Science.gov

Sample records for porin inhibits cell

  1. Bacterial porins stimulate bone resorption.

    PubMed Central

    Meghji, S; Henderson, B; Nair, S P; Tufano, M A

    1997-01-01

    Porins are abundant outer membrane proteins of gram-negative bacteria involved in transport of low-molecular-mass molecules. During the past decade, porins from a number of bacteria have also been shown to have proinflammatory activities including inducing the synthesis of proinflammatory mediators (cytokines, platelet-activating factor, and nitric oxide) in cultured cells and inducing inflammation in vivo. With this range of actions, it was possible that porins could also interact with bone cells to cause aberrant bone remodeling and that this could contribute to the bone destruction seen in gram-negative bone infections. By using purified preparations of Salmonella typhimurium and Pseudomonas aeruginosa porins, in the presence of polymyxin B, it was possible to induce concentration-dependent loss of calcium from cultured murine calvaria at porin concentrations in the range of 1 to 10 nM. The mechanism of action of the porins was determined by the inclusion of inhibitors of cyclooxygenase or inflammatory cytokines in the culture media. The bone-resorbing activity of both porins was not inhibited by the cyclooxygenase inhibitor indomethacin or by neutralizing the activity of tumor necrosis factor. Indeed, relatively high concentrations of these agents produced an unexpected increase in the bone resorption induced by the porins. In contrast, porin-induced bone resorption could be inhibited by relatively high concentrations of the natural inhibitor of interleukin-1 (IL-1 receptor antagonist). It appears that these porins stimulate bone resorption by a mechanism distinct from that of lipopolysaccharide, and the possibility therefore exists that porins play a role in bone destruction in gram-negative bacterial infections of bone. PMID:9119467

  2. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    PubMed

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure. PMID:21092733

  3. Role of porins for uptake of antibiotics by Mycobacterium smegmatis.

    PubMed

    Danilchanka, Olga; Pavlenok, Mikhail; Niederweis, Michael

    2008-09-01

    The outer membrane of mycobacteria presents an effective permeability barrier for many antibiotics. Transport pathways across this membrane are unknown for most drugs. Here, we examined which antibiotics utilize the porin pathway across the outer membrane of the model organism Mycobacterium smegmatis. Deletion of the porins MspA and MspC drastically increased the resistance of M. smegmatis ML10 to beta-lactam antibiotics, while its beta-lactamase activity remained unchanged. These results are consistent with the ninefold-reduced outer membrane permeability of the M. smegmatis porin mutants for cephaloridine and strongly indicate that beta-lactam antibiotics rely on the porin pathway. The porin mutant ML10 accumulated less chloramphenicol and norfloxacin and was less susceptible to these antibiotics than wild-type M. smegmatis. These results demonstrated that small and hydrophilic antibiotics use the Msp porins for entering the cell. In contrast to norfloxacin, the hydrophobic moxifloxacin was 32-fold more effective in inhibiting the growth of M. smegmatis, presumably because it was able to diffuse through the lipid membrane. Structural models indicated that erythromycin, kanamycin, and vancomycin are too large to move through the MspA channel. This study presents the first experimental evidence that hydrophilic fluoroquinolones and chloramphenicol diffuse through porins in mycobacteria. Thus, mutations resulting in less efficient porins or lower porin expression levels are likely to represent a mechanism for the opportunistic pathogens M. avium, M. chelonae, and M. fortuitum, which have Msp-like porins, to acquire resistance to fluoroquinolones. PMID:18559650

  4. Porin from Pseudomonas aeruginosa Induces Apoptosis in an Epithelial Cell Line Derived from Rat Seminal Vesicles

    PubMed Central

    Buommino, Elisabetta; Morelli, Francesco; Metafora, Salvatore; Rossano, Fabio; Perfetto, Brunella; Baroni, Adone; Tufano, Maria Antonietta

    1999-01-01

    Micromolar concentrations of porin, purified from the outer membranes of Pseudomonas aeruginosa, induced in vitro the classic morphological and biochemical signs of apoptosis in an epithelial cell line (SVC1) derived from the rat seminal vesicle secretory epithelium. The programmed cell death (PCD) was p53 independent and associated with significant decrease of bcl-2 expression, a marked increase of c-myc transcriptional activity, and an absence of the mRNA coding for tissue transglutaminase. The Ca2+ influx, caused by the porin treatment of SVC1 cells, appears to play an important role in the triggering of apoptosis in our biological model. The possibility that the porin property of inducing PCD plays a role in the infertility of individuals chronically infected by gram-negative bacteria is discussed. PMID:10456933

  5. New Findings Concerning Vertebrate Porin

    NASA Astrophysics Data System (ADS)

    Thinnes, Friedrich P.; Reymann, Susanne

    Eukaryotic porin can be considered to be a good candidate for forming the channel component of the protein complex which, depending on the approach used, may realize its expression either as the outwardly-rectifying depolarization-induced chloride channel or as the volume-sensitive organic osmolyte-anion channel. As a basis for this proposition, we point to a series of correspondences in properties between mammalian porin and the ORDIC channel complex. Specifically, mammalian porin is expressed in the plasmalemma of different cells and chloride channels can be blocked by anti-human porin antibodies in astrocytes and endothelial cells. There is an indication of colocalisation of human porin and the cystic fibrosis (CF) gene product, CFTR, in the apical region of epithelial cells. The primary structure of porin from a CF patient was found to be normal. Cytosol and amniotic fluid fractions influence the channel characteristics of mammalian porin. Channel-active mammalian porin binds ATP and the stilbene disulphonate grouping of the chloride channel inhibitor DIDS. Human porin in black membranes is a pathway for taurine, and biogenic polyamines reduce the voltage dependence of human porin. Assuming the relationship between human porin and the ORDIC channel/VSOAC complex, studies on plasmalemma-integrated human porin have a relevance for CF research. In addition, we refer to a case study on a child with encephalomyopathy in which porin could not be detected using monoclonal anti-human porin antibodies. Our studies were based on purified and sequenced human porin from different cells and from different cell compartments. In addition, we raised antibodies against mature human porin or synthetic parts of the molecule. This provided a firm foundation for our topochemical work with which we were able to establish the multi-topological expression of eukaryotic porin channels. The data are summarized and discussed.

  6. Proinflammatory signal transduction pathway induced by Shigella flexneri porins in caco-2 cells

    PubMed Central

    Elena, Grimaldi; Giovanna, Donnarumma; Brunella, Perfetto; De Anna, Filippis; Alessandro, Melito; Antonietta, Tufano Maria

    2009-01-01

    The recognition of bacterial components on the intestinal epithelial cells occurs through the toll-like receptors and is followed by the induction of an effective innate immune response. We analyzed receptor expression and signaling pathways involved in activation of human colon adenocarcinoma cells after stimulation with porins and LPS of Shigella flexneri. We also analyzed the expression and production of some cytokines, of intercellular adhesion molecule-1, of antimicrobial peptides human β-defensins, and of the inducible form of nitric oxide synthase. Our data demonstrate that TLR2 is involved in porin recognition, whereas TLR4 with MD2, is required for LPS recognition. PMID:24031417

  7. Development of novel cell surface display in Corynebacterium glutamicum using porin.

    PubMed

    Tateno, Toshihiro; Hatada, Kazuki; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-09-01

    We have developed a novel cell surface display in Corynebacterium glutamicum using porin proteins as anchor proteins. Porins are localized at C. glutamicum mycolic acid layer and exist as a hexamer. We used alpha-amylase from Streptococcus bovis 148 (AmyA) as a model protein to be displayed on the C. glutamicum cell surface. AmyA was fused to the C terminus of the porins PorB, PorC, or PorH. Expression vectors using fused proteins under the control of the cspB promoter were constructed and introduced into the C. glutamicum Cm strain. Immunostaining microscopy and flow cytometric analysis revealed that PorB-AmyA, PorC-AmyA, and PorH-AmyA were displayed on the C. glutamicum cell surface. AmyA activity was only detected in the cell fraction of C. glutamicum cells that displayed AmyA fused to PorB, PorC or PorH and AmyA activity was not detected in the supernatants of C. glutamicum culture broths after 72 h cultivation. Thus, we have demonstrated that C. glutamicum porins are very efficient anchor proteins for protein display in C. glutamicum. PMID:19430772

  8. Outer membrane of gram-negative bacteria. XVIII. Electron microscopic studies on porin insertion sites and growth of cell surface of Salmonella typhimurium.

    PubMed Central

    Smit, J; Nikaido, H

    1978-01-01

    Salmonella typhimurium contains three "major proteins" or "porins" (34K, 35K, and 36K) in the outer membrane. A mutant strain producing only the 35K porin was first grown in media containing high concentrations of NaCl to "repress" the porin synthesis and then was shifted into a medium without NaCl. The newly made porin molecules were then labeled with the ferritin-coupled antibody at various times after the shift, and the samples were examined by whole-mount, freeze-etching, and thin-section electron microscopy. These experiments showed that newly inserted porins appeared as discrete patches uniformly distributed over the surface of the cell and, furthermore, that the sites of adhesion between the inner and outer membrane were most probably the pathway by which the newly made porin molecules appeared on cell surface. The 34K and 36K porins were also inserted in the same manner, since the appearance of new porins at discrete sites all over the cell surface was also observed when cells with wild-type porin phenotype were treated with unlabeled antibody to block existing antigenic sites, subsequently regrown, and labeled with the ferritin-coupled antibody. Since porins comprise a major portion of the densely packed, relatively immobile, "protein framework" of the outer membrane, these results lead us to conclude that the outer membrane grows predominantly by diffuse intercalation rather than by the zonal growth mechanism. Images PMID:355240

  9. Porin channels in Escherichia coli: studies with beta-lactams in intact cells.

    PubMed Central

    Nikaido, H; Rosenberg, E Y; Foulds, J

    1983-01-01

    Wild-type Escherichia coli K-12 produces two porins, OmpF (protein 1a) and OmpC (protein 1b). In mutants deficient in both of these "normal" porins, secondary mutants that produce a "new" porin, protein PhoE (protein E), are selected for. We determined the properties of the channels produced by each of these porins by measuring the rates of diffusion of various cephalosporins through the outer membrane in strains producing only one porin species. We found that all porin channels retarded the diffusion of more hydrophobic cephalosporins and that with monoanionic cephalosporins a 10-fold increase in the octanol-water partition coefficient of the solute produced a 5- to 6-fold decrease in the rate of penetration. Electrical charges of the solutes had different effects on different channels. Thus, with the normal porins (i.e., OmpF and OmpC proteins) additional negative charge drastically reduced the penetration rate through the channels, whereas additional positive charge significantly accelerated the penetration. In contrast, diffusion through the PhoE channel was unaffected by the presence of an additional negative charge. We hypothesize that the relative exclusion of hydrophobic and negatively charged solutes by normal porin channels is of ecological advantage to E. coli, which must exclude hydrophobic and anionic bile salts in its natural habitat. The properties of the PhoE porin are also consistent with the recent finding (M. Argast and W. Boos, J. Bacteriol. 143:142-150, 1980; J. Tommassen and B. Lugtenberg, J. Bacteriol. 143:151-157, 1980) that its biosynthesis is derepressed by phosphate starvation; the channel may thus act as an emergency pore primarily for the uptake of phosphate and phosphorylated compounds. Images PMID:6294048

  10. Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis.

    PubMed

    Kozjak-Pavlovic, Vera; Dian-Lothrop, Elke A; Meinecke, Michael; Kepp, Oliver; Ross, Katharina; Rajalingam, Krishnaraj; Harsman, Anke; Hauf, Eva; Brinkmann, Volker; Günther, Dirk; Herrmann, Ines; Hurwitz, Robert; Rassow, Joachim; Wagner, Richard; Rudel, Thomas

    2009-10-01

    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (DeltaPsi(m)). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of DeltaPsi(m). The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce DeltaPsi(m) loss and apoptosis, demonstrating that dissipation of DeltaPsi(m) is a requirement for cell death caused by neisserial infection. PMID:19851451

  11. Hexokinase inhibits flux of fluorescently labeled ATP through mitochondrial outer membrane porin.

    PubMed

    Perevoshchikova, Irina V; Zorov, Savva D; Kotova, Elena A; Zorov, Dmitry B; Antonenko, Yuri N

    2010-06-01

    Mitochondrial function requires maintaining metabolite fluxes across the mitochondrial outer membrane, which is mediated primarily by the voltage dependent anion channel (VDAC). We applied fluorescence correlation spectroscopy (FCS) to study regulation of the VDAC functional state by monitoring distribution of fluorescently labeled ATP (BODIPY-FL-ATP) in isolated intact rat liver and heart mitochondria. Addition of mitochondria to BODIPY-FL-ATP solution resulted in accumulation of the fluorescent probe in these organelles. The addition of hexokinase II (HKII) isolated from rat heart led to a decrease in the BODIPY-FL-ATP accumulation, while a 15-residue peptide corresponding to the N-terminal domain of hexokinase did not produce this effect. Therefore, the hexokinase-induced inhibition of the ATP flow mediated by VDAC was revealed in isolated mitochondria. PMID:20412805

  12. Porin polypeptide contributes to surface charge of gonococci.

    PubMed Central

    Swanson, J; Dorward, D; Lubke, L; Kao, D

    1997-01-01

    Each strain of Neisseria gonorrhoeae elaborates a single porin polypeptide, with the porins expressed by different strains comprising two general classes, Por1A and Por1B. In the outer membrane, each porin molecule folds into 16 membrane-spanning beta-strands joined by top- and bottom-loop domains. Por1A and Por1B have similar membrane-spanning regions, but the eight surface-exposed top loops (I to VIII) differ in length and sequence. To determine whether porins, and especially their top loop domains, contribute to bacterial cell surface charge, strain MS11 gonococci that were identical except for expressing a recombinant Por1A, Por1B, or mosaic Por1A-1B polypeptide were compared by whole-cell electrophoresis. These porin variants displayed different electrophoretic mobilities that correlated with the net numbers of charged amino acids within surface-exposed loops of their respective porin polypeptides. The susceptibilities of porin variants to polyanionic sulfated polymers correlated roughly with gonococcal surface charge; those porin variants with diminished surface negativity showed increased sensitivity to the polyanionic sulfated compounds. These observations indicate that porin polypeptides in situ contribute to the surface charge of gonococci, and they suggest that the bacterium's interactions with large sulfated compounds are thereby affected. PMID:9171398

  13. Porins increase copper susceptibility of Mycobacterium tuberculosis.

    PubMed

    Speer, Alexander; Rowland, Jennifer L; Haeili, Mehri; Niederweis, Michael; Wolschendorf, Frank

    2013-11-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632

  14. The Acinetobacter baumannii Omp33-36 Porin Is a Virulence Factor That Induces Apoptosis and Modulates Autophagy in Human Cells

    PubMed Central

    Rumbo, Carlos; Fernández Moreira, Esteban; Soares, Nelson Cruz; Carvajal, Micaela; Santillana, Elena; Beceiro, Alejandro; Romero, Antonio

    2014-01-01

    Acinetobacter baumannii is an extracellular opportunistic human pathogen that is becoming increasingly problematic in hospitals. In the present study, we demonstrate that the A. baumannii Omp 33- to 36-kDa protein (Omp33-36) is a porin that acts as a channel for the passage of water. The protein is found on the cell surface and is released along with other porins in the outer membrane vesicles (OMVs). In immune and connective cell tissue, this protein induced apoptosis by activation of caspases and modulation of autophagy, with the consequent accumulation of p62/SQSTM1 (sequestosome 1) and LC3B-II (confirmed by use of autophagy inhibitors). Blockage of autophagy enables the bacterium to persist intracellularly (inside autophagosomes), with the subsequent development of cytotoxicity. Finally, we used macrophages and a mouse model of systemic infection to confirm that Omp33-36 is a virulence factor in A. baumannii. Overall, the study findings show that Omp33-36 plays an important role in the pathogenesis of A. baumannii infections. PMID:25156738

  15. Function and modulation of bacterial porins: insights from electrophysiology.

    PubMed

    Delcour, A H

    1997-06-15

    Electrophysiological techniques provide a wealth of information regarding the molecular mechanisms that underlie the function and modulation of ion channels. They have revealed that bacterial porins do not behave as static, permanently open pores but display a much more complex and dynamic behavior than anticipated from non-electrophysiological studies. The channels switch between short-lived open and closed conformations (gating activity), and can also remain in an inactivated, non-ion conducting state for prolonged periods of time. Thus the role of porins is not limited to that of a molecular filter, but is extended to the control of outer membrane permeability through the regulation of their activity. Electrophysiological studies have indeed demonstrated that both gating and inactivation are modulated by a variety of physical and chemical parameters and are highly cooperative phenomena, often involving numerous channels working in concert. Cooperativity acts as an amplification mechanism that grants a large population of porins, such as found in the outer membrane, with sensitivity to modulation by external or internal factors. By conferring permeability properties to the outer membrane, porins play a crucial role in the bacterium's antibiotic susceptibility and survival in various environmental conditions. The detailed information that electrophysiology only can provide on porin function and modulation promises to yield a more accurate description of how porin properties can be used by cells to adapt to a changing environment, and to offer mechanisms that might optimize the drug sensitivity of the microorganism. PMID:9228742

  16. Use of OmpU porins for attachment and invasion of Crassostrea gigas immune cells by the oyster pathogen Vibrio splendidus

    PubMed Central

    Duperthuy, Marylise; Schmitt, Paulina; Garzón, Edwin; Caro, Audrey; Rosa, Rafael D.; Le Roux, Frédérique; Lautrédou-Audouy, Nicole; Got, Patrice; Romestand, Bernard; de Lorgeril, Julien; Kieffer-Jaquinod, Sylvie; Bachère, Evelyne; Destoumieux-Garzón, Delphine

    2011-01-01

    OmpU porins are increasingly recognized as key determinants of pathogenic host Vibrio interactions. Although mechanisms remain incompletely understood, various species, including the human pathogen Vibrio cholera, require OmpU for host colonization and virulence. We have shown previously that OmpU is essential for virulence in the oyster pathogen Vibrio splendidus LGP32. Here, we showed that V. splendidus LGP32 invades the oyster immune cells, the hemocytes, through subversion of host-cell actin cytoskeleton. In this process, OmpU serves as an adhesin/invasin required for β-integrin recognition and host cell invasion. Furthermore, the major protein of oyster plasma, the extracellular superoxide dismutase Cg-EcSOD, is used as an opsonin mediating the OmpU-promoted phagocytosis through its RGD sequence. Finally, the endocytosed bacteria were found to survive intracellularly, evading the host defense by preventing acidic vacuole formation and limiting reactive oxygen species production. We conclude that (i) V. splendidus is a facultative intracellular pathogen that manipulates host defense mechanisms to enter and survive in host immune cells, and (ii) that OmpU is a major determinant of host cell invasion in Vibrio species, used by V. splendidus LGP32 to attach and invade oyster hemocytes through opsonisation by the oyster plasma Cg-EcSOD. PMID:21282662

  17. Porin Loss Impacts the Host Inflammatory Response to Outer Membrane Vesicles of Klebsiella pneumoniae

    PubMed Central

    Turner, Kelli L.; Cahill, Bethaney K.; Dilello, Sarah K.; Gutel, Dedra; Brunson, Debra N.; Albertí, Sebastián

    2015-01-01

    Antibiotic-resistant strains of Klebsiella pneumoniae often exhibit porin loss. In this study, we investigated how porin loss impacted the composition of secreted outer membrane vesicles as well as their ability to trigger proinflammatory cytokine secretion by macrophages. We hypothesize that porin loss associated with antibiotic resistance will directly impact both the composition of outer membrane vesicles and their interactions with phagocytic cells. Using clonally related clinical isolates of extended-spectrum beta-lactamase (ESBL)-positive Klebsiella pneumoniae with different patterns of porin expression, we demonstrated that altered expression of OmpK35 and OmpK36 results in broad alterations to the protein profile of secreted vesicles. Additionally, the level of OmpA incorporation was elevated in strains lacking a single porin. Porin loss significantly impacted macrophage inflammatory responses to purified vesicles. Outer membrane vesicles lacking both OmpK35 and OmpK36 elicited significantly lower levels of proinflammatory cytokine secretion than vesicles from strains expressing one or both porins. These data demonstrate that antibiotic resistance-associated porin loss has a broad and significant effect on both the composition of outer membrane vesicles and their interactions with phagocytic cells, which may impact bacterial survival and inflammatory reactions in the host. PMID:26666932

  18. Porins facilitate nitric oxide-mediated killing of mycobacteria.

    PubMed

    Fabrino, Daniela Leite; Bleck, Christopher K E; Anes, Elsa; Hasilik, Andrej; Melo, Rossana C N; Niederweis, Michael; Griffiths, Gareth; Gutierrez, Maximiliano Gabriel

    2009-09-01

    Non-pathogenic mycobacteria such us Mycobacterium smegmatis reside in macrophages within phagosomes that fuse with late endocytic/lysosomal compartments. This sequential fusion process is required for the killing of non-pathogenic mycobacteria by macrophages. Porins are proteins that allow the influx of hydrophilic molecules across the mycobacterial outer membrane. Deletion of the porins MspA, MspC and MspD significantly increased survival of M. smegmatis in J774 macrophages. However, the mechanism underlying this observation is unknown. Internalization of wild-type M. smegmatis (SMR5) and the porin triple mutant (ML16) by macrophages was identical indicating that the viability of the porin mutant in vivo was enhanced. This was not due to effects on phagosome trafficking since fusion of phagosomes containing the mutant with late endocytic compartments was unaffected. Moreover, in ML16-infected macrophages, the generation of nitric oxide (NO) was similar to the wild type-infected cells. However, ML16 was significantly more resistant to the effects of NO in vitro compared to SMR5. Our data provide evidence that porins render mycobacteria vulnerable to killing by reactive nitrogen intermediates within phagosomes probably by facilitating uptake of NO across the mycobacterial outer membrane. PMID:19460455

  19. Neisseria meningitidis Lacking the Major Porins PorA and PorB Is Viable and Modulates Apoptosis and the Oxidative Burst of Neutrophils.

    PubMed

    Peak, Ian R; Chen, Adrienne; Jen, Freda E-C; Jennings, Courtney; Schulz, Benjamin L; Saunders, Nigel J; Khan, Arshad; Seifert, H Steven; Jennings, Michael P

    2016-08-01

    The bacterial pathogen Neisseria meningitidis expresses two major outer-membrane porins. PorA expression is subject to phase-variation (high frequency, random, on-off switching), and both PorA and PorB are antigenically variable between strains. PorA expression is variable and not correlated with meningococcal colonisation or invasive disease, whereas all naturally-occurring strains express PorB suggesting strong selection for expression. We have generated N. meningitidis strains lacking expression of both major porins, demonstrating that they are dispensable for bacterial growth in vitro. The porAB mutant strain has an exponential growth rate similar to the parental strain, as do the single porA or porB mutants, but the porAB mutant strain does not reach the same cell density in stationary phase. Proteomic analysis suggests that the double mutant strain exhibits compensatory expression changes in proteins associated with cellular redox state, energy/nutrient metabolism, and membrane stability. On solid media, there is obvious growth impairment that is rescued by addition of blood or serum from mammalian species, particularly heme. These porin mutants are not impaired in their capacity to inhibit both staurosporine-induced apoptosis and a phorbol 12-myristate 13-acetate-induced oxidative burst in human neutrophils suggesting that the porins are not the only bacterial factors that can modulate these processes in host cells. PMID:26562068

  20. Interleukin-1 and interleukin-6 gene expression in human monocytes stimulated with Salmonella typhimurium porins.

    PubMed Central

    Galdiero, M; Cipollaro de L'ero, G; Donnarumma, G; Marcatili, A; Galdiero, F

    1995-01-01

    The aim of this study was to verify whether Salmonella typhimurium porins can affect the expression of interleukin-1 (IL-1) and interleukin-6 (IL-6) genes. Human monocytes were treated with porins, and total RNAs were analysed by Northern blotting to evaluate the expression of IL-1 alpha, IL-1 beta and IL-6 in both treated and untreated cell cultures. Porins induced a significant increase in IL-1 and IL-6 transcripts. This increase was related to the dose of porins, and it peaked 5 hr after treatment. The same results were obtained when polymyxin B was added to the porin preparation to eliminate eventual traces of lipopolysaccharide (LPS) associated with porins. The porins-mediated increase in interleukin transcripts did not require de novo protein synthesis, and it was because of the enhanced half-life of IL-1 and IL-6 mRNAs, rather an increased rate of gene transcription. These data suggest that porins may affect inflammatory and immunological responses by enhancing the expression of cytokine genes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8567029

  1. Immunobiological activities of a porin fraction isolated from Fusobacterium nucleatum ATCC 10953.

    PubMed Central

    Takada, H; Ogawa, T; Yoshimura, F; Otsuka, K; Kokeguchi, S; Kato, K; Umemoto, T; Kotani, S

    1988-01-01

    From Fusobacterium nucleatum ATCC 10953 cell envelope fraction whose inner membranes had been removed by treatment with sodium N-lauroyl sarcosinate, an outer membrane protein (37,000 Mr in a native state) was prepared by extraction with lithium dodecyl sulfate. The protein thus obtained showed distinct porin activity, namely, the ability to form hydrophilic diffusion pores by incorporation into the artificial liposome membrane. The porin fraction exhibited strong immunobiological activities in the in vitro assays: B-cell mitogenicity and polyclonal B-cell activation on murine splenocytes, stimulatory effects on guinea pig peritoneal macrophages, and enhancement of the migration of human blood monocytes. The porin fraction also exhibited immunoadjuvant activity to increase the antibody production against sheep erythrocytes in the spleen of mice that were immunized by sheep erythrocytes with porin. Although chemical analyses revealed that the test porin fraction contained a considerable amount of lipopolysaccharide (LPS) (around 12% of the fraction), the studies with LPS-nonresponding C3H/HeJ mice and on the inhibitory effects of polymyxin B strongly suggest that most of the above bioactivities are due to porin protein itself, not to coexistent LPS in the porin fraction. Images PMID:2831155

  2. Interaction between complement subcomponent C1q and the Klebsiella pneumoniae porin OmpK36.

    PubMed Central

    Albertí, S; Marqués, G; Hernández-Allés, S; Rubires, X; Tomás, J M; Vivanco, F; Benedí, V J

    1996-01-01

    The interaction between C1q, a subcomponent of the complement classical pathway component C1, and OmpK36, a porin protein from Klebsiella pneumoniae, was studied in a solid-phase direct-binding assay, inhibition assays with the purified globular and collagen-like regions of C1q, and cross-linking experiments. We have shown that the binding of C1q to the OmpK36 porin of the serum-sensitive strain K. pneumoniae KT707 occurs in an in vivo situation and that this binding leads to activation of the complement classical pathway and the subsequent deposition of complement components C3b and C5b-9 on the OmpK36 porin. Scatchard analysis of the binding of [125I]C1q to the OmpK36 porin showed two binding sites with dissociation constants of 1.5 and 75 nM. The decrease of [125I]C1q binding to the OmpK36 porin in buffer with increasing salt concentrations and the pIs of the C1q subcomponent (10.3) and OmpK36 porin (4.5) suggest that charged amino acids are involved in the binding phenomenon. In inhibition assays, only the globular regions of C1q inhibited the interaction between C1q and OmpK36 porin, demonstrating that C1q binds to porin through its globular region and not through the collagen-like stalks. PMID:8890231

  3. Crystal Structure of the Monomeric Porin OmpG

    SciTech Connect

    Subbarao,G.; van den Berg, B.

    2006-01-01

    The outer membrane (OM) of Gram-negative bacteria contains a large number of channel proteins that mediate the uptake of ions and nutrients necessary for growth and functioning of the cell. An important group of OM channel proteins are the porins, which mediate the non-specific, diffusion-based passage of small (<600 Da) polar molecules. All porins of Gram-negative bacteria that have been crystallized to date form stable trimers, with each monomer composed of a 16-stranded {beta}-barrel with a relatively narrow central pore. In contrast, the OmpG porin is unique, as it appears to function as a monomer. We have determined the X-ray crystal structure of OmpG from Escherichia coli to a resolution of 2.3 Angstroms. The structure shows a 14-stranded {beta}{beta}-barrel with a relatively simple architecture. Due to the absence of loops that fold back into the channel, OmpG has a large ({approx}13 Angstroms) central pore that is considerably wider than those of other E. coli porins, and very similar in size to that of the toxin a-hemolysin. The architecture of the channel, together with previous biochemical and other data, suggests that OmpG may form a non-specific channel for the transport of larger oligosaccharides. The structure of OmpG provides the starting point for engineering studies aiming to generate selective channels and for the development of biosensors.

  4. A hybrid soft solar cell based on the mycobacterial porin MspA linked to a sensitizer-viologen Diad.

    PubMed

    Perera, Ayomi S; Subbaiyan, Navaneetha K; Kalita, Mausam; Wendel, Sebastian O; Samarakoon, Thilani N; D'Souza, Francis; Bossmann, Stefan H

    2013-05-01

    A prototype of a nano solar cell containing the mycobacterial channel protein MspA has been successfully designed. MspA, an octameric transmembrane channel protein from Mycobacterium smegmatis, is one of the most stable proteins known to date. Eight Ruthenium(II) aminophenanthroline-viologen maleimide Diads (Ru-Diads) have been successfully bound to the MspA mutant MspAA96C via cysteine-maleimide bonds. MspA is known to form double layers in which it acts as nanoscopic surfactant. The nanostructured layer that is formed by (Ru-Diad)8MspA at the TiO2 electrode is photochemically active. The resulting "protein nano solar cell" features an incident photon conversion efficiency of 1% at 400 nm. This can be regarded as a proof-of-principle that stable proteins can be successfully integrated into the design of solar cells. PMID:23611424

  5. Cell envelope of Bordetella pertussis: immunological and biochemical analyses and characterization of a major outer membrane porin protein

    SciTech Connect

    Armstrong, S.K.

    1986-01-01

    Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and /sup 125/I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulated strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25/sup 0/C instead of 100/sup 0/C.

  6. Inhibition of the alternative pathway of nonhuman infant complement by porin B2 contributes to virulence of Neisseria meningitidis in the infant rat model.

    PubMed

    Lewis, Lisa A; Vu, David M; Granoff, Dan M; Ram, Sanjay

    2014-06-01

    Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats. PMID:24686052

  7. Inhibition of the Alternative Pathway of Nonhuman Infant Complement by Porin B2 Contributes to Virulence of Neisseria meningitidis in the Infant Rat Model

    PubMed Central

    Vu, David M.; Granoff, Dan M.; Ram, Sanjay

    2014-01-01

    Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats. PMID:24686052

  8. Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability.

    PubMed Central

    Bellido, F; Martin, N L; Siehnel, R J; Hancock, R E

    1992-01-01

    Earlier studies that used model membrane reconstitution methods have come to different conclusions regarding the exclusion limit of the outer membrane of Pseudomonas aeruginosa and whether OprF is the major channel-forming protein in the outer membrane. In this study, a 6.2-kbp SalI fragment, encoding only two cytoplasmic enzymes, alpha-galactosidase and sucrose hydrolase, and the inner membrane raffinose permease, was cloned behind the m-toluate-inducible tol promoter of vector pNM185 to create plasmid pFB71. P. aeruginosa strains harboring pFB71, when grown with inducer, produced both enzymes encoded by the insert and had acquired the ability to grow on the disaccharide melibiose and the trisaccharide raffinose. The rate of growth was dependent on the concentration and size of the saccharide and was decreased three- to fivefold by the absence of OprF, as examined by measuring the growth on melibiose and raffinose of an isogenic OprF-deficient omega insertion derivative, H636(pFB71). At high concentrations, di-, tri-, and tetrasaccharides could pass across the outer membrane to plasmolyze P. aeruginosa, as measured by light scattering and confirmed by electron microscopy. The initial rate kinetics of light-scattering changes were dependent on the size of the saccharide being used. Furthermore, the rates of change in light scattering due to raffinose and stachyose uptake across the outer membrane for strain H636 were fivefold or more lower than for its OprF-sufficient parent H103. These data are consistent with model membrane studies showing that OprF is the most predominant porin for compounds larger than disaccharides in P. aeruginosa and suggest that the exclusion limit for this porin and the outer membrane is greater than the size of a tetrasaccharide. In addition, these data confirmed the existence of other porins with a predominant function in monosaccharide uptake and a more minor function in the uptake of larger saccharides. Images PMID:1322882

  9. Electrostatic properties of two porin channels from Escherichia coli.

    PubMed

    Karshikoff, A; Spassov, V; Cowan, S W; Ladenstein, R; Schirmer, T

    1994-07-22

    The electrostatic interactions in the channels of OmpF and PhoE porins from Escherichia coli were analysed on the basis of a macroscopic multi-dielectric model of the protein-membrane complex derived from the respective porin X-ray structures. The membrane was represented as layers of distinct dielectric constants corresponding to the aliphatic core and the polar head groups of the lipids. The pKa values of the titratable groups and the electrostatic field in the region of the channel were calculated by the finite difference technique. In spite of the differences in sequences and charge constellations, the calculated electrostatic properties of the two porins are similar in several aspects: (1) unusual titration behaviour (pKa below 7) was found for some groups of the cluster of basic residues at the constriction of the pore; (2) a number of acidic groups buried between the internal loop and the barrel wall are stabilized in their protonated forms at neutral pH; (3) there is a strong transverse electrostatic field in the channel characterized by a screw-like form. The strength of the field is greatest at the region of the constriction zone. This would facilitate the diffusion of solutes with a large dipole moment such as free amino acids. Differences between the electrostatic fields of OmpF and PhoE are mainly confined to that end of the pore that faces the cell exterior in vivo. In OmpF the electrostatic potential is close to zero in this region of the channel, whereas a positive potential was found in PhoE. It was shown that the experimentally observed difference in ion selectivity of the two porins can largely be attributed to this distinct electrostatic property. PMID:8035460

  10. An outer membrane protein (porin) as an eliciting antigen for delayed-type hypersensitivity in murine salmonellosis.

    PubMed Central

    Udhayakumar, V; Muthukkaruppan, V R

    1987-01-01

    The porin, an outer membrane protein of Salmonella typhimurium, was found to be a suitable antigen for eliciting delayed-type hypersensitivity in mouse salmonellosis. Histological examination of the reaction site revealed that the porin was superior to other antigenic preparations in eliciting a typical delayed-type hypersensitivity reaction consisting of mononuclear cell infiltration without polymorphonuclear cell contamination. This study indicates the importance of using a suitable protein antigen from S. typhi for human application. Images PMID:3028963

  11. Biogenesis of porin of the outer mitochondrial membrane involves an import pathway via receptors and the general import pore of the TOM complex.

    PubMed

    Krimmer, T; Rapaport, D; Ryan, M T; Meisinger, C; Kassenbrock, C K; Blachly-Dyson, E; Forte, M; Douglas, M G; Neupert, W; Nargang, F E; Pfanner, N

    2001-01-22

    Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore. PMID:11266446

  12. In vitro trimerization of OmpF porin secreted by spheroplasts of Escherichia coli.

    PubMed Central

    Sen, K; Nikaido, H

    1990-01-01

    It is not yet clear how bacterial outer membrane proteins reach their correct destination after they are secreted across the cytoplasmic membrane. We show here that porin OmpF is secreted into the medium as a water-soluble monomeric protein by spheroplasts of Escherichia coli. Furthermore, this monomeric porin is taken up by cell envelope preparations or purified lipopolysaccharides in the presence of 0.03% Triton X-100 and is converted correctly into the mature trimeric conformation. These results appear to reproduce a part of the physiological export and targeting steps of this protein. Images PMID:1689050

  13. Nucleotide and derived amino acid sequences of the major porin of Comamonas acidovorans and comparison of porin primary structures.

    PubMed Central

    Gerbl-Rieger, S; Peters, J; Kellermann, J; Lottspeich, F; Baumeister, W

    1991-01-01

    The DNA sequence of the gene which codes for the major outer membrane porin (Omp32) of Comamonas acidovorans has been determined. The structural gene encodes a precursor consisting of 351 amino acid residues with a signal peptide of 19 amino acid residues. Comparisons with amino acid sequences of outer membrane proteins and porins from several other members of the class Proteobacteria and of the Chlamydia trachomatis porin and the Neurospora crassa mitochondrial porin revealed a motif of eight regions of local homology. The results of this analysis are discussed with regard to common structural features of porins. PMID:1848840

  14. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.

    PubMed

    Arunmanee, Wanatchaporn; Pathania, Monisha; Solovyova, Alexandra S; Le Brun, Anton P; Ridley, Helen; Baslé, Arnaud; van den Berg, Bert; Lakey, Jeremy H

    2016-08-23

    The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion. PMID:27493217

  15. Conformational analysis of the Campylobacter jejuni porin.

    PubMed Central

    Bolla, J M; Loret, E; Zalewski, M; Pagés, J M

    1995-01-01

    The major outer membrane protein (MOMP) of Campylobacter jejuni was purified to homogeneity by selective solubilization and fast protein liquid chromatography. The amino acid composition of the MOMP indicates the presence of cysteine residues. The amino-terminal sequence, determined over 31 residues, shows no significant homology with any other porin from gram-negative bacteria except in a discrete region. Immunocross-reactivity between Escherichia coli OmpC and the MOMP was analyzed, and a common antigenic site between these two porins was identified with an anti-peptide antibody. From circular dichroism and immunological investigations, the existence of a stable folded monomer, containing a high level of beta-sheet secondary structure, is evident. Conformational analyses show the presence of a native trimeric state generated by association of the three folded monomers; the stability of this trimer is reduced compared with that of E. coli porins. This study clearly reveals that the C. jejuni MOMP is related to the family of trimeric bacterial porins. PMID:7543469

  16. Characterisation of porin genes from Mycobacterium fortuitum and their impact on growth

    PubMed Central

    2009-01-01

    Background Highly pathogenic mycobacteria like Mycobacterium tuberculosis are characterised by their slow growth and their ability to reside and multiply in the very hostile phagosomal environment and a correlation between the growth rate of mycobacteria and their pathogenicity has been hypothesised. Here, porin genes from M. fortuitum were cloned and characterised to address their impact on the growth rate of fast-growing and pathogenic mycobacteria. Results Two genes encoding porins orthologous to MspA from M. smegmatis, porM1 and porM2, were cloned from M. fortuitum strains, which were originally isolated from human patients. Both porin genes were at least partially able to complement the mutations of a M. smegmatis mutant strain lacking the genes mspA and mspC with respect to the growth rate. PorM1 and porM2 were present in different strains of M. fortuitum including the type strain. Comparative expression analysis of porM genes revealed divergent porin expression among analysed M. fortuitum strains. Repression of the expression of porins by antisense technique decreased the growth rates of different M. fortuitum. The effects of over-expression of porM1 as well as porM2 varied depending on the strain and the concentration of antibiotic added to the medium and indicated that PorM1 and PorM2 enhance the growth of M. fortuitum strains, but also the diffusion of the antibiotic kanamycin into the cells. Conclusion This study demonstrates the important role of porin expression in growth as well as antibiotic susceptibility of the opportunistic bacterium M. fortuitum. PMID:19203364

  17. JNK Inhibition Inhibits Lateral Line Neuromast Hair Cell Development

    PubMed Central

    Cai, Chengfu; Lin, Jinchao; Sun, Shaoyang; He, Yingzi

    2016-01-01

    JNK signaling is known to play a role in regulating cell behaviors such as cell cycle progression, cell proliferation, and apoptosis, and recent studies have suggested important roles for JNK signaling in embryonic development. However, the precise function of JNK signaling in hair cell development remains poorly studied. In this study, we used the small molecule JNK inhibitor SP600125 to examine the effect of JNK signaling abrogation on the development of hair cells in the zebrafish lateral line neuromast. Our results showed that SP600125 reduced the numbers of both hair cells and supporting cells in neuromasts during larval development in a dose-dependent manner. Additionally, JNK inhibition strongly inhibited the proliferation of neuromast cells, which likely explains the decrease in the number of differentiated hair cells in inhibitor-treated larvae. Furthermore, western blot and in situ analysis showed that JNK inhibition induced cell cycle arrest through induction of p21 expression. We also showed that SP600125 induced cell death in developing neuromasts as measured by cleaved caspase-3 immunohistochemistry, and this was accompanied with an induction of p53 gene expression. Together these results indicate that JNK might be an important regulator in the development of hair cells in the lateral line in zebrafish by controlling both cell cycle progression and apoptosis. PMID:26903805

  18. Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins.

    PubMed

    Rebière-Huët, J; Guérillon, J; Pimenta, A L; Di Martino, P; Orange, N; Hulen, C

    2002-09-24

    Bacterial adherence is a complex phenomenon involving specific interactions between receptors, including matricial fibronectin, and bacterial ligands. We show here that fibronectin and outer membrane proteins of Pseudomonas fluorescens were able to inhibit adherence of P. fluorescens to fibronectin-coated wells. We identified at least six fibronectin-binding proteins with molecular masses of 70, 55, 44, 37, 32 and 28 kDa. The presence of native (32 kDa) and heat-modified forms (37 kDa) of OprF was revealed by immuno-analysis and the 44-kDa band was composed of three proteins, their N-terminal sequences showing homologies with Pseudomonas aeruginosa porins (OprD, OprE1 and OprE3). PMID:12393211

  19. Purification of Legionella pneumophila major outer membrane protein and demonstration that it is a porin.

    PubMed Central

    Gabay, J E; Blake, M; Niles, W D; Horwitz, M A

    1985-01-01

    We have purified the major outer membrane protein (MOMP) of Legionella pneumophila, determined that it is associated with peptidoglycan, and characterized it as a porin. To purify the MOMP, we used a simple, rapid, three-step procedure that gave us the protein in high yield. The first step of the purification procedure involved selectively extracting the MOMP from whole bacterial cells with calcium and zwitterionic detergent. The second and third steps achieved purification by ion-exchange and molecular-sieve chromatography. The dissociation of the MOMP into monomers was dependent upon the presence of a reducing agent and was enhanced by treatment at 100 degrees C. To study the relationship of the MOMP to peptidoglycan, we extracted the protein by a modification of the Rosenbusch procedure. Like the Escherichia coli porins, the MOMP was peptidoglycan associated. The MOMP was at least partially dissociated from peptidoglycan in sodium dodecyl sulfate and a high salt concentration. To study the ion channel-forming properties of the MOMP, we reconstituted the MOMP in planar lipid membranes. The MOMP formed ion-permeable channels with a single-channel conductance size of 100 picoSiemens. The MOMP channels exhibited a fourfold selectivity for cations over anions and voltage-independent gating. These findings demonstrate that the MOMP is a porin with properties similar to those of E. coli porins. Images PMID:2579942

  20. The porin VDAC2 is the mitochondrial platform for Bax retrotranslocation.

    PubMed

    Lauterwasser, Joachim; Todt, Franziska; Zerbes, Ralf M; Nguyen, Thanh Ngoc; Craigen, William; Lazarou, Michael; van der Laan, Martin; Edlich, Frank

    2016-01-01

    The pro-apoptotic Bcl-2 protein Bax can permeabilize the outer mitochondrial membrane and therefore commit human cells to apoptosis. Bax is regulated by constant translocation to the mitochondria and retrotranslocation back into the cytosol. Bax retrotranslocation depends on pro-survival Bcl-2 proteins and stabilizes inactive Bax. Here we show that Bax retrotranslocation shuttles membrane-associated and membrane-integral Bax from isolated mitochondria. We further discover the mitochondrial porin voltage-dependent anion channel 2 (VDAC2) as essential component and platform for Bax retrotranslocation. VDAC2 ensures mitochondria-specific membrane association of Bax and in the absence of VDAC2 Bax localizes towards other cell compartments. Bax retrotranslocation is also regulated by nucleotides and calcium ions, suggesting a potential role of the transport of these ions through VDAC2 in Bax retrotranslocation. Together, our results reveal the unanticipated bifunctional role of VDAC2 to target Bax specifically to the mitochondria and ensure Bax inhibition by retrotranslocation into the cytosol. PMID:27620692

  1. Effect of phenol-induced changes in lipid composition on conformation of OmpF-like porin of Yersinia pseudotuberculosis.

    PubMed

    Sanina, Nina; Nina, Sanina; Davydova, Ludmila; Ludmila, Davydova; Bakholdina, Svetlana; Svetlana, Bakholdina; Novikova, Olga; Olga, Novikova; Pornyagina, Olga; Olga, Pornyagina; Solov'eva, Tamara; Tamara, Solov'eva; Shnyrov, Valery; Valery, Shnyrov; Bogdanov, Mikhail; Mikhail, Bogdanov

    2013-07-11

    The present work aimed to compare the effects of different lysophosphatidylethanolamine (LPE) content in lipids derived from Yersinia pseudotuberculosis cells exposed and not exposed to phenol on the conformation of OmpF-like porin of these bacteria. Differential scanning calorimetry and intrinsic protein fluorescence showed that the 2.5-fold increase of LPE content and the corresponding increase in the phase transition temperature of bacterial lipids were accompanied by enhanced protein thermostability. Integral conformational rearrangement of protein was supported by drastic changes in the microenvironment of the tryptophan residues, likely resulting in a convergence of monomers in trimeric porin and exposure of outer tryptophan residues to the water environment. These conformational changes may impede the porin channel permeability under stress conditions in bacteria. PMID:23742936

  2. Anaplasma phagocytophilum Inhibits Apoptosis and Promotes Cytoskeleton Rearrangement for Infection of Tick Cells

    PubMed Central

    Ayllón, Nieves; Villar, Margarita; Busby, Ann T.; Kocan, Katherine M.; Blouin, Edmour F.; Bonzón-Kulichenko, Elena; Galindo, Ruth C.; Mangold, Atilio J.; Alberdi, Pilar; Pérez de la Lastra, José M.; Vázquez, Jesús

    2013-01-01

    Anaplasma phagocytophilum causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects gene expression in both the vertebrate host and the tick vector, Ixodes scapularis. Here, we identified new genes, including spectrin alpha chain or alpha-fodrin (CG8) and voltage-dependent anion-selective channel or mitochondrial porin (T2), that are involved in A. phagocytophilum infection/multiplication and the tick cell response to infection. The pathogen downregulated the expression of CG8 in tick salivary glands and T2 in both the gut and salivary glands to inhibit apoptosis as a mechanism to subvert host cell defenses and increase infection. In the gut, the tick response to infection through CG8 upregulation was used by the pathogen to increase infection due to the cytoskeleton rearrangement that is required for pathogen infection. These results increase our understanding of the role of tick genes during A. phagocytophilum infection and multiplication and demonstrate that the pathogen uses similar strategies to establish infection in both vertebrate and invertebrate hosts. PMID:23630955

  3. Sialylation of Outer Membrane Porin Protein D: A Mechanistic Basis of Antibiotic Uptake in Pseudomonas aeruginosa*

    PubMed Central

    Khatua, Biswajit; Vleet, Jeremy Van; Choudhury, Biswa Pronab; Chaudhry, Rama; Mandal, Chitra

    2014-01-01

    Pseudomonas aeruginosa (PA) is an environmentally ubiquitous, extracellular, opportunistic pathogen, associated with severe infections of immune-compromised host. We demonstrated earlier the presence of both α2,3- and α2,6-linked sialic acids (Sias) on PA (PA+Sias) and normal human serum is their source of Sias. PA+Sias showed decreased complement deposition and exhibited enhanced association with immune-cells through sialic acid binding immunoglobulin like lectins (Siglecs). Such Sias-siglec-9 interaction between PA+Sias and neutrophils helped to subvert host immunity. Additionally, PA+Sias showed more resistant to β-lactam antibiotics as reflected in their minimum inhibitory concentration required to inhibit the growth of 50% than PA−Sias. Accordingly, we have affinity purified sialoglycoproteins of PA+Sias. They were electrophoresed and identified by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight mass spectrometry analysis. Sequence study indicated the presence of a few α2,6-linked, α2,3-linked, and both α2,3- and α2,6-linked sialylated proteins in PA. The outer membrane porin protein D (OprD), a specialized channel-forming protein, responsible for uptake of β-lactam antibiotics, is one such identified sialoglycoprotein. Accordingly, sialylated (OprD+Sias) and non-sialylated (OprD−Sias) porin proteins were separately purified by using anion exchange chromatography. Sialylation of purified OprD+Sias was confirmed by several analytical and biochemical procedures. Profiling of glycan structures revealed three sialylated N-glycans and two sialylated O-glycans in OprD+Sias. In contrast, OprD−Sias exhibit only one sialylated N-glycans. OprD−Sias interacts with β-lactam antibiotics more than OprD+Sias as demonstrated by surface plasmon resonance study. Lyposome-swelling assay further exhibited that antibiotics have more capability to penetrate through OprD−Sias purified from four clinical isolates of PA. Taken together, it

  4. Inhibition of medulloblastoma cell invasion by Slit.

    PubMed

    Werbowetski-Ogilvie, T E; Seyed Sadr, M; Jabado, N; Angers-Loustau, A; Agar, N Y R; Wu, J; Bjerkvig, R; Antel, J P; Faury, D; Rao, Y; Del Maestro, R F

    2006-08-24

    Invasion of brain tumor cells has made primary malignant brain neoplasms among the most recalcitrant to therapeutic strategies. We tested whether the secreted protein Slit2, which guides the projection of axons and developing neurons, could modulate brain tumor cell invasion. Slit2 inhibited the invasion of medulloblastoma cells in a variety of in vitro models. The effect of Slit2 was inhibited by the Robo ectodomain. Time-lapse videomicroscopy indicated that Slit2 reduced medulloblastoma invasion rate without affecting cell direction or proliferation. Both medulloblastoma and glioma tumors express Robo1 and Slit2, but only medulloblastoma invasion is inhibited by recombinant Slit2 protein. Downregulation of activated Cdc42 may contribute to this differential response. Our findings reinforce the concept that neurodevelopmental cues such as Slit2 may provide insights into brain tumor invasion. PMID:16636676

  5. Porin Involvement in Cephalosporin and Carbapenem Resistance of Burkholderia pseudomallei

    PubMed Central

    Aunkham, Anuwat; Schulte, Albert; Winterhalter, Mathias; Suginta, Wipa

    2014-01-01

    Background Burkholderia pseudomallei (Bps) is a Gram-negative bacterium that causes frequently lethal melioidosis, with a particularly high prevalence in the north and northeast of Thailand. Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins. Principal Findings Microbiological assays showed that the clinical Bps strain was resistant to most antimicrobial agents and sensitive only to ceftazidime and meropenem. An E. coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. Channel recordings of BpsOmp38 reconstituted in a planar black lipid membrane (BLM) suggested that the higher permeability of BpsOmp38Y119A was caused by widening of the pore interior through removal of the bulky side chain. In contrast, the lower permeability of BpsOmp38Y119F was caused by introduction of the hydrophobic side chain (Phe), increasing the ‘greasiness’ of the pore lumen. Significantly, liposome swelling assays showed no permeation through the BpsOmp38 channel by antimicrobial agents to which Bps is resistant (cefoxitin, cefepime, and doripenem). In contrast, high permeability to ceftazidime and meropenem was observed, these being agents to which Bps is sensitive. Conclusion/Significance Our results, from both in vivo and in vitro studies, demonstrate that membrane permeability associated with BpsOmp38 expression correlates well with the antimicrobial susceptibility of the virulent bacterium B. pseudomallei, especially to carbapenems and cephalosporins. In addition, substitution of the residue Tyr119 affects

  6. Inhibition of cell-cell binding by lipid assemblies

    DOEpatents

    Nagy, Jon O.; Bargatze, Robert F.

    2001-05-22

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  7. Gonococcal porin IB activates NF-kappaB in human urethral epithelium and increases the expression of host antiapoptotic factors.

