 aptamer or the inflammation-activating TLR9 aptamer ODN 1826 all increased the expression of the acetylcholinesterase (AChE)-targeting miR-132. In comparison, mEN101 but neither ODN 1826 nor saline injections elevated intestinal miR-129-5p, miR-186 and miR-200c, all predicted to target both AChE and the homologous enzyme butyrylcholinesterase (BChE). In cultured immune cells, BL-7040, the human counterpart of mEN101, reduced AChE activity reflecting inflammatory reactions in a manner preventable by the TLR9 blocking ODN 2088. Furthermore, the anti-inflammatory BL-7040 TLR9 aptamer caused reduction in nitric oxide and AChE activity in both murine splenocytes and human mononuclear cells at molar concentrations four orders of magnitude lower than ODN 1826. Our findings demonstrate differential reaction of cholinesterase-targeting miRNAs to distinct TLR9 challenges, indicating upstream miRNA co-regulation of the intestinal alternative NFκB pathway and cholinergic signaling. TLR9 aptamers may hence potentiate miRNA regulation that enhances cholinergic signaling and the resolution of inflammation, which opens new venues for manipulating bowel diseases. PMID:26003847

  10. Femtosecond laser ablation of porcine intestinal mucosa: potential autologous transplant for segmental cystectomy

    NASA Astrophysics Data System (ADS)

    Higbee, Russell G.; Irwin, Bryan S.; Nguyen, Michael N.; Zhang, Yuanyuan; Warren, William L.

    2005-04-01

    Nearly 80% of patients with newly diagnosed bladder cancer present with superficial bladder tumors (confined to the bladder lining such as transitional cell carcinoma [90%], squamous cell carcinoma [6-8%], and adenocarcinoma[2%]) in stages Ta, Tis, or T1. Segmental cystectomy is one surgical treatment for patients who have a low-grade invasive tumor. Transposition of small intestine is a viable surgical treatment option. Success of the transplantation is also dependent upon removal of the entire SI mucosal layer. A Clark Spitfire Ti:Sapphire laser operating at 775 nm and 1 kHz repetition rate, was used to investigate the damage induced to fresh cadaveric porcine small intestinal mucosal epithelium. The laser was held constant at a focal spot diameter of 100 μm using a 200 mm focal point lens, with a power output maximum of 257 mW. A high resolution motorized X-Y-Z stage translated the SI tissue through the beam at 500 μm/sec with a line spacing of 50 μm. This produced a 50% overlap in the laser etching for each pass over a 1 cm x 1.5 cm grid. To determine if the mucosal lining of the SI was adequately removed, the targeted area was covered with 1% fluorescein solution for 30 seconds and then rinsed with phosphate buffered saline. Fluorescein staining was examined under UV illumination, to determine the initial degree of mucosal removal. Tissues were fixed and processed for light and scanning electron microscopy by standard protocols. Brightfield light microscopy of hematoxylin and eosin stained 4 μm thick cross sections, scanning electron microscopy were examined to determine the degree of mucosal tissue removal. Clear delineation of the submucosal layer by fluorescein staining was also observed. The Ti:Sapphire laser demonstrated precise, efficient removal of the mucosal epithelium with minimal submucosal damage.

  11. In vivo perfusion assessment of an anastomosis surgery on porcine intestinal model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; Opferman, Justin; Decker, Ryan; Cheon, Gyeong W.; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2016-04-01

    Anastomosis, the connection of two structures, is a critical procedure for reconstructive surgery with over 1 million cases/year for visceral indication alone. However, complication rates such as strictures and leakage affect up to 19% of cases for colorectal anastomoses and up to 30% for visceral transplantation anastomoses. Local ischemia plays a critical role in anastomotic complications, making blood perfusion an important indicator for tissue health and predictor for healing following anastomosis. In this work, we apply a real time multispectral imaging technique to monitor impact on tissue perfusion due to varying interrupted suture spacing and suture tensions. Multispectral tissue images at 470, 540, 560, 580, 670 and 760 nm are analyzed in conjunction with an empirical model based on diffuse reflectance process to quantify the hemoglobin oxygen saturation within the suture site. The investigated tissues for anastomoses include porcine small (jejunum and ileum) and large (transverse colon) intestines. Two experiments using interrupted suturing with suture spacing of 1, 2, and 3 mm and tension levels from 0 N to 2.5 N are conducted. Tissue perfusion at 5, 10, 20 and 30 min after suturing are recorded and compared with the initial normal state. The result indicates the contrast between healthy and ischemic tissue areas and assists the determination of suturing spacing and tension. Therefore, the assessment of tissue perfusion will permit the development and intra-surgical monitoring of an optimal suture protocol during anastomosis with less complications and improved functional outcome.

  12. E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells

    PubMed Central

    Schierack, Peter; Kleta, Sylvia; Tedin, Karsten; Babila, Julius Tachu; Oswald, Sibylle; Oelschlaeger, Tobias A.; Hiemann, Rico; Paetzold, Susanne; Wieler, Lothar H.

    2011-01-01

    Background The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. Methodology/Principal Findings In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. Conclusions We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion. PMID:21379575

  13. Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa*

    PubMed Central

    Ninan, Lal; Stroshine, R L; Wilker, J.J.; Shi, Riyi

    2008-01-01

    An adhesive protein extracted from marine mussel (Mytilus edulis) was used to bond strips of connective tissue for the purpose of evaluating the use of curing agents to improve adhesive curing. Specifically, mussel adhesive protein solution (MAPS, 0.5 mM dihydroxyphenylalanine) was applied, with or without the curing agents, to the ends of two overlapping strips of porcine small intestinal submucosa. The bond strength of this lap joint was determined after curing for 1 h at room temperature (25°C). The strength of joints formed using only MAPS or with only the ethyl, butyl or octyl cyanoacrylate adhesives were determined. Although joints bonded using ethyl cyanoacrylate were strongest, those using MAPS were stronger than those using butyl and octyl cyanoacrylates. The addition of 25 mM solutions of the transition metal ions V5+, Fe3+ and Cr6+, which are all oxidants, increased the bond strength of the MAPS joints. The V5+ gave the strongest bonds and the Fe3+ the second strongest. In subsequent tests with V5+ and Fe3+ solutions, the bond strength increased with V5+ concentration, but it did not increase with Fe3+ concentration. Addition of 250 mM V5+ gave a very strong bond. PMID:17434815

  14. Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum.

    PubMed

    Uribe, Juber Herrera; Collado-Romero, Melania; Zaldívar-López, Sara; Arce, Cristina; Bautista, Rocío; Carvajal, Ana; Cirera, Susanna; Claros, M Gonzalo; Garrido, Juan J

    2016-01-01

    Infected pork meat is an important source of non-typhoidal human salmonellosis. Understanding of molecular mechanisms involved in disease pathogenesis is important for the development of therapeutic and preventive strategies. Thus, hereby we study the transcriptional profiles along the porcine intestine during infection with Salmonella Typhimurium, as well as post-transcriptional gene modulation by microRNAs (miRNA). Sixteen piglets were orally challenged with S. Typhimurium. Samples from jejunum, ileum and colon, collected 1, 2 and 6 days post infection (dpi) were hybridized to mRNA and miRNA expression microarrays and analyzed. Jejunum showed a reduced transcriptional response indicating mild inflammation only at 2 dpi. In ileum inflammatory genes were overexpressed (e.g., IL-1B, IL-6, IL-8, IL1RAP, TNFα), indicating a strong immune response at all times of infection. Infection also down-regulated genes of the FXR pathway (e.g., NR1H4, FABP6, APOA1, SLC10A2), indicating disruption of the bile acid absorption in ileum. This result was confirmed by decreased high-density lipoprotein cholesterol in serum of infected pigs. Ileal inflammatory gene expression changes peaked at 2 dpi and tended to resolve at 6 dpi. Furthermore, miRNA analysis of ileum at 2 dpi revealed 62 miRNAs potentially regulating target genes involved in this inflammatory process (e.g., miR-374 and miR-451). In colon, genes involved in epithelial adherence, proliferation and cellular reorganization were down-regulated at 2 and 6 dpi. In summary, here we show the transcriptional changes occurring at the intestine at different time points of the infection, which are mainly related to inflammation and disruption of the bile acid metabolism. PMID:26738723

  15. MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis

    PubMed Central

    Runtsch, Marah C.; Hu, Ruozhen; Alexander, Margaret; Wallace, Jared; Kagele, Dominique; Petersen, Charisse; Valentine, John F.; Welker, Noah C.; Bronner, Mary P.; Chen, Xinjian; Smith, Daniel P.; Ajami, Nadim J.; Petrosino, Joseph F.; Round, June L.; O'Connell, Ryan M.

    2015-01-01

    Host-microbial interactions within the mammalian intestines must be properly regulated in order to promote host health and limit disease. Because the microbiota provide constant immunological signals to intestinal tissues, a variety of regulatory mechanisms have evolved to ensure proper immune responses to maintain homeostasis. However, many of the genes that comprise these regulatory pathways, including immune-modulating microRNAs (miRNAs), have not yet been identified or studied in the context of intestinal homeostasis. Here, we investigated the role of microRNA-146a (miR-146a) in regulating intestinal immunity and barrier function and found that this miRNA is expressed in a variety of gut tissues in adult mice. By comparing intestinal gene expression in WT and miR-146a−/− mice, we demonstrate that miR-146a represses a subset of gut barrier and inflammatory genes all within a network of immune-related signaling pathways. We also found that miR-146a restricts the expansion of intestinal T cell populations, including Th17, Tregs, and Tfh cells. GC B cells, Tfh ICOS expression, and the production of luminal IgA were also reduced by miR-146a in the gut. Consistent with an enhanced intestinal barrier, we found that miR-146a−/− mice are resistant to DSS-induced colitis, a model of Ulcerative Colitis (UC), and this correlated with elevated colonic miR-146a expression in human UC patients. Taken together, our data describe a role for miR-146a in constraining intestinal barrier function, a process that alters gut homeostasis and enhances at least some forms of intestinal disease in mice. PMID:26456940

  16. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    SciTech Connect

    Balakrishnan, Anita; Stearns, Adam T.; Park, Peter J.; Dreyfuss, Jonathan M.; Ashley, Stanley W.; Rhoads, David B.; Tavakkolizadeh, Ali

    2010-12-10

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  17. Extracellular Matrix from Porcine Small Intestinal Submucosa (SIS) as Immune Adjuvants

    PubMed Central

    Aachoui, Youssef; Ghosh, Swapan K.

    2011-01-01

    Porcine small intestinal submucosa (SIS) of Cook Biotech is licensed and widely used for tissue remodeling in humans. SIS was shown to be highly effective as an adjuvant in model studies with prostate and ovarian cancer vaccines. However, SIS adjuvanticity relative to alum, another important human-licensed adjuvant, has not yet been delineated in terms of activation of innate immunity via inflammasomes and boosting of antibody responses to soluble proteins and hapten-protein conjugates. We used ovalbumin, and a hapten-protein conjugate, phthalate-keyhole limpet hemocyanin. The evaluation of SIS was conducted in BALB/c and C57BL/6 mice using both intraperitoneal and subcutaneous routes. Inflammatory responses were studied by microarray profiling of chemokines and cytokines and by qPCR of inflammasomes-related genes. Results showed that SIS affected cytokine and chemokines microenvironments such as up-regulation of IL-4 and CD30-ligand and activation of chemotactic factors LIX and KC (neutrophil chemotactic factors), MCP-1 (monocytes chemotactic factors), MIP 1-α (macrophage chemotactic factor) and lymphotactin, as well as, growth factors like M-CSF. SIS also promoted gene expression of Nod-like receptors (NLR) and associated downstream effectors. However, in contrast to alum, SIS had no effects on pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) or NLRP3, but it appeared to promote both Th1 and Th2 responses under different conditions. Lastly, it was as effective as alum in engendering a lasting and specific antibody response, primarily of IgG1 type. PMID:22087247

  18. Penile enhancement using a porcine small intestinal submucosa graft in a rat model.

    PubMed

    Leungwattanakij, S; Pummangura, N; Ratana-Olarn, K

    2006-01-01

    Several biodegradable materials have been experimented for penile enhancement, but none show the potential for clinical use. This study was designed to use porcine small intestinal submucosa (SIS) augmenting the normal tunica albuginea to increase the functional girth of the rat penis. In all, 20 adult male Sprague-Dawley rats constituted the study population. The animals were divided into two groups: group 1 consisted of the control (n=10) and group 2 (n=10) consisted of rats that underwent penile enhancement by a longitudinal I-shaped incision of the tunica albuginea on both sides, and the dissection of the plane between tunica albuginea and cavernosal tissue was carried out (n=10). The incision was then patched with a 3 x 10 mm2 piece of SIS, using a 6/0 nylon suture material. The penile length and mid-circumference were then measured using a Vernier Caliper before and 2 months after surgery. All rat penises underwent histological examination using Masson's trichome and Verhoff's van Giesen's stain for collagen and elastic fibers. The penile length, mid-circumference and degree of fibrosis score were expressed as mean+/-s.e. (standard error) and analyzed using a Wilcoxon rank-sum test. A statistical significance was accepted at P-value < or =0.05. Our results showed similar preoperative penile length and circumference in both groups. However, 2 months after the surgery, the mean penile circumference of the SIS group has grown significantly larger than the control group, while the mean penile length remained unchanged. The histological study of the rat penises revealed minimal amounts of fibrosis under the graft, and the elastic fibers of the graft showed orientation in a circular manner. In conclusion, SIS appears promising for material use in a penile enhancement. PMID:16049525

  19. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers.

    PubMed

    Fan, Mei-Rong; Gong, Mei; Da, Lin-Cui; Bai, Lin; Li, Xiu-Qun; Chen, Ke-Fei; Li-Ling, Jesse; Yang, Zhi-Ming; Xie, Hui-Qi

    2014-02-01

    Acellular porcine small intestinal submucosa (SIS) has been successfully used for reconstructing esophagus with half circumferential defects. However, repairing full circumferential esophageal defects with SIS has been restricted due to the latter's poor mechanical properties. In the present study, synthetic polyesters biomaterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(lactide-co-glycolide) (PLGA) have been used to improve the mechanical properties of SIS. Feasibility of SIS/PHBHHx-PLGA composite material scaffold for esophageal tissue engineering has been assessed through a series of testing. The appropriate mixing ratio of PHBHHx and PLGA polymers has been determined as 5:5 by mechanical testing and in vitro degradation experiment. The morphology of constructed membranous and tubular scaffolds was also characterized. As confirmed by enzyme-linked immunosorbent assay, the contents of VEGF and TGF-β have respectively reached 657 ± 18 ng mL(-1) and 130 ± 4 pg mL(-1) within the SIS/PHBHHx-PLGA specimens. Biocompatibility of the SIS/PHBHHx-PLGA specimens with rat bone marrow mesenchymal stem cells (MSCs) was also evaluated by scanning electron microscopy and a live-dead cell viability assay. Actin filaments of MSCs on the composite materials were labeled. Biological safety of the extract from SIS/PHBHHx-PLGA specimens, measured as hemolysis rate, was all lower than 5%. Compared with SIS and SIS/PHBHHx-PLGA specimens, inflammatory reaction provoked by the PHBHHx-PLGA specimens in rats was however more severe. Our results have suggested that SIS/PHBHHx-PLGA composite material can offer a new approach for esophageal tissue engineering. PMID:24457267

  20. Distinct MicroRNA Expression Signatures of Porcine Induced Pluripotent Stem Cells under Mouse and Human ESC Culture Conditions

    PubMed Central

    Wang, Jing; Han, Jianyong

    2016-01-01

    It is well known that microRNAs play a very important role in regulating reprogramming, pluripotency and cell fate decisions. Porcine induced pluripotent stem cells (piPSCs) are now available for studying the pluripotent regulation network in pigs. Two types of piPSCs have been derived from human and mouse embryonic stem cell (ESC) culture conditions: hpiPSCs and mpiPSCs, respectively. The hpiPSCs were morphologically similar to human ESCs, and the mpiPSCs resembled mouse ESCs. However, our current understanding of the role of microRNAs in the development of piPSCs is still very limited. Here, we performed small RNA sequencing to profile the miRNA expression in porcine fibroblasts (pEFs), hpiPSCs and mpiPSCs. There were 22 differential expressed (DE) miRNAs down-regulated in both types of piPSCs compared with pEFs, such as ssc-miR-145-5p and ssc-miR-98. There were 27 DE miRNAs up-regulated in both types of piPSCs compared with pEFs. Among these up-regulated DE miRNAs in piPSCs, ssc-miR-217, ssc-miR-216, ssc-miR-142-5p, ssc-miR-182, ssc-miR-183 and ssc-miR-96-5p have much higher expression levels in mpiPSCs, while ssc-miR-106a, ssc-miR-363, ssc-miR-146b, ssc-miR-195, ssc-miR-497, ssc-miR-935 and ssc-miR-20b highly expressed in hpiPSCs. Quantitative stem-loop RT-PCR was performed to confirm selected DE miRNAs expression levels. The results were consistent with small RNA sequencing. Different expression patterns were observed for key miRNA clusters, such as the miR-17-92 cluster, the let-7 family, the miR-106a-363 cluster and the miR-182-183 cluster, in the mpiPSCs and hpiPSCs. Novel miRNAs were also predicted in this study, including a putative porcine miR-302 cluster: ssc_38503, ssc_38503 and ssc_38501 (which resemble human miR-302a and miR-302b) found in both types of piPSCs. The miR-106a-363 cluster and putative miR-302 cluster increased the reprogramming efficiency of pEFs. The study revealed significant differences in the miRNA signatures of hpiPSCs and mpi

  1. Cell Lineage Identification and Stem Cell Culture in a Porcine Model for the Study of Intestinal Epithelial Regeneration

    PubMed Central

    Gonzalez, Liara M.; Williamson, Ian; Piedrahita, Jorge A.; Blikslager, Anthony T.; Magness, Scott T.

    2013-01-01

    Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC) driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM) and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA), Minichromosome Maintenance Complex 2 (MCM2), Bromodeoxyuridine (BrdU) and phosphorylated Histone H3 (pH3) distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/‘reserve’ stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2); enteroendocrine cells by Chromogranin A (CGA), Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII) and sucrase isomaltase (SIM). Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease. PMID:23840480

  2. Intrinsic Features in MicroRNA Transcriptomes Link Porcine Visceral Rather than Subcutaneous Adipose Tissues to Metabolic Risk

    PubMed Central

    Liu, Yingkai; Chen, Lei; Long, Keren; Jin, Long; Jiang, An'an; Zhu, Li; Wang, Jinyong; Li, Mingzhou; Li, Xuewei

    2013-01-01

    MicroRNAs (miRNAs) are non-coding small RNA ∼22 nucleotides in length that can regulate the expression of a wide range of coding genes at the post-transcriptional level. Visceral adipose tissues (VATs) and subcutaneous adipose tissues (SATs), the two main fat compartments in mammals, are anatomically, physiologically, metabolically, and clinically distinct. Various studies of adipose tissues have focused mainly on DNA methylation, and mRNA and protein expression, nonetheless little research sheds directly light on the miRNA transcriptome differences between these two distinct adipose tissue types. Here, we present a comprehensive investigation of miRNA transcriptomes across six variant porcine adipose tissues by small RNA-sequencing. We identified 219 known porcine miRNAs, 97 novel miRNA*s, and 124 miRNAs that are conserved to other mammals. A set of universally abundant miRNAs (i.e., miR-148a-3p, miR-143-3p, miR-27b-3p, miR-let-7a-1-5p, and miR-let-7f-5p) across the distinct adipose tissues was found. This set of miRNAs may play important housekeeping roles that are involved in adipogenesis. Clustering analysis indicated significant variations in miRNA expression between the VATs and SATs, and highlighted the role of the greater omentum in responding to potential metabolic risk because of the observed enrichment in this tissue of the immune- and inflammation-related miRNAs, such as the members of miR-17-92 cluster and miR-181 family. Differential expression of the miRNAs between the VATs and SATs, and miRNA target prediction analysis revealed that the VATs-specific enriched miRNAs were associated mainly with immune and inflammation responses. In summary, the differences of miRNA expression between the VATs and SATs revealed some of their intrinsic differences and indicated that the VATs might be closely associated with increased risk of metabolic disorders. PMID:24223210

  3. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  4. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    PubMed

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  5. Cytotoxicity and metabolic stress induced by deoxynivalenol in the porcine intestinal IPEC-J2 cell line.

    PubMed

    Awad, W A; Aschenbach, J R; Zentek, J

    2012-08-01

    The digestive tract is a target for the Fusarium toxin deoxynivalenol (DON), a major cereal grain contaminant of animal and public health concern. Toxic effects of DON range from diarrhoea, vomiting and gastrointestinal inflammation to necrosis of several tissues. Following ingestion of contaminated food or feed, intestinal epithelial cells are exposed to a high concentration of ingested DON, potentially affecting intestinal functions. Pigs are considered to be the species most sensitive to DON toxicity. However, only few studies directly evaluated DON effects on porcine intestinal epithelial cells. Therefore, we used the porcine intestinal cell line (IPEC-J2) to assess short-term effects of DON on functional characteristics of the intestinal epithelial cells. The cytotoxic effect of DON on IPEC-J2 cells was evaluated by measuring the count of living cells and the activity of lactate dehydrogenase (LDH) released in the culture media at a DON concentration range from 0, 0.5, 2.5 and 10 μm. We demonstrated that DON at concentrations of 2.5 and 10 μm decreased significantly (p < 0.001) the cell count in a dose-dependent manner. At a concentration of 10 μm, DON caused cell damage, including rounding of cells, autolysis and cell loss from the monolayer. The mycotoxin, DON, increased LDH release into the culture medium compared with the control value. The alterations of LDH showed a good agreement with the decrease in cell count. Deoxynivalenol decreased the l-lactate concentration in the fluid supernatant of IPEC-J2 cells at 2.5 μm (p < 0.05) with a maximal effect at 10 μm of DON. To determine whether the altered lactate production may be linked to alterations of energy balance, we measured cellular ATP levels in IPEC-J2 cells. A significant decrease in ATP levels was seen at 48 h in a dose-dependent manner. It could be demonstrated that DON has a distinct cytotoxic effect on IPEC-J2 cells. PMID:21793942

  6. The Porcine MicroRNA Transcriptome Response to Transmissible Gastroenteritis Virus Infection

    PubMed Central

    Liu, Xiao; Zhu, Ling; Liao, Shan; Xu, Zhiwen; Zhou, Yuancheng

    2015-01-01

    Transmissible gastroenteritis virus (TGEV; Coronaviridae family) causes huge economic losses to the swine industry. MicroRNAs (miRNAs) play a regulatory role in viral infection and may be involved in the mammalian immune response. Here, we report a comprehensive analysis of host miRNA expression in TGEV-infected swine testis (ST) cells. Deep sequencing generated 3,704,353 and 2,763,665 reads from uninfected ST cells and infected ST cells, respectively. The reads were aligned to known Sus scrofa pre-miRNAs in miRBase 19, identifying 284 annotated miRNAs. Certain miRNAs were differentially regulated during TGEV infection. 59 unique miRNAs displayed significant differentially expression between the normal and TGEV-infected ST cell samples: 15 miRNAs were significantly up-regulated and 44 were significantly down-regulated. Stem-loop RT-PCR was carried out to determine the expression levels of specific miRNAs in the two samples, and the results were consistent with those of sequencing. Gene ontology enrichment analysis of host target genes demonstrated that the differentially expressed miRNAs are involved in regulatory networks, including cellular process, metabolic process, immune system process. This is the first report of the identification of ST cell miRNAs and the comprehensive analysis of the miRNA regulatory mechanism during TGEV infection, which revealed the miRNA molecular regulatory mechanisms for the viral infection, expression of viral genes and the expression of immune-related genes. The results presented here will aid research on the prevention and treatment of viral diseases. PMID:25781021

  7. Different macro- and micro-rheological properties of native porcine respiratory and intestinal mucus.

    PubMed

    Bokkasam, Harish; Ernst, Matthias; Guenther, Marco; Wagner, Christian; Schaefer, Ulrich F; Lehr, Claus-Michael

    2016-08-20

    Aim of this study was to investigate the similarities and differences at macro- and microscale in the viscoelastic properties of mucus that covers the epithelia of the intestinal and respiratory tract. Natural mucus was collected from pulmonary and intestinal regions of healthy pigs. Macro-rheological investigations were carried out through conventional plate-plate rheometry. Microrheology was investigated using optical tweezers. Our data revealed significant differences both in macro- and micro-rheological properties between respiratory and intestinal mucus. PMID:27311353

  8. Grafts of porcine small intestinal submucosa seeded with cultured homologous smooth muscle cells for bladder repair in dogs

    PubMed Central

    2013-01-01

    Background Due to numerous complications associated to gastrointestinal augmented cystoplasty, this study aimed to analyze the anatomic repair of the bladder of 10 female dogs using grafts of porcine small intestinal submucosa (SIS) seeded with cultured homologous smooth muscle cells, and compare them with the acellular SIS grafts. Results We assessed the possible side effects and complications of each type of graft by clinical examination, abdominal ultrasound and laboratory findings. Anatomic repair of neoformed bladder was assessed by histological staining for H/E and Masson's Trichrome, analyzed with a Nikon Photomicroscope connected to the system of image analysis Image J. Conclusions We propose that SIS associated to homologous smooth cells can improve the quality of tissue repair, and consequently decrease the potential complications inherent to acellular SIS. PMID:23651843

  9. Antimicrobial susceptibility testing of two Lawsonia intracellularis isolates associated with proliferative hemorrhagic enteropathy and porcine intestinal adenomatosis in South Korea.

