Sample records for porous anodic oxide

  1. Influence of anodizing conditions on generation of internal cracks in anodic porous tin oxide films grown in NaOH electrolyte

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gawlak, Karolina; Gurgul, Magdalena; Dziurka, Magdalena; Nowak, Marlena; Gilek, Dominika; Sulka, Grzegorz D.

    2018-05-01

    Nanoporous tin oxide layers were synthesized via simple one-step anodic oxidation of a low-purity Sn foil (98.8%) in sodium hydroxide electrolyte. The process of pore formation at the early stage of anodization was discussed on the basis of concepts of oxygen bubble mould effect and viscous flow of oxide. The effect of anodizing conditions on the generation of internal cracks and fractures within the anodic film was investigated in detail. It was confirmed that crack-free tin oxide films can be obtained if the anodization is carried out at the potential of 4 V independently of the electrolyte concentration. On the other hand, the porous anodic film with a totally stacked internal morphology is obtained at the potential of 5 V in 0.1 M NaOH electrolyte. The generation of internal cracks and voids can be attributed to a much lower surface porosity and local trapping of O2 inside the pores of the oxide layer. However, increasing electrolyte concentration allows for obtaining less cracked porous films due to effective and uniform liberation of oxygen bubbles from the channels through completely open pore mouths. Furthermore, it was confirmed that uniformity of the anodic tin oxide layers can be significantly improved by vigorous electrolyte stirring. Finally, we observed that the addition of ethanol to the electrolyte can reduce anodic current density and the oxide growth rate. In consequence, less cracked anodic film can be formed even at the potential of 6 V. The generation of oxygen at the pore bottoms, together with the open pore mouths were found to be critical factors responsible for the anodic formation of crack-free porous tin oxide films.

  2. Modelling the growth process of porous aluminum oxide film during anodization

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  3. Growth behavior of anodic porous alumina formed in malic acid solution

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  4. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  5. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  6. Controlled porous pattern of anodic aluminum oxide by foils laminate approach.

    PubMed

    Wang, Gou-Jen; Peng, Chi-Sheng

    2006-04-01

    A novel, much simpler, and low-cost method to fabricate the porous pattern of the anodic aluminum oxide (AAO) based on the aluminum foils laminate approach was carried out. During our experiments, it was found that the pores of the AAO on the upper foil grew bi-directionally from both the top and the bottom surfaces. Experimental results further indicate that the upward porous pattern of the upper foil is determined by the surface structure of the bottom surface of the upper foil. The porous pattern of AAO can be controlled by a pre-made pattern on the bottom surface. Furthermore, no Aluminum (Al) layer removing process is required in this novel laminate method.

  7. Model of porous aluminium oxide growth during initial stage of anodization

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2014-10-01

    Currently, the development of nanotechnology and metamaterials requires the ability to obtain regular self-assembled structures with different parameters. One such structure is porous alumina in which the pores grow perpendicular to the substrate and are hexagonally packed. Pore size and the distance between them can be varied depending on the anodization voltage, the electrolyte and the anodization time (pore diameter - from 2 to 350 nm, the distance between the pores - from 5 to 50 nm). At the moment, there are different models describing the process of anodizing aluminum, in this paper we propose a model that takes into account the effect of layers of aluminum, aluminum oxide, and the electrolyte, as well as the influence of the effect of surface diffusion.

  8. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  9. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Kai; Jia, Lichao; Zhang, Qian; Jiang, San Ping; Chi, Bo; Pu, Jian; Jian, Li; Yan, Dong

    2015-03-01

    Porous Ni-Fe anode supports for intermediate solid oxide fuel cells are prepared by reducing the sintered NiO-(0-50 wt. %) Fe2O3 composites in H2, their microstructure, redox and thermal expansion/cycling characteristics are systematically investigated. The sintered NiO-Fe2O3 composites are consisted of NiO and NiFe2O4, and are fully reducible to porous metallic Ni-Fe alloys in H2 at temperatures between 600 and 750 °C. The porous structure contains pores in bimodal distribution with larger pores between the sintered particles and smaller ones inside the particles. The oxidation resistance of the Ni-Fe alloy anode supports at 600 and 750 °C is increased by the addition of Fe, their oxidation kinetics obeys a multistage parabolic law in the form of (Percentageweightgain /Specificsurfacearea) 2 =kp · t , where kp is the rate constant and t the oxidation time. The dimension of the Ni-Fe anode supports is slightly changed without disintegrating their structure, and Fe addition is beneficial to the redox stability. The TEC of the Ni-Fe alloy anode supports decreases with the increase of Fe content. The anode supports containing Fe is less stable in dimension during thermal cycles due to the continuous sintering, but the dimension change after thermal cycles is within 1%.

  10. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    NASA Astrophysics Data System (ADS)

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1-0.5 M arsenic acid solutions at 310-340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  11. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    PubMed

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Preparation of the porous cerium dioxide film by two-step anodization and heat treating method

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Zhu, Bolun; Liu, Yuze; Wang, Shanshan; Chen, Jie; Wang, Xiaoyu

    2017-12-01

    The porous cerium dioxide films were prepared with cerium foils as raw materials by two-step anodization and heat treating method. The anodic cerium oxide films were heat treated in 25∼400°C respectively. The cerium dioxide films were characterized with X-ray diffraction (XRD), Fourier transform infrared (FTIR) techniques, energy-dispersive analyses of X-ray (EDAX) and scanning electron microcopy (SEM), respectively. The anodic cerium oxide film is composed of Ce(OH)3, CeO2 and Ce2O3. When the anodic cerium oxide films were heat treated in 300°C∼400°C for 2h, Ce(OH)3 and Ce2O3 in the anodic cerium oxide films may be converted to CeO2, and the heat treated anodic cerium oxide films are the cerium dioxide films. Water, ethylene glycol and CO2 are adsorbed in the anodic cerium oxide film. The adsorbing water, ethylene glycol and CO2 in the anodic cerium oxide film are removed at 300°C. The cerium dioxide film has strong absorption in the range of 1600∼4000cm-1. The structure of the cerium dioxide film is the porous.

  13. Effect of the local electric field on the formation of an ordered structure in porous anodic alumina

    NASA Astrophysics Data System (ADS)

    Lazarouk, S. K.; Katsuba, P. S.; Leshok, A. A.; Vysotskii, V. B.

    2015-09-01

    Experimental data and a model are presented, and the electric field that appears in porous alumina during electrochemical anodic oxidation of aluminum in electrolytes based on an aqueous solution of oxalic acid at a voltage of 90-250 V is calculated. It is found that the electric field in the layers with a porosity of 1-10% in growing alumina reaches 109-1010 V/m, which exceeds the electric strength of the material and causes microplasma patterns emitting visible light at the pore bottom, the self-organization of the structure of porous alumina, and the anisotropy of local porous anodizing. Moreover, other new effects are to be expected during aluminum anodizing under the conditions that ensure a high electric field inside the barrier layer of porous oxide.

  14. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    NASA Astrophysics Data System (ADS)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  15. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property

    NASA Astrophysics Data System (ADS)

    Song, Tingting; Liu, Qi; Liu, Jingyuan; Yang, Wanlu; Chen, Rongrong; Jing, Xiaoyan; Takahashi, Kazunobu; Wang, Jun

    2015-11-01

    Inspired by natural plants such as Nepenthes pitcher plants, super slippery surfaces have been developed to improve the attributes of repellent surfaces. In this report, super slippery porous anodic aluminium oxide (AAO) surfaces have fabricated by a simple and reproducible method. Firstly, the aluminium substrates were treated by an anodic process producing micro-nano structured sheet-layered pores, and then immersed in Methyl Silicone Oil, Fluororalkylsilane (FAS) and DuPont Krytox, respectively, generating super slippery surfaces. Such a good material with excellent anti-corrosion property through a simple and repeatable method may be potential candidates for metallic application in anti-corrosion and extreme environment.

  16. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    NASA Astrophysics Data System (ADS)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  17. Effects of anodic oxidation parameters on a modified titanium surface.

    PubMed

    Park, Il Song; Lee, Min Ho; Bae, Tae Sung; Seol, Kyeong Won

    2008-02-01

    Anodic oxidation is an electrochemical treatment that can be used to control the thickness of an oxide layer formed on a titanium surface. This procedure has the advantage of allowing the ions contained in an electrolyte to deposit onto the oxide layer. The characteristics of a layer treated with anodic oxidation can vary according to the type and concentration of the electrolytes as well as the processing variables used during anodic oxidation. In this study, the constant electrolyte for anodic oxidation was a mixed solution containing 0.02 M DL-alpha-glycerophosphate disodium salt and 0.2M calcium acetate. Anodic oxidation was carried out at different voltages, current densities, and duration of anodic oxidation. The results showed that the current density and variation in the duration of anodic oxidation did not have a large effect on the change in the characteristics of the layer. On the other hand, the size of the micropores was increased with increasing voltage of anodic oxidation, and anatase and rutile phases were found to co-exist in the porous titanium dioxide layer. In addition, the thickness of the oxide layer on titanium and the characteristic of corrosion resistance increased with increasing voltage. The MTT test showed that the cell viability was increased considerably as a result of anodic oxidation. The anodizing voltage is an important parameter that determines the characteristics of the anodic oxide layer of titanium. (c) 2007 Wiley Periodicals, Inc.

  18. X-ray reflectivity study of formation of multilayer porous anodic oxides of silicon.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Y.; Fenollosa, R.; Parkhutik, V.

    1999-07-21

    The paper reports data on the kinetics of anodic oxide films growth on silicon in aqueous solutions of phosphoric acids as well as a study of the morphology of the oxides grown in a special regime of the oscillating anodic potential. X-ray reflectivity measurements were performed on the samples of anodic oxides using an intense synchrotron radiation source. They have a multilayer structure as revealed by theoretical fitting of the reflectivity data. The oscillations of the anodic potential are explained in terms of synchronized oxidation/dissolution reactions at the silicon surface and accumulation of mechanic stress in the oxide film.

  19. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel.

    PubMed

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-07

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  20. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-01

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  1. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    PubMed Central

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  2. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    NASA Astrophysics Data System (ADS)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  3. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-27

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires

    NASA Astrophysics Data System (ADS)

    Hussain, Tajamal; Shah, Asma Tufail; Shehzad, Khurram; Mujahid, Adnan; Farooqi, Zahoor Hussain; Raza, Muhammad Hamid; Ahmed, Mirza Nadeem; Nisa, Zaib Un

    2015-12-01

    Uniform porous anodized aluminum oxide (AAO) membrane has been synthesized by two-step anodization for fabricating tungsten trioxide (WO3) nanowires. Under assayed conditions, uniform porous structure of alumina (Al2O3) membrane with long range ordered hexagonal arrangements of nanopores was achieved. The self-assembled template possesses pores of internal diameter of 50 nm and interpore distance ( d int) of 80 nm with a thickness of about 80 µm, i.e., used for fabrication of nanostructures. WO3 nanowires have been fabricated by simple electroless deposition method inside Al2O3 nanopores. SEM images show tungsten trioxide nanowire with internal diameter of about 50 nm, similar to porous diameter of AAO template. XRD results showed that nanowires exist in cubic crystalline state with minor proportion of monoclinic phase.

  5. Fabrication of Pd Micro-Membrane Supported on Nano-Porous Anodized Aluminum Oxide for Hydrogen Separation.

    PubMed

    Kim, Taegyu

    2015-08-01

    In the present study, nano-porous anodized aluminum oxide (AAO) was used as a support of the Pd membrane. The AAO fabrication process consists of an electrochemical polishing, first/second anodizing, barrier layer dissolving and pores widening. The Pd membrane was deposited on the AAO support using an electroless plating with ethylenediaminetetraacetic acid (EDTA) as a plating agent. The AAO had the regular pore structure with the maximum pore diameter of ~100 nm so it had a large opening area but a small free standing area. The 2 µm-thick Pd layer was obtained by the electroless plating for 3 hours. The Pd layer thickness increased with increasing the plating time. However, the thickness was limited to ~5 µm in maximum. The H2 permeation flux was 0.454 mol/m2-s when the pressure difference of 66.36 kPa0.5 was applied at the Pd membrane under 400 °C.

  6. Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template

    NASA Astrophysics Data System (ADS)

    Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed

    2014-12-01

    Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).

  7. Two-dimensional porous anodic alumina for optoelectronics and photocatalytic application

    NASA Astrophysics Data System (ADS)

    Khoroshko, L. S.

    2015-11-01

    Fabrication of porous anodic alumina film structures using anodizing, sol-gel synthesis and photolithography is reported. The structures receive interest as planar waveguides due to strong photoluminescence of the embedded trivalent lanthanides. Mesoporous structures comprising sol-gel derived titania in porous anodic alumina play a role of effective catalyst for water purification.

  8. Stimulated emission from aluminium anode oxide films doped with rhodamine 6G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrayev, N Kh; Zeinidenov, A K; Aimukhanov, A K

    The spectral and luminescent properties of the rhodamine 6G dye in a porous matrix of aluminium anode oxide are studied. The films with a highly-ordered porous structure are produced using the method of two-stage anodic oxidation. By means of raster electron microscopy it is found that the diameter of the pores amounts to nearly 50 nm and the separation between the adjacent channels is almost 105 nm. The thickness of the films is equal to 55 μm, and the specific surface area measured using the method of nitrogen capillary condensation is 15.3 m{sup 2} g{sup -1}. Fluorescence and absorption spectramore » of rhodamine 6G molecules injected into the pores of the aluminium anode oxide are measured. It is found that under the excitation of samples with the surface dye concentration 0.3 × 10{sup 14} molecules m{sup -2} by the second harmonic of the Nd : YAG laser in the longitudinal scheme with the pumping intensity 0.4 MW cm{sup -2}, a narrow band of stimulated emission with the intensity maximum at the wavelength 572 nm appears against the background of the laser-induced fluorescence spectrum. A further increase in the pumping radiation intensity leads to the narrowing of the stimulated emission band and an increase in its intensity. The obtained results demonstrate the potential possibility of using the porous films of aluminium anode oxide, doped with laser dyes, in developing active elements for quantum electronics. (laser applications and other topics in quantum electronics)« less

  9. Interfacial morphology of low-voltage anodic aluminium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Naiping; Dongcinn, Xuecheng; He, Xueying

    X-ray reflectivity (XRR) and neutron reflectivity (NR), as well as ultra-smallangle X-ray scattering (USAXS), are used to examine the in-plane and surfacenormal structure of anodic films formed on aluminium alloy AA2024 and pure aluminium. Aluminium and alloy films up to 3500 A thick were deposited on Si wafers by electron beam evaporation of ingots. Porous anodic aluminium oxide (AAO) films are formed by polarizing at constant voltage up to 20 V noble to the open circuit potential. The voltage sweet spot (5 V) appropriate for constant-voltage anodization of such thin films was determined for both alloy and pure Al. Inmore » addition, a new concurrent voltage- and current-control protocol was developed to prepare films with larger pores (voltages higher than 5 V), but formed at a controlled current so that pore growth is slow enough to avoid stripping the aluminium substrate layer. USAXS shows that the pore size and interpore spacing are fixed in the first 10 s after initiation of anodization. Pores then grow linearly in time, at constant radius and interpore spacing. Using a combination of XRR and NR, the film density and degree of hydration of the films were determined from the ratio of scattering length densities. Assuming a chemical formula Al2O3xH2O, it was found that x varies from 0.29 for the native oxide to 1.29 for AAO grown at 20 V under concurrent voltage and current control. The average AAO film density of the porous film at the air surface is 2.45 (20) g cm3. The density of the barrier layer at the metal interface is 2.9 (4) g cm3, which indicates that this layer is also quite porous« less

  10. Contact angle studies on anodic porous alumina.

    PubMed

    Redón, Rocío; Vázquez-Olmos, A; Mata-Zamora, M E; Ordóñez-Medrano, A; Rivera-Torres, F; Saniger, J M

    2005-07-15

    The preparation of nanostructures using porous anodic aluminum oxide (AAO) as templates involves the introduction of dissolved materials into the pores of the membranes; one way to determine which materials are preferred to fill the pores involves the measurement of the contact angles (theta) of different solvents or test liquids on the AAOs. Thus, we present measurements of contact angles of nine solvents on four different AAO sheets by tensiometric and goniometric methods. From the solvents tested, we found dimethyl sulfoxide (DMSO) and N,N(')-dimethylformamide (DMF) to interact with the AAOs, the polarity of the solvents and the surfaces being the driving force.