    PubMed

    Binnicker, Matthew J; Williams, Richard D; Apicella, Michael A

    2004-11-01

    Infection of human urethral epithelial cells (UECs) with Neisseria gonorrhoeae increases the transcription of several host antiapoptotic genes, including bfl-1, cox-2, and c-IAP-2. In order to identify the bacterial factor(s) responsible for eliciting these changes, the transcriptional status of apoptotic machinery was monitored in UECs challenged with certain gonococcal membrane components. Initially, we observed that infection of UECs with gentamicin-killed gonococci increased the expression of the antiapoptotic Bcl-2 family member, bfl-1. This observation indicated that viable, replicating bacteria are not required for induction of antiapoptotic gene expression. Confirming this observation, treatment of UECs with purified gonococcal membrane increased the expression of bfl-1, cox-2, and c-IAP-2. This finding suggested that a factor or multiple factors present in the outer membrane (OM) are responsible for altering UEC antiapoptotic gene expression. Interestingly, treatment of UECs with gonococcal porin IB (PorB IB), a major constituent of the OM, significantly increased the transcription of bfl-1, cox-2, and c-IAP-2. The upregulation of these genes by PorB IB was determined to be dependent on NF-kappaB activation, as inhibiting NF-kappaB blocked induced expression of these genes. This work demonstrates the altered expression of host apoptotic factors in response to gonococcal PorB IB and supports a model whereby UEC cell death may be modulated as a potential mechanism of bacterial survival and proliferation. PMID:15501771

  8. Importance of porins for biocide efficacy against Mycobacterium smegmatis.

    PubMed

    Frenzel, Elrike; Schmidt, Stefan; Niederweis, Michael; Steinhauer, Katrin

    2011-05-01

    Mycobacteria are among the microorganisms least susceptible to biocides but cause devastating diseases, such as tuberculosis, and increasingly opportunistic infections. The exceptional resistance of mycobacteria to toxic solutes is due to an unusual outer membrane, which acts as an efficient permeability barrier, in synergy with other resistance mechanisms. Porins are channel-forming proteins in the outer membrane of mycobacteria. In this study we used the alamarBlue assay to show that the deletion of Msp porins in isogenic mutants increased the resistance of Mycobacterium smegmatis to isothiazolinones (methylchloroisothiazolinone [MCI]/methylisothiazolinone [MI] and octylisothiazolinone [2-n-octyl-4-isothiazolin-3-one; OIT]), formaldehyde-releasing biocides {hexahydrotriazine [1,3,5-tris (2-hydroxyethyl)-hexahydrotriazine; HHT] and methylenbisoxazolidine [N,N'-methylene-bis-5-(methyloxazolidine); MBO]}, and the lipophilic biocides polyhexamethylene biguanide and octenidine dihydrochloride 2- to 16-fold. Furthermore, the susceptibility of the porin triple mutant against a complex disinfectant was decreased 8-fold compared to wild-type (wt) M. smegmatis. Efficacy testing in the quantitative suspension test EN 14348 revealed 100-fold improved survival of the porin mutant in the presence of this biocide. These findings underline the importance of porins for the susceptibility of M. smegmatis to biocides. PMID:21398489

  9. Importance of Porins for Biocide Efficacy against Mycobacterium smegmatis▿

    PubMed Central

    Frenzel, Elrike; Schmidt, Stefan; Niederweis, Michael; Steinhauer, Katrin

    2011-01-01

    Mycobacteria are among the microorganisms least susceptible to biocides but cause devastating diseases, such as tuberculosis, and increasingly opportunistic infections. The exceptional resistance of mycobacteria to toxic solutes is due to an unusual outer membrane, which acts as an efficient permeability barrier, in synergy with other resistance mechanisms. Porins are channel-forming proteins in the outer membrane of mycobacteria. In this study we used the alamarBlue assay to show that the deletion of Msp porins in isogenic mutants increased the resistance of Mycobacterium smegmatis to isothiazolinones (methylchloroisothiazolinone [MCI]/methylisothiazolinone [MI] and octylisothiazolinone [2-n-octyl-4-isothiazolin-3-one; OIT]), formaldehyde-releasing biocides {hexahydrotriazine [1,3,5-tris (2-hydroxyethyl)-hexahydrotriazine; HHT] and methylenbisoxazolidine [N,N′-methylene-bis-5-(methyloxazolidine); MBO]}, and the lipophilic biocides polyhexamethylene biguanide and octenidine dihydrochloride 2- to 16-fold. Furthermore, the susceptibility of the porin triple mutant against a complex disinfectant was decreased 8-fold compared to wild-type (wt) M. smegmatis. Efficacy testing in the quantitative suspension test EN 14348 revealed 100-fold improved survival of the porin mutant in the presence of this biocide. These findings underline the importance of porins for the susceptibility of M. smegmatis to biocides. PMID:21398489

  10. Structure of a putative BenF-like porin from Pseudomonas fluorescens Pf-5 at 2.6 A resolution

    SciTech Connect

    Sampathkumar, P.; Swaminathan, S.; Lu, F.; Zhao, X.; Li, Z.; Gilmore, J.; Bain, K.; Rutter, M. E.; Gheyi, T.; Schwinn, D.; Bonanno, J. B.; Pieper, U.; Fajardo, J. E.; Fiser, A.; Almo, S. C.; Chance, M. R.; Baker, D.; Atwell, S.; Thompson, D. A.; Emtage, J. S.; Wasserman, S. R.; Sali, A.; Sauder, J. M.; Burley, S. K.

    2010-11-01

    Gram-negative bacteria typically overcome poor permeability of outer membranes through general porins like OmpF and OmpC, which form water-filled transmembrane pores permitting diffusion of hydrophilic molecules with no particular selectivity. Many bacteria lacking such general porins use substrate-specific porins to overcome growth-limiting conditions and facilitate selective transport of metabolites. Exclusive reliance on substrate-specific porins yields lower membrane permeability to small molecules (<600 Da) versus that seen for Escherichia coli. In Pseudomonads, transit of most small molecules across the cell membrane is thought to be mediated by substrate-specific channels of the OprD superfamily. This property explains, at least in part, the high incidence of Pseudomonas aeruginosa antibiotic resistance. High-throughput DNA sequencing of the P. aeruginosa chromosome revealed the presence of 19 genes encoding structurally related, substrate-specific porins (with 30-45% pairwise amino acid sequence identity) that mediate transmembrane passage of small, water-soluble compounds. The OprD superfamily encompasses the eponymous OprD subfamily, which includes 9 P. aeruginosa proteins that convey basic amino acids and carbapenem antibiotics, and the OpdK subfamily, which includes 11 P. aeruginosa proteins that convey aromatic acids and other small aromatic compounds. Genome sequencing of other gram-negative bacteria has revealed additional members of the OprD and OpdK subfamilies in various organisms, including other pseudomonads. Among the many bacteria in which OprD superfamily members have been identified are P. putida, P. fluorescens Pf-5, P. syringae, and Azotobacter vinelandii, all of which share closely related genes that encode the so-called BenF-like porins. In P. putida, benF is part of an operon involved in benzoate catabolism regulated by benR. Within this operon, benK, benE, and benF genes have been suggested to contribute toward either influx or efflux

  11. Inhibition of mast cells by algae.

    PubMed

    Price, Joseph A; Sanny, Charles; Shevlin, Dennis

    2002-01-01

    There is a history of use of algae as foods and as food additives, or nutraceuticals. Although algae are a safe component of human foods and animal feeds, the effects of the algae other than as a source of protein are not clear. We examined the prevalence of an antiinflammatory activity in selected algae using, as an assay system, the inhibition of histamine release from mast cells. Methanolic extracts of eleven algae were examined for activity to inhibit the release of histamine from mast cells in vitro. This activity was found widely among the samples tested. The activities of these extracts were not uniformly stable in acid methanol. Selected extracts studied further did not separate with the use of size-exclusion filtration filters. LH-20 chromatography suggested at least two main elution areas of activity of the Chlorella extract. In summary, we saw wide phylogenetic dispersion of mast cell inhibition activity, suggesting that this antiinflammatory property is common in algae. This effect was apparently due to multiple activities within the algal extracts. PMID:12639395

  12. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    PubMed

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  13. Antigenic relationship and functional properties of Yersinia porins.

    PubMed

    Vostrikova, P; Likhatskaya, G N; Novikova, D; Solovyeva, T F

    2001-01-01

    We have studied the molecular structure and functional properties of major pore-forming proteins isolated as peptidoglycan (PG)-protein complexes from four Yersinia species (Y. intermedia, Y. enterocolitica, Y. kristensenii and Y. frederiksenii) cultured as various temperatures. Despite the close antigenic relationship, Yersinia porins revealed different functional properties. When reconstituted in model membranes, the PG-protein complexes induced conductance which was different for the "cold" (grown at 6-8 degrees C) and "warm" (grown at 37 degrees C) variants of microbial cultures. We conclude that the functional state of Yersinia porins in the outer membrane depends on the cultivation temperature. PMID:11497105

  14. Role of porins in the antibiotic susceptibility of Pseudomonas aeruginosa: construction of mutants with deletions in the multiple porin genes.

    PubMed

    Yoneyama, H; Yamano, Y; Nakae, T

    1995-08-01

    We inserted deletions in the chromosomal genes of Pseudomonas aeruginosa coded for the outer membrane porins, proteins C, D2, or E1, and all possible combinations of these proteins by the gene replacement technique and selecting for imipenem-resistance. Determination of the minimum inhibitory concentrations of beta-lactams, fluoroquinolones, chloramphenicol and gentamicin in these mutants revealed that most mutants showed equal susceptibility to the porin-sufficient strain. The only exception was that imipenem and meropenem showed increased minimum inhibitory concentrations in all of the mutants lacking protein D2. These results firmly established that the P. aeruginosa porins identified so far form the pores do not accommodate the passage of most antipseudomonal antibiotics, with the exception of carbapenems. PMID:7639767

  15. Stat3 inhibition in neural lineage cells.

    PubMed

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  16. Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration

    PubMed Central

    Zhu, Shengming; Wang, Jiangang; Xie, Bingkun; Luo, Zhiguo; Lin, Xiukun; Liao, D. Joshua

    2015-01-01

    Acute febrile infections have historically been used to treat cancer. To explore the underlying mechanism, we studied chronic effects of fever on cancer cell growth and chemotherapeutic efficacy in cell culture. We found that culturing cancer cells at 39°C mildly inhibited cell growth by arresting the cells at the G1 phase of the cell cycle. When cells were seeded in culture dishes at a lower density, e.g. about 1000–2000 cells per 35-mm dish, the growth inhibition was much greater, manifested as many fewer cell colonies in the 39°C dishes, compared with the results at a higher density seeding, e.g. 20,000 cells per dish, suggesting that cell-cell collaboration as the Allee effect in cell culture is inhibited at 39°C. Withdrawal of cells from serum enhanced the G1 arrest at 39°C and, for some cell lines such as A549 lung cancer cells, serum replenishment failed to quickly drive the cells from the G1 into the S and G2-M phases. Therapeutic effects of several chemotherapeutic agents, including clove bud extracts, on several cancer cell lines were more potent at 39°C than at 37°C, especially when the cells were seeded at a low density. For some cell lines and some agents, this enhancement is long-lasting, i.e. continuing after the cessation of the treatment. Collectively these results suggest that hyperthermia may inhibit cancer cell growth by G1 arrest and by inhibition of cell-cell collaboration, and may enhance the efficacy of several chemotherapeutic agents, an effect which may persist beyond the termination of chemotherapy. PMID:26495849

  17. Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration.

    PubMed

    Zhu, Shengming; Wang, Jiangang; Xie, Bingkun; Luo, Zhiguo; Lin, Xiukun; Liao, D Joshua

    2015-01-01

    Acute febrile infections have historically been used to treat cancer. To explore the underlying mechanism, we studied chronic effects of fever on cancer cell growth and chemotherapeutic efficacy in cell culture. We found that culturing cancer cells at 39°C mildly inhibited cell growth by arresting the cells at the G1 phase of the cell cycle. When cells were seeded in culture dishes at a lower density, e.g. about 1000-2000 cells per 35-mm dish, the growth inhibition was much greater, manifested as many fewer cell colonies in the 39°C dishes, compared with the results at a higher density seeding, e.g. 20,000 cells per dish, suggesting that cell-cell collaboration as the Allee effect in cell culture is inhibited at 39°C. Withdrawal of cells from serum enhanced the G1 arrest at 39°C and, for some cell lines such as A549 lung cancer cells, serum replenishment failed to quickly drive the cells from the G1 into the S and G2-M phases. Therapeutic effects of several chemotherapeutic agents, including clove bud extracts, on several cancer cell lines were more potent at 39°C than at 37°C, especially when the cells were seeded at a low density. For some cell lines and some agents, this enhancement is long-lasting, i.e. continuing after the cessation of the treatment. Collectively these results suggest that hyperthermia may inhibit cancer cell growth by G1 arrest and by inhibition of cell-cell collaboration, and may enhance the efficacy of several chemotherapeutic agents, an effect which may persist beyond the termination of chemotherapy. PMID:26495849

  18. Porin protein of Neisseria gonorrhoeae: cloning and gene structure.

    PubMed Central

    Gotschlich, E C; Seiff, M E; Blake, M S; Koomey, M

    1987-01-01

    The outer membrane porin molecule of Neisseria gonorrhoeae is known as protein I (PI). Among different strains of gonococci there is variability of PI, and two main classes, PIA and PIB, have been recognized. A lambda gt11 bank of gonococcal DNA was screened using monoclonal antibodies directed to a PIB-type porin molecule of N. gonorrhoeae, and three immunoreactive clones were isolated. DNA sequence analysis indicated that each contained only portions of the PI structural gene, but that together they contained the complete gene, and its structure was determined. The DNA sequence predicts a protein of 348 amino acids with a typical 19 amino acid signal peptide. The PI protein resembles Escherichia coli porins in size, lack of long hydrophobic sequences, and absence of cysteine residues. Sequence homologies between PI and the E. coli porins were found, particularly in the 100 N-terminal and the 110 C-terminal amino acids. In addition to the coding sequence of PI, the complementary strand contains a large open reading frame. At the 3' end of the PI gene, immediately following an inverted repeat (probably the transcription terminator), the clone contains an unusual sequence consisting of 31 perfect repeats of the heptamer CTGTTTT. Hybridization analysis suggests that there is a single structural gene for PI and that it is homologous to the gene found in a PIA-bearing strain of gonococcus. Images PMID:2825179

  19. SIRT1 controls cell proliferation by regulating contact inhibition.

    PubMed

    Cho, Elizabeth H; Dai, Yan

    2016-09-16

    Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by restoring contact inhibition. PMID:27514448

  20. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels

    PubMed Central

    Kojima, Seiji; Nikaido, Hiroshi

    2013-01-01

    Small, hydrophilic compounds such as β-lactams diffuse across the outer membrane of Gram-negative bacteria through porin channels, which were originally thought to be nonspecific channels devoid of any specificity. However, since the discovery of an ampicillin-binding site within the OmpF channel in 2002, much attention has been focused on the potential specificity of the channel, where the binding site was assumed either to facilitate or to retard the penetration of β-lactams. Since the earlier studies on porin permeability were done without the knowledge of the contribution of multidrug efflux pumps in the overall flux process across the cell envelope, in this study we have carefully studied both the porin permeability and active efflux of ampicillin and benzylpenicillin. We found that the influx occurs apparently by a spontaneous passive diffusion without any indication of specific binding within the concentration range relevant to the antibiotic action of these drugs, and that the higher permeability for ampicillin is totally as expected from the gross property of this drug as a zwitterionic compound. The active efflux by AcrAB was more effective for benzylpenicillin due to the stronger affinity and high degree of positive cooperativity. Our data now give a complete quantitative picture of the influx, efflux, and periplasmic degradation (catalyzed by AmpC β-lactamase) of these two compounds, and correlate closely with the susceptibility of Escherichia coli strains used here, thus validating not only our model but also the parameters obtained in this study. PMID:23798411

  1. Borrelia burgdorferi BBA74, a Periplasmic Protein Associated with the Outer Membrane, Lacks Porin-Like Properties▿

    PubMed Central

    Mulay, Vishwaroop; Caimano, Melissa J.; Liveris, Dionysios; Desrosiers, Daniel C.; Radolf, Justin D.; Schwartz, Ira

    2007-01-01

    The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% α-helix with little β-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins. PMID:17189354

  2. Borrelia burgdorferi BBA74, a periplasmic protein associated with the outer membrane, lacks porin-like properties.

    PubMed

    Mulay, Vishwaroop; Caimano, Melissa J; Liveris, Dionysios; Desrosiers, Daniel C; Radolf, Justin D; Schwartz, Ira

    2007-03-01

    The outer membrane of Borrelia burgdorferi, the causative agent of Lyme disease, contains very few integral membrane proteins, in contrast to other gram-negative bacteria. BBA74, a Borrelia burgdorferi plasmid-encoded protein, was proposed to be an integral outer membrane protein with putative porin function and designated as a 28-kDa outer membrane-spanning porin (Oms28). In this study, the biophysical properties of BBA74 and its subcellular localization were investigated. BBA74 is posttranslationally modified by signal peptidase I cleavage to a mature 25-kDa protein. The secondary structure of BBA74 as determined by circular dichroism spectroscopy consists of at least 78% alpha-helix with little beta-sheet structure. BBA74 in intact B. burgdorferi cells was insensitive to proteinase K digestion, and indirect immunofluorescence microscopy showed that BBA74 was not exposed on the cell surface. Triton X-114 extraction of outer membrane vesicle preparations indicated that BBA74 is not an integral membrane protein. Taken together, the data indicate that BBA74 is a periplasmic, outer membrane-associated protein that lacks properties typically associated with porins. PMID:17189354

  3. The omp2 gene locus of Brucella abortus encodes two homologous outer membrane proteins with properties characteristic of bacterial porins.

    PubMed Central

    Marquis, H; Ficht, T A

    1993-01-01

    In Brucella abortus, a gene encoding a major cell envelope protein, omp2, is duplicated within a short segment of the large chromosomal DNA. Although both genes contain open reading frames, encoding proteins of high identity, expression from only one, omp2b, has been detected in laboratory-grown B. abortus. In the present study, we wished to determine whether omp2b encodes the previously studied Brucella porin and to characterize the omp2a gene product. Experiments were performed with Escherichia coli transformants expressing either omp2a or omp2b. Our results indicated that both gene products localized to the outer membrane of E. coli. Initial rates of transport of [14C]maltose and growth rates in the presence of maltodextrins of defined size indicated an increased hydrophilic permeability of transformants expressing omp2a. These cells were also shown to grow on maltotetraose, a molecule with a molecular mass of 667 Da. Activity consistent with the formation of pores could not be demonstrated in transformants expressing omp2b. However, Omp2b formed oligomers resistant to heat denaturation up to 70 degrees C in sodium dodecyl sulfate buffer, a property characteristic of bacterial porins. Overall, these results suggest that the omp2a gene product has pore-forming activity and that the omp2b gene encodes the previously characterized Brucella porin. Images PMID:7689540

  4. MET Inhibition in Clear Cell Renal Cell Carcinoma

    PubMed Central

    Xie, Zuoquan; Lee, Young H.; Boeke, Marta; Jilaveanu, Lucia B.; Liu, Zongzhi; Bottaro, Donald P.; Kluger, Harriet M.; Shuch, Brian

    2016-01-01

    Background: Clear cell renal cell carcinoma (ccRCC) is the most lethal form of kidney cancer. Small molecule VEGFR inhibitors are widely used but are not curative and various resistance mechanisms such as activation of the MET pathway have been described. Dual MET/VEGFR2 inhibitors have recently shown clinical benefit but limited preclinical data evaluates their effects in ccRCC. Methods: An interrogation of the Cancer Genome Atlas (TCGA) dataset was performed to evaluate oncogenic alterations in the MET/VEGFR2 pathway. We evaluated the in vitro effects of Cabozantinib, a dual MET/VEGFR2 inhibitor, using a panel of ccRCC cell lines. Drug effects of cell viability and proliferation, migration, cell scatter, anchorage independent growth, and downstream MET/VEGFR2 signaling pathways were assessed. Results: Twelve percent of TCGA cases had possible MET/HGF oncogenic alterations with co-occurrence noted (p<0.001). MET/HGF altered cases had worse overall survival (p=0.044). Cabozantinib was a potent inhibitor of MET and VEGFR2 in vitro in our cell line panel. PI3K, MAPK and mTOR pathways were also suppressed by cabozantinib, however the effects on cell viability in vitro were modest. At nanomolar concentrations of cabozantinib, HGF-stimulated migration, invasion, cellular scattering and soft agar colony formation were inhibited. Conclusions: We provide further preclinical rationale for dual MET/VEGFR2 inhibition in ccRCC. While the MET pathway is implicated in VEGFR resistance, dual inhibitors may have direct anti-tumor effects in a patient subset with evidence of MET pathway involvement. Cabozantinib is a potent dual MET/VEGFR2 inhibitor, significantly inhibits cell migration and invasion in vitro and likely has anti-angiogenic effects similar to other VEGFR tyrosine kinase inhibitors. Future work involving in vivo models will be useful to better define mechanisms of potential anti-tumor activity. PMID:27390595

  5. Identification of outer membrane Porin D as a vitronectin-binding factor in cystic fibrosis clinical isolates of Pseudomonas aeruginosa

    PubMed Central

    Paulsson, Magnus; Singh, Birendra; Al-Jubair, Tamim; Su, Yu-Ching; Høiby, Niels; Riesbeck, Kristian

    2016-01-01

    Background Pseudomonas aeruginosa is a pathogen that frequently colonizes patients with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Several pathogens are known to bind vitronectin to increase their virulence. Vitronectin has been shown to enhance P. aeruginosa adhesion to host epithelial cells. Methods We screened clinical isolates from the airways of CF patients and from the bloodstream of patients with bacteremia for binding of vitronectin. Two-dimensional SDS-PAGE and a proteomic approach was used to identify vitronectin-receptors in P. aeruginosa. Results P. aeruginosa from the airways of CF patients (n=27) bound more vitronectin than bacteremic isolates (n=15, p=0.025). Porin D (OprD) was identified as a vitronectin-binding protein. A P. aeruginosa oprD transposon insertion mutant had a decreased binding to soluble and immobilized vitronectin (p ≤ 0.001). Conclusions P. aeruginosa isolates obtained from CF patients significantly bound vitronectin. Porin D was defined as a novel P. aeruginosa vitronectin-receptor, and we postulate that the Porin D-dependent interaction with vitronectin may be important for colonization. PMID:26047937

  6. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin.

    PubMed

    Yong, Yang-Chun; Yu, Yang-Yang; Yang, Yun; Liu, Jing; Wang, Jing-Yuan; Song, Hao

    2013-02-01

    The microbial fuel cell (MFC), is a promising environmental biotechnology for harvesting electricity energy from organic wastes. However, low bacterial membrane permeability of electron shuttles is a limiting factor that restricts the electron shuttle-mediated extracellular electron transfer (EET) from bacteria to electrodes, thus the electricity power output of MFCs. To this end, we heterologously expressed a porin protein OprF from Pseudomonas aeruginosa PAO1 into Escherichia coli, which dramatically increased its membrane permeability, delivering a much higher current output in MFCs than its parental strain (BL21). We found that the oprF-expression strain showed more efficient EET than its parental strain. More strikingly, the enhanced membrane permeability also rendered the oprF-expression strain an efficient usage of riboflavin as the electron shuttle, whereas its parental strain was incapable of. Our results substantiated that membrane permeability is crucial for the efficient EET, and indicated that the expression of synthetic porins could be an efficient strategy to enhance bioelectricity generation by microorganisms (including electrogenic bacteria) in MFCs. PMID:23007598

  7. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance

    PubMed Central

    Fernández, Lucía

    2012-01-01

    Summary: The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms. PMID:23034325

  8. Rhodococcus jostii porin A (RjpA) functions in cholate uptake.

    PubMed

    Somalinga, Vijayakumar; Mohn, William W

    2013-10-01

    RjpA in Rhodococcus jostii is the ortholog of a channel-forming porin, MspA. Deletion of rjpA delayed growth of R. jostii on cholate but not on cholesterol. Eventual growth on cholate involved increased expression of other porins, namely, RjpB, RjpC, and RjpD. Porins appear essential for the uptake of bile acids by mycolic acid bacteria. PMID:23892747

  9. How Porin Heterogeneity and Trade-Offs Affect the Antibiotic Susceptibility of Gram-Negative Bacteria

    PubMed Central

    Ferenci, Thomas; Phan, Katherine

    2015-01-01

    Variations in porin proteins are common in Gram-negative pathogens. Altered or absent porins reduce access of polar antibiotics across the outer membrane and can thus contribute to antibiotic resistance. Reduced permeability has a cost however, in lowering access to nutrients. This trade-off between permeability and nutritional competence is the source of considerable natural variation in porin gate-keeping. Mutational changes in this trade-off are frequently selected, so susceptibility to detergents and antibiotics is polymorphic in environmental isolates as well as pathogens. Understanding the mechanism, costs and heterogeneity of antibiotic exclusion by porins will be crucial in combating Gram negative infections. PMID:26506392

  10. Journey of poly-nucleotides through OmpF porin.

    PubMed

    Hadi-Alijanvand, Hamid; Rouhani, Maryam

    2015-05-21

    OmpF is an abundant porin in many bacteria which attracts attention as a promising biological nanopore for DNA sequencing. We study the interactions of OmpF with pentameric poly-nucleotides (poly-Ns) in silico. The poly-N molecule is forced to translocate through the lumen of OmpF. Subsequently, the structural and dynamical effects of translocation steps on protein and poly-N molecules are explored in detail. The external loops of OmpF are introduced as the main region for discrimination of poly-Ns based on their organic bases. Structural network analyses of OmpF in the presence or absence of poly-Ns characterize special residues in the structural network of porin. These residues pave the way for engineering OmpF protein. The poly-N-specific pattern of OmpF's local conductance is detected in the current study. Computing the potential of mean force for translocation steps, we define the energetic barrier ahead of poly-N to move through OmpF's lumen. We suggest that fast translocation of the examined poly-N molecules through OmpF seems unattainable by small external driving forces. Our computational results suggest some abilities for OmpF porin like OmpF's potential for being used in poly-N sequencing. PMID:25965338

  11. Mechanisms of suberoylanilide hydroxamic acid inhibition of mammary cell growth

    PubMed Central

    Said, Thenaa K; Moraes, Ricardo CB; Sinha, Raghu; Medina, Daniel

    2001-01-01

    The mechanism of suberoylanilide hydroxamic acid in cell growth inhibition involved induction of pRb-2/p130 interaction and nuclear translocation with E2F-4, followed by significant repression in E2F-1 and PCNA nuclear levels, which led to inhibition in DNA synthesis in mammary epithelial cell lines. PMID:11250759

  12. Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Fernández-Luna, José L; Flahaut, Emmanuel; Rodríguez-Fernández, Lidia; Villegas, Juan C; González, Jesús; Fanarraga, Mónica L

    2015-08-01

    Inhibiting cancer cell migration and infiltration to other tissues makes the difference between life and death. Multiwalled carbon nanotubes (MWCNTs) display intrinsic biomimetic properties with microtubules, severely interfering with the function of these protein filaments during cell proliferation, triggering cell death. Here it is shown MWCNTs disrupt the centrosomal microtubule cytoskeletal organization triggering potent antimigratory effects in different cancer cells. PMID:26097131

  13. Mullerian inhibiting substance inhibits ovarian cell growth through an Rb-independent mechanism.

    PubMed

    Ha, T U; Segev, D L; Barbie, D; Masiakos, P T; Tran, T T; Dombkowski, D; Glander, M; Clarke, T R; Lorenzo, H K; Donahoe, P K; Maheswaran, S

    2000-11-24

    Müllerian inhibiting substance (MIS), a transforming growth factor-beta family member, causes regression of the Müllerian duct in male embryos. MIS overexpression in transgenic mice ablates the ovary, and MIS inhibits the growth of ovarian cancer cell lines in vitro, suggesting a key role for this hormone in postnatal development of the ovary. This report describes a mechanism for MIS-mediated growth inhibition in both a human epithelial ovarian cancer cell line and a cell line derived from normal ovarian surface epithelium, which is the origin of human epithelial ovarian cancers. MIS-treated cells accumulated in the G(1) phase of the cell cycle and subsequently underwent apoptosis. MIS up-regulated the cyclin-dependent kinase inhibitor p16 through an MIS type II receptor-mediated mechanism and inhibited growth in the absence of detectable or inactive Rb protein. Prolonged treatment with MIS down-regulated the Rb-related protein p130 and increased the Rb family-regulated transcription factor E2F1, overexpression of which inhibited growth. These findings demonstrate that p16 is required for MIS-mediated growth inhibition in ovarian epithelial cells and tumor cells and suggest that up-regulation of E2F1 also plays a role in this process. PMID:10958795

  14. [Inhibition of adenovirus reproduction in cell culture by specific antibodies].

    PubMed

    Povnytsia, O Iu; Nosach, L M; Zhovnovata, V L; Zahorodnia, S D; Vantsak, N P; Tokarchuk, L V; Polishchuk, O M; Diachenko, N S

    2009-01-01

    The capacity of specific antibodies to inhibit the reproduction of homo- and heterologous adenoviruses in Hela cell added to culture medium after virus adsorption was studied. The inhibiting effect of polyclonal antivirus and monospecific antihexone antibodies to homo- and heterologous adenoviruses was shown. The effect was more expressed when using antibodies to homologous antibodies. The intensity of inhibition depended on antibodies concentration in the medium and infecting dose of the virus. Essential reduction of the quantity of infected cells and a decrease of the titer of adenovirus synthesized in the presence of homo- and heterologous antibodies was shown but adenovirus reproduction was not inhibited completely. PMID:19663330

  15. Mitochondrial uncouplers inhibit hepatic stellate cell activation

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction participates in the progression of several pathologies. Although there is increasing evidence for a mitochondrial role in liver disease, little is known about its contribution to hepatic stellate cell (HSC) activation. In this study we investigated the role of mitochondrial activity through mild uncoupling during in vitro activation of HSCs. Methods Cultured primary human and mouse HSCs were treated with the chemical uncouplers FCCP and Valinomycin. ATP levels were measured by luciferase assay and production of reactive oxygen species was determined using the fluorescent probe DCFH-DA. Possible cytotoxicity by uncoupler treatment was evaluated by caspase 3/7 activity and cytoplasmic protease leakage. Activation of HSCs and their response to the pro-fibrogenic cytokine TGF-β was evaluated by gene expression of activation markers and signal mediators using RT-qPCR. Proliferation was measured by incorporation of EdU and protein expression of α-smooth muscle actin was analyzed by immunocytochemistry and western blot. Results FCCP and Valinomycin treatment mildly decreased ATP and reactive oxygen species levels. Both uncouplers increased the expression of mitochondrial genes such as Tfam and COXIV while inducing morphological features of quiescent mouse HSCs and abrogating TGF-β signal transduction. Mild uncoupling reduced HSC proliferation and expression of pro-fibrogenic markers of mouse and human HSCs. Conclusions Mild mitochondrial uncoupling inhibits culture-induced HSC activation and their response to pro-fibrogenic cytokines like TGF-β. These results therefore suggest mitochondrial uncoupling of HSCs as a strategy to reduce progression of liver fibrosis. PMID:22686625

  16. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  17. Cloning, Sequencing, and Role in Serum Susceptibility of Porin II from Mesophilic Aeromonas hydrophila

    PubMed Central

    Nogueras, Maria Mercé; Merino, Susana; Aguilar, Alicia; Benedi, Vicente Javier; Tomás, Juan M.

    2000-01-01

    We cloned and sequenced the structural gene for Aeromonas hydrophila porin II from strain AH-3 (serogroup O:34). The genetic position of this gene, like that of ompF in Escherichia coli, is adjacent to aspC and transcribed in the same direction. However, upstream of the porin II gene no similarities with E. coli were found. We obtained defined insertion mutants in porin II gene either in A. hydrophila (O:34) or A. veronii sobria (serogroup O:11) serum-resistant or -sensitive strains. Furthermore, we complemented these mutants with a plasmid harboring only the porin II gene, which allowed us to define the role of porin II as an important surface molecule involved in serum susceptibility and C1q binding in these strains. PMID:10722573

  18. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  19. Inhibition of host cell catalase by Mycoplasma pneumoniae: a possible mechanism for cell injury.

    PubMed Central

    Almagor, M; Yatziv, S; Kahane, I

    1983-01-01

    This study demonstrates that viable Mycoplasma pneumoniae cells inhibit catalase activity in several types of intact human cells as well as in solution. Human erythrocyte catalase was inhibited up to 72%, and the inhibition of catalase in human cultured skin fibroblasts, lung carcinoma epithelial cells, and ciliated epithelial cells from human nasal polyps ranged between 75 and 80%. UV light-killed mycoplasmas failed to inhibit catalase activity both in intact cells and in vitro. After M. pneumoniae infection of human cultured skin fibroblasts, the level of malonyldialdehyde, an indicator for membrane lipid peroxidation, was 3.5 times higher than in control fibroblasts. Virulent M. pneumoniae completely inhibited catalase activity in solution, whereas the nonvirulent strains had a lesser ability to inhibit catalase activity. These findings suggest that as a result of host cell catalase inhibition by M. pneumoniae, the toxicity of the hydrogen peroxide generated by the microorganism and the affected cell is enhanced, thereby inducing host cell damage. PMID:6407999

  20. Outer membrane porin M35 of Moraxella catarrhalis mediates susceptibility to aminopenicillins

    PubMed Central

    2009-01-01

    Background The outer membrane protein M35 is a conserved porin of type 1 strains of the respiratory pathogen Moraxella catarrhalis. It was previously shown that M35 is involved in the uptake of essential nutrients required for bacterial growth and for nasal colonization in mice. The aim of this study was (i) to characterize the potential roles of M35 in the host-pathogen interactions considering the known multifunctionality of porins and (ii) to characterize the degree of conservation in the phylogenetic older subpopulation (type 2) of M. catarrhalis. Results Isogenic m35 mutants of the type 1 strains O35E, 300 and 415 were tested for their antimicrobial susceptibility against 15 different agents. Differences in the MIC (Minimum Inhibitory Concentration) between wild-type and mutant strains were found for eight antibiotics. For ampicillin and amoxicillin, we observed a statistically significant 2.5 to 2.9-fold MIC increase (p < 0.03) in the m35 mutants. Immunoblot analysis demonstrated that human saliva contains anti-M35 IgA. Wild-type strains and their respective m35 mutants were indistinguishable with respect to the phenotypes of autoagglutination, serum resistance, iron acquisition from human lactoferrin, adherence to and invasion of respiratory tract epithelial cells, and proinflammatory stimulation of human monocytes. DNA sequencing of m35 from the phylogenetic subpopulation type 2 strain 287 revealed 94.2% and 92.8% identity on the DNA and amino acid levels, respectively, in comparison with type 1 strains. Conclusion The increase in MIC for ampicillin and amoxicillin, respectively, in the M35-deficient mutants indicates that this porin affects the outer membrane permeability for aminopenicillins in a clinically relevant manner. The presence of IgA antibodies in healthy human donors indicates that M35 is expressed in vivo and recognized as a mucosal antigen by the human host. However, immunoblot analysis of human saliva suggests the possibility of antigenic

  1. Structure-kinetic relationship of carbapenem antibacterials permeating through E. coli OmpC porin.

    PubMed

    Tran, Que-Tien; Pearlstein, Robert A; Williams, Sarah; Reilly, John; Krucker, Thomas; Erdemli, Gül

    2014-11-01

    The emergence of Gram-negative "superbugs" exhibiting resistance to known antibacterials poses a major public health concern. Low molecular weight Gram-negative antibacterials are believed to penetrate the outer bacterial membrane (OM) through porin channels. Therefore, intracellular exposure needed to drive antibacterial target occupancy should depend critically on the translocation rates through these proteins and avoidance of efflux pumps. We used electrophysiology to study the structure-translocation kinetics relationships of a set of carbapenem antibacterials through purified porin OmpC reconstituted in phospholipid bilayers. We also studied the relative susceptibility of OmpC+ and OmpC- E. coli to these compounds as an orthogonal test of translocation. Carbapenems exhibit good efficacy in OmpC-expressing E. coli cells compared with other known antibacterials. Ertapenem, which contains an additional acidic group compared to other analogs, exhibits the fastest entry into OmpC (k(on) ≈ 2 × 10(4) M(-1) s(-1)). Zwitterionic compounds with highly polar groups attached to the penem-2 ring, including panipenem, imipenem and doripenem exhibit faster k(on) (>10(4) M(-1) s(-1)), while meropenem and biapenem with fewer exposed polar groups exhibit slower k(on) (∼5 × 10(3) M(-1) s(-1)). Tebipenem pivoxil and razupenem exhibit ∼13-fold slower k(on) (∼1.5 × 10(3) M(-1) s(-1)) than ertapenem. Overall, our results suggest that (a) OmpC serves as an important route of entry of these antibacterials into E. coli cells; and (b) that the structure-kinetic relationships of carbapenem translocation are governed by H-bond acceptor/donor composition (in accordance with our previous findings that the enthalpic cost of transferring water from the constriction zone to bulk solvent increases in the presence of exposed nonpolar groups). PMID:25082756

  2. Ozone selectively inhibits growth of human cancer cells

    SciTech Connect

    Sweet, F.; Kao, M.S.; Lee, S.C.; Hagar, W.L.; Sweet, W.E.

    1980-08-01

    The growth of human cancer cells from lung, breast, and uterine tumors was selectively inhibited in a dose-dependent manner by ozone at 0.3 to 0.8 part per million of ozone in ambient air during 8 days of culture. Human lung diploid fibroblasts served as noncancerous control cells. The presence of ozone at 0.3 to 0.5 part per million inhibited cancer cell growth 40 and 60 percent, respectively. The noncancerous lung cells were unaffected at these levels. Exposure to ozone at 0.8 part per million inhibited cancer cell growth more than 90 percent and control cell growth less than 50 percent. Evidently, the mechanisms for defense against ozone damage are impaired in human cancer cells.

  3. Apaf1 inhibition promotes cell recovery from apoptosis.

    PubMed

    Gortat, Anna; Sancho, Mónica; Mondragón, Laura; Messeguer, Àngel; Pérez-Payá, Enrique; Orzáez, Mar

    2015-11-01

    The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery. PMID:26361785

  4. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  5. Inhibition Of Call-Cell Binding By Kipid Assemblies

    DOEpatents

    Nagy, Jon O. , Bargatze, Robert F.

    2003-12-16

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  6. Vitamin D inhibition of lung adenocarcinoma cell proliferation in vitro.

    PubMed

    Li, Rong; Lou, Yuqing; Zhang, Weiyan; Dong, Qianggang; Han, Baohui

    2014-11-01

    Vitamin D has the capability to inhibit tumor cell proliferation and promote tumor cell apoptosis but whether this mechanism exists in lung adenocarcinoma cells remains to be studied. Our objective is to explore whether vitamin D has the capability to inhibit lung adenocarcinoma cell proliferation and synergize with cisplatin. Our method was to explore the effect of different concentrations of 1,25(OH)2D3 with or without cisplatin on lung adenocarcinoma cells by detecting cell proliferation rates at different time points. 1,25(OH)2D3 was capsulated with nanomaterial before acting on lung adenocarcinoma cells, and cell proliferation rates at different time points were detected with the CCK-8 method. When vitamin D was applied at a concentration of 1 × 10(-7) and 1 × 10(-6) mol/L on A549, PC9, SPC-A1, and H1650 cells for 72 h, no inhibition occurred on cell proliferation. Between the concentrations of 1 × 10(-5) and 0.5 × 10(-5) mol/L, inhibition on cell proliferation increased with drug action time. Between the concentration of 2.5 × 10(-5) and 0.03 × 10(-5) mol/L, inhibition on cell proliferation increased with increasing drug concentration. Analysis using bivariate correlations showed that the correlation coefficient of the proliferation inhibition rate and drug content was 0.580 (p < 0.0001). The correlation coefficient of proliferation inhibition rate and the drug action time was 0.379 (p = 0.01). The combined use of vitamin D and dichlorodiammine-platinum(II) (DDP) significantly increased the inhibition rate on A549 cell proliferation, which peaked after culturing for 96 h (Table 4). Further analysis using bivariate correlations showed that the correlation coefficient between proliferation inhibition rate and DDP concentration was 0.319 (p < 0.0001). The correlation coefficient of the proliferation inhibition rate and vitamin D concentration was 0.269 (p < 0.0001). The correlation coefficient of proliferation inhibition and drug action time was 0.221(p

  7. Salmonella Typhi OmpS1 and OmpS2 porins are potent protective immunogens with adjuvant properties

    PubMed Central

    Moreno-Eutimio, Mario A; Tenorio-Calvo, Alejandra; Pastelin-Palacios, Rodolfo; Perez-Shibayama, Christian; Gil-Cruz, Cristina; López-Santiago, Rubén; Baeza, Isabel; Fernández-Mora, Marcos; Bonifaz, Laura; Isibasi, Armando; Calva, Edmundo; López-Macías, Constantino

    2013-01-01

    Salmonella enterica serovar Typhi (S. Typhi) is the causal agent of typhoid fever, a disease that primarily affects developing countries. Various antigens from this bacterium have been reported to be targets of the immune response. Recently, the S. Typhi genome has been shown to encode two porins – OmpS1 and OmpS2 – which are expressed at low levels under in vitro culture conditions. In this study, we demonstrate that immunizing mice with either OmpS1 or OmpS2 induced production of specific, long-term antibody titres and conferred protection against S. Typhi challenge; in particular, OmpS1 was more immunogenic and conferred greater protective effects than OmpS2. We also found that OmpS1 is a Toll-like receptor 4 (TLR4) agonist, whereas OmpS2 is a TLR2 and TLR4 agonist. Both porins induced the production of tumour necrosis factor and interleukin-6, and OmpS2 was also able to induce interleukin-10 production. Furthermore, OmpS1 induced the over-expression of MHC II molecules in dendritic cells and OmpS2 induced the over-expression of CD40 molecules in macrophages and dendritic cells. Co-immunization of OmpS1 or OmpS2 with ovalbumin (OVA) increased anti-OVA antibody titres, the duration and isotype diversity of the OVA-specific antibody response, and the proliferation of T lymphocytes. These porins also had adjuvant effects on the antibody response when co-immunized with either the Vi capsular antigen from S. Typhi or inactivated 2009 pandemic influenza A(H1N1) virus [A(H1N1)pdm09]. Taken together, the data indicate that OmpS1 and OmpS2, despite being expressed at low levels under in vitro culture conditions, are potent protective immunogens with intrinsic adjuvant properties. PMID:23432484

  8. Bartonella henselae inhibits apoptosis in Mono Mac 6 cells.

    PubMed

    Kempf, Volkhard A J; Schairer, Annette; Neumann, Diana; Grassl, Guntram A; Lauber, Kirsten; Lebiedziejewski, Maria; Schaller, Martin; Kyme, Pierre; Wesselborg, Sebastian; Autenrieth, Ingo B

    2005-01-01

    Bartonella henselae causes the vasculoproliferative disorders bacillary angiomatosis and peliosis probably resulting from the release of vasculoendothelial growth factor (VEGF) from infected epithelial or monocytic host cells. Here we demonstrate that B. henselae in addition to VEGF induction was also capable of inhibiting the endogenous sucide programme of monocytic host cells. Our results show that B. henselae inhibits pyrrolidine dithiocarbamate (PDTC)-induced apoptosis in Mono Mac 6 cells. B. henselae was observed to be present in a vacuolic compartment of Mono Mac 6 cells. Direct contact of B. henselae with Mono Mac 6 cells was crucial for inhibition of apoptosis as shown by the use of a two-chamber model. Inhibition of apoptosis was paralleled by diminished caspase-3 activity which was significantly reduced in PDTC-stimulated and B. henselae-infected cells. The anti-apoptotic effect of B. henselae was accompanied by (i) the activation of the transcription factor NF-kappaB and (ii) the induction of cellular inhibitor of apoptosis proteins-1 and -2 (cIAP-1, -2). Our results suggest a new synergistic mechanism in B. henselae pathogenicity by (i) inhibition of host cell apoptosis via activation of NF-kappaB and (ii) induction of host cell VEGF secretion. PMID:15617526

  9. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  10. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer.

    PubMed

    Rolle, Cleo E; Kanteti, Rajani; Surati, Mosmi; Nandi, Suvobroto; Dhanasingh, Immanuel; Yala, Soheil; Tretiakova, Maria; Arif, Qudsia; Hembrough, Todd; Brand, Toni M; Wheeler, Deric L; Husain, Aliya N; Vokes, Everett E; Bharti, Ajit; Salgia, Ravi

    2014-03-01

    Small cell lung cancer (SCLC) is a devastating disease, and current therapies have not greatly improved the 5-year survival rates. Topoisomerase (Top) inhibition is a treatment modality for SCLC; however, the response is short lived. Consequently, our research has focused on improving SCLC therapeutics through the identification of novel targets. Previously, we identified MNNG HOS transforming gene (MET) to be overexpressed and functional in SCLC. Herein, we investigated the therapeutic potential of combinatorial targeting of MET using SU11274 and Top1 using 7-ethyl-10-hydroxycamptothecin (SN-38). MET and TOP1 gene copy numbers and protein expression were determined in 29 patients with limited (n = 11) and extensive (n = 18) disease. MET gene copy number was significantly increased (>6 copies) in extensive disease compared with limited disease (P = 0.015). Similar TOP1 gene copy numbers were detected in limited and extensive disease. Immunohistochemical staining revealed a significantly higher Top1 nuclear expression in extensive (0.93) versus limited (0.15) disease (P = 0.04). Interestingly, a significant positive correlation was detected between MET gene copy number and Top1 nuclear expression (r = 0.5). In vitro stimulation of H82 cells revealed hepatocyte growth factor (HGF)-induced nuclear colocalization of p-MET and Top1. Furthermore, activation of the HGF/MET axis enhanced Top1 activity, which was abrogated by SU11274. Combination of SN-38 with SU11274 dramatically decreased SCLC growth as compared with either drug alone. Collectively, these findings suggest that the combinatorial inhibition of MET and Top1 is a potentially efficacious treatment strategy for SCLC. PMID:24327519

  11. HEMA inhibits migration of dental pulp stem cells

    PubMed Central

    Williams, Drake W.; Wu, Hongkun; Oh, Ju-Eun; Fakhar, Camron; Kang, Mo K.; Shin, Ki-Hyuk; Park, No-Hee; Kim, Reuben H.

    2013-01-01

    Objectives Cell migration is an important step in pulpal wound healing. Although components in the resin-based dental materials are known to have adverse effects on pulp wound healing including proliferation and mineralization, their effects on cell migration have been scarcely examined. Here, we investigated effects of 2-Hydroxyethyl methacrylate (HEMA) on migration of dental pulp stem cells (DPSC) in vitro. Methods Cell viability was assessed using MTT assay, and cell migration was evaluated using wound scratch assay and transwell migration assay at non-cytotoxic doses. Western blotting was used to examine pathways associated with migration such as focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK), and glycogen synthase kinase 3 (GSK3). Results There were no drastic changes in the cell viability below 3mM HEMA. When DPSC were treated with HEMA at 0.5, 1.0, and 2.5mM, cell migration was diminished. HEMA-treated DPSC exhibited the loss of phosphorylated focal adhesion kinase (FAK) in a dose-dependent manner. The HEMA-mediated inhibition of cell migration was associated with phosphorylation of p38 but not GSK3, ERK or JNK pathways. When we inhibited the p38 signaling pathway using a p38 inhibitor, migration of DPSC was suppressed. Conclusion HEMA inhibits migration of dental pulp cells in vitro, suggesting that poor pulpal wound healing under resin-based dental materials may be due, in part, to inhibition of cell migration by HEMA. PMID:23953290

  12. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  13. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  14. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells

    PubMed Central

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-il; Kim, Eung Kweon

    2016-01-01

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors. PMID:26857144

  15. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells.

    PubMed

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-Il; Kim, Eung Kweon

    2016-01-01

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors. PMID:26857144

  16. Sequence and transcriptional start site of the Pseudomonas aeruginosa outer membrane porin protein F gene.

    PubMed Central

    Duchêne, M; Schweizer, A; Lottspeich, F; Krauss, G; Marget, M; Vogel, K; von Specht, B U; Domdey, H

    1988-01-01

    Porin F is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. It forms water-filled pores of variable size. Porin F is a candidate for a vaccine against P. aeruginosa because it antigenically cross-reacts in all serotype strains of the International Antigenic Typing Scheme. We have isolated the gene for porin F from a lambda EMBL3 bacteriophage library by using oligodeoxynucleotide hybridization probes and have determined its nucleotide sequence. Different peptide sequences obtained from isolated porin F confirmed the deduced protein sequence. The mature protein consists of 326 amino acid residues and has a molecular weight of 35,250. The precursor contains an N-terminal signal peptide of 24 amino acid residues. S1 protection and primer extension experiments, together with Northern (RNA) blots, indicate that the mRNA coding for porin F is monocistronic with short untranslated regions of about 58 bases at the 5' end and about 47 bases at the 3' end. The sequences in the -10 and -35 regions upstream of the transcriptional start site are closely related to the Escherichia coli promoter consensus sequences, which explains why the porin F gene is expressed in E. coli under the control of its own promoter. The amino acid sequence of porin F is not homologous to the different E. coli porins OmpF, OmpC, LamB, and PhoE. On the other hand, a highly homologous region of 30 amino acids between the OmpA proteins of different enteric bacteria and porin F of P. aeruginosa was detected. The core region of the homology to E. coli OmpA had 11 of 12 amino acid residues in common. Images PMID:2447060

  17. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  18. Cell proliferation inhibition in reduced gravity

    NASA Technical Reports Server (NTRS)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.

  19. Selective potentiation of lometrexol growth inhibition by dipyridamole through cell-specific inhibition of hypoxanthine salvage.

    PubMed Central

    Turner, R. N.; Aherne, G. W.; Curtin, N. J.

    1997-01-01

    The novel antifolate lometrexol (5,10-dideazatetrahydrofolate) inhibits de novo purine biosynthesis, and co-incubation with hypoxanthine abolishes its cytotoxicity. The prevention of hypoxanthine rescue from an antipurine antifolate by the nucleoside transport inhibitor dipyridamole was investigated for the first time in nine human and rodent cell lines from seven different tissues of origin. In A549, HeLa and CHO cells, dipyridamole prevented hypoxanthine rescue and so growth was inhibited by the combination of lometrexol, dipyridamole and hypoxanthine, but in HT29, HCT116, KK47, MDA231, CCRF CEM and L1210 cells dipyridamole had no effect and the combination did not inhibit growth. Dipyridamole inhibited hypoxanthine uptake in A549 but not in CCRF CEM cells. Dipyridamole prevented the hypoxanthine-induced repletion of dGTP pools, depleted by lometrexol, in A549 but not in CCRF CEM cells. Thus, the selective growth-inhibitory effect of the combination of lometrexol, dipyridamole and hypoxanthine is apparently due to the dipyridamole sensitivity (ds) or insensitivity (di) of hypoxanthine transport. Both the human and murine leukaemic cells are of the di phenotype. If this reflects the transport phenotype of normal bone marrow it would suggest that the combination of lometrexol, dipyridamole and hypoxanthine might be selectively toxic to certain tumour types and have reduced toxicity to the bone marrow. PMID:9374375

  20. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  1. Smooth Muscle Cell-targeted RNA Aptamer Inhibits Neointimal Formation.

    PubMed

    Thiel, William H; Esposito, Carla L; Dickey, David D; Dassie, Justin P; Long, Matthew E; Adam, Joshua; Streeter, Jennifer; Schickling, Brandon; Takapoo, Maysam; Flenker, Katie S; Klesney-Tait, Julia; Franciscis, Vittorio de; Miller, Francis J; Giangrande, Paloma H

    2016-04-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-β phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease. PMID:26732878

  2. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells

    PubMed Central

    Rangarajan, Parthasarathy; Subramaniam, Dharmalingam; Paul, Santanu; Kwatra, Deep; Palaniyandi, Kanagaraj; Islam, Shamima; Harihar, Sitaram; Ramalingam, Satish; Gutheil, William; Putty, Sandeep; Pradhan, Rohan; Padhye, Subhash; Welch, Danny R.; Anant, Shrikant; Dhar, Animesh

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer deaths in the US and no significant treatment is currently available. Here, we describe the effect of crocetinic acid, which we purified from commercial saffron compound crocetin using high performance liquid chromatography. Crocetinic acid inhibits proliferation of pancreatic cancer cell lines in a dose- and time-dependent manner. In addition, it induced apoptosis. Moreover, the compound significantly inhibited epidermal growth factor receptor and Akt phosphorylation. Furthermore, crocetinic acid decreased the number and size of the pancospheres in a dose-dependent manner, and suppressed the expression of the marker protein DCLK-1 (Doublecortin Calcium/Calmodulin-Dependent Kinase-1) suggesting that crocetinic acid targets cancer stem cells (CSC). To understand the mechanism of CSC inhibition, the signaling pathways affected by purified crocetinic acid were dissected. Sonic hedgehog (Shh) upon binding to its cognate receptor patched, allows smoothened to accumulate and activate Gli transcription factor. Crocetinic acid inhibited the expression of both Shh and smoothened. Finally, these data were confirmed in vivo where the compound at a dose of 0.5 mg/Kg bw suppressed growth of tumor xenografts. Collectively, these data suggest that purified crocetinic acid inhibits pancreatic CSC, thereby inhibiting pancreatic tumorigenesis. PMID:26317547

  3. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells.