    PubMed

    Yeh, Jung-Yong; Lee, Ji-Hye; Yeh, Hye-Ryun; Kim, Aeran; Lee, Ji Youn; Hwang, Jeong-Min; Kang, Bo-Kyu; Kim, Jong-Man; Choi, In-Soo; Lee, Joong-Bok

    2011-09-01

    This study represents the first published data on antimicrobial susceptibility of Asian isolates of Lawsonia intracellularis. We assessed MICs of 16 antimicrobials for two isolates of L. intracellularis recovered from diseased pigs in South Korea, one from a finisher pig with acute proliferative hemorrhagic enteropathy in 2002 and the other from a grower pig with porcine intestinal adenomatosis in 2010. Tylosin and tilmicosin were found to be the most active against L. intracellularis both intracellularly (MICs, 0.25 to 0.5 μg/ml and 0.125 μg/ml, respectively) and extracellularly (MICs, 0.25 to 0.5 μg/ml and 1 μg/ml, respectively). PMID:21690283

  10. Gene Regulation of Intestinal Porcine Epithelial Cells IPEC-J2 Is Dependent on the Site of Deoxynivalenol Toxicological Action

    PubMed Central

    Diesing, Anne-Kathrin; Nossol, Constanze; Ponsuksili, Siriluck; Wimmers, Klaus; Kluess, Jeannette; Walk, Nicole; Post, Andreas; Rothkötter, Hermann-Josef; Kahlert, Stefan

    2012-01-01

    The intestinal epithelial cell layer represents the border between the luminal and systemic side of the gut. The decision between absorption and exclusion of substances is the quintessential function of the gut and varies along the gut axis. Consequently, potentially toxic substances may reach the basolateral domain of the epithelial cell layer via blood stream. The mycotoxin deoxynivalenol (DON) is a Fusarium derived secondary metabolite known to enter the blood stream and displaying a striking toxicity on the basolateral side of polarised epithelial cell layers in vitro. Here we analysed potential mechanisms of apical and basolateral DON toxicity reflected in the gene expression. We used the jejunum-derived, polarised intestinal porcine epithelial cell line IPEC-J2 as an in vitro cell culture model. Luminal and systemic DON challenge of the epithelial cell layer was mimicked by a DON application from the apical or basolateral compartment of membrane inserts for 72 h. We compared the genome-wide gene expression of untreated and DON-treated IPEC-J2 cells with the GeneChip® Porcine Genome Array of Affymetrix. Low basolateral DON (200 ng/mL) application triggered 10 times more gene transcripts in comparison to the corresponding apical application (2539 versus 267) despite the intactness of the challenged cell layer as measured by transepithelial electrical resistance. Analysis of the regulated genes by bioinformatic resource DAVID identified several groups of biochemical pathways modulated by concentration and orientation of DON application. Selected genes representing pathways of the cellular metabolism, information processing and structural design were analysed in detail by quantitative PCR. Our findings clearly show that apical and basolateral challenge of epithelial cell layers trigger different gene response profiles paralleled with a higher susceptibility towards basolateral challenge. The evaluation of toxicological potentials of mycotoxins should take this

  11. Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate.

    PubMed

    Mulloy, Barbara; Wu, Nian; Gyapon-Quast, Frederick; Lin, Lei; Zhang, Fuming; Pickering, Matthew C; Linhardt, Robert J; Feizi, Ten; Chai, Wengang

    2016-07-01

    Heparan sulfate (HS) polysaccharides are ubiquitous in animal tissues as components of proteoglycans, and they participate in many important biological processes. HS carbohydrate chains are complex and can contain rare structural components such as N-unsubstituted glucosamine (GlcN). Commercially available HS preparations have been invaluable in many types of research activities. In the course of preparing microarrays to include probes derived from HS oligosaccharides, we found an unusually high content of GlcN residue in a recently purchased batch of porcine intestinal mucosal HS. Composition and sequence analysis by mass spectrometry of the oligosaccharides obtained after heparin lyase III digestion of the polysaccharide indicated two and three GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. (1)H NMR of the intact polysaccharide showed that this unusual batch differed strikingly from other HS preparations obtained from bovine kidney and porcine intestine. The very high content of GlcN (30%) and low content of GlcNAc (4.2%) determined by disaccharide composition analysis indicated that N-deacetylation and/or N-desulfation may have taken place. HS is widely used by the scientific community to investigate HS structures and activities. Great care has to be taken in drawing conclusions from investigations of structural features of HS and specificities of HS interaction with proteins when commercial HS is used without further analysis. Pending the availability of a validated commercial HS reference preparation, our data may be useful to members of the scientific community who have used the present preparation in their studies. PMID:27295282

  12. Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate

    PubMed Central

    2016-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous in animal tissues as components of proteoglycans, and they participate in many important biological processes. HS carbohydrate chains are complex and can contain rare structural components such as N-unsubstituted glucosamine (GlcN). Commercially available HS preparations have been invaluable in many types of research activities. In the course of preparing microarrays to include probes derived from HS oligosaccharides, we found an unusually high content of GlcN residue in a recently purchased batch of porcine intestinal mucosal HS. Composition and sequence analysis by mass spectrometry of the oligosaccharides obtained after heparin lyase III digestion of the polysaccharide indicated two and three GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. 1H NMR of the intact polysaccharide showed that this unusual batch differed strikingly from other HS preparations obtained from bovine kidney and porcine intestine. The very high content of GlcN (30%) and low content of GlcNAc (4.2%) determined by disaccharide composition analysis indicated that N-deacetylation and/or N-desulfation may have taken place. HS is widely used by the scientific community to investigate HS structures and activities. Great care has to be taken in drawing conclusions from investigations of structural features of HS and specificities of HS interaction with proteins when commercial HS is used without further analysis. Pending the availability of a validated commercial HS reference preparation, our data may be useful to members of the scientific community who have used the present preparation in their studies. PMID:27295282

  13. Intestinal Epithelial Barrier Disruption through Altered Mucosal MicroRNA Expression in Human Immunodeficiency Virus and Simian Immunodeficiency Virus Infections

    PubMed Central

    Gaulke, Christopher A.; Porter, Matthew; Han, Yan-Hong; Sankaran-Walters, Sumathi; Grishina, Irina; George, Michael D.; Dang, Angeline T.; Ding, Shou-Wei; Jiang, Guochun; Korf, Ian

    2014-01-01

    ABSTRACT Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4+ T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5′-3′-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of mi

  14. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells

    PubMed Central

    2014-01-01

    Background Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. Results We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. Conclusions It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge. PMID:24886142

  15. Computed Tomography Perfusion Imaging Detection of Microcirculatory Dysfunction in Small Intestinal Ischemia-Reperfusion Injury in a Porcine Model

    PubMed Central

    Shi, Haifeng; Li, Ruokun; Qiang, Jinwei; Li, Ying; Wang, Li; Sun, Rongxun

    2016-01-01

    Objective To evaluate multi-slice computed tomography (CT) perfusion imaging (CTPI) for identifying microcirculatory dysfunction in small intestinal ischemia−reperfusion (IR) injury in a porcine model. Materials and Methods Fifty-two pigs were randomly divided into 4 groups: (1) the IR group (n = 24), where intestinal ischemia was induced by separating and clamping the superior mesenteric artery (SMA) for 2 h, followed by reperfusion for 1, 2, 3, and 4 h (IR-1h, IR-2h, IR-3h, and IR-4h; n = 6, respectively); (2) the sham-operated (SO) group (n = 20), where the SMA was separated without clamping and controlled at postoperative 3, 4, 5, and 6 h (SO-3h, SO-4h, SO-5h, and SO-6h; n = 5, respectively); (3) the ischemia group (n = 4), where the SMA was separated and clamped for 2 h, without reperfusion, and (4) baseline group (n = 4), an additional group that was not manipulated. Small intestinal CTPI was performed at corresponding time points and perfusion parameters were obtained. The distal ileum was resected to measure the concentrations of malondialdehyde (MDA) and superoxide dismutase (SOD) and for histopathological examination. Results The perfusion parameters of the IR groups showed significant differences compared with the corresponding SO groups and the baseline group (before ischemia). The blood flow (BF), blood volume (BV), and permeability surface (PS) among the 4 IR groups were significantly different. BF and BV were significantly negatively correlated with MDA, and significantly positively correlated with SOD in the IR groups. Histopathologically, the effects of the 2-h ischemic loops were not significantly exacerbated by reperfusion. Conclusion CTPI can be a valuable tool for detecting microcirculatory dysfunction and for dynamic monitoring of small intestinal IR injury. PMID:27458696

  16. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition

    PubMed Central

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish. PMID:26872032

  17. Mechanical Intestinal Obstruction in a Porcine Model: Effects of Intra-Abdominal Hypertension. A Preliminary Study

    PubMed Central

    Sánchez-Margallo, F. M.; Latorre, R.; López-Albors, O.; Wise, R.; Malbrain, M. L. N. G.; Castellanos, G.

    2016-01-01

    Introduction Mechanical intestinal obstruction is a disorder associated with intra-abdominal hypertension and abdominal compartment syndrome. As the large intestine intraluminal and intra-abdominal pressures are increased, so the patient’s risk for intestinal ischaemia. Previous studies have focused on hypoperfusion and bacterial translocation without considering the concomitant effect of intra-abdominal hypertension. The objective of this study was to design and evaluate a mechanical intestinal obstruction model in pigs similar to the human pathophysiology. Materials and Methods Fifteen pigs were divided into three groups: a control group (n = 5) and two groups of 5 pigs with intra-abdominal hypertension induced by mechanical intestinal obstruction. The intra-abdominal pressures of 20 mmHg were maintained for 2 and 5 hours respectively. Hemodynamic, respiratory and gastric intramucosal pH values, as well as blood tests were recorded every 30 min. Results Significant differences between the control and mechanical intestinal obstruction groups were noted. The mean arterial pressure, cardiac index, dynamic pulmonary compliance and abdominal perfusion pressure decreased. The systemic vascular resistance index, central venous pressure, pulse pressure variation, airway resistance and lactate increased within 2 hours from starting intra-abdominal hypertension (p<0.05). In addition, we observed increased values for the peak and plateau airway pressures, and low values of gastric intramucosal pH in the mechanical intestinal obstruction groups that were significant after 3 hours. Conclusion The mechanical intestinal obstruction model appears to adequately simulate the pathophysiology of intestinal obstruction that occurs in humans. Monitoring abdominal perfusion pressure, dynamic pulmonary compliance, gastric intramucosal pH and lactate values may provide insight in predicting the effects on endorgan function in patients with mechanical intestinal obstruction. PMID

  18. Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly(I:C) in porcine intestinal epithelial cells

    PubMed Central

    2011-01-01

    This study analyzed the functional expression of TLR3 in various gastrointestinal tissues from adult swine and shows that TLR3 is expressed preferentially in intestinal epithelial cells (IEC), CD172a+CD11R1high and CD4+ cells from ileal Peyer's patches. We characterized the inflammatory immune response triggered by TLR3 activation in a clonal porcine intestinal epitheliocyte cell line (PIE cells) and in PIE-immune cell co-cultures, and demonstrated that these systems are valuable tools to study in vitro the immune response triggered by TLR3 on IEC and the interaction between IEC and immune cells. In addition, we selected an immunobiotic lactic acid bacteria strain, Lactobacillus casei MEP221106, able to beneficially regulate the anti-viral immune response triggered by poly(I:C) stimulation in PIE cells. Moreover, we deepened our understanding of the possible mechanisms of immunobiotic action by demonstrating that L. casei MEP221106 modulates the interaction between IEC and immune cells during the generation of a TLR3-mediated immune response. PMID:22046952

  19. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins.

    PubMed Central

    Erickson, A K; Baker, D R; Bosworth, B T; Casey, T A; Benfield, D A; Francis, D H

    1994-01-01

    We have previously identified two K88ac adhesion receptors (210 and 240 kDa) which are present in membrane preparations from adhesive but not nonadhesive porcine intestinal brush border cells; these adhesin receptors are postulated to be important determinants of the susceptibility of pigs to K88ac+ enterotoxigenic Escherichia coli infections (A.K. Erickson, J.A. Willgohs, S.Y. McFarland, D.A. Benfield, and D.F. Francis, Infect. Immun. 60:983-988, 1992). We now describe a procedure for the purification of these two receptors. Receptors were solubilized from adhesive intestinal brush border vesicles using deoxycholate and were purified by gel filtration chromatography on Sepharose CL-4B and then by hydroxyapatite chromatography. Amino acid compositional analyses indicated that the two receptors have similar amino acid compositions. The most distinguishing characteristic of both receptors is a high percentage of threonine and proline residues. Neuraminidase treatment caused the K88ac adhesin receptors to migrate with a slower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, indicating that these receptors are sialoglycoproteins. Results from lectin-binding studies indicated that the receptors contain O-linked oligosaccharides composed of galactosyl (beta-1,3)N-acetylgalactosamine, alpha-linked fucose, galactosyl(beta-1,4)N-acetylglucosamine, sialic acid, galactose, and N-acetylgalactosamine. Collectively, these characteristics indicate that the K88ac adhesin receptors are mucin-type sialoglycoproteins. Images PMID:7960120

  20. Next-generation sequencing of the porcine skeletal muscle transcriptome for computational prediction of microRNA gene targets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. Inhibition is exerted through targeting of a microRNA-protein complex by base-pairing of the microRNA sequence to cognate recognition sequences in the 3’ untranslated region (...

  1. Proteomic changes of the porcine small intestine in response to chronic heat stress

    PubMed Central

    Cui, Yanjun; Gu, Xianhong

    2015-01-01

    Acute heat stress (HS) negatively affects intestinal integrity and barrier function. In contrast, chronic mild HS poses a distinct challenge to animals. Therefore, this study integrates biochemical, histological and proteomic approaches to investigate the effects of chronic HS on the intestine in finishing pigs. Castrated male crossbreeds (79.00±1.50 kg BW) were subjected to either thermal neutral (TN, 21 °C; 55%±5% humidity; n=8) or HS conditions (30 °C; 55%±5% humidity; n=8) for 3 weeks. The pigs were sacrificed after 3 weeks of high environmental exposure and the plasma hormones, the intestinal morphology, integrity, and protein profiles of the jejunum mucosa were determined. Chronic HS reduced the free triiodothyronine (FT3) and GH levels. HS damaged intestinal morphology, increased plasma d-lactate concentrations and decreased alkaline phosphatase activity of intestinal mucosa. Proteome analysis of the jejunum mucosa was conducted by 2D gel electrophoresis and mass spectrometry. Fifty-three intestinal proteins were found to be differentially abundant, 18 of which were related to cell structure and motility, and their changes in abundance could comprise intestinal integrity and function. The down-regulation of proteins involved in tricarboxylic acid cycle (TCA cycle), electron transport chain (ETC), and oxidative phosphorylation suggested that chronic HS impaired energy metabolism and thus induced oxidative stress. Moreover, the changes of ten proteins in abundance related to stress response and defense indicated pigs mediated long-term heat exposure and counteracted its negative effects of heat exposure. These findings have important implications for understanding the effect of chronic HS on intestines. PMID:26416815

  2. Proteomic changes of the porcine small intestine in response to chronic heat stress.

    PubMed

    Cui, Yanjun; Gu, Xianhong

    2015-12-01

    Acute heat stress (HS) negatively affects intestinal integrity and barrier function. In contrast, chronic mild HS poses a distinct challenge to animals. Therefore, this study integrates biochemical, histological and proteomic approaches to investigate the effects of chronic HS on the intestine in finishing pigs. Castrated male crossbreeds (79.00 ± 1.50 kg BW) were subjected to either thermal neutral (TN, 21 °C; 55% ± 5% humidity; n=8) or HS conditions (30 °C; 55% ± 5% humidity; n=8) for 3 weeks. The pigs were sacrificed after 3 weeks of high environmental exposure and the plasma hormones, the intestinal morphology, integrity, and protein profiles of the jejunum mucosa were determined. Chronic HS reduced the free triiodothyronine (FT3) and GH levels. HS damaged intestinal morphology, increased plasma d-lactate concentrations and decreased alkaline phosphatase activity of intestinal mucosa. Proteome analysis of the jejunum mucosa was conducted by 2D gel electrophoresis and mass spectrometry. Fifty-three intestinal proteins were found to be differentially abundant, 18 of which were related to cell structure and motility, and their changes in abundance could comprise intestinal integrity and function. The down-regulation of proteins involved in tricarboxylic acid cycle (TCA cycle), electron transport chain (ETC), and oxidative phosphorylation suggested that chronic HS impaired energy metabolism and thus induced oxidative stress. Moreover, the changes of ten proteins in abundance related to stress response and defense indicated pigs mediated long-term heat exposure and counteracted its negative effects of heat exposure. These findings have important implications for understanding the effect of chronic HS on intestines. PMID:26416815

  3. The phylogeny of intestinal porcine spirochetes (Serpulina species) based on sequence analysis of the 16S rRNA gene.

    PubMed Central

    Pettersson, B; Fellström, C; Andersson, A; Uhlén, M; Gunnarsson, A; Johansson, K E

    1996-01-01

    Four type or reference strains and twenty-two field strains of intestinal spirochetes isolated from Swedish pig herds were subjected to phylogenetic analysis based on 16S rRNA sequences. Almost complete (>95%) 16S rRNA sequences were obtained by solid-phase DNA sequencing of in vitro-amplified rRNA genes. The genotypic patterns were compared with a previously proposed biochemical classification scheme, comprising beta-hemolysis, indole production, hippurate hydrolysis, and alpha-galactosidase, alpha-glucosidase, and beta-glucosidase activities. Comparison of the small-subunit rRNA sequences showed that the strains of the genus Serpulina were closely related. Phylogenetic trees were constructed, and three clusters were observed. This was also confirmed by signature nucleotide analysis of the serpulinas. The indole-producing strains, including the strains of S. hyodysenteriae and some weakly beta-hemolytic Serpulina strains, formed one cluster. A second cluster comprised weakly beta-hemolytic strains that showed beta-galactosidase activity but lacked indole production and hippurate-hydrolyzing capacity. The second cluster contained two subclusters with similar phenotypic profiles. A third cluster involved strains that possessed a hippurate-hydrolyzing capacity which was distinct from that of the former two clusters, because of 17 unique nucleotide positions of the 16S rRNA gene. Interestingly, the strains of this third cluster were found likely to have a 16S rRNA structure in the V2 region of the molecule different from that of the serpulinas belonging to the other clusters. As a consequence of these findings, we propose that the intestinal spirochetes of this phenotype (i.e., P43/6/78-like strains) should be regarded as a separate Serpulina species. Furthermore, this cluster was found to be by far the most homogeneous one. In conclusion, the biochemical classification of porcine intestinal spirochetes was comparable to that by phylogenetic analysis based on 16S r

  4. Downregulation of microRNA-107 in intestinal CD11c(+) myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression.

    PubMed

    Xue, Xiaochang; Cao, Anthony T; Cao, Xiaocang; Yao, Suxia; Carlsen, Eric D; Soong, Lynn; Liu, Chang-Gong; Liu, Xiuping; Liu, Zhanju; Duck, L Wayne; Elson, Charles O; Cong, Yingzi

    2014-03-01

    Commensal flora plays an important role in the development of the mucosal immune system and in maintaining intestinal homeostasis. However, the mechanisms involved in regulation of host-microbiota interaction are still not completely understood. In this study, we examined how microbiota and intestinal inflammatory conditions regulate host microRNA expression and observed lower microRNA-107 (miR-107) expression in the inflamed intestines of colitic mice, compared with that in normal control mice. miR-107 was predominantly reduced in epithelial cells and CD11c(+) myeloid cells including dendritic cells and macrophages in the inflamed intestines. We demonstrate that IL-6, IFN-γ, and TNF-α downregulated, whereas TGF-β promoted, miR-107 expression. In addition, miR-107 expression was higher in the intestines of germ-free mice than in mice housed under specific pathogen-free conditions, and the presence of microbiota downregulated miR-107 expression in DCs and macrophages in a MyD88- and NF-κB-dependent manner. We determined that the ectopic expression of miR-107 specifically repressed the expression of IL-23p19, a key molecule in innate immune responses to commensal bacteria. We concluded that regulation of miR-107 by intestinal microbiota and proinflammatory cytokine serve as an important pathway for maintaining intestinal homeostasis. PMID:24293139

  5. Extensive expression differences along porcine small intestine evidenced by transcriptome sequencing.

    PubMed

    Mach, Núria; Berri, Mustapha; Esquerré, Diane; Chevaleyre, Claire; Lemonnier, Gaëtan; Billon, Yvon; Lepage, Patricia; Oswald, Isabelle P; Doré, Joël; Rogel-Gaillard, Claire; Estellé, Jordi

    2014-01-01

    The aim of this study was to analyse gene expression along the small intestine (duodenum, jejunum, ileum) and in the ileal Peyer's patches in four young pigs with no clinical signs of disease by transcriptome sequencing. Multidimensional scaling evidenced that samples clustered by tissue type rather than by individual, thus prefiguring a relevant scenario to draw tissue-specific gene expression profiles. Accordingly, 1,349 genes were found differentially expressed between duodenum and jejunum, and up to 3,455 genes between duodenum and ileum. Additionally, a considerable number of differentially expressed genes were found by comparing duodenum (7,027 genes), jejunum (6,122 genes), and ileum (6,991 genes) with ileal Peyer's patches tissue. Functional analyses revealed that most of the significant differentially expressed genes along small intestinal tissues were involved in the regulation of general biological processes such as cell development, signalling, growth and proliferation, death and survival or cell function and maintenance. These results suggest that the intrinsic large turnover of intestinal tissues would have local specificities at duodenum, ileum and jejunum. In addition, in concordance with their biological function, enteric innate immune pathways were overrepresented in ileal Peyer's patches. The reported data provide an expression map of the cell pathway variation in the different small intestinal tissues. Furthermore, expression levels measured in healthy individuals could help to understand changes in gene expression that occur in dysbiosis or pathological states. PMID:24533095

  6. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells.

    PubMed

    Wu, Yunpeng; Zhu, Cui; Chen, Zhuang; Chen, Zhongjian; Zhang, Weina; Ma, Xianyong; Wang, Li; Yang, Xuefen; Jiang, Zongyong

    2016-04-01

    Tight junctions (TJs) play an important role in maintaining the mucosal barrier function and gastrointestinal health of animals. Lactobacillus plantarum (L. plantarum) was reported to protect the intestinal barrier function of early-weaned piglets against enterotoxigenic Escherichia coli (ETEC) K88 challenge; however, the underlying cellular mechanism of this protection was unclear. Here, an established intestinal porcine epithelia cell (IPEC-J2) model was used to investigate the protective effects and related mechanisms of L. plantarum on epithelial barrier damages induced by ETEC K88. Epithelial permeability, expression of inflammatory cytokines, and abundance of TJ proteins, were determined. Pre-treatment with L. plantarum for 6h prevented the reduction in transepithelial electrical resistance (TEER) (P<0.05), inhibited the increased transcript abundances of interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) (P<0.05), decreased expression of claudin-1, occludin and zonula occludens (ZO-1) (P<0.05) and protein expression of occludin (P<0.05) of IPEC-J2 cells caused by ETEC K88. Moreover, the mRNA expression of negative regulators of toll-like receptors (TLRs) [single Ig Il-1-related receptor (SIGIRR), B-cell CLL/lymphoma 3 (Bcl3), and mitogen-activated protein kinase phosphatase-1 (MKP-1)] in IPEC-J2 cells pre-treated with L. plantarum were higher (P<0.05) compared with those in cells just exposed to K88. Furthermore, L. plantarum was shown to regulate proteins of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that L. plantarum may improve epithelial barrier function by maintenance of TEER, inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC K88, possibly through modulation of TLRs, NF-κB and MAPK pathways. PMID:27032504

  7. Comparison of Porcine Small Intestinal Submucosa versus Polypropylene in Open Inguinal Hernia Repair: A Systematic Review and Meta-Analysis

    PubMed Central

    Nie, Xin; Xiao, Dongdong; Wang, Wenyue; Song, Zhicheng; Yang, Zhi; Chen, Yuanwen; Gu, Yan

    2015-01-01

    Background A systematic review and meta-analysis was performed in randomized controlled trials (RCTs) to compare porcine small intestinal submucosa (SIS) with polypropylene in open inguinal hernia repair. Method Electronic databases MEDLINE, Embase, and the Cochrane Library were used to compare patient outcomes for the two groups via meta-analysis. Result A total of 3 randomized controlled trials encompassing 200 patients were included in the meta-analysis. There was no significant difference in recurrence (P = 0.16), hematomas (P = 0.06), postoperative pain within 30 days (P = 0.45), or postoperative pain after 1 year (P = 0.12) between the 2 groups. The incidence of discomfort was significantly lower (P = 0.0006) in the SIS group. However, the SIS group experienced a significantly higher incidence of seroma (P = 0.03). Conclusions Compared to polypropylene, using SIS in open inguinal hernia repair is associated with a lower incidence of discomfort and a higher incidence of seroma. However, well-designed larger RCT studies with a longer follow-up period are needed to confirm these findings. PMID:26252895

  8. Cry1Ab Treatment Has No Effects on Viability of Cultured Porcine Intestinal Cells, but Triggers Hsp70 Expression

    PubMed Central

    Bondzio, Angelika; Lodemann, Ulrike; Weise, Christoph; Einspanier, Ralf

    2013-01-01

    In vitro testing can contribute to reduce the risk that the use of genetically modified (GM) crops and their proteins show unintended toxic effects. Here we introduce a porcine intestinal cell culture (IPEC-J2) as appropriate in vitro model and tested the possible toxic potential of Cry1Ab protein, commonly expressed in GM-maize. For comprehensive risk assessment we used WST-1 conversion and ATP content as metabolic markers for proliferation, lactate dehydrogenase release as indicator for cells with compromised membrane and transepithelial electrical resistance as parameter indicating membrane barrier function. The results were compared to the effects of valinomycin, a potassium ionophore, known to induce cytotoxic effects in most mammalian cell types. Whereas no toxicity was observed after Cry1Ab treatment, valinomycin induced a decrease in IPEC-J2 viability. This was confirmed by dynamic monitoring of cellular responses. Additionally, two dimensional differential in-gel electrophoresis was performed. Only three proteins were differentially expressed. The functions of these proteins were associated with responses to stress. The up-regulation of heat shock protein Hsp70 was verified by Western blotting as well as by enzyme-linked immunosorbent assay and may be related to a protective function. These findings suggest that the combination of in vitro testing and proteomic analysis may serve as a promising tool for mechanism based safety assessment. PMID:23861753

  9. The study of a light-activated albumin protein solder to bond layers of porcine small intestinal submucosa.

    PubMed

    Ware, Mark H; Buckley, Christine A

    2003-01-01

    This study investigated the feasibility of bonding layers of porcine small intestinal submucosa (SIS, Cook Biotech, Inc.) with a light-activated protein solder. SIS is an acellular, collagen-based extracellular matrix material that is approximately 100 microns thick. The solder consists of bovine serum albumin and indocyanine green dye (ICG) in deionized water. The solder is activated by an 808 nm diode laser, which denatures the albumin, causing the albumin to bond with the collagen of the tissue. The predictable absorption and thermal energy diffusion rates of ICG increase the chances of reproducible results. To determine the optimal condition for laser soldering SIS, the following parameters were varied: albumin concentration (from 30-45% (w/v) in increments of 5%), the concentration of ICG (from 0.5-2.0 mg/ml H2O) and the irradiance of the laser (10-64 W/cm2). While many of the solder compositions and laser irradiance combinations resulted in no bonding, a solder composition of 45% albumin, ICG concentration of 0.5 mg/ml H2O, and a laser irradiance of 21 W/cm2 did produce a bond between two pieces of SIS. The average shear strength of this bond was 29.5 +/- 17.1 kPa (n = 14). This compares favorably to our previous work using fibrin glue as an adhesive, in which the average shear strength was 27 +/- 15.8 kPa (n = 40). PMID:12724859

  10. The Management of Diabetic Foot Ulcers with Porcine Small Intestine Submucosa Tri-Layer Matrix: A Randomized Controlled Trial

    PubMed Central

    Cazzell, Shawn M.; Lange, Darrell L.; Dickerson, Jaime E.; Slade, Herbert B.