  11. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    NASA Astrophysics Data System (ADS)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  12. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Kuber; Zheng, Jianming; Patel, Rajankumar

    A low temperature (210°C) aluminothermic reduction reaction process has been developed to synthesis porous silicon (Si) as an anode for Li ion battery applications. An eutectic mixture of AlCl3 and ZnCl2 is used as the mediator to reduce the reaction temperature. With carbon pre-coated on the porous SiO2 precursor, porous Si@C core shell structured anodes could be obtained with structure and morphology similar to that of the porous precursor. In addition, carbon coated porous Si also exhibits superior cyclic stability, higher rate performance, and higher coulombic efficiency. The porous Si anode demonstrates a high specific capacity of ~2100 mAh/g atmore » the current density of 1.2 A/g and has a good cycling stability with ~76% capacity retention over 250 cycles. Therefore, it will be a good candidate for anode used in high energy density Li-ion batteries.« less

  13. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    NASA Astrophysics Data System (ADS)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  14. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature.

    PubMed

    Chung, C K; Zhou, R X; Liu, T Y; Chang, W T

    2009-02-04

    Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 degrees C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.

  15. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    PubMed

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.

  16. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    NASA Astrophysics Data System (ADS)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  17. Fabrication of anodic aluminium oxide templates on curved surfaces.

    PubMed

    Yin, Aijun; Guico, Rodney S; Xu, Jimmy

    2007-01-24

    Aluminium anodization provides a simple and inexpensive way to obtain nanoporous templates with uniform and controllable pore diameters and periods over a wide range. Moreover, one of the interesting possibilities afforded by the anodization process is that the anodization can take place on arbitrary surfaces, such as curved surfaces, which has not yet been well studied or applied in nanofabrication. In this paper, we characterize the anodization of Al films on silicon substrates with a curved top surface. The structures of the resultant anodic aluminium oxide (AAO) films are examined by scanning electron microscopy. Unique features including cessation, bending, and branching of pore channels are observed in the curved area. Possible growth mechanisms are proposed, which can also contribute to the understanding of the self-organization mechanism in the formation of porous AAO membranes. The new structures may open new opportunities in optical, electronic and electrochemical applications.

  18. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    NASA Astrophysics Data System (ADS)

    Rahimi, M. H.; Saramad, S.; Tabaian, S. H.; Marashi, S. P.; Zolfaghari, A.; Mohammadalinezhad, M.

    2009-10-01

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 °C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  19. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  20. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  1. Simulation of Flow Through Porous Anode in Mfc at Higher Power Density

    NASA Astrophysics Data System (ADS)

    Su, W. W.; Xu, Y. S.; Yan, W. W.; Liu, Y.

    Microbial fuel cell (MFC) is a new environmental friendly energy device which has received greatly attention due to its technology for producing electricity directly from organic or inorganic matter using bacteria as catalyst. To date, many studies have been carried out on advective flow through porous anode in a continuous flow MFC. However, the precise mechanical mechanism of flow through porous anode and the quantified relationship between porous media and MFC performance are not yet clearly understood. It has been found experimentally the power density can be increased apparently at certain spacing configuration. Based on these available experimental data, we studied the effect of spacing between electrodes and the Darcy number of porous anode on the power generation performance of MFC using lattice Boltzmann method. The simulation results indicated that the spacing between electrodes significantly influence the flow velocity profile and residence time in the MFC. Moreover, it was found that the Darcy number of porous anode could regulate the output efficiency of MFC. Our results would be helpful to optimize MFC design.

  2. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  3. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  4. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  5. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    DOE PAGES

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; ...

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-levelmore » outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.« less

  6. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    PubMed

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  7. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Chen, Qianwang

    2014-01-01

    Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from ``dead pores'' pore size often appears to be <10 nm; in terms of surface chemistry, the pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g-1 at a rate of 300 mA g-1 was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g-1), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g-1 at 50 mA g-1

  8. Porous carbon-free SnSb anodes for high-performance Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min

    2018-05-01

    A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.

  9. Mathematical modeling of sustainability of porous Al2O3 growth during two-stage anodization process

    NASA Astrophysics Data System (ADS)

    Aryslanova, Elizaveta M.; Alfimov, Anton V.; Chivilikhin, Sergey A.

    2015-06-01

    Currently, due to the development of nanotechnology and metamaterials, it has become important to obtain regular nanoporous structures with different parameters, such as porous anodic alumina films that are used for synthesis of various nanocomposites. In this work we consider the motion of the interfaces between electrolyte and alumina layers, and between alumina and aluminum layers. We also took into account the dynamics of moving boundaries and the change of small perturbations of these boundaries. Each area under Laplace's equation is solved for the potential of the electric field. The growth of porous alumina is described with the theory of small perturbations. Small perturbations of the interface are considered, which lead to small changes in potential and current in the boundaries. As a result of the developed model we obtained the minimum distance between centers of aluminum oxide pores in the beginning of anodizing process and the wavelength of porous structure irregularities.

  10. Porous Anodic Aluminum Oxide with Serrated Nanochannels

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Zhao, Liang; Lu, Jia G.

    2010-03-01

    Self-assembled nanoporous anodic aluminum oxide (AAO) membrane with straight channels has long been an important tool in synthesizing highly ordered and vertically aligned quasi-1D nanostructures for various applications. Recently shape-selective nanomaterials have been achieved using AAO as a template. It is envisioned that nanowires with multi-branches will significantly increase the active functional sites for applications as sensors, catalysts, chemical cells, etc. Here AAO membranes with serrated nanochannels have been successfully fabricated via a two-step annodization method. The serrated channels with periodic intervals are aligned at an angle of ˜25^circ along the stem channels. The formation of the serrated channels is attributed to the evolution of oxygen gas bubbles and the resulted plastic deformation in oxide membrane. In order to reveal the inside channel structure, Platinum are electrodeposited into the AAO template. The as-synthesized serrated Pt nanowires demonstrate a superior electrocatalytic activity. This is attributed to the enhanced electric field strength around serrated tips as shown in the electric field simulation by COMOSL. Moreover, hierarchical serrated/straight hybrid structures can be constructed using this simple and novel self assembly technique.

  11. Optimization of Anodic Porous Alumina Fabricated from Commercial Aluminum Food Foils: A Statistical Approach

    PubMed Central

    Riccomagno, Eva; Shayganpour, Amirreza; Salerno, Marco

    2017-01-01

    Anodic porous alumina is a known material based on an old industry, yet with emerging applications in nanoscience and nanotechnology. This is promising, but the nanostructured alumina should be fabricated from inexpensive raw material. We fabricated porous alumina from commercial aluminum food plate in 0.4 M aqueous phosphoric acid, aiming to design an effective manufacturing protocol for the material used as nanoporous filler in dental restorative composites, an application demonstrated previously by our group. We identified the critical input parameters of anodization voltage, bath temperature and anodization time, and the main output parameters of pore diameter, pore spacing and oxide thickness. Scanning electron microscopy and grain analysis allowed us to assess the nanostructured material, and the statistical design of experiments was used to optimize its fabrication. We analyzed a preliminary dataset, designed a second dataset aimed at clarifying the correlations between input and output parameters, and ran a confirmation dataset. Anodization conditions close to 125 V, 20 °C, and 7 h were identified as the best for obtaining, in the shortest possible time, pore diameters and spacing of 100–150 nm and 150–275 nm respectively, and thickness of 6–8 µm, which are desirable for the selected application according to previously published results. Our analysis confirmed the linear dependence of pore size on anodization voltage and of thickness on anodization time. The importance of proper control on the experiment was highlighted, since batch effects emerge when the experimental conditions are not exactly reproduced. PMID:28772776

  12. Fano resonance in anodic aluminum oxide based photonic crystals.

    PubMed

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  13. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    PubMed

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  14. Formation of crack-free nanoporous tin oxide layers via simple one-step anodic oxidation in NaOH at low applied voltages

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Gilek, Dominika; Gawlak, Karolina; Jaskuła, Marian; Sulka, Grzegorz D.

    2016-12-01

    A simple anodic oxidation of metallic tin in fluoride-free alkaline electrolyte at low potentials was proposed as a new and effective strategy for fabrication of crack-free nanoporous tin oxide layers. A low-purity Sn foil (98.8%) was used as a starting material, and a series of anodizations were performed in 1 M NaOH at different conditions such as anodizing potential, and duration of the process. It was proved for the first time that nanostructured tin oxides with ultra-small nanochannels having diameters of <15 nm can be synthesized by simple anodization of metallic tin at a potential of 2 V in 1 M NaOH electrolyte. Increasing anodizing potential to 3 and 4 V allowed for formation of tin oxide layers with much larger pores (40-50 nm in diameter) which were still free from internal cracks and transversal pores. Applying such low potentials significantly reduces the oxide growth rate and suppresses vigorous oxygen evolution at the anode. As a result mechanical deterioration of the oxide structure is prevented while strongly alkaline electrolyte is responsible for formation of the porous layer with completely open pores even at such low potentials. On the contrary, when anodization was carried out at potentials of 5 and 6 V, much faster formation of anodic layer, accompanied by vigorous oxygen gas formation, was observed. In consequence, as grown oxide layers exhibited typical cracked or even stacked internal structure. Finally, we demonstrated for the first time that nanoporous tin oxide layers with segments of different channel sizes can be successfully obtained by simple altering potential during anodization.

  15. Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Won, Chan Yeon; Cha, Ju-Sun; Park, Wooshin; Im, Hun Suk; Hong, Sun-Seok; Hur, Jin-Mok

    2014-01-01

    Electrochemical reductions of uranium oxide in a molten LiCl-Li2O electrolyte were carried out using porous and nonporous anode shrouds. The study focused on the effect of the type of anode shroud on the current density by running experiments with six anode shrouds. Dense ceramics, MgO, and MgO (3 wt%) stabilized ZrO2 (ZrO2-MgO) were used as nonporous shrouds. STS 20, 100, and 300 meshes and ZrO2-MgO coated STS 40 mesh were used as porous shrouds. The current densities (0.34-0.40 A cm-2) of the electrolysis runs using the nonporous anode shrouds were much lower than those (0.76-0.79 A cm-2) of the runs using the porous shrouds. The ZrO2-MgO shroud (600-700 MPa at 25 °C) showed better bending strength than that of MgO (170 MPa at 25 °C). The high current densities achieved in the electrolysis runs using the porous anode shrouds were attributed to the transport of O2- ions through the pores in meshes of the shroud wall. ZrO2-MgO coating on STS mesh was chemically unstable in a molten LiCl-Li2O electrolyte containing Li metal. The electrochemical reduction runs using STS 20, 100, and 300 meshes showed similar current densities in spite of their different opening sizes. The STS mesh shrouds which were immersed in a LiCl-Li2O electrolyte were stable without any damage or corrosion.

  16. Numerical simulation of the baking of porous anode carbon in a vertical flue ring furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M.; Melaaen, M.C.

    The interaction of pitch pyrolysis in porous anode carbon during heating and volatiles combustion in the flue gas channel has been analyzed to gain insight in the anode baking process. A two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke, and an anode was used for studying the effect of heating rate on temperature gradients and internal gas pressure in the anodes. The mathematical model included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation, and turbulent channel flow. The mathematical model was developed through source code modification of the computationalmore » fluid dynamics code FLUENT. The model was useful for studying the effects of heating rate, geometry, and anode properties.« less

  17. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  18. Research progress in formation mechanism of anodizing aluminum oxide

    NASA Astrophysics Data System (ADS)

    Lv, Yudong

    2017-12-01

    The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.

  19. Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping

    2017-06-01

    A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.

  20. Performance comparison of tin oxide anodes to commercially available dimensionally stable anodes.

    PubMed

    Watts, Richard J; Finn, Dennis D; Wyeth, Megan S; Teel, Amy L

    2008-06-01

    Dimensionally stable anodes (DSAs) demonstrate potential for the electrochemical treatment of industrial waste streams and disinfection of effluent. Oxidation by laboratory-prepared tin oxide DSAs was compared with that of commercially available ruthenium oxide, iridium oxide, and mixed metal oxide DSAs, using hexanol as a probe molecule. The performance of the four anodes was similar in two-chamber reactors, in which the anode cell was separated from the cathode cell by a Nafion membrane, which allows transmission of current between the chambers, but not passage of chemical constituents. The anodes were then evaluated in single-cell reactors, which are more representative of potential treatment and disinfection applications. However, in the single-cell reactors, the tin oxide anodes were significantly more effective at oxidation and generated higher quality cyclic voltammograms than the other DSAs. These results suggest that tin oxide anodes have greater potential than the three commercially available DSAs tested for industrial waste stream treatment and effluent disinfection.

  1. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing

    PubMed Central

    Nishinaga, Osamu; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2013-01-01

    Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing. PMID:24067318

  2. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium

  3. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOEpatents

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  4. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    PubMed Central

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  5. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    PubMed

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  6. Enhanced Stability of Lithium Metal Anode by using a 3D Porous Nickel Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lu; Canfield, Nathan L.; Chen, Shuru

    Lithium (Li) metal is considered the “holy grail” anode for high energy density batteries, but its applications in rechargeable Li metal batteries are still hindered by the formation of Li dendrites and low Coulombic efficiency for Li plating/stripping. An effective strategy to stabilize Li metal is by embedding Li metal anode in a three-dimensional (3D) current collector. Here, a highly porous 3D Ni substrate is reported to effectively stabilize Li metal anode. Using galvanostatic intermittent titration technique combined with scanning electron microscopy, the underlying mechanism on the improved stability of Li metal anode is revealed. It is clearly demonstrated thatmore » the use of porous 3D Ni substrate can effectively suppress the formation of “dead” Li and forms a dense surface layer, whereas a porous “dead” Li layer is accumulated on the 2D Li metal which eventually leads to mass transport limitations. X-ray photoelectron spectroscopy results further revealed the compositional differences in the solid-electrolyte interphase layer formed on the Li metal embedded in porous 3D Ni substrate and the 2D copper substrate.« less

  7. Enhanced Stability of Li Metal Anode by using a 3D Porous Nickel Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lu; Canfield, Nathan L.; Chen, Shuru

    2018-03-02

    Lithium (Li) metal is considered the “holy grail” anode for high energy density batteries, but its applications in rechargeable Li metal batteries are still hindered by the formation of Li dendrites and low Coulombic efficiency for Li plating/stripping. An effective strategy to stabilize Li metal is by embedding Li metal anode in a three-dimensional (3D) current collector. Here, a highly porous 3D Ni substrate is reported to effectively stabilize Li metal anode. Using galvanostatic intermittent titration technique combined with scanning electron microscopy, the underlying mechanism on the improved stability of Li metal anode is revealed. It is clearly demonstrated thatmore » the use of porous 3D Ni substrate can effectively suppress the formation of “dead” Li and forms a dense surface layer, whereas a porous “dead” Li layer is accumulated on the 2D Li metal which eventually leads to mass transport limitations. X-ray photoelectron spectroscopy results further revealed the compositional differences in the solid-electrolyte interphase layer formed on the Li metal embedded in porous 3D Ni substrate and the 2D copper substrate.« less

  8. Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Fangfang; Bai, Jing; Feng, Jinkui; Xiong, Shenglin

    2015-10-01

    The relentless pursuit of new electrode materials for lithium ion batteries (LIBs) has been conducted for decades. Structures with either porous or nanostructure configurations have been confirmed as advantageous candidates for energy storage/conversion applications. The integration of the two features into one structure can provide another chance to improve the electroactivities. Recently, single-phased mixed metal oxides (MMOs) containing different metal cations, in particular, have confirmed high electrochemical activities because of their complex chemical composition, interfacial effects, and the synergic effects of the multiple metal species. In this review, we will focus on recent research advances of MMOs with porous architectures as anode materials in the matter of structural arrangement and compositional manipulation. Moreover, the application of self-supported MMO-based porous structures as LIB anodes is also explained herein. More importantly, investigations on the synthetic system and formation mechanism of porous MMOs will be highlighted. Some future trends for the innovative design of new electrode materials are also discussed in this review. The challenges and prospects will draw many researchers' attention.

  9. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.

    PubMed

    Yao, Chang; Webster, Thomas J

    2006-01-01

    Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.

  10. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance inmore » term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})« less

  11. Synthesis of zinc oxide porous structures by anodization with water as an electrolyte

    NASA Astrophysics Data System (ADS)

    Shetty, Amitha; Nanda, Karuna Kar

    2012-10-01

    We report a simple, reliable and one-step method of synthesizing ZnO porous structures at room temperature by anodization of zinc (Zn) sheet with water as an electrolyte and graphite as a counter electrode. We observed that the de-ionized (DI) water used in the experiment is slightly acidic (pH=5.8), which is due to the dissolution of carbon dioxide from the atmosphere forming carbonic acid. Porous ZnO is characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence (PL) studies. The current-transient measurement is carried out using a Gamry Instruments Reference 3000 and the thickness of the deposited films is measured using a Dektak surface profilometer. The PL, Raman and X-ray photoelectron spectroscopy are used to confirm the presence of ZnO phase. We have demonstrated that the hybrid structures of ZnO and poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) exhibit good rectifying characteristics. The evaluated barrier height and the ideality factor are 0.45 eV and 3.6, respectively.

  12. Advanced morphological analysis of patterns of thin anodic porous alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toccafondi, C.; Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163; Stępniowski, W.J.