    PubMed

    Rangarajan, Parthasarathy; Subramaniam, Dharmalingam; Paul, Santanu; Kwatra, Deep; Palaniyandi, Kanagaraj; Islam, Shamima; Harihar, Sitaram; Ramalingam, Satish; Gutheil, William; Putty, Sandeep; Pradhan, Rohan; Padhye, Subhash; Welch, Danny R; Anant, Shrikant; Dhar, Animesh

    2015-09-29

    Pancreatic cancer is the fourth leading cause of cancer deaths in the US and no significant treatment is currently available. Here, we describe the effect of crocetinic acid, which we purified from commercial saffron compound crocetin using high performance liquid chromatography. Crocetinic acid inhibits proliferation of pancreatic cancer cell lines in a dose- and time-dependent manner. In addition, it induced apoptosis. Moreover, the compound significantly inhibited epidermal growth factor receptor and Akt phosphorylation. Furthermore, crocetinic acid decreased the number and size of the pancospheres in a dose-dependent manner, and suppressed the expression of the marker protein DCLK-1 (Doublecortin Calcium/Calmodulin-Dependent Kinase-1) suggesting that crocetinic acid targets cancer stem cells (CSC). To understand the mechanism of CSC inhibition, the signaling pathways affected by purified crocetinic acid were dissected. Sonic hedgehog (Shh) upon binding to its cognate receptor patched, allows smoothened to accumulate and activate Gli transcription factor. Crocetinic acid inhibited the expression of both Shh and smoothened. Finally, these data were confirmed in vivo where the compound at a dose of 0.5 mg/Kg bw suppressed growth of tumor xenografts. Collectively, these data suggest that purified crocetinic acid inhibits pancreatic CSC, thereby inhibiting pancreatic tumorigenesis. PMID:26317547

  4. Hydroxyflavanone inhibits gastric carcinoma MGC-803 cell proliferation

    PubMed Central

    Zhang, Haiyan; Zhan, Zhuo; Cui, Mingfu; Gao, Yongjian; Wang, Dayu; Feng, Ye

    2015-01-01

    Gastric carcinoma (GC) is the most common primary malignancy of the digestive tract, with increasing incidence in many countries. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess inhibition of HepG2 cell proliferation by 2’-hydroxyflavanone. The STAT3 pathway was performed. 2’-hydroxyflavanone reduced inhibitory effects on MGC-803 cell proliferation. 2’-hydroxyflavanone exhibited the highest inhibition rate. Treatment of MGC-803 cells with 400, 200, and 100 μg/ml 2’-hydroxyflavanone resulted in 88.9±0.7%, 81.2±0.5%, 68.4±0.5% decrease in cell viability, respectively, indicating an IC50 of 9.3 μg/ml. The 100 μg/ml 2’-hydroxyflavanone can significantly inhibit the STAT3 pathway activation. 2’-hydroxyflavanone inhibits MGC-803 cell proliferation by inhibiting STAT3 pathway activation. This extract is therefore a potential drug candidate for treatment of liver cancer. PMID:26629250

  5. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    PubMed Central

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  6. Inhibition of cell adhesion by phosphorylated Ezrin/Radixin/Moesin

    PubMed Central

    Tachibana, Kouichi; Haghparast, Seyed Mohammad Ali; Miyake, Jun

    2015-01-01

    Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases. Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate. These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells. PMID:26555866

  7. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  8. Actein Inhibits Cell Proliferation and Migration in Human Osteosarcoma

    PubMed Central

    Chen, Zhi; Wu, Jingdong; Guo, Qinghao

    2016-01-01

    Background Osteosarcoma is one of the most common malignant bone cancers worldwide. Although the traditional chemotherapies have made some progression in the past decades, the mortality of osteosarcoma in children and adolescent is very high. Herein, the role of actein in osteosarcoma was explored. Material/Methods Cell viability assay was performed in osteosarcoma cell lines 143B and U2OS. Colony formation analysis was included when cells were treated with different doses of actin. Cell cycle assay was conducted to further examine the role of actein. Cell apoptotic rate and the relative activities of caspase-3, caspase-8, and caspase-9 were detected in 143B and U2OS osteosarcoma cells. Moreover, transwell assays were used to explore the effects of actein on cell metastasis. Results Actein significantly inhibited osteosarcoma cell viability in a time- and dose-dependent manner. Actein also dramatically suppressed the colony formation ability in osteosarcoma143B and U2OS cells. It was revealed that osteosarcoma cells were arrested in G0/G1 phase in the cell cycle progression and induced to apoptosis by administration of actein. The activities of pro-apoptotic factors such as caspase-3 and caspase-9 were significantly increased by actein. Furthermore, administration of actein decreased cell migrated and invasive abilities in both 143B and U2OS cell lines. Conclusions Actein inhibits tumor growth by inducing cell apoptosis in osteosarcoma. The inhibitive roles of actein in cell proliferation, migration and invasion suggest that actein may serve as a potential therapeutic agent in the treatment of osteosarcoma. PMID:27173526

  9. Ribavirin Inhibits Parrot Bornavirus 4 Replication in Cell Culture

    PubMed Central

    Musser, Jeffrey M. B.; Heatley, J. Jill; Koinis, Anastasia V.; Suchodolski, Paulette F.; Guo, Jianhua; Escandon, Paulina; Tizard, Ian R.

    2015-01-01

    Parrot bornavirus 4 is an etiological agent of proventricular dilatation disease, a fatal neurologic and gastrointestinal disease of psittacines and other birds. We tested the ability of ribavirin, an antiviral nucleoside analog with antiviral activity against a range of RNA and DNA viruses, to inhibit parrot bornavirus 4 replication in duck embryonic fibroblast cells. Two analytical methods that evaluate different products of viral replication, indirect immunocytochemistry for viral specific nucleoprotein and qRT-PCR for viral specific phosphoprotein gene mRNA, were used. Ribavirin at concentrations between 2.5 and 25 μg/mL inhibited parrot bornavirus 4 replication, decreasing viral mRNA and viral protein load, in infected duck embryonic fibroblast cells. The addition of guanosine diminished the antiviral activity of ribavirin suggesting that one possible mechanism of action against parrot bornavirus 4 may likely be through inosine monophosphate dehydrogenase inhibition. This study demonstrates parrot bornavirus 4 susceptibility to ribavirin in cell culture. PMID:26222794

  10. Ribavirin Inhibits Parrot Bornavirus 4 Replication in Cell Culture.

    PubMed

    Musser, Jeffrey M B; Heatley, J Jill; Koinis, Anastasia V; Suchodolski, Paulette F; Guo, Jianhua; Escandon, Paulina; Tizard, Ian R

    2015-01-01

    Parrot bornavirus 4 is an etiological agent of proventricular dilatation disease, a fatal neurologic and gastrointestinal disease of psittacines and other birds. We tested the ability of ribavirin, an antiviral nucleoside analog with antiviral activity against a range of RNA and DNA viruses, to inhibit parrot bornavirus 4 replication in duck embryonic fibroblast cells. Two analytical methods that evaluate different products of viral replication, indirect immunocytochemistry for viral specific nucleoprotein and qRT-PCR for viral specific phosphoprotein gene mRNA, were used. Ribavirin at concentrations between 2.5 and 25 μg/mL inhibited parrot bornavirus 4 replication, decreasing viral mRNA and viral protein load, in infected duck embryonic fibroblast cells. The addition of guanosine diminished the antiviral activity of ribavirin suggesting that one possible mechanism of action against parrot bornavirus 4 may likely be through inosine monophosphate dehydrogenase inhibition. This study demonstrates parrot bornavirus 4 susceptibility to ribavirin in cell culture. PMID:26222794

  11. Genomic analyses of bacterial porin-cytochrome gene clusters

    DOE PAGESBeta

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less

  12. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration

    PubMed Central

    Detaille, D; Vial, G; Borel, A-L; Cottet-Rouselle, C; Hallakou-Bozec, S; Bolze, S; Fouqueray, P; Fontaine, E

    2016-01-01

    Imeglimin is the first in a new class of oral glucose-lowering agents, having recently completed its phase 2b trial. As Imeglimin did show a full prevention of β-cell apoptosis, and since angiopathy represents a major complication of diabetes, we studied Imeglimin protective effects on hyperglycemia-induced death of human endothelial cells (HMEC-1). These cells were incubated in several oxidative stress environments (exposure to high glucose and oxidizing agent tert-butylhydroperoxide) which led to mitochondrial permeability transition pore (PTP) opening, cytochrome c release and cell death. These events were fully prevented by Imeglimin treatment. This protective effect on cell death occurred without any effect on oxygen consumption rate, on lactate production and on cytosolic redox or phosphate potentials. Imeglimin also dramatically decreased reactive oxygen species production, inhibiting specifically reverse electron transfer through complex I. We conclude that Imeglimin prevents hyperglycemia-induced cell death in HMEC-1 through inhibition of PTP opening without inhibiting mitochondrial respiration nor affecting cellular energy status. Considering the high prevalence of macrovascular and microvascular complications in type 2 diabetic subjects, these results together suggest a potential benefit of Imeglimin in diabetic angiopathy. PMID:27551496

  13. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration.

    PubMed

    Detaille, D; Vial, G; Borel, A-L; Cottet-Rouselle, C; Hallakou-Bozec, S; Bolze, S; Fouqueray, P; Fontaine, E

    2016-01-01

    Imeglimin is the first in a new class of oral glucose-lowering agents, having recently completed its phase 2b trial. As Imeglimin did show a full prevention of β-cell apoptosis, and since angiopathy represents a major complication of diabetes, we studied Imeglimin protective effects on hyperglycemia-induced death of human endothelial cells (HMEC-1). These cells were incubated in several oxidative stress environments (exposure to high glucose and oxidizing agent tert-butylhydroperoxide) which led to mitochondrial permeability transition pore (PTP) opening, cytochrome c release and cell death. These events were fully prevented by Imeglimin treatment. This protective effect on cell death occurred without any effect on oxygen consumption rate, on lactate production and on cytosolic redox or phosphate potentials. Imeglimin also dramatically decreased reactive oxygen species production, inhibiting specifically reverse electron transfer through complex I. We conclude that Imeglimin prevents hyperglycemia-induced cell death in HMEC-1 through inhibition of PTP opening without inhibiting mitochondrial respiration nor affecting cellular energy status. Considering the high prevalence of macrovascular and microvascular complications in type 2 diabetic subjects, these results together suggest a potential benefit of Imeglimin in diabetic angiopathy. PMID:27551496

  14. Measles Virus Matrix Protein Inhibits Host Cell Transcription.

    PubMed

    Yu, Xuelian; Shahriari, Shadi; Li, Hong-Mei; Ghildyal, Reena

    2016-01-01

    Measles virus (MeV) is a highly contagious virus that still causes annual epidemics in developing countries despite the availability of a safe and effective vaccine. Additionally, importation from endemic countries causes frequent outbreaks in countries where it has been eliminated. The M protein of MeV plays a key role in virus assembly and cytopathogenesis; interestingly, M is localised in nucleus, cytoplasm and membranes of infected cells. We have used transient expression of M in transfected cells and in-cell transcription assays to show that only some MeV M localizes to the nucleus, in addition to cell membranes and the cytoplasm as previously described, and can inhibit cellular transcription via binding to nuclear factors. Additionally, MeV M was able to inhibit in vitro transcription in a dose-dependent manner. Importantly, a proportion of M is also localized to nucleus of MeV infected cells at early times in infection, correlating with inhibition of cellular transcription. Our data show, for the first time, that MeV M may play a role early in infection by inhibiting host cell transcription. PMID:27551716

  15. Measles Virus Matrix Protein Inhibits Host Cell Transcription

    PubMed Central

    Yu, Xuelian; Shahriari, Shadi; Li, Hong-Mei; Ghildyal, Reena

    2016-01-01

    Measles virus (MeV) is a highly contagious virus that still causes annual epidemics in developing countries despite the availability of a safe and effective vaccine. Additionally, importation from endemic countries causes frequent outbreaks in countries where it has been eliminated. The M protein of MeV plays a key role in virus assembly and cytopathogenesis; interestingly, M is localised in nucleus, cytoplasm and membranes of infected cells. We have used transient expression of M in transfected cells and in-cell transcription assays to show that only some MeV M localizes to the nucleus, in addition to cell membranes and the cytoplasm as previously described, and can inhibit cellular transcription via binding to nuclear factors. Additionally, MeV M was able to inhibit in vitro transcription in a dose-dependent manner. Importantly, a proportion of M is also localized to nucleus of MeV infected cells at early times in infection, correlating with inhibition of cellular transcription. Our data show, for the first time, that MeV M may play a role early in infection by inhibiting host cell transcription. PMID:27551716

  16. Inhibition of cytokine production by a tumor cell product.

    PubMed Central

    Farram, E; Nelson, M; Nelson, D S; Moon, D K

    1982-01-01

    Supernatants from cultured mouse and human tumour cells, but not mouse or guinea-pig fibroblasts, inhibited the production of a lymphokine, macrophage chemotactic factor, by PHA-stimulated mouse spleen cells. The supernatants affected spleen cells from old, but not young, mice. They were most active if added at the start of the spleen cell culture and did not act by binding phytohaemagglutinin (PHA). The active material had an approximate molecular weight, on membrane filtration, of 1000-10,000 and could be bound to and eluted from Con A-Sepharose. Tumour supernatant factor(s) of similar molecular weight inhibited the production of interleukin 1 (lymphocyte activating factor) in response to lipopolysaccharide by stimulated thioglycollate-induced peritoneal exudate macrophages, but not by Corynebacterium parvum-activated macrophages. Similar tumour-produced material has been found to inhibit the early phase of delayed-type hypersensitivity reactions in older mice. It is suggested that this effect is due, at least in part, to inhibition of interleukin 1 production leading to inhibition of lymphokine production. PMID:7047385

  17. Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy.

    PubMed Central

    Schabert, F A; Engel, A

    1994-01-01

    Crystalline membranes reconstituted from Escherichia coli OmpF porin and phospholipids were adsorbed to freshly cleaved mica and imaged in solution by the atomic force microscope. The extracellular as well as the periplasmic side of the porin trimers could be identified and the conditions to record topographs at 1-nm lateral and 0.1-nm vertical resolution were established. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:7696479

  18. VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways.

    PubMed

    Müller, Anne; Rassow, Joachim; Grimm, Jan; Machuy, Nikolaus; Meyer, Thomas F; Rudel, Thomas

    2002-04-15

    The human pathogen Neisseria gonorrhoeae induces host cell apoptosis during infection by delivering the outer membrane protein PorB to the host cell's mitochondria. PorB is a pore-forming beta-barrel protein sharing several features with the mitochondrial voltage-dependent anion channel (VDAC), which is involved in the regulation of apoptosis. Here we show that PorB of pathogenic Neisseria species produced by host cells is efficiently targeted to mitochondria. Imported PorB resides in the mitochondrial outer membrane and forms multimers with similar sizes as in the outer bacterial membrane. The mitochondria completely lose their membrane potential, a characteristic previously observed in cells infected with gonococci or treated with purified PorB. Closely related bacterial porins of non-pathogenic Neisseria mucosa or Escherichia coli remain in the cytosol. Import of PorB into mitochondria in vivo is independent of a linear signal sequence. Insertion of PorB into the mitochondrial outer membrane in vitro depends on the activity of Tom5, Tom20 and Tom40, but is independent of Tom70. Our data show that human VDAC and bacterial PorB are imported into mitochondria by a similar mechanism. PMID:11953311

  19. Sesquiterpenoid Lactones in Tanacetum huronense Inhibit Human Glioblastoma Cell Proliferation.

    PubMed

    Dissanayake, Amila A; Bejcek, Bruce E; Zhang, Chuan-Rui; Nair, Muraleedharan G

    2016-05-01

    Tanacetum huronense (Lake Huron tansy), which is native to the upper Midwest region of USA and Canada, was examined for the presence of anticancer compounds using an in vitro human tumor cell proliferation inhibition assay, with glioblastoma derived cell line U-87 MG. Bioassay-directed purification of the ethyl acetate extract of the aerial portion of this plant identified six active sesquiterpenoid lactones (1-6). Among these, compounds 5 and 6 are new structural analogs. One of the most abundant isolates, tanacin (4), exhibited the greatest inhibition with an IC50 value of 4.5 μg/mL. PMID:27319121

  20. Inhibition of telomerase recruitment and cancer cell death.

    PubMed

    Nakashima, Mai; Nandakumar, Jayakrishnan; Sullivan, Kelly D; Espinosa, Joaquín M; Cech, Thomas R

    2013-11-15

    Continued proliferation of human cells requires maintenance of telomere length, usually accomplished by telomerase. Telomerase is recruited to chromosome ends by interaction with a patch of amino acids (the TEL patch, for TPP1 glutamate (E) and leucine (L)-rich patch) on the surface of telomere protein TPP1. In previous studies, interruption of this interaction by mutation prevented telomere extension in HeLa cells, but the cell culture continued to grow. We now show that the telomerase inhibitor BIBR1532 acts together with TEL patch mutations to inhibit the growth of HeLa cell lines and that apoptosis is a prominent mechanism of death of these cells. Survivor cells take over the population beginning around 40 days in culture. These cells no longer express the TEL patch mutant TPP1, apparently because of silencing of the expression cassette, a survival mechanism that would not be available to cancer cells. These results provide hope that inhibiting the binding of telomerase to the TEL patch of TPP1, perhaps together with a modest inhibition of the telomerase enzyme, could comprise an effective anticancer therapy for the ∼90% of human tumors that are telomerase-positive. PMID:24097987

  1. Inhibition of Telomerase Recruitment and Cancer Cell Death*

    PubMed Central

    Nakashima, Mai; Nandakumar, Jayakrishnan; Sullivan, Kelly D.; Espinosa, Joaquín M.; Cech, Thomas R.

    2013-01-01

    Continued proliferation of human cells requires maintenance of telomere length, usually accomplished by telomerase. Telomerase is recruited to chromosome ends by interaction with a patch of amino acids (the TEL patch, for TPP1 glutamate (E) and leucine (L)-rich patch) on the surface of telomere protein TPP1. In previous studies, interruption of this interaction by mutation prevented telomere extension in HeLa cells, but the cell culture continued to grow. We now show that the telomerase inhibitor BIBR1532 acts together with TEL patch mutations to inhibit the growth of HeLa cell lines and that apoptosis is a prominent mechanism of death of these cells. Survivor cells take over the population beginning around 40 days in culture. These cells no longer express the TEL patch mutant TPP1, apparently because of silencing of the expression cassette, a survival mechanism that would not be available to cancer cells. These results provide hope that inhibiting the binding of telomerase to the TEL patch of TPP1, perhaps together with a modest inhibition of the telomerase enzyme, could comprise an effective anticancer therapy for the ∼90% of human tumors that are telomerase-positive. PMID:24097987

  2. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation.

    PubMed

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag(-/-) γc(-/-) mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  3. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation

    PubMed Central

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag-/- γc-/- mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  4. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN.

    PubMed

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D

    2015-05-01

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP. PMID:25805501

  5. High-affinity binding sites involved in the import of porin into mitochondria.

    PubMed Central

    Pfaller, R; Neupert, W

    1987-01-01

    The specific recognition by mitochondria of the precursor of porin and the insertion into the outer membrane were studied with a radiolabeled water-soluble form of porin derived from the mature protein. High-affinity binding sites had a number of 5-10 pmol/mg mitochondrial protein and a ka of 1-5 X 10(8) M-1. Binding was abolished after trypsin pretreatment of mitochondria indicating that binding sites were of protein-aceous nature. Specifically bound porin could be extracted at alkaline pH but not by high salt and was protected against low concentrations of proteinase K. It could be chased to a highly protease resistant form corresponding to mature porin. High-affinity binding sites could be extracted from mitochondria with detergent and reconstituted in asolectin-ergosterol liposomes. Water-soluble porin competed for the specific binding and import of the precursor of the ADP/ATP carrier, an inner membrane protein. We suggest that (i) binding of precursors to proteinaceous receptors serves as an initial step for recognition, (ii) the receptor for porin may also be involved in the import of precursors of inner membrane proteins, and (iii) interaction with the receptor triggers partial insertion of the precursor into the outer membrane. Images Fig. 4. PMID:2960520

  6. How β-Lactam Antibiotics Enter Bacteria: A Dialogue with the Porins

    PubMed Central

    Molitor, Alexander; Bolla, Jean-Michel; Bessonov, Andrey N.; Winterhalter, Mathias; Pagès, Jean-Marie

    2009-01-01

    Background Multi-drug resistant (MDR) infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. β-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical reports have linked the MDR phenotype to altered membrane permeability including porin modification and efflux pump expression. Methodology/Principal Findings Here influx of β-lactams through the major Enterobacter aerogenes porin Omp36 is characterized. Conductance measurements through a single Omp36 trimer reconstituted into a planar lipid bilayer allowed us to count the passage of single β-lactam molecules. Statistical analysis of each transport event yielded the kinetic parameters of antibiotic travel through Omp36 and distinguishable translocation properties of β-lactams were quantified for ertapenem and cefepime. Expression of Omp36 in an otherwise porin-null bacterial strain is shown to confer increases in the killing rate of these antibiotics and in the corresponding bacterial susceptibility. Conclusions/Significance We propose the idea of a molecular “passport” that allows rapid transport of substrates through porins. Deciphering antibiotic translocation provides new insights for the design of novel drugs that may be highly effective at passing through the porin constriction zone. Such data may hold the key for the next generation of antibiotics capable of rapid intracellular accumulation to circumvent the further development MDR infections. PMID:19434239

  7. Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a beta-lactam-resistant mutant and in resistant cystic fibrosis isolates.

    PubMed Central

    Aronoff, S C

    1988-01-01

    Since beta-lactam resistance is a feature of Pseudomonas cepacia isolates causing pulmonary infections in cystic fibrosis (CF), this study was undertaken to determine whether alterations in beta-lactam permeability mediate drug resistance in this species. A beta-lactam-susceptible non-CF isolate (strain 75-26), a resistant mutant derived from 75-26 by selection for cross-resistance to ciprofloxacin and ceftazidime, and two resistant CF isolates of P. cepacia were used. Permeability constants were calculated from the rate of nitrocefin hydrolysis in intact bacterial cells. Qualitative changes in outer membrane proteins were determined electrophoretically. The permeability constants of the mutant and the resistant CF isolates were lower than the value for the reference strain, 75-26. Whereas the lipopolysaccharide side chains were present in the test and reference strains, the resistant mutant and the CF isolates contained reduced amounts of the 36-kilodalton (kDa) outer membrane protein and failed to express the 27-kDa outer membrane protein. These observations suggest that the 27-kDa outer membrane protein may be a major porin or a major protein component of the porin complex in P. cepacia and that decreased expression of the 36-kDa outer membrane and loss of the 27-kDa porin are associated with high-level beta-lactam resistance in some CF isolates of P. cepacia. Images PMID:2855296

  8. Molecular sequelae of proteasome inhibition in human multiple myeloma cells

    PubMed Central

    Mitsiades, Nicholas; Mitsiades, Constantine S.; Poulaki, Vassiliki; Chauhan, Dharminder; Fanourakis, Galinos; Gu, Xuesong; Bailey, Charles; Joseph, Marie; Libermann, Towia A.; Treon, Steven P.; Munshi, Nikhil C.; Richardson, Paul G.; Hideshima, Teru; Anderson, Kenneth C.

    2002-01-01

    The proteasome inhibitor PS-341 inhibits IκB degradation, prevents NF-κB activation, and induces apoptosis in several types of cancer cells, including chemoresistant multiple myeloma (MM) cells. PS-341 has marked clinical activity even in the setting of relapsed refractory MM. However, PS-341-induced apoptotic cascade(s) are not yet fully defined. By using gene expression profiling, we characterized the molecular sequelae of PS-341 treatment in MM cells and further focused on molecular pathways responsible for the anticancer actions of this promising agent. The transcriptional profile of PS-341-treated cells involved down-regulation of growth/survival signaling pathways, and up-regulation of molecules implicated in proapoptotic cascades (which are both consistent with the proapoptotic effect of proteasome inhibition), as well as up-regulation of heat-shock proteins and ubiquitin/proteasome pathway members (which can correspond to stress responses against proteasome inhibition). Further studies on these pathways showed that PS-341 decreases the levels of several antiapoptotic proteins and triggers a dual apoptotic pathway of mitochondrial cytochrome c release and caspase-9 activation, as well as activation of Jun kinase and a Fas/caspase-8-dependent apoptotic pathway [which is inhibited by a dominant negative (decoy) Fas construct]. Stimulation with IGF-1, as well as overexpression of Bcl-2 or constitutively active Akt in MM cells also modestly attenuates PS-341-induced cell death, whereas inhibitors of the BH3 domain of Bcl-2 family members or the heat-shock protein 90 enhance tumor cell sensitivity to proteasome inhibition. These data provide both insight into the molecular mechanisms of antitumor activity of PS-341 and the rationale for future clinical trials of PS-341, in combination with conventional and novel therapies, to improve patient outcome in MM. PMID:12391322

  9. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    PubMed Central

    Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880

  10. Prolonged cyclic strain inhibits human endothelial cell growth.

    PubMed

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  11. Pirin Inhibits Cellular Senescence in Melanocytic Cells

    PubMed Central

    Licciulli, Silvia; Luise, Chiara; Scafetta, Gaia; Capra, Maria; Giardina, Giuseppina; Nuciforo, Paolo; Bosari, Silvano; Viale, Giuseppe; Mazzarol, Giovanni; Tonelli, Chiara; Lanfrancone, Luisa; Alcalay, Myriam

    2011-01-01

    Cellular senescence has been widely recognized as a tumor suppressing mechanism that acts as a barrier to cancer development after oncogenic stimuli. A prominent in vivo model of the senescence barrier is represented by nevi, which are composed of melanocytes that, after an initial phase of proliferation induced by activated oncogenes (most commonly BRAF), are blocked in a state of cellular senescence. Transformation to melanoma occurs when genes involved in controlling senescence are mutated or silenced and cells reacquire the capacity to proliferate. Pirin (PIR) is a highly conserved nuclear protein that likely functions as a transcriptional regulator whose expression levels are altered in different types of tumors. We analyzed the expression pattern of PIR in adult human tissues and found that it is expressed in melanocytes and has a complex pattern of regulation in nevi and melanoma: it is rarely detected in mature nevi, but is expressed at high levels in a subset of melanomas. Loss of function and overexpression experiments in normal and transformed melanocytic cells revealed that PIR is involved in the negative control of cellular senescence and that its expression is necessary to overcome the senescence barrier. Our results suggest that PIR may have a relevant role in melanoma progression. PMID:21514450

  12. Inhibition of rhotekin exhibits antitumor effects in lung cancer cells

    PubMed Central

    ZHANG, WEIZHEN; LIANG, ZHENYU; LI, JING

    2016-01-01

    Lung cancer is the leading cause for cancer-related death, however, the pathogenesis mechanism is poorly understood. Although the rhotekin (RTKN) gene has been reported to encode an effector for the Rho protein that has critical roles in regulating cell growth, the role of RTKN in lung cancer has not been investigated. In clinical lung cancer patient tumor samples, we identified that the RTKN gene expression level was significantly higher in tumor tissues compared to that of the adjacent normal tissues. To investigate the molecular mechanisms of RTKN in lung cancer, we established RTKN stable knock-down A549 and SPC-A-1 lung adenocarcinoma cell lines using lentiviral transfection of RTKN shRNA and evaluated the antitumor effects. The results showed that RTKN knock-down inhibited lung adenocarcinoma cell viability, induced S phase arrest and increased cell apoptosis. In addition, RTKN knock-down inhibited lung cancer cell invasion and adhesion. Further analysis showed that the S phase promoting factors cyclindependent kinase (CDK)1 and CDK2 levels were decreased in RTKN knock-down cells, and that the DNA replication initiation complex proteins Minichromosome maintenance protein complex (MCM)2 and MCM6 were decreased as well in RTKN knock-down cells. These results indicated that the RTKN protein was associated with lung cancer in clinic samples and exerted anticancer activity in lung adenocarcinoma cells through inhibiting cell cycle progression and the DNA replication machinery. These findings suggest that RTKN inhibition may be a novel therapeutic strategy for lung adenocarcinoma. PMID:26935528

  13. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease. PMID:27402344

  14. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells

    PubMed Central

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  15. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells.

    PubMed

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  16. Single granule cells excite Golgi cells and evoke feedback inhibition in the cochlear nucleus.

    PubMed

    Yaeger, Daniel B; Trussell, Laurence O

    2015-03-18

    In cerebellum-like circuits, synapses from thousands of granule cells converge onto principal cells. This fact, combined with theoretical considerations, has led to the concept that granule cells encode afferent input as a population and that spiking in individual granule cells is relatively unimportant. However, granule cells also provide excitatory input to Golgi cells, each of which provide inhibition to hundreds of granule cells. We investigated whether spiking in individual granule cells could recruit Golgi cells and thereby trigger widespread inhibition in slices of mouse cochlear nucleus. Using paired whole-cell patch-clamp recordings, trains of action potentials at 100 Hz in single granule cells was sufficient to evoke spikes in Golgi cells in ∼40% of paired granule-to-Golgi cell recordings. High-frequency spiking in single granule cells evoked IPSCs in ∼5% of neighboring granule cells, indicating that bursts of activity in single granule cells can recruit feedback inhibition from Golgi cells. Moreover, IPSPs mediated by single Golgi cell action potentials paused granule cell firing, suggesting that inhibitory events recruited by activity in single granule cells were able to control granule cell firing. These results suggest a previously unappreciated relationship between population coding and bursting in single granule cells by which spiking in a small number of granule cells may have an impact on the activity of a much larger number of granule cells. PMID:25788690

  17. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3.

    PubMed

    Nelson, Erik A; Walker, Sarah R; Kepich, Alicia; Gashin, Laurie B; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C; Frank, David A

    2008-12-15

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival. PMID:18824601

  18. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3

    PubMed Central

    Nelson, Erik A.; Walker, Sarah R.; Kepich, Alicia; Gashin, Laurie B.; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C.

    2008-01-01

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival. PMID:18824601

  19. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    SciTech Connect

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva; Yang, Dan; Hilaire, Cynthia St.; Guo Ying; Palamakumbura, Amitha H.; Schreiber, Barbara M.; Ravid, Katya; Trackman, Philip C.

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.

  20. Mesenchymal stem cells inhibit complement activation by secreting factor H.

    PubMed

    Tu, Zhidan; Li, Qing; Bu, Hong; Lin, Feng

    2010-11-01

    Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppressive capabilities. PMID:20163251

  1. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  2. Fermented red ginseng extract inhibits cancer cell proliferation and viability.

    PubMed

    Oh, Jisun; Jeon, Seong Bin; Lee, Yuri; Lee, Hyeji; Kim, Ju; Kwon, Bo Ra; Yu, Kang-Yeol; Cha, Jeong-Dan; Hwang, Seung-Mi; Choi, Kyung-Min; Jeong, Yong-Seob

    2015-04-01

    Red ginseng (Panax ginseng C.A. Meyer) is the most widely recognized medicinal herb due to its remedial effects in various disorders, such as cancers, diabetes, and heart problems. In this study, we investigated the anticancer effect of fermented red ginseng extract (f-RGE; provided by Jeonju Biomaterials Institute, Jeonju, South Korea) in a parallel comparison with the effect of nonfermented red ginseng extract (nf-RGE; control) on several cancer cell lines--MCF-7 breast cancer cells, HepG2 hepatocellular carcinoma cells, and reprogrammed MCF-7 cells (mimicking cancer stem cells). Cells were cultured at various concentrations of RGE (from 0.5 up to 5 mg/mL) and their viabilities and proliferative properties were examined. Our data demonstrate the following: (1) nf-RGE inhibited cell viability at ≥1 mg/mL for MCF-7 cells and ≥2 mg/mL for HepG2 cells, (2) in the presence of a carcinogenic agent, 12-O-tetradecanoylphorbol-13-acetate (TPA), nf-RGE treatment in combination with paclitaxel synergistically decreased MCF-7 as well as HepG2 cell viability, (3) f-RGE (which contained a greater level of Rg3 content) more effectively decreased the viability of MCF-7 and HepG2 cells compared to nf-RGE, and (4) f-RGE appeared more potent for inhibiting cancerous differentiation of reprogrammed MCF-7 cells in a synergistic fashion with paclitaxel, especially in the presence of TPA, compared to nf-RGE. These findings suggest that f-RGE treatment may be more effective for decreasing cancer cell survival by inducing apoptotic cell death and also presumably for preventing cancer stem cell differentiation compared to nf-RGE. PMID:25658580

  3. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    SciTech Connect

    Nishida, Yoshihiro . E-mail: ynishida@med.nagoya-u.ac.jp; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-07-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion.

  4. FH535 inhibited metastasis and growth of pancreatic cancer cells

    PubMed Central

    Wu, Meng-Yao; Liang, Rong-Rui; Chen, Kai; Shen, Meng; Tian, Ya-Li; Li, Dao-Ming; Duan, Wei-Ming; Gui, Qi; Gong, Fei-Ran; Lian, Lian; Li, Wei; Tao, Min

    2015-01-01

    FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer. PMID:26185454

  5. Maduramicin Inhibits Proliferation and Induces Apoptosis in Myoblast Cells

    PubMed Central

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  6. Maduramicin inhibits proliferation and induces apoptosis in myoblast cells.

    PubMed

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  7. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-κB signaling pathway.

    PubMed

    Gao, Hui; Wang, Jianrong

    2016-02-01

    Andrographolide is an active component from the extract of Andrographis paniculata [(Burm.f) Nees], a medicinal plant from the Acanthaceae family. Pharmacological studies have revealed that andrographolide possesses anti-bacterial, anti-inflammatory, anti-viral, immune regulatory and hepatoprotective properties, and is efficacious in the treatment of cardiovascular diseases, while exhibiting low toxicity and low cost. The present study aimed to determine the inhibitory effects of andrographolide on the growth of multiple myeloma (MM) cells and its possible impact on the Toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling pathway. Cell proliferation was detected using an MTT assay, cellular apoptosis was measured using flow cytometry, and caspase-9/3 activation were assessed using colorimetric assay kits. Furthermore, TLR4 and NF-κB protein expression was determined by western blot analysis. The results revealed that andrographolide reduced the proliferation, while increasing cellular apoptosis and caspase-9/3 activation of MM cells, in addition to downregulating the expression of TLR4 and NF-κB protein. Of note, TLR4- or NF-κB-targeting small-interfering (si)RNA enhanced the andrographolide-induced inhibition of cell proliferation and induction of apoptosis of MM cells. The results of the present study therefore suggested that andrographolide inhibited multiple myeloma cells via the TLR4/NF-κB signaling pathway. PMID:26707811

  8. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells

    PubMed Central

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-01-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process. PMID:26265439

  9. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    PubMed

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process. PMID:26265439

  10. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  11. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells.

    PubMed

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    BACKGROUND It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. MATERIAL AND METHODS MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. RESULTS ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. CONCLUSIONS This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  12. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    PubMed

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  13. Estrogen inhibits cell cycle progression and retinoblastoma phosphorylation in rhesus ovarian surface epithelial cell culture

    SciTech Connect

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2003-10-31

    Estrogen promotes the growth of some ovarian cancer cells at nanomolar concentrations, but has been shown to inhibit growth of normal ovarian surface epithelial (OSE) cells at micromolar concentrations (1μg/ml). OSE cells express the estrogen receptor (ER)-α, and are the source of 90% of various cancers. The potential sensitivity of OSE cells to estrogen stresses the importance of understanding the estrogen-dependent mechanisms at play in OSE proliferation and transformation, as well as in anticancer treatment. We investigated the effects of estradiol on cell proliferation in vitro, and demonstrate an intracellular locus of action of estradiol in cultured rhesus ovarian surface epithelial (RhOSE) cells. We show that ovarian and breast cells are growth-inhibited by micromolar concentration of estradiol and that this inhibition correlates with estrogen receptor expression. We further show that normal rhesus OSE cells do not activate ERK or Akt in response to estradiol nor does estradiol block the ability of serum to stimulate ERK or induce cyclin D expression. Contrarily, estradiol inhibits serum-dependent retinoblastoma protein (Rb) phosphorylation and blocks DNA synthesis. This inhibition does not formally arrest cells and is reversible within hours of estrogen withdrawal. Our data are consistent with growth inhibition by activation of Rb and indicate that sensitivity to hormone therapy in anticancer treatment can be modulated by cell cycle regulators downstream of the estrogen receptor.

  14. Genomic analyses of bacterial porin-cytochrome gene clusters

    SciTech Connect

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular

  15. Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest

    PubMed Central

    Ujiki, Michael B; Ding, Xian-Zhong; Salabat, M Reza; Bentrem, David J; Golkar, Laleh; Milam, Ben; Talamonti, Mark S; Bell, Richard H; Iwamura, Takeshi; Adrian, Thomas E

    2006-01-01

    Background Many chemotherapeutic agents have been used to treat pancreatic cancer without success. Apigenin, a naturally occurring flavonoid, has been shown to inhibit growth in some cancer cell lines but has not been studied in pancreatic cancer. We hypothesized that apigenin would inhibit pancreatic cancer cell growth in vitro. Results Apigenin caused both time- and concentration-dependent inhibition of DNA synthesis and cell proliferation in four pancreatic cancer cell lines. Apigenin induced G2/M phase cell cycle arrest. Apigenin reduced levels of cyclin A, cyclin B, phosphorylated forms of cdc2 and cdc25, which are all proteins required for G2/M transition. Conclusion Apigenin inhibits growth of pancreatic cancer cells through suppression of cyclin B-associated cdc2 activity and G2/M arrest, and may be a valuable drug for the treatment or prevention of pancreatic cancer. PMID:17196098

  16. Carbendazim Inhibits Cancer Cell Proliferation by Suppressing Microtubule Dynamics

    PubMed Central

    Yenjerla, Mythili; Cox, Corey; Wilson, Leslie; Jordan, Mary Ann

    2009-01-01

    Carbendazim (methyl 2-benzimidazolecarbamate) is widely used as a systemic fungicide in human food production and appears to act on fungal tubulin. However, it also inhibits proliferation of human cancer cells, including drug- and multidrug-resistant and p53-deficient cell lines. Because of its promising preclinical anti-tumor activity, it has undergone phase I clinical trials and is under further clinical development. Although it weakly inhibits polymerization of brain microtubules and induces G2/M arrest in tumor cells, its mechanism of action in human cells has not been fully elucidated. We examined its mechanism of action in MCF7 human breast cancer cells and found that it inhibits proliferation (IC50, 10 μM) and half-maximally arrests mitosis at a similar concentration (8 μM), in concert with suppression of microtubule dynamic instability without appreciable microtubule depolymerization. It induces mitotic spindle abnormalities and reduces the metaphase intercentromere distance of sister chromatids, indicating reduction of tension on kinetochores, thus leading to metaphase arrest. With microtubules assembled in vitro from pure tubulin, carbendazim also suppresses dynamic instability, reducing the dynamicity by 50% at 10 μM, with only minimal (21%) reduction of polymer mass. Carbendazim binds to mammalian tubulin (Kd, 42.8 ± 4.0 μM). Unlike some benzimidazoles that bind to the colchicine site in tubulin, carbendazim neither competes with colchicine nor competes with vinblastine for binding to brain tubulin. Thus, carbendazim binds to an as yet unidentified site in tubulin and inhibits tumor cell proliferation by suppressing the growing and shortening phases of microtubule dynamic instability, thus inducing mitotic arrest. PMID:19001156

  17. Contact inhibition of locomotion determines cell-cell and cell-substrate forces in tissues.

    PubMed

    Zimmermann, Juliane; Camley, Brian A; Rappel, Wouter-Jan; Levine, Herbert

    2016-03-01

    Cells organized in tissues exert forces on their neighbors and their environment. Those cellular forces determine tissue homeostasis as well as reorganization during embryonic development and wound healing. To understand how cellular forces are generated and how they can influence the tissue state, we develop a particle-based simulation model for adhesive cell clusters and monolayers. Cells are contractile, exert forces on their substrate and on each other, and interact through contact inhibition of locomotion (CIL), meaning that cell-cell contacts suppress force transduction to the substrate and propulsion forces align away from neighbors. Our model captures the traction force patterns of small clusters of nonmotile cells and larger sheets of motile Madin-Darby canine kidney (MDCK) cells. In agreement with observations in a spreading MDCK colony, the cell density in the center increases as cells divide and the tissue grows. A feedback between cell density, CIL, and cell-cell adhesion gives rise to a linear relationship between cell density and intercellular tensile stress and forces the tissue into a nonmotile state characterized by a broad distribution of traction forces. Our model also captures the experimentally observed tissue flow around circular obstacles, and CIL accounts for traction forces at the edge. PMID:26903658

  18. Baicalein Inhibits MCF-7 Cell Proliferation In Vitro, Induces Radiosensitivity, and Inhibits Hypoxia Inducible Factor.

    PubMed

    Gade, Shruti; Gandhi, Nitin Motilal

    2015-01-01

    Hypoxia inducible factor (HIF) is a key transcription factor responsible for imparting adaptability to the cancer cells growing in tumors. HIF induces the modulation of glucose metabolism, angiogenesis, and prosurvival signaling. Therefore, HIF is one of the attractive targets to treat solid tumors. Results presented in this study indicate that Baicalein (BA) inhibits HIF stabilization and also reduces its transcription activity in MCF-7 cells in vitro. Furthermore, BA was found to have antiproliferative ability as determined by the MTT assay and clonogenic survival. BA also induces apoptosis in MCF-7 cells at the concentration of 50 µM. We also report the radiosensitization of MCF-7 cells when they are treated with BA, resulting in higher γ-radiation-induced DNA damage. BA is extensively used in Chinese medicine and is known to be nontoxic at pharmacological doses. Our studies indicate that BA is one of the attractive natural compounds suitable for further evaluation as an adjuvant therapy. PMID:26756423

  19. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    SciTech Connect

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K. )

    1990-11-15

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling.

  20. Inhibition of Cerebellar Granule Cell Turning by Alcohol

    PubMed Central

    Kumada, Tatsuro; Komuro, Yutaro; Li, Ying; Hu, Taofang; Wang, Zhe; Littner, Yoav; Komuro, Hitoshi

    2010-01-01

    Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. First, in vivo studies using P10 mice demonstrated that a single i.p. injection of ethanol not only reduces the number of turning granule cells but also alters the mode of turning at the EGL-ML border of the cerebellum. Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca2+ and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca2+ and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol. PMID:20691765

  1. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  2. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1

    PubMed Central

    2014-01-01

    Background Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. Methods CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. Results Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. Conclusions Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA. PMID:24742042

  3. Inhibition of the proteasome induces cell cycle arrest and apoptosis in mantle cell lymphoma cells.

    PubMed

    Bogner, Christian; Ringshausen, Ingo; Schneller, Folker; Fend, Falko; Quintanilla-Martinez, Leticia; Häcker, Georg; Goetze, Katharina; Oostendorp, Robert; Peschel, Christian; Decker, Thomas

    2003-07-01

    Mantle cell lymphoma (MCL) is a distinctive non-Hodgkin's lymphoma subtype, characterized by overexpression of cyclin D1 as a consequence of the chromosomal translocation t(11;14)(q13;q32). MCL remains an incurable disease, combining the unfavourable clinical features of aggressive and indolent lymphomas. The blastic variant of MCL, which is often associated with additional cytogenetic alterations, has an even worse prognosis and new treatment options are clearly needed. The present study investigated the effect of a specific proteasome inhibitor, lactacystin, on cell cycle progression and apoptosis in two lymphoma cell lines harbouring the t(11;14)(q13;q32) and additional cytogenetic alterations, including p53 mutation (NCEB) and p16 deletion (Granta 519). Granta cells were more susceptible to inhibition of the proteasome with respect to inhibition of proliferation and apoptosis induction. No changes were observed in the expression levels of the G1 regulatory molecules cyclin D1 and cdk4, but cell cycle arrest and apoptosis induction was accompanied by accumulation of the cdk inhibitor p21 in both cell lines. Increased p53 expression was only observed in Granta cells with wild-type p53. Cleavage of procaspase-3 and -9 was observed but cleavage of procaspase-8 was not involved in apoptosis induction. The proapoptotic effect of lactacystin was reversed by pretreatment with the pancaspase inhibitor zVAD.fmk. Lactacystin was also effective in inducing apoptosis in lymphoma cells from MCL patients. We conclude that inhibition of the proteasome might be a promising therapeutic approach for this incurable disease. PMID:12846895

  4. Mast Cell Stabilizer Ketotifen Inhibits Gouty Inflammation in Rats.

    PubMed

    Hsu, Dur-Zong; Chu, Pei-Yi; Chen, Si-Jin; Liu, Ming-Yie

    2016-01-01

    Gout, an extremely painful arthritis with relapsing inflammatory attacks, is a common inflammatory joint disease in adults. We examined the therapeutic effect of ketotifen, a mast cell stabilizer, on monosodium urate (MSU) crystal-induced acute inflammation. Eight-week-old male Wistar rats were injected with MSU crystals (5 mg per rat) into air pouch. Ketotifen (0, 0.1, 03, and 1 mg/kg) was given 1 hour before MSU crystal injection. Lavage histamine, leukocyte counts, mast cell counts, nitric oxide, and proinflammatory mediator levels were assessed 12 hours after MSU injection. Ketotifen significantly inhibited MSU-induced mast cell activation and histamine concentration in air pouch lavage. Ketotifen dose-dependently inhibited MSU-initiated leukocyte infiltration into the air pouch. Furthermore, ketotifen significantly decreased proinflammatory mediators, including nitric oxide, interleukin-1β, and interleukin-6, production in MSU-treated rats. Ketotifen may attenuate MSU-induced acute inflammation by inhibiting mast cell activation and leukocyte infiltration in rats. Furthermore, ketotifen has the potential to be a new approach in managing patients with gouty inflammation in the future. PMID:23884077

  5. CD101 inhibits the expansion of colitogenic T cells.

    PubMed

    Schey, R; Dornhoff, H; Baier, J L C; Purtak, M; Opoka, R; Koller, A K; Atreya, R; Rau, T T; Daniel, C; Amann, K; Bogdan, C; Mattner, J

    2016-09-01

    CD101 exerts negative-costimulatory effects in vitro, but its function in vivo remains poorly defined. CD101 is abundantly expressed on lymphoid and myeloid cells in intestinal tissues, but absent from naïve splenic T cells. Here, we assessed the impact of CD101 on the course of inflammatory bowel disease (IBD). Using a T-cell transfer model of chronic colitis, we found that in recipients of naïve T cells from CD101(+/+) donors up to 30% of the recovered lymphocytes expressed CD101, correlating with an increased interleukin (IL)-2-mediated FoxP3 expression. Transfer of CD101(-/-) T cells caused more severe colitis and was associated with an expansion of IL-17-producing T cells and an enhanced expression of IL-2Rα/β independently of FoxP3. The co-transfer of naïve and regulatory T cells (Treg) protected most effectively from colitis, when both donor and recipient mice expressed CD101. Although the expression of CD101 on T cells was sufficient for Treg-function and the inhibition of T-cell proliferation, sustained IL-10 production required additional CD101 expression by myeloid cells. Finally, in patients with IBD a reduced CD101 expression on peripheral and intestinal monocytes and CD4(+) T cells correlated with enhanced IL-17 production and disease activity. Thus, CD101 deficiency is a novel marker for progressive colitis and potential target for therapeutic intervention. PMID:26813346

  6. Inhibition of humoral and cell-mediated immune responses in man by distinct suppressor cell systems.

    PubMed Central

    Lobo, P I; Spencer, C E

    1979-01-01

    Studies were designed to investigate whether the suppressor cell systems that regulate the humoral and cell-mediated immune responses belong to the same subsets of T cells or different subsets. Mitogen-activated suppressor cells were simultaneously assayed for their ability to inhibit (a) pokeweed mitogen-induced generation of plasma cells, (b) blastogenic response of lymphocytes to allogeneic cells, and (c) generation of killer cells in the cell-mediated lymphocytotoxicity assay. We found that suppressor cells that inhibited the generation of plasma cells were activated by concanavalin A (Con A) and were both radiation and prednisone sensitive. Suppressors that inhibited the blastogenic response in lymphocytes to allogenic cells were also activated by Con A but differed in that they were both radiation and prednisone resistant. In contrast, suppressors that inhibited the generation of the killer cells were activated with phytohemagglutinin and not Con A. These suppressors were prednisone and radiation resistant. These observations cannot be explained by differences at the pro-suppressor or suppressor activator levels as both T cell subsets are radiosensitive. Alternatively, heterogeneity of suppressor cell systems may explain these differences. PMID:156197

  7. Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells

    SciTech Connect

    Fahrer, Joerg; Wagner, Silvia; Buerkle, Alexander; Koenigsrainer, Alfred

    2009-08-14

    Rapamycin is an immunosuppressive drug, which inhibits the mammalian target of rapamycin (mTOR) kinase activity inducing changes in cell proliferation. Synthesis of poly(ADP-ribose) (PAR) is an immediate cellular response to genotoxic stress catalyzed mostly by poly(ADP-ribose) polymerase 1 (PARP-1), which is also controlled by signaling pathways. Therefore, we investigated whether rapamycin affects PAR production. Strikingly, rapamycin inhibited PAR synthesis in living fibroblasts in a dose-dependent manner as monitored by immunofluorescence. PARP-1 activity was then assayed in vitro, revealing that down-regulation of cellular PAR production by rapamycin was apparently not due to competitive PARP-1 inhibition. Further studies showed that rapamycin did not influence the cellular NAD pool and the activation of PARP-1 in extracts of pretreated fibroblasts. Collectively, our data suggest that inhibition of cellular PAR synthesis by rapamycin is mediated by formation of a detergent-sensitive complex in living cells, and that rapamycin may have a potential as therapeutic PARP inhibitor.

  8. Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration

    PubMed Central

    Sun, Jing; Fu, Xueqi; Wang, Yongsen; Liu, Ye; Zhang, Yu; Hao, Tian; Hu, Xin

    2016-01-01

    Erianin is a natural product extracted from Dendrobiumchrysotoxum. To investigate the antitumor activity of Erianin in estrogen receptor (ER) positive breast cancer, we treated T47D cells with Erianin and evaluated the effects of Erianin treatment on multiple cancer-associated pathways. Erianin inhibited the proliferation of T47D cells effectively. Erianin induced apoptosis in T47D cells through reducing Bcl-2 expression and activating caspase signaling. Furthermore, it also suppressed the expression of CDKs and caused cell cycle arrest. In addition, Erianin treatment suppressed the migration of T47D cells, most likely through regulating the homeostatic expression of MPP and TIMP. Meanwhile, Erianin did not affect the proliferation of normal breast epithelial cell line MCF10A. Together, these results demonstrated that Erianin might have the potential to be an effective drug to treat the ER positive breast cancer. PMID:27508028

  9. Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration.

    PubMed

    Sun, Jing; Fu, Xueqi; Wang, Yongsen; Liu, Ye; Zhang, Yu; Hao, Tian; Hu, Xin

    2016-01-01

    Erianin is a natural product extracted from Dendrobiumchrysotoxum. To investigate the antitumor activity of Erianin in estrogen receptor (ER) positive breast cancer, we treated T47D cells with Erianin and evaluated the effects of Erianin treatment on multiple cancer-associated pathways. Erianin inhibited the proliferation of T47D cells effectively. Erianin induced apoptosis in T47D cells through reducing Bcl-2 expression and activating caspase signaling. Furthermore, it also suppressed the expression of CDKs and caused cell cycle arrest. In addition, Erianin treatment suppressed the migration of T47D cells, most likely through regulating the homeostatic expression of MPP and TIMP. Meanwhile, Erianin did not affect the proliferation of normal breast epithelial cell line MCF10A. Together, these results demonstrated that Erianin might have the potential to be an effective drug to treat the ER positive breast cancer. PMID:27508028

  10. Silencing of CDC42 inhibits neuroblastoma cell proliferation and transformation

    PubMed Central

    Lee, Sora; Craig, Brian T.; Romain, Carmelle V.; Qiao, Jingbo; Chung, Dai H.

    2014-01-01

    Cell division cycle 42 (CDC42), a small GTPase of the Rho-subfamily, regulates diverse cellular functions including proliferation, cytoskeletal rearrangement and even promotes malignant transformation. Here, we found that increased expression of CDC42 correlated with undifferentiated neuroblastoma as compared to a more benign phenotype. CDC42 inhibition decreased cell growth and soft agar colony formation, and increased cell death in BE(2)-C and BE(2)-M17 cell lines, but not in SK-N-AS. In addition, silencing of CDC42 decreased expression of N-myc in BE(2)-C and BE(2)-M17 cells. Our findings suggest that CDC42 may play a role in the regulation of aggressive neuroblastoma behavior. PMID:25264923

  11. Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division.

    PubMed

    Gholkar, Ankur A; Cheung, Keith; Williams, Kevin J; Lo, Yu-Chen; Hamideh, Shadia A; Nnebe, Chelsea; Khuu, Cindy; Bensinger, Steven J; Torres, Jorge Z

    2016-08-12

    The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies. PMID:27378817

  12. Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    PubMed Central

    Stenkova, Anna M.; Isaeva, Marina P.; Shubin, Felix N.; Rasskazov, Valeri A.; Rakin, Alexander V.