    2015-01-01

    Objective: This study demonstrates that superior outcomes are possible when diabetic foot ulcers (DFU) are managed with tri-layer porcine small intestine submucosa (SIS). Approach: Patients with DFU from 11 centers participated in this prospective randomized controlled trial. Qualified subjects were randomized (1:1) to either SIS or standard care (SC) selected at the discretion of the Investigator and followed for 12 weeks or complete ulcer closure. Results: Eighty-two subjects (41 in each group) were evaluable in the intent-to-treat analysis. Ulcers managed with SIS had a significantly greater proportion closed by 12 weeks than for the Control group (54% vs. 32%, p=0.021) and this proportion was numerically higher at all visits. Time to closure for ulcers achieving closure was 2 weeks earlier for the SIS group than for SC. Median reduction in ulcer area was significantly greater for SIS at each weekly visit (all p values<0.05). Review of reported adverse events found no safety concerns. Innovation: These data support the use of tri-layer SIS for the effective management of DFU. Conclusion: In this randomized controlled trial, SIS was found to be associated with more rapid improvement, and a higher likelihood of achieving complete ulcer closure than those ulcers treated with SC. PMID:26634183

  11. Scriptaid Treatment Decreases DNA Methyltransferase 1 Expression by Induction of MicroRNA-152 Expression in Porcine Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Liang, Shuang; Zhao, Ming-Hui; Choi, Jeong-woo; Kim, Nam-Hyung; Cui, Xiang-Shun

    2015-01-01

    Abnormal epigenetic reprogramming of donor nuclei after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiencies. A growing body of evidence has demonstrated a positive role of Scriptaid, a histone deacetylase inhibitor (HDACi) that belongs to an existing class of hydroxamic acid-containing HDACis, on the development competence of cloned embryos in many species. The present study investigated the effects of Scriptaid on the development of porcine SCNT embryos in vitro and its mechanism. Treatment with 300 or 500 nM Scriptaid for 20 h after activation significantly increased the percentage of SCNT embryos that developed to the blastocyst stage and the total number of cells per blastocyst and significantly decreased the percentage of apoptotic cells in blastocysts. Scriptaid treatment significantly increased the level of histone H3 acetylated at K9 and the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and significantly decreased the level of histone H3 trimethylated at K9 at the pronuclear stage. As a potential mechanism for the DNA methylation changes, our results showed that the expression of DNA methyltransferase 1 was frequently down-regulated in Scriptaid-treated embryos in comparison with untreated embryos and was inversely correlated to endogenous microRNA-152 (miR-152). Taken together, these findings illustrated a crucial functional crosstalk between miR-152 and DNMT1. Meanwhile, mRNA and protein levels of POU5F1 and CDX2 were increased in Scriptaid-treated embryos. mRNA levels of Caspase3, and Bax were significantly decreased and that of Bcl-xL was significantly increased in Scriptaid-treated embryos. In conclusion, these observations would contribute to uncover the nuclear reprogramming mechanisms underlying the effects of Scriptaid on the improvement of porcine SCNT embryos. PMID:26261994

  12. Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection.

    PubMed

    Guo, Xue-kun; Zhang, Qiong; Gao, Li; Li, Ning; Chen, Xin-xin; Feng, Wen-hai

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important viral pathogens in the swine industry. Emerging evidence indicates that the host microRNAs (miRNAs) are involved in host-pathogen interactions. However, whether host miRNAs can target PRRSV and be used to inhibit PRRSV infection has not been reported. Recently, microRNA 181 (miR-181) has been identified as a positive regulator of immune response, and here we report that miR-181 can directly impair PRRSV infection. Our results showed that delivered miR-181 mimics can strongly inhibit PRRSV replication in vitro through specifically binding to a highly (over 96%) conserved region in the downstream of open reading frame 4 (ORF4) of the viral genomic RNA. The inhibition of PRRSV replication was specific and dose dependent. In PRRSV-infected Marc-145 cells, the viral mRNAs could compete with miR-181-targeted sequence in luciferase vector to interact with miR-181 and result in less inhibition of luciferase activity, further demonstrating the specific interactions between miR-181 and PRRSV RNAs. As expected, miR-181 and other potential PRRSV-targeting miRNAs (such as miR-206) are expressed much more abundantly in minimally permissive cells or tissues than in highly permissive cells or tissues. Importantly, highly pathogenic PRRSV (HP-PRRSV) strain-infected pigs treated with miR-181 mimics showed substantially decreased viral loads in blood and relief from PRRSV-induced fever compared to negative-control (NC)-treated controls. These results indicate the important role of host miRNAs in modulating PRRSV infection and viral pathogenesis and also support the idea that host miRNAs could be useful for RNA interference (RNAi)-mediated antiviral therapeutic strategies. PMID:23152505

  13. Hydrolyzed porcine mucosa in broiler diets: effects on growth performance, nutrient retention, and histomorphology of the small intestine.

    PubMed

    Frikha, M; Mohiti-Asli, M; Chetrit, C; Mateos, G G

    2014-02-01

    The effect of including hydrolyzed porcine mucosa sprayed into soybean meal (HPM) in the diet was studied in broilers. In experiment 1 (pen study), 1,080 one-day-old chicks were used in a completely randomized design with 8 treatments arranged as a 4 × 2 factorial with 4 levels of HPM (0, 2.5, 5.0, and 7.5%) and 2 levels of Lys (1.23 and 1.38%). From d 1 to 22, HPM inclusion quadratically improved BW gain (BWG, P < 0.01) and feed conversion ratio (FCR, P < 0.01). From d 1 to 8, birds fed 1.38% Lys had higher BWG (P < 0.05) and better FCR (P < 0.05) than birds fed 1.23% Lys but only a trend (P < 0.08) for improved BWG was detected from d 1 to 22. From d 22 to 37, a period in which all birds received a common finisher diet, growth performance was not affected by the previous starter diet. In experiment 2 (battery study), birds were fed for 37 d the same diets used in the starter period of experiment 1. Broilers fed HPM had higher BWG (linear, P < 0.05; Quadratic, P < 0.05) than birds fed control diet, and birds fed 1.38% Lys had higher BWG (P < 0.01) than birds fed 1.23% Lys. From d 1 to 22, BWG (P < 0.05) and ADFI (P < 0.01) increased quadratically and FCR improved linearly (P < 0.05) with HPM inclusion. Also in this period, BWG was higher at the higher Lys level (P < 0.01). Diet did not affect intestinal histomorphology of broilers on d 8 or nutrient retention on d 22. We conclude that the inclusion of 2.5 to 5% HPM in the diet improved growth performance of broilers from d 1 to 22. An increase in Lys from 1.23 to 1.38% improved growth performance up to 15 d of age, but not thereafter. Diet did not affect villus histomorphology or nutrient retention of the small intestine. PMID:24570462

  14. MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein

    PubMed Central

    Liu, Yihua; Xiao, Juan; Xu, Mei; Yu, Qinping; Xia, Minhao; He, Xiaojun; Zou, Shigeng; Tan, Huize; Feng, Dingyuan

    2015-01-01

    Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway. PMID:25915937

  15. Influence of dietary ingredients on in vitro inflammatory response of intestinal porcine epithelial cells challenged by an enterotoxigenic Escherichia coli (K88).

    PubMed

    Hermes, Rafael G; Manzanilla, Edgar G; Martín-Orúe, Susana M; Pérez, José F; Klasing, Kirk C

    2011-12-01

    Enterotoxigenic Escherichia coli (ETEC) K88 is the main bacterial cause of diarrhea in piglets around weaning and the adhesion of ETEC to the intestinal mucosa is a prerequisite step for its colonization. In this study, the adhesion of a fimbriated ETEC and a non-fimbriated E. coli (NFEC) to the intestinal cells and the activation of the innate immune system were evaluated using a porcine intestinal epithelial cell line (IPEC-J2). The impact of several feedstuffs (wheat bran (WB); casein glycomacropeptide (CGMP); mannan-oligosaccharides (MOS); locust bean extract (LB) and Aspergillus oryzae fermentation extract (AO)) on ETEC attachment and the inflammatory response were also studied. The gene expression of TLR-4; TLR-5; IL-1β; IL-8; IL-10 and TNF-α were quantified using Cyclophilin-A, as a reference gene, and related to a non-challenged treatment. The fimbriated strain was markedly better than the non-fimbriated strain at adherence to intestinal cells and inducing an inflammatory response. All the feedstuffs studied were able to reduce the adhesion of ETEC, with the greatest decrease with CGMP or MOS at highest concentration. Regarding the inflammatory response, the highest dose of WB promoted the lowest relative expression of cytokines and chemokines. All tested feedstuffs were able to reduce the adhesion of ETEC to IPEC-J2 and interfere on the innate inflammatory response; however WB should be further studied according to the beneficial results on the intestinal inflammatory process evidenced in this study. PMID:21944732

  16. Development of a porcine small intestinal cDNA micro-array: characterization and functional analysis of the response to enterotoxigenic E. coli.

    PubMed

    Niewold, T A; Kerstens, H H D; van der Meulen, J; Smits, M A; Hulst, M M

    2005-05-15

    The intestine is a complex and dynamic ecosystem, in which nutrients, exogenous compounds and micro-flora interact, and its condition is influenced by the complex interaction between these factors and host genetic elements. Furthermore, interactions of immune cells with the other components of the intestinal mucosa are essential in the defense against pathogens. The outcomes of these complex interactions determine resistance to infectious diseases. The development of genomic tools and techniques allows for analysis of multiple and complex host responses. We have constructed a porcine small intestinal micro-array, based on cDNA from jejunal mucosal scrapings. Material from two developmental distinct stages (4- and 12-week-old pigs) was used in order to assure a reasonably broad representation of mucosal transcripts. The micro-array consists of 3468 cDNAs spotted in quadruplicate. Comparison of the 4-week-old versus 12-week-old pigs revealed a differential expression in at least 300 spots. Furthermore, we report the early gene expression response of pig small intestine jejunal mucosa to infection with enterotoxigenic E. coli (ETEC) using the small intestinal segment perfusion (SISP) technique. A response pattern was found in which a marker for innate defense dominated, demonstrating the strength of this applied technology. Further analysis of these response patterns will contribute to a better understanding of enteric health and disease in pigs. The great similarity between pig and human suggest results from these continuing studies should be applicable for both agricultural and human biomedical purposes. PMID:15808309

  17. MicroRNA profiling of the intestinal tissue of Kazakh sheep after experimental Echinococcus granulosus infection, using a high-throughput approach

    PubMed Central

    Jiang, Song; Li, Xin; Wang, Xuhai; Ban, Qian; Hui, Wenqiao; Jia, Bin

    2016-01-01

    Cystic echinococcosis (CE), caused by infection with the larval stage of the cestode Echinococcus granulosus, is a chronic zoonosis, to which sheep are highly susceptible. Previously, we found that Kazakh sheep with different MHC haplotypes differed in CE infection. Sheep with haplotype MHCMvaIbc-SacIIab-Hin1Iab were resistant to CE infection, while their counterparts without this haplotype were not. MicroRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at the post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. To identify microRNA controlling resistance to CE in the early stage of infection, microRNA profiling was conducted in the intestinal tissue of sheep with resistant and non-resistant MHC haplotypes after peroral infection with E. granulosus eggs. A total of 351 known and 186 novel miRNAs were detected in the resistant group, against 353 known and 129 novel miRNAs in the non-resistant group. Among these miRNAs, 83 known miRNAs were significantly differentially expressed, including 75 up-regulated and 8 down-regulated miRNAs. Among these known microRNAs, miR-21-3p, miR-542-5p, miR-671, miR-134-5p, miR-26b, and miR-27a showed a significantly higher expression in CE-resistant sheep compared to the CE-non-resistant library, with the FC > 3. Functional analysis showed that they were NF-kB pathway-responsive miRNAs, which are involved in the inflammation process. The results suggest that these microRNAs may play important roles in the response of intestinal tissue to E. granulosus. PMID:27235195

  18. Cellular microRNA miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by activating innate antiviral immunity

    PubMed Central

    Jia, Xiaojuan; Bi, Yuhai; Li, Jing; Xie, Qing; Yang, Hanchun; Liu, Wenjun

    2015-01-01

    Porcine reproductive and respiratory syndrome (PRRS) has caused large economic losses in the swine industry in recent years. Current PRRS vaccines fail to effectively prevent and control this disease. Consequently, there is a need to develop new antiviral strategies. MicroRNAs play critical roles in intricate host-pathogen interaction networks, but the involvement of miRNAs during PRRS virus (PRRSV) infection is not well understood. In this study, pretreatment with miR-26a induced a significant inhibition of PRRSV replication and remission of the cytopathic effect in MARC-145 cells, and this antiviral effect was sustained for at least 120 h. Luciferase reporter analysis showed that the PRRSV genome was not the target of miRNA-26a. Instead, RNA-seq analysis demonstrated that miR-26a significantly up-regulated innate anti-viral responses, including activating the type I interferon (IFN) signaling pathway and promoting the production of IFN-stimulated genes. These findings suggest that delivery of miR-26a may provide a potential strategy for anti-PRRSV therapies. PMID:26013676

  19. Changes in the Porcine Intestinal Microbiome in Response to Infection with Salmonella enterica and Lawsonia intracellularis

    PubMed Central

    Singer, Randall S.; Gebhart, Connie J.; Sreevatsan, Srinand; Johnson, Timothy; Isaacson, Richard E.

    2015-01-01

    Salmonella enterica is a leading cause of food borne illness. Recent studies have shown that S. enterica is a pathogen capable of causing alterations to the composition of the intestinal microbiome. A recent prospective study of French pork production farms found a statistically significant association between Lawsonia intracellularis and carriage of S. enterica. In the current study the composition of the gut microbiome was determined in pigs challenged with S. enterica serovar Typhimurium and or L. intracellularis and compared to non-challenged control pigs. Principal coordinate analysis demonstrated that there was a disruption in the composition of the gut microbiome in the colon and cecum of pigs challenged with either pathogen. The compositions of the microbiomes of challenged pigs were similar to each other but differed from the non-challenged controls. There also were statistically significant increases in Anaerobacter, Barnesiella, Pediococcus, Sporacetigenium, Turicibacter, Catenibacterium, Prevotella, Pseudobutyrivibrio, and Xylanibacter in the challenged pigs. To determine if these changes were specific to experimentally challenged pigs, we determined the compositions of the fecal microbiomes of naturally infected pigs that were carriers of S. enterica. Pigs that were frequent shedders of S. enterica were shown to have similar fecal microbiomes compared to non-shedders or pigs that shed S. enterica infrequently. In a comparison of the differentially abundant bacteria in the naturally infected pigs compared to experimentally challenged pigs, 9 genera were differentially abundant and each exhibited the same increase or decrease in abundance between the two groups. Thus, there were similar changes in the GI microbiome associated with carriage of S. enterica regardless of whether the pigs were experimentally challenged with S. enterica or acquired it naturally. PMID:26461107

  20. Changes in the Porcine Intestinal Microbiome in Response to Infection with Salmonella enterica and Lawsonia intracellularis.

    PubMed

    Borewicz, Klaudyna A; Kim, Hyeun Bum; Singer, Randall S; Gebhart, Connie J; Sreevatsan, Srinand; Johnson, Timothy; Isaacson, Richard E

    2015-01-01

    Salmonella enterica is a leading cause of food borne illness. Recent studies have shown that S. enterica is a pathogen capable of causing alterations to the composition of the intestinal microbiome. A recent prospective study of French pork production farms found a statistically significant association between Lawsonia intracellularis and carriage of S. enterica. In the current study the composition of the gut microbiome was determined in pigs challenged with S. enterica serovar Typhimurium and or L. intracellularis and compared to non-challenged control pigs. Principal coordinate analysis demonstrated that there was a disruption in the composition of the gut microbiome in the colon and cecum of pigs challenged with either pathogen. The compositions of the microbiomes of challenged pigs were similar to each other but differed from the non-challenged controls. There also were statistically significant increases in Anaerobacter, Barnesiella, Pediococcus, Sporacetigenium, Turicibacter, Catenibacterium, Prevotella, Pseudobutyrivibrio, and Xylanibacter in the challenged pigs. To determine if these changes were specific to experimentally challenged pigs, we determined the compositions of the fecal microbiomes of naturally infected pigs that were carriers of S. enterica. Pigs that were frequent shedders of S. enterica were shown to have similar fecal microbiomes compared to non-shedders or pigs that shed S. enterica infrequently. In a comparison of the differentially abundant bacteria in the naturally infected pigs compared to experimentally challenged pigs, 9 genera were differentially abundant and each exhibited the same increase or decrease in abundance between the two groups. Thus, there were similar changes in the GI microbiome associated with carriage of S. enterica regardless of whether the pigs were experimentally challenged with S. enterica or acquired it naturally. PMID:26461107

  1. Development of a chromogenic in situ hybridization for Giardia duodenalis and its application in canine, feline, and porcine intestinal tissues samples.

    PubMed

    Weissenböck, Herbert; Ondrovics, Martina; Gurtner, Susanne; Schiessl, Peter; Mostegl, Meike M; Richter, Barbara

    2011-05-01

    In the present study, a chromogenic in situ hybridization for the identification of Giardia duodenalis in paraffin-embedded tissue samples was developed. The sensitivity and specificity of the probe was validated by testing it on cultured reference samples of different assemblages of G. duodenalis as well as culture and tissue samples containing other protozoa and infectious agents. The probe gave a positive reaction with the Giardia samples and a negative reaction with all other samples. Further, the probe was used for screening of histological slides of intestine from different animal species (99 canine samples, 85 feline samples, and 202 porcine samples) for the presence of G. duodenalis trophozoites. With this assay, the parasites were detected in samples from 8 dogs (8.08%), 6 cats (7.06%), and zero pigs. The results clearly indicate that the described method is useful for detection of Giardia trophozoites in routinely processed intestinal tissue of different animal species. PMID:21908276

  2. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. PMID:26755265

  3. Different Lipopolysaccharide Branched-Chain Amino Acids Modulate Porcine Intestinal Endogenous β-Defensin Expression through the Sirt1/ERK/90RSK Pathway.

    PubMed

    Ren, Man; Zhang, Shihai; Liu, Xutong; Li, Shenghe; Mao, Xiangbing; Zeng, Xiangfang; Qiao, Shiyan

    2016-05-01

    Nutritional induction of endogenous antimicrobial peptide expression is considered a promising approach to inhibit the outgrowth and infection of pathogenic microbes in mammals. The present study investigated possible regulation of porcine epithelial β-defensins in response to branched-chain amino acids (BCAA) in vivo and in vitro. BCAA treatment increased relative mRNA expression of jejunal and ileal β-defensins in weaned piglets. In IPEC-J2 cells, isoleucine, leucine, and valine could stimulate β-defensin expression, possibly associated with stimulation of ERK1/2 phosphorylation. Inhibition of Sirt1 and ERK completely blocked the activation of ERK and 90RSK protein by isoleucine, simultaneously decreasing defensin expression. BCAA stimulate expression of porcine intestinal epithelial β-defensins with isoleucine the most, potent possibly through activation of the Sirt1/ERK/90RSK signaling pathway. The β-defensins regulation of lipopolysaccharide was related with an ERK-independent pathway. BCAA modulation of endogenous defensin might be a promising approach to enhance disease resistance and intestinal health in young animals and children. PMID:27083206

  4. A microRNA program in the C. elegans hypodermis couples to intestinal mTORC2/PQM-1 signaling to modulate fat transport.

    PubMed

    Dowen, Robert H; Breen, Peter C; Tullius, Thomas; Conery, Annie L; Ruvkun, Gary

    2016-07-01

    Animals integrate metabolic, developmental, and environmental information before committing key resources to reproduction. In Caenorhabditis elegans, adult animals transport fat from intestinal cells to the germline to promote reproduction. We identified a microRNA (miRNA)-regulated developmental timing pathway that functions in the hypodermis to nonautonomously coordinate the mobilization of intestinal fat stores to the germline upon initiation of adulthood. This developmental timing pathway, which is controlled by the lin-4 and let-7 miRNAs, engages mTOR signaling in the intestine. The intestinal signaling component is specific to mTORC2 and functions in parallel to the insulin pathway to modulate the activity of the serum/glucocorticoid-regulated kinase (SGK-1). Surprisingly, SGK-1 functions independently of DAF-16/FoxO; instead, SGK-1 promotes the cytoplasmic localization of the PQM-1 transcription factor, which antagonizes intestinal fat mobilization at the transcriptional level when localized to the nucleus. These results revealed that a non-cell-autonomous developmental input regulates intestinal fat metabolism by engaging mTORC2 signaling to promote the intertissue transport of fat reserves from the soma to the germline. PMID:27401555

  5. Alpha-Defensin 5 Expression is Regulated by microRNAs in the Caco-2 Intestinal Epithelial Cell Line

    PubMed Central

    Miles, Donald R B; Shen, Jun; Chuang, Alice Y.; Dong, Fenshi; Wu, Feng; Kwon, John

    2016-01-01

    Background In inflammatory bowel disease (IBD), an inappropriate immune response leads to chronic mucosal inflammation. This response may be partly due to dysregulation of defensins, which are endogenously produced antimicrobial peptides. This study determined whether microRNAs (miRNAs) regulate α-defensin 5 (DEFA5), which could further implicate both in IBD pathogenesis. Methods Induction of DEFA5 mRNA and protein expression was determined in Caco-2 cells. An in silico analysis identified putative miRNA binding sites of DEFA5. Expression of these miRNAs was assessed in Caco-2 cells. Regulation of DEFA5 expression by these miRNAs was measured by luciferase assays. Caco-2 cells were transfected with miR-124 and miR-924 mimics, and DEFA5 mRNA and protein expression was measured. Results DEFA5 mRNA and protein expression was inducible in Caco-2 cells. Fifteen putative miRNA binding sites were found in DEFA5. The expression of miR-124 and miR-924 decreased following induction. Transfection of a luciferase construct containing the DEFA5 miRNA binding sites resulted in a decrease in luciferase activity compared to transfection of the empty vector. Transfection of a reporter construct containing mismatched miRNA binding sites resulted in restoration of luciferase activities. Transfection of miRNA mimics decreased DEFA5 mRNA expression and protein expression. Conclusions miR-124 and miR-924 negatively regulate DEFA5 mRNA and protein expression. These data implicate miRNAs in intestinal innate immune regulation and IBD pathogenesis. PMID:27525335

  6. In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88.

    PubMed

    Wang, Zhilin; Wang, Li; Chen, Zhuang; Ma, Xianyong; Yang, Xuefen; Zhang, Jian; Jiang, Zongyong

    2016-06-28

    Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production. PMID:26907754

  7. MicroRNA-146a-mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/reperfusion injury

    PubMed Central

    Chassin, Cécilia; Hempel, Cordelia; Stockinger, Silvia; Dupont, Aline; Kübler, Joachim F; Wedemeyer, Jochen; Vandewalle, Alain; Hornef, Mathias W

    2012-01-01

    Intestinal ischemia/reperfusion (I/R) injury causes inflammation and tissue damage and is associated with high morbidity and mortality. Uncontrolled activation of the innate immune system through toll-like receptors (Tlr) plays a key role in I/R-mediated tissue damage but the underlying mechanisms have not been fully resolved. Here, we identify post-transcriptional upregulation of the essential Tlr signalling molecule interleukin 1 receptor-associated kinase (Irak) 1 as the causative mechanism for post-ischemic immune hyper-responsiveness of intestinal epithelial cells. Increased Irak1 protein levels enhanced epithelial ligand responsiveness, chemokine secretion, apoptosis and mucosal barrier disruption in an experimental intestinal I/R model using wild-type, Irak1−/− and Tlr4−/− mice and ischemic human intestinal tissue. Irak1 accumulation under hypoxic conditions was associated with reduced K48 ubiquitination and enhanced Senp1-mediated deSUMOylation of Irak1. Importantly, administration of microRNA (miR)-146a or induction of miR-146a by the phytochemical diindolylmethane controlled Irak1 upregulation and prevented immune hyper-responsiveness in mouse and human tissue. These findings indicate that Irak1 accumulation triggers I/R-induced epithelial immune hyper-responsiveness and suggest that the induction of miR-146a offers a promising strategy to prevent I/R tissue injury. PMID:23143987