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for themore » thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.« less

  13. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    PubMed

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  14. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    PubMed

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  15. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt using metal anode shrouds

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon; Jeon, Min Ku; Hong, Sun Seok; Kim, Sung-Wook; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-06-01

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance.

  16. Modelling the growth of porous alumina matrix for creating hyperbolic media

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2016-08-01

    Porous aluminum oxide is a regular self-assembled structure. During anodization it is possible to control nano-parameters of the structure using macroscopic parameters of anodization. Porous alumina films can be used as a template for the creation of hyperbolic media. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. As a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process. We also present the results obtained by numerical modelling of hyperbolic media based on porous alumina film.

  17. Synthesis and photocatalytic properties of graphitic carbon nitride nanofibers using porous anodic alumina templates

    NASA Astrophysics Data System (ADS)

    Suchitra, S. M.; Udayashankar, N. K.

    2017-12-01

    In the present study, we describe an effective method for the synthesis of Graphitic carbon nitride (GCN) nanostructures using porous anodic alumina (AAO) membrane as template by simple thermal condensation of cyanamide. Synthesized nanostructure was fully analysed by various techniques to detect its crystalline nature, morphology, luminescent properties followed by the evaluation of its photocatalytic activity in the degradation of Methylene blue dye. Structural analysis of synthesized GCNNF was systematically carried out using x-ray powder diffraction (XRD) and scanning electron microscope (SEM), and. The results confirmed the growth of GCN inside the nanochannels of anodic alumina templates. Luminescent properties of GCNNF were studied using photoluminescence (PL) spectroscopy. PL analysis showed the presence of a strong emission peak in the wavelength range of 350-600 nm in blue region. GCNNF displays higher photocatalytic performance in the photodegradation of methylene blue compare to the bulk GCN. Highlights 1. In the present paper, we report the synthesis of graphitic carbon nitride nanofibers (GCNNF) using porous anodic aluminium oxide membranes as templates through thermal condensation of cyanamide at 500 °C. 2. The synthesis of Graphitic carbon nitride nanofibers using porous andic alumina template is the efficient approach for increasing crystallinity and surface area. 3. The high surface area of graphitic carbon nitride nanofibers has a good impact on novel optical and photocatalytic properties of the bulkGCN. 4. AAO templating of GCN is one of the versatile method to produce tailorable GCN nanostructures with higher surface area and less number of structural defects. 5. Towards photocatalytic degradation of dyes, the tuning of physical properties is very essential thing hence we are succeeded in achieving better catalytic performance of GCN nanostructures by making use of AAO templates.

  18. Anodic oxidation of benzoquinone using diamond anode.

    PubMed

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  19. Flexible anodized aluminum oxide membranes with customizable back contact materials

    NASA Astrophysics Data System (ADS)

    Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.

    2016-12-01

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  20. Lasing of a Solid-State Active Element Based on Anodized Aluminum Oxide Film Doped with Rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Shelkovnikov, V. V.; Lyubas, G. A.; Korotaev, S. V.; Kopylova, T. N.; Tel'minov, E. N.; Gadirov, R. M.; Nikonova, E. N.; Nikonov, S. Yu.; Solodova, T. A.; Novikov, V. A.

    2017-04-01

    Spectral-luminescent and lasing characteristics of rhodamine 6G in porous aluminum oxide films anodized under various conditions are investigated. Lasing is obtained without external resonator in the longitudinal scheme under excitation by the second harmonic of Nd3+:YAG-laser radiation. The threshold pump power densities are in the range 3.5-15 MW/cm2 depending on the anodizing conditions. Wherein, the lasing line narrows down from 12 to 5 nm.

  1. Optical and magnetic properties of porous anodic alumina/Ni nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Jing; Li, Zi-Yue; Zhang, Zhi-Jun; Wu, Tian-Shan; Sun, Hui-Yuan

    2013-06-01

    A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Ni is reported. The films display highly saturated colors after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The ultrashort Ni nanowires (100 nm long and 50 nm in diameter) present only fcc phase and show no apparent averaged effective magnetic anisotropy. The coercivity mechanism of the Ni nanowires in our case is consistent with fanning mechanism based on a chain-of-spheres model. PAA/Ni films with structural color and magnetic properties have friability-resistant feature and can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting technology.

  2. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-12-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm-2 and 3.0 × 1010 cm-2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

  3. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    PubMed

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively.

  4. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Benoved, Nir; Kesler, O.

    Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.

  5. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    NASA Astrophysics Data System (ADS)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  6. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    PubMed

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  8. Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Favors, Zachary; Ionescu, Robert; Ye, Rachel; Bay, Hamed Hosseini; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-03-01

    Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g-1. In particular, reversible Li storage capacities above 1500 mAh g-1 were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures.

  9. Monodisperse porous silicon spheres as anode materials for lithium ion batteries.

    PubMed

    Wang, Wei; Favors, Zachary; Ionescu, Robert; Ye, Rachel; Bay, Hamed Hosseini; Ozkan, Mihrimah; Ozkan, Cengiz S

    2015-03-05

    Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g(-1). In particular, reversible Li storage capacities above 1500 mAh g(-1) were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures.

  10. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  11. Understanding and Shaping the Morphology of the Barrier Layer of Supported Porous Anodized Alumina on Gold Underlayers.

    PubMed

    Berger, Nele; Es-Souni, Mohammed

    2016-07-12

    Large-area ordered nanorod (NR) arrays of various functional materials can be easily and cost-effectively processed using on-substrate anodized porous aluminum oxide (PAO) films as templates. However, reproducibility in the processing of PAO films is still an issue because they are prone to delamination, and control of fabrication parameters such as electrolyte type and concentration and anodizing time is critical for making robust templates and subsequently mechanically reliable NR arrays. In the present work, we systematically investigate the effects of the fabrication parameters on pore base morphology, devise a method to avoid delamination, and control void formation under the barrier layer of PAO films on gold underlayers. Via systematic control of the anodization parameters, particularly the anodization current density and time, we follow the different stages of void development and discuss their formation mechanisms. The practical aspect of this work demonstrates how void size can be controlled and how void formation can be utilized to control the shape of NR bases for improving the mechanical stability of the NRs.

  12. Porous Fe2O3 Microspheres as Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Noerochim, L.; Indra, M. A. T.; Purwaningsih, H.; Subhan, A.

    2018-05-01

    In this work, Fe2O3 was successfully synthesized by the hydrothermal process at low temperature. FeCl3.6H2O as precursor and variation of lysine as hydrolyzing agent were used to preparing Fe2O3. SEM images show that the morphology of Fe2O3 is porous microsphere with sizes in the range of (1 to 5) µm in diameter. The as-prepared Fe2O3 with the 2 M of lysine exhibits excellent cycling performance when used as the anode for lithium ion batteries, obtaining reversible discharge capacity of 172.33 mA·h·g‑1 at 0.5 C after 50 cycles. It is attributed to the unique structure of porous microspheres providing a large surface area which maintains good electronic contact between particles during charge-discharge process. This result demonstrates that Fe2O3 porous microsphere has a high potential as anode material for application of lithium-ion battery.

  13. Research of the photovoltaic properties of anodized films of Sn

    NASA Astrophysics Data System (ADS)

    Afanasyev, D. A.; Ibrayev, N. Kh; Omarova, G. S.; Smagulov, Zh K.

    2015-04-01

    The results of studies of photovoltaic properties of solar cells based on porous tin oxide films, sensitized with an organic dye are presented. Porous films were prepared by electrochemical anodization of tin in alkaline electrolytes based on aqueous solution of NaOH and aqueous ammonia NH4OH. It was found that the time of anodizing of the Sn films affects on conversion efficiency of light energy into electrical energy. Increasing of the sorption time leads to an increase of the number of molecules on the surface of the porous film. For the solar cell based on tin oxide there is a strong dark current, which significantly reduces the efficiency of conversion of light energy into electrical energy.

  14. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  15. Ultrafast excited state deactivation of doped porous anodic alumina membranes

    NASA Astrophysics Data System (ADS)

    Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter

    2012-08-01

    Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.

  16. Ultrafast excited state deactivation of doped porous anodic alumina membranes.

    PubMed

    Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter

    2012-08-03

    Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.

  17. Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Kong, Ling-Long; Zhang, Ze; Zhang, Ye-Zheng; Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-11-23

    The lithium-sulfur (Li-S) battery is expected to be the high-energy battery system for the next generation. Nevertheless, the degradation of lithium anode in Li-S battery is the crucial obstacle for practical application. In this work, a porous carbon paper obtained from corn stalks via simple treating procedures is used as interlayer to stabilize the surface morphology of Li anode in the environment of Li-S battery. A smooth surface morphology of Li is obtained during cycling by introducing the porous carbon paper into Li-S battery. Meanwhile, the electrochemical performance of sulfur cathode is partially enhanced by alleviating the loss of soluble intermediates (polysulfides) into the electrolyte, as well as the side reaction of polysulfides with metallic lithium. The Li-S battery assembled with the interlayer exhibits a large capacity and excellent capacity retention. Therefore, the porous carbon paper as interlayer plays a bifunctional role in stabilizing the Li anode and enhancing the electrochemical performance of the sulfur cathode for constructing a stable Li-S battery.

  18. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti

    PubMed Central

    2011-01-01

    We present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte. However, a complete titania nano-porous (TNP) structures are obtained when the second anodization is conducted in a viscous electrolyte when compared to the first one. TNP structure was attributed to the suppression of F-rich layer dissolution between the cell boundaries in the viscous electrolyte. The structural morphologies were examined by field emission scanning electron microscope. The average pore diameter is approximately 70 nm, while the average inter-pore distance is approximately 130 nm. These TNP structures are useful to fabricate other nanostructure materials and nanodevices. PMID:21711844

  19. Facile preparation of porous alumina through-hole masks for sputtering by two-layer anodization

    NASA Astrophysics Data System (ADS)

    Yanagishita, Takashi; Masuda, Hideki

    2016-08-01

    Highly ordered porous alumina through-hole masks were fabricated on a substrate by combining two-layer anodization with subsequent through-holing by selective etching. This process allowed the fabrication of porous alumina masks without an increase in pore size during the etching performed for through-holing. Additionally, the process contributed to improved operability in the setting of the masks on substrates because the second anodizing layer acts as a supporting layer for the handling of the mask. The fabrication of ordered Au nanodot arrays was demonstrated as an example application of the through-hole masks obtained by the present process.

  20. Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Sensen; Li, Ying; Li, Min

    2018-02-01

    Porous hard carbon with large interlayer distance was fabricated from walnut shells through a facile high-temperature pyrolysis process and investigated as an anode material for sodium-ion batteries (SIBs). The results show that the electrochemical performance is mainly dependent on the pyrolysis temperature. The porous hard carbon, which was carbonized at 1300°C, displays the highest reversible capacity of 230 mAh g-1 at 20 mA g-1 and an excellent cycling stability (96% capacity retained over 200 cycles). The promising electrochemical performances are attributed to the porous structure reducing distances for sodium ion diffusion and expanded interlayer spacing, which is beneficial for sodium reversible insertion/extraction. The excellent electrochemical performance as well as the low-cost and environmental friendliness demonstrates that walnut shell-derived porous hard carbon is a promising anode material candidate for SIBs.

  1. Electrostatic spray deposition of porous Fe 2O 3 thin films as anode material with improved electrochemical performance for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, H. W.; Chen, P. C.; Zhang, D. W.; Ding, C. X.; Chen, C. H.

    Iron oxide materials are attractive anode materials for lithium-ion batteries for their high capacity and low cost compared with graphite and most of other transition metal oxides. Porous carbon-free α-Fe 2O 3 films with two types of pore size distribution were prepared by electrostatic spray deposition, and they were characterized by X-ray diffraction, scanning electron microscopy and X-ray absorption near-edge spectroscopy. The 200 °C-deposited thin film exhibits a high reversible capacity of up to 1080 mAh g -1, while the initial capacity loss is at a remarkable low level (19.8%). Besides, the energy efficiency and energy specific average potential (E av) of the Fe 2O 3 films during charge/discharge process were also investigated. The results indicate that the porous α-Fe 2O 3 films have significantly higher energy density than Li 4Ti 5O 12 while it has a similar E av of about 1.5 V. Due to the porous structure that can buffer the volume changes during lithium intercalation/de-intercalation, the films exhibit stable cycling performance. As a potential anode material for high performance lithium-ion batteries that can be applied on electric vehicle and energy storage, rate capability and electrochemical performance under high-low temperatures were also investigated.

  2. Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method

    PubMed Central

    Ning, Xuewen; Wang, Xixin; Yu, Xiaofei; Zhao, Jianling; Wang, Mingli; Li, Haoran; Yang, Yang

    2016-01-01

    Mn-doped TiO2 micro/nanostructure porous film was prepared by anodizing a Ti-Mn alloy. The film annealed at 300 °C yields the highest areal capacitance of 1451.3 mF/cm2 at a current density of 3 mA/cm2 when used as a high-performance supercapacitor electrode. Areal capacitance retention is 63.7% when the current density increases from 3 to 20 mA/cm2, and the capacitance retention is 88.1% after 5,000 cycles. The superior areal capacitance of the porous film is derived from the brush-like metal substrate, which could greatly increase the contact area, improve the charge transport ability at the oxide layer/metal substrate interface, and thereby significantly enhance the electrochemical activities toward high performance energy storage. Additionally, the effects of manganese content and specific surface area of the porous film on the supercapacitive performance were also investigated in this work. PMID:26940546

  3. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    PubMed Central

    Schvezov, Carlos Enrique; Ares, Alicia Esther

    2015-01-01

    The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment. PMID:25784939

  4. Porous sulfated metal oxide SO4 2-/Fe2O3 as an anode material for Li-ion batteries with enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Lv, Qianqian; Huang, Xiaoxiong; Tan, Yueyue; Tang, Bohejin

    2017-01-01

    Sulfated metal oxide SO4 2-/Fe2O3 was prepared by a novel facile sol-gel method combined with a subsequent heating treatment process. The as-synthesized products were analyzed by XRD, FTIR, and FE-SEM. Compared with the unsulfated Fe2O3, the agglomeration of particles has been alleviated after the incorporation of SO4 2-. Interestingly, the primary particle size of the SO4 2-/Fe2O3 (about 5 nm) is similar to its normal counterparts even after the calcination treatment. More importantly, SO4 2-/Fe2O3 exhibits a porous architecture, which is an intriguing feature for electrode materials. When used as anode materials in Li-ion batteries, SO4 2-/Fe2O3 delivered a higher reversible discharge capacity (992 mAh g-1), with smaller charge transfer resistance, excellent rate performance, and better cycling stability than normal Fe2O3. We believed that the presence of SO4 2- and porous architecture should be responsible for the enhanced electrochemical performance, which could provide more continuous and accessible conductive paths for Li+ and electrons.

  5. Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.

    PubMed

    Yang, X; Wang, J Y; Pan, H Y

    2009-02-01

    Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.

  6. High-performance anode based on porous Co3O4 nanodiscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Anqiang; Wang, Yaping; Xu, Wu

    2014-06-01

    In this article, two-dimensional, Co3O4 hexagonal nanodiscs are prepared using a hydrothermal method without surfactants. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been employed to characterize the structural properties. As revealed by the SEM and TEM experiments, the thickness of our as-fabricated Co3O4 hexagonal nanodiscs is about 20 nm, and the pore diameters range from several nanometers to 30 nm. As an anode for lithium-ion batteries, porous Co3O4 nanodiscs exhibit an average discharge voltage of ~1 V (Vs. Li/Li+) and a high specific charge capacity of 1161 mAh g-1 after 100 cycles. They alsomore » demonstrate excellent rate performance and high Coloumbic efficiency at various rates. These results indicate that porous Co3O4 nanodiscs are good candidates as anode materials for lithium-ion batteries.« less

  7. Superior performance of nanoscaled Fe3O4 as anode material promoted by mosaicking into porous carbon framework

    NASA Astrophysics Data System (ADS)

    Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang

    2014-01-01

    A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.

  8. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    PubMed

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  9. Performance of Solid Oxide Fuel Cell With La and Cr Co-doped SrTiO3 as Anode.

    PubMed

    Yi, Fenyun; Chen, Hongyu; Li, He

    2014-06-01

    The La 0.3 Sr 0.55 Ti 0.9 Cr 0.1 O 3-δ (LSTC10) anode material was synthesized by citric acid-nitrate process. The yttria-stabilized zirconia (YSZ) electrolyte-supported cell was fabricated by screen printing method using LSTC10 as anode and (La 0.75 Sr 0.25 ) 0.95 MnO 3-δ (LSM) as cathode. The electrochemical performance of cell was tested by using dry hydrogen as fuel and air as oxidant in the temperature range of 800-900 °C. At 900 °C, the open circuit voltage (OCV) and the maximum power density of cell are 1.08 V and 13.0 mW·cm -2 , respectively. The microstructures of cell after performance testing were investigated by scanning electron microscope (SEM). The results show that the anode and cathode films are porous and closely attached to the YSZ electrolyte. LSTC10 is believed to be a kind of potential solid oxide fuel cell (SOFC) anode material.