    2011-01-01

    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species. PMID:21655186

  13. Selection for mutants altered in the expression or export of outer membrane porin OmpF.

    PubMed Central

    Sodergren, E J; Davidson, J; Taylor, R K; Silhavy, T J

    1985-01-01

    Strains in which the lacZ gene (which specifies beta-galactosidase) is fused to a gene encoding an envelope protein often exhibit a phenotype termed overproduction lethality. In such strains, high-level synthesis of the cognate hybrid protein interferes with the process of protein export, and this leads ultimately to cell death. A variation of this phenomenon has been discovered with lacZ fusions to the gene specifying the major outer membrane porin protein OmpF. In this case, we find that lambda transducing phage carrying an ompF-lacZ fusion will not grow on a host strain that constitutively overexpresses ompF. We have exploited this observation to develop a selection for ompF mutants. Using this protocol, we have isolated mutants altered in ompF expression and have identified mutations that block OmpF export. Our results suggest that it should be possible to adapt this selection for use with other genes specifying exported proteins. Images PMID:2987179

  14. Ivermectin Inhibits Growth of Chlamydia trachomatis in Epithelial Cells

    PubMed Central

    Pettengill, Matthew A.; Lam, Verissa W.; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M.

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  15. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    PubMed

    Pettengill, Matthew A; Lam, Verissa W; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  16. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    SciTech Connect

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-11-12

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  17. Honokiol inhibits melanoma stem cells by targeting notch signaling.

    PubMed

    Kaushik, Gaurav; Venugopal, Anand; Ramamoorthy, Prabhu; Standing, David; Subramaniam, Dharmalingam; Umar, Shahid; Jensen, Roy A; Anant, Shrikant; Mammen, Joshua M V

    2015-12-01

    Melanoma is an aggressive disease with limited therapeutic options. Here, we determined the effects of honokiol (HNK), a biphenolic natural compound on melanoma cells and stemness. HNK significantly inhibited melanoma cell proliferation, viability, clonogenicity and induced autophagy. In addition, HNK significantly inhibited melanosphere formation in a dose dependent manner. Western blot analyses also demonstrated reduction in stem cell markers CD271, CD166, Jarid1b, and ABCB5. We next examined the effect of HNK on Notch signaling, a pathway involved in stem cell self-renewal. Four different Notch receptors exist in cells, which when cleaved by a series of enzymatic reactions catalyzed by Tumor Necrosis Factor-α-Converting Enzyme (TACE) and γ-secretase protein complex, results in the release of the Notch intracellular domain (NICD), which then translocates to the nucleus and induces target gene expression. Western blot analyses demonstrated that in HNK treated cells there is a significant reduction in the expression of cleaved Notch-2. In addition, there was a reduction in the expression of downstream target proteins, Hes-1 and cyclin D1. Moreover, HNK treatment suppressed the expression of TACE and γ-secretase complex proteins in melanoma cells. To confirm that suppression of Notch-2 activation is critical for HNK activity, we overexpressed NICD1, NICD2, and performed HNK treatment. NICD2, but not NICD1, partially restored the expression of Hes-1 and cyclin D1, and increased melanosphere formation. Taken together, these data suggest that HNK is a potent inhibitor of melanoma cells, in part, through the targeting of melanoma stem cells by suppressing Notch-2 signaling. PMID:25491779

  18. Radiosensitization by Inhibiting STAT1 in Renal Cell Carcinoma

    SciTech Connect

    Hui Zhouguang; Tretiakova, Maria; Zhang Zhongfa; Li Yan; Wang Xiaozhen; Zhu, Julie Xiaohong; Gao Yuanhong; Mai Weiyuan; Furge, Kyle; Qian Chaonan; Amato, Robert; Butler, E. Brian

    2009-01-01

    Purpose: Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. Methods and Materials: The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. Results: STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10{sup -8} for clear cell; and p = 3.6 x 10{sup -4} for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. Conclusion: This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  19. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    SciTech Connect

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  20. A Proteomic Approach to Understand the Role of the Outer Membrane Porins in the Organic Solvent-Tolerance of Pseudomonas aeruginosa PseA

    PubMed Central

    Hemamalini, R.; Khare, Sunil

    2014-01-01

    Solvent-tolerant microbes have the unique ability to thrive in presence of organic solvents. The present study describes the effect of increasing hydrophobicity (log Pow values) of organic solvents on the outer membrane proteome of the solvent-tolerant Pseudomonas aeruginosa PseA cells. The cells were grown in a medium containing 33% (v/v) alkanes of increasing log Pow values. The outer membrane proteins were extracted by alkaline extraction from the late log phase cells and changes in the protein expression were studied by 2-D gel electrophoresis. Seven protein spots showed significant differential expression in the solvent exposed cells. The tryptic digest of the differentially regulated proteins were identified by LC-ESI MS/MS. The identity of these proteins matched with porins OprD, OprE, OprF, OprH, Opr86, LPS assembly protein and A-type flagellin. The reported pI values of these proteins were in the range of 4.94–8.67 and the molecular weights were in the range of 19.5–104.5 kDa. The results suggest significant down-regulation of the A-type flagellin, OprF and OprD and up-regulation of OprE, OprH, Opr86 and LPS assembly protein in presence of organic solvents. OprF and OprD are implicated in antibiotic uptake and outer membrane stability, whereas A-type flagellin confers motility and chemotaxis. Up-regulated OprE is an anaerobically-induced porin while Opr86 is responsible for transport of small molecules and assembly of the outer membrane proteins. Differential regulation of the above porins clearly indicates their role in adaptation to solvent exposure. PMID:25089526

  1. A proteomic approach to understand the role of the outer membrane porins in the organic solvent-tolerance of Pseudomonas aeruginosa PseA.

    PubMed

    Hemamalini, R; Khare, Sunil

    2014-01-01

    Solvent-tolerant microbes have the unique ability to thrive in presence of organic solvents. The present study describes the effect of increasing hydrophobicity (log Pow values) of organic solvents on the outer membrane proteome of the solvent-tolerant Pseudomonas aeruginosa PseA cells. The cells were grown in a medium containing 33% (v/v) alkanes of increasing log Pow values. The outer membrane proteins were extracted by alkaline extraction from the late log phase cells and changes in the protein expression were studied by 2-D gel electrophoresis. Seven protein spots showed significant differential expression in the solvent exposed cells. The tryptic digest of the differentially regulated proteins were identified by LC-ESI MS/MS. The identity of these proteins matched with porins OprD, OprE, OprF, OprH, Opr86, LPS assembly protein and A-type flagellin. The reported pI values of these proteins were in the range of 4.94-8.67 and the molecular weights were in the range of 19.5-104.5 kDa. The results suggest significant down-regulation of the A-type flagellin, OprF and OprD and up-regulation of OprE, OprH, Opr86 and LPS assembly protein in presence of organic solvents. OprF and OprD are implicated in antibiotic uptake and outer membrane stability, whereas A-type flagellin confers motility and chemotaxis. Up-regulated OprE is an anaerobically-induced porin while Opr86 is responsible for transport of small molecules and assembly of the outer membrane proteins. Differential regulation of the above porins clearly indicates their role in adaptation to solvent exposure. PMID:25089526

  2. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  3. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. PMID:26976217

  4. Inhibition of mast cell-dependent conversion of cultured macrophages into foam cells with antiallergic drugs.

    PubMed

    Ma, H; Kovanen, P T

    2000-12-01

    Degranulation of isolated, rat peritoneal mast cells in the presence of low density lipoprotein (LDL) induces cholesteryl ester accumulation in cocultured macrophages with ensuing foam cell formation. This event occurs when the macrophages phagocytose LDL particles that have been bound to the heparin proteoglycans of exocytosed granules. In an attempt to inhibit such foam cell formation pharmacologically, rat peritoneal mast cells that had been passively sensitized with anti-ovalbumin-IgE were treated with 2 mast cell-stabilizing antianaphylactic drugs, MY-1250 or disodium cromoglycate (DSCG). Both drugs were found to inhibit antigen (ovalbumin)-triggered release of histamine from the mast cells, revealing mast cell stabilization. In cocultures of rat peritoneal macrophages and passively sensitized mast cells, addition of MY-1250 before addition of the antigen resulted in parallel reductions in histamine release from mast cells, uptake of [(14)C]sucrose-LDL, and accumulation of LDL-derived cholesteryl esters in the cocultured macrophages. Similarly, when passively sensitized mast cells were stimulated with antigen in the presence of DSCG and the preconditioned media containing all substances released from the drug-treated mast cells were collected and added to macrophages cultured in LDL-containing medium, uptake and esterification of LDL cholesterol by the macrophages were inhibited. The inhibitory effects of both drugs were mast cell-specific because neither drug inhibited the ability of macrophages to take up and esterify LDL cholesterol. Analysis of heparin proteoglycan contents of the incubation media revealed that both drugs had inhibited mast cells from expelling their granule remnants. Thus, both MY-1250 and DSCG prevent mast cells from releasing the heparin proteoglycan-containing vehicles that bind LDL and carry it into macrophages. This study suggests that antiallergic pharmacological agents could be used in animal models to prevent mast cell

  5. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    PubMed

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  6. Ozone inhibits guard cell K+ channels implicated in stomatal opening

    PubMed Central

    Torsethaugen, Gro; Pell, Eva J.; Assmann, Sarah M.

    1999-01-01

    Ozone (O3) deleteriously affects organisms ranging from humans to crop plants, yet little is understood regarding the underlying mechanisms. In plants, O3 decreases CO2 assimilation, but whether this could result from direct O3 action on guard cells remained unknown. Potassium flux causes osmotically driven changes in guard cell volume that regulate apertures of associated microscopic pores through which CO2 is supplied to the photosynthetic mesophyll tissue. We show in Vicia faba that O3 inhibits (i) guard cell K+ channels that mediate K+ uptake that drives stomatal opening; (ii) stomatal opening in isolated epidermes; and (iii) stomatal opening in leaves, such that CO2 assimilation is reduced without direct effects of O3 on photosynthetic capacity. Direct O3 effects on guard cells may have ecological and agronomic implications for plant productivity and for response to other environmental stressors including drought. PMID:10557363

  7. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  8. A model of maltodextrin transport through the sugar-specific porin, LamB, based on deletion analysis.

    PubMed

    Klebba, P E; Hofnung, M; Charbit, A

    1994-10-01

    LamB facilitates the uptake of maltose and maltodextrins across the bacterial outer membrane and acts as a general porin for small molecules. Using directed deletion mutagenesis we removed several regions of the LamB polypeptide and identified a polypeptide loop that both constricts the maltoporin channel and binds maltodextrins. In conjunction with a second sugar binding site that we identified at the rim of the channel, these data clarify, for the first time, the mechanism of transport through a substrate-specific porin. Furthermore, unlike the transverse loops of general porins, which originate from a central location in their primary structure, the loop that regulates LamB permeability originates from a C-terminal site. Thus LamB represents a second distinct class of porins in the bacterial outer membrane that is differently organized and separately evolved from OmpF-type, general porins. PMID:7925308

  9. The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa.

    PubMed Central

    Wylie, J L; Worobec, E A

    1995-01-01

    Using interposon mutagenesis, we have generated strains of Pseudomonas aeruginosa which lack or overexpress the substrate-selective OprB porin of this species. A marked decrease or increase in the initial uptake of glucose by these strains verified the role of OprB in facilitating the diffusion of glucose across the outer membrane of P. aeruginosa. However, we also demonstrated that the loss or overexpression of OprB had a similar effect on the uptake of three other sugars able to support the growth of this bacterium (mannitol, glycerol, and fructose). This effect was restricted to carbohydrate transport; arginine uptake was identical in mutant and wild-type strains. These results indicated that OprB cannot be considered strictly a glucose-selective porin; rather, it acts as a central component of carbohydrate transport and is more accurately described as a carbohydrate-selective porin. PMID:7768797

  10. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    SciTech Connect

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing of these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)

  11. Ligand-specific opening of a gated-porin channel in the outer membrane of living bacteria.

    PubMed

    Jiang, X; Payne, M A; Cao, Z; Foster, S B; Feix, J B; Newton, S M; Klebba, P E

    1997-05-23

    Ligand-gated membrane channels selectively facilitate the entry of iron into prokaryotic cells. The essential role of iron in metabolism makes its acquisition a determinant of bacterial pathogenesis and a target for therapeutic strategies. In Gram-negative bacteria, TonB-dependent outer membrane proteins form energized, gated pores that bind iron chelates (siderophores) and internalize them. The time-resolved operation of the Escherichia coli ferric enterobactin receptor FepA was observed in vivo with electron spin resonance spectroscopy by monitoring the mobility of covalently bound nitroxide spin labels. A ligand-binding surface loop of FepA, which normally closes its transmembrane channel, exhibited energy-dependent structural changes during iron and toxin (colicin) transport. These changes were not merely associated with ligand binding, but occurred during ligand uptake through the outer membrane bilayer. The results demonstrate by a physical method that gated-porin channels open and close during membrane transport in vivo. PMID:9157886

  12. TLR2 Activation Inhibits Embryonic Neural Progenitor Cell Proliferation

    PubMed Central

    Okun, Eitan; Griffioen, Kathleen J.; Gen-Son, Tae; Lee, Jong-Hwan; Roberts, Nicholas J.; Mughal, Mohamed R.; Hutchison, Emmette; Cheng, Aiwu; Arumugam, Thiruma V.; Lathia, Justin D.; van Praag, Henriette; Mattson, Mark P.

    2010-01-01

    Toll-like receptors (TLRs) play essential roles in innate immunity, and increasing evidence indicates that these receptors are expressed in neurons, astrocytes and microglia in the brain, where they mediate responses to infection, stress and injury. To address the possibility that TLR2 heterodimer activation could affect progenitor cells in the developing brain, we analyzed the expression of TLR2 throughout the mouse cortical development, and assessed the role of TLR2 heterodimer activation in neural progenitor cell (NPC) proliferation. TLR2 mRNA and protein was expressed in the cortex in embryonic and early postnatal stages of development, and in cultured cortical NPC. While NPC from TLR2-deficient and wild type embryos had the same proliferative capacity, TLR2 activation by the synthetic bacterial lipopeptides Pam3CSK4 and FSL1, or low molecular weight hyaluronan, an endogenous ligand for TLR2, inhibited neurosphere formation in vitro. Intracerebral in utero administration of TLR2 ligands resulted in ventricular dysgenesis characterized by increased ventricle size, reduced proliferative area around the ventricles, increased cell density, an increase in PH3+ cells and a decrease in BrdU+ cells in the sub-ventricular zone. Our findings indicate that loss of TLR2 does not result in defects in cerebral development. However, TLR2 is expressed and functional in the developing telencephalon from early embryonic stages and infectious agent-related activation of TLR2 inhibits NPC proliferation. TLR2–mediated inhibition of NPC proliferation may therefore be a mechanism by which infection, ischemia and inflammation adversely affect brain development. PMID:20456021

  13. Green tea polyphenols inhibit testosterone production in rat Leydig cells

    PubMed Central

    Figueiroa, Marina S; César Vieira, Juliany S B; Leite, Disleide S; Filho, Ruben C O Andrade; Ferreira, Fabiano; Gouveia, Patrícia S; Udrisar, Daniel P; Wanderley, Maria I

    2009-01-01

    This study investigated the acute effects of green tea extract (GTE) and its polyphenol constituents, (−)-epigallocatechin-3-gallate (EGCG) and (−)-epicatechin (EC), on basal and stimulated testosterone production by rat Leydig cells in vitro. Leydig cells purified in a Percoll gradient were incubated for 3 h with GTE, EGCG or EC and the testosterone precursor androstenedione, in the presence or absence of either protein kinase A (PKA) or protein kinase C (PKC) activators. The reversibility of the effect was studied by pretreating cells for 15 min with GTE or EGCG, allowing them to recover for 1 h and challenging them for 2 h with human chorionic gonadotropin (hCG), luteinizing hormone releasing hormone (LHRH), 22(R)-hydroxycholesterol or androstenedione. GTE and EGCG, but not EC, inhibited both basal and kinase-stimulated testosterone production. Under the pretreatment conditions, the inhibitory effect of the higher concentration of GTE/EGCG on hCG/LHRH-stimulated or 22(R)-hydroxycholesterol-induced testosterone production was maintained, whereas androstenedione-supported testosterone production returned to control levels. At the lower concentration of GTE/EGCG, the inhibitory effect of these polyphenols on 22(R)-hydroxycholesterol-supported testosterone production was reversed. The inhibitory effects of GTE may be explained by the action of its principal component, EGCG, and the presence of a gallate group in its structure seems important for its high efficacy in inhibiting testosterone production. The mechanisms underlying the effects of GTE and EGCG involve the inhibition of the PKA/PKC signalling pathways, as well as the inhibition of P450 side-chain cleavage enzyme and 17β-hydroxysteroid dehydrogenase function. PMID:19330017

  14. Pseudomonas aeruginosa Porin OprF Exists in Two Different Conformations*

    PubMed Central

    Sugawara, Etsuko; Nestorovich, Ekaterina M.; Bezrukov, Sergey M.; Nikaido, Hiroshi

    2010-01-01

    The major nonspecific porin of Pseudomonas aeruginosa, OprF, produces a large channel yet allows only a slow diffusion of various solutes. Here we provide an explanation of this apparent paradox. We first show, by introduction of tobacco etch virus protease cleavage site in the middle of OprF protein, that most of OprF population folds as a two-domain protein with an N-terminal β-barrel domain and a C-terminal periplasmic domain rich in α-helices. However, sedimentation of unilamellar proteoliposomes through an iso-osmotic gradient showed that only about 5% of the OprF population produced open channels. Gel filtration showed that the open channel conformers tended to occur in oligomeric associations. Because the open channel conformer is likely to fold as a single domain protein with a large β-barrel, we reasoned that residues near the C terminus may be exposed on cell surface in this conformer. Introduction of a cysteine residue at position 312 produced a functional mutant protein. By using bulky biotinylation reagents on intact cells, we showed that this cysteine residue was not exposed on cell surface in most of the OprF population. However, the minority OprF population that was biotinylated in such experiments was enriched for the conformer with pore-forming activity and had a 10-fold higher pore-forming specific activity than the bulk OprF population. Finally trypsin treatment, which preferentially cleaves the C-terminal domain of the two-domain conformer, did not affect the pore-forming activity of OprF nor did it digest the minority conformer whose residue 312 is exposed on cell surface. PMID:16595653

  15. Pseudomonas aeruginosa porin OprF exists in two different conformations.

    PubMed

    Sugawara, Etsuko; Nestorovich, Ekaterina M; Bezrukov, Sergey M; Nikaido, Hiroshi

    2006-06-16

    The major nonspecific porin of Pseudomonas aeruginosa, OprF, produces a large channel yet allows only a slow diffusion of various solutes. Here we provide an explanation of this apparent paradox. We first show, by introduction of tobacco etch virus protease cleavage site in the middle of OprF protein, that most of OprF population folds as a two-domain protein with an N-terminal beta-barrel domain and a C-terminal periplasmic domain rich in alpha-helices. However, sedimentation of unilamellar proteoliposomes through an iso-osmotic gradient showed that only about 5% of the OprF population produced open channels. Gel filtration showed that the open channel conformers tended to occur in oligomeric associations. Because the open channel conformer is likely to fold as a single domain protein with a large beta-barrel, we reasoned that residues near the C terminus may be exposed on cell surface in this conformer. Introduction of a cysteine residue at position 312 produced a functional mutant protein. By using bulky biotinylation reagents on intact cells, we showed that this cysteine residue was not exposed on cell surface in most of the OprF population. However, the minority OprF population that was biotinylated in such experiments was enriched for the conformer with pore-forming activity and had a 10-fold higher pore-forming specific activity than the bulk OprF population. Finally trypsin treatment, which preferentially cleaves the C-terminal domain of the two-domain conformer, did not affect the pore-forming activity of OprF nor did it digest the minority conformer whose residue 312 is exposed on cell surface. PMID:16595653

  16. A co-operative interaction between Neisseria gonorrhoeae and complement receptor 3 mediates infection of primary cervical epithelial cells.

    PubMed

    Edwards, Jennifer L; Brown, Eric J; Uk-Nham, Sang; Cannon, Janne G; Blake, Milan S; Apicella, Michael A

    2002-09-01

    Little is known about the pathogenesis of gonococcal infection within the lower female genital tract. We recently described the distribution of complement receptor 3 (CR3) on epithelia of the female genital tract. Our studies further indicate that CR3-mediated endocytosis serves as a primary mechanism by which N. gonorrhoeae elicits membrane ruffling and cellular invasion of primary, human, cervical epithelial cells. We have extended these studies to describe the nature of the gonococcus-CR3 interaction. Western Blot analysis demonstrated production of alternative pathway complement components by ecto- and endocervical cells which allows C3b deposition on gonococci and its rapid conversion to iC3b. Anti-iC3b and -factor I antibodies significantly inhibited adherence and invasion of primary cervical cells, suggesting that iC3b covalently bound to the gonococcus serves as a primary ligand for CR3 adherence. However, gonococcal porin and pili also bound to the I-domain of CR3 in a non-opsonic manner. Binding of porin and pili to CR3 were required for adherence to and invasion of cervical epithelia. Collectively, these data suggest that gonococcal adherence to CR3 occurs in a co-operative manner, which requires gonococcal iC3b-opsonization, porin and pilus. In conjunction, these molecules facilitate targeting to and successful infection of the cervical epithelium. PMID:12390350

  17. Inhibition of regulated cell death by cell-penetrating peptides.

    PubMed

    Krautwald, Stefan; Dewitz, Christin; Fändrich, Fred; Kunzendorf, Ulrich

    2016-06-01

    Development of the means to efficiently and continuously renew missing and non-functional proteins in diseased cells remains a major goal in modern molecular medicine. While gene therapy has the potential to achieve this, substantial obstacles must be overcome before clinical application can be considered. A promising alternative approach is the direct delivery of non-permeant active biomolecules, such as oligonucleotides, peptides and proteins, to the affected cells with the purpose of ameliorating an advanced disease process. In addition to receptor-mediated endocytosis, cell-penetrating peptides are widely used as vectors for rapid translocation of conjugated molecules across cell membranes into intracellular compartments and the delivery of these therapeutic molecules is generally referred to as novel prospective protein therapy. As a broad coverage of the enormous amount of published data in this field is unrewarding, this review will provide a brief, focused overview of the technology and a summary of recent studies of the most commonly used protein transduction domains and their potential as therapeutic agents for the treatment of cellular damage and the prevention of regulated cell death. PMID:27048815

  18. Depolarization counteracts glucocorticoid inhibition of adenohypophysical corticotroph cells

    PubMed Central

    Lim, M C; Shipston, M J; Antoni, F A

    1998-01-01

    In AtT20 mouse corticotroph tumour cells large conductance Ca2+-activated K+-channels (BK-channels) have an essential role in the early glucocorticoid inhibition of adrenocorticotrophin (ACTH) secretion evoked by corticotrophin-releasing factor. The present study examined whether or not BK-channels are also pivotal to glucocorticoid inhibition of normal rat anterior pituitary cells. A membrane-permeant, non-metabolizable cyclic AMP analogue, 8-(4-Chlorophenylthio)adenosine-3′,5′-cyclic-monophosphate (CPT-cAMP) was used as the primary secretagogue stimulus, as this mimics the increase of intracellular cyclic AMP caused by corticotrophin-releasing factor, but is not subject to the complex Ca2+-dependent regulation of cyclic AMP metabolism that is evident in corticotroph cells. Experiments in AtT20 cells showed that ACTH secretion stimulated by 1 mM CPT-cAMP was suppressed to 34±1.5% (n=12) of the control stimulus by a maximal dose of 100 nM dexamethasone. The ACTH secretion evoked by the combination of 1 mM CPT-cAMP with either 5 μM (−)BayK8644 (L-type Ca2+-channel activator) or 5 mM TEA (K+-channel blocker) was respectively 69.1±7.6% and 69.3±11.8% of control after 2 h preincubation with 100 nM dexamethasone (P<0.05 vs CPT-cAMP). The ACTH response elicited by 5 μM (−)BayK8644 and 5 mM TEA given together was completely resistant to inhibition by 100 nM dexamethasone. Furthermore, TEA and (−)BayK8644 given together synergistically stimulated ACTH release in combination with 0.1 mM or 1 mM CPT-cAMP, and these ACTH responses were not inhibited by 100 nM dexamethasone. In primary cultures of rat anterior pituitary cells, TEA (up to 20 mM), charybdotoxin (30 nM) or apamin (100 nM) failed to modify the glucocorticoid inhibition of 0.1 mM CPT-cAMP-induced ACTH release. The combination of 5 mM TEA and 5 μM (−)BayK8644 elicited a small but significant increase in ACTH secretion but did not modify the inhibition of 0.3

  19. Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp.

    PubMed

    Yin, Jin; Fu, Xiao-Zhi; Wu, Qiong; Chen, Jin-Chun; Chen, Guo-Qiang

    2014-11-01

    Since halophile Halomonas spp. can grow contamination free in seawater under unsterile and continuous conditions, it holds great promise for industrial biotechnology to produce low-cost chemicals in an economic way. Yet, metabolic engineering methods are urgently needed for Halomonas spp. It is commonly known that chromosomal expression is more stable yet weaker than plasmid one is. To overcome this challenge, a novel chromosomal expression method was developed for halophile Halomonas TD01 and its derivatives based on a strongly expressed porin gene as a site for external gene integration. The gene of interest was inserted downstream the porin gene, forming an artificial operon porin-inserted gene. This chromosome expression system was proven functional by some examples: First, chromosomal expression of heterologous polyhydroxybutyrate (PHB) synthase gene phaC Re from Ralstonia eutropha completely restored the PHB accumulation level in endogenous phaC knockout mutant of Halomonas TD01. The integrated phaC Re was expressed at the highest level when inserted at the locus of porin compared with insertions in other chromosome locations. Second, an inducible expression system was constructed in phaC-deleted Halomonas TD01 by integrating the lac repressor gene (lacI) into the porin site in the host chromosome. The native porin promoter was inserted with the key 21 bp DNA of lac operator (lacO) sequence to become an inducible promoter encoded in a plasmid. This inducible system allowed on-off switch of gene expression in Halomonas TD strains. Thus, the stable and strong chromosomal expression method in Halomonas TD spp. was established. PMID:25070598

  20. Inhibition to retinal rod bipolar cells is regulated by light levels

    PubMed Central

    Mazade, Reece E.; Klein, Justin S.

    2013-01-01

    The retina responds to a wide range of light stimuli by adaptation of retinal signaling to background light intensity and the use of two different photoreceptors: rods that sense dim light and cones that sense bright light. Rods signal to rod bipolar cells that receive significant inhibition from amacrine cells in the dark, especially from a rod bipolar cell-activated GABAergic amacrine cell. This inhibition modulates the output of rod bipolar cells onto downstream neurons. However, it was not clear how the inhibition of rod bipolar cells changes when rod signaling is limited by an adapting background light and cone signaling becomes dominant. We found that both light-evoked and spontaneous rod bipolar cell inhibition significantly decrease with light adaptation. This suggests a global decrease in the activity of amacrine cells that provide input to rod bipolar cells with light adaptation. However, inhibition to rod bipolar cells is also limited by GABAergic connections between amacrine cells, which decrease GABAergic input to rod bipolar cells. When we removed this serial inhibition, the light-evoked inhibition to rod bipolar cells remained after light adaptation. These results suggest that decreased inhibition to rod bipolar cells after light adaptation is due to decreased rod pathway activity as well as an active increase in inhibition between amacrine cells. Together these serve to limit rod bipolar cell inhibition after light adaptation, when the rod pathway is inactive and modulation of the signal is not required. This suggests an efficiency mechanism in the retina to limit unnecessary signaling. PMID:23596335

  1. The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells

    PubMed Central

    Mu, Jiasheng; Liu, Tianrun; Jiang, Lin; Wu, Xiangsong; Cao, Yang; Li, Maolan; Dong, Qian; Liu, Yingbin; Xu, Haineng

    2016-01-01

    Baicalein, a traditional Chinese medicine, is a member of the flavone subclass of flavonoids. It has been reported to have anticancer activities in several human cancer cell lines in vitro. However, the therapeutic effects of baicalein on human gastric cancer and the mechanisms of action of baicalein have not been extensively studied. In the present study, we utilized a cell viability assay and an in vivo tumor growth assay to test the inhibitory effects of baicalein on gastric cancer. Analyses of the cell cycle, apoptosis and alterations in protein levels were performed to elucidate how baicalein functions in gastric cancer. We found that baicalein could potently inhibit gastric cancer cell growth and colony formation. Baicalein robustly induced arrest at the S phase in the gastric cancer cell line SGC-7901. It induced SGC-7901 cell apoptosis and disrupted the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner. Analysis of protein expression levels in SGC-7901 cells showed downregulation of Bcl-2 and upregulation of Bax in response to baicalein treatment. These results indicate that baicalein induces apoptosis of gastric cancer cells through the mitochondrial pathway. In an in vivo subcutaneous xenograft model, baicalein exhibited excellent tumor inhibitory effects. These results indicate that baicalein may be a potential drug for gastric cancer therapy. PMID:26918059

  2. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells

    PubMed Central

    ZHANG, MENG; BIAN, ZHI-GANG; ZHANG, YI; WANG, JIA-HE; KAN, LIANG; WANG, XIN; NIU, HUI-YAN; HE, PING

    2014-01-01

    Natural products are a great source of cancer chemotherapeutic agents. The present study was conducted to investigate whether cucurbitacin B (CuB), one of the most potent and widely used cucurbitacins, inhibits proliferation and induces apoptosis in the A549 lung cancer cell line. Furthermore, CuB induced apoptosis of A549 cells in a concentration-dependent manner, as determined by fluorescence microscopy, flow cytometry and transmission electron microscopy. The present study also demonstrated that CuB dose-dependently inhibited lung cancer cell proliferation, with cell cycle inhibition and cyclin B1 downregulation. Apoptosis induced by CuB was shown to be associated with cytochrome c release, B-cell lymphoma 2 downregulation and signal transducer and activator of transcription 3 pathway inhibition. CuB may prove to be a useful approach for the chemotherapy of lung cancer. PMID:25242136

  3. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells.

    PubMed

    Zhang, Meng; Bian, Zhi-Gang; Zhang, Yi; Wang, Jia-He; Kan, Liang; Wang, Xin; Niu, Hui-Yan; He, Ping

    2014-12-01

    Natural products are a great source of cancer chemotherapeutic agents. The present study was conducted to investigate whether cucurbitacin B (CuB), one of the most potent and widely used cucurbitacins, inhibits proliferation and induces apoptosis in the A549 lung cancer cell line. Furthermore, CuB induced apoptosis of A549 cells in a -concentration-dependent manner, as determined by fluorescence microscopy, flow cytometry and transmission electron microscopy. The present study also demonstrated that CuB dose-dependently inhibited lung cancer cell proliferation, with cell cycle inhibition and cyclin B1 downregulation. Apoptosis induced by CuB was shown to be associated with cytochrome c release, B-cell lymphoma 2 downregulation and signal transducer and activator of transcription 3 pathway inhibition. CuB may prove to be a useful approach for the chemotherapy of lung cancer. PMID:25242136

  4. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis. PMID:25961580

  5. IL-17 Inhibits Chondrogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Kondo, Masahiro; Yamaoka, Kunihiro; Sonomoto, Koshiro; Fukuyo, Shunsuke; Oshita, Koichi; Okada, Yosuke; Tanaka, Yoshiya

    2013-01-01

    Objective Mesenchymal stem cells (MSCs) can differentiate into cells of mesenchymal lineages, such as osteoblasts and chondrocytes. Here we investigated the effects of IL-17, a key cytokine in chronic inflammation, on chondrogenic differentiation of human MSCs. Methods Human bone marrow MSCs were pellet cultured in chondrogenic induction medium containing TGF-β3. Chondrogenic differentiation was detected by cartilage matrix accumulation and chondrogenic marker gene expression. Results Over-expression of cartilage matrix and chondrogenic marker genes was noted in chondrogenic cultures, but was inhibited by IL-17 in a dose-dependent manner. Expression and phosphorylation of SOX9, the master transcription factor for chondrogenesis, were induced within 2 days and phosphorylated SOX9 was stably maintained until day 21. IL-17 did not alter total SOX9 expression, but significantly suppressed SOX9 phosphorylation in a dose-dependent manner. At day 7, IL-17 also suppressed the activity of cAMP-dependent protein kinase A (PKA), which is known to phosphorylate SOX9. H89, a selective PKA inhibitor, also suppressed SOX9 phosphorylation, expression of chondrogenic markers and cartilage matrix, and also decreased chondrogenesis. Conclusions IL-17 inhibited chondrogenesis of human MSCs through the suppression of PKA activity and SOX9 phosphorylation. These results suggest that chondrogenic differentiation of MSCs can be inhibited by a mechanism triggered by IL-17 under chronic inflammation. PMID:24260226

  6. Substituted oxines inhibit endothelial cell proliferation and angiogenesis†

    PubMed Central

    Bhat, Shridhar; Shim, Joong Sup; Zhang, Feiran; Chong, Curtis Robert; Liu, Jun O.

    2013-01-01

    Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure–activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC50, but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2. PMID:22391578

  7. Biochemistry of growth inhibition by ammonium ions in mammalian cells

    SciTech Connect

    Ryll, T.; Valley, U.; Wagner, R. . Cell Culture Techniques Dept.)

    1994-06-20

    The intracellular pool of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine has been shown to act as a central target during the inhibitory action of ammonium ions in vitro cultivated mammalian cell cultures. This pool has been demonstrated to be elevated at the end of a batch cultivation and very quickly as a response to exogenously applied ammonium chloride by using four different cell lines (hybridoma, BHK, CHO, and Ltk-929). The amount of enlarged UDP aminohexoses is correlated to the inhibitor concentration and additionally dependent on the cell line. The formation of the UDP sugars is associated with a transient reduction of the UTP pool. Moreover, the quick formation of UDP-GNAC is strictly dependent on the presence of, glucose and ammonium. Both metabolites act as biochemical precursors. Additionally, the formation of UDP-GNAc after ammonium application has been shown to increase with an elevated cultivation pH and to be independent of the inhibition of transcription and translation processes. The intracellular amount of UDP-GNAc correlates with the level of growth inhibition in mammalian cell lines.

  8. Inhibition of cell growth by a hypothalamic peptide.

    PubMed Central

    Redding, T W; Schally, A V

    1982-01-01

    A fraction purified from acetic acid extracts of porcine hypothalami was found to contain significant antimitogenic activity when tested in normal and neoplastic cell lines. Addition of this hypothalamic material (1-100 micrograms/ml) to culture media significantly inhibited [3H]thymidine incorporation into cellular DNA in several cell lines. Amino acid incorporation into pituitary proteins and uridine incorporation into RNA were also significantly reduced by this factor(s). Addition to the culture media of this hypothalamic material at 5 micrograms/ml and 50 micrograms/ml per day decreased by 17% and 36%, respectively, cell numbers of 3T6 fibroblast cell cultures. Time-response curves showed that the inhibition of [3H]thymidine incorporation into DNA in 3T6 fibroblast cells begins within 2 hr after adding this fraction to the culture medium. The inhibitory action cannot be explained by a direct cytotoxic effect since 3T6 cells labeled with 51Cr and incubated for 6 hr in the presence of this hypothalamic fraction fail to show an increase in the release of 51Cr into the medium as compared with controls. Incubation with trypsin and chymotrypsin completely abolished the antimitogenic activity of this material and pepsin decreased it. This strongly suggests that the antimitogenic activity exhibited by this fraction is due to a polypeptide(s). These observations provide evidence for the presence in the mammalian hypothalamus of an antimitogenic peptide(s) that may be involved in the regulation of cell proliferation. PMID:6757925

  9. Cardiac Progenitor Cell Commitment is Inhibited by Nuclear Akt Expression

    PubMed Central

    Fischer, Kimberlee M.; Din, Shabana; Gude, Natalie; Konstandin, Mathias H.; Wu, Weitao; Quijada, Pearl; Sussman, Mark A.

    2011-01-01

    Rationale Stem cell therapies to regenerate damaged cardiac tissue represent a novel approach to treat heart disease. However, the majority of adoptively transferred stem cells delivered to damaged myocardium do not survive long enough to impart protective benefits, resulting in modest functional improvements. Strategies to improve survival and proliferation of stem cells show promise for significantly enhancing cardiac function and regeneration. Objective Determine if injected cardiac progenitor cells (CPCs) genetically modified to overexpress nuclear Akt (CPCeA) increase structural and functional benefits to infarcted myocardium relative to control CPCs. Methods and Results CPCeA exhibit significantly increased proliferation and secretion of paracrine factors compared to CPCs. However, CPCeA exhibit impaired capacity for lineage commitment in vitro. Infarcted hearts receiving intramyocardial injection of CPCeA have increased recruitment of endogenous c-kit cells compared to CPCs, but neither population provides long-term functional and structural improvements compared to saline injected controls. Pharmacologic inhibition of Akt alleviated blockade of lineage commitment in CPCeA. Conclusions Although overexpression of nuclear Akt promotes rapid proliferation and secretion of protective paracrine factors, the inability of CPCeA to undergo lineage commitment hinders their capacity to provide functional or structural benefits to infarcted hearts. Despite enhanced recruitment of endogenous CPCs, lack of functional improvement in CPCeA treated hearts demonstrates CPC lineage commitment is essential to the regenerative response. Effective stem cell therapies must promote cellular survival and proliferation without inhibiting lineage commitment. Since CPCeA exhibit remarkable proliferative potential, an inducible system mediating nuclear Akt expression could be useful to augment cell therapy approaches. PMID:21350213

  10. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  11. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  12. Native Escherichia coli OmpF Porin Surfaces Probed by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schabert, Frank A.; Henn, Christian; Engel, Andreas

    1995-04-01

    Topographs of two dimensional porin OmpF crystals reconstituted in the presence of lipids were recorded in solution by atomic force microscopy (AFM) to a lateral resolution of 10 angstroms and a vertical resolution of 1 angstrom. Protein-protein interactions were demonstrated on the basis of the AFM results and earlier crystallographic findings. To assess protein-lipid interactions, the bilayer was modeled with kinked lipids by fitting the head groups to contours determined with AFM. Finally, two conformations of the extracellular porin surface were detected at forces of 0.1 nanonewton, demonstrating the potential of AFM to monitor conformational changes with high resolution.

  13. Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression.

    PubMed

    Tang, Ru-Hang; Zheng, Xi-Long; Callis, Thomas E; Stansfield, William E; He, Jiayin; Baldwin, Albert S; Wang, Da-Zhi; Selzman, Craig H

    2008-03-01

    We previously reported the importance of the serum response factor (SRF) cofactor myocardin in controlling muscle gene expression as well as the fundamental role for the inflammatory transcription factor NF-kappaB in governing cellular fate. Inactivation of myocardin has been implicated in malignant tumor growth. However, the underlying mechanism of myocardin regulation of cellular growth remains unclear. Here we show that NF-kappaB(p65) represses myocardin activation of cardiac and smooth muscle genes in a CArG-box-dependent manner. Consistent with their functional interaction, p65 directly interacts with myocardin and inhibits the formation of the myocardin/SRF/CArG ternary complex in vitro and in vivo. Conversely, myocardin decreases p65-mediated target gene activation by interfering with p65 DNA binding and abrogates LPS-induced TNF-alpha expression. Importantly, myocardin inhibits cellular proliferation by interfering with NF-kappaB-dependent cell-cycle regulation. Cumulatively, these findings identify a function for myocardin as an SRF-independent transcriptional repressor and cell-cycle regulator and provide a molecular mechanism by which interaction between NF-kappaB and myocardin plays a central role in modulating cellular proliferation and differentiation. PMID:18296632

  14. Vibrio cholerae porin OmpU induces LPS tolerance by attenuating TLR-mediated signaling.

    PubMed

    Sakharwade, Sanica C; Mukhopadhaya, Arunika

    2015-12-01

    Porins can act as pathogen-associated molecular patterns, can be recognized by the host immune system and modulate immune responses. Vibrio choleraeporin OmpU aids in bacterial survival in the human gut by increasing resistance against bile acids and anti-microbial peptides. V. choleraeOmpU is pro-inflammatory in nature. However, interestingly, it can also down-regulate LPS-mediated pro-inflammatory responses. In this study, we have explored how OmpU-pretreatment affects LPS-mediated responses. Our study indicates that OmpU-pretreatment followed by LPS-activation does not induce M2-polarization of macrophages/monocytes. Further, OmpU attenuates LPS-mediated TLR2/TLR6 signaling by decreasing the association of TLRs along with recruitment of MyD88 and IRAKs to the receptor complex. This results in decreased translocation of NFκB in the nucleus. Additionally, OmpU-pretreatment up-regulates expression of IRAK-M, a negative regulator of TLR signaling, in RAW 264.7 mouse macrophage cells upon LPS-stimulation. Suppressor cytokine IL-10 is partially involved in OmpU-induced down-regulation of LPS-mediated TNFα production in human PBMCs. Furthermore, OmpU-pretreatment also affects macrophage function, by enhancing phagocytosis in LPS-treated RAW 264.7 cells, and down-regulates LPS-induced cell surface expression of co-stimulatory molecules. Altogether, OmpU causes suppression of LPS-mediated responses by attenuating the LPS-mediated TLR signaling pathway. PMID:26454478

  15. GATA3 inhibits GCM1 activity and trophoblast cell invasion.

    PubMed

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  16. GATA3 inhibits GCM1 activity and trophoblast cell invasion

    PubMed Central

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  17. A triterpenoid from wild bitter gourd inhibits breast cancer cells

    PubMed Central

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-01-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ−independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer. PMID:26926586

  18. A triterpenoid from wild bitter gourd inhibits breast cancer cells.

    PubMed

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-01-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer. PMID:26926586

  19. A triterpenoid from wild bitter gourd inhibits breast cancer cells

    NASA Astrophysics Data System (ADS)

    Bai, Li-Yuan; Chiu, Chang-Fang; Chu, Po-Chen; Lin, Wei-Yu; Chiu, Shih-Jiuan; Weng, Jing-Ru

    2016-03-01

    The antitumor activity of 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 μM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.

  20. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells

    PubMed Central

    Wu, Min; Liu, Meixia; Guo, Gang; Zhang, Wengao; Liu, Longtao

    2015-01-01

    Rhizoma Polygoni Cuspidati, a Chinese herbal medicine, has been widely used in traditional Chinese medicine for a long time. Polydatin, one of the major active ingredients in Rhizoma Polygoni Cuspidati, has been recently shown to possess extensive cardiovascular pharmacological activities. In present study, we examined the effects of Polydatin on the formation of peritoneal macrophage-derived foam cells in Apolipoprotein E gene knockout mice (ApoE−/−) and explored the potential underlying mechanisms. Peritoneal macrophages were collected from ApoE−/− mice and cultured in vitro. These cells sequentially were divided into four groups: Control group, Model group, Lovastatin group, and Polydatin group. Our results demonstrated that Polydatin significantly inhibits the formation of foam cells derived from peritoneal macrophages. Further studies indicated that Polydatin regulates the metabolism of intracellular lipid and possesses anti-inflammatory effects, which may be regulated through the PPAR-γ signaling pathways. PMID:26557864

  1. Beta-interferon inhibits cell infection by Trypanosoma cruzi

    NASA Technical Reports Server (NTRS)

    Kierszenbaum, F.; Sonnenfeld, G.

    1984-01-01

    Beta interferon has been shown to inhibit the capacity of bloodstream forms of the flagellate Trypanosoma cruzi, the causative agent of Chagas' disease, to associate with and infect mouse peritoneal macrophages and rat heart myoblasts. The inhibitory effect was abrogated in the presence of specific antibodies to the interferon. Pretreatment of the parasites with interferon reduced their infectivity for untreated host cells, whereas pretreament of either type of host cell did not affect the interaction. The effect of interferon on the trypanosomes was reversible; the extent of the inhibitory effect was significantly reduced afer 20 min, and was undetectable after 60 min when macrophages were used as host cells. For the myoblasts, 60 min elapsed before the inhibitory effect began to subside and 120 min elapsed before it became insignificant or undetectable.

  2. Migrastatin Analogues Inhibit Canine Mammary Cancer Cell Migration and Invasion

    PubMed Central

    Majchrzak, Kinga; Lo Re, Daniele; Gajewska, Małgorzata; Bulkowska, Małgorzata; Homa, Agata; Pawłowski, Karol; Motyl, Tomasz; Murphy, Paul V.; Król, Magdalena

    2013-01-01

    Background Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6) on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. Results Our results showed that two of six fully synthetic analogues of migrastatin: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6) disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. Conclusion Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6) were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs. However, further in

  3. Honokiol Inhibits Androgen Receptor Activity in Prostate Cancer Cells

    PubMed Central

    Hahm, Eun-Ryeong; Karlsson, A. Isabella; Bonner, Michael Y.; Arbiser, Jack L.; Singh, Shivendra V.

    2014-01-01

    BACKGROUND We have shown previously that honokiol (HNK), a bioactive component of the medicinal plant Magnolia officinalis, inhibits growth of human prostate cancer cells in vitro and in vivo. However, the effect of HNK on androgen receptor (AR) signaling is not known. METHODS LNCaP, C4-2, and TRAMP-C1 cells were used for various assays. Trypan blue dye exclusion assay or clonogenic assay was performed for determination of cell viability. The effects of HNK and/or its analogs on protein levels of AR and its target gene product prostate specific antigen (PSA) were determined by western blotting. RNA interference of p53 was achieved by transient transfection. Reverse transcription-polymerase chain reaction was performed for mRNA expression of AR. Nuclear translocation of AR was visualized by microscopy. Apoptosis was quantified by DNA fragmentation assay or flow cytometry after Annexin V-propidium iodide staining. RESULTS HNK and its dichloroacetate analog (HDCA) were relatively more effective in suppressing cell viability and AR protein level than honokiol epoxide or biseugenol. Nuclear translocation of AR stimulated by a synthetic androgen (R1881) was markedly suppressed in the presence of HNK. Downregulation of AR protein resulting from HNK exposure was attributable to transcriptional repression as well as proteasomal degradation. HNK-mediated suppression of AR protein was maintained in LNCaP cells after knockdown of p53 protein. HNK-induced apoptosis was not affected by R1881 treatment. CONCLUSIONS The present study demonstrates, for the first time, that HNK inhibits activity of AR in prostate cancer cells regardless of the p53 status. PMID:24338950

  4. Resistance to telomerase inhibition by human squamous cell carcinoma cell lines.

    PubMed

    Bojovic, Bojana; Crowe, David L

    2011-04-01

    Telomeres are nucleoprotein structures at the ends of chromosomes that are composed of a repetitive G rich sequence and telomeric binding proteins. Telomeres prevent the degradation of chromosomal ends and protect against inappropriate recombination. Telomere attrition involves a tumor suppressor pathway that limits the replication of premalignant cells. The loss of telomeric DNA with each round of replication leads to growth arrest accompanied by senescence or apoptosis. Many tumor cells activate the telomerase gene to bypass senescence. Telomerase is a multisubunit ribonucleoprotein that uses an RNA template to catalyze the addition of telomeric DNA to chromosomal ends. Overexpression of the TERT subunit leads to telomere lengthening and extension of the replicative lifespan. Dominant-negative telomerase has been shown to inhibit telomerase activity in many tumor cell lines, and this is associated with telomere shortening and apoptosis. Additionally, pharmacological telomerase inhibitors have been developed which lead to progressive telomere shortening and programmed cell death. In this study, we report a series of human squamous cell carcinoma cell lines that have high telomerase activity and short telomeres. Dominant-negative telomerase expression and pharmacological telomerase inhibition failed to completely inhibit enzymatic activity which was accompanied by the lack of telomere shortening. These cells continued to proliferate and demonstrated fewer responsive genes when treated with a pharmacological telomerase inhibitor. We concluded that some human squamous cell carcinoma cell lines are resistant to telomerase inhibition. PMID:21305252

  5. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells.

    PubMed

    Chaouki, Wahid; Leger, David Y; Liagre, Bertrand; Beneytout, Jean-Louis; Hmamouchi, Mohamed

    2009-10-01

    Many natural components of plants extract are studied for their beneficial effects on health and particularly on carcinogenesis chemoprevention. In this study, we investigated the effect of citral (3,7-dimethyl-2,6-octadienal), a key component of essential oils extracted from several herbal plants, on the proliferation rate, cell cycle distribution, and apoptosis of the human breast cancer cell line MCF-7. The effects of this compound were also tested on cyclo-oxygenase activity. Citral treatment caused inhibition of MCF-7 cell growth (IC(50)-48 h: 18 x 10(-5)m), with a cycle arrest in G(2)/M phase and apoptosis induction. Moreover, we observed a decrease in prostaglandin E(2) synthesis 48 h after citral treatment. These findings suggest that citral has a potential chemopreventive effect. PMID:19656204

  6. Farnesyltransferase inhibitor R115777 inhibits cell growth and induces apoptosis in mantle cell lymphoma

    PubMed Central

    Rolland, Delphine; Camara-Clayette, Valérie; Barbarat, Aurélie; Salles, Gilles; Coiffier, Bertrand; Ribrag, Vincent; Thieblemont, Catherine

    2008-01-01

    The cytotoxic activity of the farnesyltranseferase inhibitor R115777 was evaluated in cell lines representative of mantle cell lymphoma (MCL). Cell growth, proliferation, and apoptosis were analyzed in four human MCL cell lines (Granta, NCEB, REC, and UPN1) in presence of R115777, alone or in combination with vincristin, doxorubicin, bortezomib, cisplatin and cytarabine. Inhibition of farnesylation was determined by the appearance of prelamin A. The antitumor activity of R115777, administered p.o. at 100, 250 and 500mg/kg, was determined in vivo in nude mice xenografted with UPN1 cells. R115777 inhibited the growth of MCL cell lines in vitro with inhibitory concentrations ranging between 2 and 15nM. A fifty percent decrease of cell viability was observed at concentrations comprised between 0.08 and 17μM. Apoptosis, evaluated by annexin V and activated caspase 3 staining, was induced in all cell lines, in 40 to 71% of the cells depending on the cell lines. In addition, R115777 significantly increased the cytotoxic effect of vincristine, doxorubicin, bortezomib, cisplatin and cytarabine (p=0.001, p=0.016, p=0.006, p=0.014 and p=0.007 respectively). Exposure of MCL cell lines to R115777 during 72 hours resulted in inhibition of protein farnesylation. R115777 administered p.o. twice daily for 8 consecutive days to mice bearing established s.c. UPN1 xenograft displayed cytostatic activity at the 500 mg/kg dosage. We have demonstrated that inhibition of farnesyltransferase by R115777 was associated with growth inhibition and apoptosis of MCL cell lines in vitro and tumor xenograft stability in vivo. PMID:17639395

  7. Inhibition of BET bromodomains alleviates inflammation in human RPE cells.

    PubMed

    Hytti, M; Tokarz, P; Määttä, E; Piippo, N; Korhonen, E; Suuronen, T; Honkakoski, P; Kaarniranta, K; Lahtela-Kakkonen, M; Kauppinen, A

    2016-06-15

    Bromodomain-containing proteins are vital for controlling the expression of many pro-inflammatory genes. Consequently, compounds capable of inhibiting specific bromodomain-facilitated protein-protein interactions would be predicted to alleviate inflammation, making them valuable agents in the treatment of diseases caused by dysregulated inflammation, such as age-related macular degeneration. Here, we assessed the ability of known inhibitors JQ-1, PFI-1, and IBET-151 to protect from the inflammation and cell death caused by etoposide exposure in the human retinal pigment epithelial cell line, ARPE-19. The potential anti-inflammatory effects of the bromodomain inhibitors were assessed by ELISA (enzyme-linked immunosorbent assay) profiling. The involvement of NF-κB and SIRT1 in inflammatory signaling was monitored by ELISA and western blotting. Furthermore, SIRT1 was knocked down using a specific siRNA or inhibited by EX-527 to elucidate its role in the inflammatory reaction. The bromodomain inhibitors effectively decreased etoposide-induced release of IL-6 and IL-8. This anti-inflammatory effect was not related to SIRT1 activity, although all bromodomain inhibitors decreased the extent of acetylation of p53 at the SIRT1 deacetylation site. Overall, since bromodomain inhibitors display anti-inflammatory properties in human retinal pigment epithelial cells, these compounds may represent a new way of alleviating the inflammation underlying the onset of age-related macular degeneration. PMID:27106081

  8. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    SciTech Connect

    Wu, William Ka Kei; Lee, Chung Wa; Cho, Chi Hin; Chan, Francis Ka Leung; Yu, Jun; Sung, Joseph Jao Yiu

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  9. Silencing of carboxypeptidase E inhibits cell proliferation, tumorigenicity, and metastasis of osteosarcoma cells

    PubMed Central

    Fan, Shuli; Li, Xu; Li, Leiming; Wang, Liguo; Du, Zhangzhen; Yang, Yan; Zhao, Jiansong; Li, Yan

    2016-01-01

    Carboxypeptidase E (CPE), a prohormone processing enzyme, has been implicated in the progression of multiple malignancies. However, the biological role and molecular mechanisms of CPE in osteosarcoma remain elusive. In this study, we assessed the effects of CPE on cell proliferation, tumorigenicity, migration, and invasion in osteosarcoma. Our results showed that silencing of CPE significantly inhibited cell proliferation, caused cell cycle arrest at G0/G1 phase, decreased the expression levels of cell cycle protein, cyclin D1, and inhibited tumorigenicity in vivo. Additionally, CPE downregulation repressed the migratory and invasive capacities of osteosarcoma cells in vitro. Furthermore, overexpression of CPE-ΔN (a splice variant of CPE) enhanced the cell growth, migration, and invasion of osteosarcoma cells. It is possible that both CPE forms are involved in the tumorigenesis and development of osteosarcoma, and therefore CPE may provide a promising biological target for osteosarcoma therapy. PMID:27274275

  10. DNA Walker-Regulated Cancer Cell Growth Inhibition.

    PubMed

    Li, Feiran; Cha, Tae-Gon; Pan, Jing; Ozcelikkale, Altug; Han, Bumsoo; Choi, Jong Hyun

    2016-06-16

    We demonstrate a DNAzyme-based walker system as a controlled oligonucleotide drug AS1411 release platform for breast cancer treatment. In this system, AS1411 strands are released from fuel strands as a walker moves along its carbon nanotube track. The release rate and amount of anticancer oligonucleotides are controlled by the walker operation. With a walker system embedded within the collagen extracellular matrix, we show that this drug release system can be used for in situ cancer cell growth inhibition. PMID:27059426

  11. Renshaw cells are inactive during motor inhibition elicited by the pontine microinjection of carbachol.

    PubMed

    Morales, F R; Engelhardt, J K; Pereda, A E; Yamuy, J; Chase, M H

    1988-04-12

    The present study was undertaken to determine whether the postsynaptic inhibition of motoneurons that occurs following the pontine microinjection of carbachol in the decerebrate cat is due to the activity of Renshaw cells. Thirty-two out of 37 Renshaw cells (86%) were spontaneously active prior to the administration of carbachol, whereas only 2 out of 13 Renshaw cells (15%) discharged during carbachol-induced motor inhibition. In addition, discrete inhibitory synaptic potentials were observed in 33% of the Renshaw cells from which intracellular recordings were obtained after carbachol administration, indicating that these cells were actively inhibited. The finding that a population of Renshaw cells, which inhibit motoneurons, were themselves inhibited during a period of profound motoneuron inhibition was quite unexpected. These results support the conclusion that Renshaw cells are not the inhibitory interneurons that are responsible for the powerful inhibition of motoneurons that occurs following the pontine microinjection of carbachol. PMID:3380320

  12. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  13. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  14. Strategies for maximizing ATP supply in the microsporidian Encephalitozoon cuniculi: direct binding of mitochondria to the parasitophorous vacuole and clustering of the mitochondrial porin VDAC

    PubMed Central

    Hacker, Christian; Howell, Matthew; Bhella, David; Lucocq, John

    2013-01-01

    Summary Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host-derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole–host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative ‘meront’ stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC-1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno-EM revealed that the ATP-delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria-vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP-delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite. PMID:24245785

  15. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    SciTech Connect

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan; Xu, Chuan; Wang, Mei; Wang, Qinrui; Zhou, Zhansong; Xiang, Zhonghuai; Cui, Hongjuan

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  16. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    SciTech Connect

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  17. Targeted Inhibition of CD133+ Cells in Oral Cancer Cell Lines

    PubMed Central

    Damek-Poprawa, M.; Volgina, A.; Korostoff, J.; Sollecito, T.P.; Brose, M.S.; O’Malley, B.W.; Akintoye, S.O.; DiRienzo, J.M.