  8. The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage.

    PubMed

    Roselli, Marianna; Finamore, Alberto; Britti, Maria Serena; Konstantinov, Sergey R; Smidt, Hauke; de Vos, Willem M; Mengheri, Elena

    2007-12-01

    Lactobacilli have a potential to overcome intestinal disorders; however, the exact mode of action is still largely unknown. In this study, we have used the intestinal porcine intestinal IPEC-1 epithelial cells as a model to investigate a possible protective activity of a new Lactobacillus species, the L. sobrius DSM 16698(T), against intestinal injury induced by enterotoxigenic Escherichia coli (ETEC) K88 infection and the underlying mechanisms. Treatment of infected cells with L. sobrius strongly reduced the pathogen adhesion. L. sobrius was also able to prevent the ETEC-induced membrane damage by inhibiting delocalization of zonula occludens (ZO)-1, reduction of occludin amount, rearrangement of F-actin, and dephosphorylation of occludin caused by ETEC. RT-PCR and ELISA experiments showed that L. sobrius counteracted the ETEC-induced increase of IL-8 and upregulated the IL-10 expression. The involvement of IL-8 in the deleterious effects of ETEC was proven by neutralization of IL-8 with a specific antibody. A crucial role of IL-10 was indicated by blockage of IL-10 production with neutralizing anti-IL-10 antibody that fully abrogated the L. sobrius protection. L. sobrius was also able to inhibit the internalization of ETEC, which was likely favored by the leaking barrier. The protective effects were not found with L. amylovorus DSM 20531(T) treatment, a strain derived from cattle waste but phylogenetically closely related to L. sobrius. Together, the data indicate that L. sobrius exerts protection against the harmful effects of ETEC by different mechanisms, including pathogen adhesion inhibition and maintenance of membrane barrier integrity through IL-10 regulation. PMID:18029488

  9. Spherical nucleic acid targeting microRNA-99b enhances intestinal MFG-E8 gene expression and restores enterocyte migration in lipopolysaccharide-induced septic mice

    PubMed Central

    Wang, Xiao; Hao, Liangliang; Bu, Heng-Fu; Scott, Alexander W.; Tian, Ke; Liu, Fangyi; De Plaen, Isabelle G.; Liu, Yulan; Mirkin, Chad A.; Tan, Xiao-Di

    2016-01-01

    Milk fat globule-EGF factor 8 (MFG-E8) maintains the intestinal homeostasis by enhancing enterocyte migration and attenuating inflammation. We previously reported that sepsis is associated with down-regulation of intestinal MFG-E8 and impairment of enterocyte migration. Here, we showed that impairment of intestinal epithelial cell migration occurred in lipopolysaccharide (LPS)-induced septic mice. Treatment of RAW264.7 cells (a murine macrophage-like cell line) with LPS increased expression of miR-99b, a microRNA that is predicted to target mouse MFG-E8 3′UTR. Using a luciferase assay, we showed that miR-99b mimic suppressed the activity of a reporter containing MFG-E8 3′UTR. This suggests the role of miR-99b in inhibition of MFG-E8 gene expression. In addition, we developed an anti-miR99b spherical nucleic acid nanoparticle conjugate (SNA-NCanti-miR99b). Treatment of both naïve and LPS-challenged cells with SNA-NCanti-miR99b enhanced MFG-E8 expression in the cells. Administration of SNA-NCanti-miR99b rescued intestinal MFG-E8 expression in LPS-induced septic mice and attenuated LPS inhibitory effects on intestinal epithelial cell migration along the crypt-villus axis. Collectively, our study suggests that LPS represses MFG-E8 expression and disrupts enterocyte migration via a miR-99b dependent mechanism. Furthermore, this work shows that SNA-NCanti-miR99b is a novel nanoparticle-conjugate capable of rescuing MFG-E8 gene expression and maintaining intestinal epithelial homeostasis in sepsis. PMID:27538453

  10. Spherical nucleic acid targeting microRNA-99b enhances intestinal MFG-E8 gene expression and restores enterocyte migration in lipopolysaccharide-induced septic mice.

    PubMed

    Wang, Xiao; Hao, Liangliang; Bu, Heng-Fu; Scott, Alexander W; Tian, Ke; Liu, Fangyi; De Plaen, Isabelle G; Liu, Yulan; Mirkin, Chad A; Tan, Xiao-Di

    2016-01-01

    Milk fat globule-EGF factor 8 (MFG-E8) maintains the intestinal homeostasis by enhancing enterocyte migration and attenuating inflammation. We previously reported that sepsis is associated with down-regulation of intestinal MFG-E8 and impairment of enterocyte migration. Here, we showed that impairment of intestinal epithelial cell migration occurred in lipopolysaccharide (LPS)-induced septic mice. Treatment of RAW264.7 cells (a murine macrophage-like cell line) with LPS increased expression of miR-99b, a microRNA that is predicted to target mouse MFG-E8 3'UTR. Using a luciferase assay, we showed that miR-99b mimic suppressed the activity of a reporter containing MFG-E8 3'UTR. This suggests the role of miR-99b in inhibition of MFG-E8 gene expression. In addition, we developed an anti-miR99b spherical nucleic acid nanoparticle conjugate (SNA-NC(anti-miR99b)). Treatment of both naïve and LPS-challenged cells with SNA-NC(anti-miR99b) enhanced MFG-E8 expression in the cells. Administration of SNA-NC(anti-miR99b) rescued intestinal MFG-E8 expression in LPS-induced septic mice and attenuated LPS inhibitory effects on intestinal epithelial cell migration along the crypt-villus axis. Collectively, our study suggests that LPS represses MFG-E8 expression and disrupts enterocyte migration via a miR-99b dependent mechanism. Furthermore, this work shows that SNA-NC(anti-miR99b) is a novel nanoparticle-conjugate capable of rescuing MFG-E8 gene expression and maintaining intestinal epithelial homeostasis in sepsis. PMID:27538453

  11. Chronic Administration of Δ9-Tetrahydrocannabinol Induces Intestinal Anti-Inflammatory MicroRNA Expression during Acute Simian Immunodeficiency Virus Infection of Rhesus Macaques

    PubMed Central

    Chandra, Lawrance C.; Kumar, Vinay; Torben, Workineh; Stouwe, Curtis Vande; Winsauer, Peter; Amedee, Angela; Molina, Patricia E.

    2014-01-01

    ABSTRACT Recreational and medical use of cannabis among human immunodeficiency virus (HIV)-infected individuals has increased in recent years. In simian immunodeficiency virus (SIV)-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC) inhibited viral replication and intestinal inflammation and slowed disease progression. Persistent gastrointestinal disease/inflammation has been proposed to facilitate microbial translocation and systemic immune activation and promote disease progression. Cannabinoids including Δ9-THC attenuated intestinal inflammation in mouse colitis models and SIV-infected rhesus macaques. To determine if the anti-inflammatory effects of Δ9-THC involved differential microRNA (miRNA) modulation, we profiled miRNA expression at 14, 30, and 60 days postinfection (days p.i.) in the intestine of uninfected macaques receiving Δ9-THC (n = 3) and SIV-infected macaques administered either vehicle (VEH/SIV; n = 4) or THC (THC/SIV; n = 4). Chronic Δ9-THC administration to uninfected macaques significantly and positively modulated intestinal miRNA expression by increasing the total number of differentially expressed miRNAs from 14 to 60 days p.i. At 60 days p.i., ∼28% of miRNAs showed decreased expression in the VEH/SIV group compared to none showing decrease in the THC/SIV group. Furthermore, compared to the VEH/SIV group, THC selectively upregulated the expression of miR-10a, miR-24, miR-99b, miR-145, miR-149, and miR-187, previously been shown to target proinflammatory molecules. NOX4, a potent reactive oxygen species generator, was confirmed as a direct miR-99b target. A significant increase in NOX4+ crypt epithelial cells was detected in VEH/SIV macaques compared to the THC/SIV group. We speculate that miR-99b-mediated NOX4 downregulation may protect the intestinal epithelium from oxidative stress-induced damage. These results support a role for differential miRNA induction in THC-mediated suppression of intestinal

  12. Probiotic Treatment Decreases the Number of CD14-Expressing Cells in Porcine Milk Which Correlates with Several Intestinal Immune Parameters in the Piglets

    PubMed Central

    Scharek-Tedin, Lydia; Kreuzer-Redmer, Susanne; Twardziok, Sven Olaf; Siepert, Bianca; Klopfleisch, Robert; Tedin, Karsten; Zentek, Jürgen; Pieper, Robert

    2015-01-01

    Modulating the mucosal immune system of neonates by probiotic treatment of their mothers is a promising approach which can only be investigated through the use of animal models. Here, we used sows and their piglets to investigate the impact of a bacterial treatment on the sow’s milk and on the neonate piglet intestinal immune system. In previous experiments, feed supplementation of sows with the probiotic Enterococcus faecium NCIMB 10415 during pregnancy and lactation had been shown to affect intestinal microbiota and cytokine expression of the offspring during the suckling and weaning periods. We therefore investigated the composition of the milk from treated sows in comparison to samples from a control group. In treated sows, the amount of lactose increased, and the somatic cell numbers were reduced. In all milk samples, the percentage of cells expressing membranous CD14 (mCD14) was greater than the fractions of immune cells, indicating expression of mCD14 on mammary epithelial cells. However, in the milk of E. faecium-treated sows, mCD14+ cells were reduced. Furthermore, the number of CD14+ milk cells was positively correlated with the percentages of B cells and activated T cells in the ileal MLN of the piglets. This study provides evidence for the expression of mCD14 by the porcine mammary epithelium, and suggests an immunological effect of mCD14+ milk cells on the piglets’ intestinal immune system. Our study further suggests that mCD14+ mammary epithelial cell populations can be modulated by probiotic feed supplementation of the sow. PMID:25806034

  13. Screening the ability of natural feed ingredients to interfere with the adherence of enterotoxigenic Escherichia coli (ETEC) K88 to the porcine intestinal mucus.

    PubMed

    González-Ortiz, Gemma; Pérez, José Francisco; Hermes, Rafael Gustavo; Molist, Francesc; Jiménez-Díaz, Rufino; Martín-Orúe, Susana María

    2014-02-01

    The inhibition of the attachment of bacteria to the intestine by receptor analogues could be a novel approach to prevent enterotoxigenic Escherichia coli (ETEC) K88-induced diarrhoea in piglets. The objective of the present study was to screen the ability of different feed ingredients (FI) to bind to ETEC K88 (adhesion test, AT) and to block its attachment to the porcine intestinal mucus (blocking test, BT) using in vitro microtitration-based models. In the AT, wheat bran (WB), casein glycomacropeptide (CGMP) and exopolysaccharides exhibited the highest adhesion to ETEC K88 (P< 0·001). In the BT, WB, CGMP and locust bean (LB) reduced the number of ETEC K88 attached to the intestinal mucus (P< 0·001). For WB and LB, fractionation based on their carbohydrate components was subsequently carried out, and each fraction was evaluated individually. None of the WB fractions reduced the adhesion of ETEC K88 to the mucus as did the original extract, suggesting that a protein or glycoprotein could be involved in the recognition process. With regard to the LB fractions, the water-extractable material reduced the adhesion of ETEC K88 (P< 0·001) to the mucus similar to the original extract (P< 0·001), indicating, in this case, that galactomannans or phenolic compounds could be responsible for the recognition process. In conclusion, among the FI screened, the soluble extracts obtained from WB, LB and CGMP exhibited the highest anti-adhesive properties against ETEC K88 in the BT. These results suggest that they may be good candidates to be included in diets of weaned piglets for the prevention of ETEC K88-induced diarrhoea. PMID:24047890

  14. Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium

    PubMed Central

    Collado-Romero, Melania; Aguilar, Carmen; Arce, Cristina; Lucena, Concepción; Codrea, Marius C.; Morera, Luis; Bendixen, Emoke; Moreno, Ángela; Garrido, Juan J.

    2015-01-01

    The enteropathogen Salmonella Typhimurium (S. Typhimurium) is the most commonly non-typhoideal serotype isolated in pig worldwide. Currently, one of the main sources of human infection is by consumption of pork meat. Therefore, prevention and control of salmonellosis in pigs is crucial for minimizing risks to public health. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to explore differences in the response to Salmonella in two segment of the porcine gut (ileum and colon) along a time course of 1, 2, and 6 days post infection (dpi) with S. Typhimurium. A total of 298 proteins were identified in the infected ileum samples of which, 112 displayed significant expression differences due to Salmonella infection. In colon, 184 proteins were detected in the infected samples of which 46 resulted differentially expressed with respect to the controls. The higher number of changes in protein expression was quantified in ileum at 2 dpi. Further biological interpretation of proteomics data using bioinformatics tools demonstrated that the expression changes in colon were found in proteins involved in cell death and survival, tissue morphology or molecular transport at the early stages and tissue regeneration at 6 dpi. In ileum, however, changes in protein expression were mainly related to immunological and infection diseases, inflammatory response or connective tissue disorders at 1 and 2 dpi. iTRAQ has proved to be a proteomic robust approach allowing us to identify ileum as the earliest response focus upon S. Typhimurium in the porcine gut. In addition, new functions involved in the response to bacteria such as eIF2 signaling, free radical scavengers or antimicrobial peptides (AMP) expression have been identified. Finally, the impairment at of the enterohepatic circulation of bile acids and lipid metabolism by means the under regulation of FABP6 protein and FXR/RXR and LXR/RXR signaling pathway in ileum has been

  15. Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leukocyte cell subsets of weaned pigs.

    PubMed

    Nofrarías, M; Manzanilla, E G; Pujols, J; Gibert, X; Majó, N; Segalés, J; Gasa, J

    2006-10-01

    We evaluated the effects of a 6% spray-dried porcine plasma (SDPP) and a plant extracts mixture (XT; 5% carvacrol, 3% cinnamaldehyde, and 2% capsicum oleoresin) on the productive performance, intestinal morphology, and leukocyte cell subsets of early-weaned pigs compared with a control group. Morphometry of the jejunum, ileum, and colon, and immune cell analysis of blood, ileocolic lymph node (LN), and ileal Peyer's patches were done in 24 weaned pigs (20 +/- 2 d) at 19 or 21 d postweaning. Although SDPP and XT treatments did not increase ADG or ADFI, SDPP improved the G:F ratio (P = 0.024) compared with the control group. Dietary SDPP reduced the percentages of blood monocytes (P = 0.006) and macrophages in ileal Peyer's patches and LN (P = 0.04), of B lymphocytes (P = 0.04) and gammadelta+ T cells in LN (P = 0.009), and of intraepithelial lymphocytes (P = 0.026) as well as the density of lamina propria cells in the colon (P < 0.01). Dietary XT reduced intraepithelial lymphocyte numbers in jejunum (P = 0.034) and the percentages of blood cytotoxic cells (P = 0.07) and B lymphocytes in LN (P = 0.03); however, XT increased blood monocytes (P = 0.038) and the density of lamina propria lymphocytes in the colon (P = 0.003). These results indicate that dietary SDPP and plant extracts can affect intestinal morphology and immune cell subsets of gut tissues and blood in weaned pigs. Furthermore, the effects of SDPP suggest lower activation of the immune system of the piglets. PMID:16971575

  16. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues.

    PubMed

    Jakava-Viljanen, Miia; Palva, Airi

    2007-10-01

    Surface-layer proteins (Slps) of lactobacilli have been shown to confer tissue adherence. This study aimed to isolate and identify Slps carrying Lactobacillus species from the porcine intestine and faeces and to characterize these S-layer-expressing strains for their ability to adhere to the pig and human intestinal cells and to extracellular matrix (ECM) proteins. In total 99 strains, putatively belonging to the genus Lactobacillus, were isolated as pure cultures. SDS-PAGE and a gene probe specific for the Lactobacillus brevis ATCC 8287 S-layer protein gene (slpA) were used to screen the presence of strains possessing putative Slps. Eight of the 99 pure cultures exhibited Slps according to the SDS-PAGE analyses. In these strains the presence of genes encoding Slps was confirmed by PCR and partial sequencing. Only one isolate of the 99 strains gave a positive hybridisation signal with the L. brevis slpA probe but did not appear to produce S-layer protein. Their taxonomic identification, based on phenotyping and the 16S rRNA sequences, revealed that the eight S-layer protein-producing strains were closely related to Lactobacillus amylovorus, Lactobacillus sobrius and Lactobacillus crispatus. The strain with the slpA positive hybridisation result was identified as Lactobacillus mucosae. The SDS-extractable protein profile, the size of the putative S-layer protein and binding capability of the strains varied greatly, even among the isolates belonging to the same Lactobacillus cluster. Removal of the intact Slps from the bacterial surface by extraction with guanidine hydrochloride reduced the adhesion of some strains to fibronectin and laminin, whereas, the adhesiveness to laminin increased with some strains. PMID:17544232

  17. Recruitment of intestinal CD45RA+ and CD45RC+ cells induced by a candidate oral vaccine against porcine post-weaning colibacillosis.

    PubMed

    Bozić, Frane; Lacković, Gordana; Stokes, Christopher R; Valpotić, Ivica

    2002-07-01

    To assess the influence of a live attenuated oral vaccine against porcine post-weaning colibacillosis (PWC) induced by enterotoxigenic Escherichia coli (ETEC) on mucosal lymphoid cell CD45 isoforms expression, experimental group of weaned pigs (n=6) was immunized orally with F4ac+ non-ETEC strain (day 0) and challenged with F4ac+ ETEC strain 7 days latter. Non-immunized ETEC-infected pigs (n=6) served as control. All pigs were killed on post-challenge day 7. The small intestine was excised for isolation of jejunal lamina propria (JLP) and ileal Peyer's patch (IPP) lymphocytes and immunohistochemical studies. The results obtained by immunophenotyping of isolated cells show that the proportion of CD45RA+ and CD45RC+ JLP, but not IPP, cells were higher in the non-ETEC-immunized ETEC-infected pigs versus non-immunized infected. Additionally, while CD45RA+ JLP cells increased only slightly, the expression of CD45RC isoform on the JLP cells was significantly higher (P< or =0.01) in the experimental than in the control group. The results of the quantitative phenotypic analysis of isolated lymphocytes were not confirmed by immunohistochemical in situ staining. The majority of intestinal immune cells was found to express CD45RA antigen in situ, but no differences were observed between the two groups of weaned pigs neither in CD45RA+ nor in CD45RC+ cells. Our overall evidence indicates that the increased expression of CD45RC isoform was in fact induced in a limited number of JLP T cells in the vaccinated pigs. This was accompanied with the impaired protection of the vaccinated pigs from challenge-induced PWC. PMID:12007880

  18. PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS.

    PubMed

    Qi, K K; Wu, J; Deng, B; Li, Y M; Xu, Z W

    2015-09-01

    This study was conducted to determine the effects on intestinal function, anti-inflammatory role and possible mechanism of polyethylene glycosylated (PEGylated) porcine glucagon-like peptide-2 (pGLP-2), a long-acting form of pGLP-2, in weaning piglets challenged with Escherichia coli lipopolysaccharide (LPS). We divided 18 weaned piglets on day 21 into three groups (control, LPS and LPS+PEG-pGLP-2; n=6). The piglets from the LPS+PEG-pGLP-2 group were injected with PEG-pGLP-2 at 10 nmol/kg BW from 5 to 7 days of the trials daily. On 8th day, the piglets in the LPS and LPS+PEG-pGLP-2 groups were intraperitoneally administered with 100 µg LPS/kg. The control group was administered with the same volume of saline solution. The piglets were then sacrificed on day 28. Afterwards, serum, duodenum, jejunum and ileum samples were collected for analysis of structural and functional endpoints. LPS+PEG-pGLP-2 treatment increased (P<0.05) lactase activities in the duodenum and the jejunum compared with LPS treatment. LPS+PEG-pGLP-2 treatment also significantly increased sucrase activity in the jejunum compared with LPS treatment. Furthermore, LPS treatment increased (P<0.05) the mRNA expression levels of interleukin (IL)-8, tumour necrosis factor-α (TNF-α) and IL-10 in the ileum compared with the control treatment. By contrast, LPS+PEG-pGLP-2 treatment decreased (P<0.05) the mRNA expression levels of IL-8, IL-10 and TNF-α in the ileum compared with the LPS treatment. LPS treatment also increased (P<0.05) the mRNA expression level of GLP-2 receptor (GLP-2R) and the percentage of GLP-2R-positive cells in the ileum; by comparison, these results were (P<0.05) reduced by LPS+PEG-pGLP-2 treatment. Moreover, LPS+PEG-pGLP-2 treatment increased (P<0.05) the content of serum keratinocyte growth factor compared with the control group and the LPS group. The protective effects of PEG-pGLP-2 on intestinal digestive function were associated with the release of GLP-2R mediator (keratinocyte

  19. MicroRNA-193a-3p Reduces Intestinal Inflammation in Response to Microbiota via Down-regulation of Colonic PepT1.

    PubMed

    Dai, Xin; Chen, Xi; Chen, Qun; Shi, Lei; Liang, Hongwei; Zhou, Zhen; Liu, Qian; Pang, Wenjing; Hou, Dongxia; Wang, Cheng; Zen, Ke; Yuan, Yaozong; Zhang, Chen-Yu; Xia, Lu

    2015-06-26

    Intestinal inflammation is characterized by epithelial disruption, leading to the loss of barrier function, recruitment of immune cells, and host immune responses to gut microbiota. PepT1, a di/tripeptide transporter that uptakes bacterial products, is up-regulated in inflamed colon tissue, which implies its role in bacterium-associated intestinal inflammation. Although microRNA (miRNA)-mediated gene regulation has been found to be involved in various processes of inflammatory bowel disease (IBD), the biological function of miRNAs in the pathogenesis of IBD remains to be explored. In this study we detected miRNA expression patterns in colon tissues during colitis and investigated the mechanism underlying the regulation of colonic PepT1 by miRNAs. We observed an inverse correlation between PepT1 and miR-193a-3p in inflamed colon tissues with active ulcerative colitis, and we further demonstrated that miR-193a-3p reduced PepT1 expression and activity as a target gene and subsequently suppressed the NF-κB pathway. Intracolonic delivery of miR-193a-3p significantly ameliorated dextran sodium sulfate-induced colitis, whereas the overexpression of colonic PepT1 via PepT1 3'-untranslated region mutant lentivirus vector abolished the anti-inflammatory effect of miR-193a-3p. Furthermore, antibiotic treatment eliminated the difference in the dextran sodium sulfate-induced inflammation between the presence and absence of miR-193a-3p. These findings suggest that miR-193a-3p regulation of PepT1 mediates the uptake of bacterial products and is a potent mechanism during the colonic inflammation process. Overall, we believe miR-193a-3p may be a potent regulator of colonic PepT1 for maintaining intestinal homeostasis. PMID:25931122

  20. Inhibitory action of two zinc oxide sources on the ex vivo growth of porcine small intestine bacteria.

    PubMed

    Vahjen, W; Zentek, J; Durosoy, S

    2012-12-01

    Pharmacological dosage of zinc oxide in piglet weaning diets is a common practice to improve growth performance and gut health. However, high zinc excretion in animal wastes poses environmental challenges. Alternatives to current practice are studied. In this study, the inhibitory action of 2 zinc oxide sources on the ex vivo growth of small intestinal bacteria from weaned piglets was studied. Lag time was higher (P < 0.05) in media supplemented with a new zinc oxide preparation in stomach samples, but not in jejunum samples. Bacterial growth reduction (P < 0.05) was more drastic and more rapid in media supplemented with the new zinc oxide preparation. PMID:23365371

  1. Effect of Negative Pressure Therapy on the Inflammatory Response of the Intestinal Microenvironment in a Porcine Septic Model

    PubMed Central

    Norbury, Kenneth C.; Moyer, Mary Pat

    2015-01-01

    In a swine model of ischemia/reperfusion injury coupled with sepsis, we have previously shown attenuation of secondary organ injury and decreased mortality with negative pressure therapy (NPT). We hypothesized that NPT modulates the intestinal microenvironment by mediating the innate immune system. Sepsis was induced in 12 anesthetized female pigs. Group 1 (n = 6) was decompressed at 12 hrs after injury (T12) and treated with standard of care (SOC), and group 2 (n = 6) with NPT for up to T48. Immunoparalysis was evident as lymphocytopenia at T24 in both groups; however, survival was improved in the NPT group versus SOC (Odds ratio = 4.0). The SOC group showed significant reduction in lymphocyte numbers compared to NPT group by T48 (p < 0.05). The capacity of peritoneal fluid to stimulate a robust reactive oxygen species response in vitro was greater for the NPT group, peaking at T24 for both M1 (p = 0.0197) and M2 macrophages (p = 0.085). Plasma elicited little if any effect which was confirmed by microarray analysis. In this septic swine model NPT appeared to modulate the intestinal microenvironment, facilitating an early robust, yet transient, host defense mediated by M1 and M2 macrophages. NPT may help overcome immunoparalysis that occurs during inflammatory response to septic injury. PMID:26294849

  2. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2.