  10. Electrochemical fabrication and optical properties of porous tin oxide films with structural colors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hua; Shu, Shiwei; Lee, Chris

    2014-10-21

    Photonic crystals with porous features not only provide the capability to control light but also enable structural colors that are environmentally sensitive. Here, we report a novel kind of tin oxide-based photonic crystal featuring periodically arranged air pores fabricated by the periodic anodization of tin foil. The existence of a photonic band gap in the fabricated structure is verified by its vivid color, and its reflective spectra which are responsive to environmental stimuli. Furthermore, the sample colors (i.e., the photonic band gap positions) can be easily adjusted by manipulating the anodization parameters. The theoretical modeling results of these tin oxidemore » photonic crystals agree well with the reported experimental ones.« less

  11. Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, W.; Gaidi, M.; Chtourou, R.

    2013-03-01

    A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.

  12. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    PubMed Central

    Aramesh, Morteza; Tong, Wei; Fox, Kate; Turnley, Ann; Seo, Dong Han; Prawer, Steven; Ostrikov, Kostya (Ken)

    2015-01-01

    A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general. PMID:28793486

  13. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing

    2014-05-12

    Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemical synthesis, characterisation, and biocompatibility of nanometre scale porous anodic aluminium oxide membranes for use as a cell culture substrate for the vero cell line: a preliminary study.

    PubMed

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; O'Dea, Mark; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells.

  15. Chemical Synthesis, Characterisation, and Biocompatibility of Nanometre Scale Porous Anodic Aluminium Oxide Membranes for Use as a Cell Culture Substrate for the Vero Cell Line: A Preliminary Study

    PubMed Central

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; Becker, Thomas; Fawcett, Derek

    2014-01-01

    In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells. PMID:24579077

  16. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    PubMed

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g -1 at 2 A g -1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g -1 at 1 A g -1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  17. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    NASA Astrophysics Data System (ADS)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which

  18. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery.

    PubMed

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi

    2017-05-23

    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe 2 O 3 aerogel with porous Fe 2 O 3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe 2 O 3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe 2 O 3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  19. Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance.

    PubMed

    Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance

    NASA Astrophysics Data System (ADS)

    Kwon, Dohyoung; Ryu, Jaegeon; Shin, Myungsoo; Song, Gyujin; Hong, Dongki; Kim, Kwang S.; Park, Soojin

    2018-01-01

    Dual-porous Ge nanostructures are synthesized via two straightforward steps. Compared with conventional approaches related to porous Ge materials, different types of pores can be readily generated by adjusting the relative ratio of the precursor amounts for GeO2 and SiO2. Unlike using hard templates with different sizes for introducing secondary pores, this system makes a uniformly blended structure of porogen and active sites in the nanoscale range. When GeO2 is subjected to zincothermic reduction, it is selectively converted to pure Ge still connected to unreacted SiO2. During the reduction process, primary pores (larger than 50 nm) are formed by eliminating zinc oxide by-products, while inactive SiO2 with respect to zinc metal could contribute to retaining the overall structure. Finally, the HF treatment completely leaches remaining SiO2 and formed secondary pores (micro/mesopores) to complete the dual-porous Ge structure. The resulting Ge structure is tested as an anode material for lithium-ion batteries. The Ge electrode exhibits an outstanding reversibility and an exceptional cycling stability corresponding to a capacity retention of 100% after 100 cycles at C/5 and of 94.4% after 300 cycles at C/2. Furthermore, multi-scale pores facilitate a facile Li-ion accessibility, resulting in an excellent rate capability delivering ∼740 mAh g-1 at 5C.

  1. Anodized porous titanium coated with Ni-CeO2 deposits for enhancing surface toughness and wear resistance

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Ouyang, Chun

    2017-05-01

    In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.

  2. Fabrication of resistive switching memory structure using double-sided-anodized porous alumina

    NASA Astrophysics Data System (ADS)

    Morishita, Yoshitaka; Hosono, Takaya; Ogawa, Hiroto

    2017-05-01

    Double-sides of aluminum sheet were anodized; at first, one side (front-side) of aluminum sheet was anodized, and the pores were filled with nickel using electroplating technique. Next, the other side (back side) of aluminum sheet was anodized. After formation of electrodes on both sides of anodic porous alumina, the current-voltage characteristics were examined, and reversible change in the resistance between metallic and insulating states was measured during mono-polar operation. This switching behavior could be measured for the sample with the depth of backside pores of about 100 μm. The bias voltage, at which the resistance state changed into the lower-resistance state from the higher-resistance state, decreased with decreasing the depth of backside pores, and the bias voltage was about 1 V in the case of the backside pores of about 10 μm.

  3. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  4. Porous Ni0.1Mn0.9O1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells.

    PubMed

    Zeng, Lizhen; Zhang, Wenguang; Xia, Pan; Tu, Wenqiang; Ye, Changchun; He, Miao

    2018-04-15

    A novel bi-component composite of porous self-assembled micro-/nanostructured Ni 0.1 Mn 0.9 O 1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells (MFCs) is successfully synthesized via a simple coprecipitation reaction in microemulsion and calcination method in air atmosphere. The morphology and structural characterization indicate that the as-fabricated Ni 0.1 Mn 0.9 O 1.45 product is consist of Mn 2 O 3 and NiMn 2 O 4 (n(Mn 2 O 3) : n(NiMn 2 O 4 ) = 0.35: 0.1) and has a porous microellipsoidal morphology. The microellipsoids are compose of numerous layered micro-/nanostructured blocks and the special porous microellipsoids structure of Ni 0.1 Mn 0.9 O 1.45 offers a large specific surface area for bacteria adhesion. The porous Ni 0.1 Mn 0.9 O 1.45 microellipsoids as anode electrocatalyst for MFCs exhibits excellent electrocatalytic activity to promote the extracellular electron transfer (EET) between the anode and bacteria, hence improves the performance of MFC. The MFC equipped with Ni 0.1 Mn 0.9 O 1.45 /CF anode achieves a maximum power density of 1.39 ± 0.02Wm -2 , is significantly higher than that of commercial carbon felt anode. This work proposes a new method for the synthesis of high-performance and environmentally friendly anode electrocatalyst for MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes

    NASA Astrophysics Data System (ADS)

    Cui, Jiewu; Wu, Yucheng; Wang, Yan; Zheng, Hongmei; Xu, Guangqing; Zhang, Xinyi

    2012-05-01

    The well aligned porous anodic aluminum oxide (AAO) membrane is fabricated by a two-step anodization method. The oxide barrier layer of AAO membrane must be removed to get through-hole membrane for synthesizing nanowires and nanotubes of metals, semiconductors and conducting polymers. Removal of the barrier layer of oxide and pore-extending is of significant importance for the preparation of AAO membrane with through-hole pore morphology and desired pore diameter. The conventional method for pore opening is that AAO membrane after removing of aluminum substrate is immersed in chemical etching solution, which is completely empirical and results in catastrophic damage for AAO membrane frequently. A very simple and efficient approach based on capillary action for detecting pore opening of AAO membrane is introduced in this paper, this method can achieve the detection for pore opening visually and control the pore diameter precisely to get desired morphology and the pore diameter of AAO membrane. Two kinds of AAO membranes with different pore shape were obtained by different pore opening methods. In addition, one-dimensional gradient gold nanowires are also fabricated by electrodeposition based on AAO membranes.

  6. The morphological study of porous silicon formed by electrochemical anodization method

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Sandi, D. K.; Nakatsuka, O.

    2018-03-01

    Due to its good physical and chemical properties, porous silicon (PSi) is very attractive to study. In this research, PSi has been fabricated on n-type Si (100) by the electrochemical anodization method. The electrolyte solution used was a mixture of HF (40%), ethanol (99%) and aquadest with volume ratio of 1:1:2, respectively. It was anodized on Si(100) surface at different current densities of 10 mA/cm2 and 20 mA/cm2 with the anodization time at each current density for 10 min, 20 min, and 30 min. The Scanning Electron Microscope (SEM) images showed that the PSi surfaces have inhomogeneous sized pores in the range of 95.00 nm–1.46 μm. The PSi layers with current density and anodization time of 10 mA/cm2 (10 min), 10mA/cm2 (20 min), and 20mA/cm2 (10 min) have spherical shaped pores while the others have some uncommon (cross sectional) shaped pores on surfaces. It is considered that the cross sectional shaped maybe caused by unstable the current during the electrochemical anodization process.

  7. Conductive super-hydrophobic surfaces of polyaniline modified porous anodic alumina membranes.

    PubMed

    Chen, Xinhua; Chen, Guangming; Ma, Yongmei; Li, Xinhong; Jiang, Lei; Wang, Fosong

    2006-03-01

    A conductive polymer polyaniline (PANI) was employed to achieve surfaces of both super-hydrophobic and conductive on NaOH etched porous anodic alumina (PAA) membranes. The surfaces exhibit micro- and nanostructures. In the PANI modified PAA membrane, PANI is mainly emeraldine. After the membrane was immersed in HCl, the content of the protonated nitrogen increased, which increased the conductivity.

  8. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    DOEpatents

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  9. Electrochemical properties of tin oxide anodes for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Ying Ching; Ma, Chuze; Alvarado, Judith; Kidera, Takafumi; Dimov, Nikolay; Meng, Ying Shirley; Okada, Shigeto

    2015-06-01

    Few tin (Sn)-oxide based anode materials have been found to have large reversible capacity for both sodium (Na)-ion and lithium (Li)-ion batteries. Herein, we report the synthesis and electrochemical properties of Sn oxide-based anodes for sodium-ion batteries: SnO, SnO2, and SnO2/C. Among them, SnO is the most suitable anode for Na-ion batteries with less first cycle irreversibility, better cycle life, and lower charge transfer resistance. The energy storage mechanism of the above-mentioned Sn oxides was studied, which suggested that the conversion reaction of the Sn oxide anodes is reversible in Na-ion batteries. The better anode performance of SnO is attributed by the better conductivity.

  10. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  11. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  12. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step.

    PubMed

    Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E

    2005-04-01

    A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.

  13. Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth

    NASA Astrophysics Data System (ADS)

    Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu

    2014-09-01

    When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.

  14. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

    PubMed

    Bhuvaneswari, Subramani; Pratheeksha, Parakandy Muzhikara; Anandan, Srinivasan; Rangappa, Dinesh; Gopalan, Raghavan; Rao, Tata Narasinga

    2014-03-21

    Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

  15. Anodized Steel Electrodes for Supercapacitors.

    PubMed

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  16. Growth and Filling Regularities of Filamentary Channels in Non-Metallic Inorganic Coatings Under Anodic Oxidation of Valve Metals. Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Dolgova, Yu. N.; Beletskaya, E. Yu.

    2015-12-01

    Theoretical models are developed for growth and filling processes in filamentary channels of nanostructured non-metallic coatings produced by anodizing and microplasma oxidation. Graphical concentration distributions are obtained for channel-reacting anions, cations, and sparingly soluble reaction products depending on the time of electric current transmission and the length of the filamentary channel. Graphical distributions of the front moving velocity for the sparingly soluble compound are presented. The resulting model representation increases the understanding of the anodic process nature and can be used for a description and prediction of porous anodic film growth and filling. It is shown that the character of the filamentary channel growth and filling causes a variety of processes determining the textured metal - nonmetallic inorganic coating phase boundary formation.

  17. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    DOEpatents

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  18. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    DOEpatents

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2016-09-27

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  19. Fuel cell anode configuration for CO tolerance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  20. Formation and Entrapment of Tris(8-hydroxyquinoline)aluminum from 8-Hydroxyquinoline in Anodic Porous Alumina

    PubMed Central

    Yamaguchi, Shohei; Matsui, Kazunori

    2016-01-01

    The formation and entrapment of tris(8-hydroxyquinoline)aluminum (Alq3) molecules on the surface of anodic porous alumina (APA) immersed in an ethanol solution of 8-hydroxyquinoline (HQ) were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration) on the adsorption and desorption of Alq3 species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq3 adsorption characteristics. The Alq3 content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq3 bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq3 species inside nanovoids and aggregated Alq3 clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq3 species formed from the HQ solution, which quantitatively exceeded the number of the Alq3 species adsorbed from the Alq3 solution. Alq3 molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq3 species because of their smaller sizes, which resulted in higher

  1. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu

    2014-10-01

    La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.

  2. Fabrication of Highly Ordered Anodic Aluminium Oxide Templates on Silicon Substrates

    DTIC Science & Technology

    2007-01-01

    highly ordered anodic aluminium oxide ( AAO ) templates of unprecedented pore uniformity directly on Si, enabled by new advances on two fronts – direct...field emitter, sensors, oscillators and photodetectors. 15. SUBJECT TERMS Anodic aluminum oxide , template-assisted nanofabrication, carbon nanotube...Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer’, Synth. Met

  3. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Huang, Jiarui; Wang, Wei; Lin, Xirong; Gu, Cuiping; Liu, Jinyun

    2018-02-01

    A sandwich-structured NiMn2O4@reduced graphene oxide (NiMn2O4@rGO) nanocomposite consisting of ultrathin NiMn2O4 sheets uniformly anchored on both sides of a three-dimensional (3D) porous rGO is presented. The NiMn2O4@rGO nanocomposites prepared through a dipping process combining with a hydrothermal method show a good electrochemical performance including a high reversible capability of 1384 mAh g-1 at 1000 mA g-1 over 1620 cycles, and an superior rate performance. Thus, a full cell consisting of a commercial LiCoO2 cathode and the NiMn2O4@rGO anode delivers a stable capacity of about 1046 mAh g-1 (anode basis) after cycling at 50 mA g-1 for 60 times. It is demonstrated that the 3D porous composite structure accommodates the volume change during the Li+ insertion/extraction process and facilitates the rapid transport of ions and electrons. The high performance would enable the presented NiMn2O4@rGO nanocomposite a promising anode candidate for practical applications in Li-ion batteries.

  4. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support

    NASA Astrophysics Data System (ADS)

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-08-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)-YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm-2 at 850, 800, and 750°C, respectively.

  5. Porous Silicon as Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Thakur, Madhuri; Pernites, Roderick; Sinsabaugh, Steve L.; Wong, Michael S.; Biswal, Sibani L.

    Lithium-ion batteries are ubiquitous in our modern society, powering everything from cell phones, laptops, and power tools.They are also powering emerging applications such as electric vehicles and used for on-grid power stabilization. Lithium-ion batteries are a significant and growing part of this market due to their high specific energy. The worldwide market for lithium-ion batteries is projected to reach more than USD 9 billion by 2015. While lithium-ion batteries are often selected for their high specific energy, the market is demanding yet higher performance, usually in terms of energy stored per unit mass of battery. Many groups have recently turned their attention toward developing a silicon-based anode material to increase lithium-ion battery density. Silicon continues to draw great interest as an anode for lithium-ion batteries due to its large specific capacity as compared to the conventional graphite. Despite this exciting property, its practical use has been limited due to a large volume change associated with the insertion and extraction of lithium, which oftentimes leads to cracking and pulverization of the anode, limiting its cycle life. To overcome this problem, significant research has been focused toward developing various silicon nanostructures to accommodate the severe volume expansion and contraction. The structuring of the silicon often involves costly processing steps, limiting its application in price sensitive commercial lithium-ion batteries. To achieve commercial viability, work is being pursued on silicon battery anode structures and processes with a special emphasis on the cost and environment. In this review book chapter, we will summarize recent development of a cost-effective electrochemically etched porous silicon as an anode material for lithium-ion batteries. Briefly, the new approach involves creating hierarchical micron-and nanometer-sized pores on the surface of micron-sized silicon particulates, which are combined with an

  6. Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries

    PubMed Central

    Qu, Fei; Li, Chilin; Wang, Zumin; Wen, Yuren; Richter, Gunther; Strunk, Horst P.

    2015-01-01

    Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm2-μm with a CE of ~99% at 0.1 C after long-term 400 cycles). PMID:25988370

  7. Eutectic nano-droplet template injection into bulk silicon to construct porous frameworks with concomitant conformal coating as anodes for Li-ion batteries.

    PubMed

    Qu, Fei; Li, Chilin; Wang, Zumin; Wen, Yuren; Richter, Gunther; Strunk, Horst P

    2015-05-19

    Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm(2)-μm with a CE of ~99% at 0.1 C after long-term 400 cycles).

  8. Fast anodization fabrication of AAO and barrier perforation process on ITO glass

    NASA Astrophysics Data System (ADS)

    Liu, Sida; Xiong, Zuzhou; Zhu, Changqing; Li, Ma; Zheng, Maojun; Shen, Wenzhong

    2014-04-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates.

  9. Fast anodization fabrication of AAO and barrier perforation process on ITO glass.

    PubMed

    Liu, Sida; Xiong, Zuzhou; Zhu, Changqing; Li, Ma; Zheng, Maojun; Shen, Wenzhong

    2014-01-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates.