    2011-01-01

    Resistance to treatment and the appearance of secondary tumors in head and neck squamous cell carcinomas (HNSCC) have been attributed to the presence of cells with stem-cell-like properties in the basal layer of the epithelium at the site of the lesion. In this study, we tested the hypothesis that these putative cancer stem cells (CSC) in HNSCC could be specifically targeted and inhibited. We found that 9 of 10 head and neck tumor biopsies contained a subpopulation of cells that expressed CD133, an unusual surface-exposed membrane-spanning glycoprotein associated with CSC. A genetically modified cytolethal distending toxin (Cdt), from the periodontal pathogen Aggregatibacter actinomycetemcomitans, was conjugated to an anti-human CD133 monoclonal antibody (MAb). The Cdt-MAb complex preferentially inhibited the proliferation of CD133+ cells in cultures of established cell lines derived from HNSCC. Inhibition of the CD133+ cells was rate- and dose-dependent. Saturation kinetics indicated that the response to the Cdt-MAb complex was specific. Healthy primary gingival epithelial cells that are native targets of the wild-type Cdt were not affected. Analysis of these data provides a foundation for the future development of new therapies to target CSC in the early treatment of HNSCC. Abbreviations: Cdt, cytolethal distending toxin; CSC, cancer stem cells; HNSCC, head and neck squamous cell carcinoma; MAb, monoclonal antibody. PMID:21220361

  18. HIV protease inhibitor nelfinavir inhibits growth of human melanoma cells by induction of cell cycle arrest.

    PubMed

    Jiang, Wei; Mikochik, Peter J; Ra, Jin H; Lei, Hanqin; Flaherty, Keith T; Winkler, Jeffrey D; Spitz, Francis R

    2007-02-01

    HIV protease inhibitors (HIV PI) are a class of antiretroviral drugs that are designed to target the viral protease. Unexpectedly, this class of drugs is also reported to have antitumor activity. In this study, we have evaluated the in vitro activity of nelfinavir, a HIV PI, against human melanoma cells. Nelfinavir inhibits the growth of melanoma cell lines at low micromolar concentrations that are clinically attainable. Nelfinavir promotes apoptosis and arrests cell cycle at G(1) phase. Cell cycle arrest is attributed to inhibition of cyclin-dependent kinase 2 (CDK2) and concomitant dephosphorylation of retinoblastoma tumor suppressor. We further show that nelfinavir inhibits CDK2 through proteasome-dependent degradation of Cdc25A phosphatase. Our results suggest that nelfinavir is a promising candidate chemotherapeutic agent for advanced melanoma, for which novel and effective therapies are urgently needed. PMID:17283158

  19. ATR inhibition preferentially targets homologous recombination-deficient tumor cells.

    PubMed

    Krajewska, M; Fehrmann, R S N; Schoonen, P M; Labib, S; de Vries, E G E; Franke, L; van Vugt, M A T M

    2015-06-01

    Homologous recombination (HR) is required for faithful repair of double-strand DNA breaks. Defects in HR repair cause severe genomic instability and challenge cellular viability. Paradoxically, various cancers are HR defective and have apparently acquired characteristics to survive genomic instability. We aimed to identify these characteristics to uncover therapeutic targets for HR-deficient cancers. Cytogenetic analysis of 1143 ovarian cancers showed that the degree of genomic instability was correlated to amplification of replication checkpoint genes ataxia telangiectasia and Rad3-related kinase (ATR) and CHEK1. To test whether genomic instability leads to increased reliance on replication checkpoint signaling, we inactivated Rad51 to model HR-related genomic instability. Rad51 inactivation caused defective HR repair and induced aberrant replication dynamics. Notably, inhibition of Rad51 led to increased ATR/checkpoint kinase-1 (Chk1)-mediated replication stress signaling. Importantly, inhibition of ATR or Chk1 preferentially killed HR-deficient cancer cells. Combined, our data show that defective HR caused by Rad51 inhibition results in differential sensitivity for ATR and Chk1 inhibitors, implicating replication checkpoint kinases as potential drug targets for HR-defective cancers. PMID:25174396

  20. Natural killer cells inhibit pulmonary metastasis of hepatocellular carcinoma in nude mice

    PubMed Central

    HONG, ZAI-FA; ZHAO, WEN-XIU; YIN, ZHEN-YU; XIE, CHENG-RONG; XU, YA-PING; CHI, XIAO-QIN; ZHANG, SHENG; WANG, XIAO-MIN

    2016-01-01

    Natural killer (NK) cells have been demonstrated to inhibit tumor growth. However, the role of NK cells in the inhibition of hepatocellular carcinoma metastasis is not well understood. The present study aimed to investigate the roles that NK cells may serve in inhibiting hepatocellular carcinoma metastasis. The role of isolated NK cells in the inhibition, proliferation, migration and invasion of the hepatoma cell line, MHCC97-H, was examined in vitro. Additionally, the survival rate of NK cells labeled with carboxyfluorescein diacetate-succinimidyl ester was assessed in vivo. An orthotopic implantation model was used to evaluate the role of NK cells in suppressing MHCC97-H cells in vivo. The effect of interleukin (IL)-2 stimulation on the tumor-inhibitory role of the NK cells was measured indirectly by analyzing the expression of various NK cell receptors and activated NK cell markers. It was observed that the NK cells inhibited the proliferation, migration and invasion of the MHCC97-H cells in vitro. Furthermore, the NK cells demonstrated long-term survival in the livers of the nude mice, and inhibited lung metastasis of hepatocellular carcinoma in vivo. However, liver tumor growth was not inhibited by the NK cells. IL-2 was identified to enhance the tumor-inhibitory effect of NK cells. The present study concludes that IL-2 may enhance the antitumor activity of the NK cells, and thereby inhibit the metastases of hepatocellular carcinoma in mice. PMID:26998115

  1. Adenosine induces G2/M cell-cycle arrest by inhibiting cell mitosis progression.

    PubMed

    Jia, Kun-Zhi; Tang, Bo; Yu, Lu; Cheng, Wei; Zhang, Rong; Zhang, Jian-Fa; Hua, Zi-Chun

    2010-01-01

    Cellular adenosine accumulates under stress conditions. Few papers on adenosine are concerned with its function in the cell cycle. The cell cycle is the essential mechanism by which all living things reproduce and the target machinery when cells encounter stresses, so it is necessary to examine the relationship between adenosine and the cell cycle. In the present study, adenosine was found to induce G-2/M cell-cycle arrest. Furthermore, adenosine was found to modulate the expression of some important proteins in the cell cycle, such as cyclin B and p21, and to inhibit the transition of metaphase to anaphase in mitosis. PMID:19947935

  2. Adenosine influences myeloid cells to inhibit aeroallergen sensitization.

    PubMed

    Pei, Hong; Linden, Joel

    2016-05-15

    Agonists of adenosine A2A receptors (A2ARs) suppress the activation of most immune cells and reduce acute inflammatory responses. Asthma is characterized by sensitization in response to initial allergen exposure and by airway hyperreactivity in response to allergen rechallenge. We sought to determine if A2AR activation with CGS-21680 (CGS) is more effective when CGS is administered during sensitization or rechallenge. C57BL/6 wild-type mice and Adora2a(f/f)LysMCre(+/-) mice, which lack A2ARs on myeloid cells, were sensitized with intranasal ovalbumin (OVA) and LPS. Airway sensitization was characterized by a rapid increase in numbers of IL-6(+) and IL-12(+) macrophages and dendritic cells in lungs. A2AR activation with CGS (0.1 μg·kg(-1)·min(-1) sc) only during sensitization reduced numbers of IL-6(+) and IL-12(+) myeloid cells in the lungs and reversed the effects of OVA rechallenge to increase airway hyperresponsiveness to methacholine. CGS treatment during sensitization also reduced the expansion of lung T helper (Th1 and Th17) cells and increased expansion of regulatory T cells in response to OVA rechallenge. Most of the effects of CGS administered during sensitization were eliminated by myeloid-selective A2AR deletion. Administration of CGS only during OVA rechallenge failed to reduce airway hyperresponsiveness. We conclude that myeloid cells are key targets of adenosine during sensitization and indirectly modify T cell polarization. The results suggest that a clinically useful strategy might be to use A2AR agonists to inhibit sensitization to new aeroallergens. We speculate that adenosine production by macrophages engulfing bacteria contributes to the curious suppression of sensitization in response to early-life infections. PMID:27016586

  3. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion

    SciTech Connect

    Wu Xiaofeng; Fan Jia; E-mail: jiafan99@yahoo.com; Wang Xiaoying; Zhou Jian; Qiu Shuangjian; Yu Yao; Liu Yinkun; Tang Zhaoyou

    2007-04-20

    CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment.

  4. Meloxicam inhibits the growth of colorectal cancer cells.

    PubMed

    Goldman, A P; Williams, C S; Sheng, H; Lamps, L W; Williams, V P; Pairet, M; Morrow, J D; DuBois, R N

    1998-12-01

    Cyclooxygenase-2 has been reported to play an important role in colorectal carcinogenesis. The effects of meloxicam (a COX-2 inhibitor) on the growth of two colon cancer cell lines that express COX-2 (HCA-7 and Moser-S) and a COX-2 negative cell line (HCT-116) were evaluated. The growth rate of these cells was measured following treatment with meloxicam. HCA-7 and Moser-S colony size were significantly reduced following treatment with meloxicam; however, there was no significant change in HCT-116 colony size with treatment. In vivo studies were performed to evaluate the effect of meloxicam on the growth of HCA-7 cells when xenografted into nude mice. We observed a 51% reduction in tumor size after 4 weeks of treatment. Analysis of COX-1 and COX-2 protein levels in HCA-7 tumor lysates revealed a slight decrease in COX-2 expression levels in tumors taken from mice treated with meloxicam and no detectable COX-1 expression. Here we report that meloxicam significantly inhibited HCA-7 colony and tumor growth but had no effect on the growth of the COX-2 negative HCT-116 cells. PMID:9886578

  5. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis.

    PubMed

    Castets, Marie; Coissieux, Marie-May; Delloye-Bourgeois, Céline; Bernard, Laure; Delcros, Jean-Guy; Bernet, Agnès; Laudet, Vincent; Mehlen, Patrick

    2009-04-01

    Netrin-1 was recently proposed to play an important role in embryonic and pathological angiogenesis. However, data reported led to the apparently contradictory conclusions that netrin-1 is either a pro- or an antiangiogenic factor. Here, we reconcile these opposing observations by demonstrating that netrin-1 acts as a survival factor for endothelial cells, blocking the proapoptotic effect of the dependence receptor UNC5B and its downstream death signaling effector, the serine/threonine kinase DAPK. The netrin-1 effect on blood vessel development is mimicked by caspase inhibitors in ex vivo assays, and the inhibition of caspase activity, the silencing of the UNC5B receptor, and the silencing of DAPK are each sufficient to rescue the vascular sprouting defects induced by netrin-1 silencing in zebrafish. Thus, the proapoptotic effect of unbound UNC5B and the survival effect of netrin-1 on endothelial cells finely tune the angiogenic process. PMID:19386270

  6. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration

    PubMed Central

    LI, BIN; CHEN, DAOMEI; LI, WANYI; XIAO, DAN

    2016-01-01

    While the anti-tumor actions of ginsenosides from Panax notoginseng are well-studied, the anti-proliferative activity of 20(S)-protopanaxadiol saponins (PDS) in Sanchi ginseng on human ovarian cancer has not been reported, nor has its effect on migration of SKOV3 cells been investigated. In the present study, a wound-healing assay indicated that PDS inhibited the migration of SKOV3 cells, and a Matrigel™ tube formation assay demonstrated the presence of inhibitory tube-structures following treatment with PDS. To date, there are no previous reports on the regulation of osteopontin (OPN), a glycophosphoprotein cytokine frequently expressed in ovarian carcinoma effusions by PDS. A reduction in the expression of OPN following PDS-treatment was observed using immunohistochemical and western blot experiments. These results suggest that PDS may be useful in the search for a potential ovarian cancer treatment. PMID:26998063

  7. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Champion, C I; Mirzabekov, T A; Shang, E S; Blanco, D R; Erdjument-Bromage, H; Tempst, P; Kagan, B L; Miller, J N; Lovett, M A

    1996-01-01

    The outer membrane-spanning (Oms) proteins of Borrelia burgdorferi have been visualized by freeze-fracture analysis but, until recently, not further characterized. We developed a method for the isolation of B. burgdorferi outer membrane vesicles and described porin activities with single-channel conductances of 0.6 and 12.6 nS in 1 M KCI. By using both nondenaturing isoelectric focusing gel electrophoresis and fast-performance liquid chromatography separation after detergent solubilization, we found that the 0.6-nS porin activity resided in a 28-kDa protein, designated Oms28. The oms28 gene was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence of Oms28 predicted a 257-amino-acid precursor protein with a putative 24-amino-acid leader peptidase I signal sequence. Processed Oms28 yielded a mature protein with a predicted molecular mass of 25,363 Da. When overproduced in Escherichia coli, the Oms28 porin fractionated in part to the outer membrane. Sodium dodecyl sulfate-polyacrylamide gel-purified recombinant Oms28 from E. coli retained functional activity as demonstrated by an average single-channel conductance of 1.1 nS in the planar lipid bilayer assay. These findings confirmed that Oms28 is a B. burgdorferi porin, the first to be described. As such, it is potential relevance to the pathogenesis of Lyme borreliosis and to the physiology of the spirochete. PMID:8759855

  8. Characterization of OpdH, a Pseudomonas aeruginosa Porin Involved in the Uptake of Tricarboxylates▿

    PubMed Central

    Tamber, Sandeep; Maier, Elke; Benz, Roland; Hancock, Robert E. W.

    2007-01-01

    The Pseudomonas aeruginosa outer membrane is intrinsically impermeable to many classes of antibiotics, due in part to its relative lack of general uptake pathways. Instead, this organism relies on a large number of substrate-specific uptake porins. Included in this group are the 19 members of the OprD family, which are involved in the uptake of a diverse array of metabolites. One of these porins, OpdH, has been implicated in the uptake of cis-aconitate. Here we demonstrate that this porin may also enable P. aeruginosa to take up other tricarboxylates. Isocitrate and citrate strongly and specifically induced the opdH gene via a mechanism involving derepression by the putative two-component regulatory system PA0756-PA0757. Planar bilayer analysis of purified OpdH demonstrated that it was a channel-forming protein with a large single-channel conductance (230 pS in 1 M KCl; 10-fold higher than that of OprD); however, we were unable to demonstrate the presence of a tricarboxylate binding site within the channel. Thus, these data suggest that the requirement for OpdH for efficient growth on tricarboxylates was likely due to the specific expression of this large-channel porin under particular growth conditions. PMID:17114261

  9. Antibodies to porin antigens of Salmonella typhi induced during typhoid infection in humans.

    PubMed Central

    Calderón, I; Lobos, S R; Rojas, H A; Palomino, C; Rodríguez, L H; Mora, G C

    1986-01-01

    Immunoglobulin G (IgG)- and IgM-specific antibody titers against Salmonella typhi Ty2 porins have been measured in 30 paired typhoid sera by enzyme-linked immunosorbent assay. These studies have found that IgG serum titers of acute and convalescent sera were 625 and 5,000 times higher, respectively than the control serum titers. The same typhoid sera were titrated with S. typhi Ty2 flagellin and S. typhi lipopolysaccharide. The titers against these antigens were considerably lower than those against the porins. The highest IgM-specific titer has also been found against porins in convalescent-phase sera. However, the largest increase in IgM-specific titer compared with the control group titer was obtained against flagellin during the acute phase of typhoid. The lowest increases in antibody titer were obtained with the IgM-specific anti-lipopolysaccharide in both types of sera. This may be because many normal individuals in endemic areas already have IgM titers against lipopolysaccharide. This study has provided good evidence that porins are excellent antigens and that IgG-specific antiporin titers may be of diagnostic value in typhoid infections in endemic areas. PMID:3007360

  10. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission

    PubMed Central

    Malbec, Marine; Porrot, Françoise; Rua, Rejane; Horwitz, Joshua; Klein, Florian; Halper-Stromberg, Ari; Scheid, Johannes F.; Eden, Caroline; Mouquet, Hugo; Nussenzweig, Michel C.

    2013-01-01

    The neutralizing activity of anti–HIV-1 antibodies is typically measured in assays where cell-free virions enter reporter cell lines. However, HIV-1 cell to cell transmission is a major mechanism of viral spread, and the effect of the recently described broadly neutralizing antibodies (bNAbs) on this mode of transmission remains unknown. Here we identify a subset of bNAbs that inhibit both cell-free and cell-mediated infection in primary CD4+ lymphocytes. These antibodies target either the CD4-binding site (NIH45-46 and 3BNC60) or the glycan/V3 loop (10-1074 and PGT121) on HIV-1 gp120 and act at low concentrations by inhibiting multiple steps of viral cell to cell transmission. These antibodies accumulate at virological synapses and impair the clustering and fusion of infected and target cells and the transfer of viral material to uninfected T cells. In addition, they block viral cell to cell transmission to plasmacytoid DCs and thereby interfere with type-I IFN production. Thus, only a subset of bNAbs can efficiently prevent HIV-1 cell to cell transmission, and this property should be considered an important characteristic defining antibody potency for therapeutic or prophylactic antiviral strategies. PMID:24277152

  11. Disrupting the Oncogenic Synergism between Nucleolin and Ras Results in Cell Growth Inhibition and Cell Death

    PubMed Central

    Schokoroy, Sari; Juster, Dolly; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2013-01-01

    Background The ErbB receptors, Ras proteins and nucleolin are major contributors to malignant transformation. The pleiotropic protein nucleolin can bind to both Ras protein and ErbB receptors. Previously, we have demonstrated a crosstalk between Ras, nucleolin and the ErbB1 receptor. Activated Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 levels. The three oncogenes synergistically facilitate anchorage independent growth and tumor growth in nude mice. Methodology/Principal Findings In the present study we used several cancer cell lines. The effect of Ras and nucleolin inhibition was determined using cell growth, cell death and cell motility assays. Protein expression was determined by immunohistochemistry. We found that inhibition of Ras and nucleolin reduces tumor cell growth, enhances cell death and inhibits anchorage independent growth. Our results reveal that the combined treatment affects Ras and nucleolin levels and localization. Our study also indicates that Salirasib (FTS, Ras inhibitor) reduces cell motility, which is not affected by the nucleolin inhibitor. Conclusions/Significance These results suggest that targeting both nucleolin and Ras may represent an additional avenue for inhibiting cancers driven by these oncogenes. PMID:24086490

  12. Curcumin Inhibits Rift Valley Fever Virus Replication in Human Cells*

    PubMed Central

    Narayanan, Aarthi; Kehn-Hall, Kylene; Senina, Svetlana; Lundberg, Lindsay; Van Duyne, Rachel; Guendel, Irene; Das, Ravi; Baer, Alan; Bethel, Laura; Turell, Michael; Hartman, Amy Lynn; Das, Bhaskar; Bailey, Charles; Kashanchi, Fatah

    2012-01-01

    Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets. PMID:22847000

  13. Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity.

    PubMed

    Borghese, Cinzia; Cattaruzza, Lara; Pivetta, Eliana; Normanno, Nicola; De Luca, Antonella; Mazzucato, Mario; Celegato, Marta; Colombatti, Alfonso; Aldinucci, Donatella

    2013-05-01

    Increasing evidence suggests that bone marrow derived mesenchymal stem cells (BM-MSCs) are recruited into the stroma of developing tumors where they contribute to progression by enhancing tumor growth and metastasis, or by inducing anticancer-drug resistance. Prostate cancer cells secrete ligands of epidermal growth factor receptor (EGFR) and EGFR signaling could play an important role in the cross-talk between mesenchymal stem cells and prostate cancer cells. In this study, we showed that treatment of human primary MSCs with conditioned medium (CM) derived from the bone metastatic PC3 carcinoma cells (PC3-CM) resulted in: a significant activation of EGFR; increased proliferation; increased osteoblastic but decreased adipocitic differentiation; inhibition of senescence induced by serum starvation; increased CCL5 secretion. These activities were significantly inhibited in the presence of the EGFR tyrosine kinase inhibitor gefitinib. PC3-CM directly inhibited osteoclastogenesis as well as the ability of osteoblasts to induce osteoclast differentiation. The increased MSCs migration by PC3-CM and PC3 cells was partially mediated by CCL5. MSC-CM increased the formation of colonies by PC3 cells and inhibited the anti-proliferative activity of Docetaxel. Activation of EGFR expressed on MSCs by PC3-CM enhanced their capability to increase PC3 cells proliferation and to inhibit Docetaxel activity. These findings, by showing that the tumor-promoting interactions between PC3 cells and MSCs are mediated, at least in part, by EGFR, suggest a novel application of the EGFR-tyrosine kinase inhibitors in the treatment of prostate cancer. PMID:23192362

  14. Huanglian, A chinese herbal extract, inhibits cell growth by suppressing the expression of cyclin B1 and inhibiting CDC2 kinase activity in human cancer cells.

    PubMed

    Li, X K; Motwani, M; Tong, W; Bornmann, W; Schwartz, G K

    2000-12-01

    Huanglian is an herb that is widely used in China for the treatment of gastroenteritis. We elected to determine whether huanglian could inhibit tumor cell growth by modulating molecular events directly associated with the cell cycle. Huanglian inhibited tumor growth and colony formation of gastric, colon, and breast cancer cell lines in a time- and dose-dependent manner. Cell growth was completely inhibited after 3 days of continuous drug exposure to 10 microg/ml of herb. This degree of growth inhibition was significantly greater than that observed with berberine, the major constituent of the herb. The inhibition of cell growth by huanglian was associated with up to 8-fold suppression of cyclin B1 protein. This resulted in complete inhibition of cdc2 kinase activity and accumulation of cells in G(2). The mRNA expression of cyclin B1 was not changed after huanglian treatment. There was no change in the protein expression of cyclins A or E. Therefore, the effect of huanglian on inhibiting tumor growth seems to be mediated by the selective suppression of cyclin B1, which results in the inhibition of cdc2 kinase activity. Inhibition of cyclin dependent kinase (cdk) activity is emerging as an attractive target for cancer chemotherapy. Huanglian represents a class of agents that can inhibit tumor cell growth by directly suppressing the expression of a cyclin subunit that is critical for cell cycle progression. These results indicate that traditional Chinese herbs may represent a new source of agents designed for selective inhibition of cyclin dependent kinases in cancer therapy. PMID:11093765

  15. Role of the Novel OprD Family of Porins in Nutrient Uptake in Pseudomonas aeruginosa

    PubMed Central

    Tamber, Sandeep; Ochs, Martina M.; Hancock, Robert E. W.

    2006-01-01

    To circumvent the permeability barrier of its outer membrane, Pseudomonas aeruginosa has evolved a series of specific porins. These channels have binding sites for related classes of molecules that facilitate uptake under nutrient-limited conditions. Here, we report on the identification of a 19-member family of porins similar to the basic-amino-acid-specific porin OprD. The members of this family fell into one of two phylogenetically distinct clusters, one bearing high similarity to OprD and the other bearing most similarity to the putative phenylacetic acid uptake porin PhaK of Pseudomonas putida. Analysis of the genome context, operon arrangement, and regulation of the PhaK-like porin OpdK indicated that it might be involved in vanillate uptake. This result was confirmed by demonstrating that an opdK mutant had a deficiency in the ability to grow on vanillate as a carbon source. To extrapolate these data to other paralogues within this family, the substrate specificities of 6 of the 17 remaining OprD homologues were inferred using an approach similar to that used with opdK. The specificities determined were as follows: OpdP, glycine-glutamate; OpdC, histidine; OpdB, proline; OpdT, tyrosine; OpdH, cis-aconitate; and OpdO, pyroglutamate. Thus, members of the OprD subfamily took up amino acids and related molecules, and those characterized members most similar to PhaK were responsible for the uptake of a diverse array of organic acids. These results imply that there is a functional basis for the phylogenetic clustering of these proteins and provide a framework for studying OprD homologues in other organisms. PMID:16352820

  16. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins.

    PubMed Central

    Nikaido, H; Rosenberg, E Y

    1983-01-01

    Rates of diffusion of uncharged and charged solute molecules through porin channels were determined by using liposomes reconstituted from egg phosphatidylcholine and purified Escherichia coli porins OmpF (protein 1a), OmpC (protein 1b), and PhoE (protein E). All three porin proteins appeared to produce channels of similar size, although the OmpF channel appeared to be 7 to 9% larger than the OmpC and PhoE channels in an equivalent radius. Hydrophobicity of the solute retarded the penetration through all three channels in a similar manner. The presence of one negative charge on the solute resulted in about a threefold reduction in penetration rates through OmpF and OmpC channels, whereas it produced two- to tenfold acceleration of diffusion through the PhoE channel. The addition of the second negatively charged group to the solutes decreased the diffusion rates through OmpF and OmpC channels further, whereas diffusion through the PhoE channel was not affected much. These results suggest that PhoE specializes in the uptake of negatively charged solutes. At the present level of resolution, no sign of true solute specificity was found in OmpF and OmpC channels; peptides, for example, diffused through both of these channels at rates expected from their molecular size, hydrophobicity, and charge. However, the OmpF porin channel allowed influx of more solute molecules per unit time than did the equivalent weight of the OmpC porin when the flux was driven by a concentration gradient of the same size. This apparent difference in "efficiency" became more pronounced with larger solutes, and it is likely to be the consequence of the difference in the sizes of OmpF and OmpC channels. PMID:6294049

  17. RARalpha is a regulatory factor for Am-80-induced cell growth inhibition of hematologic malignant cells.

    PubMed

    Jimi, Shiro; Mashima, Kota; Matsumoto, Taichi; Hara, Shuji; Suzumiya, Junji; Tamura, Kazuo

    2007-08-01

    Retinoids are used for treatment of acute promyelocytic leukemia (APL). Am-80, Tamibarotene, binds to retinoic acid receptor alpha (RARalpha) more specifically than all-trans retinoic acid. We studied the tumor cell suppressive effects of Am-80, with respect to cytotoxicity and growth inhibition using eight myeloid and lymphoid malignant cells in culture (HL-60, HL-60R, K-562, Kasumi-1, MEG01, Raji, U266B1, and U937). The effects of Am-80 were examined during 9 days of incubation with 10(-7)-10(-5) M of Am-80 in culture medium, which was changed every 3 days. HL-60 were the only cells sensitive to Am-80-induced cytotoxicity; the latter reached more than 95% after 9 days of incubation, and death was primarily through apoptosis. The total mass of RARalpha in HL-60 was significantly greater (p<0.006) than in ATRA-resistant HL-60 (HL-60R) as well as all of other cells tested. However, in all cells excluding HL-60, Am-80 induced time- and dose-dependent cell growth inhibition without noticeable cytotoxicity. TGF-beta2 was released into the media containing cells incubated with Am-80 for 3 days. A dose-dependent increment of phosphorylation of Smad-2 was also detected. The relative amount of secreted TGF-beta2 correlated with the growth inhibition rates in all cells tested excluding HL-60, and with the total mass of RARalpha in the cells (p=0.0137). Our results indicate that Am-80-induced cell-type non-specific growth inhibition is mediated by TGF-beta2, where the total mass of RARalpha could be an important regulatory factor in hematologic malignant cells. PMID:17611697

  18. Oxidative inhibition of red blood cell ATPases by glyceraldehyde.

    PubMed

    Mira, M L; Martinho, F; Azevedo, M S; Manso, C F

    1991-11-01

    Glyceraldehyde and other simple monosaccharides autoxidize under physiological conditions, forming dicarbonyl compounds and hydrogen peroxide via intermediate free radicals. These products may have deleterious effects on cell components. In this paper we study the effect of glyceraldehyde autoxidation on red-cell ATPase activities. The autoxidation of glyceraldehyde in imidazole-glycylglycine buffer, measured by oxygen consumption, depends on the buffer concentration and decreases in the presence of superoxide dismutase and catalase. The addition of DETAPAC inhibits the autoxidation almost completely. When human red-blood-cell membranes are incubated with glyceraldehyde, the red-blood-cell ATPase activities decrease significantly. The addition of DETAPAC, GSH and DTE (dithioerythritol) protects the enzyme from inactivation, but superoxide dismutase and catalase have no effect. Methylglyoxal (a dicarbonyl which is analogous to hydroxypyruvaldehyde derived from glyceraldehyde autoxidation) proved to have a powerful inhibitory action on ATPase activities. The addition of DTE completely protects the enzyme from inactivation, suggesting that the sulphydryl groups of the active site of the enzyme are the critical targets for dicarbonyl compounds. PMID:1836354

  19. Dextromethorphan inhibits activations and functions in dendritic cells.

    PubMed

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN- γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF- κ B translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  20. Chinese medicinal herbs inhibit growth of murine renal cell carcinoma.

    PubMed

    Lau, B H; Ruckle, H C; Botolazzo, T; Lui, P D

    1994-01-01

    Tumors are known to produce factors suppressing immune functions. We previously showed that a murine renal cell carcinoma (Renca) suppressed macrophage function in vitro and that this suppression was abolished by co-incubation with extracts of two Chinese medicinal herbs. We now report that these phytochemicals are capable of inhibiting growth of Renca in vivo. BALB/c mice were transplanted intraperitoneally (IP) with 1-2 x 10(5) Renca cells. One day after tumor transplant, mice were randomized into two groups. One group was treated IP, daily for 10 days, with 100 microliters of phytochemicals containing 500 micrograms each of Astragalus membranaceus and Ligustrum lucidum, while the other group received saline as controls. A cure rate of 57% was obtained with these phytochemicals when the initial tumor load was 2 x 10(5), and 100% when the initial tumor load was 1 x 10(5). Additional experiments were performed to investigate the mechanisms involved in this protection. Splenic macrophages from tumor-bearing mice were shown to have depressed chemiluminescent oxidative burst activity, and this depression was restored with phytochemical treatment. Splenocytes from mice transplanted with Renca responded less favorably to interleukin-2 (IL-2) in generating lymphokine-activated killer (LAK) cells; again this depression was restored with phytochemical treatment. Our data suggest that these phytochemicals may have exerted their antitumor effects via augmentation of phagocyte and LAK cell activities. PMID:7812364

  1. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    PubMed Central

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  2. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells.

    PubMed

    Chen, Yi-Fei; Wang, Shu-Ying; Shen, Hong; Yao, Xiao-Fen; Zhang, Feng-Li; Lai, Dongmei

    2014-12-01

    The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells. PMID:25318762

  3. A Novel Small Molecular STAT3 Inhibitor, LY5, Inhibits Cell Viability, Cell Migration, and Angiogenesis in Medulloblastoma Cells*

    PubMed Central

    Xiao, Hui; Bid, Hemant Kumar; Jou, David; Wu, Xiaojuan; Yu, Wenying; Li, Chenglong; Houghton, Peter J.; Lin, Jiayuh

    2015-01-01

    Signal transducers and activators of transcription 3 (STAT3) signaling is persistently activated and could contribute to tumorigenesis of medulloblastoma. Numerous studies have demonstrated that inhibition of the persistent STAT3 signaling pathway results in decreased proliferation and increased apoptosis in human cancer cells, indicating that STAT3 is a viable molecular target for cancer therapy. In this study, we investigated a novel non-peptide, cell-permeable small molecule, named LY5, to target STAT3 in medulloblastoma cells. LY5 inhibited persistent STAT3 phosphorylation and induced apoptosis in human medulloblastoma cell lines expressing constitutive STAT3 phosphorylation. The inhibition of STAT3 signaling by LY5 was confirmed by down-regulating the expression of the downstream targets of STAT3, including cyclin D1, bcl-XL, survivin, and micro-RNA-21. LY5 also inhibited the induction of STAT3 phosphorylation by interleukin-6 (IL-6), insulin-like growth factor (IGF)-1, IGF-2, and leukemia inhibitory factor in medulloblastoma cells, but did not inhibit STAT1 and STAT5 phosphorylation stimulated by interferon-γ (IFN-γ) and EGF, respectively. In addition, LY5 blocked the STAT3 nuclear localization induced by IL-6, but did not block STAT1 and STAT5 nuclear translocation mediated by IFN-γ and EGF, respectively. A combination of LY5 with cisplatin or x-ray radiation also showed more potent effects than single treatment alone in the inhibition of cell viability in human medulloblastoma cells. Furthermore, LY5 demonstrated a potent inhibitory activity on cell migration and angiogenesis. Taken together, these findings indicate LY5 inhibits persistent and inducible STAT3 phosphorylation and suggest that LY5 is a promising therapeutic drug candidate for medulloblastoma by inhibiting persistent STAT3 signaling. PMID:25313399

  4. Mullerian Inhibiting Substance inhibits cervical cancer cell growth via a pathway involving p130 and p107.

    PubMed

    Barbie, Thanh U; Barbie, David A; MacLaughlin, David T; Maheswaran, Shyamala; Donahoe, Patricia K

    2003-12-23

    In addition to causing regression of the Mullerian duct in the male embryo, Mullerian Inhibiting Substance (MIS) inhibits the growth of epithelial ovarian cancer cells, which are known to be of Mullerian origin. Because the uterine cervix is derived from the same Mullerian duct precursor as the epithelium of the ovary, we tested the hypothesis that cervical cancer cells might also respond to MIS. A number of cervical cancer cell lines express the MIS type II receptor, and MIS inhibits the growth of both human papilloma virus-transformed and non-human papilloma virus-transformed cervical cell lines, with a more dramatic effect seen in the latter. As in the ovarian cancer cell line OVCAR8, suppression of growth of the C33A cervical cancer cell line by MIS is associated with induction of the p16 tumor suppressor protein. However, in contrast to OVCAR8 cells, induction of p130 and p107 appears to play an important role in the inhibition of growth of C33A cells by MIS. Finally, normal cervical tissue expresses the MIS type II receptor in vivo, supporting the idea that MIS could be a targeted therapy for cervical cancer. PMID:14671316

  5. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression

    PubMed Central

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-01-01

    Background/Aims Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. Methods The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. Results The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27kip-1 increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Conclusions Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27kip-1. PMID:26470770

  6. Glycosylation Inhibitors Efficiently Inhibit P-Selectin-Mediated Cell Adhesion to Endothelial Cells

    PubMed Central

    Ghoshal, Pushpankur; Rajendran, Mythilypriya; Odo, Nadine; Ikuta, Tohru

    2014-01-01

    Adhesion molecules play a critical role in the adhesive interactions of multiple cell types in sickle cell disease (SCD). We previously showed that anti-P-selectin aptamer efficiently inhibits cell adhesion to endothelial cells (ECs) and permits SCD mice to survive hypoxic stress. In an effort to discover new mechanisms with which to inhibit P-selectin, we examined the role of glycosylation. P-selectin is a 90 kDa protein but was found to migrate as 90 and 140 kDa bands on gel electrophoresis. When P-selectin isolated from ECs was digested with peptide N-glycosidase F, but not O-glycosidase, the 140 kDa band was lost and the 90 kDa band was enhanced. Treatment of ECs with tunicamycin, an N-glycosylation inhibitor, suppressed CD62P (P-selectin) expression on the cell surface as well as the 140 kDa form in the cytoplasm. These results indicate that the 140 kDa band is N-glycosylated and glycosylation is critical for cell surface expression of P-selectin in ECs. Thrombin, which stimulates P-selectin expression on ECs, induced AKT phosphorylation, whereas tunicamycin inhibited AKT phosphorylation, suggesting that AKT signaling is involved in the tunicamycin-mediated inhibition of P-selectin expression. Importantly, the adhesion of sickle red blood cells (sRBCs) and leukocytes to ECs induced by thrombin or hypoxia was markedly inhibited by two structurally distinct glycosylation inhibitors; the levels of which were comparable to that of a P-selectin monoclonal antibody which most strongly inhibited cell adhesion in vivo. Knockdown studies of P-selectin using short-hairpin RNAs in ECs suppressed sRBC adhesion, indicating a legitimate role for P-selectin in sRBC adhesion. Together, these results demonstrate that P-selectin expression on ECs is regulated in part by glycosylation mechanisms and that glycosylation inhibitors efficiently reduce the adhesion of sRBCs and leukocytes to ECs. Glycosylation inhibitors may lead to a novel therapy which inhibits cell adhesion in SCD

  7. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration

    PubMed Central

    Piater, Birgit; Doerner, Achim; Guenther, Ralf; Kolmar, Harald; Hock, Bjoern

    2015-01-01

    The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF). Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2’-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX). CLN64 and a previously described single-stranded DNA (ssDNA) aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding. PMID:26658271

  8. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines.

    PubMed

    Enomoto, Masanobu; Tsuchida, Akihiko; Miyazawa, Keisuke; Yokoyama, Tomohisa; Kawakita, Hideaki; Tokita, Hiromi; Naito, Munekazu; Itoh, Masahiro; Ohyashiki, Kazuma; Aoki, Tatsuya

    2007-12-01

    Vitamin K2 (MK4) has antitumor effects on various types of cancer cell lines in vitro, and its efficacy has also been reported in clinical applications for patients with leukemia, myelodysplastic syndrome, and hepatocellular carcinoma (HCC). However, details of the mechanism of the antitumor effects of MK4 remain unclear. In the present study, we examined the antitumor effects of MK4 on cholangiocellular carcinoma (CCC) cell lines and its mechanism of action using the HL-60 leukemia cell line that exerts MK4-induced cell growth inhibition via apoptosis induction and cell cycle arrest as a control. MK4 exerted dose-dependent antitumor effects on all three types of CCC cell lines. However, apoptosis occurred in a smaller percentage of cells and there was less cell cycle arrest compared with other cancer cell lines studied previously, which suggested slight MK4-induced cell growth inhibition via apoptosis induction and cell cycle arrest. On the contrary, histopathological fidings showed a large number of cells containing vacuoles in their cytoplasm, and electron microscopic findings showed a large number of cytoplasmic autophagosomes and autolysosomes. These findings suggested evidence of autophagy-related cell death. Fluorescence microscopy following acridine orange staining revealed an increase in the number of cytoplasmic acidic vesicular organelles characteristic of autophagy. Moreover, there were few cells forming autophagic vesicles in the control group, while the percentage of cells containing vacuoles in the MK4-treated group increased with the duration of culture. These results suggested that, unlike in leukemia, gastric cancer, HCC, and other cancer cells, the antitumor effects of MK4 on CCC cells are induced via autophagy formation. PMID:17982686

  9. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    PubMed Central

    Smith, M. Ryan; Vayalil, Praveen K.; Zhou, Fen; Benavides, Gloria A.; Beggs, Reena R.; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G.; Smith, Robin A.J.; Murphy, Michael P.; Velu, Sadanandan E.; Landar, Aimee

    2016-01-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  10. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    PubMed

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  11. Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells

    PubMed Central

    CHEN, BIN; SONG, GUIXIAN; LIU, MING; QIAN, LINGMEI; WANG, LIHUA; GU, HAITAO; SHEN, YAHUI

    2016-01-01

    In our previous study, the upregulation of microRNA (miR)-29c was identified in the mother of a fetus with a congenital heart defect. However, the functional and regulatory mechanisms of miR-29c in the development of the heart remain to be elucidated. In the present study, the role and mechanism of miR-29c inhibition in heart development were investigated in an embryonic carcinoma cell model. Inhibition of miR-29c promoted proliferation, and suppressed the apoptosis and differentiation of P19 cells. It was also demonstrated that Wingless-related MMTV integration site 4 (Wnt4) was a target of miR-29c, determined using bioinformatic analysis combined with luciferase assays. The inhibition of miR-29c stimulated the WNT4/β-catenin pathway, promoting proliferation of the P19 cells, but suppressing their differentiation into cardiomyocytes. Furthermore, the inhibition of miR-29c promoted the expression of B cell lymphoma-2 and inhibited cell apoptosis. These results demonstrate the significance of miR-29c in the process of cardiac development and suggest that miR-29c dysregulation may be associated with the occurrence of CHD. Thus, miR-29c may have therapeutic potential in the future. PMID:26848028

  12. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3’-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  13. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3'-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  14. Shifting ecologies of malignant and nonmalignant cells following BRAF inhibition

    PubMed Central

    Wu, Catherine J.

    2014-01-01

    Clinical vignette: A 49-year-old man with stage IV BRAFV600E-driven melanoma was initiated on twice-daily 960 mg of vemurafenib for treatment of progressive and recurrent subcutaneous metastatic disease of the left lower extremity. The patient’s melanoma responded well to targeted BRAF inhibition. At treatment onset, hematologic parameters were all within normal limits; however, within three months of initiating therapy, wbc were found to be elevated (to 20 K) with sustained lymphocytosis of mature phenotype. Immunophenotypic analysis was consistent with chronic lymphocytic leukemia (CLL), and FISH results revealed presence of the CLL-associated deletion in chromosome 13q14 as well as in 2p33. Vemurafenib was withdrawn after approximately one year of therapy, and subsequently, his peripheral lymphocytosis resolved and CLL regressed. Nevertheless, a monoclonal B cell population persisted even 732 days after discontinuation of vemurafenib. PMID:25329690

  15. Inhibition of geranylgeranylation mediates sensitivity to CHOP-induced cell death of DLBCL cell lines

    SciTech Connect

    Ageberg, Malin; Rydstroem, Karin; Linden, Ola; Linderoth, Johan; Jerkeman, Mats; Drott, Kristina

    2011-05-01

    Prenylation is a post-translational hydrophobic modification of proteins, important for their membrane localization and biological function. The use of inhibitors of prenylation has proven to be a useful tool in the activation of apoptotic pathways in tumor cell lines. Rab geranylgeranyl transferase (Rab GGT) is responsible for the prenylation of the Rab family. Overexpression of Rab GGTbeta has been identified in CHOP refractory diffuse large B cell lymphoma (DLBCL). Using a cell line-based model for CHOP resistant DLBCL, we show that treatment with simvastatin, which inhibits protein farnesylation and geranylgeranylation, sensitizes DLBCL cells to cytotoxic treatment. Treatment with the farnesyl transferase inhibitor FTI-277 or the geranylgeranyl transferase I inhibitor GGTI-298 indicates that the reduction in cell viability was restricted to inhibition of geranylgeranylation. In addition, treatment with BMS1, a combined inhibitor of farnesyl transferase and Rab GGT, resulted in a high cytostatic effect in WSU-NHL cells, demonstrated by reduced cell viability and decreased proliferation. Co-treatment of BMS1 or GGTI-298 with CHOP showed synergistic effects with regard to markers of apoptosis. We propose that inhibition of protein geranylgeranylation together with conventional cytostatic therapy is a potential novel strategy for treating patients with CHOP refractory DLBCL.

  16. N-Myristoyltransferase Inhibition Induces ER-Stress, Cell Cycle Arrest, and Apoptosis in Cancer Cells.

    PubMed

    Thinon, Emmanuelle; Morales-Sanfrutos, Julia; Mann, David J; Tate, Edward W

    2016-08-19

    N-Myristoyltransferase (NMT) covalently attaches a C14 fatty acid to the N-terminal glycine of proteins and has been proposed as a therapeutic target in cancer. We have recently shown that selective NMT inhibition leads to dose-responsive loss of N-myristoylation on more than 100 protein targets in cells, and cytotoxicity in cancer cells. N-myristoylation lies upstream of multiple pro-proliferative and oncogenic pathways, but to date the complex substrate specificity of NMT has limited determination of which diseases are most likely to respond to a selective NMT inhibitor. We describe here the phenotype of NMT inhibition in HeLa cells and show that cells die through apoptosis following or concurrent with accumulation in the G1 phase. We used quantitative proteomics to map protein expression changes for more than 2700 proteins in response to treatment with an NMT inhibitor in HeLa cells and observed down-regulation of proteins involved in cell cycle regulation and up-regulation of proteins involved in the endoplasmic reticulum stress and unfolded protein response, with similar results in breast (MCF-7, MDA-MB-231) and colon (HCT116) cancer cell lines. This study describes the cellular response to NMT inhibition at the proteome level and provides a starting point for selective targeting of specific diseases with NMT inhibitors, potentially in combination with other targeted agents. PMID:27267252

  17. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    SciTech Connect

    Hong, Yun; Zhou, Lin; Xie, Haiyang; Wang, Weilin; Zheng, Shusen

    2015-06-05

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between the two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression.

  18. Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau.

    PubMed

    Blot, Antonin; Barbour, Boris

    2014-02-01

    Excitatory synaptic activity in the brain is shaped and balanced by inhibition. Because inhibition cannot propagate, it is often recruited with a synaptic delay by incoming excitation. Cerebellar Purkinje cells are driven by long-range excitatory parallel fiber inputs, which also recruit local inhibitory basket cells. The axon initial segment of each Purkinje cell is ensheathed by basket cell axons in a structure called the pinceau, which is largely devoid of chemical synapses. In mice, we found at the single-cell level that the pinceau mediates ephaptic inhibition of Purkinje cell firing at the site of spike initiation. The reduction of firing rate was synchronous with the presynaptic action potential, eliminating a synaptic delay and allowing granule cells to inhibit Purkinje cells without a preceding phase of excitation. Axon-axon ephaptic intercellular signaling can therefore mediate near-instantaneous feedforward and lateral inhibition. PMID:24413696

  19. RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints.

    PubMed

    Mamidipudi, V; Dhillon, N K; Parman, T; Miller, L D; Lee, K C; Cartwright, C A

    2007-05-01

    Previously, we showed that Src tyrosine kinases are activated early in the development of human colon cancer and are suppressed as intestinal cells differentiate. We identified RACK1 as an endogenous substrate, binding partner and inhibitor of Src. Here we show (by overexpressing RACK1, depleting Src or RACK1 and utilizing cell-permeable peptides that perturb RACK1's interaction with Src) that RACK1 regulates growth of colon cells by suppressing Src activity at G(1) and mitotic checkpoints, and consequently delaying cell cycle progression. Activated Src rescues RACK1-inhibited growth of HT-29 cells. Conversely, inhibiting Src abolishes growth promoted by RACK1 depletion in normal cells. Two potential mechanisms whereby RACK1 regulates mitotic exit are identified: suppression of Src-mediated Sam68 phosphorylation and maintenance of the cyclin-dependent kinase (CDK) 1-cyclin B complex in an active state. Our results reveal novel mechanisms of cell cycle control in G(1) and mitosis of colon cells. The significance of this work lies in the discovery of a mechanism by which the growth of colon cancer cells can be slowed, by RACK1 suppression of an oncogenic kinase at critical cell cycle checkpoints. Small molecules that mimic RACK1 function may provide a powerful new approach to the treatment of colon cancer. PMID:17072338

  20. Upregulation of erythropoietin receptor in UT-7/EPO cells inhibits simulated microgravity-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2011-07-01

    Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% ( p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO-EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.

  1. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  2. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.

  3. Inhibition by Tyroserleutide (YSL) on the Invasion and Adhesion of the Mouse Melanoma Cell

    PubMed Central

    Yao, Zhi; Che, Xu-chun; Lu, Rong; Zheng, Min-na; Zhu, Zhi-feng; Li, Jin-ping; Jian, Xu; Shi, Lin-xi; Liu, Jun-yan; Gao, Wen-yuan

    2007-01-01

    Tyroserleutide (YSL) is an active, low-molecular-weight polypeptide, comprised of three amino acids, that has shown antitumor effects on human hepatocarcinoma BEL-7402 in vitro and in vivo. In this study, we evaluated the inhibition of YSL on invasion and adhesion of the mouse B16-F10 melanoma cell line by injecting B16-F10 cells into the tail veins of C57BL/6 mice to establish an experimental lung metastasis model. YSL inhibited B16-F10 cell metastasis to lung, reducing the number and area of metastasis lesions. When we treated B16-F10 cells with YSL (0.01, 0.1, 1, 10, or 100 μg/mL) in vitro, we found that YSL inhibited the proliferation of B16-F10 cells with a 28.11% rate of inhibition. YSL significantly decreased the adhesiveness of B16-F10 cells to Matrigel with a 29.15% inhibition rate; YSL also significantly inhibited the invasion of B16-F10 cells, producing an inhibition of 35.31%. By analyses with Western blot and real-time RT-PCR, we found that YSL markedly inhibited the expression of ICAM-1 in B16-F10 cells. These data suggest that YSL inhibits the growth, invasion, and adhesion of B16-F10 cells. PMID:17515953

  4. G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma.

    PubMed

    Li, Feng; Zeng, Jin; Gao, Yang; Guan, Zhenfeng; Ma, Zhenkun; Shi, Qi; Du, Chong; Jia, Jing; Xu, Shan; Wang, Xinyang; Chang, Luke; He, Dalin; Guo, Peng

    2015-01-01

    G9a has been reported to highly express in bladder transitional cell carcinoma (TCC) and G9a inhibition significantly attenuates cell proliferation, but the underlying mechanism is not fully understood. The present study aimed at examining the potential role of autophagy in the anti-proliferation effect of G9a inhibition on TCC T24 and UMUC-3 cell lines in vitro. We found that both pharmaceutical and genetical G9a inhibition significantly attenuated cell proliferation by MTT assay, Brdu incorporation assay and colony formation assay. G9a inhibition induced autophagy like morphology as determined by transmission electron microscope and LC-3 fluorescence assay. In addition, autophagy flux was induced by G9a inhibition in TCC cells, as determined by p62 turnover assay and LC-3 turnover assay. The autophagy induced positively contributed to the inhibition of cell proliferation because the growth attenuation capacity of G9a inhibition was reversed by autophagy inhibitors 3-MA. Mechanically, AMPK/mTOR pathway was identified to be involved in the regulation of G9a inhibition induced autophagy. Intensively activating mTOR by Rheb overexpression attenuated autophagy and autophagic cell death induced by G9a inhibition. In addition, pre-inhibiting AMPK by Compound C attenuated autophagy together with the anti-proliferation effect induced by G9a inhibition while pre-activating AMPK by AICAR enhanced them. In conclusion, our results indicate that G9a inhibition induces autophagy through activating AMPK/mTOR pathway and the autophagy induced positively contributes to the inhibition of cell proliferation in TCC cells. These findings shed some light on the functional role of G9a in cell metabolism and suggest that G9a might be a therapeutic target in bladder TCC in the future. PMID:26397365

  5. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.