    PubMed

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound. PMID:26180592

  3. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2

    PubMed Central

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound. PMID:26180592

  4. MicroRNA signature of intestinal acute cellular rejection in formalin-fixed paraffin-embedded mucosal biopsies.

    PubMed

    Asaoka, T; Sotolongo, B; Island, E R; Tryphonopoulos, P; Selvaggi, G; Moon, J; Tekin, A; Amador, A; Levi, D M; Garcia, J; Smith, L; Nishida, S; Weppler, D; Tzakis, A G; Ruiz, P

    2012-02-01

    Despite continuous improvement of immunosuppression, small bowel transplantation (SBT) is plagued by a high incidence of acute cellular rejection (ACR) that is frequently intractable. Therefore, there is a need to uncover novel insights that will lead to strategies to achieve better control of ACR. We hypothesized that particular miRNAs provide critical regulation of the intragraft immune response. The aim of our study was to identify miRNAs involved in intestinal ACR. We examined 26 small intestinal mucosal biopsies (AR/NR group; 15/11) obtained from recipients after SBT or multivisceral transplantation. We investigated the expression of 384 mature human miRNAs and 280 mRNAs associated with immune, inflammation and apoptosis processes. We identified differentially expressed 28 miRNAs and 58 mRNAs that characterized intestinal ACR. We found a strong positive correlation between the intragraft expression levels of three miRNAs (miR-142-3p, miR-886-3p and miR-132) and 17 mRNAs including CTLA4 and GZMB. We visualized these miRNAs within cells expressing CD3 and CD14 proteins in explanted intestinal allografts with severe ACR. Our data suggested that miRNAs have a critical role in the activation of infiltrating cells during intestinal ACR. These differences in miRNA expression patterns can be used to identify novel biomarkers and therapeutic targets for immunosuppressive agents. PMID:22026534

  5. Porcine gonadogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five images submitted for teaching purposes related to porcine gonadogenesis (2), porcine fetal testicular development (2), and porcine fetal ovarian development. Key words include: Egg cell nests, Embryo, GATA4, Genital ridge, Gonad, Leydig cell, Mesonephros, MIS, Ovary, P450c17, Porcine, Sertoli ...

  6. Histomorphometric analysis of early epithelialization and dermal changes in mid-partial-thickness burn wounds in humans treated with porcine small intestinal submucosa and silver-containing hydrofiber.

    PubMed

    Salgado, Rosa M; Bravo, Leonardo; García, Mario; Melchor, Juan M; Krötzsch, Edgar

    2014-01-01

    The objective of this study was to determine the healing rates of mid-partial-thickness burns treated with a porcine intestinal submucosa (SIS) vs. silver-containing cellulose hydrofiber (AgH) dressings. This was done by comparing healing response of burn wounds treated with SIS vs that of burns treated with AgH dressings. Five patients with mid-partial-thickness burns ≤10% of body surface were treated simultaneously, but in different areas, with SIS and AgH dressings; full-thickness biopsies were taken at days 0 and 7. Tissues treated with SIS presented higher epithelial maturation index (6.2 ± 0.84 vs. 3.2 ± 3.28; [mean ± standard deviation], P = .029), better orientation and differentiation of epithelial cells, as well as an appropriate basal lamina structure, collagen deposition, and higher transforming growth factor-β3 expression (7.4 ± 8.1 vs. 2.1 ± 2.6; P = .055) than tissues treated with AgH dressings. Importantly, after the treatment SIS was not integrated in healed tissues. After 3 months of treatment, SIS produced a lower score according to Vancouver Scar Scale (3.6 ± 2.6 vs. 7.2 ± 2.5, P = .025).The submucosa dressing does not simply act as scaffolding for the wound, it provides stimulation in the healing area, probably via growth factors initially present in SIS or matrikines derived from its digestion in the wound site. In conclusion, the present study demonstrated that biological matrices favor the wound-healing process. PMID:24823330

  7. Kinetic study of the replacement of porcine small intestinal submucosa grafts and the regeneration of meniscal-like tissue in large avascular meniscal defects in dogs.

    PubMed

    Cook, J L; Tomlinson, J L; Arnoczky, S P; Fox, D B; Reeves Cook, C; Kreeger, J M

    2001-06-01

    Porcine small intestinal submucosa (SIS) was used to replace large, avascular defects in the medial menisci of dogs. Twelve dogs received SIS grafts and 3 dogs were left untreated as controls. Dogs were evaluated at 4, 8, and 12 weeks by means of lameness scoring and ultrasonography. Dogs were sacrificed at 1, 6, or 12 weeks after implantation, and the tissue at the site of meniscal resection was evaluated for gross and histologic appearance, cross-sectional and surface area, and collagen types I and II. The femoral and tibial condyles were assessed for articular cartilage damage. Control dogs were significantly more lame than grafted dogs 8 and 12 weeks after instrumentation. Grafted dogs' replacement tissue appeared meniscal-like when evaluated grossly and ultrasonographically 12 weeks after instrumentation. The amount of replacement tissue was significantly greater in both cross-sectional and surface area for grafted dogs than for controls at all time points. Histologically, the SIS biomaterial could be identified in all grafted dogs at 1 week post-implantation, but in none at 6 weeks post-implantation. Subjectively, grafted dogs' replacement tissue was histologically superior to that of controls with respect to tissue type, organization, and architecture. Collagen types I and II immunoreactivity in grafted menisci were similar to that of normal menisci. Control dogs had significantly more articular cartilage damage than grafted dogs. SIS appears to induce regeneration of meniscal-like tissue in large, avascular meniscal defects in dogs, resulting in superior clinical function and articular cartilage protection compared to ungrafted controls. PMID:11429152

  8. Induction of arginase II by intestinal epithelium promotes the uptake of L-arginine from the lumen of C. parvum infected porcine ileum

    PubMed Central

    Gookin, Jody L.; Stauffer, Stephen H.; Coccaro, Maria R.

    2013-01-01

    Objectives To determine the specific transport system activities and expression of transporter genes responsible for uptake of L-arginine from the lumen of normal and C. parvum infected neonatal porcine ileum and the influence of L-arginine catabolic pathways on L-arginine uptake. Methods Intact sheets of ileal mucosa from control and C. parvum infected neonatal piglets were mounted in Ussing chambers and the uptake of 14C-L-arginine was determined under initial rate conditions and in the presence of transport system-selective inhibitors. Epithelial expression of L-arginine transporter genes was quantified by real time RT-PCR. L-arginine catabolic enzyme expression was examined by immunoblotting epithelial lysates for arginase I and II. The role of intracellular catabolism in promoting uptake of L-arginine was determined by pharmacological inhibition of NOS and arginase activities. Results C. parvum infected ileum transported L-arginine at rates equivalent to uninfected epithelium despite profound villous atrophy. This was attributed to enhanced uptake of L-arginine by individual epithelial cells in the infection. There were no differences in L-arginine transport system activities (y+ and B0,+) or level of transporter gene expression (CAT-1, CAT-2A, and ATB0,+) between uninfected and C. parvum infected epithelial cells. However, infected epithelia had induced expression of the L-arginine hydrolytic enzyme arginase II and lower concentrations of L-arginine. Further, transport of L-arginine by the infected epithelium was significantly inhibited by pharmacological blockade of arginase. Conclusions Intracellular catabolism by arginase II, the induction of which has not been previously described for intestinal epithelium, facilitates uptake of L-arginine by infected epithelium using transport systems that do not differ from that of uninfected cells. Induction of arginase II may limit NO synthesis by competing with NOS for utilization of L-arginine or promote use of L

  9. MicroRNA (MiRNA) technology in livestock: expression profiling of bovine oocyte and developmental stages of porcine skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts through activation of a specific cellular pathway. A single miR can target numerous distinct mRNA for decreased translation, and as a result miR appear to be intimately in...

  10. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus

    PubMed Central

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  11. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus.

    PubMed

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  12. TNFα/IFNγ Mediated Intestinal Epithelial Barrier Dysfunction Is Attenuated by MicroRNA-93 Downregulation of PTK6 in Mouse Colonic Epithelial Cells.

    PubMed

    Haines, Ricci J; Beard, Richard S; Eitner, Rebecca A; Chen, Liwei; Wu, Mack H

    2016-01-01

    Since inflammatory bowel diseases (IBD) represent significant morbidity and mortality in the US, the need for defining novel drug targets and inflammatory mechanisms would be of considerable benefit. Although protein tyrosine kinase 6 (PTK6, also known as breast tumor kinase BRK) has been primarily studied in an oncogenic context, it was noted that PTK6 null mice exhibited significantly enhanced colonic epithelial barrier function. Considering that the inflammatory functions of PTK6 have not yet been explored, we hypothesized that cytokines responsible for mediating IBD, such as TNFα/IFNγ, may solicit the action of PTK6 to alter barrier function. After first assessing critical mediators of TNFα/IFNγ driven epithelial barrier dysfunction, we further explored the possibility of PTK6 in this inflammatory context. In this report, we showed that PTK6 siRNA and PTK6 null young adult mouse colonic epithelial cells (YAMC) exhibited significant attenuation of TNFα/IFNγ induced barrier dysfunction as measured by electric cell-substrate impedance sensing (ECIS) assay and permeability assays. In addition, PTK6 null cells transfected with PTK6 cDNA displayed restored barrier dysfunction in response to TNFα/IFNγ, while the cells transfected with vector alone showed similar attenuation of barrier dysfunction. Furthermore, using subcellular fractionation and immunocytochemistry experiments, we found that PTK6 plays a role in FoxO1 nuclear accumulation leading to down-regulation of claudin-3, a tight junction protein. Moreover, we searched for relevant miRNA candidates putative for targeting PTK6 in order to identify and assess the impact of microRNA that target PTK6 with respect to TNFα/IFNγ induced barrier dysfunction. Subsequently, we assayed likely targets and determined their effectiveness in attenuating PTK6 expression as well as cytokine induced barrier dysfunction. Results showed that miR-93 reduced PTK6 expression and attenuated TNFα/IFNγ imposed decrease in

  13. TNFα/IFNγ Mediated Intestinal Epithelial Barrier Dysfunction Is Attenuated by MicroRNA-93 Downregulation of PTK6 in Mouse Colonic Epithelial Cells

    PubMed Central

    Beard, Richard S.; Eitner, Rebecca A.; Chen, Liwei; Wu, Mack H.

    2016-01-01

    Since inflammatory bowel diseases (IBD) represent significant morbidity and mortality in the US, the need for defining novel drug targets and inflammatory mechanisms would be of considerable benefit. Although protein tyrosine kinase 6 (PTK6, also known as breast tumor kinase BRK) has been primarily studied in an oncogenic context, it was noted that PTK6 null mice exhibited significantly enhanced colonic epithelial barrier function. Considering that the inflammatory functions of PTK6 have not yet been explored, we hypothesized that cytokines responsible for mediating IBD, such as TNFα/IFNγ, may solicit the action of PTK6 to alter barrier function. After first assessing critical mediators of TNFα/IFNγ driven epithelial barrier dysfunction, we further explored the possibility of PTK6 in this inflammatory context. In this report, we showed that PTK6 siRNA and PTK6 null young adult mouse colonic epithelial cells (YAMC) exhibited significant attenuation of TNFα/IFNγ induced barrier dysfunction as measured by electric cell-substrate impedance sensing (ECIS) assay and permeability assays. In addition, PTK6 null cells transfected with PTK6 cDNA displayed restored barrier dysfunction in response to TNFα/IFNγ, while the cells transfected with vector alone showed similar attenuation of barrier dysfunction. Furthermore, using subcellular fractionation and immunocytochemistry experiments, we found that PTK6 plays a role in FoxO1 nuclear accumulation leading to down-regulation of claudin-3, a tight junction protein. Moreover, we searched for relevant miRNA candidates putative for targeting PTK6 in order to identify and assess the impact of microRNA that target PTK6 with respect to TNFα/IFNγ induced barrier dysfunction. Subsequently, we assayed likely targets and determined their effectiveness in attenuating PTK6 expression as well as cytokine induced barrier dysfunction. Results showed that miR-93 reduced PTK6 expression and attenuated TNFα/IFNγ imposed decrease in

  14. A 2.5-Kilobase Deletion Containing a Cluster of Nine MicroRNAs in the Latency-Associated-Transcript Locus of the Pseudorabies Virus Affects the Host Response of Porcine Trigeminal Ganglia during Established Latency

    PubMed Central

    Mahjoub, Nada; Dhorne-Pollet, Sophie; Fuchs, Walter; Endale Ahanda, Marie-Laure; Lange, Elke; Klupp, Barbara; Arya, Anoop; Loveland, Jane E.; Lefevre, François; Mettenleiter, Thomas C.

    2014-01-01

    ABSTRACT The alphaherpesvirus pseudorabies virus (PrV) establishes latency primarily in neurons of trigeminal ganglia when only the transcription of the latency-associated transcript (LAT) locus is detected. Eleven microRNAs (miRNAs) cluster within the LAT, suggesting a role in establishment and/or maintenance of latency. We generated a mutant (M) PrV deleted of nine miRNA genes which displayed properties that were almost identical to those of the parental PrV wild type (WT) during propagation in vitro. Fifteen pigs were experimentally infected with either WT or M virus or were mock infected. Similar levels of virus excretion and host antibody response were observed in all infected animals. At 62 days postinfection, trigeminal ganglia were excised and profiled by deep sequencing and quantitative RT-PCR. Latency was established in all infected animals without evidence of viral reactivation, demonstrating that miRNAs are not essential for this process. Lower levels of the large latency transcript (LLT) were found in ganglia infected by M PrV than in those infected by WT PrV. All PrV miRNAs were expressed, with highest expression observed for prv-miR-LLT1, prv-miR-LLT2 (in WT ganglia), and prv-miR-LLT10 (in both WT and M ganglia). No evidence of differentially expressed porcine miRNAs was found. Fifty-four porcine genes were differentially expressed between WT, M, and control ganglia. Both viruses triggered a strong host immune response, but in M ganglia gene upregulation was prevalent. Pathway analyses indicated that several biofunctions, including those related to cell-mediated immune response and the migration of dendritic cells, were impaired in M ganglia. These findings are consistent with a function of the LAT locus in the modulation of host response for maintaining a latent state. IMPORTANCE This study provides a thorough reference on the establishment of latency by PrV in its natural host, the pig. Our results corroborate the evidence obtained from the study

  15. Screening of extracts from natural feed ingredients for their ability to reduce enterotoxigenic Escherichia coli (ETEC) K88 adhesion to porcine intestinal epithelial cell-line IPEC-J2.

    PubMed

    González-Ortiz, G; Hermes, R G; Jiménez-Díaz, R; Pérez, J F; Martín-Orúe, S M

    2013-12-27

    Enterotoxigenic Escherichia coli (ETEC) K88 is the most prevalent enteropathogen in weaned piglets, with the ability to express fimbria F4 and specifically attach to intestinal receptors in the young piglet. The prevention of ETEC K88 adhesion to the epithelium by interfering in this fimbria-receptor recognition provides an alternative approach to prevent the initial stage of disease. The aim of this study is to screen, among different feed ingredients (FI), their ability to reduce ETEC K88 attachment to the porcine intestinal epithelial cell-line (IPEC-J2). The selected FI consisted of products of a vegetable or dairy origin, and microbial by-products, which could be suitable to be included in piglet's diet. Incubation of a mixture of each FI extract with the bacteria on IPEC-J2 monolayer was allowed. After washing with PBS to remove the non-adhered bacteria, the culture medium was added to grow the adhered bacteria and, simultaneously, to keep the cells alive. Then, the bacterial growth was monitored in a spectrophotometer reader for 12h. Casein glycomacropeptide (CGMP), locust bean (LB), exopolysaccharide (EPS) and wheat bran (WB) reduced the number of attached ETEC K88 to IPEC-J2, but no anti-adhesive effect was found for soybean hulls, sugar-beet pulp, locust gum, fructooligosaccharides, inulin, mushroom, mannanoligosaccharides or the fermented product from Aspergillus oryzae. The lineal analysis of dose responses demonstrated lineal activity (P<0.0001) for CGMP, LB, EPS and WB. These in vitro results suggest CGMP, LB, EPS and WB as good candidates to be included in piglet's diet with supported functional activity against colibacillosis. PMID:23992796

  16. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut

    PubMed Central

    Foronda, David; Weng, Ruifen; Verma, Pushpa; Chen, Ya-Wen

    2014-01-01

    Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Dependence on the insulin pathway places the stem cell pool under nutritional control, allowing gut homeostasis to adapt to environmental conditions. Here we present evidence that miR-305 is required for adaptive homeostasis of the gut. miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. Notably, miR-305 expression in the stem cells is itself under nutritional control via the insulin pathway. This link places regulation of Notch pathway activity under nutritional control. These findings provide a mechanism through which the insulin pathway controls the balance between stem cell self-renewal and differentiation that is required for adaptive homeostasis in the gut in response to changing environmental conditions. PMID:25367037

  17. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate.

    PubMed

    Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J

    2016-02-01

    Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P < 0.001). Quantitative real-time PCR analyses revealed that Lactobacillus spp. and Bifidobacterium spp. decreased with mucins, but Bacteroides spp. increased when inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate. PMID:26691596

  18. Preliminary Characterization of the Transcriptional Response of the Porcine Intestinal Cell Line IPEC-J2 to Enterotoxigenic Escherichia coli, Escherichia coli, and E. coli Lipopolysaccharide

    PubMed Central

    Geens, Marisa M.; Niewold, Theo A.

    2010-01-01

    IPEC-J2, a promising in vitro model system, is not well characterized especially on the transcriptional level, in contrast to human counterparts. The aim of this study was to characterize the gene expression in IPEC-J2 cells when coincubated with enterotoxigenic Escherichia coli (ETEC), nonpathogenic E. coli, and E. coli endotoxin. Apical infection of polarized IPEC-J2 monolayers caused a time-dependent decrease in transepithelial electrical resistance (TEER). Microarray analysis showed up-regulation of interleukins when IPEC-J2 were cocultured with E. coli strains this has so far never been measured in this cell line. Highest IL8 expression was found with the ETEC strain possessing the F4 fimbrium, suggesting IPEC-J2 cells to be F4 receptor positive, confirmed in a brush border membrane adhesion assay. It is concluded that the innate immune responses to pathogens and LPS makes the IPEC-J2 cell line a suitable model for research on intestinal host pathogen interaction. PMID:21318186

  19. Slowly digestible starch influences mRNA abundance of glucose and short-chain fatty acid transporters in the porcine distal intestinal tract.

    PubMed

    Woodward, A D; Regmi, P R; Gänzle, M G; van Kempen, T A T G; Zijlstra, R T

    2012-12-01

    The relationship between starch chemistry and intestinal nutrient transporters is not well characterized. We hypothesized that inclusion of slowly instead of rapidly digestible starch in pig diets will decrease glucose and increase short-chain fatty acid (SCFA) transporter expression in the distal gut. Weaned barrows (n = 32) were fed 4 diets containing 70% starch [ranging from 0 to 63% amylose and from 1.06 (rapidly) to 0.22%/min (slowly) rate of in vitro digestion] at 3 × maintenance energy requirement in a complete randomized block design. Ileal and colon mucosa was collected on day 21 to quantify mRNA abundance of Na(+)-dependent glucose transporter 1 (SGLT1), monocarboxylic acid transporter 1 (MCT1), and Na(+)-coupled monocarboxylate transporter (SMCT). Messenger RNA was extracted and cDNA manufactured prior to relative quantitative reverse transcription PCR. Data were analyzed using the 2(-Δ ΔC)(T) method, with β-actin and glyceraldehyde-3-phosphate dehydrogenase as reference genes, and regression analysis was performed. As in vitro rate of digestion decreased, SGLT1 linearly increased (P < 0.05) in the ileum. Contrary to SGLT1, MCT1 tended to linearly decrease (P = 0.08) in the ileum and increased quadratically (P < 0.001) in the colon with decreasing rate of digestion. Starch digestion rate did not affect SMCT in the ileum; however, colonic SMCT quadratically decreased (P < 0.01) with decreasing rate of digestion. In conclusion, in contrast to our hypothesis, slowly digestible starch increased ileal glucose and decreased ileal SCFA transporter mRNA abundance, possibly due to an increased glucose in the luminal ileum. Effects of starch on colonic SCFA transporter mRNA abundance were inconsistent. PMID:23365289

  20. Molecular cloning, tissue distribution, and functional analysis of porcine Akirin2.

    PubMed

    Chen, Xiaoling; Huang, Zhiqing; Jia, Gang; Wu, Xiuqun; Wu, Caimei

    2012-04-01

    Akirin2 is a recently discovered gene that is involved in innate immune response. In this study, the porcine Akirin2 gene was cloned. The full-length coding sequence (CDS) of porcine Akirin2 consists of 612 bp and encodes 203 amino acids with a molecular mass of 22493 kD. The homology tree analysis showed that the pig Akirin2 has closer genetic relationships and distance with the known mammalian Akirin2. Real time quantitative PCR analysis showed that the porcine Akirin2 transcript was most abundant in the lung, followed by the skeletal muscle, heart, liver, fat, thymus, lymph node, small intestine, kidney, and spleen. Overexpression of porcine Akirin2 increased expression of IL-6 in porcine jejunal epithelial cell line IPEC-J2 cells. Our data suggest that porcine Akirin2 could play an important role in intestinal immune regulation. PMID:22537061

  1. The Expression Pattern of MicroRNAs and the Associated Pathways Involved in the Development of Porcine Placental Folds That Contribute to the Expansion of the Exchange Surface Area.

    PubMed

    Liu, Ruize; Wang, Min; Su, Lijie; Li, Xiaoping; Zhao, Shuhong; Yu, Mei

    2015-09-01

    The development of the microscopically folded structure of the diffuse epitheliochorial placenta in pigs is important because it expands the surface area for maternal-fetal exchange, resulting in an increase in placental efficiency. To better understand the regulatory mechanisms involved in this process, we characterized miRNA expression profiles in porcine placentas during the initiation and establishment of placental fold development. A total of 42 miRNAs were found to be differentially expressed, and their putative target genes were predicted using four target prediction programs. Following a comparative analysis with published gene expression pattern data obtained from porcine placentas in the corresponding stages of placental fold development, only those genes that were negatively correlated with miRNA expression were retained for further function and pathway enrichment analysis. The results showed that the up-regulated miRNAs were associated mainly with extracellular matrix remodeling and tissue morphogenesis, while the down-regulated miRNAs were related to cell proliferation and signal transduction. Furthermore, we provide evidence that miR-130b may facilitate the expression of HPSE, which has been reported to be a regulator of the folding of the pig placenta, by suppressing the expression of PPARG. In addition, we also reveal that the miRNA-target pairs expressed in the pig placenta may trigger the degradation of the stromal matrix and basement membrane (miR-29a-COL1A2, COL3A1, and LAMC1) and regulate trophoblast epithelial cell adherens junctions (the miR-200 family and miR-205-ZEB2-CDH1) and proliferation (miR-17-92 cluster-HBP1 and ULK1). Taken together, these results indicate that miRNAs and related pathways may have potential roles in porcine placental fold development. PMID:26157073

  2. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    SciTech Connect

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  3. The first case of porcine epidemic diarrhea in Canada

    PubMed Central

    Ojkic, Davor; Hazlett, Murray; Fairles, Jim; Marom, Anna; Slavic, Durda; Maxie, Grant; Alexandersen, Soren; Pasick, John; Alsop, Janet; Burlatschenko, Sue

    2015-01-01

    In January, 2014, increased mortality was reported in piglets with acute diarrhea on an Ontario farm. Villus atrophy in affected piglets was confined to the small intestine. Samples of colon content were PCR-positive for porcine epidemic diarrhea virus (PEDV). Other laboratory tests did not detect significant pathogens, confirming this was the first case of PED in Canada. PMID:25694663

  4. Molecular characterization and expression of porcine Siglec-5.

    PubMed

    Escalona, Z; Álvarez, B; Uenishi, H; Toki, D; Yuste, M; Revilla, C; Gómez del Moral, M; Alonso, F; Ezquerra, A; Domínguez, J

    2014-05-01

    In this study we describe the characterization of the porcine orthologue of Siglec-5. A cDNa clone was obtained from a porcine cDNa library derived from swine small intestine which encodes a 555 a-a type 1 transmembrane protein with sequence homology to human Siglec-5. This protein consists of four Ig-like domains, a transmembrane region, and a cytoplasmic tail with two tyrosine-based signalling motifs. When expressed as a recombinant protein fused to the Fc region of human IgG1, porcine Siglec-5 was able to bind porcine red blood cells in a sialic acid-dependent manner. Monoclonal antibodies (mAb) were developed against porcine Siglec-5 and used to analyse its expression in bone marrow and blood cells, and lymphoid tissues. Porcine Siglec-5 expression was mainly restricted to myelomonocytic cells and their precursors, being detected also, although at low levels, on plasmacytoid dendritic cells and B lymphocytes. In lymphoid tissues, ellipsoids of the spleen and subcapsular and medullar sinuses of lymph nodes were positive for Siglec-5. These mAbs were able to precipitate, from granulocyte lysates, a protein of approximately 85 kDa under non-reducing conditions, indicating that porcine Siglec-5 is expressed as a monomer in the plasma membrane. PMID:24382335

  5. Intestinal leiomyoma

    MedlinePlus

    Leiomyoma - intestine ... McLaughlin P, Maher MM. The duodenum and small intestine. In: Adam A, Dixon AK, Gillard JH, Schaefer- ... Roline CE, Reardon RF. Disorders of the small intestine. In: Marx JA, Hockberger RS, Walls RM, et ...

  6. Intestinal Cancer

    MedlinePlus

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  7. Novel porcine repetitive elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of 220 fully sequenced porcine BACs generated by the Comparative Vertebrate Sequencing Initiative (http://www.nisc.nih.gov/) revealed 27 distinct, novel porcine repetitive elements ranging in length from 55 to 1059 nucleotides. This set of fully sequenced BACs covers approximately 1% of...

  8. Immunohistochemistry of porcine skin.

    PubMed

    Wollina, U; Berger, U; Mahrle, G

    1991-01-01

    The present paper reports immunohistological findings in porcine skin, which were obtained by use of mono- and polyclonal antihuman antibodies and either alkaline phosphatase anti-alkaline phosphatase (APAAP) or peroxidase (POX) technique. Epidermal staining was observed with antibodies to keratins (K 8.12, RSKE 60), filaggrin, and calmodulin (ACAM). Staining of connective tissue and vessels was achieved using antibodies to vimentin (V9(1)), collagen type IV, and fibronectin. In general, these antibodies gave a staining pattern similar to that of normal human skin. The similarities of immunoreactivity to poly- and monoclonal antihuman antibodies in porcine and human skin render porcine skin a reliable model in biomedical research. PMID:1710864

  9. Multispectral tissue characterization for intestinal anastomosis optimization

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  10. Multispectral tissue characterization for intestinal anastomosis optimization.