  10. Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Dirican, Mahmut; Zhang, Xiangwu

    2016-09-01

    Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun PCMFs led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun PCMF anodes at the 200th cycle was 242 mAh g-1, which was much higher than that of centrifugally-spun CMFs (143 mAh g-1). The capacity retention and coulombic efficiency of the centrifugally-spun PCMF anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.

  11. Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells.

    PubMed

    Bessler, Wolfgang G; Vogler, Marcel; Störmer, Heike; Gerthsen, Dagmar; Utz, Annika; Weber, André; Ivers-Tiffée, Ellen

    2010-11-14

    This article presents a literature review and new results on experimental and theoretical investigations of the electrochemistry of solid oxide fuel cell (SOFC) model anodes, focusing on the nickel/yttria-stabilized zirconia (Ni/YSZ) materials system with operation under H(2)/H(2)O atmospheres. Micropatterned model anodes were used for electrochemical characterization under well-defined operating conditions. Structural and chemical integrity was confirmed by ex situ pre-test and post-test microstructural and chemical analysis. Elementary kinetic models of reaction and transport processes were used to assess reaction pathways and rate-determining steps. The comparison of experimental and simulated electrochemical behaviors of pattern anodes shows quantitative agreement over a wide range of operating conditions (p(H(2)) = 8×10(2) - 9×10(4) Pa, p(H(2)O) = 2×10(1) - 6×10(4) Pa, T = 400-800 °C). Previously published experimental data on model anodes show a strong scatter in electrochemical performance. Furthermore, model anodes exhibit a pronounced dynamics on multiple time scales which is not reproduced in state-of-the-art models and which is also not observed in technical cermet anodes. Potential origin of these effects as well as consequences for further steps in model anode and anode model studies are discussed.

  12. Structural and characteristic variation of anodic oxide on pure Ti with anodization duration

    NASA Astrophysics Data System (ADS)

    Mizukoshi, Yoshiteru; Ohtsu, Naofhumi; Masahashi, Naoya

    2013-10-01

    Change in the structural and characteristic of the anodic oxide on pure Ti with the duration of anodization time was investigated. With the progress of the anodization, the phase of the formed TiO2 successively changed from anatase phase to rutile phase. In the transition process, peak intensities of rutile TiO2 1 0 1, 1 1 1 and 2 1 1 planes of X-ray diffraction characteristically increased. The contact angles of water droplets on the anodize TiO2 were monotonously decreased with the progress of the anodization except on the characteristically oriented rutile surface. In the evaluations of acetaldehyde photocatalysis under UV illumination, the anatase TiO2 anodized for short period exhibited high activities. On the other hand, when illuminated with visible light (>422 nm), rutile-structured TiO2 formed by anodization with a long duration exhibited superior photocatalytic activities probably due to high rutile fraction and sulfur incorporation from the electrolyte.

  13. Stannic oxide spherical nanoparticles: an anode material with long-term cyclability for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Kalubarme, Ramchandra S.; Kale, Bharat B.; Gosavi, Suresh W.

    2017-08-01

    Transition metal oxides are widely used in energy storage applications. Stannic oxide nanostructures are prepared using a controlled, NaOH assisted, simple precipitation method. The morphology of the prepared material confirms the formation of fine nanoparticles having a rutile stannic oxide (SnO2) phase, with cassiterite structure, and size distribution ~20 nm. On testing, as an anode material for a Li-ion battery, stannic oxide delivers a reversible charge capacity of 957 mAh g-1 at an applied current rate of C/10. The stannic oxide shows excellent rate performance displaying capacity of 577 mAh g-1 at 10 C and capacity of 919 mAh g-1 retained after 200 cycles at an applied current rate of C/2. The super performance of stannic oxide fine particles stem from both the effective diffusion of Li-ions to reaction sites through porous channels and weaker stress/strain during Li insertion/desertion owing to its fine size.

  14. Cell and method for electrolysis of water and anode

    NASA Technical Reports Server (NTRS)

    Aylward, J. R. (Inventor)

    1981-01-01

    An electrolytic cell for converting water vapor to oxygen and hydrogen include an anode comprising a foraminous conductive metal substrate with a 65-85 weight percent iridium oxide coating and 15-35 weight percent of a high temperature resin binder. A matrix member contains an electrolyte to which a cathode substantially inert. The foraminous metal member is most desirably expanded tantalum mesh, and the cell desirably includes reservoir elements of porous sintered metal in contact with the anode to receive and discharge electrolyte to the matrix member as required. Upon entry of a water vapor containing airstream into contact with the outer surface of the anode and thence into contact with iridium oxide coating, the water vapor is electrolytically converted to hydrogen ions and oxygen with the hydrogen ions migrating through the matrix to the cathode and the oxygen gas produced at the anode to enrich the air stream passing by the anode.

  15. Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Su, Aldwin D.; Zhang, Xiang; Rinaldi, Ali; Nguyen, Son T.; Liu, Huihui; Lei, Zhibin; Lu, Li; Duong, Hai M.

    2013-03-01

    Hierarchical porous carbon anode and metal oxide cathode are promising for supercapacitor with both high energy density and high power density. This Letter uses NiO and commercial carbon nanotubes (CNTs) as electrode materials for electrochemical capacitors with high energy storage capacities. Experimental results show that the specific capacitance of the electrode materials for 10%, 30% and 50% CNTs are 279, 242 and 112 F/g, respectively in an aqueous 1 M KOH electrolyte at a charge rate of 0.56 A/g. The maximum specific capacitance is 328 F/g at a charge rate of 0.33 A/g.

  16. Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mirfakhraei, Behzad

    Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately

  17. Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.

    PubMed

    Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II

    2017-01-01

    Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

  18. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al2O3/Al prepared through the anodic oxidation of aluminum.

    PubMed

    Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y

    2011-07-01

    The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst.

  19. Morphology of the porous silicon obtained by electrochemical anodization method

    NASA Astrophysics Data System (ADS)

    Bertel H, S. D.; Dussán C, A.; Diaz P, J. M.

    2018-04-01

    In this report, the dependence of porous silicon with the synthesis parameters and their correlation with the optical and morphological properties is studied. The P-type silicon-crystalline samples and orientation <1 0 0> were prepared by electrochemical anodization and were characterized using SEM in order to know the evolution of the pore morphology. It was observed that the porosity and thickness of the samples increased with the increase of the concentration in the solution and a high pore density (70%) with a pore size between 40nm and 1.5μm.

  20. A Microsystem Based on Porous Silicon-Glass Anodic Bonding for Gas and Liquid Optical Sensing

    PubMed Central

    De Stefano, Luca; Malecki, Krzysztof; Della Corte, Francesco G.; Moretti, Luigi; Rea, Ilaria; Rotiroti, Lucia; Rendina, Ivo

    2006-01-01

    We have recently presented an integrated silicon-glass opto-chemical sensor for lab-on-chip applications, based on porous silicon and anodic bonding technologies. In this work, we have optically characterized the sensor response on exposure to vapors of several organic compounds by means of reflectivity measurements. The interaction between the porous silicon, which acts as transducer layer, and the organic vapors fluxed into the glass sealed microchamber, is preserved by the fabrication process, resulting in optical path increase, due to the capillary condensation of the vapors into the pores. Using the Bruggemann theory, we have calculated the filled pores volume for each substance. The sensor dynamic has been described by time-resolved measurements: due to the analysis chamber miniaturization, the response time is only of 2 s. All these results have been compared with data acquired on the same PSi structure before the anodic bonding process.

  1. Fast anodization fabrication of AAO and barrier perforation process on ITO glass

    PubMed Central

    2014-01-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates. PMID:24708829

  2. Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Maryam, W.; Ahmad, M. A.; Bououdina, M.

    2015-12-01

    Highly-ordered and hexagonal-shaped nanoporous anodic aluminum oxide (AAO) of 1 μm thickness of Al pre-deposited onto Si substrate using two-step anodization was successfully fabricated. The growth mechanism of the porous AAO film was investigated by anodization current-time behavior for different anodizing voltages and by visualizing the microstructural procedure of the fabrication of AAO film by two-step anodization using cross-sectional and top view of FESEM imaging. Optimum conditions of the process variables such as annealing time of the as-deposited Al thin film and pore widening time of porous AAO film were experimentally determined to obtain AAO films with uniformly distributed and vertically aligned porous microstructure. Pores with diameter ranging from 50 nm to 110 nm and thicknesses between 250 nm and 1400 nm, were obtained by controlling two main influential anodization parameters: the anodizing voltage and time of the second-step anodization. X-ray diffraction analysis reveals amorphous-to-crystalline phase transformation after annealing at temperatures above 800 °C. AFM images show optimum ordering of the porous AAO film anodized under low voltage condition. AAO films may be exploited as templates with desired size distribution for the fabrication of CuO nanorod arrays. Such nanostructured materials exhibit unique properties and hold high potential for nanotechnology devices.

  3. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    DTIC Science & Technology

    2010-12-28

    DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization

  4. Microsized Porous SiOx@C Composites Synthesized through Aluminothermic Reduction from Rice Husks and Used as Anode for Lithium-Ion Batteries.

    PubMed

    Cui, Jinlong; Cui, Yongfu; Li, Shaohui; Sun, Hongliang; Wen, Zhongsheng; Sun, Juncai

    2016-11-09

    Microsized porous SiO x @C composites used as anode for lithium-ion batteries (LIBs) are synthesized from rice husks (RHs) through low-temperature (700 °C) aluminothermic reduction. The resulting SiO x @C composite shows mesoporous irregular particle morphology with a high specific surface area of 597.06 m 2 /g under the optimized reduction time. This porous SiO x @C composite is constructed by SiO x nanoparticles uniformly dispersed in the C matrix. When tested as anode material for LIBs, it displays considerable specific capacity (1230 mAh/g at a current density of 0.1 A/g) and excellent cyclic stability with capacity fading of less than 0.5% after 200 cycles at 0.8 A/g. The dramatic volume change for the Si anode during lithium-ion (Li + ) insertion and extraction can be successfully buffered because of the formation of Li 2 O and Li 4 SiO 4 during initial lithiation process and carbon coating layer on the surface of SiO x . The porous structure could also mitigate the volume change and mechanical strains and shorten the Li + diffusion path length. These characteristics improve the cyclic stability of the electrode. This low-cost and environment-friendly SiO x @C composite anode material exhibits great potential as an alternative for traditional graphite anodes.

  5. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    PubMed

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  6. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    PubMed Central

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  7. Natural gas anodes for aluminium electrolysis in molten fluorides.

    PubMed

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process.

  8. One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Bi, Linlin; Ci, Suqin; Cai, Pingwei; Li, Hao; Wen, Zhenhai

    2018-01-01

    The design and synthesis of low-cost and favourable anode materials is crucial to both power production efficiency and overall performance of microbial fuel cells (MFCs). Herein, we reported the preparation of three dimensional (3D) nitrogen-doped porous carbons (N/PCs) by one-step pyrolysis of solid mixture of sodium citrate and melamine. a variety of techniques, including electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc., were applied to characterize the surface physicochemical properties of the products, featuring macroporous structure with rich nitrogen doping on the as-prepared N/PCs. When applied as anode materials of MFC, the N/PCs exhibits a maximum power density of 2777.7 mW m-2, approximately twice higher than that of the MFCs with the commercial carbon cloth (CC) as anode. The significantly improved performance of the N/PCs was attributed to the unique structure and properties, such as favourable porous structure, good electrical conductivity, and large pore volume (0.7 cm3 g-1) in the present N/PCs. Nitrogen dopant on the surface of porous carbon contributed to an increasing in biocompatibility, resulting in a suitable micro-environment for microbial growth and thus helps to decrease charge transfer resistance at the electrode interface.

  9. Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Elizabeth, Indu; Singh, Bhanu Pratap; Trikha, Sunil; Gopukumar, Sukumaran

    2016-10-01

    Nitrogen doped hierarchically porous carbon derived from prawn shells have been efficiently synthesized through a simple, economically viable and environmentally benign approach. The prawn shell derived carbon (PSC) has high inherent nitrogen content (5.3%) and possesses a unique porous structure with the co-existence of macro, meso and micropores which can afford facile storage and transport channels for both Li and Na ions. PSC is well characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission electron Microscopy (TEM), High resolution TEM (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Electron Paramagnetic Resonance (EPR) and Solid state-Nuclear Magnetic Resonance (NMR) studies have been conducted on pristine PSC and Li/Na interacted PSC. PSC as anode for Lithium ion batteries (LIBs) delivers superior electrochemical reversible specific capacity (740 mAh g-1 at 0.1 Ag-1 current density for 150 cycles) and high rate capability. When used as anode material for Sodium ion batteries (SIBs), PSC exhibits excellent reversible specific capacity of 325 mAh g-1 at 0.1 Ag-1 for 200 cycles and rate capability of 107 mAh g-1 at 2 Ag-1. Furthermore, this study demonstrates the employment of natural waste material as a potential anode for both LIB and SIB, which will definitively make a strike in the energy storage field.

  10. Anodic oxidation of commercially pure titanium for purification of polluted water

    NASA Astrophysics Data System (ADS)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  11. Effect of anode oxide films on glow discharge spatial structure

    NASA Astrophysics Data System (ADS)

    Gulamov, E. N.; Islamov, R. S.; Zabelin, Alexandre M.

    1994-04-01

    A self-consistent calculation of voltage fall on the anode film as a function of its resistance has been performed in the presence of anode current spots under elevated-pressure glow discharge in nitrogen and N2:He equals 1:1 mixture. It has been shown that resistance of anode oxide films in industrial lasers with continuous copper anode can reach the values when total suppression of anode current structures takes place.

  12. Effect of processing on structural features of anodic aluminum oxides

    NASA Astrophysics Data System (ADS)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  13. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    DOEpatents

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  14. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Liu, Qiang (Inventor); Chen, Fanglin (Inventor); Zhao, Fei (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  15. The effect of fluoride treatment on titanium treated with anodic spark oxidation

    NASA Astrophysics Data System (ADS)

    Park, Il Song; Kim, Jong Jun; Ahn, Seung Geun; Lee, Min Ho; Seol, Kyeong Won; Bae, Tae Sung

    2007-04-01

    This study examined the effect of fluoride on the surface characteristics of an anodized titanium implant. Commercial pure titanium plate 20mm×10mm×2mm in size, and discs 1.5 mm thick and 1.5 mm in diameter, were used. The prepared samples were polished with #200 to #1, 000 SiC papers and were then washed sequentially with distilled water, alcohol and acetone. Anodic oxidation was performed using a regulated DC power supply in an electrolyte containing a mixture of 0.015 M DL-α-glycerophosphate disodium salt hydrate (DL-α-GP) and 0.2 M calcium acetate hydrate (CA) with an electric current density of 30mA/cm2 and voltage ranging from 0 to 290 V. The specimens were divided into four groups and a fluoride treatment was carried out. Group 1 was thermally treated in a 0.05 M TiF3 solution at 90°C, Group 2 was electrochemically treated at 150 V in a 0.05 M TiF3 solution, Group 3 was electrochemically treated at 150 V in a 0.05 M NaF solution, and Group 4 was electrochemically treated at 150 V in a 0.05 M HF solution. A porous oxide layer containing pores 1-4 μm in size was observed on the surface treated with anodic oxidation. The diameter of the pores was higher in the protrusion areas than in the sunken areas. A significant amount of fluoride ions was released in the initial period, with small amounts being released continuously thereafter. The viability of MC3T3 cells was high when the fluoride ion concentration was 10 ppm, but decreased with further increases in the fluoride concentration. A six-week immersion test in simulated body fluid (SBF) showed dense HA crystals in the group immersed in 0.05 M TiF3 at 90°C, which indicated good biocompatibility.

  16. Porous silicon technology for integrated microsystems

    NASA Astrophysics Data System (ADS)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  17. Localised anodic oxidation of aluminium material using a continuous electrolyte jet

    NASA Astrophysics Data System (ADS)

    Kuhn, D.; Martin, A.; Eckart, C.; Sieber, M.; Morgenstern, R.; Hackert-Oschätzchen, M.; Lampke, T.; Schubert, A.

    2017-03-01

    Anodic oxidation of aluminium and its alloys is often used as protection against material wearout and corrosion. Therefore, anodic oxidation of aluminium is applied to produce functional oxide layers. The structure and properties of the oxide layers can be influenced by various factors. These factors include for example the properties of the substrate material, like alloy elements and heat treatment or process parameters, like operating temperature, electric parameters or the type of the used electrolyte. In order to avoid damage to the work-piece surface caused by covering materials in masking applications, to minimize the use of resources and to modify the surface in a targeted manner, the anodic oxidation has to be localised to partial areas. Within this study a proper alternative without preparing the substrate by a mask is investigated for generating locally limited anodic oxidation by using a continuous electrolyte jet. Therefore aluminium material EN AW 7075 is machined by applying a continuous electrolyte jet of oxalic acid. Experiments were carried out by varying process parameters like voltage or processing time. The realised oxide spots on the aluminium surface were investigated by optical microscopy, SEM and EDX line scanning. Furthermore, the dependencies of the oxide layer properties from the process parameters are shown.