    PubMed

    Chen, Jong-Hang; Chou, Chin-Cheng

    2015-08-01

    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling. PMID:25959841

  6. Nicotine inhibits potassium currents in Aplysia bag cell neurons.

    PubMed

    White, Sean H; Sturgeon, Raymond M; Magoski, Neil S

    2016-06-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K(+) with Cs(+) Consistent with an underlying mechanism of direct inhibition of one or more K(+) channels, nicotine was found to rapidly reduce the fast-inactivating A-type K(+) current as well as both components of the delayed-rectifier K(+) current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K(+) channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763

  7. D-Glucosamine inhibits proliferation of human cancer cells through inhibition of p70S6K

    SciTech Connect

    Oh, Hyun-Ji; Lee, Jason S.; Song, Dae-Kyu; Shin, Dong-Hoon; Jang, Byeong-Churl; Suh, Seong-Il; Park, Jong-Wook; Suh, Min-Ho; Baek, Won-Ki . E-mail: wonki@dsmc.or.kr

    2007-09-07

    Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6 K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-Glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K.

  8. Synthetic lateral inhibition governs cell-type bifurcation with robust ratios.

    PubMed

    Matsuda, Mitsuhiro; Koga, Makito; Woltjen, Knut; Nishida, Eisuke; Ebisuya, Miki

    2015-01-01

    Cell-type diversity in multicellular organisms is created through a series of binary cell fate decisions. Lateral inhibition controlled by Delta-Notch signalling is the core mechanism for the choice of alternative cell types by homogeneous neighbouring cells. Here, we show that cells engineered with a Delta-Notch-dependent lateral inhibition circuit spontaneously bifurcate into Delta-positive and Notch-active cell populations. The synthetic lateral inhibition circuit comprises transcriptional repression of Delta and intracellular feedback of Lunatic fringe (Lfng). The Lfng-feedback subcircuit, even alone, causes the autonomous cell-type bifurcation. Furthermore, the ratio of two cell populations bifurcated by lateral inhibition is reproducible and robust against perturbation. The cell-type ratio is adjustable by the architecture of the lateral inhibition circuit as well as the degree of cell-cell attachment. Thus, the minimum lateral inhibition mechanism between adjacent cells not only serves as a binary cell-type switch of individual cells but also governs the cell-type ratio at the cell-population level. PMID:25652697

  9. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  10. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells.

    PubMed

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the effects and mechanisms of metformin. Metformin treatment inhibited RCC cells proliferation by increasing expression of miR-26a in 786-O cells (P < 0.05). As a result, protein abundance of Bcl-2 and cyclin D1 was decreased and PTEN was increased in cells exposed to metformin. Also over-expression of miR-26a can inhibited cell proliferation by down-regulating Bcl-2, cyclin D1 and up-regulating PTEN expression. Therefore, these data for the first time provide novel evidence for a mechanism that the anticancer activities of metformin are due to upregulation of miR-26a and affect its downstream target gene. PMID:25419360

  11. Suppression of PAX6 promotes cell proliferation and inhibits apoptosis in human retinoblastoma cells.

    PubMed

    Meng, Bo; Wang, Yisong; Li, Bin

    2014-08-01

    The aim of this study was to investigate the role of the transcription factor, PAX6, in the development of retinoblastoma. The expression of endogenous PAX6 was knocked down using PAX6-specific lentivirus in two human retinoblastoma cell lines, SO-Rb50 and Y79. Cell proliferation functional assays and apoptotic assays were performed on the cells in which PAX6 was knocked down. The results revealed that PAX6 knockdown efficiency was significant (P<0.01, n=3) in the SO-Rb50 and Y79 cells. The inhibition of PAX6 reduced tumor cell apoptosis (P<0.05, n=3), but induced cell cycle S phase arrest (SO-Rb50; P<0.05, n=3) and G2/M phase arrest (Y79; P<0.05, n=3). Western blot analysis indicated that the inhibition of PAX6 increased the levels of the anti-apoptotic proteins, Bcl-2, proliferating cell nuclear antigen (PCNA) and CDK1, but reduced the levels of the pro-apoptotic proteins, BAX and p21. In conclusion, our data demonstrate that the suppression of PAX6 increases proliferation and decreases apoptosis in human retinoblastoma cells by regulating several cell cycle and apoptosis biomarkers. PMID:24939714

  12. Suppression of PAX6 promotes cell proliferation and inhibits apoptosis in human retinoblastoma cells

    PubMed Central

    MENG, BO; WANG, YISONG; LI, BIN

    2014-01-01

    The aim of this study was to investigate the role of the transcription factor, PAX6, in the development of retinoblastoma. The expression of endogenous PAX6 was knocked down using PAX6-specific lentivirus in two human retinoblastoma cell lines, SO-Rb50 and Y79. Cell proliferation functional assays and apoptotic assays were performed on the cells in which PAX6 was knocked down. The results revealed that PAX6 knockdown efficiency was significant (P<0.01, n=3) in the SO-Rb50 and Y79 cells. The inhibition of PAX6 reduced tumor cell apoptosis (P<0.05, n=3), but induced cell cycle S phase arrest (SO-Rb50; P<0.05, n=3) and G2/M phase arrest (Y79; P<0.05, n=3). Western blot analysis indicated that the inhibition of PAX6 increased the levels of the anti-apoptotic proteins, Bcl-2, proliferating cell nuclear antigen (PCNA) and CDK1, but reduced the levels of the pro-apoptotic proteins, BAX and p21. In conclusion, our data demonstrate that the suppression of PAX6 increases proliferation and decreases apoptosis in human retinoblastoma cells by regulating several cell cycle and apoptosis biomarkers. PMID:24939714

  13. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling

    PubMed Central

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis. PMID:27398151

  14. Diffusion of beta-lactam antibiotics through liposome membranes reconstituted from purified porins of the outer membrane of Pseudomonas aeruginosa.

    PubMed Central

    Satake, S; Yoshihara, E; Nakae, T

    1990-01-01

    Determination of the rates of diffusion of beta-lactam antibiotics through purified Pseudomonas aeruginosa porins C, D2, and E in liposomes yielded the following results. (i) The rates of carbapenem (imipenem and meropenem) diffusion through the protein D2 pore were roughly 2 to 70 times higher than those through other porin pores. It is not clear why the protein D2 pore allowed rapid diffusion of carbapenems. The rates of diffusion of glucosamine and triglycine through the protein D2 pore were about 14 and 4 times higher, respectively, than that of an uncharged test solute with a similar Mr, glucose. (ii) The rates of diffusion of antipseudomonal anionic beta-lactams such as piperacillin, ceftazidime, cefsulodin, and aztreonam through the protein C pore were higher than those through other porin pores. This was probably due to the slightly larger pore size and the slight anion selectivity of protein C, since the apparent exclusion limit of the protein C pore for uncharged saccharides is higher than that of other porins and the rate of diffusion of gluconic acid through the protein C pore is about double that for glucose. (iii) The rates of diffusion of cefoperazone through all three species of porin were relatively high. These results indicate that the antipseudomonal beta-lactams permeate the P. aeruginosa outer membrane via newly identified porins. Images PMID:2163239

  15. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells.

    PubMed Central

    Faruqi, R; de la Motte, C; DiCorleto, P E

    1994-01-01

    Antioxidants have been proposed to be anti-atherosclerotic agents; however, the mechanisms underlying their beneficial effects are poorly understood. We have examined the effect of alpha-tocopherol (alpha-tcp) on one cellular event in atherosclerotic plaque development, monocyte adhesion to stimulated endothelial cells (ECs). Human umbilical vein ECs were pretreated with alpha-tcp before stimulation with known agonists of monocyte adhesion: IL-1 (10 ng/ml), LPS (10 ng/ml), thrombin (30 U/ml), or PMA (10 nM). Agonist-induced monocytic cell adhesion, but not basal adhesion, was inhibited in a time- and concentration-dependent manner by alpha-tcp. The IC50 of alpha-tcp on an IL-1-induced response was 45 microM. The inhibition correlated with a decrease in steady state levels of E-selectin mRNA and cell surface expression of E-selectin which is consistent with the ability of a monoclonal antibody to E-selectin to inhibit monocytic cell adhesion in this system. Probucol (50 microM) and N-acetylcysteine (20 mM) also inhibited agonist-induced monocytic cell adhesion; whereas, several other antioxidants had no significant effect. Protein kinase C (PKC) does not appear to play a role in the alpha-tcp effect since no suppression of phosphorylation of PKC substrates was observed. Activation of the transcription factor NF-kappa B is reported to be necessary but not sufficient for E-selectin expression in EC. Electrophoretic mobility shift assays failed to show an alpha-tcp-induced decrease in activation of this transcription factor after cytokine stimulation. It has been hypothesized that alpha-tcp acts as an anti-atherosclerotic molecule by inhibiting generation of oxidized LDL--a putative triggering molecule in the atherosclerotic process. Our results point to a novel alternative mechanism of action of alpha-tcp. Images PMID:7518838

  16. Selective Inhibition of Collagen Prolyl 4-Hydroxylase in Human Cells

    PubMed Central

    Vasta, James D.; Andersen, Kristen A.; Deck, Kathryn M.; Nizzi, Christopher P.; Eisenstein, Richard S.; Raines, Ronald T.

    2016-01-01

    Collagen is the most abundant protein in animals. Its overproduction is associated with fibrosis and cancer metastasis. The stability of collagen relies on post-translational modifications, the most prevalent being the hydroxylation of collagen strands by collagen prolyl 4-hydroxylases (CP4Hs). Catalysis by CP4Hs enlists an iron cofactor to convert proline residues to 4 hydroxyproline residues, which are essential for the conformational stability of mature collagen. Ethyl 3,4-dihydroxybenzoate (EDHB) is commonly used as a “P4H” inhibitor in cells, but suffers from low potency, poor selectivity, and off-target effects that cause iron deficiency. Dicarboxylates of 2,2′-bipyridine are among the most potent known CP4H inhibitors but suffer from a high affinity for free iron. A screen of biheteroaryl compounds revealed that replacing one pyridyl group with a thiazole moiety retains potency and enhances selectivity. A diester of 2 (5-carboxythiazol-2-yl)pyridine-5-carboxylic acid is bioavailable to human cells and inhibits collagen biosynthesis at concentrations that neither cause general toxicity nor disrupt iron homeostasis. These data anoint a potent and selective probe for CP4H and a potential lead for the development of a new class of antifibrotic and antimetastatic agents. PMID:26535807

  17. Amlodipine inhibits cell proliferation via PKD1-related pathway

    SciTech Connect

    Ohba, Takayoshi; Watanabe, Hiroyuki; Murakami, Manabu; Radovanovic, Milena; Iino, Kenji; Ishida, Masaru; Tosa, Shinya; Ono, Kyoichi; Ito, Hiroshi

    2008-05-02

    Human coronary artery smooth muscle cell (hCASMC) proliferation is involved in the progression of coronary artery disease. Amlodipine, a widely used antihypertensive drug, exerts antiproliferative effects by increasing the expression of p21{sup (Waf1/Cip1)}. Polycystic kidney disease 1 (PKD1) is also involved in cell cycle inhibition via p21{sup (Waf1/Cip1)} up-regulation. We clarified the involvement of PKD1-related signaling on hCASMCs. Cultured hCASMCs, which constitutively express PKD1, were stimulated with 5% serum. Amlodipine increased p21{sup (Waf1/Cip1)} expression in a dose- and time-dependent manner, resulting in reduced hCASMC proliferation. The inhibitory effect of amlodipine was mimicked by overexpression of PKD1 and was reversed by a dominant-negative version of PKD1 (R4227X). Immunoblot analysis showed that phosphorylated JAK2 was increased by amlodipine treatment or PKD1 overexpression. A luciferase assay revealed that the overexpression of PKD1 induced STAT1 enhancer activity. These data suggest that PKD1 contributes to the antiproliferative effect of amlodipine on hCASMCs via JAK/STAT signaling and p21{sup (Waf1/Cip1)} up-regulation.

  18. Adseverin knockdown inhibits osteoclastogenesis in RAW264.7 cells

    PubMed Central

    QI, WENTING; GAO, YAN; TIAN, JUN; JIANG, HONGWEI

    2014-01-01

    Osteoclastogenesis is a complex process that is highly dependent on the dynamic regulation of the actin cytoskeleton. Adseverin (Ads), a member of the gelsolin superfamily of actin-binding proteins, regulates actin remodeling by severing and capping actin filaments. The objective of the present study was to characterize the role of Ads during osteoclastogenesis by assessing Ads expression and using a knockdown strategy. Immunoblot analyses were used to examine Ads expression during osteoclastogenesis. A stable Ads knockdown macrophage cell line was generated using a retroviral shRNA construct. Osteoclast differentiation was morphologically examined via cell staining with osteoclast specific markers and light microscopy. The results showed that Ads expression was significantly increased in response to receptor activator of nuclear factor-κB ligand during osteoclastogenesis, and Ads was highly expressed in mature osteoclasts. Ads-knockdown macrophages showed major osteoclastogenesis defects, most likely caused by a pre-osteoclast fusion defect. These results indicate that Ads deficiency in monocytes inhibits osteoclastogenesis. Thus, in future studies it could be noteworthy to investigate the function of Ads in bone marrow monocytes during osteoclastogenesis. PMID:25339151

  19. Knockdown of COUP-TFII inhibits cell proliferation and induces apoptosis through upregulating BRCA1 in renal cell carcinoma cells.

    PubMed

    Zheng, Jia; Qin, Weijun; Jiao, Dian; Ren, Jing; Wei, Ming; Shi, Shengjia; Xi, Wenjin; Wang, He; Yang, An-Gang; Huan, Yi; Wen, Weihong

    2016-10-01

    COUP-TFII belongs to the nuclear receptor family, which is highly expressed in many kinds of tumors. Previous studies have shown that COUP-TFII can promote tumor progression through regulating tumor angiogenesis and cell proliferation and migration of certain cancer cells. However, the function of COUP-TFII in renal cell carcinoma (RCC) is not clear. Here, we showed that clinical RCC tumor tissues showed much higher COUP-TFII expression level than adjacent normal tissues. When COUP-TFII was knocked down in RCC 769-P and 786-O cells by siRNA or shRNA-expressing lentivirus, the cell proliferation was markedly inhibited, and apoptosis increased. Moreover, the tumor growth of COUP-TFII knockdown 769-P and 786-O xenografts in nude mice was also obviously inhibited. Using qRT-PCR and Western blot, we showed that the expression of the tumor suppressor gene BRCA1 was upregulated in COUP-TFII knockdown cells. Simultaneously knockdown of BRCA1 and COUP-TFII partially rescued the inhibited cell proliferation and increased apoptosis in COUP-TFII single knockdown cells. These results indicate that COUP-TFII may play an oncogenic role in RCC, and COUP-TFII may promote tumor progression through inhibiting BRCA1. PMID:27193872

  20. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    SciTech Connect

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S.; Mok, Tony S.K.; Warner, Timothy D.; Underwood, Malcolm J.; Chen, George G.

    2009-10-15

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB{sub 2}) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB{sub 2} but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  1. Inhibition of mitogen stimulated growth of human colon cancer cells by interferon.

    PubMed Central

    Hamburger, A. W.; Condon, M. E.; O'Donnell, K.

    1988-01-01

    Recombinant human interferon alpha inhibits growth of a human colon cancer cell line, Colo 205. To explore the mechanisms of IFN induced growth inhibition, quiescent Colo 205 cells were stimulated to proliferate in serum-free media by defined growth factors. Addition of insulin, transferrin and selenium (ITS) stimulated DNA synthesis, as measured by 3H-thymidine incorporation, in a dose-dependent manner. IFN-alpha (at concentrations greater than 100 U ml-1) inhibited ITS stimulated DNA synthesis by 63%. Inhibition of cell cycle traverse was confirmed by flow cytometric analysis. Although IFN inhibited growth of ITS-treated cells, steady state levels of c-myc mRNA remained above levels observed in unstimulated cells. IFN inhibited DNA synthesis only when added prior to mitogen stimulation. IFN, added 6 h after exposure of quiescent cells to ITS, failed to inhibit cell growth. Addition of increasing concentrations of ITS failed to overcome the IFN-induced growth inhibition. These results suggest IFN may inhibit cell growth in part by antagonizing the action of growth factors. Images Figure 4 PMID:3166905

  2. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    SciTech Connect

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  3. Phenethyl isothiocyanate induces apoptosis and inhibits cell proliferation and invasion in Hep-2 laryngeal cancer cells.

    PubMed

    Dai, Meng-Yuan; Wang, Yan; Chen, Chen; Li, Fen; Xiao, Bo-Kui; Chen, Shi-Ming; Tao, Ze-Zhang

    2016-05-01

    The dietary compound phenethyl isothiocyanate (PEITC), an important tumoricidal component found in cruciferous vegetables, exhibits strong anticancer and chemopreventive effects in a variety of tumors. However, its role in human laryngeal cancer is unclear. The aim of the present study was to investigate whether PEITC exhibits anticancer properties in human laryngeal carcinoma Hep-2 cells in vitro and to identify the potential molecular mechanisms. The results showed that treatment of Hep-2 cells with PEITC significantly inhibited cell proliferation in a dose- and time-dependent manner, promoted apoptosis with concurrent G2/M cell cycle arrest and inhibited cell invasion in a dose-dependent manner. These effects were accompanied by significant alterations in the expression levels of key proteins associated with pro-survival signaling pathways, including PI3K, Akt, ERK, NF-κB, Bcl, Bax, cyclin B, CDK4 and CDK6. Importantly, these effects were not reflected in 16HBE normal human bronchial epithelial cells, suggesting a safe range of treatment concentrations between 0 and 10 µM PEITC. In summary, PEITC exhibited significant anticancer effects against human laryngeal cancer cells in vitro with low toxicological impact on normal bronchial epithelial cells. This was achieved through dysregulation of key proteins involved in the occurrence and development of tumors, thereby offering a valuable contribution to future strategies for the treatment and screening of patients with laryngocarcinoma. PMID:26986926

  4. Oridonin inhibits BxPC-3 cell growth through cell apoptosis.

    PubMed

    Xu, Bin; Shen, Wen; Liu, Xing; Zhang, Ting; Ren, Jun; Fan, Yongjun; Xu, Jian

    2015-03-01

    Oridonin, an ent-kaurene diterpenoid extracted from the traditional Chinese herb Rabdosia rubescens, has multiple biological and pharmaceutical functions and has been used clinically for many years. While the antitumor function of oridonin has been corroborated by numerous lines of evidence, its anticancer mechanism has not been well documented. In this study, the pancreatic cancer cell line BxPC-3 was used as a model to investigate a possible anticancer mechanism of oridonin through examining its effects on cell viability. The results showed that oridonin affected cell viability in a time- and dose-dependent manner. After exposure to different oridonin concentrations, growth rates and cell cycle arrest of BxPC-3 cells were significantly reduced compared with untreated cells, suggesting its effects on proliferation inhibition. Detailed signaling pathway analysis by western blot analysis revealed that low-dose oridonin treatment inhibited BxPC-3 cell proliferation by up-regulating p53 and down-regulating cyclin-dependent kinase 1 (CDK1), which led to cell cycle arrest in the G2/M phase. A high-dose oridonin not only arrested BxPC-3 cells in the G2/M phase but also induced cell accumulation in the S phase, presumably through γH2AX up-regulation and DNA damage. In addition, our results showed that a cell subpopulation was stained with propidium iodide after oridonin treatment. Protein quantification showed that cleaved poly(ADP-ribose) polymerase (PARP) expression was increased after a high-dose oridonin treatment, especially after long-term exposure. Accompanied by the increased level of deactivated PARP in BxPC-3 cells, the apoptosis initiators caspase-3 and caspase-7 expressions were also significantly increased, suggesting that caspase-mediated apoptosis contributed to cell death. PMID:25651847

  5. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    SciTech Connect

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua Liu, Fenju

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  6. Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells.

    PubMed

    Lin, Hao Daniel; Fong, Chui Yee; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2014-08-01

    Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton's jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt's lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs. PMID:24789672

  7. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer.

    PubMed

    Aggarwal, Sadhna; Das, Satya N

    2016-06-01

    Garcinol, a polyisoprenylated benzophenone is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Its ability to inhibit tumour growth has been demonstrated in certain cancers. In this study, we evaluated the potential anti-tumour effects of garcinol on oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines (SCC-4, SCC-9 and SCC-25) were treated with garcinol for 48 h and its effect on growth and proliferation, clonogenic survival, cell cycle and apoptosis was studied by MTT, clonogenic assay, propidium iodide (PI) staining and annexin-V binding assay, respectively. The alteration in expression of NF-κB and COX-2 was studied by western blot analysis and that of VEGF by ELISA. Garcinol treatment significantly (p < 0.001) inhibited the growth and proliferation and colony formation of OSCC cells with a concomitant induction of apoptosis and cell cycle arrest. It did not show toxic effect on normal cells. It significantly (p < 0.05) reduced the expression of NK-κB and COX-2 expression in treated cells as compared to untreated controls besides inhibiting VEGF expression. It appears that garcinol exerts anti-proliferative, pro-apoptotic, cell-cycle regulatory and anti-angiogenic effects on oral cancer cells through inhibition of NF-κB and COX-2. Thus, garcinol may be developed as a potential chemopreventive and/or chemotherapeutic agent for treatment of oral squamous cell carcinoma. PMID:26662963

  8. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest.

    PubMed

    Zhang, Yusong; Zhuang, Zhixiang; Meng, Qinghui; Jiao, Yang; Xu, Jiaying; Fan, Saijun

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer. PMID:24348867

  9. Direct observation of gold nanoparticle assemblies with the porin MspA on mica.

    PubMed

    Basel, Matthew T; Dani, Raj Kumar; Kang, Myungshim; Pavlenok, Mikhail; Chikan, Viktor; Smith, Paul E; Niederweis, Michael; Bossmann, Stefan H

    2009-02-24

    The octameric porin MspA from Mycobacterium smegmatis is sufficiently stable to form a nonmembrane-supported stand-alone porin on mica surfaces. About 98% of all MspA octamers were found to stand upright on mica, with their periplasmic loop regions bound to the hydrophilic mica surface. Both, small (d = 3.7 nm) and large (d = 17 nm) gold nanoparticles bind to MspA, however, in different positions: small gold nanoparticles bind within the MspA pore, whereas the large gold nanoparticles bind to the upper region of MspA. These experiments demonstrate that gold nanoparticles can be positioned at different, well-defined distances from the underlying surface using the MspA pore as a template. These findings represent a significant step toward the use of electrically insulating stable proteins in combination with metal nanoparticles in nanodevices. PMID:19236086

  10. Antibiotic translocation through porins studied in planar lipid bilayers using parallel platforms.

    PubMed

    Weichbrodt, Conrad; Bajaj, Harsha; Baaken, Gerhard; Wang, Jiajun; Guinot, Serap; Kreir, Mohamed; Behrends, Jan C; Winterhalter, Mathias; Fertig, Niels

    2015-07-21

    In general, the method of choice to characterize the conductance properties of channel-forming bacterial porins is electrophysiology. Here, the classical method is to reconstitute single porins into planar lipid bilayers to derive functional information from the observed channel conductance. In addition to an estimated pore size, ion selectivity or transport properties in general are of importance. For the latter, measuring the ion current fluctuation can provide some information about the mode of transport of charged molecules penetrating the proteins. For instance, increasing the external voltage modifies the residence time in the channel: charged molecules with the ability to permeate through channels will travel faster whereas non-permeating molecules get pushed to the constriction zone with enhanced residence time. Here, we are interested in the ability of antibiotics to permeate channels and compare different techniques to reveal fast events. PMID:25834843

  11. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    NASA Astrophysics Data System (ADS)

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  12. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling.

    PubMed

    Lewis, Huw D; Leveridge, Matthew; Strack, Peter R; Haldon, Christine D; O'neil, Jennifer; Kim, Hellen; Madin, Andrew; Hannam, Joanne C; Look, A Thomas; Kohl, Nancy; Draetta, Giulio; Harrison, Timothy; Kerby, Julie A; Shearman, Mark S; Beher, Dirk

    2007-02-01

    In this report, inhibitors of the gamma-secretase enzyme have been exploited to characterize the antiproliferative relationship between target inhibition and cellular responses in Notch-dependent human T cell acute lymphoblastic leukemia (T-ALL) cell lines. Inhibition of gamma-secretase led to decreased Notch signaling, measured by endogenous NOTCH intracellular domain (NICD) formation, and was associated with decreased cell viability. Flow cytometry revealed that decreased cell viability resulted from a G(0)/G(1) cell cycle block, which correlated strongly to the induction of apoptosis. These effects associated with inhibitor treatment were rescued by exogenous expression of NICD and were not mirrored when a markedly less active enantiomer was used, demonstrating the gamma-secretase dependency and specificity of these responses. Together, these data strengthen the rationale for using gamma-secretase inhibitors therapeutically and suggest that programmed cell death may contribute to reduction of tumor burden in the clinic. PMID:17317574

  13. Transient Inhibition of Cell Proliferation does not Compromise Self-Renewal of Mouse Embryonic Stem Cells

    PubMed Central

    Wang, Ruoxing; Guo, Yan-Lin

    2012-01-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. PMID:22705123

  14. Niclosamide inhibits the proliferation of human osteosarcoma cell lines by inducing apoptosis and cell cycle arrest.

    PubMed

    Li, Zonghuan; Yu, Yifeng; Sun, Shaoxing; Qi, Baiwen; Wang, Weiyang; Yu, Aixi

    2015-04-01

    Niclosamide, used as an antihelminthic, has demonstrated some properties of anticancer effects. However, its role in osteosarcoma remains to be determined. The aim of this study was to determine the effect of niclosamide on human osteosarcoma cell lines. The human MG-63 and U2OS osteosarcoma cell lines were treated with different concentrations of niclosamide. The cell inhibitory rate was calculated by CCK-8 assay. Cell cycle was detected by flow cytometry. Cell apoptosis was determined by Hoechst 33324 staining, flow cytometry and fluorescence microscope, respectively. The expression of bcl-2, bax and pro-caspase-3 were measured by western blotting. Niclosamide exerted an inhibitory effect on the two cell lines in a time- and dose-dependent manner. Niclosamide was found to induce the arrest of S and G2/M phase in U2OS cells and G2/M in MG-63 cells. Moreover, niclosamide induced apoptosis in MG-63 and U2OS cells. The bax/bcl-2 ratio increased while the expression of pro‑caspase-3 decreased significantly in the two cell lines. The results indicated that niclosamide inhibits proliferation, and induces apoptosis and cell cycle arrest in human osteosarcoma cell lines. PMID:25634333

  15. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    SciTech Connect

    Wang, Ruoxing; Guo, Yan-Lin

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  16. Functions of the Periplasmic Loop of the Porin MspA from Mycobacterium smegmatis*

    PubMed Central

    Huff, Jason; Pavlenok, Mikhail; Sukumaran, Suja; Niederweis, Michael

    2009-01-01

    MspA is the major porin of Mycobacterium smegmatis and mediates diffusion of small and hydrophilic solutes across the outer membrane. The octameric structure of MspA, its sharply defined constriction zone, and a large periplasmic loop L6 represent novel structural features. L6 consists of 13 amino acids and is directly adjacent to the constriction zone. Deletion of 3, 5, 7, 9, and 11 amino acids of the L6 loop resulted in functional pores that restored glucose uptake and growth of a porin mutant of M. smegmatis. Lipid bilayer experiments revealed that all mutant channels were noisier than wild type (wt) MspA, indicating that L6 is required for pore stability in vitro. Voltage gating of the Escherichia coli porin OmpF was attributed to loops that collapse into the channel in response to a strong electrical field. Here, we show that deletion mutants Δ7, Δ9, and Δ11 had critical voltages similar to wt MspA. This demonstrated that the L6 loop is not the primary voltage-dependent gating mechanism of MspA. Surprisingly, large deletions in L6 resulted in 3-6-fold less extractable pores, whereas small deletions did not alter expression levels of MspA. Pores with large deletions in L6 were more permissive for glucose than smaller deletion mutants, whereas their single channel conductance was similar to that of wt MspA. These results indicate that translocation of ions through the MspA pore is governed by different mechanisms than that of neutral solutes. This is the first study identifying a molecular determinant of solute translocation in a mycobacterial porin. PMID:19208627

  17. Functions of the periplasmic loop of the porin MspA from Mycobacterium smegmatis.

    PubMed

    Huff, Jason; Pavlenok, Mikhail; Sukumaran, Suja; Niederweis, Michael

    2009-04-10

    MspA is the major porin of Mycobacterium smegmatis and mediates diffusion of small and hydrophilic solutes across the outer membrane. The octameric structure of MspA, its sharply defined constriction zone, and a large periplasmic loop L6 represent novel structural features. L6 consists of 13 amino acids and is directly adjacent to the constriction zone. Deletion of 3, 5, 7, 9, and 11 amino acids of the L6 loop resulted in functional pores that restored glucose uptake and growth of a porin mutant of M. smegmatis. Lipid bilayer experiments revealed that all mutant channels were noisier than wild type (wt) MspA, indicating that L6 is required for pore stability in vitro. Voltage gating of the Escherichia coli porin OmpF was attributed to loops that collapse into the channel in response to a strong electrical field. Here, we show that deletion mutants Delta7, Delta9, and Delta11 had critical voltages similar to wt MspA. This demonstrated that the L6 loop is not the primary voltage-dependent gating mechanism of MspA. Surprisingly, large deletions in L6 resulted in 3-6-fold less extractable pores, whereas small deletions did not alter expression levels of MspA. Pores with large deletions in L6 were more permissive for glucose than smaller deletion mutants, whereas their single channel conductance was similar to that of wt MspA. These results indicate that translocation of ions through the MspA pore is governed by different mechanisms than that of neutral solutes. This is the first study identifying a molecular determinant of solute translocation in a mycobacterial porin. PMID:19208627

  18. CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner

    PubMed Central

    Yang, Ying; Roine, Niina; Mäkelä, Tomi P

    2013-01-01

    Loss of primary cilia is frequently observed in tumour cells, including glioblastoma cells, and proposed to benefit tumour growth, but a causal link has not been established. Here, we show that CCRK (cell cycle-related kinase) and its substrate ICK (intestinal cell kinase) inhibit ciliogenesis. Depletion of CCRK leads to accumulation of ICK at ciliary tips, altered ciliary transport and inhibition of cell cycle re-entry in NIH3T3 fibroblasts. In glioblastoma cells with deregulated high levels of CCRK, its depletion restores cilia through ICK and an ICK-related kinase MAK, thereby inhibiting glioblastoma cell proliferation. These results indicate that inhibition of ciliogenesis might be a mechanism used by cancer cells to provide a growth advantage. PMID:23743448

  19. CTLA4Ig inhibits effector T cells through regulatory T cells and TGFβ1

    PubMed Central

    Deppong, Christine M.; Bricker, Traci L.; Rannals, Brandy D.; Van Rooijen, Nico; Hsieh, Chyi-Song; Green, Jonathan M.

    2013-01-01

    The CD28 costimulatory receptor is a critical regulator of T cell function making it an attractive therapeutic target for the treatment of immune mediated diseases. CTLA4Ig, now approved for use in humans, prevents naive T cell activation by binding to B7-proteins and blocking engagement of CD28. However, CTLA4Ig suppresses inflammation even if administered when disease is established, suggesting alternative mechanisms. We identified a novel, CD28-independent mechanism by which CTLA4Ig inhibits activated T cells. We show that in vitro, CTLA4Ig synergizes with nitric oxide from bone marrow derived macrophages to inhibit T cell proliferation. Depletion of Tregs or interference with TGFβ signaling abrogated the inhibitory effect of CTLA4Ig. Parallel in vivo experiments using an allergic airway inflammation model demonstrated that this novel mechanism required both macrophages andTregs. Furthermore, CTLA4Ig was ineffective in SMAD3-deficient mice, supporting a requirement for TGFβ signaling. Thus, in addition to preventing naïve T cells from being fully activated, CTLA4Ig can turn off already activated effector T cells by an NO/Treg/TGFβ-dependent pathway. This mechanism is similar to cell extrinsic effects of endogenous CTLA-4 and may be particularly important in the ability of CTLA4Ig to treat chronic inflammatory disease. PMID:23956428

  20. African Swine Fever Virus IAP Homologue Inhibits Caspase Activation and Promotes Cell Survival in Mammalian Cells

    PubMed Central

    Nogal, María L.; González de Buitrago, Gonzalo; Rodríguez, Clara; Cubelos, Beatriz; Carrascosa, Angel L.; Salas, María L.; Revilla, Yolanda

    2001-01-01

    African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis. PMID:11222676

  1. Proanthocyanidins inhibit in vitro and in vivo growth of human non-small cell lung cancer cells by inhibiting the prostaglandin E(2) and prostaglandin E(2) receptors.

    PubMed

    Sharma, Som D; Meeran, Syed M; Katiyar, Santosh K

    2010-03-01

    Overexpression of cyclooxygenase-2 (COX-2) and prostaglandins (PG) is linked to a wide variety of human cancers. Here, we assessed whether the chemotherapeutic effect of grape seed proanthocyanidins (GSP) on non-small cell lung cancer (NSCLC) cells is mediated through the inhibition of COX-2 and PGE(2)/PGE(2) receptor expression. The effects of GSPs on human NSCLC cell lines in terms of proliferation, apoptosis, and expression of COX-2, PGE(2), and PGE(2) receptors were determined using Western blotting, fluorescence-activated cell sorting analysis, and reverse transcription-PCR. In vitro treatment of NSCLC cells (A549, H1299, H460, H226, and H157) with GSPs resulted in significant growth inhibition and induction of apoptosis, which were associated with the inhibitory effects of GSPs on the overexpression of COX-2, PGE(2), and PGE(2) receptors (EP1 and EP4) in these cells. Treatment of cells with indomethacin, a pan-COX inhibitor, or transient transfection of cells with COX-2 small interfering RNA, also inhibited cell growth and induced cell death. The effects of a GSP-supplemented AIN76A control diet fed to nude mice bearing tumor xenografts on the expression of COX-2, PGE(2), and PGE(2) receptors in the xenografts were also evaluated. The growth-inhibitory effect of dietary GSPs (0.5%, w/w) on the NSCLC xenograft tumors was associated with the inhibition of COX-2, PGE(2), and PGE(2) receptors (EP1, EP3, and EP4) in tumors. This preclinical study provides evidence that the chemotherapeutic effect of GSPs on lung cancer cells in vitro and in vivo is mediated, at least in part, through the inhibition of COX-2 expression and subsequently the inhibition of PGE(2) and PGE(2) receptors. PMID:20145019

  2. The heat shock protein 90-binding geldanamycin inhibits cancer cell proliferation, down-regulates oncoproteins, and inhibits epidermal growth factor-induced invasion in thyroid cancer cell lines.

    PubMed

    Park, Jin-Woo; Yeh, Michael W; Wong, Mariwil G; Lobo, Margaret; Hyun, William C; Duh, Quan-Yang; Clark, Orlo H

    2003-07-01

    Heat shock protein 90 (HSP90) serves as a chaperone protein and plays a critical role in tumor cell growth and/or survival. Geldanamycin, a specific inhibitor of HSP90, is cytotoxic to several human cancer cell lines, but its effect in thyroid cancer is unknown. We, therefore, investigated the effect of geldanamycin on cell proliferation, oncoprotein expression, and invasion in human thyroid cancer cell lines. We used six thyroid cancer cell lines: TPC-1 (papillary), FTC-133, FTC-236, FTC-238 (follicular), XTC-1 (Hürthle cell), and ARO (anaplastic). We used the dimethyl-thiazol-diphenyltetrazolium bromide assay, a clonogenic assay, an apoptotic assay, and a Matrigel invasion assay. We evaluated oncoprotein expression using Western blots and flow cytometry. After 6 d of treatment with 50 nM geldanamycin, the percent inhibition of growth was 29.4% in TPC-1, 97.5% in FTC-133, 96.7% in FTC-236, 10.8% in FTC-238, 70.9% in XTC-1, and 45.5% in ARO cell lines. In the FTC-133 cell line, geldanamycin treatment decreased clonogenicity by 21% at a concentration of 50 nM; geldanamycin induced apoptosis and down-regulated c-Raf-1, mutant p53, and epidermal growth factor (EGF) receptor expression; geldanamycin inhibited EGF-stimulated invasion. In conclusion, geldanamycin inhibited cancer cell proliferation, down-regulated oncoproteins, and inhibited EGF-induced invasion in thyroid cancer cell lines. PMID:12843186

  3. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins.

    PubMed

    Tunuguntla, Ramya H; Allen, Frances I; Kim, Kyunghoon; Belliveau, Allison; Noy, Aleksandr

    2016-07-01

    Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca(2+) ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport. PMID:27043198

  4. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins

    NASA Astrophysics Data System (ADS)

    Tunuguntla, Ramya H.; Allen, Frances I.; Kim, Kyunghoon; Belliveau, Allison; Noy, Aleksandr

    2016-07-01

    Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca2+ ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport.

  5. Asymmetric pore occupancy in crystal structure of OmpF porin from Salmonella typhi.

    PubMed

    Balasubramaniam, D; Arockiasamy, Arulandu; Kumar, P D; Sharma, Amit; Krishnaswamy, S

    2012-06-01

    OmpF is a major general diffusion porin of Salmonella typhi, a Gram-negative bacterium, which is an obligatory human pathogen causing typhoid. The structure of S. typhi Ty21a OmpF (PDB Id: 3NSG) determined at 2.8 Å resolution by X-ray crystallography shows a 16-stranded β-barrel with three β-barrel monomers associated to form a trimer. The packing observed in S. typhi Ty21a rfOmpF crystals has not been observed earlier in other porin structures. The variations seen in the loop regions provide a starting point for using the S. typhi OmpF for structure-based multi-valent vaccine design. Along one side of the S. typhi Ty21a OmpF pore there exists a staircase arrangement of basic residues (20R, 60R, 62K, 65R, 77R, 130R and 16K), which also contribute, to the electrostatic potential in the pore. This structure suggests the presence of asymmetric electrostatics in the porin oligomer. Moreover, antibiotic translocation, permeability and reduced uptake in the case of mutants can be understood based on the structure paving the way for designing new antibiotics. PMID:22525817

  6. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    SciTech Connect

    Pszon-Bartosz, Kamila; Hansen, Jesper S.; Stibius, Karin B.; Groth, Jesper S.; Helix-Nielsen, Claus

    2011-03-04

    Research highlights: {yields} We have established a vesicle fusion efficacy assay based on the major non-specific porin of Fusobacterium nucleatum (FomA). {yields} Maximal fusion obtained was almost 150,000 porin insertions during 20 min. {yields} Incorporation can be either first order or exponential kinetics which has implications for establishing protein delivery to biomimetic membranes. -- Abstract: Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR) = 50 more than 10{sup 5} FomA proteins could be incorporated in a bilayer array with a total membrane area of 2 mm{sup 2} within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.

  7. MspA Porin-Gold Nanoparticle Assemblies: Enhanced Binding through a Controlled Cysteine Mutation.

    PubMed

    Dani, Raj Kumar; Kang, Myungshim; Kalita, Mausam; Smith, Paul E; Bossmann, Stefan H; Chikan, Viktor

    2008-04-01

    In this study, the interactions of two gold nanoparticles of different sizes (average diameters of 3.7 +/- 2.6 and 17 +/- 3 nm) with octameric mycobacterial porin A from Mycobacterium smegmatis (MspA) and a mutant of MspA featuring a cysteine mutation in position 126 (Q126C) are investigated. From the observation of enhanced photoluminescence quenching, it is inferred that the presence of eight cysteines in the MspA Q126C mutant significantly enhances the binding of selected small gold nanoparticles within the inner pore of MspA. The large gold nanoparticle/porin complex shows photoluminescence enhancement, which is expected since the larger nanoparticles cannot dock within the homopore of MspA due to size exclusion. In addition to the fluorescence experiments, observation of energy transfer from the small gold nanoparticles to the MspA shows the close proximity of the small gold nanoparticles with the porin. Interestingly, the energy transfer of the large nanoparticle/MspA complex is completely missing. From high-performance liquid chromatography data, the estimated binding constants for small Au@MspA, large Au@MspA, small Au@MspAcys, and large Au@MspAcys are 1.3 x 10 (9), 2.22 x 10 (10), > 10 (12) (irreversible), and 1.7 x 10 (10), respectively. PMID:18318505

  8. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    SciTech Connect

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  9. Monoterpenes inhibit cell growth, cell cycle progression, and cyclin D1 gene expression in human breast cancer cell lines.

    PubMed

    Bardon, S; Picard, K; Martel, P

    1998-01-01

    Monoterpenes are found in the essential oils of many commonly consumed fruits and vegetables. These compounds have been shown to exert chemopreventive and chemotherapeutic activities in mammary tumor models and represent a new class of breast cancer therapeutic agents. In this study, we investigated the effects of limonene and limonene-related monoterpenes, perillyl alcohol and perillic acid, on cell growth, cell cycle progression, and expression of cyclin D1 cell cycle-regulatory gene in T-47D, MCF-7, and MDA-MB-231 breast cancer cell lines. Our results revealed that limonene-related monoterpenes caused a dose-dependent inhibition of cell proliferation. Of the three monoterpenes tested, perillyl alcohol was the most potent and limonene was the least potent inhibitor of cell growth. The enantiomeric composition of limonene and perillyl alcohol did not interfere with their effect on cell growth. Sensitivity of breast cancer cell lines to monoterpenes was in the following order: T-47D > MCF-7 > MDA-MB-231. Growth inhibition induced by perillyl alcohol and perillic acid was associated with a fall in the proportion of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Finally, we showed that the effects of limonene-related monoterpenes on cell proliferation and cell cycle progression were preceded by a decrease in cyclin D1 mRNA levels. PMID:9824849

  10. Combination of imatinib and clotrimazole enhances cell growth inhibition in T47D breast cancer cells.

    PubMed

    Motawi, Tarek M K; Sadik, Nermin A H; Fahim, Sally A; Shouman, Samia A

    2015-05-25

    Imatinib mesylate (IM), a tyrosine kinase inhibitor, is used as targeted cancer therapy. However, mono-targeting by IM does not always achieve full tumor eradication and thus it is recommended to combine IM with other anticancer agents. Clotrimazole (CLT) is an antifungal azole derivative with promising anticancer effects due to inhibiting the activity of glycolytic enzymes. The present study aimed to evaluate the effect of combining CLT with IM on breast cancer cell line in an attempt to establish effective new combination. T47D human breast cancer cell line was treated with different concentrations of IM and/or CLT for 48 h. IM-CLT interaction was determined by isobologram equation and combination index. Cell viability was confirmed by measuring LDH activity. As indicators of glycolysis inhibition, the expression of hexokinase-2 (HK-2) and 6-phosphofructo-1-kinase (PFK-1) plus the activity of intracellular lactate dehydrogenase (LDH) and pyruvate kinase (PK) were determined. In addition, glucose consumption and adenosine triphosphate (ATP) production were measured. Moreover, nitric oxide (NO), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-α (HIF-α) were also determined as they are modulators for glycolysis. This study demonstrated that IM or CLT synergistically inhibited cell growth in T47D as shown by combination and dose reduction indices. The combination of 15 μM IM and 20 μM CLT significantly decreased glucose consumption, activity of both PK and intracellular LDH, while increased leaked LDH, VEGF and NO in the medium compared to each drug alone. Furthermore the combination decreased gene expression of HK-2, PFK-1 and ATP content compared to the control. In conclusion, the synergistic effect of CLT on IM cytotoxicity in T47D cell line maybe mediated through inhibition of glycolysis and increasing both NO and VEGF. Further studies are required to confirm the efficiency and safety of this combination. PMID:25863232

  11. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

    PubMed Central

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F.; He, Rong-Qiao

    2016-01-01

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation. PMID:27029216

  12. Carboxyamidotriazole inhibits oxidative phosphorylation in cancer cells and exerts synergistic anti-cancer effect with glycolysis inhibition.

    PubMed

    Ju, Rui; Guo, Lei; Li, Juan; Zhu, Lei; Yu, Xiaoli; Chen, Chen; Chen, Wei; Ye, Caiying; Zhang, Dechang

    2016-01-28

    Targeting cancer cell metabolism is a promising strategy against cancer. Here, we confirmed that the anti-cancer drug carboxyamidotriazole (CAI) inhibited mitochondrial respiration in cancer cells for the first time and found a way to enhance its anti-cancer activity by further disturbing the energy metabolism. CAI promoted glucose uptake and lactate production when incubated with cancer cells. The oxidative phosphorylation (OXPHOS) in cancer cells was inhibited by CAI, and the decrease in the activity of the respiratory chain complex I could be one explanation. The anti-cancer effect of CAI was greatly potentiated when being combined with 2-deoxyglucose (2-DG). The cancer cells treated with the combination of CAI and 2-DG were arrested in G2/M phase. The apoptosis and necrosis rates were also increased. In a mouse xenograft model, this combination was well tolerated and retarded the tumor growth. The impairment of cancer cell survival was associated with significant cellular ATP decrease, suggesting that the combination of CAI and 2-DG could be one of the strategies to cause dual inhibition of energy pathways, which might be an effective therapeutic approach for a broad spectrum of tumors. PMID:26522259

  13. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    SciTech Connect

    Nakayama, Hironao; Huang, Lan; Kelly, Ryan P.; Oudenaarden, Clara R.L.; Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A.; Bischoff, Joyce; Klagsbrun, Michael

    2015-08-14

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.

  14. Trimethyltin chloride inhibits neuronal cell differentiation in zebrafish embryo neurodevelopment.

    PubMed

    Kim, Jin; Kim, C-Yoon; Song, Juha; Oh, Hanseul; Kim, Cheol-Hee; Park, Jae-Hak

    2016-01-01

    Trimethyltin chloride (TMT) is a neurotoxicant widely present in the aquatic environment, primarily from effluents of the plastic industry. It is known to cause acute neuronal death in the limbic-cerebellar system, particularly in the hippocampus. However, relatively few studies have estimated the effects of TMT toxicity on neurodevelopment. In this study, we confirmed the dose-dependent effects of TMT on neurodevelopmental stages through analysis of morphological changes and fluorescence assays using HuC-GFP and olig2-dsRed transgenic zebrafish embryos. In addition, we analyzed the expression of genes and proteins related to neurodevelopment. Exposure of embryos to TMT for 4days post fertilization (dpf) elicited a concentration-related decrease in body length and increase in axial malformation. TMT affected the fluorescent CNS structure by decreasing pattern of HuC-GFP and olig2-dsRed transgenic zebrafish. In addition, it significantly modulated the expression patterns of Sonic hedgehog a (Shha), Neurogenin1 (Ngn1), Embryonic lethal abnormal vision like protein 3 (Elavl3), and Glial fibrillary acidic protein (Gfap). The overexpression of Shha and Ngn1, and downregulation of Elavl3 and Gfap, indicate repression of proneural cell differentiation. Our study demonstrates that TMT inhibits specific neurodevelopmental stages in zebrafish embryos and suggests a possible mechanism for the toxicity of TMT in vertebrate neurodevelopment. PMID:26687135

  15. Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy

    PubMed Central

    Zhao, Xiaohui; Zhou, Yu; Zeng, Bing; Yu, Min; Zhou, Quanbo; Lin, Qing; Gao, Wenchao; Ye, Huilin; Zhou, Jiajia; Li, Zhihua; Liu, Yimin; Chen, Rufu

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) cells utilize a novel non-canonical pathway of glutamine metabolism that is essential for tumor growth and redox balance. Inhibition of this metabolic pathway in PDAC can potentially synergize with therapies that increase intracellular reactive oxygen species (ROS) such as radiation. Here, we evaluated the dependence of pancreatic cancer stem cells (PCSCs) on this non-canonical glutamine metabolism pathway and researched whether inhibiting this pathway can enhance radiosensitivity of PCSCs. We showed that glutamine deprivation significantly inhibited self-renewal, decreased expression of stemness-related genes, increased intracellular ROS, and induced apoptosis in PCSCs. These effects were countered by oxaloacetate, but not α-ketoglutarate. Knockdown of glutamic-oxaloacetic transaminase dramatically impaired PCSCs properties, while glutamate dehydrogenase knockdown had a limited effect, suggesting a dependence of PCSCs on non-canonical glutamine metabolism. Additionally, glutamine deprivation significantly increased radiation-induced ROS and sensitized PCSCs to fractionated radiation. Moreover, transaminase inhibitors effectively enhanced ROS generation, promoted radiation sensitivity, and attenuated tumor growth in nude mice following radiation exposure. Our findings reveal that inhibiting the non-canonical pathway of glutamine metabolism enhances the PCSC radiosensitivity and may be an effective adjunct in cancer radiotherapy. PMID:26439804

  16. Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy.

    PubMed

    Li, Doudou; Fu, Zhiqiang; Chen, Ruiwan; Zhao, Xiaohui; Zhou, Yu; Zeng, Bing; Yu, Min; Zhou, Quanbo; Lin, Qing; Gao, Wenchao; Ye, Huilin; Zhou, Jiajia; Li, Zhihua; Liu, Yimin; Chen, Rufu

    2015-10-13

    Pancreatic ductal adenocarcinoma (PDAC) cells utilize a novel non-canonical pathway of glutamine metabolism that is essential for tumor growth and redox balance. Inhibition of this metabolic pathway in PDAC can potentially synergize with therapies that increase intracellular reactive oxygen species (ROS) such as radiation. Here, we evaluated the dependence of pancreatic cancer stem cells (PCSCs) on this non-canonical glutamine metabolism pathway and researched whether inhibiting this pathway can enhance radiosensitivity of PCSCs. We showed that glutamine deprivation significantly inhibited self-renewal, decreased expression of stemness-related genes, increased intracellular ROS, and induced apoptosis in PCSCs. These effects were countered by oxaloacetate, but not α-ketoglutarate. Knockdown of glutamic-oxaloacetic transaminase dramatically impaired PCSCs properties, while glutamate dehydrogenase knockdown had a limited effect, suggesting a dependence of PCSCs on non-canonical glutamine metabolism. Additionally, glutamine deprivation significantly increased radiation-induced ROS and sensitized PCSCs to fractionated radiation. Moreover, transaminase inhibitors effectively enhanced ROS generation, promoted radiation sensitivity, and attenuated tumor growth in nude mice following radiation exposure. Our findings reveal that inhibiting the non-canonical pathway of glutamine metabolism enhances the PCSC radiosensitivity and may be an effective adjunct in cancer radiotherapy. PMID:26439804

  17. HIV Infection of Monocytes-Derived Dendritic Cells Inhibits Vγ9Vδ2 T Cells Functions

    PubMed Central

    Sacchi, Alessandra; Rinaldi, Alessandra; Tumino, Nicola; Casetti, Rita; Agrati, Chiara; Turchi, Federica; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2014-01-01

    DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion. PMID:25340508

  18. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells from Intoxication

    PubMed Central

    Schnell, Leonie; Mittler, Ann-Katrin; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA) has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT). Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria. PMID:27428999

  19. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    PubMed Central

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B.; Parkos, Charles A.

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo. PMID:19776352

  20. RASSF4 is downregulated in nonsmall cell lung cancer and inhibits cancer cell proliferation and invasion.

    PubMed

    Han, Yong; Dong, Qianze; Hao, Jie; Fu, Lin; Han, Xu; Zheng, Xiaoying; Wang, Enhua

    2016-04-01

    RASSF4 has been implicated as a tumor suppressor in several human cancers. Its clinical significance and biological characteristics in human nonsmall cell lung cancer (NSCLC) have not been explored yet. In this study, we explored expression pattern of RASSF4 in 89 NSCLC specimens. The results showed that RASSF4 was downregulated in 36/89 NSCLC tissues compared with normal tissue. RASSF4 downregulation significantly associated with advanced TNM stage, positive nodal status, and poor prognosis. We examined RASSF4 protein expression in normal lung epithelial cell line and lung cancer lines. We found that RASSF4 expression was downregulated in four of seven lung cancer cell lines compared with normal bronchial epithelial cells. RASSF4 plasmid transfection was performed in H460 and A549 cell lines. RASSF4 overexpression inhibited proliferation, colony formation, and invading ability. In addition, we identified that RASSF4 could inhibit cell cycle progression with downregulation of cyclin D1. Expression of invasion-related protein MMP2, MMP9 was also decreased. In conclusion, the present study suggested that RASSF4 serves as an important tumor suppressor in NSCLC. PMID:26526576

  1. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells Articlefrom Intoxication.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA) has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT). Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria. PMID:27428999

  2. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation.