    PubMed

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N D; Decker, Ryan; Kim, Peter C W; Kang, Jin U; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement. PMID:26440616

  11. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells.

    PubMed

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-04-01

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. PMID:25681796

  12. Intestinal Malrotation

    MedlinePlus

    ... the intestines don't position themselves normally during fetal development and aren't attached inside properly as a result. The exact reason this occurs is unknown. When a fetus develops in the womb, the intestines start out ...

  13. Intestinal obstruction

    MedlinePlus

    ... of the major causes of intestinal obstruction in infants and children. Causes of paralytic ileus may include: Bacteria or viruses that cause intestinal infections ( gastroenteritis ) Chemical, electrolyte, or mineral imbalances (such as decreased ...

  14. Intestine Transplant

    MedlinePlus

    ... intestine segment, most intestine transplants involve a whole organ from a deceased donor. In addition, most intestine transplants are performed in ... blood before surgery. I am looking for ... allocation About UNOS Being a living donor Calculator - CPRA Calculator - KDPI Calculator - LAS Calculator - MELD ...

  15. Different virulence of porcine and porcine-like bovine rotavirus strains with genetically nearly identical genomes in piglets and calves

    PubMed Central

    2013-01-01

    Direct interspecies transmissions of group A rotaviruses (RVA) have been reported under natural conditions. However, the pathogenicity of RVA has never been directly compared in homologous and heterologous hosts. The bovine RVA/Cow-tc/KOR/K5/2004/G5P[7] strain, which was shown to possess a typical porcine-like genotype constellation similar to that of the G5P[7] prototype RVA/Pig-tc/USA/OSU/1977/G5P9[7] strain, was examined for its pathogenicity and compared with the porcine G5P[7] RVA/Pig-tc/KOR/K71/2006/G5P[7] strain possessing the same genotype constellation. The bovine K5 strain induced diarrhea and histopathological changes in the small intestine of piglets and calves, whereas the porcine K71 strain caused diarrhea and histopathological changes in the small intestine of piglets, but not in calves. Furthermore, the bovine K5 strain showed extra-intestinal tropisms in both piglets and calves, whereas the porcine K71 strain had extra-intestinal tropisms in piglets, but not in calves. Therefore, we performed comparative genomic analysis of the K71 and K5 RVA strains to determine whether specific mutations could be associated with these distinct clinical and pathological phenotypes. Full-length sequencing analyses for the 11 genomic segments for K71 and K5 revealed that these strains were genetically nearly identical to each other. Two nucleotide mutations were found in the 5′ untranslated region (UTR) of NSP5 and the 3′ UTR of NSP3, and eight amino acid mutations in VP1-VP4 and NSP2. Some of these mutations may be critical molecular determinants for RVA virulence and/or pathogenicity. PMID:24083947

  16. Porcine astrovirus viremia and high genetic variability in pigs on large holdings in Croatia.

    PubMed

    Brnić, Dragan; Prpić, Jelena; Keros, Tomislav; Roić, Besi; Starešina, Vilim; Jemeršić, Lorena

    2013-03-01

    Astroviruses are emerging viral agents, primarily enteropathogenic in mammals, but recently have been acknowledged to have extra-intestinal implications in humans and mink. Porcine astrovirus is thought to be widely distributed and highly prevalent among pigs, nevertheless its clinical significance remains doubtful as it can be detected in diarrheic as well as in healthy pigs. Recent reports imply the immense genetic variability among porcine astrovirus strains with five distinct lineages being characterized so far. Herein, we report porcine astrovirus circulation in the blood of healthy pigs in different age categories bred on two large industrial holdings in Croatia, with viral RNA seroprevalence of 3.89%. These are the first extra-intestinal findings of astrovirus in pigs, indicating a more complex pathogenesis than previously thought. Partial polymerase sequences of serum-derived strains provisionally clustered into porcine astrovirus lineages 2 and 4, sharing high genetic identity with previously described porcine astrovirus strains. The results were supported by detecting porcine astrovirus strains in composite fecal samples, regardless of pig category or holding tested. Phylogenetic analysis of derived strains suggested the presence of porcine astrovirus lineages previously detected in pig sera with an additional highly genetically divergent lineage 5, reported for the first time in Europe. Moreover, the existence of possible sub lineages should not be excluded. The results obtained in the present study, contribute to knowledge of porcine astrovirus pathogenesis; even though it's possible clinical significance remains unclear. High fecal prevalence accompanied with vast genetic diversity on a relatively confined area, underscores the importance of pigs as porcine astrovirus reservoirs with eventual recombination events as a possible outcome. PMID:23313832

  17. Porcine models of digestive disease: the future of large animal translational research.

    PubMed

    Gonzalez, Liara M; Moeser, Adam J; Blikslager, Anthony T

    2015-07-01

    There is increasing interest in nonrodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia-reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine and mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine. PMID:25655839

  18. Intestinal transplantation.

    PubMed

    Rege, Aparna; Sudan, Debra

    2016-04-01

    Intestinal transplantation has now emerged as a lifesaving therapeutic option and standard of care for patients with irreversible intestinal failure. Improvement in survival over the years has justified expansion of the indications for intestinal transplantation beyond the original indications approved by Center for Medicare and Medicaid services. Management of patients with intestinal failure is complex and requires a multidisciplinary approach to accurately select candidates who would benefit from rehabilitation versus transplantation. Significant strides have been made in patient and graft survival with several advancements in the perioperative management through timely referral, improved patient selection, refinement in the surgical techniques and better understanding of the immunopathology of intestinal transplantation. The therapeutic efficacy of the procedure is well evident from continuous improvements in functional status, quality of life and cost-effectiveness of the procedure. This current review summarizes various aspects including current practices and evidence based recommendations of intestinal transplantation. PMID:27086894

  19. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids

    PubMed Central

    Finkbeiner, Stacy R.; Freeman, Jennifer J.; Wieck, Minna M.; El-Nachef, Wael; Altheim, Christopher H.; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S.; Grikscheit, Tracy C.; Teitelbaum, Daniel H.; Spence, Jason R.

    2015-01-01

    ABSTRACT Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. PMID:26459240

  20. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.

    PubMed

    Finkbeiner, Stacy R; Freeman, Jennifer J; Wieck, Minna M; El-Nachef, Wael; Altheim, Christopher H; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S; Grikscheit, Tracy C; Teitelbaum, Daniel H; Spence, Jason R

    2015-01-01

    Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. PMID:26459240

  1. INTESTINAL TRANSPLANTATION

    PubMed Central

    Tzakis, Andreas G.; Todo, Satoru; Starzl, Thomas E.

    2010-01-01

    Intestinal transplantation is often the only alternative form of treatment for patients dependent on total parenteral nutrition for survival. Although a limited number of intestinal transplantations have been performed, results with FK 506 immunosuppression are comparable to those for other organ transplants. The impact of successful intestinal transplantation on gastroenterology will likely be similar to the impact of kidney and liver transplantation on nephrology and hepatology. PMID:7515221

  2. Flavonol-rich fractions of yaupon holly leaves (Ilex vomitoria, Aquifoliaceae) induce microRNA-146a and have anti-inflammatory and chemopreventive effects in intestinal myofibroblast CCD-18Co cells.

    PubMed

    Noratto, Giuliana D; Kim, Youngmok; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2011-06-01

    Polyphenolics extracted from yaupon holly (Ilex vomitoria, Aquifoliaceae) (YH) leaves were investigated in human colon cells for their chemopreventive and anti-inflammatory activities. An activity-guided fractionation allowed the selection of YH flavonol-rich fraction due to its preferential inhibition of HT-29 colon cancer viability over the normal CCD-18Co colon cells. Quercetin and kaempferol 3-rutinosides, main components identified in this fraction, protected CCD-18Co cells against reactive oxidative species (ROS) in part due to increased activity of antioxidant enzymes. In addition, up-regulation of microRNA-146a (miR-146a) known as a negative regulator of pro-inflammatory NF-κB activation was the underlying molecular mechanism that protected CCD-18Co from inflammation. PMID:21262328

  3. Porcine deltacoronavirus: histological lesions and genetic characterization.

    PubMed

    Wang, Leyi; Hayes, Jeff; Sarver, Craig; Byrum, Beverly; Zhang, Yan

    2016-01-01

    First identified in 2012 in a surveillance study in Hong Kong, porcine deltacoronavirus (PDCoV) is a proposed member of the genus Deltacoronavirus of the family Coronaviridae. In February of 2014, PDCoV was detected in pigs with clinical diarrheal symptoms for the first time in the USA. Since then, it has been detected in more than 20 states in the USA and in other countries, including Canada, South Korea, and mainland China. So far, histological lesions in the intestines of pigs naturally infected with PDCoV under field conditions have not been reported. In this report, we describe the characteristic histological lesions in the small intestine that were associated with PDCoV infection, as evidenced by detection of viral nucleic acid by RT-PCR. In addition, we performed genomic analysis to determine the genetic relationship of all PDCoV strains from the four countries. We found that PDCoV mainly caused histological lesions in the small intestines of naturally infected piglets. Sequence analysis demonstrated that the PDCoV strains of different countries are closely related and shared high nucleotide sequence similarity; however, deletion patterns in the spike and 3' untranslated regions are different among the strains from mainland China, Hong Kong, the USA, and South Korea. Our study highlights the fact that continual surveillance is needed to trace the evolution of this virus. PMID:26475155

  4. Carbohydrate-binding specificities of potential probiotic Lactobacillus strains in porcine jejunal (IPEC-J2) cells and porcine mucin.

    PubMed

    Valeriano, Valerie Diane; Bagon, Bernadette B; Balolong, Marilen P; Kang, Dae-Kyung

    2016-07-01

    Bacterial lectins are carbohydrate-binding adhesins that recognize glycoreceptors in the gut mucus and epithelium of hosts. In this study, the contribution of lectin-like activities to adhesion of Lactobacillus mucosae LM1 and Lactobacillus johnsonii PF01, which were isolated from swine intestine, were compared to those of the commercial probiotic Lactobacillus rhamnosus GG. Both LM1 and PF01 strains have been reported to have good adhesion ability to crude intestinal mucus of pigs. To confirm this, we quantified their adhesion to porcine gastric mucin and intestinal porcine enterocytes isolated from the jejunum of piglets (IPEC-J2). In addition, we examined their carbohydrate-binding specificities by suspending bacterial cells in carbohydrate solutions prior to adhesion assays. We found that the selected carbohydrates affected the adherences of LM1 to IPEC-J2 cells and of LGG to mucin. In addition, compared to adhesion to IPEC-J2 cells, adhesion to mucin by both LM1 and LGG was characterized by enhanced specific recognition of glycoreceptor components such as galactose, mannose, and N-acetylglucosamine. Hydrophobic interactions might make a greater contribution to adhesion of PF01. A similar adhesin profile between a probiotic and a pathogen, suggest a correlation between shared pathogen-probiotic glycoreceptor recognition and the ability to exclude enteropathogens such as Escherichia coli K88 and Salmonella Typhimurium KCCM 40253. These findings extend our understanding of the mechanisms of the intestinal adhesion and pathogen-inhibition abilities of probiotic Lactobacillus strains. PMID:27350617

  5. Intestinal Parasitoses.

    ERIC Educational Resources Information Center

    Lagardere, Bernard; Dumburgier, Elisabeth

    1994-01-01

    Intestinal parasites have become a serious public health problem in tropical countries because of the climate and the difficulty of achieving efficient hygiene. The objectives of this journal issue are to increase awareness of the individual and collective repercussions of intestinal parasites, describe the current conditions of contamination and…

  6. Intestinal Cancer

    MedlinePlus

    ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason Blood in the stool A lump in the abdomen Imaging tests that create pictures of the small ... help diagnose intestinal cancer and show whether it has spread. Surgery is ...

  7. Intestinal perfusion monitoring using photoplethysmography

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  8. Expression and genomic imprinting of the porcine Rasgrf1 gene.

    PubMed

    Ding, Yue-Yun; Liu, Li-Yuan; Zhou, Jie; Zhang, Xiao-Dong; Huang, Long; Zhang, Shu-Jing; Yin, Zong-Jun

    2014-02-25

    Imprinted genes play important roles in mammalian growth, development and behavior. The Rasgrf1 (Ras protein-specific guanine nucleotide exchange factor 1) gene has been identified as an imprinted gene in mouse and rat. In the present study, we detected its sequence, imprinting status and expression pattern in the domestic pigs. A 228 bp partial sequence located in exon 14 and a 193 bp partial sequence located in exon 1 of the Rasgrf1 gene in domestic pigs were obtained. A G/A transition, was identified in Rasgrf1 exon 14, and then, the reciprocal Berkshire × Wannan black F1 hybrid model and the RT-PCR-RFLP method were used to detect the imprinting status of porcine Rasgrf1 gene at the developmental stage of 1-day-old. The expression profile results indicated that the porcine Rasgrf1 mRNA was highly expressed in brain, pituitary and pancreas, followed by kidney, stomach, lung, testis, small intestine, ovary, spleen and liver, and at low levels of expression in longissimus dorsi, heart, and backfat. The expression levels of Rasgrf1 gene in brain, pituitary and pancreas tissues were significantly different between the two reciprocal F1 hybrids. Imprinting analysis showed that porcine Rasgrf1 gene was maternally expressed in the liver, small intestine, paternally expressed in the lung, but biallelically expressed in brain, heart, spleen, kidney, stomach, pancreas, backfat, testis, ovary, longissimus dorsi and pituitary tissues. PMID:24342659

  9. Intestinal steroidogenesis.

    PubMed

    Bouguen, Guillaume; Dubuquoy, Laurent; Desreumaux, Pierre; Brunner, Thomas; Bertin, Benjamin

    2015-11-01

    Steroids are fundamental hormones that control a wide variety of physiological processes such as metabolism, immune functions, and sexual characteristics. Historically, steroid synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 years, a significant number of studies have demonstrated that steroids could also be synthesized or metabolized by other organs. According to these studies, the intestine appears to be a major source of de novo produced glucocorticoids as well as a tissue capable of producing and metabolizing sex steroids. This finding is based on the detection of steroidogenic enzyme expression as well as the presence of bioactive steroids in both the rodent and human gut. Within the intestinal mucosa, the intestinal epithelial cell layer is one of the main cellular sources of steroids. Glucocorticoid synthesis regulation in the intestinal epithelial cells is unique in that it does not involve the classical positive regulator steroidogenic factor-1 (SF-1) but a closely related homolog, namely the liver receptor homolog-1 (LRH-1). This local production of immunoregulatory glucocorticoids contributes to intestinal homeostasis and has been linked to pathophysiology of inflammatory bowel diseases. Intestinal epithelial cells also possess the ability to metabolize sex steroids, notably estrogen; this mechanism may impact colorectal cancer development. In this review, we contextualize and discuss what is known about intestinal steroidogenesis and regulation as well as the key role these functions play both in physiological and pathological conditions. PMID:25560486

  10. Intestinal obstruction

    MedlinePlus

    Obstruction of the bowel may due to: A mechanical cause, which means something is in the way ... lung disease Use of certain medicines, especially narcotics Mechanical causes of intestinal obstruction may include: Adhesions or ...

  11. Interleukin-8, CXCL1, and MicroRNA miR-146a Responses to Probiotic Escherichia coli Nissle 1917 and Enteropathogenic E. coli in Human Intestinal Epithelial T84 and Monocytic THP-1 Cells after Apical or Basolateral Infection.

    PubMed

    Sabharwal, Harshana; Cichon, Christoph; Ölschläger, Tobias A; Sonnenborn, Ulrich; Schmidt, M Alexander

    2016-09-01

    Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side. PMID:27297392

  12. Small Intestine Disorders

    MedlinePlus

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  13. The action of porcine glucagon on the motility of the canine duodenum and jejunum.

    PubMed Central

    Evans, D. F.; Foster, G. E.; Hardcastle, J. D.; Jonhson, F.; Wright, J. W.

    1982-01-01

    1 Intravenous bolus doses of porcine glucagon of 0.001-0.05 mg kg-1 caused intense stimulation of the duodenum and jejunum of the dog. 2 Intravenous infusion of porcine glucagon at 0.025-0.05 mg kg-1 h-1 caused similar stimulation. In both cases the stimulation was phasic in nature. 3 Stimulation of the duodenum and jejunum following glucagon was accompanied by a decrease in frequency of the intestinal basic electrical rhythm (BER). No change was seen in the intervals between successive periods of phase III motor activity. PMID:7093585

  14. Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review

    PubMed Central

    SUN, Dongbo; WANG, Xinyu; WEI, Shan; CHEN, Jianfei; FENG, Li

    2015-01-01

    Porcine epidemic diarrhea (PED) is an intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV); manifestations of the disease are diarrhea, vomiting and dehydration. Starting from the end of 2010, a PED outbreak occurred in several pig-producing provinces in southern China. Subsequently, the disease spread throughout the country and caused enormous economic losses to the pork industry. Accumulating studies demonstrated that new PEDV variants that appeared in China were responsible for the PED outbreak. In the current mini-review, we summarize PEDV epidemiology and vaccination in China. PMID:26537549

  15. Porcine pancreatic lipase related protein 2 has high triglyceride lipase activity in the absence of colipase.

    PubMed

    Xiao, Xunjun; Ross, Leah E; Sevilla, Wednesday A; Wang, Yan; Lowe, Mark E

    2013-09-01

    Efficient dietary fat digestion is essential for newborns who consume more dietary fat per body weight than at any other time of life. In many mammalian newborns, pancreatic lipase related protein 2 (PLRP2) is the predominant duodenal lipase. Pigs may be an exception since PLRP2 expression has been documented in the intestine but not in the pancreas. Because of the differences in tissue-specific expression, we hypothesized that the kinetic properties of porcine PLRP2 would differ from those of other mammals. To characterize its properties, recombinant porcine PLRP2 was expressed in HEK293T cells and purified to homogeneity. Porcine PLRP2 had activity against tributyrin, trioctanoin and triolein. The activity was not inhibited by bile salts and colipase, which is required for the activity of pancreatic triglyceride lipase (PTL), minimally stimulated PLRP2 activity. Similar to PLRP2 from other species, PLRP2 from pigs had activity against galactolipids and phospholipids. Importantly, porcine PLRP2 hydrolyzed a variety of dietary substrates including pasteurized human mother's milk and infant formula and its activity was comparable to that of PTL. In conclusion, porcine PLRP2 has broad substrate specificity and has high triglyceride lipase activity even in the absence of colipase. The data suggest that porcine PLRP2 would be a suitable lipase for inclusion in recombinant preparations for pancreatic enzyme replacement therapy. PMID:23770034

  16. Porcine prion protein amyloid

    PubMed Central

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  17. Let-7g induces granulosa cell apoptosis by targeting MAP3K1 in the porcine ovary.

    PubMed

    Cao, Rui; Wu, Wangjun; Zhou, Xiaolong; Liu, Kaiqing; Li, Bojiang; Huang, Xianju; Zhang, Yu; Liu, Honglin

    2015-11-01

    Follicular atresia mainly results from apoptosis of granulosa cells (GCs). Our previous microRNA array data indicated that the miRNA let-7g level increases significantly during porcine ovary follicular atresia. It is uncertain if GCs apoptosis is mediated by microRNA let-7g. In this study, the expression levels of the apoptosis-associated genes CASP3, BAX and BIM were significantly upregulated when let-7g mimic was transfected into porcine GCs, and the anti-apoptotic genes BCL-2 and MCL-1 were significantly downregulated. The apoptosis rate was measured by flow cytometry, and our results indicated that let-7g significantly enhanced GCs apoptosis. In further studies, we found that overexpression of let-7g induced the expression of FoxO1 in GCs and led to nuclear accumulation of dephosphorylated FoxO1. In addition, the effect of let-7g on FoxO1 expression and dephosphorylation resulted from repression of the expression of the MAP3K1 gene in porcine GCs. The site on MAP3K1 mRNA targeted by let-7g was confirmed by luciferase reporter assay. The anti-apoptotic effect of MAP3K1 was validated by silencing MAP3K1 using small interfering RNA technology. In conclusion, our data indicate that let-7g induces porcine GCs apoptosis by inhibiting the MAP3K1 gene, which promotes FoxO1 expression and dephosphorylation with nuclear accumulation. PMID:26299328

  18. An in vivo characterization of colostrum protein uptake in porcine gut during early lactation.

    PubMed

    Danielsen, Marianne; Pedersen, Lene Juul; Bendixen, Emøke

    2011-01-01

    Understanding the bioactive roles of colostrum proteins has gained much attention, and in particular, their potential use in human and veterinary medicine has been extensively studied. However, studies of bioactivity have mainly been conducted in vitro, but it has not yet been well characterized at the individual protein level which colostrum components are internalized by the intestinal tissue of the neonate. The aim of this study was to characterize the in vivo processing of porcine colostrum in the gastrointestinal tract, and describe which of the potential bioactive proteins can be observed in the small intestinal tissue, and therefore may be functionally important. Using 2D-LC-MS/MS analysis we mapped the proteins in porcine colostrum. The colostrum proteins were then traced in the stomach content, as well as in the small intestinal tissue of 5 piglets suckled for 24h. For comparison, we also mapped the proteins present in the intestinal tissue of a newborn piglet that had not received colostrum. This analysis allowed us to identify the colostrum proteins that are internalized and retained in the tissue from the small intestine, indicating their functional importance. Our studies have shown that in early lactation, some colostrum proteins are protected against proteolytic degradation in the stomach. Furthermore, colostrum proteins with immuno-protective, antimicrobial or other bioactive functions are more prone to uptake in the small intestine than the caseins and beta-lactoglobulin, which are amongst the most abundant in colostrum. PMID:20831910

  19. Intestinal Obstruction

    MedlinePlus

    ... the small intestine (duodenum) may be caused by cancer of the pancreas, scarring from an ulcer, or Crohn disease . Rarely, a gallstone, a mass of undigested food, or a collection of parasitic worms may block ... commonly caused by cancer, diverticulitis , or a hard lump of stool (fecal ...

  20. Isolation, sequence identification and tissue expression profiles of 3 novel porcine genes: ASPA, NAGA, and HEXA.

    PubMed

    Shu, Xianghua; Liu, Yonggang; Yang, Liangyu; Song, Chunlian; Hou, Jiafa

    2008-01-01

    The complete coding sequences of 3 porcine genes - ASPA, NAGA, and HEXA - were amplified by the reverse transcriptase polymerase chain reaction (RT-PCR) based on the conserved sequence information of the mouse or other mammals and referenced pig ESTs. These 3 novel porcine genes were then deposited in the NCBI database and assigned GeneIDs: 100142661, 100142664 and 100142667. The phylogenetic tree analysis revealed that the porcine ASPA, NAGA, and HEXA all have closer genetic relationships with the ASPA, NAGA, and HEXA of cattle. Tissue expression profile analysis was also carried out and results revealed that swine ASPA, NAGA, and HEXA genes were differentially expressed in various organs, including skeletal muscle, the heart, liver, fat, kidney, lung, and small and large intestines. Our experiment is the first one to establish the foundation for further research on these 3 swine genes. PMID:18670062

  1. Discovery of MicroRNAs Associated with Myogenesis by Deep Sequencing of Serial Developmental Skeletal Muscles in Pigs

    PubMed Central

    Hou, Xinhua; Tang, Zhonglin; Liu, Honglin; Wang, Ning; Ju, Huiming; Li, Kui

    2012-01-01

    MicroRNAs (miRNAs) are short, single-stranded non-coding RNAs that repress their target genes by binding their 3′ UTRs. These RNAs play critical roles in myogenesis. To gain knowledge about miRNAs involved in the regulation of myogenesis, porcine longissimus muscles were collected from 18 developmental stages (33-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, 100- and 105-day post-gestation fetuses, 0 and 10-day postnatal piglets and adult pigs) to identify miRNAs using Solexa sequencing technology. We detected 197 known miRNAs and 78 novel miRNAs according to comparison with known miRNAs in the miRBase (release 17.0) database. Moreover, variations in sequence length and single nucleotide polymorphisms were also observed in 110 known miRNAs. Expression analysis of the 11 most abundant miRNAs were conducted using quantitative PCR (qPCR) in eleven tissues (longissimus muscles, leg muscles, heart, liver, spleen, lung, kidney, stomach, small intestine and colon), and the results revealed that ssc-miR-378, ssc-miR-1 and ssc-miR-206 were abundantly expressed in skeletal muscles. During skeletal muscle development, the expression level of ssc-miR-378 was low at 33 days post-coitus (dpc), increased at 65 and 90 dpc, peaked at postnatal day 0, and finally declined and maintained a comparatively stable level. This expression profile suggested that ssc-miR-378 was a new candidate miRNA for myogenesis and participated in skeletal muscle development in pigs. Target prediction and KEGG pathway analysis suggested that bone morphogenetic protein 2 (BMP2) and mitogen-activated protein kinase 1 (MAPK1), both of which were relevant to proliferation and differentiation, might be the potential targets of miR-378. Luciferase activities of report vectors containing the 3′UTR of porcine BMP2 or MAPK1 were downregulated by miR-378, which suggested that miR-378 probably regulated myogenesis though the regulation of these two genes. PMID:23284895

  2. Gene expression profiles in the intestine of lipopolysaccharide-challenged piglets.

    PubMed

    Yi, Dan; Hou, Yongqing; Wang, Lei; Zhao, Di; Ding, Binying; Wu, Tao; Chen, Hongbo; Liu, Yulan; Kang, Ping; Wu, Guoyao

    2016-01-01

    Bowel diseases are common in human and animals and are characterized by intestinal dysfunction and injury. A well-established porcine model of intestinal injury can be induced by lipopolysaccharide (LPS), an endotoxin released from the cell wall of pathogenic bacteria. LPS affects the expression of genes associated with intestinal immune response, mucosal growth, energy metabolism, absorption, mucosal barrier function, and antiviral function. Transcriptional analysis of intestinal genes reveals that the duodenum, jejunum, ileum and colon respond to LPS challenge in a similar pattern. Moreover, the jejunum and ileum exhibit greater responses to LPS challenge than the duodenum and colon with regard to gene expression. Additionally, over 85% of genes are co-expressed along the small and large intestines and there is a clear distinction in gene expression patterns amongst the different intestinal segments in pigs. These findings have important implications for underlying molecular mechanisms responsible for endotoxin-induced intestinal injury and dysfunction. PMID:26709789

  3. Detection and Characterization of Porcine Endogenous Retrovirus in Porcine Plasma and Porcine Factor VIII

    PubMed Central

    Takefman, Daniel M.; Wong, Susan; Maudru, Thomas; Peden, Keith; Wilson, Carolyn A.