  18. Stresses in sulfuric acid anodized coatings on aluminum

    NASA Technical Reports Server (NTRS)

    Alwitt, R. S.; Xu, J.; Mcclung, R. C.

    1993-01-01

    Stresses in porous anodic alumina coatings have been measured for specimens stabilized in air at different temperatures and humidities. In ambient atmosphere the stress is tensile after anodic oxidation and is compressive after sealing. Exposure to dry atmosphere causes the stress to change to strongly tensile, up to 110 MPa. The stress increase is proportional to the loss of water from the coating. These changes are reversible with changes in humidity. Similar reversible effects occur upon moderate temperature changes. The biaxial modulus of the coating is about 100 GPa.

  19. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.

    PubMed

    Dirican, Mahmut; Lu, Yao; Ge, Yeqian; Yildiz, Ozkan; Zhang, Xiangwu

    2015-08-26

    Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).

  20. Bi-functional anodic TiO2 oxide: Nanotubes for wettability control and barrier oxide for uniform coloring

    NASA Astrophysics Data System (ADS)

    Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub

    2017-06-01

    A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.

  1. Photoluminescence of Porous Silicon-Zinc Oxide Hybrid structures

    NASA Astrophysics Data System (ADS)

    Olenych, I. B.; Monastyrskii, L. S.; Luchechko, A. P.

    2017-03-01

    Arrays of ZnO nanostructures, which are optically transparent in the visible range, were grown on the surface of porous silicon by electrochemical deposition. Photoluminescence excitation and emission spectra of the obtained hybrid structures were investigated in 220-450 and 400-800 nm regions, respectively. It is established that multicolor emission is formed by combining the luminescence bands of porous silicon and zinc oxide. The possibility of controlling the photoluminescence spectra by changing the excitation energy is demonstrated. It is revealed that thermal annealing has an effect on the luminescent properties of porous silicon/zinc oxide hybrid structures. Thermal processing at 500°C leads to a sharp decrease of long-wavelength luminescence associated with porous silicon and to an increase of short-wavelength luminescence intensity related to zinc oxide.

  2. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-09-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  3. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    PubMed Central

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-01-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents. PMID:26415917

  4. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries.

    PubMed

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S; Ozkan, Mihrimah

    2015-09-29

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  5. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes

    NASA Astrophysics Data System (ADS)

    Thallam Thattai, A.; van Biert, L.; Aravind, P. V.

    2017-12-01

    Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.

  6. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu

    2015-06-01

    Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.

  7. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent

    NASA Astrophysics Data System (ADS)

    Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.

    2015-06-01

    Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.

  8. Anodic iridium oxide films: An UPS study of emersed electrodes

    NASA Astrophysics Data System (ADS)

    Kötz, E. R.; Neff, H.

    1985-09-01

    Formation of anodic iridium oxide films has been monitored using Ultraviolet Photoemission Spectroscopy (UPS) of the emersed electrodes. The potential dependent valence band spectra clearly show the onset of oxide formation at about 0.6 V versus SCE. The density of states at the Fermi level and the positron of the Fermi level with respect to the maximum of the t 2g band of the oxide indicates a transition from metallic to semiconducting behaviour of the oxide. Protonation of the oxide is associated with increased emission from OH species. A linear correlation between electrode potential and workfunction change is observed for the metal as well as for the oxide. Our results confirm known band theory models and provide a fundamental understanding of the electrochromism of anodic iridium oxide films.

  9. Nanoporous Pirani sensor based on anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  10. Zero Liquid Discharge approach in plating industry: treatment of degreasing effluents by electrocoagulation and anodic oxidation.

    PubMed

    Hermon, S; Grange, D; Pellet, Y; Lloret, G; Oyonarte, S; Bosch, F; Coste, M

    2008-01-01

    Degreasing waste effluents issued from a surface treatment plant were treated by electrochemical techniques in an attempt to reduce COD so that clean water can be returned to the rinse bath. Electrocoagulation, both with iron and aluminium anodes, and anodic oxidation with boron doped diamond (BDD) anodes were tested. In the electrocoagulation tests, the nature of the anodes did not impact significantly the reduction of COD. Electrocoagulation showed good COD removal rates, superior to 80%, but it was not able to reduce COD down to low levels. Anodic oxidation was able to reduce COD down to discharge limits; the oxidation efficiency was superior to 50%. Economical calculations show that anodic oxidation is best used as a polishing step after electrocoagulation. The bulk of the COD would be reduced by electrocoagulation and, then, anodic oxidation would reduce COD below discharge limits. The maximum treatable flow is somewhat hindered by the small sizes of current BDD installation but it would reach 600 m(3)/year if anodic oxidation is coupled with electrocoagulation, the operational cost being 2.90 Euros /m(3). (c) IWA Publishing 2008.

  11. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  12. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.

    PubMed

    Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi

    2012-11-01

    Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.

  13. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization

    NASA Astrophysics Data System (ADS)

    Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu

    2017-06-01

    The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.

  14. Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries.

    PubMed

    Chen, Taiqiang; Pan, Likun; Loh, T A J; Chua, D H C; Yao, Yefeng; Chen, Qun; Li, Dongsheng; Qin, Wei; Sun, Zhuo

    2014-10-28

    Nitrogen-doped carbon microspheres (NCSs) were fabricated via a simple, fast and energy-saving microwave-assisted method followed by thermal treatment under an ammonia atmosphere. NCSs thermally treated at different temperatures were investigated as anode materials for lithium ion batteries (LIBs). The results show that NCSs treated at 900 °C exhibit a maximum reversible capacity of 816 mA h g(-1) at a current density of 50 mA g(-1) and preserve a capacity of 660 mA h g(-1) after 50 cycles, and even at a high current density of 1000 mA g(-1), a capacity of 255 mA h g(-1) is maintained. The excellent electrochemical performance of NCSs is due to their porous structure and nitrogen-doping. The present NCSs should be promising low-cost anode materials with a high capacity and good cycle stability for LIBs.

  15. Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery.

    PubMed

    Wang, Huanlei; Mao, Nan; Shi, Jing; Wang, Qigang; Yu, Wenhua; Wang, Xin

    2015-02-04

    To improve the electrochemical performance of cobalt oxide owing to its inherent poor electrical conductivity and large volume expansion/contraction, Co3O4-carbon nanosheet hybrid nanoarchitectures were synthesized by a facile and scalable chemical process. However, it is still a challenge to control the size of Co3O4 particles down to ∼5 nm. Herein, we created nanosized cobalt oxide anchored 3D arrays of carbon nanosheets by the control of calcination condition. The uniformly dispersed Co3O4 nanocrystals on carbon nanosheets held a diameter down to ∼5 nm. When tested as anode materials for lithium-ion batteries, high lithium storage over 1200 mAh g(-1) is achieved, whereas high rate capability with capacity of about 390 mAh g(-1) at 10 A g(-1) is maintained through nanoscale diffusion distances and interconnected porous structure. After 500 cycles, the cobalt oxide-carbon nansheets hybrid display a reversible capacity of about 970 mAh g(-1) at 1 A g(-1). The synergistic effect between nanosized cobalt oxide and sheetlike interconnected carbon nanosheets lead to the greatly improved specific capacity and the initial Coulombic efficiency of the hybrids.

  16. Water and oil wettability of anodized 6016 aluminum alloy surface

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA < 10°). These results indicate that the capillary-pressure balance model, described for wettability mechanisms of porous structures, was broken. Moreover, thicker oxide layers with narrow pores of about 29 nm diameter allowed to achieve WCA < OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  17. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Ratavia, IL

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  18. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  19. An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    PubMed Central

    2011-01-01

    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman. PMID:21849077

  20. Simulation, optimization and testing of a novel high spatial resolution X-ray imager based on Zinc Oxide nanowires in Anodic Aluminium Oxide membrane using Geant4

    NASA Astrophysics Data System (ADS)

    Esfandi, F.; Saramad, S.

    2015-07-01

    In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future.

  1. Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages

    NASA Astrophysics Data System (ADS)

    Pastore, I.; Poplausks, R.; Apsite, I.; Pastare, I.; Lombardi, F.; Erts, D.

    2011-06-01

    Formation of ultrathin anodised aluminium oxide (AAO) membranes with high aspect ratio by Al anodization in sulphuric and oxalic acids at low potentials was investigated. Low anodization potentials ensure slow electrochemical reaction speeds and formation of AAO membranes with pore diameter and thickness below 20 nm and 70 nm respectively. Minimum time necessary for formation of continuous AAO membranes was determined. AAO membrane pore surface was covered with polymer Paraloid B72TM to transport it to the selected substrate. The fabricated ultra thin AAO membranes could be used to fabricate nanodot arrays on different surfaces.

  2. Oxidation behaviors of porous Haynes 214 alloy at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan, E-mail: wangyan@csu.edu.cn; Liu, Yong, E-mail: yonliu@csu.edu.cn; Tang, Huiping, E-mail: hptang@c-nin.com

    The oxidation behaviors of porous Haynes 214 alloy at temperatures from 850 to 1000 °C were investigated. The porous alloys before and after the oxidation were examined by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, and X-ray photoelectron spectroscopy (XPS). The oxidation kinetics of the porous alloy approximately follows a parabolic rate law and exhibits two stages controlled by different oxidation courses. Complex oxide scales composed of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are formed on the oxidized porous alloys, and the formation of Cr{sub 2}O{sub 3} onmore » its outer layer is promoted with the oxidation proceeding. The rough surface as well as the micropores in the microstructures of the porous alloy caused by the manufacturing process provides fast diffusion paths for oxygen so as to affect the formation of the oxide layers. Both the maximum pore size and the permeability of the porous alloys decrease with the increase of oxidation temperature and exposure time, which may limit its applications. - Highlights: • Two-stage oxidation kinetics controlled by different oxidation courses is showed. • Oxide scale mainly consists of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3}. • Rough surface and micropores lead to the formation of uneven oxide structure. • Content of Cr{sub 2}O{sub 3} in the outer layer of the scale increases with time at 1000 °C. • Maximum pore size and permeability decrease with increasing temperature and time.« less

  3. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  4. Porous graphene current collectors filled with silicon as high-performance lithium battery anode

    NASA Astrophysics Data System (ADS)

    Ababtain, Khalid; Babu, Ganguli; Susarla, Sandhya; Gullapalli, Hemtej; Masurkar, Nirul; Ajayan, Pulickel M.; Mohana Reddy Arava, Leela

    2018-01-01

    Despite the massive success for high energy density, the charge-discharge current rate performance of the lithium-ion batteries are still a major concern owing to inherent sluggish Li-ion kinetics. Herein, we demonstrate three-dimensional porous electrodes engineered on highly conductive graphene current collectors to enhance the Li-ion conductivity, thereby c-rate performance. Such high-quality graphene provides surface area for loading a large amount of electrochemically active material and strong adhesion with the electrode. The synergism of porous structure and conductive current collector enables us to realize high-performance new-generation silicon anodes with a high energy density of 1.8 mAh cm-2. Further, silicon electrodes revealed with excellent current rates up to 5C with a capacity of 0.37 mAh cm-2 for 500 nm planar thickness.

  5. Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp.

    PubMed

    Wang, Bin; Qu, Shengguan; Li, Xiaoqiang

    2018-01-01

    By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiC p /Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time.

  6. Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp

    PubMed Central

    2018-01-01

    By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiCp/Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time. PMID:29682145

  7. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.

    PubMed

    Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E

    2013-09-28

    Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.

  8. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  9. A Metal-Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na-Air/Seawater Batteries.

    PubMed

    Abirami, Mari; Hwang, Soo Min; Yang, Juchan; Senthilkumar, Sirugaloor Thangavel; Kim, Junsoo; Go, Woo-Seok; Senthilkumar, Baskar; Song, Hyun-Kon; Kim, Youngsik

    2016-12-07

    Spinel-structured transition metal oxides are promising non-precious-metal electrocatalysts for oxygen electrocatalysis in rechargeable metal-air batteries. We applied porous cobalt manganese oxide (CMO) nanocubes as the cathode electrocatalyst in rechargeable seawater batteries, which are a hybrid-type Na-air battery with an open-structured cathode and a seawater catholyte. The porous CMO nanocubes were synthesized by the pyrolysis of a Prussian blue analogue, Mn 3 [Co(CN) 6 ] 2 ·nH 2 O, during air-annealing, which generated numerous pores between the final spinel-type CMO nanoparticles. The porous CMO electrocatalyst improved the redox reactions, such as the oxygen evolution/reduction reactions, at the cathode in the seawater batteries. The battery that used CMO displayed a voltage gap of ∼0.53 V, relatively small compared to that of the batteries employing commercial Pt/C (∼0.64 V) and Ir/C (∼0.73 V) nanoparticles and without any catalyst (∼1.05 V) at the initial cycle. This improved performance was due to the large surface area (catalytically active sites) and the high oxidation states of the randomly distributed Co and Mn cations in the CMO. Using a hard carbon anode, the Na-metal-free seawater battery exhibited a good cycle performance with an average discharge voltage of ∼2.7 V and a discharge capacity of ∼190 mAh g -1 hard carbon during 100 cycles (energy efficiencies of 74-79%).

  10. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment.

    PubMed

    Garcia-Segura, Sergi; Keller, Jürg; Brillas, Enric; Radjenovic, Jelena

    2015-01-01

    Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl(-) ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl2/HClO/ClO(-)), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO(-) species led to the production of ClO3(-) and ClO4(-) ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Anodizing of High Electrically Stressed Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, P.; Henderson, D. J.; Good, D. E.

    2013-06-01

    Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide themore » expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.« less

  12. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters

    NASA Astrophysics Data System (ADS)

    Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A.

    2018-03-01

    Niobium oxide nanocolumns with modulated diameters were formed for the first time. An Al/Nb bilayer specimen was prepared by successive sputter-deposition of 300 nm niobium layer and 1200 nm aluminum layer onto silicon wafer. Regular anodic alumina matrix with modulated pore diameters was formed by sequential anodization of initial specimen in tartaric acid at 180 V, and in oxalic acid at 37 V. Further potentiodynamic reanodization of the specimen up to 400 V causes the simultaneous growth of 440 nm continuous niobium oxide layer beneath the alumina film and two types of an array of oxide nanocolumns (thick – with 100 nm width and 630 nm high and thin – with 25 nm width and 170 nm high), which are the filling of the alumina pores. The morphology of the formed anodic niobium oxide nanocolumns with modulated diameters was determined by field emission scanning electron microscopy. The formed nanostructures can be used for perspective devices of nano- and optoelectronics such as photonic crystals.

  13. Oxide-dispersion strengthening of porous powder metalurgy parts

    DOEpatents

    Judkins, Roddie R.

    2002-01-01

    Oxide dispersion strengthening of porous metal articles includes the incorporation of dispersoids of metallic oxides in elemental metal powder particles. Porous metal articles, such as filters, are fabricated using conventional techniques (extrusion, casting, isostatic pressing, etc.) of forming followed by sintering and heat treatments that induce recrystallization and grain growth within powder grains and across the sintered grain contact points. The result is so-called "oxide dispersion strengthening" which imparts, especially, large increases in creep (deformation under constant load) strength to the metal articles.

  14. Anode composite for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    An anode composite useful for a molten carbonate fuel cell comprised of a porous sintered metallic anode component having a porous bubble pressure barrier integrally sintered to one face thereof, said barrier being comprised of metal coated ceramic particles sintered together and to said anode by means of said metal coating, said metal coating enveloping said ceramic particle and being selected from the group consisting of nickel, copper and alloys thereof, the median pore size of the barrier being significantly smaller than that of the anode.

  15. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.

    2014-06-01

    Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.

  16. Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance.

    PubMed

    Song, Yufei; Wang, Wei; Ge, Lei; Xu, Xiaomin; Zhang, Zhenbao; Julião, Paulo Sérgio Barros; Zhou, Wei; Shao, Zongping

    2017-11-01

    Solid oxide fuel cells (SOFCs), which can directly convert chemical energy stored in fuels into electric power, represent a useful technology for a more sustainable future. They are particularly attractive given that they can be easily integrated into the currently available fossil fuel infrastructure to realize an ideal clean energy system. However, the widespread use of the SOFC technology is hindered by sulfur poisoning at the anode caused by the sulfur impurities in fossil fuels. Therefore, improving the sulfur tolerance of the anode is critical for developing SOFCs for use with fossil fuels. Herein, a novel, highly active, sulfur-tolerant anode for intermediate-temperature SOFCs is prepared via a facile impregnation and limited reaction protocol. During synthesis, Ni nanoparticles, water-storable BaZr 0.4 Ce 0.4 Y 0.2 O 3- δ (BZCY) perovskite, and amorphous BaO are formed in situ and deposited on the surface of a Sm 0.2 Ce 0.8 O 1.9 (SDC) scaffold. More specifically, a porous SDC scaffold is impregnated with a well-designed proton-conducting perovskite oxide liquid precursor with the nominal composition of Ba(Zr 0.4 Ce 0.4 Y 0.2 ) 0.8 Ni 0.2 O 3- δ (BZCYN), calcined and reduced in hydrogen. The as-synthesized hierarchical architecture exhibits high H 2 electro-oxidation activity, excellent operational stability, superior sulfur tolerance, and good thermal cyclability. This work demonstrates the potential of combining nanocatalysts and water-storable materials in advanced electrocatalysts for SOFCs.