    PubMed

    Zhang, Min; Zhang, Bao Hui; Chen, Li; An, Wei

    2002-06-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation. PMID:12118938

  3. NAC, Tiron and Trolox Impair Survival of Cell Cultures Containing Glioblastoma Tumorigenic Initiating Cells by Inhibition of Cell Cycle Progression

    PubMed Central

    Stigliani, Sara; Carra, Elisa; Monteghirfo, Stefano; Longo, Luca; Daga, Antonio; Dono, Mariella; Zupo, Simona; Giaretti, Walter; Castagnola, Patrizio

    2014-01-01

    Reactive oxygen species (ROS) are metabolism by-products that may act as signaling molecules to sustain tumor growth. Antioxidants have been used to impair cancer cell survival. Our goal was to determine the mechanisms involved in the response to antioxidants of a human cell culture (PT4) containing glioblastoma (GBM) tumorigenic initiating cells (TICs). ROS production in the absence or presence of N-acetyl-L-cysteine (NAC), tiron, and trolox was evaluated by flow cytometry (FCM). The effects of these antioxidants on cell survival and apoptosis were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and FCM. The biological processes modulated by these drugs were determined by oligonucleotide microarray gene expression profiling. Our results showed that NAC, tiron and trolox impaired PT4 cell survival, had minor effects on ROS levels and caused wide deregulation of cell cycle genes. Furthermore, tiron and trolox caused inhibition of cell survival in two additional cell cultures containing TICs, FO-1 and MM1, established from a melanoma and a mesothelioma patient, respectively. NAC, instead, impaired survival of the MM1 cells but not of the FO-1 cells. However, when used in combination, NAC enhanced the inhibitory effect of PLX4032 (BRAF V600E inhibitor) and Gefitinib (EGFR inhibitor), on FO-1 and PT4 cell survival. Collectively, NAC, tiron and trolox modulated gene expression and impaired the growth of cultures containing TICs primarily by inhibiting cell cycle progression. PMID:24587218

  4. Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation.

    PubMed

    Rampal, Ritika; Awasthi, Amit; Ahuja, Vineet

    2016-07-01

    All-trans-retinoic acid plays a central role in mucosal immunity, where it promotes its synthesis by up-regulating CD103 expression on dendritic cells, induces gut tropic (α4β7(+) and CCR9(+)) T cells, and inhibits Th1/Th17 differentiation. Recently, murine studies have highlighted the proinflammatory role of retinoic acid in maintaining inflammation under a variety of pathologic conditions. However, as a result of limited human data, we investigated the effect of retinoic acid on human dendritic cells and CD4(+) T cell responses in the presence of polarizing (Th1/Th9/Th17) and inflammatory (LPS-induced dendritic cells) conditions. We report a novel role of retinoic acid in an inflammatory setup, where retinoic acid-primed dendritic cells (retinoic acid-monocyte-derived dendritic cells) up-regulated CCR9(+)T cells, which were observed to express high levels of IFN-γ in the presence of Th1/Th17 conditions. Retinoic acid-monocyte-derived dendritic cells, under Th17 conditions, also favored the induction of IL-17(+) T cells. Furthermore, in the presence of TGF-β1 and IL-4, retinoic acid-monocyte-derived dendritic cells inhibited IL-9 and induced IFN-γ expression on T cells. Experiments with naïve CD4(+) T cells, activated in the presence of Th1/Th17 conditions and absence of DCs, indicated that retinoic acid inhibited IFN-γ and IL-17 expression on T cells. These data revealed that in the face of inflammatory conditions, retinoic acid, in contrast from its anti-inflammatory role, could maintain or aggravate the intestinal inflammation. PMID:26980802

  5. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    PubMed Central

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S.

    2015-01-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Research in context Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for

  6. Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time.

    PubMed

    Müllner, Fiona E; Wierenga, Corette J; Bonhoeffer, Tobias

    2015-08-01

    Inhibition plays a fundamental role in controlling neuronal activity in the brain. While perisomatic inhibition has been studied in detail, the majority of inhibitory synapses are found on dendritic shafts and are less well characterized. Here, we combine paired patch-clamp recordings and two-photon Ca(2+) imaging to quantify inhibition exerted by individual GABAergic contacts on hippocampal pyramidal cell dendrites. We observed that Ca(2+) transients from back-propagating action potentials were significantly reduced during simultaneous activation of individual nearby inhibitory contacts. The inhibition of Ca(2+) transients depended on the precise spike-timing (time constant < 5 ms) and declined steeply in the proximal and distal direction (length constants 23-28 μm). Notably, Ca(2+) amplitudes in spines were inhibited to the same degree as in the shaft. Given the known anatomical distribution of inhibitory synapses, our data suggest that the collective inhibitory input to a pyramidal cell is sufficient to control Ca(2+) levels across the entire dendritic arbor with micrometer and millisecond precision. PMID:26247864

  7. Am80 inhibits stromal cell-derived factor-1-induced chemotaxis in T-cell acute lymphoblastic leukemia cells.

    PubMed

    Matsumoto, Taichi; Jimi, Shiro; Hara, Shuuji; Takamatsu, Yasushi; Suzumiya, Junji; Tamura, Kazuo

    2010-03-01

    C-X-C motif chemokine receptor 4 (CXCR4) and stromal cell-derived factor-1 (SDF-1) play a potent role in metastasis and infiltration of many types of tumors, including T-cell acute lymphoblastic leukemia (T-ALL), into the central nervous system or lymph nodes. Although higher levels of CXCR4 expression have been shown to correlate with shorter survival of patients, effective drugs affecting cell surface CXCR4 expression are still unknown. In the present study, we examined the effects of a synthetic retinoid Am80 on CXCR4 expression of cultured T-ALL cells, such as Jurkat. Am80 inhibited surface CXCR4 expression and SDF-1-induced chemotaxis by the acceleration of CXCR4 internalization via activation of conventional PKC. Am80 may be an effective drug to inhibit the extramedullary infiltration of T-ALL cells. PMID:20141446

  8. Dynamics of fast and slow inhibition from cerebellar Golgi cells allow flexible control of synaptic integration

    PubMed Central

    Crowley, John J.; Fioravante, Diasynou; Regehr, Wade G.

    2011-01-01

    Throughout the brain, multiple interneuron types influence distinct aspects of synaptic processing. Interneuron diversity can thereby promote differential firing from neurons receiving common excitation. In contrast, Golgi cells are the sole interneurons regulating granule cell spiking evoked by mossy fibers, thereby gating inputs to the cerebellar cortex. Here, we examine how this single interneuron type modifies activity in its targets. We find that GABAA-mediated transmission at unitary Golgi cell → granule cell synapses consists of varying contributions of fast synaptic currents and sustained inhibition. Fast IPSCs depress and slow IPSCs gradually build during high frequency Golgi cell activity. Consequently, fast and slow inhibition differentially influence granule cell spike timing during persistent mossy fiber input. Furthermore, slow inhibition reduces the gain of the mossy fiber → granule cell input-output curve, while fast inhibition increases the threshold. Thus, a lack of interneuron diversity need not prevent flexible inhibitory control of synaptic processing. PMID:19778512

  9. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  10. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  11. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells

    PubMed Central

    Chen, Shuangshuang; Zhao, Shuang; Wang, Xinxing; Zhang, Luo; Jiang, Enze; Gu, Yuan; Shangguan, Anna Junjie; Zhao, Hong

    2015-01-01

    Background Crocin is the major constituent of saffron, a naturally derived Chinese medicine obtained from the dried stigma of the Crocus sativus flower. It has a variety of pharmacological effects, including anti-oxidative, immunity enhancement, and anti-tumorigenic properties; however, the molecular mechanisms underlying these effects remain unknown. Methods To investigate the effects of crocin on proliferation and apoptosis of lung adenocarcinoma cells, lung adenocarcinoma cell lines, A549 and SPC-A1, were treated with crocin at different dosages. Cell morphological changes were observed by light microscopy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the inhibitory effect of crocin on cell proliferation and sensitivity to chemotherapeutic drugs. Flow cytometry was used to characterize cell apoptosis and cell cycle profiles. Reverse transcription-polymerase chain reaction was used to detect mRNA levels of apoptosis-related genes. Results Crocin inhibited cell proliferation and induced apoptosis in A549 and SPC-A1 cells in a concentration-dependent manner, accompanied with an increase of G0/G1 arrest. Crocin significantly increased the mRNA levels of both p53 and B-cell lymphoma 2-associated X protein (Bax), while decreasing B-cell lymphoma 2 (Bcl-2) mRNA expressions. In addition, crocin combined with either cisplatin or pemetrexed showed additive effects on cell proliferation in two lung cancer cell lines. Conclusions Crocin significantly suppressed the proliferation of human lung adenocarcinoma cells and enhanced the chemo sensitivity of these cells to both cisplatin and pemetrexed. The actions of molecular mechanism could be through the induction of cell cycle arrest and apoptosis by p53 and Bax up-regulation but Bcl-2 down-regulation. PMID:26798587

  12. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  13. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    SciTech Connect

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  14. Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells

    SciTech Connect

    Elbaz, Hosam A.; Stueckle, Todd A.; Wang, Hua-Yu Leo; O'Doherty, George A.; Lowry, David T.; Sargent, Linda M.; Wang, Liying; Dinu, Cerasela Zoica; Rojanasakul, Yon

    2012-01-01

    Mechanisms of digitoxin-inhibited cell growth and induced apoptosis in human non-small cell lung cancer (NCI-H460) cells remain unclear. Understanding how digitoxin or derivate analogs induce their cytotoxic effect below therapeutically relevant concentrations will help in designing and developing novel, safer and more effective anti-cancer drugs. In this study, NCI-H460 cells were treated with digitoxin and a synthetic analog D6-MA to determine their anti-cancer activity. Different concentrations of digitoxin and D6-MA were used and the subsequent changes in cell morphology, viability, cell cycle, and protein expressions were determined. Digitoxin and D6-MA induced dose-dependent apoptotic morphologic changes in NCI-H460 cells via caspase-9 cleavage, with D6-MA possessing 5-fold greater potency than digitoxin. In comparison, non-tumorigenic immortalized bronchial and small airway epithelial cells displayed significantly less apoptotic sensitivity compared to NCI-H460 cells suggesting that both digitoxin and D6-MA were selective for NSCLC. Furthermore, NCI-H460 cells arrested in G(2)/M phase following digitoxin and D6-MA treatment. Post-treatment evaluation of key G2/M checkpoint regulatory proteins identified down-regulation of cyclin B1/cdc2 complex and survivin. Additionally, Chk1/2 and p53 related proteins experienced down-regulation suggesting a p53-independent cell cycle arrest mechanism. In summary, digitoxin and D6-MA exert anti-cancer effects on NCI-H460 cells through apoptosis or cell cycle arrest, with D6-MA showing at least 5-fold greater potency relative to digitoxin. -- Highlights: ► Digitoxin and synthetic analog D6-MA induced apoptotic morphologic changes in NCI-H460 cells in a dose-dependent manner. ► Apoptotic cell death induced by analog was 5-fold more potent when compared to digitoxin. ► NCI-H460 cells arrested in G(2)/M phase following digitoxin (≥ 5 nM) and analog (≥ 1 nM) treatment. ► Digitoxin inhibited the expression of cyclin

  15. Effect of dicycloplatin, a novel platinum chemotherapeutical drug, on inhibiting cell growth and inducing cell apoptosis.

    PubMed

    Li, Guang-quan; Chen, Xing-gui; Wu, Xing-ping; Xie, Jing-dun; Liang, Yong-ju; Zhao, Xiao-qin; Chen, Wei-qiang; Fu, Li-wu

    2012-01-01

    Dicycloplatin, a new supramolecular platinum-based antitumor drug, has been approved by the State Food and Administration (SFDA) of China. In this study, we investigated the anticancer activity of dicycloplatin in cancer cells and signaling pathways involved in dicycloplatin-induced apoptosis. Dicycloplatin inhibited the proliferation of cancer cells and increased the percentage of apoptosis in a concentration-dependent manner. Besides, some apoptosis related events were observed after treatment with dicycloplatin, including increase of reactive oxygen species (ROS), collapse of mitochondrial membrane potential (Δψm), release of cytochrome c from the mitochondria to the cytosol, upregulation of p53, which were accompanied by activation of caspase-9, caspase-3, caspase-8, and poly (ADP-ribose) polymerase cleavage in a concentration-dependent manner. The role of apoptosis in dicycloplatin-mediated cell death was further confirmed by the concomitant treatment with caspase-8 or caspase-9 inhibitors, which inhibited apoptosis and PARP cleavage. Intracellular glutathione (GSH) was also found to inhibit the cytotoxic effect of dicycloplatin. In conclusion, these findings suggest that dicycloplatin induces apoptosis through ROS stress-mediated death receptor pathway and mitochondrial pathway which is similar to carboplatin. PMID:23152837

  16. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE

  17. Development of JNK2-Selective Peptide Inhibitors that Inhibit Breast Cancer Cell Migration

    PubMed Central

    Kaoud, Tamer S.; Mitra, Shreya; Lee, Sunbae; Taliaferro, Juliana; Cantrell, Michael; Linse, Klaus D.; Van Den Berg, Carla L.; Dalby, Kevin N.

    2012-01-01

    Despite their lack of selectivity towards c-Jun N-terminal kinase (JNK) isoforms, peptides derived from the JIP (JNK Interacting Protein) scaffolds linked to the cell-penetrating peptide TAT are widely used to investigate JNK-mediated signaling events. To engineer an isoform-selective peptide inhibitor, several JIP-based peptide sequences were designed and tested. A JIP sequence connected through a flexible linker to either the N-terminus of an inverted TAT sequence (JIP10-Δ-TATi), or to a poly-arginine sequence (JIP10-Δ-R9) enabled the potent inhibition of JNK2 (IC50~90 nM) and exhibited 10-fold selectivity for JNK2 over JNK1 and JNK3. Examination of both peptides in HEK293 cells revealed a potent ability to inhibit the induction of both JNK activation and c-Jun phosphorylation in cells treated with anisomycin. Notably, Western blot analysis indicates that only a fraction of total JNK must be activated to elicit robust c-Jun phosphorylation. To examine the potential of each peptide to selectively modulate JNK2 signaling in vivo, their ability to inhibit the migration of Polyoma Middle-T Antigen Mammary Tumor (PyVMT) cells was assessed. PyVMTjnk2-/- cells exhibit a lower migration potential compared to PyVMTjnk2+/+ cells, and this migration potential is restored through the over-expression of GFP-JNK2α. Both JIP10-Δ-TATi and JIP10-Δ-R9 inhibit the migration of PyVMTjnk2+/+ cells and PyVMTjnk2-/- cells expressing GFP-JNK2α. However, neither peptide inhibits the migration of PyVMTjnk2-/- cells. A control form of JIP10-Δ-TATi containing a single leucine to arginine mutation lacks ability to inhibit JNK2 in vitro cell-free and cell-based assays and does not inhibit the migration of PyVMTjnk2+/+ cells. Together, these data suggest that JIP10-Δ-TATi and JIP10-Δ-R9 inhibit the migration of PyVMT cells through the selective inhibition of JNK2. Finally, the mechanism of inhibition of a D-retro-inverso JIP peptide, previously reported to inhibit JNK, was examined

  18. Contact-Inhibited Revertant Cell Lines Isolated from Simian Virus 40-Transformed Cells III. Concanavalin A-Selected Revertant Cells

    PubMed Central

    Culp, Lloyd A.; Black, Paul H.

    1972-01-01

    Contact-inhibited variants have been isolated by treatment of simian virus 40 (SV40)-transformed Balb/c 3T3 cells (SVT2) with the plant lectin concanavalin A. These con A revertant cells exhibit the following properties: (i) they resemble 3T3 cells morphologically and grow to saturation densities which are similar to that of 3T3 cells; (ii) they synthesize the SV40-specific T antigen and yield infectious virus after fusion with permissive monkey cells; (iii) they contain a high sialic acid content similar to that of 3T3 cells and not to that of SVT2 cells; sialic acid composition was found to be independent of serum concentration; (iv) they contain more chromosomes with the average number in the tetraploid range than the SVT2 cells from which they were derived; and (v) SVT2 and revertant cells, confluent or subconfluent, produce more collagen than Balb/3T3 cells. The relationship of surface membrane properties to contact inhibition of growth and the mechanisms for generating revertant cells are discussed. Images PMID:4336561

  19. Knockdown of DDX46 inhibits proliferation and induces apoptosis in esophageal squamous cell carcinoma cells.

    PubMed

    Li, Bin; Li, Yu-Min; He, Wen-Ting; Chen, Hao; Zhu, Hong-Wen; Liu, Tao; Zhang, Jian-Hua; Song, Tie-Niu; Zhou, Ya-Li

    2016-07-01

    Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal carcinoma and remains the leading cause of cancer-related death worldwide. DEAD-box RNA helicases play critical roles in cellular metabolism and in many cases have been implicated in cellular proliferation and neoplastic transformation. DDX46 belongs to DEAD-box helicase family, the expression pattern of DDX46 in ESCC tissues and the biologic role in ESCC progression have not been implicated previously. In this study, DDX46 expression in human ESCC and adjacent normal tissues were explored using immunohistochemistry, and ESCC cell lines compared with normal esophageal epithelium cell were quantified using real‑time PCR. Next, lentivirus-mediated RNA interference was applied to silence DDX46 in TE-1 and Eca-109 cells. Cell growth was monitored using high content screening. Cell viability was measured by MTT assay. Cell colony-forming capacity was measured by colony formation assay. Cell cycle progression and apoptosis were determined by flow cytometry. Further, the stress and apoptosis signaling antibody array kit was used to detect the changes of signaling molecules in TE-1 cells after DDX46 knockdown. We found that DDX46 was significantly upregulated in ESCC tissues and cells compared with normal tissues and cells. DDX46 knockdown led to decreased proliferation and increased apoptosis in TE-1 and Eca-109 cells. Moreover, DDX46 silencing resulted in apoptotic induction via decreased phosphorylation of Akt and IκBα, as well as negative regulation of NF-κB signaling. In conclusion, these results demonstrate that DDX46 knockdown inhibited cell growth, and induced apoptosis, suggest that DDX46 is critical for ESCC cells proliferation. In addition, this study provides a foundation for further study into the clinical potential diagnosis and novel therapeutic target for ESCC. PMID:27176873

  20. Proteasome dysfunction inhibits surfactant protein gene expression in lung epithelial cells: mechanism of inhibition of SP-B gene expression.

    PubMed

    Das, Aparajita; Boggaram, Vijayakumar

    2007-01-01

    Surfactant proteins maintain lung function through their actions to reduce alveolar surface tension and control of innate immune responses in the lung. The ubiquitin proteasome pathway is responsible for the degradation of majority of intracellular proteins in eukaryotic cells, and proteasome dysfunction has been linked to the development of neurodegenerative, cardiac, and other diseases. Proteasome function is impaired in interstitial lung diseases associated with surfactant protein C (SP-C) mutation mapping to the BRICHOS domain located in the proSP-C protein. In this study we determined the effects of proteasome inhibition on surfactant protein expression in H441 and MLE-12 lung epithelial cells to understand the relationship between proteasome dysfunction and surfactant protein gene expression. Proteasome inhibitors lactacystin and MG132 reduced the levels of SP-A, SP-B, and SP-C mRNAs in a concentration-dependent manner in H441 and MLE-12 cells. In H441 cells, lactacystin and MG132 inhibition of SP-B mRNA was associated with similar decreases in SP-B protein, and the inhibition was due to inhibition of gene transcription. Proteasome inhibitors decreased thyroid transcription factor-1 (TTF-1)/Nkx2.1 DNA binding activity, and the reduced TTF-1 DNA binding activity was due to reduced expression levels of TTF-1 protein. These data indicated that the ubiquitin proteasome pathway is essential for the maintenance of surfactant protein gene expression and that disruption of this pathway inhibits surfactant protein gene expression via reduced expression of TTF-1 protein. PMID:16905641

  1. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    SciTech Connect

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.; Chang, Michelle E.; Ata, Muhammad O.; Yusuf, Nabiha

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.

  2. Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells.

    PubMed

    Mou, Hongmei; Vinarsky, Vladimir; Tata, Purushothama Rao; Brazauskas, Karissa; Choi, Soon H; Crooke, Adrianne K; Zhang, Bing; Solomon, George M; Turner, Brett; Bihler, Hermann; Harrington, Jan; Lapey, Allen; Channick, Colleen; Keyes, Colleen; Freund, Adam; Artandi, Steven; Mense, Martin; Rowe, Steven; Engelhardt, John F; Hsu, Ya-Chieh; Rajagopal, Jayaraj

    2016-08-01

    Functional modeling of many adult epithelia is limited by the difficulty in maintaining relevant stem cell populations in culture. Here, we show that dual inhibition of SMAD signaling pathways enables robust expansion of primary epithelial basal cell populations. We find that TGFβ/BMP/SMAD pathway signaling is strongly activated in luminal and suprabasal cells of several epithelia, but suppressed in p63+ basal cells. In airway epithelium, SMAD signaling promotes differentiation, and its inhibition leads to stem cell hyperplasia. Using dual SMAD signaling inhibition in a feeder-free culture system, we have been able to expand airway basal stem cells from multiple species. Expanded cells can produce functional airway epithelium physiologically responsive to clinically relevant drugs, such as CFTR modulators. This approach is effective for the clonal expansion of single human cells and for basal cell populations from epithelial tissues from all three germ layers and therefore may be broadly applicable for modeling of epithelia. PMID:27320041

  3. Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells.

    PubMed

    Tan, Si; Guan, Xin; Grün, Christoph; Zhou, Zhiqin; Schepers, Ute; Nick, Peter

    2015-12-25

    Cancer cells divide rapidly, providing medical targets for anticancer agents. The polyphenolic gallic acid (GA) is known to be toxic for certain cancer cells. However, the cellular mode of action has not been elucidated. Therefore, the current study addressed a potential effect of GA on the mitosis of cancer cells. GA inhibited viability of HeLa cells in a dose-dependent and time-dependent manner. We could show, using fluorescence-activated cell sorting (FACS), that this inhibition was accompanied by elevated frequency of cells arrested at the G2/M transition. This cell-cycle arrest was accompanied by mitotic catastrophe, and formation of cells with multiple nuclei. These aberrations were preceded by impaired centrosomal clustering. We arrive at a model of action, where GA inhibits the progression of the cell cycle at the G2/M phase by impairing centrosomal clustering which will stimulate mitotic catastrophe. Thus, GA has potential as compound against cervical cancer. PMID:26368671

  4. Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell cycle arrest.

    PubMed

    Lin, Minghe; Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Cai, Qiaoyan; Peng, Jun; Zhu, Dezeng

    2012-08-01

    Hedyotis diffusa Willd (HDW) has long been used as an important component in several Chinese medicine formulae to clinically treat various types of cancer, including colorectal cancer (CRC). Previously, we reported that HDW inhibits CRC growth via the induction of cancer cell apoptosis and the inhibition of tumor angiogenesis. In the present study, to further elucidate the mechanism of HDW-mediated antitumor activity, we investigated the effect of HDW ethanol extract (EEHDW) on the proliferation of HT-29 human colon carcinoma cells. We found that EEHDW reduced HT-29 cell viability and survival in a dose- and time-dependent manner. We also observed that EEHDW treatment blocked the cell cycle, preventing G1 to S progression, and reduced mRNA expression of pro-proliferative PCNA, Cyclin D1 and CDK4, but increased that of anti-proliferative p21. Our findings suggest that Hedyotis diffusa Willd may be an effective treatment for CRC via the suppression of cancer cell proliferation. PMID:23139718

  5. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines

    SciTech Connect

    Crawford, M.; Brawner, E.; Batte, K.; Yu, L.; Hunter, M.G.; Otterson, G.A.; Nuovo, G.; Marsh, C.B.; Nana-Sinkam, S.P.

    2008-09-05

    Crk is a member of a family of adaptor proteins that are involved in intracellular signal pathways altering cell adhesion, proliferation, and migration. Increased expression of Crk has been described in lung cancer and associated with increased tumor invasiveness. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21-25 nt long) that are capable of targeting genes for either degradation of mRNA or inhibition of translation. Crk is a predicted putative target gene for miR-126. Over-expression of miR126 in a lung cancer cell line resulted in a decrease in Crk protein without any alteration in the associated mRNA. These lung cancer cells exhibit a decrease in adhesion, migration, and invasion. Decreased cancer cell invasion was also evident following targeted knockdown of Crk. MiR-126 alters lung cancer cell phenotype by inhibiting adhesion, migration, and invasion and the effects on invasion may be partially mediated through Crk regulation.

  6. Lentivirus-Mediated Knockdown of Myosin VI Inhibits Cell Proliferation of Breast Cancer Cell.

    PubMed

    Wang, Hong; Wang, Biyun; Zhu, Wei; Yang, Ziang

    2015-10-01

    Myosin VI (MYO6) is a unique member of the myosin superfamily, and almost no experimental studies link MYO6 to tumorigenesis of breast cancer. However, previous microarray data demonstrated that MYO6 was frequently overexpressed in breast cancer tissues. In this study, to further develop its role in breast cancer, endogenous expression of MYO6 was significantly inhibited in breast cancer ZR-75-30 and MDA-MB-231 cells using lentivirus-mediated RNA interference. Quantitative polymerase chain reaction and western blot were applied to detect the expression level of MYO6. Cell viability of both cell lines was measured by methylthiazol tetrazolium and colony formation assays. Besides, cell cycle assay was utilized to acquire the distribution information of cell phase. The results demonstrated that knockdown of MYO6 markedly reduced cell viability and colony formation, as well as suppressed cell cycle progression in breast cancer cells. The results suggested that MYO6 played a vital role in breast cancer cells and might provide useful information for diagnosis and therapy of human breast cancer in future. PMID:26407123

  7. Müllerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics

    PubMed Central

    Wei, Xiaolong; Dombkowski, David; Meirelles, Katia; Pieretti-Vanmarcke, Rafael; Szotek, Paul P.; Chang, Henry L.; Preffer, Frederic I.; Mueller, Peter R.; Teixeira, Jose; MacLaughlin, David T.; Donahoe, Patricia K.

    2010-01-01

    Cancer stem cells are proposed to be tumor-initiating cells capable of tumorigenesis, recurrence, metastasis, and drug resistance, and, like somatic stem cells, are thought to be capable of unlimited self-renewal and, when stimulated, proliferation and differentiation. Here we select cells by expression of a panel of markers to enrich for a population with stem cell-like characteristics. A panel of eight was initially selected from 95 human cell surface antigens as each was shared among human ovarian primary cancers, ovarian cancer cell lines, and normal fimbria. A total of 150 combinations of markers were reduced to a panel of three—CD44, CD24, and Epcam—which selected, in three ovarian cancer cell lines, those cells which best formed colonies. Cells expressing CD44, CD24, and Epcam exhibited stem cell characteristics of shorter tumor-free intervals in vivo after limiting dilution, and enhanced migration in invasion assays in vitro. Also, doxorubicin, cisplatin, and paclitaxel increased this enriched population which, conversely, was significantly inhibited by Müllerian inhibiting substance (MIS) or the MIS mimetic SP600125. These findings demonstrate that flow cytometry can be used to detect a population which shows differential drug sensitivity, and imply that treatment of patients can be individualized to target both stem/progenitor cell enriched and nonenriched subpopulations. The findings also suggest that this population, amenable to isolation by flow cytometry, can be used to screen for novel treatment paradigms, including biologic agents such as MIS, which will improve outcomes for patients with ovarian cancer. PMID:20952655

  8. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells

    PubMed Central

    Chen, T-Y; Syu, J-S; Lin, T-C; Cheng, H-l; Lu, F-l; Wang, C-Y

    2015-01-01

    The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT. PMID:26690546

  9. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    PubMed

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively. PMID:26453119

  10. FK506 inhibition of histamine release and cytokine production by mast cells and basophils.

    PubMed

    Sengoku, T; Kishi, S; Sakuma, S; Ohkubo, Y; Goto, T

    2000-03-01

    Histamine release and cytokine production by mast cells and basophils are thought to be closely involved in the pathogenesis of allergic diseases. Some reports show that FK506 (tacrolimus hydrate) inhibited histamine release and cytokine production by mast cells and basophils. However, as the effects of FK506 has not been compared with those of clinically used drugs in those reports, the clinical relevancy of FK506 inhibition remained unclear. In this paper, we compared the actions of FK506 with those of steroids or disodium cromoglycate (DSCG) which has been clinically used. FK506 inhibited histamine release by Brown-Norway rat peritoneal mast cells more potently than steroids and especially DSCG. FK506 also inhibited histamine release by a mast rat basophilic leukemia (RBL)-1 cell line and human peripheral blood basophils, whereas steroids failed to inhibit histamine release by human basophils. FK506 as well as steroids inhibited TNF-alpha and IL-4 production by RBL-1 cells. FK506 was therefore more effective than steroids and DSCG in inhibiting histamine release, and it also had the ability of inhibiting cytokine production by mast cells as steroids do. We concluded that FK506 might regulate allergic diseases via these actions, judging from the viewpoint of clinical relevancy. PMID:10685002

  11. Pharmacological inhibition of Rho-kinase (ROCK) signaling enhances cisplatin resistance in neuroblastoma cells.

    PubMed

    Street, Catharine A; Routhier, Alissa A; Spencer, Carrie; Perkins, Ashley L; Masterjohn, Katherine; Hackathorn, Alexander; Montalvo, John; Dennstedt, Emily A; Bryan, Brad A

    2010-11-01

    The role of the RhoA/Rho kinase (ROCK) signaling pathway in cell survival remains a very controversial issue, with its activation being pro-apoptotic in many cell types and anti-apoptotic in others. To test if ROCK inhibition contributes to tumor cell survival or death following chemotherapy, we treated cisplatin damaged neuroblastoma cells with a pharmacological ROCK inhibitor (Y27632) or sham, and monitored cell survival, accumulation of a chemoresistant phenotype, and in vivo tumor formation. Additionally, we assayed if ROCK inhibition altered the expression of genes known to be involved in cisplatin resistance. Our studies indicate that ROCK inhibition results in increased cell survival, acquired chemoresistance, and enhanced tumor survival following cisplatin cytotoxicity, due in part to altered expression of cisplatin resistance genes. These findings suggest that ROCK inhibition in combination with cisplatin chemotherapy may lead to enhanced tumor chemoresistance in neuroblastoma. PMID:20878077

  12. Pharmacological inhibition of Rho-kinase (ROCK) signaling enhances cisplatin resistance in neuroblastoma cells

    PubMed Central

    STREET, CATHARINE A.; ROUTHIER, ALISSA A.; SPENCER, CARRIE; PERKINS, ASHLEY L.; MASTERJOHN, KATHERINE; HACKATHORN, ALEXANDER; MONTALVO, JOHN; DENNSTEDT, EMILY A.; BRYAN, BRAD A.

    2011-01-01

    The role of the RhoA/Rho kinase (ROCK) signaling pathway in cell survival remains a very controversial issue, with its activation being pro-apoptotic in many cell types and anti-apoptotic in others. To test if ROCK inhibition contributes to tumor cell survival or death following chemotherapy, we treated cisplatin damaged neuroblastoma cells with a pharmacological ROCK inhibitor (Y27632) or sham, and monitored cell survival, accumulation of a chemoresistant phenotype, and in vivo tumor formation. Additionally, we assayed if ROCK inhibition altered the expression of genes known to be involved in cisplatin resistance. Our studies indicate that ROCK inhibition results in increased cell survival, acquired chemoresistance, and enhanced tumor survival following cisplatin cytotoxicity, due in part to altered expression of cisplatin resistance genes. These findings suggest that ROCK inhibition in combination with cisplatin chemotherapy may lead to enhanced tumor chemoresistance in neuroblastoma. PMID:20878077

  13. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma.

    PubMed

    Venkataraman, Sujatha; Alimova, Irina; Balakrishnan, Ilango; Harris, Peter; Birks, Diane K; Griesinger, Andrea; Amani, Vladimir; Cristiano, Brian; Remke, Marc; Taylor, Michael D; Handler, Michael; Foreman, Nicholas K; Vibhakar, Rajeev

    2014-05-15

    Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo. PMID:24796395

  14. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells.

    PubMed

    Yue, Zhiqiang; Wang, Aiyun; Zhu, Zhijie; Tao, Li; Li, Yao; Zhou, Liang; Chen, Wenxing; Lu, Yin

    2015-12-01

    P-selectin-mediated tumor cell adhesion to platelets is a well-established stage in the process of tumor metastasis. Through computerized structural analysis, we found a marine-derived polysaccharide, holothurian glycosaminoglycan (hGAG), behaved as a ligand-competitive inhibitor of P-selectin, indicating its potential to disrupt the binding of P-selectin to cell surface receptor and activation of downstream regulators of tumor cell migration. Our experimental data demonstrated that hGAG significantly inhibited P-selectin-mediated adhesion of tumor cells to platelets and tumor cell migration in vitro and reduced subsequent pulmonary metastasis in vivo. Furthermore, abrogation of the P-selectin-mediated adhesion of tumor cells led to down-regulation of protein levels of integrins, FAK and MMP-2/9 in B16F10 cells, which is a crucial molecular mechanism of hGAG to inhibit tumor metastasis. In conclusion, hGAG has emerged as a novel anti-cancer agent via blocking P-selectin-mediated malignant events of tumor metastasis. PMID:26318439

  15. Functional inhibition in direction-selective retinal ganglion cells: spatiotemporal extent and intralaminar interactions.

    PubMed

    Stasheff, Steven F; Masland, Richard H

    2002-08-01

    We recorded from ON-OFF direction-selective ganglion cells (DS cells) in the rabbit retina to investigate in detail the inhibition that contributes to direction selectivity in these cells. Using paired stimuli moving sequentially across the cells' receptive fields in the preferred direction, we directly confirmed the prediction of that a wave of inhibition accompanies any moving excitatory stimulus on its null side, at a fixed spatial offset. Varying the interstimulus distance, stimulus size, luminance, and speed yielded a spatiotemporal map of the strength of inhibition within this region. This "null" inhibition was maximal at an intermediate distance behind a moving stimulus: 1/2 to 11/2 times the width of the receptive field. The strength of inhibition depended more on the distance behind the stimulus than on stimulus speed, and the inhibition often lasted 1-2 s. These spatial and temporal parameters appear to account for the known spatial frequency and velocity tuning of ON-OFF DS cells to drifting contrast gratings. Stimuli that elicit distinct ON and OFF responses to leading and trailing edges revealed that an excitatory response of either polarity could inhibit a subsequent response of either polarity. For example, an OFF response inhibited either an ON or OFF response of a subsequent stimulus. This inhibition apparently is conferred by a neural element or network spanning the ON and OFF sublayers of the inner plexiform layer, such as a multistratified amacrine cell. Trials using a stationary flashing spot as a probe demonstrated that the total amount of inhibition conferred on the DS cell was equivalent for stimuli moving in either the null or preferred direction. Apparently the cell does not act as a classic "integrate and fire" neuron, summing all inputs at the soma. Rather, computation of stimulus direction likely involves interactions between excitatory and inhibitory inputs in local regions of the dendrites. PMID:12163551

  16. Capsaicin Inhibits Preferentially the NADH Oxidase and Growth of Transformed Cells in Culture

    NASA Astrophysics Data System (ADS)

    Morre, D. James; Chueh, Pin-Ju; Morre, Dorothy M.

    1995-03-01

    A hormone- and growth factor-stimulated NADH oxidase of the mammalian plasma membrane, constitutively activated in transformed cells, was inhibited preferentially in HeLa, ovarian carcinoma, mammary adenocarcinoma, and HL-60 cells, all of human origin, by the naturally occurring quinone analog capsaicin (8-methyl-N-vanillyl-6-noneamide), compared with plasma membranes from human mammary epithelial, rat liver, normal rat kidney cells, or HL-60 cells induced to differentiate with dimethyl sulfoxide. With cells in culture, capsaicin preferentially inhibited growth of HeLa, ovarian carcinoma, mammary adenocarcinoma, and HL-60 cells but was largely without effect on the mammary epithelial cells, rat kidney cells, or HL-60 cells induced to differentiate with dimethyl sulfoxide. Inhibited cells became smaller and cell death was accompanied by a condensed and fragmented appearance of the nuclear DNA, as revealed by fluorescence microscopy with 4',6-diamidino-2-phenylindole, suggestive of apoptosis. The findings correlate capsaicin inhibition of cell surface NADH oxidase activity and inhibition of growth that correlate with capsaicin-induced apoptosis.

  17. In vitro growth inhibition of human cancer cells by novel honokiol analogs.

    PubMed

    Lin, Jyh Ming; Prakasha Gowda, A S; Sharma, Arun K; Amin, Shantu

    2012-05-15

    Honokiol possesses many pharmacological activities including anti-cancer properties. Here in, we designed and synthesized honokiol analogs that block major honokiol metabolic pathway which may enhance their effectiveness. We studied their cytotoxicity in human cancer cells and evaluated possible mechanism of cell cycle arrest. Two analogs, namely 2 and 4, showed much higher growth inhibitory activity in A549 human lung cancer cells and significant increase of cell population in the G0-G1 phase. Further elucidation of the inhibition mechanism on cell cycle showed that analogs 2 and 4 inhibit both CDK1 and cyclin B1 protien levels in A549 cells. PMID:22533983

  18. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    PubMed

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-01-01

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition. PMID:26393568

  19. Zoledronic acid inhibits pulmonary metastasis dissemination in a preclinical model of Ewing’s sarcoma via inhibition of cell migration

    PubMed Central

    2014-01-01

    Background Ewing’s sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties. Methods Invasion assays were performed in vitro in Boyden’s chambers covered with Matrigel. Matrix Metalloproteinase (MMP) activity was analyzed by zymography in ES cell culture supernatant. In vivo, a relevant model of spontaneous lung metastases which disseminate from primary ES tumor was induced by the orthotopic injection of 106 human ES cells in the tibia medullar cavity of nude mice. The effect of ZA (50 μg/kg, 3x/week) was studied over a 4-week period. Lung metastases were observed macroscopically at autopsy and analysed by histology. Results ZA induced a strong inhibition of ES cell invasion, probably due to down regulation of MMP-2 and −9 activities as analyzed by zymography. In vivo, ZA inhibits the dissemination of spontaneous lung metastases from a primary ES tumor but had no effect on the growth of established lung metastases. Conclusion These results suggest that ZA could be used early in the treatment of ES to inhibit bone tumor growth but also to prevent the early metastatic events to the lungs. PMID:24612486

  20. Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes.

    PubMed Central

    Armstrong, S K; Parr, T R; Parker, C D; Hancock, R E

    1986-01-01

    The major outer membrane protein of molecular weight 40,000 (the 40K protein) of a virulent isolate of Bordetella pertussis was purified to apparent homogeneity. The purified protein formed an oligomer band (of apparent molecular weight 90,000) on sodium dodecyl sulfate-polyacrylamide gels after solubilization at low temperatures. The porin function of this protein was characterized by the black lipid bilayer method. The 40K protein formed channels smaller than all other constitutive major outer membrane porins studied to date. The average single-channel conductance in 1 M KCl was 0.56 nS. This was less than a third of the conductance previously observed for Escherichia coli porins. Zero-current potential measurements made of the porin to determine its ion selectivity revealed the porin to be more than 100-fold selective for anions over cations. The single-channel conductance was measured as a function of salt concentration. The data could be fitted to a Lineweaver-Burk plot suggesting an anion binding site with a Kd of 1.17 M Cl- and a maximum possible conductance through the channel of 1.28 nS. Images PMID:2420780

  1. Effects of conjugated and unconjugated bile acids on the activity of the Vibrio cholerae porin OmpT.

    PubMed

    Pagel, Melissa; Delcour, Anne H

    2011-01-01

    During infection, the enteric pathogen Vibrio cholerae encounters a bile-containing environment. Previous studies have shown that bile and/or bile acids exert several effects on the virulence and physiology of the bacterial cells. These observations have led to the suggestion that bile acids may play a signaling role in infection. We have previously reported that the bile component deoxycholic acid blocks the general diffusion porin OmpT in a dose-dependent manner, presumably as it transits through the pore. V. cholerae colonizes the distal jejunum and ileum, where a mixture of various conjugated and unconjugated bile acids are found. In this work, we have used patch clamp electrophysiology to investigate the effects of six bile acids on OmpT. Two bile acids (deoxycholic and chenodeoxycholic acids) were found to block OmpT at physiological concentrations below 1 mM, while glycodeoxycholic acid was mildly effective and cholic, lithocholic and taurodeoxycholic acids were ineffective in this range. The block was also voltage-dependent. These observations suggest the presence of a specific binding site inside the OmpT pore. Since deconjugation is due to the activity of the endogenous flora, the preferential uptake of some unconjugated bile acids by OmpT may signal the presence of a hospitable environment. The results are also discussed in terms of the possible molecular interactions between the penetrating bile acid molecule and the channel wall. PMID:21067451

  2. Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells

    PubMed Central

    Burrack, Kristina S.; Tan, Jeslin J. L.; McCarthy, Mary K.; Her, Zhisheng; Berger, Jennifer N.; Ng, Lisa F. P.; Morrison, Thomas E.

    2015-01-01

    Arthritogenic alphaviruses, including Ross River virus (RRV) and chikungunya virus (CHIKV), are responsible for explosive epidemics involving millions of cases. These mosquito-transmitted viruses cause inflammation and injury in skeletal muscle and joint tissues that results in debilitating pain. We previously showed that arginase 1 (Arg1) was highly expressed in myeloid cells in the infected and inflamed musculoskeletal tissues of RRV- and CHIKV-infected mice, and specific deletion of Arg1 from myeloid cells resulted in enhanced viral control. Here, we show that Arg1, along with other genes associated with suppressive myeloid cells, is induced in PBMCs isolated from CHIKV-infected patients during the acute phase as well as the chronic phase, and that high Arg1 expression levels were associated with high viral loads and disease severity. Depletion of both CD4 and CD8 T cells from RRV-infected Arg1-deficient mice restored viral loads to levels detected in T cell-depleted wild-type mice. Moreover, Arg1-expressing myeloid cells inhibited virus-specific T cells in the inflamed and infected musculoskeletal tissues, but not lymphoid tissues, following RRV infection in mice, including suppression of interferon-γ and CD69 expression. Collectively, these data enhance our understanding of the immune response following arthritogenic alphavirus infection and suggest that immunosuppressive myeloid cells may contribute to the duration or severity of these debilitating infections. PMID:26436766

  3. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    SciTech Connect

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-08-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR.

  4. Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells.

    PubMed

    Burrack, Kristina S; Tan, Jeslin J L; McCarthy, Mary K; Her, Zhisheng; Berger, Jennifer N; Ng, Lisa F P; Morrison, Thomas E

    2015-10-01

    Arthritogenic alphaviruses, including Ross River virus (RRV) and chikungunya virus (CHIKV), are responsible for explosive epidemics involving millions of cases. These mosquito-transmitted viruses cause inflammation and injury in skeletal muscle and joint tissues that results in debilitating pain. We previously showed that arginase 1 (Arg1) was highly expressed in myeloid cells in the infected and inflamed musculoskeletal tissues of RRV- and CHIKV-infected mice, and specific deletion of Arg1 from myeloid cells resulted in enhanced viral control. Here, we show that Arg1, along with other genes associated with suppressive myeloid cells, is induced in PBMCs isolated from CHIKV-infected patients during the acute phase as well as the chronic phase, and that high Arg1 expression levels were associated with high viral loads and disease severity. Depletion of both CD4 and CD8 T cells from RRV-infected Arg1-deficient mice restored viral loads to levels detected in T cell-depleted wild-type mice. Moreover, Arg1-expressing myeloid cells inhibited virus-specific T cells in the inflamed and infected musculoskeletal tissues, but not lymphoid tissues, following RRV infection in mice, including suppression of interferon-γ and CD69 expression. Collectively, these data enhance our understanding of the immune response following arthritogenic alphavirus infection and suggest that immunosuppressive myeloid cells may contribute to the duration or severity of these debilitating infections. PMID:26436766

  5. Coniferyl Aldehyde Attenuates Radiation Enteropathy by Inhibiting Cell Death and Promoting Endothelial Cell Function

    PubMed Central

    Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function. PMID:26029925

  6. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent

    PubMed Central

    Alkasalias, Twana; Flaberg, Emilie; Kashuba, Vladimir; Alexeyenko, Andrey; Pavlova, Tatiana; Savchenko, Andrii; Szekely, Laszlo; Klein, George; Guven, Hayrettin

    2014-01-01

    Normal human and murine fibroblasts can inhibit proliferation of tumor cells when cocultured in vitro. The inhibitory capacity varies depending on the donor and the site of origin of the fibroblast. We showed previously that effective inhibition requires formation of a morphologically intact fibroblast monolayer before seeding of the tumor cells. Here we show that inhibition is extended to motility of tumor cells and we dissect the factors responsible for these inhibitory functions. We find that inhibition is due to two different sets of molecules: (i) the extracellular matrix (ECM) and other surface proteins of the fibroblasts, which are responsible for contact-dependent inhibition of tumor cell proliferation; and (ii) soluble factors secreted by fibroblasts when confronted with tumor cells (confronted conditioned media, CCM) contribute to inhibition of tumor cell proliferation and motility. However, conditioned media (CM) obtained from fibroblasts alone (nonconfronted conditioned media, NCM) did not inhibit tumor cell proliferation and motility. In addition, quantitative PCR (Q-PCR) data show up-regulation of proinflammatory genes. Moreover, comparison of CCM and NCM with an antibody array for 507 different soluble human proteins revealed differential expression of growth differentiation factor 15, dickkopf-related protein 1, endothelial-monocyte-activating polypeptide II, ectodysplasin A2, Galectin-3, chemokine (C-X-C motif) ligand 2, Nidogen1, urokinase, and matrix metalloproteinase 3. PMID:25404301

  7. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin

    PubMed Central

    TIAN, XUEWEN; LI, YUJIAN; SHEN, YINYU; LI, QIAOQIAO; WANG, QINGLU; FENG, LIANSHI

    2015-01-01

    Cordycepin, a 3-deoxyadenosine, is the predominant functional component of the fungus Cordyceps militaris, a traditional Chinese medicine. Previous studies investigating the inhibition of cancer cells by cordycepin identified that it not only promotes cell apoptosis, but also controls cell proliferation. Furthermore, studies have elucidated the molecular mechanisms of inhibiting cell proliferation by cordycepin binding the A3 adenosine receptor, activating G protein, inhibiting cAMP formation, decreasing glycogen synthase kinase-3β/β-catenin activation and suppressing cyclin D1 and c-myc expression. The most significant signaling pathway in which cell apoptosis is induced by cordycepin is the caspase pathway. Cordycepin induces cell apoptosis via binding the DR3 receptor and consequently activating caspase-8/-3. Taken together, these studies demonstrate that cordycepin may be used as a natural medicine, as it can not only control tumor cell proliferation, but also induce cancer cell apoptosis. PMID:26622539

  8. L-Asparaginase II Produced by Salmonella Typhimurium Inhibits T Cell Responses and Mediates Virulence

    PubMed Central

    Kullas, Amy L.; McClelland, Michael; Yang, Hee-Jeong; Tam, Jason W.; Torres, AnnMarie; Porwollik, Steffen; Mena, Patricio; McPhee, Joseph B.; Bogomolnaya, Lydia; Andrews-Polymenis, Helene; van der Velden, Adrianus W.M.

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium avoids clearance by the host immune system by suppressing T cell responses; however, the mechanisms that mediate this immunosuppression remain unknown. We show that S. Typhimurium inhibit T cell responses by producing L-Asparaginase II, which catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production, and proliferation and to downmodulate expression of the T cell receptor. Furthermore, S. Typhimurium-induced inhibition of T cells in vitro is prevented upon addition of L-asparagine. S. Typhimurium lacking the L-Asparaginase II gene (STM3106) are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-Asparaginases are used to treat acute lymphoblastic leukemia through mechanisms that likely involve amino acid starvation of leukemic cells, and these findings indicate that pathogens similarly use L-asparagine deprivation to limit T cell responses. PMID:23245323

  9. Overexpression of Ref-1 Inhibits Lead-induced Endothelial Cell Death via the Upregulation of Catalase

    PubMed Central

    Lee, Kwon Ho; Lee, Sang Ki; Kim, Hyo Shin; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Eun Ji; Lee, Ji Young; Park, Myoung Soo; Chang, Seok Jong; Cho, Chung-Hyun; Park, Jin Bong

    2009-01-01

    The role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the lead (Pb)-induced cellular response was investigated in the cultured endothelial cells. Pb caused progressive cellular death in endothelial cells, which occurred in a concentration- and time-dependent manner. However, Ref-1 overexpression with AdRef-1 significantly inhibited Pb-induced cell death in the endothelial cells. Also the overexpression of Ref-1 significantly suppressed Pb-induced superoxide and hydrogen peroxide elevation in the endothelial cells. Pb exposure induced the downregulation of catalase, it was inhibited by the Ref-1 overexpression in the endothelial cells. Taken together, our data suggests that the overexpression of Ref-1 inhibited Pb-induced cell death via the upregulation of catalase in the cultured endothelial cells. PMID:20054488

  10. Tankyrase Inhibitor Sensitizes Lung Cancer Cells to Endothelial Growth Factor Receptor (EGFR) Inhibition via Stabilizing Angiomotins and Inhibiting YAP Signaling.

    PubMed

    Wang, Hui; Lu, Bo; Castillo, Johnny; Zhang, Yue; Yang, Zinger; McAllister, Gregory; Lindeman, Alicia; Reece-Hoyes, John; Tallarico, John; Russ, Carsten; Hoffman, Greg; Xu, Wenqing; Schirle, Markus; Cong, Feng

    2016-07-15

    YAP signaling pathway plays critical roles in tissue homeostasis, and aberrant activation of YAP signaling has been implicated in cancers. To identify tractable targets of YAP pathway, we have performed a pathway-based pooled CRISPR screen and identified tankyrase and its associated E3 ligase RNF146 as positive regulators of YAP signaling. Genetic ablation or pharmacological inhibition of tankyrase prominently suppresses YAP activity and YAP target gene expression. Using a proteomic approach, we have identified angiomotin family proteins, which are known negative regulators of YAP signaling, as novel tankyrase substrates. Inhibition of tankyrase or depletion of RNF146 stabilizes angiomotins. Angiomotins physically interact with tankyrase through a highly conserved motif at their N terminus, and mutation of this motif leads to their stabilization. Tankyrase inhibitor-induced stabilization of angiomotins reduces YAP nuclear translocation and decreases downstream YAP signaling. We have further shown that knock-out of YAP sensitizes non-small cell lung cancer to EGFR inhibitor Erlotinib. Tankyrase inhibitor, but not porcupine inhibitor, which blocks Wnt secretion, enhances growth inhibitory activity of Erlotinib. This activity is mediated by YAP inhibition and not Wnt/β-catenin inhibition. Our data suggest that tankyrase inhibition could serve as a novel strategy to suppress YAP signaling for combinatorial targeted therapy. PMID:27231341

  11. Inhibition of Breast Cancer Cell Proliferation and In Vitro Tumorigenesis by a New Red Apple Cultivar

    PubMed Central

    Schiavano, Giuditta Fiorella; De Santi, Mauro; Brandi, Giorgio; Fanelli, Mirco; Bucchini, Anahi; Giamperi, Laura; Giomaro, Giovanna

    2015-01-01

    Purpose The aim of this study was to evaluate the antiproliferative activity in breast cancer cells and the inhibition of tumorigenesis in pre-neoplastic cells of a new apple cultivar with reddish pulp, called the Pelingo apple. Methods The antiproliferative activity was evaluated in MCF-7 and MDA-MB-231 human breast cancer cells. The inhibition of tumorigenesis was performed in JB6 promotion-sensitive (P+) cells. Results Results showed that Pelingo apple juice is characterized by a very high polyphenol content and strongly inhibited breast cancer cell proliferation. Its antiproliferative activity was found to be higher than the other five apple juices tested. Pelingo juice induced cell accumulation in the G2/M phase of the cell cycle and autophagy through overexpression of p21, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) activity and an increase in lipidated microtubule-associated protein-1 light chain-3 beta (LC3B). Remarkably, Pelingo juice inhibited the 12-o-tetra-decanoyl-phorbol-13-acetate (TPA)-induced tumorigenesis of JB6 P+ cells, suppressing colony formation in semi-solid medium and TPA-induced ERK1/2 phosphorylation. Conclusions Our data indicate that the Pelingo apple is rich in food components that can markedly inhibit in vitro tumorigenesis and growth of human breast cancer cells and could provide natural bioactive non-nutrient compounds, with potential chemopreventive activity. PMID:26284516

  12. Inhibition of host cell protein synthesis by UV-inactivated poliovirus.

    PubMed Central

    Helentjaris, T; Ehrenfeld, E

    1977-01-01

    The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell. Images PMID:189067

  13. Sparstolonin B Inhibits Pro-Angiogenic Functions and Blocks Cell Cycle Progression in Endothelial Cells

    PubMed Central

    Bateman, Henry R.; Liang, Qiaoli; Fan, Daping; Rodriguez, Vanessa; Lessner, Susan M.