    2001-01-01

    The pig genome contains porcine endogenous retroviruses (PERVs) capable of infecting human cells. Detection of infectious retrovirus in porcine peripheral blood mononuclear cells and endothelial cells suggested to us that pig plasma is likely to contain PERV. Both PERV env sequences and viral reverse transcriptase (RT) activity were detected in all plasma samples isolated from four NIH minipigs. To detect infectious virus from plasma, we performed a culture assay using three cell lines of feline, swine, and human origin that had previously been shown to be permissive for PERV. Infectious virus was successfully cultured from all four NIH minipig plasmas on the swine cell line ST-IOWA. Using RT-PCR with env-specific primers, we could detect expression of PERV class C envelope in the supernatant of ST-IOWA cells that had been exposed to each pig plasma. We next examined a pig plasma derivative, Hyate:C (porcine factor VIII), and found evidence of PERV particles, since all six lots examined were positive for PERV RNA and RT activity. However, infectious virus could not be detected in clinical lots of Hyate:C, suggesting that the manufacturing process might reduce the load of infectious virus to levels below detectable limits of the assay. Detection of infectious virus in porcine plasma confirms and extends the previous findings that certain porcine cells express PERV when manipulated in vitro and clearly demonstrates that there are porcine cells that express infectious PERV constitutively in vivo. PMID:11312325

  4. Improved Cell Line IPEC-J2, Characterized as a Model for Porcine Jejunal Epithelium

    PubMed Central

    Zakrzewski, Silke S.; Richter, Jan F.; Krug, Susanne M.; Jebautzke, Britta; Lee, In-Fah M.; Rieger, Juliane; Sachtleben, Monika; Bondzio, Angelika; Schulzke, Jörg D.; Fromm, Michael; Günzel, Dorothee

    2013-01-01

    Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances (TER) and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of barrier-relevant tight junction (TJ) proteins, adequate TER and transport function, and reaction to secretagogues. For this, IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS) or species-specific (porcine serum, PS) conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under PS conditions (IPEC-J2/PS), compared to conventional FBS culture (IPEC-J2/FBS), the cell height increased 6-fold while the cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig jejunocytes than ever reported since the cell line’s initial establishment in 1989. In conclusion, IPEC-J2, if cultured under defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function. PMID:24260272

  5. Improved cell line IPEC-J2, characterized as a model for porcine jejunal epithelium.

    PubMed

    Zakrzewski, Silke S; Richter, Jan F; Krug, Susanne M; Jebautzke, Britta; Lee, In-Fah M; Rieger, Juliane; Sachtleben, Monika; Bondzio, Angelika; Schulzke, Jörg D; Fromm, Michael; Günzel, Dorothee

    2013-01-01

    Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances (TER) and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of barrier-relevant tight junction (TJ) proteins, adequate TER and transport function, and reaction to secretagogues. For this, IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS) or species-specific (porcine serum, PS) conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under PS conditions (IPEC-J2/PS), compared to conventional FBS culture (IPEC-J2/FBS), the cell height increased 6-fold while the cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig jejunocytes than ever reported since the cell line's initial establishment in 1989. In conclusion, IPEC-J2, if cultured under defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function. PMID:24260272

  6. [Intestinal endometriosis].

    PubMed

    González Rodríguez, C I; Cires, M; Jiménez, F J; Rubio, T

    2008-01-01

    Endometriosis is a chronic, benign gynaecological disorder that is frequent in women of a child-bearing age. It is estimated that there is some degree of endometriosis in as many as 15% of pre-menopausal women, associated with a history of infertility, caesarean antecedents, dysmenorrhoea and abnormality in uterine bleeding. It is believed to be due to the rise of menstrual contents through the Fallopian tubes (retrograde menstruation). In the intestinal affectation, the colon is the segment most frequently affected, above all at the rectosigmoidal level. The clinical features are unspecific, with abdominal pain the most frequent and/or pelvic pain of a cholic type that coincides with, or is exacerbated by, menstruation. Differential diagnosis includes intestinal inflammatory disease, diverticulitis, ischemic colitis and neoplastic processes, with the definitive diagnosis being anatomopathological. With respect to treatment, this will depend on the clinical features and the age of the patient, as well as her wishes with regard to pregnancy. PMID:18953367

  7. Intestinal spirochaetosis

    PubMed Central

    Lee, F. D.; Kraszewski, A.; Gordon, J.; Howie, J. G. R.; McSeveney, D.; Harland, W. A.

    1971-01-01

    An abnormal condition of the large intestine is described in which the surface epithelium is infested by short spirochaetes. Diagnosis can be made by light microscopy. A review of 14 cases diagnosed by rectal biopsy and 62 cases involving the appendix shows no consistent symptom complex. The possible significance is discussed. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 1 PMID:5548558

  8. INTESTINAL OBSTRUCTION

    PubMed Central

    Cole, Warren H.

    1950-01-01

    Despite improvements in knowledge of the pathologic physiology of intestinal obstruction, the introduction of gastrointestinal decompression, and more effective antibiotics, obstruction remains a serious disease with a high mortality rate. Although the diagnosis is often obscure, it can usually be made with a fair degree of accuracy by the history alone; pain is fairly constant and characteristically is of a cramping type simulated by very few other lesions. Distention is present in low lesions but absent in high lesions; on the contrary, vomiting is minimal in low lesions but prominent in high lesions. Visible peristaltic waves are almost pathognomonic of intestinal obstruction. Increased peristaltic sounds, as noted by auscultation, are extremely helpful in diagnosis; they are absent in paralytic ileus. Although intestinal obstruction is a surgical lesion, it must be remembered that in the type produced by adhesions the obstruction can be relieved by gastrointestinal decompression in 80 to 90 per cent of cases. Operation is usually indicated a short time after relief because of the probability of recurrence. In practically all other types of obstruction decompression is indicated only while the patient is being prepared for operation. Obviously any type of strangulation demands early operation. Strangulation can usually be diagnosed, particularly if it develops while the patient is under observation. Increase in pain, muscle spasm and pulse rate are important indications of development of strangulation. Dehydration and electrolytic imbalance are produced almost universally in high obstruction. Usually, it is unwise to wait until these two deficiencies are corrected before operation is undertaken, but correction must be well under way at the time of operation. Resections should be avoided in the presence of intestinal obstruction, but obviously will be necessary in strangulation. Operative technique must be expert and carried out with minimal trauma. Postoperative

  9. Small intestinal ischemia and infarction

    MedlinePlus

    ... small intestine; Atherosclerosis - small intestine; Hardening of the arteries - small intestine ... Embolus: Blood clots can block one of the arteries supplying the intestine. People who have had a ...

  10. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  11. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  12. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  13. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  14. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  15. Immunohistochemical localization of porcine diazepam-binding inhibitor (DBI) to rat endocrine pancreas.

    PubMed

    Johansson, O; Hilliges, M; Ostenson, C G; Sandberg, E; Efendic, S; Mutt, V

    1991-02-01

    The occurrence of diazepam-binding inhibitor (DBI), isolated and characterized from porcine upper intestine, was examined in the pancreas of Sprague-Dawley albino rats using indirect immunofluorescence. The polypeptide was found in the endocrine Langerhans islets and, utilizing double-labelling controls, it was shown to be present within the peripherally located glucagon-containing cells. Regulation of islet hormone production may therefore be under DBI control. PMID:2007259

  16. Coinfection by Cryptosporidium parvum and porcine circovirus type 2 in weaned pigs.

    PubMed

    Núñez, A; McNeilly, F; Perea, A; Sánchez-Cordón, P J; Huerta, B; Allan, G; Carrasco, L

    2003-06-01

    Routine histopathological diagnosis of one representative 3-month-old pig from a group suffering from diarrhoea revealed a massive degree of parasitation by Cryptosporidium parvum, with a concomitant infection by porcine circovirus type 2 (PCV2), that was confirmed by immunohistochemical procedures. The areas of intestine where parasites were more numerous presented abundant PCV2 infected cells in mucosa and submucosa. The concurrence of C. parvum, a rare primary intestinal pathogen in post-weaning and growing pigs, and PCV2 infections suggest an increased susceptibility as a result of an immunosuppression state. PMID:12864903

  17. Impact of porcine group A rotavirus co-infection on porcine epidemic diarrhea virus pathogenicity in piglets.

    PubMed

    Jung, Kwonil; Kang, Bo-Kyu; Lee, Chul-Seung; Song, Dae-Sub

    2008-06-01

    Porcine epidemic diarrhea virus (PEDV) and porcine group A rotavirus (PGAR) are the main causative agents of acute diarrhea in piglets. In South Korea, PGAR is prevalent in piglets naturally infected with PEDV. Piglets naturally co-infected with PEDV and PGAR appeared to have severe and prolonged diarrhea that was distinct from that commonly observed. The aim of this study was to determine the impact of PGAR co-infection on PEDV pathogenicity in piglets. Thirty-six colostrum-deprived, one-day old, Large White-Duroc crossbred pigs were randomly divided into four equal groups: PEDV, PEDV/PGAR, PGAR, and control groups. The piglets were euthanized at 1, 2, or 3 days post-inoculation (DPI) to measure the villous height:crypt depth (VH:CD) ratio and to collect fecal samples for RT-PCR and virus isolation. No significant differences in mean VH:CD ratio and clinical symptoms (diarrhea, vomiting, dehydration, and anorexia) were observed between the PEDV/PGAR-infected and PEDV-infected groups of piglets at 1, 2 and 3 DPI; however, at 2 and 3 DPI, PGAR was detected in all fecal samples by RT-PCR and virus isolation. These findings failed to detect any interaction between PEDV and porcine rotavirus in the small intestines of piglets, suggesting that concurrent infection of PGAR may not synergistically enhance intestinal villous atrophy of piglets with PEDV disease. We propose that the severe diarrhea exhibited in PEDV and PGAR co-infected piglets may be more associated with the immunity level of the host rather than to any synergistic effect of PGAR on PEDV enteritis. PMID:17727905

  18. Profiling the genome-wide DNA methylation pattern of porcine ovaries using reduced representation bisulfite sequencing

    PubMed Central

    Yuan, Xiao-Long; Gao, Ning; Xing, Yan; Zhang, Hai-Bin; Zhang, Ai-Ling; Liu, Jing; He, Jin-Long; Xu, Yuan; Lin, Wen-Mian; Chen, Zan-Mou; Zhang, Hao; Zhang, Zhe; Li, Jia-Qi

    2016-01-01

    Substantial evidence has shown that DNA methylation regulates the initiation of ovarian and sexual maturation. Here, we investigated the genome-wide profile of DNA methylation in porcine ovaries at single-base resolution using reduced representation bisulfite sequencing. The biological variation was minimal among the three ovarian replicates. We found hypermethylation frequently occurred in regions with low gene abundance, while hypomethylation in regions with high gene abundance. The DNA methylation around transcriptional start sites was negatively correlated with their own CpG content. Additionally, the methylation level in the bodies of genes was higher than that in their 5′ and 3′ flanking regions. The DNA methylation pattern of the low CpG content promoter genes differed obviously from that of the high CpG content promoter genes. The DNA methylation level of the porcine ovary was higher than that of the porcine intestine. Analyses of the genome-wide DNA methylation in porcine ovaries would advance the knowledge and understanding of the porcine ovarian methylome. PMID:26912189

  19. Profiling the genome-wide DNA methylation pattern of porcine ovaries using reduced representation bisulfite sequencing.

    PubMed

    Yuan, Xiao-Long; Gao, Ning; Xing, Yan; Zhang, Hai-Bin; Zhang, Ai-Ling; Liu, Jing; He, Jin-Long; Xu, Yuan; Lin, Wen-Mian; Chen, Zan-Mou; Zhang, Hao; Zhang, Zhe; Li, Jia-Qi

    2016-01-01

    Substantial evidence has shown that DNA methylation regulates the initiation of ovarian and sexual maturation. Here, we investigated the genome-wide profile of DNA methylation in porcine ovaries at single-base resolution using reduced representation bisulfite sequencing. The biological variation was minimal among the three ovarian replicates. We found hypermethylation frequently occurred in regions with low gene abundance, while hypomethylation in regions with high gene abundance. The DNA methylation around transcriptional start sites was negatively correlated with their own CpG content. Additionally, the methylation level in the bodies of genes was higher than that in their 5' and 3' flanking regions. The DNA methylation pattern of the low CpG content promoter genes differed obviously from that of the high CpG content promoter genes. The DNA methylation level of the porcine ovary was higher than that of the porcine intestine. Analyses of the genome-wide DNA methylation in porcine ovaries would advance the knowledge and understanding of the porcine ovarian methylome. PMID:26912189

  20. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane.

    PubMed

    Novakovic, Predrag; Huang, Yanyun Y; Lockerbie, Betty; Shahriar, Farshid; Kelly, John; Gordon, John R; Middleton, Dorothy M; Loewen, Matthew E; Kidney, Beverly A; Simko, Elemir

    2015-04-01

    F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization. PMID:25852227

  1. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane

    PubMed Central

    Novakovic, Predrag; Huang, Yanyun Y.; Lockerbie, Betty; Shahriar, Farshid; Kelly, John; Gordon, John R.; Middleton, Dorothy M.; Loewen, Matthew E.; Kidney, Beverly A.; Simko, Elemir

    2015-01-01

    F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization. PMID:25852227

  2. Porcine Dentin Sialophosphoprotein

    PubMed Central

    Yamakoshi, Yasuo; Lu, Yuhe; Hu, Jan C.-C.; Kim, Jung-Wook; Iwata, Takanori; Kobayashi, Kazuyuki; Nagano, Takatoshi; Yamakoshi, Fumiko; Hu, Yuanyuan; Fukae, Makoto; Simmer, James P.

    2008-01-01

    Dentin sialophosphoprotein (DSPP) is critical for proper mineralization of tooth dentin, and mutations in DSPP cause inherited dentin defects. Dentin phosphoprotein (DPP) is the C-terminal cleavage product of DSPP that binds collagen and induces intrafibrillar mineralization. We isolated DPP from individual pigs and determined that its N-terminal and C-terminal domains are glycosylated and that DPP averages 155 phosphates per molecule. Porcine DPP is unstable at low pH and high temperatures, and complexing with collagen improves its stability. Surprisingly, we observed DPP size variations on SDS-PAGE for DPP isolated from individual pigs. These variations are not caused by differences in proteolytic processing or degrees of phosphorylation or glycosylation, but rather to allelic variations in Dspp. Characterization of the DPP coding region identified 4 allelic variants. Among the 4 alleles, 27 sequence variations were identified, including 16 length polymorphisms ranging from 3 to 63 nucleotides. None of the length variations shifted the reading frame, and all localized to the highly redundant region of the DPP code. The 4 alleles encode DPP domains having 551, 575, 589, or 594 amino acids and completely explain the DPP size variations. DPP length variations are polymorphic and are not associated with dentin defects. PMID:18359767

  3. Large intestine (colon) (image)

    MedlinePlus

    The large intestine is the portion of the digestive system most responsible for absorption of water from the indigestible ... the ileum (small intestine) passes material into the large intestine at the cecum. Material passes through the ...

  4. MicroRNAs in hereditary diffuse gastric cancer

    PubMed Central

    Suárez-Arriaga, Mayra-Cecilia; Ribas-Aparicio, Rosa-María; Ruiz-Tachiquín, Martha-Eugenia

    2016-01-01

    In 2012, gastric cancer (GC) was the third cause of mortality due to cancer in men and women. In Central and South America, high mortality rates have been reported. A total of 95% of tumors developed in the stomach are of epithelial origin; thus, these are denominated adenocarcinomas of the stomach. Diverse classification systems have been established, among which two types of GC based on histological type and growth pattern have been described as follows: Intestinal (IGC) and diffuse (DGC). Approximately 1–3% of GC cases are associated with heredity. Hereditary-DGC (HDGC), with 80% penetrance, is an autosomal-type, dominant syndrome in which 40% of cases are carriers of diverse mutations of the CDH1 gene, which encodes for the cadherin protein. By contrast, microRNA are non-encoded, single-chain RNA molecules. These molecules regulate the majority of cellular functions at the post-transcriptional level. However, analysis of these interactions by means of Systems Biology has allowed the understanding of complex and heterogeneous diseases, such as cancer. These molecules are ubiquitous; however, their expression can be specific in different tissues either temporarily or permanently, depending on the stage of the cell. Due to the participation of microRNA in the processes of cellular proliferation, cell cycle control, apoptosis, differentiation and metabolism, these have been indicated to have a role in the development of cancerous processes, finding specific patterns of expression in different neoplasms, including GC, in which the microRNA expression profile is different in samples of non-cancerous versus cancerous tissues. A difference has been observed in the expression patterns of DGC and IGC. However, the role of microRNA in HDGC has not yet been established. The present study reviews the investigations that describe the participation of microRNA in the regulation of genes CDH1, RHOA, CTNNA1, INSR and TGF-β in different neoplasms, such as HDGC. PMID:27446532

  5. Phenotypic MicroRNA Microarrays

    PubMed Central

    Kwon, Yong-Jun; Heo, Jin Yeong; Kim, Hi Chul; Kim, Jin Yeop; Liuzzi, Michel; Soloveva, Veronica

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  6. Intestinal capillariasis.

    PubMed Central

    Cross, J H

    1992-01-01

    Intestinal capillariasis caused by Capillaria philippinensis appeared first in the Philippines and subsequently in Thailand, Japan, Iran, Egypt, and Taiwan, but most infections occur in the Philippines and Thailand. As established experimentally, the life cycle involves freshwater fish as intermediate hosts and fish-eating birds as definitive hosts. Embryonated eggs from feces fed to fish hatch and grow as larvae in the fish intestines. Infective larvae fed to monkeys, Mongolian gerbils, and fish-eating birds develop into adults. Larvae become adults in 10 to 11 days, and the first-generation females produce larvae. These larvae develop into males and egg-producing female worms. Eggs pass with the feces, reach water, embryonate, and infect fish. Autoinfection is part of the life cycle and leads to hyperinfection. Humans acquire the infection by eating small freshwater fish raw. The parasite multiplies, and symptoms of diarrhea, borborygmus, abdominal pain, and edema develop. Chronic infections lead to malabsorption and hence to protein and electrolyte loss, and death results from irreversible effects of the infection. Treatment consists of electrolyte replacement and administration of an antidiarrheal agent and mebendazole or albendazole. Capillariasis philippinensis is considered a zoonotic disease of migratory fish-eating birds. The eggs are disseminated along flyways and infect the fish, and when fish are eaten raw, the disease develops. Images PMID:1576584

  7. Difference in microRNA expression and editing profile of lung tissues from different pig breeds related to immune responses to HP-PRRSV.

    PubMed

    Li, Jia; Chen, Zhisheng; Zhao, Junlong; Fang, Liurong; Fang, Rui; Xiao, Jiang; Chen, Xing; Zhou, Ao; Zhang, Yingyin; Ren, Liming; Hu, Xiaoxiang; Zhao, Yaofeng; Zhang, Shujun; Li, Ning

    2015-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating diseases for the pig industry. Our goal was to identify microRNAs involved in the host immune response to PRRS. We generated microRNA expression profiles of lung tissues from Tongcheng or Landrace pigs infected with a highly pathogenic PRRS virus (PRRSV) at 3, 5, 7 dpi (day post infection) and control individuals from these two breeds. Our data showed that 278 known and 294 novel microRNAs were expressed in these combined microRNA transcriptomes. Compared with control individuals, almost half of the known microRNAs (116 in Tongcheng and 153 in Landrace) showed significantly differential expression (DEmiRNAs) at least once. The numbers of down-regulated DEmiRNAs were larger than the corresponding number of up-regulated DEmiRNAs in both breeds. Interestingly, miR-2320-5p, which was predicted to bind to conserved sequences of the PRRSV genome, was down-regulated significantly at 3 dpi after PRRSV infection in both breeds. In addition, PRRSV infection induced a significant increase of microRNA editing level in both breeds. Our results provide novel insight into the role of microRNA in response to PRRSV infection in vivo, which will aid the research for developing novel therapies against PRRSV. PMID:25856272

  8. Porcine Reproductive and Respiratory Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome (PRRS) first appeared in the late 1980s, though serologic evidence indicates that it had been circulating in swine for some time prior to being recognized. PRRS has since become a highly significant infectious disease affecting swine production worldwid...

  9. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia.

    PubMed

    Cao, Rui; Wu, Wang Jun; Zhou, Xiao Long; Xiao, Peng; Wang, Yi; Liu, Hong Lin

    2015-04-01

    Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death. PMID:25824548

  10. Porcine models of digestive disease: the future of large animal translational research

    PubMed Central

    Gonzalez, Liara M.; Moeser, Adam J.; Blikslager, Anthony T.

    2015-01-01

    There is increasing interest in non-rodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia/ reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine as well as to mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine. PMID:25655839

  11. Role of microRNAs in Alcohol-Induced Multi-Organ Injury

    PubMed Central

    Natarajan, Sathish Kumar; Pachunka, Joseph M.; Mott, Justin L.

    2015-01-01

    Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption. PMID:26610589

  12. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data. PMID:23666707

  13. The rate of co-infection for piglet diarrhea viruses in China and the genetic characterization of porcine epidemic diarrhea virus and porcine kobuvirus.

    PubMed

    Zhao, Z-P; Yang, Z; Lin, W-D; Wang, W-Y; Yang, J; Jin, W-J; Qin, A-J

    2016-03-01

    Piglet diarrhea epidemics result in major economic losses for the swine industry. Four viruses are closely linked to porcine diarrhea: porcine kobuvirus (PKV), porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and porcine rotavirus (PRoV). We have conducted an epidemiology study to determine the frequency of infection and co-infection with these viruses in China, and characterized the genetic variation of the isolated PEDV and PKV strains. Stool and intestinal samples (n = 314) were collected from piglets with diarrhea in China from years 2012 to 2014. RT-PCR was used to detect PKV, PEDV, TGEV, and PRoV. Phylogenetic relationships between reference strains and the isolated PEDV and PKV strains were determined based on the M and 3D gene sequence. The rates of infection with PKV, PEDV, TGEV and PRoV were 29.9%, 24.2%, 1.91%, and 0.31%, respectively. Co-infections with PKV and the other three viruses were very common. Co-infection of PKV and PEDV was detected in 15.0% (47/314) of the samples. Phylogenetic analysis of the PKV 3D gene indicated that there were some phylogenetic differences in the PKV strains across regions within China. However, according to the PEDV M gene, strains clustered into three groups and the primary group was distinct from the vaccine strain CV777. This study provides insights in to the prevalence of diarrhea viruses and their prevention and control in China. PMID:26982468

  14. MicroRNAome of Porcine Pre- and Postnatal Development

    PubMed Central

    Gu, Yiren; Zhang, Kai; Lang, Qiulei; Chen, Lei; Guan, Jiuqiang; Luo, Zonggang; Chen, Haosi; Li, Yang; Li, Qinghai; Li, Xiang; Jiang, An-an; Shuai, Surong; Wang, Jinyong; Zhu, Qi; Zhou, Xiaochuan; Gao, Xiaolian; Li, Xuewei

    2010-01-01

    The domestic pig is of enormous agricultural significance and valuable models for many human diseases. Information concerning the pig microRNAome (miRNAome) has been long overdue and elucidation of this information will permit an atlas of microRNA (miRNA) regulation functions and networks to be constructed. Here we performed a comprehensive search for porcine miRNAs on ten small RNA sequencing libraries prepared from a mixture of tissues obtained during the entire pig lifetime, from the fetal period through adulthood. The sequencing results were analyzed using mammalian miRNAs, the precursor hairpins (pre-miRNAs) and the first release of the high-coverage porcine genome assembly (Sscrofa9, April 2009) and the available expressed sequence tag (EST) sequences. Our results extend the repertoire of pig miRNAome to 867 pre-miRNAs (623 with genomic coordinates) encoding for 1,004 miRNAs, of which 777 are unique. We preformed real-time quantitative PCR (q-PCR) experiments for selected 30 miRNAs in 47 tissue-specific samples and found agreement between the sequencing and q-PCR data. This broad survey provides detailed information about multiple variants of mature sequences, precursors, chromosomal organization, development-specific expression, and conservation patterns. Our data mining produced a broad view of the pig miRNAome, consisting of miRNAs and isomiRs and a wealth of information of pig miRNA characteristics. These results are prelude to the advancement in pig biology as well the use of pigs as model organism for human biological and biomedical studies. PMID:20634961

  15. A quantitative PCR method to quantify ruminant DNA in porcine crude heparin.

    PubMed

    Concannon, Sean P; Wimberley, P Brett; Workman, Wesley E

    2011-01-01

    Heparin is a well-known glycosaminoglycan extracted from porcine intestines. Increased vigilance for transmissible spongiform encephalopathy in animal-derived pharmaceuticals requires methods to prevent the introduction of heparin from ruminants into the supply chain. The sensitivity, specificity, and precision of the quantitative polymerase chain reaction (PCR) make it a superior analytical platform for screening heparin raw material for bovine-, ovine-, and caprine-derived material. A quantitative PCR probe and primer set homologous to the ruminant Bov-A2 short interspersed nuclear element (SINE) locus (Mendoza-Romero et al. J. Food Prot. 67:550-554, 2004) demonstrated nearly equivalent affinities for bovine, ovine, and caprine DNA targets, while exhibiting no cross-reactivity with porcine DNA in the quantitative PCR method. A second PCR primer and probe set, specific for the porcine PRE1 SINE sequence, was also developed to quantify the background porcine DNA level. DNA extraction and purification was not necessary for analysis of the raw heparin samples, although digestion of the sample with heparinase was employed. The method exhibits a quantitation range of 0.3-3,000 ppm ruminant DNA in heparin. Validation parameters of the method included accuracy, repeatability, precision, specificity, range, quantitation limit, and linearity. PMID:21058016

  16. Mapping, expression and regulation of the TRα gene in porcine adipose tissue.

    PubMed

    Cai, Z-W; Sheng, Y-F; Zhang, L-F; Wang, Y; Jiang, X-L; Lv, Z-Z; Xu, N-Y

    2011-01-01

    Thyroid hormone receptors (TR) are members of the nuclear receptor superfamily. There are at least two TR isoforms, TRα and TRβ. The TRα isoform plays a critical role in mediating the action of thyroid hormone in adipose tissue. We mapped the porcine TRα gene to chromosome 12 p11-p13, by using the ImpRH panel. We examined tissue-localization of TRα and determined expression patterns of TRα in porcine adipose tissue with quantitative real-time PCR. TRα was expressed in all tissues, including heart, liver, spleen, stomach, pancreas, brain, small intestine, skeletal muscle, and subcutaneous adipose tissue. In the adipose tissue, the expression of TRα decreased postnatally. Compared to Yorkshire pigs, Jinhua pigs had significantly lower expression levels of TRα gene in the subcutaneous fat tissue. The expression levels of β2-AR, HSL and ATGL were also significantly lower in Jinhua pigs than in Yorkshire pigs. However, no significant differences in PPARγ and SREBP-1C expression levels were found between Jinhua and Yorkshire pigs. Incubation of porcine adipose tissue explants with high doses of isoproterenol (100 and 1000 nM) significantly increased the expression levels of TRα. We conclude that there is considerable evidence that TRα plays an important role in fat deposition in porcine adipose tissue. PMID:21751158

  17. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene

    PubMed Central

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3′ untranslated region (3′UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3′UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  18. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene.