  17. In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Guo, Zai Ping; Du, Guodong; Nuli, Yanna; Hassan, Mohd Faiz; Jia, Dianzeng

    Ultra-fine, porous, tin oxide-carbon (SnO 2/C) nanocomposites are fabricated by a molten salt method at 300 °C, and malic acid is decomposed as the carbon source. In situ synthesis is favourable for the combination of carbon and SnO 2. The structure and morphology are confirmed by X-ray diffraction analysis, specific surface-area measurements, and transmission electron microscopy (TEM). Examination of TEM images reveals that the SnO 2 nanoparticles are embedded in the carbon matrix, with sizes between 2 and 5 nm. The electrochemical measurements show that the nanocomposite delivers a high capacity with good capacity retention as an anode material for lithium-ion batteries, due to the combination of the ultra-fine porous structure and the carbon component.

  18. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    NASA Astrophysics Data System (ADS)

    Lim, S. K.; Jeong, G. H.; Park, I. S.; Na, S. M.; Suh, S. J.

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 °C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  19. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    PubMed

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  20. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang

    2018-03-01

    The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte.

  1. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    PubMed Central

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; Zhao, Jie; Yan, Kai; Cui, Yi

    2016-01-01

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm−2 in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes. PMID:26987481

  2. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE PAGES

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; ...

    2016-03-18

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  3. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  4. A Novel Approach to Synthesize Micrometer-Sized Porous Silicon as a High Performance Anode for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Haiping; Zheng, Jianming; Song, Junhua

    Porous structured silicon (p-Si) has been recognized as one of the most promising anodes for Li-ion batteries. However, many available methods to synthesize p-Si are difficult to scale up due to their high production cost. Here we introduce a new approach to obtain spherical micrometer-sized silicon with unique porous structure by using a microemulsion of the cost-effective of silica nanoparticles and magnesiothermic reduction method. The spherical micron-sized p-Si particles prepared by this approach consist of highly aligned nano-sized silicon and exhibit a tap density close to that of bulk Si particles. They have demonstrated significantly improved electrochemical stability compared tomore » nano-Si. Well controlled void space and a highly graphitic carbon coating on the p-Si particles enable good stability of the structure and low overall resistance, thus resulting in a Si-based anode with high capacity (~1467 mAh g –1 at 1 C), enhanced cycle life (370 cycles with 83% capacity retention), and high rate capability (~650 mAh g –1 at 5 C). Furthermore, this approach may also be generalized to prepare other hierarchical structured high capacity anode materials for constructing high energy density lithium ion batteries.« less

  5. A Novel Approach to Synthesize Micrometer-Sized Porous Silicon as a High Performance Anode for Lithium-Ion Batteries

    DOE PAGES

    Jia, Haiping; Zheng, Jianming; Song, Junhua; ...

    2018-05-21

    Porous structured silicon (p-Si) has been recognized as one of the most promising anodes for Li-ion batteries. However, many available methods to synthesize p-Si are difficult to scale up due to their high production cost. Here we introduce a new approach to obtain spherical micrometer-sized silicon with unique porous structure by using a microemulsion of the cost-effective of silica nanoparticles and magnesiothermic reduction method. The spherical micron-sized p-Si particles prepared by this approach consist of highly aligned nano-sized silicon and exhibit a tap density close to that of bulk Si particles. They have demonstrated significantly improved electrochemical stability compared tomore » nano-Si. Well controlled void space and a highly graphitic carbon coating on the p-Si particles enable good stability of the structure and low overall resistance, thus resulting in a Si-based anode with high capacity (~1467 mAh g –1 at 1 C), enhanced cycle life (370 cycles with 83% capacity retention), and high rate capability (~650 mAh g –1 at 5 C). Furthermore, this approach may also be generalized to prepare other hierarchical structured high capacity anode materials for constructing high energy density lithium ion batteries.« less

  6. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.

    PubMed

    Wu, Xiaoshuai; Qiao, Yan; Shi, Zhuanzhuan; Tang, Wei; Li, Chang Ming

    2018-04-11

    Interfacial electron transfer between an electroactive biofilm and an electrode is a crucial step for microbial fuel cells (MFCs) and other bio-electrochemical systems. Here, a hierarchically porous nitrogen-doped carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composite with polyaniline as the nitrogen source has been developed for the MFC anode. This composite possesses a nitrogen atom-doped surface for improved flavin redox reaction and a three-dimensional hierarchically porous structure for rich bacterial biofilm growth. The maximum power density achieved with the N-CNTs/rGO anode in S. putrefaciens CN32 MFCs is 1137 mW m -2 , which is 8.9 times compared with that of the carbon cloth anode and also higher than those of N-CNTs (731.17 mW m -2 ), N-rGO (442.26 mW m -2 ), and the CNTs/rGO (779.9 mW m -2 ) composite without nitrogen doping. The greatly improved bio-electrocatalysis could be attributed to the enhanced adsorption of flavins on the N-doped surface and the high density of biofilm adhesion for fast interfacial electron transfer. This work reveals a synergistic effect from pore structure tailoring and surface chemistry designing to boost both the bio- and electrocatalysis in MFCs, which also provide insights for the bioelectrode design in other bio-electrochemical systems.

  7. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    NASA Astrophysics Data System (ADS)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  8. Enhanced in vitro biological activity generated by surface characteristics of anodically oxidized titanium--the contribution of the oxidation effect.

    PubMed

    Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T

    2015-05-20

    Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.

  9. Surface Modification of Porous Titanium Granules for Improving Bioactivity.

    PubMed

    Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab

    The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.

  10. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  11. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization.

    PubMed

    Guo, Yang; Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang

    2018-03-01

    The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte.

  12. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization

    PubMed Central

    Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang

    2018-01-01

    The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte. PMID:29657754

  13. Porous graphene nanocages for battery applications

    DOEpatents

    Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.

    2017-03-07

    An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.

  14. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  15. Anode protection system for shutdown of solid oxide fuel cell system

    DOEpatents

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  16. Electro-catalytic oxidation device for removing carbon from a fuel reformate

    DOEpatents

    Liu, Di-Jia [Naperville, IL

    2010-02-23

    An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

  17. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    PubMed

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-04

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures.

  18. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron

    NASA Astrophysics Data System (ADS)

    Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.

    2017-12-01

    Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.

  19. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Kashish; Routkevitch, Dmitri; Varaksa, Natalia

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the poresmore » of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability

  20. Silicon oxide based high capacity anode materials for lithium ion batteries

    DOEpatents

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  1. Highly Porous FeS/Carbon Fibers Derived from Fe-Carrageenan Biomass: High-capacity and Durable Anodes for Sodium-Ion Batteries.

    PubMed

    Li, Daohao; Sun, Yuanyuan; Chen, Shuai; Yao, Jiuyong; Zhang, Yuhui; Xia, Yanzhi; Yang, Dongjiang

    2018-05-08

    The nanostructured metal sulfides have been reported as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities but have suffered from the unsatisfactory electronic conductivity and poor structural stability during a charge/discharge process, thus limiting their applications. Herein, the one-dimensional (1D) porous FeS/carbon fibers (FeS/CFs) micro/nanostructures are fabricated through facile pyrolysis of double-helix-structured Fe-carrageenan fibers. The FeS nanoparticles are in situ formed by interacting with sulfur-containing group of natural material ι-carrageenan and uniformly embedded in the unique 1D porous carbon fibrous matrix, significantly enhancing the sodium-ion storage performance. The obtained FeS/CFs with optimized sodium storage performance benefits from the appropriate carbon content (20.9 wt %). The composite exhibits high capacity and excellent cycling stability (283 mAh g -1 at current density of 1 A g -1 after 400 cycles) and rate performance (247 mAh g -1 at 5 A g -1 ). This work provides a simple strategy to construct 1D porous FeS/CFs micro/nanostructures as high-performance anode materials for SIBs via a unique sustainable and environmentally friendly way.

  2. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances

    NASA Astrophysics Data System (ADS)

    Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong

    2015-02-01

    Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.

  3. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    PubMed Central

    Mardare, Andrei Ionut; Ludwig, Alfred; Savan, Alan; Hassel, Achim Walter

    2014-01-01

    A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven. PMID:27877648

  4. Electrocatalysis of anodic oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  5. Oxidation resistant porous material for transpiration cooled vanes

    NASA Technical Reports Server (NTRS)

    Madsen, P.; Rusnak, R. M.

    1972-01-01

    Porous metal sheet with controlled permeability was made by space winding and diffusion bonding fine wire. Two iron-chromium-aluminum alloys and three-chromium alloys were used: GE 1541 (Fe-Cr-Al-Y), H 875 (Fe-Cr-Al-Si), TD Ni Cr, DH 245 (Ni-Cr-Al-Si) and DH 242 (Ni-Cr-Si-Cb). GE 1541 and H 875 were shown in initial tests to have greater oxidation resistance than the other candidate alloys and were therefore tested more extensively. These two materials were cyclic furnace oxidation tested in air at 1800 and 2000 F for accumulated exposure times of 4, 16, 64, 100, 200, 300, 400, 500, and and 600 hours. Oxidation weight gain, permeability change and mechanical properties were determined after exposure. Metallographic examination was performed to determine effects of exposure on the porous metal and electron beam weld joints of porous sheet to IN 100 strut material. Hundred hour stress rupture life and tensile tests were performed at 1800 F. Both alloys had excellent oxidation resistance and retention of mechanical properties and appear suitable for use as transpiration cooling materials in high temperature gas turbine engines.

  6. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    PubMed Central

    Faes, Antonin; Hessler-Wyser, Aïcha; Zryd, Amédée; Van Herle, Jan

    2012-01-01

    Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles) of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted. PMID:24958298

  7. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  8. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    PubMed Central

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  9. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes.

    PubMed

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-02

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  10. Processing Ti-25Ta-5Zr Bioalloy via Anodic Oxidation Procedure at High Voltage

    NASA Astrophysics Data System (ADS)

    Ionita, Daniela; Grecu, Mihaela; Dilea, Mirela; Cojocaru, Vasile Danut; Demetrescu, Ioana

    2011-12-01

    The current paper reports the processing of Ti-25Ta-5Zr bioalloy via anodic oxidation in NH4BF4 solution under constant potentiostatic conditions at high voltage to obtain more suitable properties for biomedical application. The maximum efficiency of the procedure is reached at highest applied voltage, when the corrosion rate in Hank's solution is decreased approxomately six times. The topography of the anodic layer has been studied using atomic force microscopy (AFM), and the results indicated that the anodic oxidation process increases the surface roughness. The AFM images indicated a different porosity for the anodized surfaces as well. After anodizing, the hydrophilic character of Ti-25Ta-5Zr samples has increased. A good correlation between corrosion rate obtained from potentiodynamic curves and corrosion rate from ions release analysis was obtained.

  11. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    DOEpatents

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  12. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling

    2017-12-01

    Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.

  13. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors

    PubMed Central

    Owusu, Kwadwo Asare; Qu, Longbing; Li, Jiantao; Wang, Zhaoyang; Zhao, Kangning; Yang, Chao; Hercule, Kalele Mulonda; Lin, Chao; Shi, Changwei; Wei, Qiulong; Zhou, Liang; Mai, Liqiang

    2017-01-01

    Carbon materials are generally preferred as anodes in supercapacitors; however, their low capacitance limits the attained energy density of supercapacitor devices with aqueous electrolytes. Here, we report a low-crystalline iron oxide hydroxide nanoparticle anode with comprehensive electrochemical performance at a wide potential window. The iron oxide hydroxide nanoparticles present capacitances of 1,066 and 716 F g−1 at mass loadings of 1.6 and 9.1 mg cm−2, respectively, a rate capability with 74.6% of capacitance retention at 30 A g−1, and cycling stability retaining 91% of capacitance after 10,000 cycles. The performance is attributed to a dominant capacitive charge-storage mechanism. An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg−1 at a power density of 1.27 kW kg−1. A packaged device delivers gravimetric and volumetric energy densities of 33.14 Wh kg−1 and 17.24 Wh l−1, respectively. PMID:28262797

  14. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    DOEpatents

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  15. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  16. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  17. Porous Mn-doped cobalt oxide@C nanocomposite: a stable anode material for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Kalubarme, Ramchandra S.; Jadhav, Sarika M.; Kale, Bharat B.; Gosavi, Suresh W.; Terashima, Chiaki; Fujishima, Akira

    2018-07-01

    Cobalt oxide is a transition metal oxide, well studied as an electrode material for energy storage applications, especially in supercapacitors and rechargeable batteries, due to its high charge storage ability. However, it suffers from low conductivity, which effectively hampers its long-term stability. In the present work, a simple strategy to enhance the conductivity of cobalt oxide is adopted to achieve stable electrochemical performance by means of carbon coating and Mn doping, via a simple and controlled, urea-assisted glycine-nitrate combustion process. Structural analysis of carbon coated Mn-doped Co3O4 (Mn-Co3O4@C) confirms the formation of nanoparticles (∼50 nm) with connected morphology, exhibiting spinel structure. The Mn-Co3O4@C electrode displays superior electrochemical performance as a Li-ion battery anode, delivering a specific capacity of 1250 mAh g‑1. Mn-Co3O4@C demonstrates excellent performance in terms of long-term stability, keeping charge storage ability intact even at high current rates due to the synergistic effects of fast kinetics—provided by enriched electronic conductivity, which allows ions to move freely to active sites and electrons from reaction sites to substrate during redox reactions—and high surface area combined with mesoporous architecture. The fully assembled battery device using Mn-Co3O4@C and standard LiCoO2 electrode shows 90% capacity retention over 100 cycles.

  18. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Kowal, Andrzej [Cracow, PL

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  19. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    PubMed

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  20. Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Sulka, Grzegorz D.; Ciepiela, Eryk; Jaskuła, Marian

    2014-02-01

    Anodic porous alumina layers were fabricated by a two-step self-organized anodization in 0.3 M oxalic acid under various anodizing potentials ranging from 30 to 60 V at two different temperatures (10 and 17 ∘C). The effect of anodizing conditions on structural features and pore arrangement of AAO was investigated in detail by using the dedicated executable publication combined with ImageJ software. With increasing anodizing potential, a linear increase of the average pore diameter, interpore distance, wall thickness and barrier layer thickness, as well as a decrease of the pore density, were observed. In addition, the higher pore diameter and porosity values were obtained for samples anodized at the elevated temperature, independently of the anodizing potential. A degree of pore order was investigated on the basis of Delaunay triangulations (defect maps) and calculation of pair distribution or angle distribution functions (PDF or ADF), respectively. All methods confirmed that in order to obtain nanoporous alumina with the best, hexagonal pore arrangement, the potential of 40 V should be applied during anodization. It was confirmed that the dedicated executable publication can be used to a fast and complex analysis of nanopore arrangement and structural features of nanoporous oxide layers.

  1. Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms.

    PubMed

    Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C; Periasamy, Vengadesh

    2014-12-22

    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.

  2. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries

    PubMed Central

    McNulty, David; Geaney, Hugh; O’Dwyer, Colm

    2017-01-01

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183

  3. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries.

    PubMed

    McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2017-02-10

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li 2 O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.

  4. Compositionally Dependent Nonlinear Optical Bandgap Behavior of Mixed Anodic Oxides in Niobium-Titanium System.

    PubMed

    Bleckenwegner, Petra; Mardare, Cezarina Cela; Cobet, Christoph; Kollender, Jan Philipp; Hassel, Achim Walter; Mardare, Andrei Ionut

    2017-02-13

    Optical bandgap mapping of Nb-Ti mixed oxides anodically grown on a thin film parent metallic combinatorial library was performed via variable angle spectroscopic ellipsometry (VASE). A wide Nb-Ti compositional spread ranging from Nb-90 at.% Ti to Nb-15 at.% Ti deposited by cosputtering was used for this purpose. The Nb-Ti library was stepwise anodized at potentials up to 10 V SHE, and the anodic oxides optical properties were mapped along the Nb-Ti library with 2 at.% resolution. The surface dissimilarities along the Nb-Ti compositional gradient were minimized by tuning the deposition parameters, thus allowing a description of the mixed Nb-Ti oxides based on a single Tauc-Lorentz oscillator for data fitting. Mapping of the Nb-Ti oxides optical bandgap along the entire compositional spread showed a clear deviation from the linear model based on mixing individual Nb and Ti electronegativities proportional to their atomic fractions. This is attributed to the strong amorphization and an in-depth compositional gradient of the mixed oxides. A systematic optical bandgap decrease toward values as low as 2.0 eV was identified at approximately 50 at.% Nb. Mixing of Nb 2 O 5 and TiO 2 with both amorphous and crystalline phases is concluded, whereas the possibility of complex Nb a Ti b O y oxide formation during anodization is unlikely.