    2013-01-01

    Sparstolonin B (SsnB) is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. Angiogenesis, the process of new capillary formation from existing blood vessels, is dysregulated in many pathological disorders, including diabetic retinopathy, tumor growth, and atherosclerosis. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner. Microarray experiments with human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAECs) demonstrated differential expression of several hundred genes in response to SsnB exposure (916 and 356 genes, respectively, with fold change ≥2, p<0.05, unpaired t-test). Microarray data from both cell types showed significant overlap, including genes associated with cell proliferation and cell cycle. Flow cytometric cell cycle analysis of HUVECs treated with SsnB showed an increase of cells in the G1 phase and a decrease of cells in the S phase. Cyclin E2 (CCNE2) and Cell division cycle 6 (CDC6) are regulatory proteins that control cell cycle progression through the G1/S checkpoint. Both CCNE2 and CDC6 were downregulated in the microarray data. Real Time quantitative PCR confirmed that gene expression of CCNE2 and CDC6 in HUVECs was downregulated after SsnB exposure, to 64% and 35% of controls, respectively. The data suggest that SsnB may exert its anti-angiogenic properties in part by downregulating CCNE2 and CDC6, halting progression through the G1/S checkpoint. In the chick chorioallantoic membrane (CAM) assay, SsnB caused significant reduction in capillary length and branching number relative to the vehicle control group. Overall, SsnB caused a significant reduction in angiogenesis (ANOVA, p<0.05), demonstrating its ex vivo efficacy. PMID:23940584

  14. Sparstolonin B inhibits pro-angiogenic functions and blocks cell cycle progression in endothelial cells.

    PubMed

    Bateman, Henry R; Liang, Qiaoli; Fan, Daping; Rodriguez, Vanessa; Lessner, Susan M

    2013-01-01

    Sparstolonin B (SsnB) is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. Angiogenesis, the process of new capillary formation from existing blood vessels, is dysregulated in many pathological disorders, including diabetic retinopathy, tumor growth, and atherosclerosis. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner. Microarray experiments with human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAECs) demonstrated differential expression of several hundred genes in response to SsnB exposure (916 and 356 genes, respectively, with fold change ≥2, p<0.05, unpaired t-test). Microarray data from both cell types showed significant overlap, including genes associated with cell proliferation and cell cycle. Flow cytometric cell cycle analysis of HUVECs treated with SsnB showed an increase of cells in the G1 phase and a decrease of cells in the S phase. Cyclin E2 (CCNE2) and Cell division cycle 6 (CDC6) are regulatory proteins that control cell cycle progression through the G1/S checkpoint. Both CCNE2 and CDC6 were downregulated in the microarray data. Real Time quantitative PCR confirmed that gene expression of CCNE2 and CDC6 in HUVECs was downregulated after SsnB exposure, to 64% and 35% of controls, respectively. The data suggest that SsnB may exert its anti-angiogenic properties in part by downregulating CCNE2 and CDC6, halting progression through the G1/S checkpoint. In the chick chorioallantoic membrane (CAM) assay, SsnB caused significant reduction in capillary length and branching number relative to the vehicle control group. Overall, SsnB caused a significant reduction in angiogenesis (ANOVA, p<0.05), demonstrating its ex vivo efficacy. PMID:23940584

  15. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis

    SciTech Connect

    Di Paolo, Julie A.; Huang, Tao; Balazs, Mercedesz; Barbosa, James; Barck, Kai H.; Bravo, Brandon J.; Carano, Richard A.D.; Darrow, James; Davies, Douglas R.; DeForge, Laura E.; Diehl, Lauri; Ferrando, Ronald; Gallion, Steven L.; Giannetti, Anthony M.; Gribling, Peter; Hurez, Vincent; Hymowitz, Sarah G.; Jones, Randall; Kropf, Jeffrey E.; Lee, Wyne P.; Maciejewski, Patricia M.; Mitchell, Scott A.; Rong, Hong; Staker, Bart L.; Whitney, J. Andrew; Yeh, Sherry; Young, Wendy B.; Yu, Christine; Zhang, Juan; Reif, Karin; Currie, Kevin S.

    2011-09-20

    Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes Fc{gamma}RIII-induced TNF{alpha}, IL-1{beta} and IL-6 production. Accordingly, in myeloid- and Fc{gamma}R-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.

  16. Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene.

    PubMed Central

    Hwang, E S; Riese, D J; Settleman, J; Nilson, L A; Honig, J; Flynn, S; DiMaio, D

    1993-01-01

    Human papillomavirus (HPV) E6 and E7 oncogenes are expressed in the great majority of human cervical carcinomas, whereas the viral E2 regulatory gene is usually disrupted in these cancers. To investigate the roles of the papillomavirus E2 genes in the development and maintenance of cervical carcinoma, the bovine papillomavirus (BPV) E2 gene was acutely introduced into cervical carcinoma cell lines by infection with high-titer stocks of simian virus 40-based recombinant viruses. Expression of the BPV E2 protein in HeLa, C-4I, and MS751 cells results in specific inhibition of the expression of the resident HPV type 18 (HPV18) E6 and E7 genes and in inhibition of cell growth. HeLa cells, in which HPV gene expression is nearly completely abolished, undergo a dramatic and rapid inhibition of proliferation, which appears to be largely a consequence of a block in progression from the G1 to the S phase of the cell cycle. Loss of HPV18 gene expression in HeLa cells is also accompanied by a marked increase in the level of the cellular p53 tumor suppressor protein, apparently as a consequence of abrogation of HPV18 E6-mediated destabilization of p53. The proliferation of HT-3 cells, a human cervical carcinoma cell line devoid of detectable HPV DNA, is also inhibited by E2 expression, whereas two other epithelial cell lines that do not contain HPV DNA are not inhibited. Thus, a number of cervical carcinoma cell lines are remarkably sensitive to growth inhibition by the E2 protein. Although BPV E2-mediated inhibition of HPV18 E6 and E7 expression may contribute to growth inhibition in some of the cervical carcinoma cell lines, the BPV E2 protein also appears to exert a growth-inhibitory effect that is independent of its effects on HPV gene expression. Images PMID:8389903

  17. Positional isomerism markedly affects the growth inhibition of colon cancer cells by NOSH-aspirin: COX inhibition and modeling.

    PubMed

    Vannini, Federica; Chattopadhyay, Mitali; Kodela, Ravinder; Rao, Praveen P N; Kashfi, Khosrow

    2015-12-01

    We recently reported the synthesis of NOSH-aspirin, a novel hybrid that releases both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e. ortho-NOSH-aspirin (o-NOSH-aspirin). In the present study, we compared the effects of the positional isomers of NOSH-ASA (o-NOSH-aspirin, m-NOSH-aspirin and p-NOSH-aspirin) to that of aspirin on growth of HT-29 and HCT 15 colon cancer cells, belonging to the same histological subtype, but with different expression of cyclooxygenase (COX) enzymes; HT-29 express both COX-1 and COX-2, whereas HCT 15 is COX-null. We also analyzed the effect of these compounds on proliferation and apoptosis in HT-29 cells. Since the parent compound aspirin, inhibits both COX-1 and COX-2, we also evaluated the effects of these compounds on COX-1 and COX-2 enzyme activities and also performed modeling of the interactions between the positional isomers of NOSH-aspirin and COX-1 and COX-2 enzymes. We observed that the three positional isomers of NOSH aspirin inhibited the growth of both colon cancer cell lines with IC50s in the nano-molar range. In particular in HT-29 cells the IC50s for growth inhibition were: o-NOSH-ASA, 0.04±0.011 µM; m-NOSH-ASA, 0.24±0.11 µM; p-NOSH-ASA, 0.46±0.17 µM; and in HCT 15 cells the IC50s for o-NOSH-ASA, m-NOSH-ASA, and p-NOSH-ASA were 0.062 ±0.006 µM, 0.092±0.004 µM, and 0.37±0.04 µM, respectively. The IC50 for aspirin in both cell lines was >5mM at 24h. The reduction of cell growth appeared to be mediated through inhibition of proliferation, and induction of apoptosis. All 3 positional isomers of NOSH-aspirin preferentially inhibited COX-1 over COX-2. These results suggest that the three positional isomers of NOSH-aspirin have the same biological actions, but that o-NOSH-ASA displayed the strongest anti-neoplastic potential. PMID:26319435

  18. Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells.

    PubMed

    Glassmeier, Günter; Hempel, Kathrin; Wulfsen, Iris; Bauer, Christiane K; Schumacher, Udo; Schwarz, Jürgen R

    2012-02-01

    HERG (human ether-à-go-go-related gene) K(+) currents fulfill important ionic functions in cardiac and other excitable cells. In addition, HERG channels influence cell growth and migration in various types of tumor cells. The mechanisms underlying these functions are still not resolved. Here, we investigated the role of HERG channels for cell growth in a cell line (SW2) derived from small cell lung cancer (SCLC), a malignant variant of lung cancer. The two HERG1 isoforms (HERG1a, HERG1b) as well as HERG2 and HERG3 are expressed in SW2 cells. Inhibition of HERG currents by acute or sustained application of E-4031, a specific ERG channel blocker, depolarized SW2 cells by 10-15 mV. This result indicated that HERG K(+) conductance contributes considerably to the maintenance of the resting potential of about -45 mV. Blockage of HERG channels by E-4031 for up to 72 h did not affect cell proliferation. In contrast, siRNA-induced inhibition of HERG1 protein expression decreased cell proliferation by about 50%. Reduction of HERG1 protein expression was confirmed by Western blots. HERG current was almost absent in SW2 cells transfected with siRNA against HERG1. Qualitatively similar results were obtained in three other SCLC cell lines (OH1, OH3, H82), suggesting that the HERG1 channel protein is involved in SCLC cell growth, whereas the ion-conducting function of HERG1 seems not to be important for cell growth. PMID:22075718

  19. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  20. Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells

    PubMed Central

    King, M A; Ganley, I G; Flemington, V

    2016-01-01

    Mutations to fibroblast growth factor receptor 3 (FGFR3) and phosphatase and tensin homologue (PTEN) signalling pathway components (for example, PTEN loss, PIK3CA, AKT1, TSC1/2) are common in bladder cancer, yet small-molecule inhibitors of these nodes (FGFR/PTENi) show only modest activity in preclinical models. As activation of autophagy is proposed to promote survival under FGFR/PTENi, we have investigated this relationship in a panel of 18 genetically diverse bladder cell lines. We found that autophagy inhibition does not sensitise bladder cell lines to FGFR/PTENi, but newly identify an autophagy-independent cell death synergy in FGFR3-mutant cell lines between mTOR (mammalian target of rapamycin) pathway inhibitors and chloroquine (CQ)—an anti-malarial drug used as a cancer therapy adjuvant in over 30 clinical trials. The mechanism of synergy is consistent with lysosomal cell death (LCD), including cathepsin-driven caspase activation, and correlates with suppression of cSREBP1 and cholesterol biosynthesis in sensitive cell lines. Remarkably, loss of viability can be rescued by saturating cellular membranes with cholesterol or recapitulated by statin-mediated inhibition, or small interfering RNA knockdown, of enzymes regulating cholesterol metabolism. Modulation of CQ-induced cell death by atorvastatin and cholesterol is reproduced across numerous cell lines, confirming a novel and fundamental role for cholesterol biosynthesis in regulating LCD. Thus, we have catalogued the molecular events underlying cell death induced by CQ in combination with an anticancer therapeutic. Moreover, by revealing a hitherto unknown aspect of lysosomal biology under stress, we propose that suppression of cholesterol metabolism in cancer cells should elicit synergy with CQ and define a novel approach to future cancer treatments. PMID:26853465

  1. Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles.

    PubMed

    McCracken, Christie; Zane, Andrew; Knight, Deborah A; Hommel, Elizabeth; Dutta, Prabir K; Waldman, W James

    2015-10-01

    Given the increasing use of silver nanoparticles (Ag NP) by the food and food packaging industries, this study investigated potential consequences of Ag NP ingestion in intestinal epithelial C2BBe1 cells. Treatment of proliferating cells (<10,000 cells/cm(2)) with 0.25 μg/cm(2) (1.25 μg/mL) of 23 nm Ag NP for 24 h induced 15% necrotic cell death and an 80% reduction in metabolic activity and decreased the GSH/GSSG ratio, indicating oxidative stress. G2/M phase cell cycle arrest and complete inhibition of cell proliferation was also induced by Ag NP treatment. Simulated in vitro digestion of Ag NP prior to cell exposure required the use of slightly higher doses to induce the same toxicity, likely due to slower Ag dissolution. Treatment of cells with silica, titania, and ZnO NP partially inhibited cell proliferation, but inhibition at low doses was unique to Ag NP. These data suggest that Ag NP induces oxidative stress, cell cycle arrest, and the inhibition of cell proliferation. However, toxicity and induction of oxidative stress were not observed in confluent cells (>100,000 cells/cm(2)) treated with 10 μg/cm(2) (40-50 μg/mL) Ag NP, indicating that these cells are less sensitive to Ag NP. PMID:26196530

  2. Ethacrynic acid inhibitable Ca2+ and Mg2+-activated membrane adenosine triphosphatase in rat mast cells.

    PubMed Central

    Magro, A M

    1977-01-01

    A crude plasma membrane fraction from the homogenate of purified rat mast cells demonstrates a high degree of Ca2+-dependent and Mg2+-dependent adenosine triphosphatase (ATPase) activity. The microsomal and mitochondrial fractions show negligible amounts of the Ca2+ and Mg2+-activated ATPases. The broad ATPase inhibitor, ethacrynic acid, effectively blocks the mast cell ATPase activity while ouabain demonstrates little inhibitory effect. Correspondingly, ethacrynic acid inhibits histamine release from antigen-challenged mast cells while ouabain does not. Both ATPase inhibition and histamine release inhibition by ethacrynic acid require the presence of the olefinic bond in the ethacrynic acid molecule. PMID:75076

  3. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells - a murine acute myelomonocytic leukemia cell line - we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. PMID:25911323

  4. Houttuynia cordata Thunb extract inhibits cell growth and induces apoptosis in human primary colorectal cancer cells.

    PubMed

    Lai, Kuang-Chi; Chiu, Yu-Jen; Tang, Yih-Jing; Lin, Kuei-Li; Chiang, Jo-Hua; Jiang, Yi-Lin; Jen, Hsiu-Fang; Kuo, Yueh-Hsiung; Agamaya, Sakae; Chung, Jing-Gung; Yang, Jai-Sing

    2010-09-01

    It is reported that Houttuynia cordata Thunb. (HCT), a traditional Chinese herbal medicine, has many biological properties such as antiviral, antibacterial and antileukemic activities. However, the molecular mechanisms of cytotoxicity and apoptosis in human primary colorectal cancer cells are not clear. In this study, whether HCT induced cytotoxicity in primary colorectal cancer cells obtained from three patients was investigated. The results indicated that HCT inhibited growth of cancer cells in a dose-dependent manner. After treatment with HCT (250 μg/ml) for 24 h, cells exhibited chromatin condensation (an apoptotic characteristic). HCT increased reactive oxygen species (ROS) production and decreased the mitochondrial membrane potential (ΔΨ(m)) in examined cells. Mitochondria-dependent apoptotic signaling pathway was shown to be involved as determined by increase in the levels of cytochrome c, Apaf-1, and caspase-3 and -9. The decrease in the level of ΔΨ(m) was associated with an increase in the BAX/BCL-2 ratio which led to activation of caspase-9 and -3. Based on our results, HCT induced apoptotic cell death in human primary colorectal cancer cells through a mitochondria-dependent signaling pathway. PMID:20944136

  5. Opiates inhibit ion conductances elicited by cell swelling and cAMP in cultured cells.

    PubMed

    Callaghan, R; Riordan, J R

    1995-10-15

    The effect of several opiate compounds on I- efflux was investigated in cultured cell lines. I- efflux was evoked by two distinct stimuli, namely cell swelling and elevation of cellular cAMP levels by prostaglandin E2. Cells expressing the multidrug resistance P-glycoprotein were found to have increased I- efflux in response to hypo-osmotic challenge. This increased I- efflux in P-glycoprotein containing cells was reduced to levels found in parental cells by the opiates morphine, pentazocine and naloxone. Addition of prostaglandin E2 to T84 cells resulted in elevated cellular cAMP levels and a significant I- efflux. This cAMP stimulated efflux was also inhibited by several opiates. None of the opiates was able to alter cAMP levels or protein kinase A mediated phosphorylation of immunoprecipitated cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel in T84 cells. The ability of opiates to alter ion conductances is discussed in relation to the anti-diarrheal effects of these compounds. PMID:8566169

  6. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response

    PubMed Central

    Hempstead, Andrew D.; Isberg, Ralph R.

    2015-01-01

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR. PMID:26598709

  7. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion.

    PubMed

    Chronopoulos, Antonios; Robinson, Benjamin; Sarper, Muge; Cortes, Ernesto; Auernheimer, Vera; Lachowski, Dariusz; Attwood, Simon; García, Rebeca; Ghassemi, Saba; Fabry, Ben; Del Río Hernández, Armando

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-β)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-β/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC. PMID:27600527

  8. Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism

    PubMed Central

    Itkonen, Harri M.; Gorad, Saurabh S.; Duveau, Damien Y.; Martin, Sara E.S.; Barkovskaya, Anna; Bathen, Tone F.; Moestue, Siver A.; Mills, Ian G.

    2016-01-01

    Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific. PMID:26824323

  9. Inhibition of B Lymphopoiesis by Adipocytes and IL-1-Producing Myeloid-Derived Suppressor Cells.

    PubMed

    Kennedy, Domenick E; Knight, Katherine L

    2015-09-15

    B lymphopoiesis declines with age, and this decline correlates with increased adipose tissue in the bone marrow (BM). Also, adipocyte-derived factors are known to inhibit B lymphopoiesis. Using cocultures of mouse BM cells with OP9 stromal cells, we found that adipocyte-conditioned medium induces the generation of CD11b(+)Gr1(+) myeloid cells, which inhibit B cell development in vitro. Adipocyte-conditioned medium-induced CD11b(+)Gr1(+) cells express Arg1 (arginase) and Nos2 (inducible NO synthase) and suppress CD4(+) T cell proliferation, indicating that these cells are myeloid-derived suppressor cells (MDSCs). Blocking arginase and inducible NO synthase did not restore B lymphopoiesis, indicating that inhibition is not mediated by these molecules. Transwell and conditioned-medium experiments showed that MDSCs inhibit B lymphopoiesis via soluble factors, and by cytokine array we identified IL-1 as an important factor. Addition of anti-IL-1 Abs restored B lymphopoiesis in BM cultures containing MDSCs, showing that MDSC inhibition of B lymphopoiesis is mediated by IL-1. By treating hematopoietic precursors with IL-1, we found that multipotent progenitors are targets of IL-1. This study uncovers a novel function for MDSCs to inhibit B lymphopoiesis through IL-1. We suggest that inflammaging contributes to a decline of B lymphopoiesis in aged individuals, and furthermore, that MDSCs and IL-1 provide therapeutic targets for restoration of B lymphopoiesis in aged and obese individuals. PMID:26268654

  10. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells.

    PubMed

    Granger, D L; Lehninger, A L

    1982-11-01

    Previous work has shown that injury of neoplastic cells by cytotoxic macrophages (CM) in cell culture is accompanied by inhibition of mitochondrial respiration. We have investigated the nature of this inhibition by studying mitochondrial respiration in CM-injured leukemia L1210 cells permeabilized with digitonin. CM-induced injury affects the mitochondrial respiratory chain proper. Complex I (NADH-coenzyme Q reductase) and complex II (succinate-coenzyme Q reductase) are markedly inhibited. In addition a minor inhibition of cytochrome oxidase was found. Electron transport from alpha-glycerophosphate through the respiratory chain to oxygen is unaffected and permeabilized CM-injured L1210 cells oxidizing this substrate exhibit acceptor control. However, glycerophosphate shuttle activity was found not to occur within CM-injured or uninjured L1210 cells in culture hence, alpha-glycerophosphate is apparently unavailable for mitochondrial oxidation in the intact cell. It is concluded that the failure of respiration of intact neoplastic cells injured by CM is caused by the nearly complete inhibition of complexes I and II of the mitochondrial electron transport chain. The time courses of CM-induced electron transport inhibition and arrest of L1210 cell division are examined and the possible relationship between these phenomena is discussed. PMID:6292238

  11. Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism.

    PubMed

    Itkonen, Harri M; Gorad, Saurabh S; Duveau, Damien Y; Martin, Sara E S; Barkovskaya, Anna; Bathen, Tone F; Moestue, Siver A; Mills, Ian G

    2016-03-15

    Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific. PMID:26824323

  12. Patched1 and Patched2 inhibit Smoothened non-cell autonomously

    PubMed Central

    Roberts, Brock; Casillas, Catalina; Alfaro, Astrid C; Jägers, Carina; Roelink, Henk

    2016-01-01

    Smoothened (Smo) inhibition by Patched (Ptch) is central to Hedgehog (Hh) signaling. Ptch, a proton driven antiporter, is required for Smo inhibition via an unknown mechanism. Hh ligand binding to Ptch reverses this inhibition and activated Smo initiates the Hh response. To determine whether Ptch inhibits Smo strictly in the same cell or also mediates non-cell-autonomous Smo inhibition, we generated genetically mosaic neuralized embryoid bodies (nEBs) from mouse embryonic stem cells (mESCs). These experiments utilized novel mESC lines in which Ptch1, Ptch2, Smo, Shh and 7dhcr were inactivated via gene editing in multiple combinations, allowing us to measure non-cell autonomous interactions between cells with differing Ptch1/2 status. In several independent assays, the Hh response was repressed by Ptch1/2 in nearby cells. When 7dhcr was targeted, cells displayed elevated non-cell autonomous inhibition. These findings support a model in which Ptch1/2 mediate secretion of a Smo-inhibitory cholesterol precursor. DOI: http://dx.doi.org/10.7554/eLife.17634.001 PMID:27552050

  13. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    SciTech Connect

    Suzuki, Kanayo; Sakaguchi, Minoru; Tanaka, Satoshi; Yoshimoto, Tadashi; Takaoka, Masanori

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  14. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  15. Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli.

    PubMed

    Economo, Michael N; Hansen, Kyle R; Wachowiak, Matt

    2016-07-20

    Inhibition is fundamental to information processing by neural circuits. In the olfactory bulb (OB), glomeruli are the functional units for odor information coding, but inhibition among glomeruli is poorly characterized. We used two-photon calcium imaging in anesthetized and awake mice to visualize both odorant-evoked excitation and suppression in OB output neurons (mitral and tufted, MT cells). MT cell response polarity mapped uniformly to discrete OB glomeruli, allowing us to analyze how inhibition shapes OB output relative to the glomerular map. Odorants elicited unique patterns of suppression in only a subset of glomeruli in which such suppression could be detected, and excited and suppressed glomeruli were spatially intermingled. Binary mixture experiments revealed that interglomerular inhibition could suppress excitatory mitral cell responses to odorants. These results reveal that inhibitory OB circuits nonlinearly transform odor representations and support a model of selective and nonrandom inhibition among glomerular ensembles. PMID:27346531

  16. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    PubMed Central

    Geisen, Ulf; Zenthoefer, Marion; Peipp, Matthias; Kerber, Jannik; Plenge, Johannes; Managò, Antonella; Fuhrmann, Markus; Geyer, Roland; Hennig, Steffen; Adam, Dieter; Piker, Levent; Rimbach, Gerald; Kalthoff, Holger

    2015-01-01

    Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1). Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data) and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application. PMID:26204945

  17. Polydatin-induced cell apoptosis and cell cycle arrest are potentiated by Janus kinase 2 inhibition in leukemia cells.

    PubMed

    Cao, Wei-Jie; Wu, Ke; Wang, Chong; Wan, Ding-Ming

    2016-04-01

    Polydatin (PD), a natural precursor of resveratrol, has a variety of biological activities, including anti‑tumor effects. However, the underlying molecular mechanisms of the anti-cancer activity of PD has not been fully elucidated. The present study demonstrated that PD significantly inhibited the proliferation of the MOLT-4 leukemia cell line in a dose‑ and time-dependent manner by using Cell Counting Kit‑8 assay. PD also dose-dependently increased the apoptotic rate and caused cell cycle arrest in S phase in MOLT‑4 cells, as revealed by flow cytometry. In addition, PD dose-dependently decreased the mitochondrial membrane potential and led to the generation of reactive oxygen species in MOLT-4 cells. Western blot analysis revealed that the expression of anti‑apoptotic protein B-cell lymphoma 2 (Bcl-2) was decreased, whereas that of pro‑apoptotic protein Bcl‑2‑associated X was increased by PD. Furthermore, the expression of two cell cycle regulatory proteins, cyclin D1 and cyclin B1, was suppressed by PD. Of note, the pro‑apoptotic and cell cycle‑inhibitory effects of PD were potentiated by Janus kinase 2 (JAK2) inhibition. In conclusion, the results of the present study strongly suggested that PD is a promising therapeutic compound for the treatment of leukemia, particularly in combination with JAK inhibitors. PMID:26934953

  18. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells.

    PubMed

    Geisen, Ulf; Zenthoefer, Marion; Peipp, Matthias; Kerber, Jannik; Plenge, Johannes; Managò, Antonella; Fuhrmann, Markus; Geyer, Roland; Hennig, Steffen; Adam, Dieter; Piker, Levent; Rimbach, Gerald; Kalthoff, Holger

    2015-07-01

    Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1). Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data) and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application. PMID:26204945

  19. Telmisartan Induced Inhibition of Vascular Cell Proliferation beyond Angiotensin Receptor Blockade and PPARγ Activation

    PubMed Central

    Yamamoto, Koichi; Ohishi, Mitsuru; Ho, Christopher; Kurtz, Theodore W; Rakugi, Hiromi

    2010-01-01

    We investigated the ability of ARBs with PPARγ agonist activity (telmisartan and irbesartan), and ARBs devoid of PPARγ agonist activity (eprosartan and valsartan), to inhibit vascular cell proliferation studied in the absence of angiotensin II stimulation. Telmisartan and to a lesser extent irbesartan, inhibited proliferation of human aortic vascular smooth muscle cells in a dose dependent fashion whereas eprosartan and valsartan did not. To investigate the role of PPARγ in the antiproliferative effects of telmisartan, we studied genetically engineered NIH3T3 cells that express PPARγ. Pioglitazone inhibited proliferation of NIH3T3 cells expressing PPARγ, but had little effect on control NIH3T3 cells that lack PPARγ. In contrast, telmisartan inhibited proliferation equally in NIH3T3 with and without PPARγ. Valsartan failed to inhibit proliferation of either cell line. In addition, telmisartan inhibited proliferation equally in aortic smooth muscle cells derived from mice with targeted knockout of PPARγ in smooth muscle and from control mice whereas valsartan had no effect on cell proliferation. Telmisartan but not valsartan, reduced phosphorylation of AKT but not ERK otherwise induced by exposure to serum of either quiescent human smooth muscle cells, quiescent mice smooth muscle cells lacking PPARγ or quiescent CHO-K1 cells lacking AT1 receptor. In summary, the antiproliferative effect of telmisartan in the absence of exogenously supplemented angiotensin II involve more than just AT1 receptor blockade and do not require activation of PPARγ. It might be postulated that inhibition of AKT activation is a mechanism mediating the antiproliferative effects of telmisartan including in cells lacking AT1 receptors or PPARγ. PMID:19822796

  20. Cucurbitacin-E inhibits multiple cancer cells proliferation through attenuation of Wnt/β-catenin signaling.

    PubMed

    Feng, Hui; Zang, Li; Zhao, Zhen-Xia; Kan, Quan-Cheng

    2014-06-01

    Recent studies suggest that the use of cucurbitacins could inhibit cancer cell progression. In the current study, the authors analyzed the effect of cucurbitacin-E (CuE) in cancer cells using A549, Hep3B, and SW480 cells. The authors found that CuE inhibited cell proliferation and modulated the expression of cell cycle regulators in these cells. Moreover, the authors found that CuE inhibited Wnt/β-catenin signaling activation through upregulation of tumor suppressor Menin. Indeed, ablation of Menin using small interfering RNA (siRNA) oligos attenuated the antiproliferative roles of CuE. Taken together, the results of this study provide a novel mechanism that may contribute to the antineoplastic effects of CuE in cancer cells. PMID:24885795

  1. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    SciTech Connect

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  2. Tigecycline targets nonsmall cell lung cancer through inhibition of mitochondrial function.

    PubMed

    Jia, Xuefeng; Gu, Zhenfang; Chen, Wenming; Jiao, Junbo

    2016-08-01

    Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer with a high mortality rate and still remains therapeutically a challenge. A strategy to target NSCLC is to identify agents that are effective against NSCLC cells while sparing normal cells. We show that tigecycline, an FDA-approved antibiotic drug, preferentially targets NSCLC cells. Tigecycline is effective in inhibiting proliferation and inducing apoptosis of multiple cell lines derived from two common NSCLC subtypes: adenocarcinoma and squamous cell carcinoma. Tigecycline also dose-dependently inhibits colony formation of NSCLC subpopulation of cells with highly proliferative and invasive properties. Compared to NSCLC cells, tigecycline affects proliferation and survival of normal fibroblast cells significantly to a less extent. More importantly, tigecycline significantly inhibits NSCLC tumor growth through decreasing proliferation and increasing apoptosis of tumor cells in vivo. Tigecycline significantly inhibits mitochondrial respiration, mitochondrial membrane potential, and ATP levels and increases reactive oxygen species (ROS), suggesting that tigecycline impairs mitochondrial functions. Our study suggests that tigecycline may be a useful therapeutic agent, and inhibiting mitochondrial functions may represent a new targeted therapy for NSCLC. PMID:27009695

  3. Isonicotinic acid hydrazide inhibits cell population growth during teratogenesis of chick embryo.

    PubMed

    Joshi, M V; Shah, V B; Modak, S P

    1991-01-01

    In chick embryos treated with a 4 hr pulse of 7.2 X 10(-5) M isonicotinic acid hydrazide (INH) the cell population growth is inhibited with an increased population doubling time. Teratogenised blastoderm cells complete their ongoing cell cycle and arrest in G1 phase. A chase with an equimolar concentration of pyridoxal-5-phosphate restores the growth rate after a lag of 4 hr equivalent to the duration of treatment with INH. Presumptive mesoblast cells invaginated through the primitive streak and neuroectoblast cells induced prior to the application of INH differentiate, while the teratogen inhibits morphogenesis and organization of organ primordia. PMID:1864614

  4. Magnobovatol inhibits smooth muscle cell migration by suppressing PDGF-Rβ phosphorylation and inhibiting matrix metalloproteinase-2 expression

    PubMed Central

    KANG, HYREEN; AHN, DONG HYEON; PAK, JHANG HO; SEO, KYEONG-HWA; BAEK, NAM-IN; JANG, SUNG-WUK

    2016-01-01

    The migration of vascular smooth muscle cells (VSMCs) may play a crucial role in the pathogenesis of vascular diseases, such as atherosclerosis and post-angioplasty restenosis. Platelet-derived growth factor (PDGF)-BB is a potent mitogen for VSMCs and plays an important role in the intimal accumulation of VSMCs. Magnobovatol, a new neolignan from the fruits of Magnolia obovata, has been shown to have anticancer properties. However, the effects of magnobovatol on VSMCs are unknown. In the present study, we examined the effects of magnobovatol on the PDGF-BB-induced migration of mouse and human VSMCs, as well as the underlying mechanisms. Magnobovatol significantly inhibited the PDGF-BB-induced migration of mouse and human VSMCs without inducing cell death (as shown by MTT assay and wound healing assay). Additionally, we demonstrated that magnobovatol significantly blocked the PDGF-BB-induced phosphorylation of the PDGF receptor (PDGF-R), Akt and extracellular signal-regulated kinase (ERK)1/2 by inhibiting the activation of the PDGF-BB signaling pathway. Moreover, in both mouse and human VSMCs, magnobovatol inhibited PDGF-induced matrix metalloproteinase (MMP)-2 expression at the mRNA and protein level, as well as the proteolytic activity of MMP-2 (as shown by western blot analysis, RT-PCR, gelatin zymography and ELISA). In addition, the sprout outgrowth formation of aortic rings induced by PDGF-BB was inhibited by magnobovatol (as shown by aortic ring assay). Taken together, our findings indicate that magnobovatol inhibits VSMC migration by decreasing MMP-2 expression through PDGF-R and the ERK1/2 and Akt pathways. Our data may improve the understanding of the anti-atherogenic effects of magnobovatol in VSMCs. PMID:27049716

  5. Mosla dianthera inhibits mast cell-mediated allergic reactions through the inhibition of histamine release and inflammatory cytokine production

    SciTech Connect

    Lee, Dong-Hee; Kim, Sang-Hyun . E-mail: shkim72@knu.ac.kr; Eun, Jae-Soon; Shin, Tae-Yong . E-mail: tyshin@woosuk.ac.kr

    2006-11-01

    In this study, we investigated the effect of the aqueous extract of Mosla dianthera (Maxim.) (AEMD) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases such as asthma, sinusitis and rheumatoid arthritis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. AEMD inhibited compound 48/80-induced systemic reactions in mice. AEMD decreased immunoglobulin E-mediated local allergic reactions, passive cutaneous anaphylaxis. AEMD attenuated intracellular calcium level and release of histamine from rat peritoneal mast cells activated by compound 48/80. Furthermore, AEMD attenuated the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-{alpha}, IL-8 and IL-6 secretion in human mast cells. The inhibitory effect of AEMD on the pro-inflammatory cytokines was nuclear factor-{kappa}B (NF-{kappa}B) dependent. AEMD decreased PMA and A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B. Our findings provide evidence that AEMD inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines and NF-{kappa}B in these effects.

  6. The induction of cellular senescence in dental follicle cells inhibits the osteogenic differentiation.

    PubMed

    Morsczeck, Christian; Gresser, Jan; Ettl, Tobias

    2016-06-01

    Dental stem cells such as human dental follicle cells (DFCs) have opened new promising treatment alternatives for today's dental health issues such as periodontal tissue regeneration. However, cellular senescence represents a restricting factor to cultured stem cells, resulting in limited lifespan and reduced cell differentiation potential. Therefore, this study evaluated if and how DFCs exhibit features of cellular senescence after being expanded in cell culture. The cell proliferation of DFCs decreased, while the cell size increased during prolonged cell culture. Moreover, DFCs expressed the senescence-associated β-galactosidase after a prolonged cell culture. The onset of senescence inhibited both the induction of osteoblast markers RUNX2 and osteopontin and the biomineralization of DFCs after stimulation of the osteogenic differentiation. In conclusion, we showed that a prolonged cell culture induces cellular senescence and inhibits the osteogenic differentiation in DFCs. PMID:27165403

  7. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells

    PubMed Central

    Sanchez-Sanchez, Ana M.; Antolin, Isaac; Puente-Moncada, Noelia; Suarez, Santos; Gomez-Lobo, Marina; Rodriguez, Carmen; Martin, Vanesa

    2015-01-01

    Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis). Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells) and in cells where it inhibits proliferation (chondrosarcoma cells). Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types. PMID:26252771

  8. Sensitivity of human granulosa cell tumor cells to epidermal growth factor receptor inhibition.

    PubMed

    Andersson, Noora; Anttonen, Mikko; Färkkilä, Anniina; Pihlajoki, Marjut; Bützow, Ralf; Unkila-Kallio, Leila; Heikinheimo, Markku

    2014-04-01

    Epidermal growth factor receptor (EGFR) is implicated in the progression of many human cancers, but its significance in ovarian granulosa cell tumor (GCT) pathobiology remains poorly understood. We assessed the EGFR gene copy number, surveyed the mRNA and protein expression patterns of EGFR in 90 adult GCTs, and assessed the in vitro sensitivity of GCT cells to EGFR inhibition. Low-level amplification of EGFR gene was observed in five GCTs and high-level amplification in one sample. EGFR mRNA was robustly expressed in GCTs. Most tumors expressed both unphosphorylated and phosphorylated EGFR protein, but the protein expression did not correlate with clinical parameters, including the risk of recurrence. Small-molecule EGFR inhibitors reduced the EGF-induced activation of EGFR and its downstream signaling molecules at nanomolar doses, but cell viability was reduced, and caspase-3/7 was activated in GCT cells only at micromolar doses. Based on the present results, EGFR is active and abundantly expressed in the majority of GCTs, but probably has only minor contribution to GCT cell growth. Given the high doses of EGFR inhibitors required to reduce GCT cell viability in vitro, they are not likely to be effective for GCT treatment as single agents; they should rather be tested as part of combination therapies for these malignancies. PMID:24463098

  9. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus.

    PubMed

    Jacob, Christian L; Lamorte, Louie; Sepulveda, Eliud; Lorenz, Ivo C; Gauthier, Annick; Franti, Michael

    2013-09-01

    Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection. PMID:23849792

  10. Molecular Basis of Filtering Carbapenems by Porins from β-Lactam-resistant Clinical Strains of Escherichia coli.

    PubMed

    Bajaj, Harsha; Scorciapino, Mariano A; Moynié, Lucile; Page, Malcolm G P; Naismith, James H; Ceccarelli, Matteo; Winterhalter, Mathias

    2016-02-01

    Integral membrane proteins known as porins are the major pathway by which hydrophilic antibiotics cross the outer membrane of Gram-negative bacteria. Single point mutations in porins can decrease the permeability of an antibiotic, either by reduction of channel size or modification of electrostatics in the channel, and thereby confer clinical resistance. Here, we investigate four mutant OmpC proteins from four different clinical isolates of Escherichia coli obtained sequentially from a single patient during a course of antimicrobial chemotherapy. OmpC porin from the first isolate (OmpC20) undergoes three consecutive and additive substitutions giving rise to OmpC26, OmpC28, and finally OmpC33. The permeability of two zwitterionic carbapenems, imipenem and meropenem, measured using liposome permeation assays and single channel electrophysiology differs significantly between OmpC20 and OmpC33. Molecular dynamic simulations show that the antibiotics must pass through the constriction zone of porins with a specific orientation, where the antibiotic dipole is aligned along the electric field inside the porin. We identify that changes in the vector of the electric field in the mutated porin, OmpC33, create an additional barrier by "trapping" the antibiotic in an unfavorable orientation in the constriction zone that suffers steric hindrance for the reorientation needed for its onward translocation. Identification and understanding the underlying molecular details of such a barrier to translocation will aid in the design of new antibiotics with improved permeation properties in Gram-negative bacteria. PMID:26645688

  11. Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation.

    PubMed

    Zhao, Wei; Zhang, Tao; Qu, Bingqian; Wu, Xingxin; Zhu, Xu; Meng, Fanyu; Gu, Yanhong; Shu, Yongqian; Shen, Yan; Sun, Yang; Xu, Qiang

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively active in approximately 50% of acute myeloid leukemia (AML) cases and mediates multiple cellular processes including cell resistance to apoptosis. Inhibition of constitutively active STAT3 has been shown to induce AML cell apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit STAT3 signaling and, therefore, be efficacious for AML. We found that sorafenib inhibited proliferation and induced apoptosis in human AML cell line (HL60) cells. In addition, sorafenib exposure reduced constitutive STAT3 phosphorylation in HL60 cells and repressed STAT3 DNA-binding activity and Mcl-1 and Bcl-2 expression. Similar results were obtained with the Src kinase inhibitor I, suggesting that sorafenib suppresses STAT3 phosphorylation by inhibiting Src-kinase activity. Furthermore, significant inhibition of Src kinase activity by sorafenib was observed in the kinase assay. In addition, Src could be co-immunoprecipitated with STAT3, and the phosphorylation of STAT3 was significantly inhibited by sorafenib only in cell lines in which phosphorylated Src is highly expressed. Taken together, our study indicates that sorafenib blocks Src kinase-mediated STAT3 phosphorylation and decreases the expression of apoptosis regulatory proteins Mcl-1 and Bcl-2, which are associated with increased apoptosis in HL60 cells. These findings provide a rationale for the treatment of human AML. PMID:20881478

  12. Ninjurin1 suppresses metastatic property of lung cancer cells through inhibition of interleukin 6 signaling pathway.

    PubMed

    Jang, Yeong-Su; Kang, Ju-Hee; Woo, Jong Kyu; Kim, Hwan Mook; Hwang, Jong-Ik; Lee, Sang-Jin; Lee, Ho-Young; Oh, Seung Hyun

    2016-07-15

    Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a cell surface molecule that can mediate homophilic adhesion and promote neurite outgrowth from cultured dorsal root ganglion (DRG) neurons. Interestingly, Ninj1 overexpressed in human cancer; however, its role in metastasis is not clear. This study showed that inhibition of Ninj1 promotes lung cancer metastasis through interleukin 6 (IL-6)/STAT3 signaling. Ninj1 levels were relatively low in highly motile lung cancer cells. While inhibition of Ninj1 enhanced cell migration in lung cancer cells, overexpression of Ninj1 significantly suppressed it. We found that inhibition of Ninj1 significantly increased expression and secretion of IL-6 in A549 cells. We also found that inhibition of IL-6 decreased intercellular adhesion molecule 1 (ICAM-1) expression. In addition, inhibition of Ninj1 significantly increased cell motility and invasiveness of lung cancer cells. In an in vivo model, we found that Ninj1 suppression did not affect tumor growth but induced significant increase in incidence of lung metastasis, and sizes and number of tumor nodules. Taken together, our data clearly demonstrate that Ninj1 suppresses migration, invasion and metastasis of lung cancer via inhibition of the IL-6 signaling pathway in vitro and in vivo. PMID:26815582

  13. Ionene polymers for selectively inhibiting the vitro growth of malignant cells

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Ionene polymers of the structure ##STR1## WHERE X AND Y ARE INTEGERS FROM 3 TO 16, Z.sup.- is an anion such as a halogen and n is an integer from 50 to 150 are found to bind negatively charged mammalian cells such as malignant cells and can be utilized to selectively inhibit the growth of malignant cells in vitro.

  14. Positional Isomers of Aspirin Are Equally Potent in Inhibiting Colon Cancer Cell Growth: Differences in Mode of Cyclooxygenase Inhibition

    PubMed Central

    Kodela, Ravinder; Chattopadhyay, Mitali; Goswami, Satindra; Gan, Zong Yuan; Rao, Praveen P. N.; Nia, Kamran V.; Velázquez-Martínez, Carlos A.

    2013-01-01

    We compared the differential effects of positional isomers of acetylsalicylic acid (o-ASA, m-ASA, and p-ASA) on cyclooxygenase (COX) inhibition, gastric prostaglandin E2 (PGE2), malondialdehyde, tumor necrosis factor-alpha (TNF-α) levels, superoxide dismutase (SOD) activity, human adenocarcinoma colon cancer cell growth inhibition, cell proliferation, apoptosis, and cell-cycle progression. We also evaluated the gastric toxicity exerted by ASA isomers. All ASA isomers inhibit COX enzymes, but only the o-ASA exerted an irreversible inhibitory profile. We did not observe a significant difference between ASA isomers in their ability to decrease the in vivo synthesis of PGE2 and SOD activity. Furthermore, all isomers increased the levels of gastric and TNF-α when administered orally at equimolar doses. We observed a dose-dependent cell growth inhibitory effect; the order of potency was p-ASA > m-ASA ≈ o-ASA. There was a dose-dependent decrease in cell proliferation and an increase in apoptosis, with a concomitant Go/G1 arrest. The ulcerogenic profile of the three ASA isomers showed a significant difference between o-ASA (aspirin) and its two positional isomers when administered orally at equimolar doses (1 mmol/kg); the ulcer index (UI) for o-ASA indicated extensive mucosal injury (UI = 38), whereas m-ASA and p-ASA produced a significantly decreased toxic response (UI = 12 and 8, respectively) under the same experimental conditions. These results suggest that the three positional isomers of ASA exert practically the same biologic profile in vitro and in vivo but showed different safety profiles. The mechanism of gastric ulcer formation exerted by aspirin and its two isomers warrants a more detailed and thorough investigation. PMID:23349335

  15. MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor

    PubMed Central

    Xiao, Yao; Tian, Qinggang; He, Jiantai; Huang, Ming; Yang, Chao; Gong, Liansheng

    2016-01-01

    MicroRNAs (miRs) have been demonstrated to play key roles in the development and progression of hepatocellular carcinoma (HCC). However, the regulatory mechanism of miR-503 in HCC has not been fully uncovered. In this study, we found that miR-503 was significantly downregulated in HCC tissues compared to nontumorous liver tissues. Moreover, lower miR-503 levels were associated with the malignant progression of HCC, and the expression of miR-503 was also decreased in several common HCC cell lines compared to normal human liver cell line THLE-3. Overexpression of miR-503 inhibited proliferation but induced apoptosis of LM3 and HepG2 cells. Bioinformatical analysis and luciferase reporter assay further identified insulin-like growth factor 1 receptor (IGF-1R) as a novel target of miR-503 in 293T cells. Moreover, overexpression of miR-503 led to a significant decrease in the protein levels of IGF-1R, while knockdown of miR-503 enhanced its protein levels in LM3 and HepG2 cells. Besides, overexpression of IGF-1R reversed the effects of miR-503-mediated HCC cell proliferation and apoptosis, indicating that IGF-1R acts as a downstream effector of miR-503 in HCC cells. Furthermore, IGF-1R was found to be significantly upregulated in HCC tissues compared to nontumorous liver tissues. In addition, the mRNA levels of IGF-1R were inversely correlated to the miR-503 levels in the HCC tissues. Thus, we demonstrate that miR-503 inhibits the proliferation and induces the apoptosis of HCC cells, partly at least, by directly targeting IGF-1R, and suggest that IGF-1R may serve as a promising target for the treatment of HCC. PMID:27366090

  16. Inner retinal inhibition shapes the receptive field of retinal ganglion cells in primate

    PubMed Central

    Protti, D A; Di Marco, S; Huang, J Y; Vonhoff, C R; Nguyen, V; Solomon, S G

    2014-01-01

    Abstract The centre–surround organisation of receptive fields is a feature of most retinal ganglion cells (RGCs) and is critical for spatial discrimination and contrast detection. Although lateral inhibitory processes are known to be important in generating the receptive field surround, the contribution of each of the two synaptic layers in the primate retina remains unclear. Here we studied the spatial organisation of excitatory and inhibitory synaptic inputs onto ON and OFF ganglion cells in the primate retina. All RGCs showed an increase in excitation in response to stimulus of preferred polarity. Inhibition onto RGCs comprised two types of responses to preferred polarity: some RGCs showed an increase in inhibition whilst others showed removal of tonic inhibition. Excitatory inputs were strongly spatially tuned but inhibitory inputs showed more variable organisation: in some neurons they were as strongly tuned as excitation, and in others inhibitory inputs showed no spatial tuning. We targeted one source of inner retinal inhibition by functionally ablating spiking amacrine cells with bath application of tetrodotoxin (TTX). TTX significantly reduced the spatial tuning of excitatory inputs. In addition, TTX reduced inhibition onto those RGCs where a stimulus of preferred polarity increased inhibition. Reconstruction of the spatial tuning properties by somatic injection of excitatory and inhibitory synaptic conductances verified that TTX-mediated inhibition onto bipolar cells increases the strength of the surround in RGC spiking output. These results indicate that in the primate retina inhibitory mechanisms in the inner plexiform layer sharpen the spatial tuning of ganglion cells. PMID:24042496

  17. Downregulation of Focal Adhesion Kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma.

    PubMed

    Dasari, Venkata Ramesh; Kaur, Kiranpreet; Velpula, Kiran Kumar; Dinh, Dzung H; Tsung, Andrew J; Mohanam, Sanjeeva; Rao, Jasti S

    2010-11-01

    Angiogenesis involves the formation of new blood vessels by rerouting or remodeling existing ones and is believed to be the primary method of vessel formation in gliomas. To study the mechanisms by which angiogenesis of glioma cells can be inhibited by human umbilical cord blood stem cells (hUCBSC), we studied two glioma cell lines (SNB19, U251) and a glioma xenograft cell line (5310) alone and in co-culture with hUCBSC. Conditioned media from co-cultures of glioma cells with hUCBSC showed reduced angiogenesis as evaluated by in vitro angiogenesis assay using HMEC cells. Reduction in angiogenesis was associated with downregulation of FAK and integrin αvβ3 in the co-cultures of glioma cells. Downregulation of FAK gene is correlated with downregulation of many angiogenesis-related genes, including Ang1, VEGFA and Akt. Under in vivo conditions, neovascularization by glioma cells was inhibited by hUCBSC. Further, intracranial tumor growth was inhibited by hUCBSC in athymic nude mice. Similar to in vitro results, we observed downregulation of FAK, VEGF and Akt molecules to inhibit angiogenesis in the hUCBSC-treated nude mice brains. Taken together, our results suggest that hUCBSC have the potential to inhibit the angiogenesis of glioma cells both in vitro and in vivo. PMID:21068464

  18. Downregulation of Focal Adhesion Kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma

    PubMed Central

    Dasari, Venkata Ramesh; Kaur, Kiranpreet; Velpula, Kiran Kumar; Dinh, Dzung H.; Tsung, Andrew J.; Mohanam, Sanjeeva; Rao, Jasti S.

    2010-01-01

    Angiogenesis involves the formation of new blood vessels by rerouting or remodeling existing ones and is believed to be the primary method of vessel formation in gliomas. To study the mechanisms by which angiogenesis of glioma cells can be inhibited by human umbilical cord blood stem cells (hUCBSC), we studied two glioma cell lines (SNB19, U251) and a glioma xenograft cell line (5310) alone and in co-culture with hUCBSC. Conditioned media from co-cultures of glioma cells with hUCBSC showed reduced angiogenesis as evaluated by in vitro angiogenesis assay using HMEC cells. Reduction in angiogenesis was associated with downregulation of FAK and integrin αvβ3 in the co-cultures of glioma cells. Downregulation of FAK gene is correlated with downregulation of many angiogenesis-related genes, including Ang1, VEGFA and Akt. Under in vivo conditions, neovascularization by glioma cells was inhibited by hUCBSC. Further, intracranial tumor growth was inhibited by hUCBSC in athymic nude mice. Similar to in vitro results, we observed downregulation of FAK, VEGF and Akt molecules to inhibit angiogenesis in the hUCBSC-treated nude mice brains. Taken together, our results suggest that hUCBSC have the potential to inhibit the angiogenesis of glioma cells both in vitro and in vivo. PMID:21068464

  19. Statins Inhibit the Proliferation and Induce Cell Death of Human Papilloma Virus Positive and Negative Cervical Cancer Cells

    PubMed Central

    Crescencio, María Elena; Rodríguez, Emma; Páez, Araceli; Masso, Felipe A.; Montaño, Luis F.; López-Marure, Rebeca

    2009-01-01

    Statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, have anti-tumoral effects on multiple cancer types; however, little is known about their effect on cervical cancer. We evaluated the effect on proliferation, cell cycle, oxidative stress and cell death of three statins on CaSki, HeLa (HPV+) and ViBo (HPV−) cervical cancer cell lines. Cell proliferation was assayed by crystal violet staining, cell cycle by flow cytometry and cell death by annexin-V staining. Reactive oxygen species (ROS) production was evaluated by the oxidation of 2,7-dichlorofluorescein diacetate and nitrite concentration (an indirect measure of nitric oxide (NO) production), by the Griess reaction. Inhibition of cell proliferation by atorvastatin, fluvastatin and simvastatin was dose-dependent. ViBo cells were the most responsive. Statins did not affect the cell cycle, instead they induced cell death. The antiproliferative effect in ViBo cells was completely inhibited with mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) treatments. In contrast, cell proliferation of CaSki and HeLa cells was partially (33%) rescued with these intermediates. The three statins increased ROS and nitrite production, mainly in the ViBo cell line. These results suggest that statins exert anti-tumoral effects on cervical cancer through inhibition of cell proliferation and induction of cell death and oxidative stress. Statins could be an aid in the treatment of cervical cancer, especially in HPV− tumors. PMID:23675166

  20. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    SciTech Connect

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  1. Inhibition of Mitosis and Macromolecular Synthesis in Rat Embryo Cells by Kilham Rat Virus

    PubMed Central

    Tennant, Raymond W.

    1971-01-01

    The effects of Kilham rat virus multiplication were studied in cultured rat embryo cells to examine the mechanisms by which virus infection might be related to developmental defects in rats and hamsters. The virus was found to inhibit motosis and deoxyribonucleic acid (DNA) synthesis within 2 to 10 hr after infection. However, total ribonucleic acid synthesis was relatively unaffected until about 20 hr after infection, and total protein synthesis did not decline significantly until loss of viable cells was apparent in the cultures. No effect on chromosomes was detected. The effect of Kilham rat virus on DNA synthesis appears to be due to inhibition of macromolecular synthesis rather than to an inhibition of uptake of precursors into cells. The effect of the virus on mitosis may be an addition to the effect on DNA synthesis, since mitosis is inhibited even in cultures in which cells are able to divide at the time of infection and which have presumably completed DNA synthesis. PMID:5167023

  2. Close Interactions between Mesenchymal Stem Cells a