    PubMed

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3' untranslated region (3'UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3'UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  19. Mechanical characterization of porcine corneas.

    PubMed

    Boschetti, F; Triacca, V; Spinelli, L; Pandolfi, A

    2012-03-01

    An experimental program has been carried out in order to investigate the mechanical behavior of porcine corneas. We report the results of inflation tests on the whole cornea and uniaxial tests on excised corneal strips, performed on 51 fresh porcine eyes. Uniaxial tests have been performed on specimens cut from previously inflated corneas. The cornea behavior is characterized by means of elastic stiffness, measured on both average pressure-apex displacement and average uniaxial stress-strain curves; and by means of transversal contraction coefficient, peak stress, and failure stress measured on uniaxial stress-strain curves. Uniaxial tests performed on excised strips allowed to measure the anisotropy in the corneal stiffness and to compare the stiffness of the cornea with the one of the sclera. Viscous properties of the cornea have been obtained through uniaxial relaxation curves on excised corneal strips. The relevant geometrical parameters have been measured and, with the aid of the elastic thin shell theory, a stress-strain curve has been derived from the average inflation test data and compared with similar data available in the literature. The experimental system has been developed in view of future applications to the mechanical testing of both porcine and human corneas. PMID:22482683

  20. MicroRNA processing without Dicer

    PubMed Central

    2010-01-01

    The canonical processing of precursor microRNAs requires the endonuclease Dicer. A recent study shows that microRNAs can be processed independently of Dicer but instead require Argonaute 2. PMID:20565849

  1. miR-26b Promotes Granulosa Cell Apoptosis by Targeting ATM during Follicular Atresia in Porcine Ovary

    PubMed Central

    Lin, Fei; Li, Ran; Pan, Zeng xiang; Zhou, Bo; Yu, De bing; Wang, Xu guang; Ma, Xue shan; Han, Jing; Shen, Ming; Liu, Hong lin

    2012-01-01

    More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA) regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro. PMID:22737216

  2. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold to another person to be finished for slaughtering over a period of more than 1 month; (b) for...

  3. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold to another person to be finished for slaughtering over a period of more than 1 month; (b) for...

  4. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  5. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  6. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  7. The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR.

    PubMed

    Lorsirigool, Athip; Saeng-Chuto, Kepalee; Temeeyasen, Gun; Madapong, Adthakorn; Tripipat, Thitima; Wegner, Matthew; Tuntituvanont, Angkana; Intrakamhaeng, Manakant; Nilubol, Dachrit

    2016-10-01

    Porcine deltacoronavirus (PDCoV) has been reported in many countries, including Hong Kong, the United States, South Korea, China and Thailand. In January 2016, clinical diarrhea similar to that of porcine epidemic diarrhea virus (PEDV) with a lower mortality rate was reported on a swine farm in Lao PDR. Intestine samples were collected from 3-day-old pigs with clinical diarrhea and assayed for the presence of swine enteric coronaviruses. The PCR results were positive for PDCoV but negative for PEDV and TGEV. A phylogenetic tree demonstrated that PDCoV from Lao PDR was grouped separately from PDCoV isolates from China and the USA, but was more closely related to the Chinese isolates than to the US isolates. The full-length genome sequence of the novel PDCoV isolate P1_16_BTL_0116 was determined. PMID:27424024

  8. Vasoactive intestinal peptide test

    MedlinePlus

    ... medlineplus.gov/ency/article/003508.htm Vasoactive intestinal peptide test To use the sharing features on this page, please enable JavaScript. Vasoactive intestinal peptide (VIP) is a test that measures the amount ...

  9. MicroRNAs and Epithelial Immunity

    PubMed Central

    Liu, Jun; Drescher, Kristen M.; Chen, Xian-Ming

    2009-01-01

    MicroRNAs are required for development and maintenance of the epithelial barrier. It is hypothesized that microRNAs are involved in regulating epithelial anti-microbial defenses by targeting key epithelial effector molecules and/or influencing intracellular signaling pathways. Additionally, aberrant microRNA expression has been implicated in the pathogenesis of various diseases at the skin and mucosa. Increased understanding of the role of microRNAs in epithelial immunoregulation and identification of microRNAs of pathogenetic significance will enhance our understanding of epithelial immunobiology and immunopathology. PMID:19811319

  10. Vertebrate Intestinal Endoderm Development

    PubMed Central

    Spence, Jason R.; Lauf, Ryan; Shroyer, Noah F.

    2010-01-01

    The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes. PMID:21246663

  11. Establishment of Intestinal Bacteriology

    PubMed Central

    MITSUOKA, Tomotari

    2014-01-01

    Research on intestinal bacteria began around the end of the 19th century. During the last 5 decades of the 20th century, research on the intestinal microbiota made rapid progress. At first, in my work, I first developed a method of comprehensive analysis of the intestinal microbiota, and then I established classification and identification methods for intestinal anaerobes. Using these methods I discovered a number of ecological rules governing the intestinal microbiota and the role of the intestinl microbiota in health and disease. Moreover, using germfree animals, it was proven that the intestinal microbiota has a role in carcinogenesis and aging in the host. Thus, a new interdisciplinary field, “intestinal bacteriology” was established. PMID:25032084

  12. Cysteine Protease Activity of Feline Tritrichomonas foetus Promotes Adhesion-Dependent Cytotoxicity to Intestinal Epithelial Cells

    PubMed Central

    Tolbert, M. K.; Stauffer, S. H.; Brand, M. D.

    2014-01-01

    Trichomonads are obligate protozoan parasites most renowned as venereal pathogens of the reproductive tract of humans and cattle. Recently, a trichomonad highly similar to bovine venereal Tritrichomonas foetus but having a unique tropism for the intestinal tract was recognized as a significant cause of colitis in domestic cats. Despite a high prevalence, worldwide distribution, and lack of consistently effective drugs for treatment of the infection, the cellular mechanisms of T. foetus pathogenicity in the intestinal tract have not been examined. The aims of this study were to determine the pathogenic effect of feline T. foetus on porcine intestinal epithelial cells, the dependence of T. foetus pathogenicity on adhesion of T. foetus to the intestinal epithelium, and the identity of mediators responsible for these effects. Using an in vitro coculture approach to model feline T. foetus infection of the intestinal epithelium, these studies demonstrate that T. foetus promotes a direct contact-dependent activation of intestinal epithelial cell apoptosis signaling and progressive monolayer destruction. Moreover, these pathological effects were demonstrated to be largely dependent on T. foetus cell-associated cysteine protease activity. Finally, T. foetus cysteine proteases were identified as enabling cytopathic effects by promoting adhesion of T. foetus to the intestinal epithelium. The present studies are the first to examine the cellular mechanisms of pathogenicity of T. foetus toward the intestinal epithelium and support further investigation of the cysteine proteases as virulence factors in vivo and as potential therapeutic targets for ameliorating the pathological effects of intestinal trichomonosis. PMID:24752513

  13. Cysteine protease activity of feline Tritrichomonas foetus promotes adhesion-dependent cytotoxicity to intestinal epithelial cells.

    PubMed

    Tolbert, M K; Stauffer, S H; Brand, M D; Gookin, J L

    2014-07-01

    Trichomonads are obligate protozoan parasites most renowned as venereal pathogens of the reproductive tract of humans and cattle. Recently, a trichomonad highly similar to bovine venereal Tritrichomonas foetus but having a unique tropism for the intestinal tract was recognized as a significant cause of colitis in domestic cats. Despite a high prevalence, worldwide distribution, and lack of consistently effective drugs for treatment of the infection, the cellular mechanisms of T. foetus pathogenicity in the intestinal tract have not been examined. The aims of this study were to determine the pathogenic effect of feline T. foetus on porcine intestinal epithelial cells, the dependence of T. foetus pathogenicity on adhesion of T. foetus to the intestinal epithelium, and the identity of mediators responsible for these effects. Using an in vitro coculture approach to model feline T. foetus infection of the intestinal epithelium, these studies demonstrate that T. foetus promotes a direct contact-dependent activation of intestinal epithelial cell apoptosis signaling and progressive monolayer destruction. Moreover, these pathological effects were demonstrated to be largely dependent on T. foetus cell-associated cysteine protease activity. Finally, T. foetus cysteine proteases were identified as enabling cytopathic effects by promoting adhesion of T. foetus to the intestinal epithelium. The present studies are the first to examine the cellular mechanisms of pathogenicity of T. foetus toward the intestinal epithelium and support further investigation of the cysteine proteases as virulence factors in vivo and as potential therapeutic targets for ameliorating the pathological effects of intestinal trichomonosis. PMID:24752513

  14. Biaxial mechanical modeling of the small intestine.

    PubMed

    Bellini, Chiara; Glass, Paul; Sitti, Metin; Di Martino, Elena S

    2011-11-01

    Capsule endoscopes are pill-size devices provided with a camera that capture images of the small intestine from inside the body after being ingested by a patient. The interaction between intestinal tissue and capsule endoscopes needs to be investigated to optimize capsule design while preventing tissue damage. To that purpose, a constitutive model that can reliably predict the mechanical response of the intestinal tissue under complex mechanical loading is required. This paper describes the development and numerical validation of a phenomenological constitutive model for the porcine duodenum, jejunum and ileum. Parameters characterizing the mechanical behavior of the material were estimated from planar biaxial test data, where intestinal tissue specimens were simultaneously loaded along the circumferential and longitudinal directions. Specimen-specific Fung constitutive models were able to accurately predict the planar stress-strain behavior of the tested samples under a wide range of loading conditions. To increase model generality, average anisotropic constitutive relationships were also generated for each tissue region by fitting average stress-strain curves to the Fung potential. Due to the observed variability in the direction of maximum stiffness, the average Fung models were less anisotropic than the specimen-specific models. Hence, average isotropic models in the Neo-Hookean and Mooney-Rivlin forms were attempted, but they could not adequately describe the degree of nonlinearity in the tissue. Values of the R2 for the nonlinear regressions were 0.17, 0.44 and 0.93 for the average Neo-Hookean, Mooney-Rivlin and Fung models, respectively. Average models were successfully implemented into FORTRAN routines and used to simulate capsule deployment with a finite element method analysis. PMID:22098873

  15. A porcine model of osteosarcoma

    PubMed Central

    Saalfrank, A; Janssen, K-P; Ravon, M; Flisikowski, K; Eser, S; Steiger, K; Flisikowska, T; Müller-Fliedner, P; Schulze, É; Brönner, C; Gnann, A; Kappe, E; Böhm, B; Schade, B; Certa, U; Saur, D; Esposito, I; Kind, A; Schnieke, A

    2016-01-01

    We previously produced pigs with a latent oncogenic TP53 mutation. Humans with TP53 germline mutations are predisposed to a wide spectrum of early-onset cancers, predominantly breast, brain, adrenal gland cancer, soft tissue sarcomas and osteosarcomas. Loss of p53 function has been observed in >50% of human cancers. Here we demonstrate that porcine mesenchymal stem cells (MSCs) convert to a transformed phenotype after activation of latent oncogenic TP53R167H and KRASG12D, and overexpression of MYC promotes tumorigenesis. The process mimics key molecular aspects of human sarcomagenesis. Transformed porcine MSCs exhibit genomic instability, with complex karyotypes, and develop into sarcomas on transplantation into immune-deficient mice. In pigs, heterozygous knockout of TP53 was sufficient for spontaneous osteosarcoma development in older animals, whereas homozygous TP53 knockout resulted in multiple large osteosarcomas in 7–8-month-old animals. This is the first report that engineered mutation of an endogenous tumour-suppressor gene leads to invasive cancer in pigs. Unlike in Trp53 mutant mice, osteosarcoma developed in the long bones and skull, closely recapitulating the human disease. These animals thus promise a model for juvenile osteosarcoma, a relatively uncommon but devastating disease. PMID:26974205

  16. Polarization-sensitive multispectral tissue characterization for optimizing intestinal anastomosis

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Triana, Brian; Shademan, Azad; Krieger, Axel; Kim, Peter C. W.; Kang, Jin U.

    2014-03-01

    A novel imaging system that recommends potential suture placement for anastomosis to surgeons is developed. This is achieved by a multispectral imaging system coupled with polarizers and image analysis software. We performed preliminary imaging of ex vivo porcine intestine to evaluate the system. Vulnerable tissue regions including blood vessels were successfully identified and segmented. Thickness of different tissue areas is visualized. Strategies towards optimal points for suture placements have been discussed. Preliminary data suggest our imaging platform and analysis algorithm may be useful in avoiding blood vessels, identifying optimal regions for suture placements to perform safer operations in possibly reduced time.

  17. Seed microRNA Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are key regulatory molecules that play critical roles in gene expression. The biological functions of miRNAs are important for developmental processes in plants and animals. Little is known about the functions of miRNAs in seeds. To gain a better understand-ing of the regulation o...

  18. Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8+ T-cell migration to the porcine gut

    PubMed Central

    Chen, Xiaojuan; Tu, Chongzhi; Qin, Tao; Zhu, Liqi; Yin, Yinyan; Yang, Qian

    2016-01-01

    The digestive tract is the entry site for transmissible gastroenteritis virus (TGEV). TGEV transmission can be prevented if local immunity is established with increased lymphocytes. The current parenteral mode of vaccination stimulates systemic immunity well, but it does not induce sufficient mucosal immunity. Retinoic acid (RA) plays an important role in the induction of cells that imprint gut-homing molecules. We examined whether RA assist parenteral vaccination of pigs could improve mucosal immunity. We demonstrated that elevated numbers of gut-homing CD8+ T cells (which express α4β7 and CCR9 molecules) were presented in porcine inguinal lymph nodes and were recruited to the small intestine by RA. Intestinal mucosal immunity (IgA titre) and systemic immunity (serum IgG titre) were enhanced by RA. Therefore, we hypothesized that RA could induce DCs to form an immature mucosal phenotype and could recruit them to the small intestinal submucosa. Porcine T-cells expressed β7 integrin and CCR9 receptors and migrated to CCL25 by a mechanism that was dependent of activation by RA-pretreated DCs, rather than direct activation by RA. Together, our results provide powerful evidence that RA can assist whole inactivated TGEV (WI-TGEV) via subcutaneous (s.c.) immunization to generate intestinal immunity, and offer new vaccination strategies against TGEV. PMID:27080036

  19. Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8(+) T-cell migration to the porcine gut.

    PubMed

    Chen, Xiaojuan; Tu, Chongzhi; Qin, Tao; Zhu, Liqi; Yin, Yinyan; Yang, Qian

    2016-01-01

    The digestive tract is the entry site for transmissible gastroenteritis virus (TGEV). TGEV transmission can be prevented if local immunity is established with increased lymphocytes. The current parenteral mode of vaccination stimulates systemic immunity well, but it does not induce sufficient mucosal immunity. Retinoic acid (RA) plays an important role in the induction of cells that imprint gut-homing molecules. We examined whether RA assist parenteral vaccination of pigs could improve mucosal immunity. We demonstrated that elevated numbers of gut-homing CD8(+) T cells (which express α4β7 and CCR9 molecules) were presented in porcine inguinal lymph nodes and were recruited to the small intestine by RA. Intestinal mucosal immunity (IgA titre) and systemic immunity (serum IgG titre) were enhanced by RA. Therefore, we hypothesized that RA could induce DCs to form an immature mucosal phenotype and could recruit them to the small intestinal submucosa. Porcine T-cells expressed β7 integrin and CCR9 receptors and migrated to CCL25 by a mechanism that was dependent of activation by RA-pretreated DCs, rather than direct activation by RA. Together, our results provide powerful evidence that RA can assist whole inactivated TGEV (WI-TGEV) via subcutaneous (s.c.) immunization to generate intestinal immunity, and offer new vaccination strategies against TGEV. PMID:27080036

  20. (PCG) Protein Crystal Growth Porcine Elastase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Porcine Elastase. This enzyme is associated with the degradation of lung tissue in people suffering from emphysema. It is useful in studying causes of this disease. Principal Investigator on STS-26 was Charles Bugg.

  1. Sirtuin Inhibition Adversely Affects Porcine Oocyte Meiosis

    PubMed Central

    Zhang, Liang; Ma, Rujun; Hu, Jin; Ding, Xiaolin; Xu, Yinxue

    2015-01-01

    Sirtuins have been implicated in diverse biological processes, including oxidative stress, energy metabolism, cell migration, and aging. Here, we employed Sirtuin inhibitors, nicotinamide (NAM) and Sirtinol, to investigate their effects on porcine oocyte maturation respectively. The rate of polar body extrusion in porcine oocytes decreased after treatment with NAM and Sirtinol, accompanied with the failure of cumulus cell expansion. We further found that NAM and Sirtinol significantly disrupted oocyte polarity, and inhibited the formation of actin cap and cortical granule-free domain (CGFD). Moreover, the abnormal spindles and misaligned chromosomes were readily detected during porcine oocyte maturation after treatment with NAM and Sirtinol. Together, these results suggest that Sirtuins are involved in cortical polarity and spindle organization in porcine oocytes. PMID:26176547

  2. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  3. Porcine Head Response to Blast

    PubMed Central

    Shridharani, Jay K.; Wood, Garrett W.; Panzer, Matthew B.; Capehart, Bruce P.; Nyein, Michelle K.; Radovitzky, Raul A.; Bass, Cameron R. ‘Dale’

    2012-01-01

    Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300–2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G’s and were well correlated with peak incident overpressure (R2 = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are

  4. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota.

    PubMed

    Ruas-Madiedo, Patricia; Gueimonde, Miguel; Fernández-García, María; de los Reyes-Gavilán, Clara G; Margolles, Abelardo

    2008-03-01

    The presence of the genes engBF (endo-alpha-N-acetylgalactosaminidase) and afcA (1,2-alpha-L-fucosidase) was detected in several intestinal Bifidobacterium isolates. Two strains of Bifidobacterium bifidum contained both genes, and they were able to degrade high-molecular weight porcine mucin in vitro. The expression of both genes was highly induced in the presence of mucin. PMID:18223105

  5. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype

    PubMed Central

    Plog, Stephanie; Klymiuk, Nikolai; Binder, Stefanie; Van Hook, Matthew J.; Thoreson, Wallace B.; Gruber, Achim D.; Mundhenk, Lars

    2015-01-01

    The human CLCA4 (chloride channel regulator, calcium-activated) modulates the intestinal phenotype of cystic fibrosis (CF) patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype. PMID:26474299

  6. microRNAs and microRNA Targets Involved in Alfalfa Stem Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the possible involvement of microRNAs in alfalfa stem development, we hybridized 32P-labled total microRNAs purified from elongating and post-elongation stem internodes (ES and PES, respectively) of the alfalfa Clone 252 to a microRNA dot blot that contains a total of 70 reference anti-mi...

  7. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells.

    PubMed

    Chen, Changyi; Chai, Hong; Wang, Xinwen; Jiang, Jun; Jamaluddin, Md Saha; Liao, Dan; Zhang, Yuqing; Wang, Hao; Bharadwaj, Uddalak; Zhang, Sheng; Li, Min; Lin, Peter; Yao, Qizhi

    2008-10-15

    The purpose of this study was to determine the effects and mechanisms of sCD40L on endothelial dysfunction in both human coronary artery endothelial cells (HCAECs) and porcine coronary artery rings. HCAECs treated with sCD40L showed significant reductions of endothelial nitric oxide synthase (eNOS) mRNA and protein levels, eNOS mRNA stability, eNOS enzyme activity, and cellular NO levels, whereas superoxide anion (O(2)(-)) production was significantly increased. sCD40L enhanced eNOS mRNA 3'UTR binding to cytoplasmic molecules and induced a unique expression pattern of 95 microRNAs. sCD40L significantly decreased mitochondrial membrane potential, and catalase and SOD activities, whereas it increased NADPH oxidase (NOX) activity. sCD40L increased phosphorylation of MAPKs p38 and ERK1/2 as well as IkappaBalpha and enhanced NF-kappaB nuclear translocation. In porcine coronary arteries, sCD40L significantly decreased endothelium-dependent vasorelaxation and eNOS mRNA levels, whereas it increased O(2)(-) levels. Antioxidant seleno-l-methionine; chemical inhibitors of p38, ERK1/2, and mitochondrial complex II; as well as dominant negative mutant forms of IkappaBalpha and NOX4 effectively blocked sCD40L-induced eNOS down-regulation in HCAECs. Thus, sCD40L reduces eNOS levels, whereas it increases oxidative stress through the unique molecular mechanisms involving eNOS mRNA stability, 3'UTR-binding molecules, microRNAs, mitochondrial function, ROS-related enzymes, p38, ERK1/2, and NF-kappaB signal pathways in endothelial cells. PMID:18658029

  8. microRNAs and Endometrial Pathophysiology.

    PubMed

    Chill, Henry H; Dior, Uri P; Kogan, Liron; Revel, Ariel

    2015-01-01

    Embryo implantation requires a reciprocal interaction between the blastocyst and endometrium and is associated with complex regulatory mechanisms. Since their discovery, microRNAs became prominent candidates providing missing links for many biological pathways. In recent years, microRNAs were implicated as one of the important players in regulation of various biological and physiological endometrial related processes. This chapter aims to present recent knowledge pertaining to the diverse aspects of microRNAs in the embryo-endometrial relationship. We will focus on the role of microRNAs in decidualization and their part in natural and stimulated cycles. Next, we will present recent studies deliberating the role of microRNAs in recurrent pregnancy loss and in the important phenomenon of recurrent implantation failure. Lastly, demonstrating an important aspect of embryo implantation and invasion, we will outline few microRNA related shared pathways of implantation and carcinogenesis. PMID:26662990

  9. Intestinal lymphangiectasia in children

    PubMed Central

    Isa, Hasan M.; Al-Arayedh, Ghadeer G.; Mohamed, Afaf M.

    2016-01-01

    Intestinal lymphangiectasia (IL) is a rare disease characterized by dilatation of intestinal lymphatics. It can be classified as primary or secondary according to the underlying etiology. The clinical presentations of IL are pitting edema, chylous ascites, pleural effusion, acute appendicitis, diarrhea, lymphocytopenia, malabsorption, and intestinal obstruction. The diagnosis is made by intestinal endoscopy and biopsies. Dietary modification is the mainstay in the management of IL with a variable response. Here we report 2 patients with IL in Bahrain who showed positive response to dietary modification. PMID:26837404

  10. Cloning and characterization of porcine resistin gene.

    PubMed

    Dai, M H; Xia, T; Chen, X D; Gan, L; Feng, S Q; Qiu, H; Peng, Y; Yang, Z Q

    2006-02-01

    Resistin is a member of resistin-like molecules (RELMs) and a hormone secreted from mature adipocytes in rodents and leukocytes in human. We now report the cloning and characterization of the full-length porcine resistin cDNA and gene. Sequence analysis indicated that the pig resistin cDNA sequence had an open reading frame of 330 bp encoding a 12 kDa protein of 109 amino acids. The deduced amino acid sequence showed 75.2% identity to the human resistin. The porcine resistin gene was composed of four exons and had exactly the same exon structure as the human resistin gene. The tissue distribution of porcine resistin mRNA was assessed by semi-quantitative RT-PCR. Resistin gene expression was the highest in porcine leukocytes and low in adipose tissue. Resistin protein could be detected in porcine serum by western blotting and it circulated in serum as dimers and trimers. We provided the first evidence that resistin was abundantly expressed in porcine leukocytes and had an expression pattern similar to that in human resistin mRNA and protein. This suggests that the pig may be a suitable animal model for studying the function of resistin in human insulin resistance. PMID:16023825