  5. Enhanced electrical power generation using flame-oxidized stainless steel anode in microbial fuel cells and the anodic community structure.

    PubMed

    Yamashita, Takahiro; Ishida, Mitsuyoshi; Asakawa, Shiho; Kanamori, Hiroyuki; Sasaki, Harumi; Ogino, Akifumi; Katayose, Yuichi; Hatta, Tamao; Yokoyama, Hiroshi

    2016-01-01

    Carbon-based materials are commonly used as anodes in microbial fuel cells (MFCs), whereas metal and metal-oxide-based materials are not used frequently because of low electrical output. Stainless steel is a low-cost material with high conductivity and physical strength. In this study, we investigated the power generation using flame-oxidized (FO) stainless steel anodes (SSAs) in single-chambered air-cathode MFCs. The FO-SSA performance was compared to the performance of untreated SSA and carbon cloth anode (CCA), a common carbonaceous electrode. The difference in the anodic community structures was analyzed using high-throughput sequencing of the V4 region in 16S rRNA gene. Flame oxidation of SSA produced raised node-like sites, predominantly consisting of hematite (Fe2O3), on the surface, as determined by X-ray diffraction spectroscopy. The flame oxidation enhanced the maximum power density (1063 mW/m(2)) in MFCs, which was 184 and 24 % higher than those for untreated SSA and CCA, respectively. The FO-SSA exhibited 8.75 and 2.71 times higher current production than SSA and CCA, respectively, under potentiostatic testing conditions. Bacteria from the genus Geobacter were detected at a remarkably higher frequency in the biofilm formed on the FO-SSA (8.8-9.2 %) than in the biofilms formed on the SSA and CCA (0.7-1.4 %). Bacterial species closely related to Geobacter metallireducens (>99 % identity in the gene sequence) were predominant (93-96 %) among the genus Geobacter in the FO-SSA biofilm, whereas bacteria with a 100 % identity to G. anodireducens were abundant (>55 %) in the SSA and CCA biofilms. This is the first demonstration of power generation using an FO-SSA in MFCs. Flame oxidation of the SSA enhances electricity production in MFCs, which is higher than that with the common carbonaceous electrode, CCA. The FO-SSA is not only inexpensive but also can be prepared using a simple method. To our knowledge, this study reveals, for the first time, that

  6. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  7. Determination of sulfuric acid concentration for anti-cavitation characteristics of Al alloy by two step anodizing process to forming nano porous.

    PubMed

    Lee, Seung-Jun; Kim, Seong-Kweon; Jeong, Jae-Yong; Kim, Seong-Jong

    2014-12-01

    Al alloy is a highly active metal but forms a protective oxide film having high corrosion resistance in atmosphere environment. However, the oxide film is not suitable for practical use, since the thickness of the film is not uniform and it is severly altered with formation conditions. This study focused on developing an aluminum anodizing layer having hardness, corrosion resistance and abrasion resistance equivalent to a commercial grade protective layer. Aluminum anodizing layer was produced by two-step aluminum anodizing oxide (AAO) process with different sulfuric acid concentrations, and the cavitation characteristics of the anodized coating layer was investigated. In hardness measurement, the anodized coating layer produced with 15 vol.% of sulfuric acid condition had the highest value of hardness but exhibited poor cavitation resistance due to being more brittle than those with other conditions. The 10 vol.% of sulfuric acid condition was thus considered to be the optimum condition as it had the lowest weight loss and damage depth.

  8. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    PubMed

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries

    PubMed Central

    Alsharaeh, Edreese; Ahmed, Faheem; Aldawsari, Yazeed; Khasawneh, Majdi; Abuhimd, Hatem; Alshahrani, Mohammad

    2016-01-01

    In this work, holey reduced graphene oxide (HRGO) was synthesized by the deposition of silver (Ag) nanoparticles onto the reduced graphene oxide (RGO) sheets followed by nitric acid treatment to remove Ag nanoparticles by microwave irradiation to form a porous structure. The HRGO were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), and Raman spectroscopy. These novel HRGO exhibited high rate capability with excellent cycling stability as an anode material for lithium-ion batteries. The results have shown an excellent electrochemical response in terms of charge/discharge capacity (423 mAh/g at 100 mA/g). The cyclic performance was also exceptional as a high reversible capacity (400 mAh/g at 100 mA/g) was retained for 100 charge/discharge cycles. This fascinating electrochemical performance can be ascribed to their specific porous structure (2–5 nm pores) and high surface area (457 m2/g), providing numerous active sites for Li+ insertion, high electrical conductivity, low charge-transfer resistance across the electrolyte–electrode interface, and improved structural stability against the local volume change during Li+ insertion–extraction. Such electrodes are envisioned to be mass scalable with relatively simple and low-cost fabrication procedures, thereby providing a clear pathway toward commercialization. PMID:27457356

  10. PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Gui-Liang; Li, Yan; Ma, Tianyuan

    2015-11-01

    ZnO/C hierarchical porous nanorods were synthesized through one-pot wet-chemical reaction followed by thermal calcination. It was found that ZnO/C porous nanorods are composed of numerous nanograins, exhibiting a hierarchical micro/nanostructure. In-situ synchrotron high energy X-ray diffraction study revealed that ZnO/C hierarchical porous nanorods involve a two-step reversible lithiation mechanism during charge/discharge; and part of ZnO and Zn remains at the end of the first discharge and charge process, respectively, leading to a low coulombic efficiency in the initial few cycles. The electrochemical test demonstrated that the reversible capacity and the rate performance of ZnO/C hierarchical porous nanorods anode have beenmore » greatly improved by PEDOT-PSS coating, which could maintain a reversible capacity of 623.94 mA h g(-1) after 1500 cycles at 1 C. Its excellent high rate capability and long cycle stability were attributed to the high electronic conductivity of PEDOT-PSS coating layer and the hierarchical structures of ZnO/C porous nanorods. (C) 2015 Elsevier Ltd. All rights reserved.« less

  11. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    PubMed

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  12. Analysis of gene expression on anodic porous alumina microarrays

    PubMed Central

    Nicolini, Claudio; Singh, Manjul; Spera, Rosanna; Felli, Lamberto

    2013-01-01

    This paper investigates the application of anodic porous alumina as an advancement on chip laboratory for gene expressions. The surface was prepared by a suitable electrolytic process to obtain a regular distribution of deep micrometric holes and printed bypen robot tips under standard conditions. The gene expression within the Nucleic Acid Programmable Protein Array (NAPPA) is realized in a confined environment of 16 spots, containing circular DNA plasmids expressed using rabbit reticulocyte lysate. Authors demonstrated the usefulness of APA in withholding the protein expression by detecting with a CCD microscope the photoluminescence signal emitted from the complex secondary antibody anchored to Cy3 and confined in the pores. Friction experiments proved the mechanical resistance under external stresses by the robot tip pens printing. So far, no attempts have been made to directly compare APA with any other surface/substrate; the rationale for pursuing APA as a potential surface coating is that it provides advantages over the simple functionalization of a glass slide, overcoming concerns about printing and its ability to generate viable arrays. PMID:23783000

  13. Reduced Graphene Oxide Anodes for Potential Application in Algae Biophotovoltaic Platforms

    PubMed Central

    Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C.; Periasamy, Vengadesh

    2014-01-01

    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm−2 using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems. PMID:25531093

  14. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    NASA Astrophysics Data System (ADS)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  15. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Feng, Lili; Yang, Wenrong; Zhang, Yinyin; Zhang, Yanli; Bai, Wei; Liu, Bo; Zhang, Wei; Chuan, Yongming; Zheng, Ziguang; Guan, Hongjin

    2017-10-01

    When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.

  16. Molybdenum dioxide-based anode for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kwon, Byeong Wan; Ellefson, Caleb; Breit, Joe; Kim, Jinsoo; Grant Norton, M.; Ha, Su

    2013-12-01

    The present paper describes the fabrication and performance of a molybdenum dioxide (MoO2)-based anode for liquid hydrocarbon/oxygenated hydrocarbon-fueled solid oxide fuel cells (SOFCs). These fuel cells first internally reform the complex liquid fuel into carbon fragments and hydrogen, which are then electrochemically oxidized to produce electrical energy without external fuel processors. The MoO2-based anode was fabricated on to an yttria-stabilized zirconia (YSZ) electrolyte via combined electrostatic spray deposition (ESD) and direct painting methods. The cell performance was measured by directly feeding liquid fuels such as n-dodecane (i.e., a model diesel/kerosene fuel) or biodiesel (i.e., a future biomass-based liquid fuel) to the MoO2-based anode at 850 °C. The maximum initial power densities obtained from our MoO2-based SOFC were 34 mW cm-2 and 45 mW cm-2 using n-dodecane and biodiesel, respectively. The initial power density of the MoO2-based SOFC was improved up to 2500 mW cm-2 by optimizing the porosity of the MoO2-based anode. To test the long-term stability of the MoO2-based anode SOFC against coking, n-dodecane was continuously fed into the cell for 24 h at the open circuit voltage (OCV). During long-term testing, voltage-current density (V-I) plots were periodically obtained and they showed no significant changes over the operation time. Microstructural examination of the tested cells indicated that the MoO2-based anode displayed negligible coke formation, which explains its stability. On the other hand, SOFCs with conventional nickel (Ni)-based anodes under the same operating conditions showed a significant amount of coke formation on the metal surface, which led to a rapid drop in cell performance. Hence, the present work demonstrates that MoO2-based anodes exhibit outstanding tolerance to coke formation. This result opens up the opportunity for more efficiently generating electrical energy from both existing transportation and next generation

  17. Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery.

    PubMed

    Wang, Junyong; Deng, Qinglin; Li, Mengjiao; Wu, Cong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2018-08-03

    To overcome inferior rate capability and cycle stability of MnO-based anode materials for lithium-ion batteries (LIBs), we reported a novel 3D porous MnO@GS/CNT composite, consisting of MnO nanoparticles homogeneously distributed on the conductive interconnected framework based on 2D graphene sheets (GS) and 1D carbon nanotubes (CNTs). The distinctive architecture offers highly interpenetrated network along with efficient porous channels for fast electron transfer and ionic diffusion as well as abundant stress buffer space to accommodate the volume expansion of the MnO nanoparticles. The MnO@GS/CNT anode exhibits an ultrahigh capacity of 1115 mAh g -1 at 0.2 A g -1 after 150 cycles and outstanding rate capacity of 306 mAh g -1 at 10.0 A g -1 . Moreover, a stable capacity of 405 mAh g -1 after 3200 cycles can still be achieved, even at a large current density of 5.0 A g -1 . When coupled with LiMn 2 O 4 (LMO) cathode, the LMO [Formula: see text] MnO@GS/CNT full cell characterizes an excellent cycling stability and rate capability, indicating the promising application of MnO@GS/CNT anode in the next-generation LIBs.

  18. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    PubMed Central

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  19. Gasoline-fueled solid oxide fuel cell using MoO2-Based Anode

    NASA Astrophysics Data System (ADS)

    Hou, Xiaoxue; Marin-Flores, Oscar; Kwon, Byeong Wan; Kim, Jinsoo; Norton, M. Grant; Ha, Su

    2014-12-01

    This short communication describes the performance of a solid oxide fuel cell (SOFC) fueled by directly feeding premium gasoline to the anode without using external reforming. The novel component of the fuel cell that enables such operation is the mixed conductivity of MoO2-based anode. Using this anode, a fuel cell demonstrating a maximum power density of 31 mW/cm2 at 0.45 V was successfully fabricated. Over a 24 h period of operation, the open cell voltage remained stable at ∼0.92 V. Scanning electron microscopy (SEM) examination of the anode surface pre- and post-testing showed no evidence of coking.

  20. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67 μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60 min at 50 mA. Direct electron transfer was mainly responsible at the current below 30 mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30 mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20 mM), while was dramatically increased with increasing the concentration of chloride (0-10 mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions.

  1. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  2. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    PubMed

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  3. Fabrication of Gold-Coated Ultra-Thin Anodic Porous Alumina Substrates for Augmented SERS

    PubMed Central

    Toccafondi, Chiara; Proietti Zaccaria, Remo; Dante, Silvia; Salerno, Marco

    2016-01-01

    Anodic porous alumina (APA) is a nanostructured material used as a template in several nanotechnological applications. We propose the use of APA in ultra-thin form (<100 nm) for augmented surface-enhanced Raman scattering (SERS). Here, the effect of in-depth thinning of the APA nanostructures for possible maximization of SERS was addressed. Anodization was carried out on ultra-thin films of aluminum on glass and/or silicon, followed by pore-opening. Gold (Au) was overcoated and micro-Raman/SERS measurements were carried out on test target analytes. Finite integration technique simulations of the APA-Au substrate were used both for the experimental design and simulations. It was observed that, under optimized conditions of APA and Au thickness, the SERS enhancement is higher than on standard APA-Au substrates based on thin (~100 nm) APA by up to a factor of ~20 for test molecules of mercaptobenzoic acid. The agreement between model and experimental results confirms the current understanding of SERS as being mainly due to the physical origin of plasmon resonances. The reported results represent one step towards micro-technological, integrated, disposable, high-sensitivity SERS chemical sensors and biosensors based on similar substrates. PMID:28773525

  4. Fabrication of porous carbon sphere@SnO2@carbon layer coating composite as high performance anode for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xin; Sun, Xiaohong; Gao, Zhiwen; Hu, Xudong; Guo, Jingdong; Cai, Shu; Guo, Ruisong; Ji, Huiming; Zheng, Chunming; Hu, Wenbin

    2018-03-01

    SnO2 has triggered lots of research efforts as anode for sodium-ion batteries. However, the volume expansion and poor conductivity lead to an unsatisfactory electrochemical performance for the practical application of SnO2. In this work, a novel carbon-coated SnO2 supported by porous carbon sphere composite is synthesized by hydrothermal process combining with annealing method. The porous carbon sphere@SnO2@carbon layer coating composite anode delivers a reversible capacity of 326 mAh g-1 over 80 cycles at a current density of 50 mA g-1. Even at 1600 mA g-1, a capacity of 82 mAh g-1 is still maintained after 550 cycles. Such excellent performance can be ascribed to the unique structure, which efficiently accommodates volume expansion, enhances conductivity and offers shortened sodium-ion transport pathway. The charge-storage mechanisms can be comprised of diffusion-controlled reaction and pseudocapacitance effect. At high scan rate of 1.0 mV s-1, the capacity contribution of pseudocapacitance effect could reach as high as 78%.

  5. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    NASA Technical Reports Server (NTRS)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  6. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    NASA Astrophysics Data System (ADS)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  7. Investigation on the Oxidation and Reduction of Titanium in Molten Salt with the Soluble TiC Anode

    NASA Astrophysics Data System (ADS)

    Wang, Shulan; Wan, Chaopin; Liu, Xuan; Li, Li

    2015-12-01

    To reveal the oxidation process of titanium from TiC anode and the reduction mechanism of titanium ions in molten NaCl-KCl, the polarization curve of TiC anode in molten NaCl-KCl and cyclic voltammograms of the molten salt after polarization were studied. Investigation on the polarization curve shows that titanium can be oxidized and dissociated from the TiC anode at very low potential. The cyclic voltammograms demonstrated that the reduction reaction of titanium ions in the molten salt is a one-step process. By potentiostatic electrolysis, dendritic titanium is obtained on the steel plate. The work promotes the understanding on the process of electrochemical oxidization/dissociation of titanium from TiC anode and the reduction mechanism of titanium ions in molten salt.

  8. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  9. The fabrication of Ag nanoflake arrays via self-assembly on the surface of an anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Li, Xueming; Dong, Kun; Tang, Libin; Wu, Yongjun; Yang, Peizhi; Zhang, Pengxiang

    2010-02-01

    Vertical-aligned Ag nanoflake arrays are fabricated on the surface of an anodic aluminum oxide (AAO) template under a hydrothermal condition for the first time. The porous surface of AAO templates and the precursor solution may play key roles in the process of fabricating Ag nanoflakes. The rim of pores can provide many active sites for nucleation and growth, and then nanoflake arrays gradually form through self-assembly of Ag on the surface of AAO membranes. The product is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and a growth mechanism of nanoflake is deduced. This work demonstrates that it is possible to make ordered nanoarrays without dissolving templates using the hydrothermal method, and this interesting Ag nanoflake arrays may provide a wider range of nanoscale applications.

  10. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask

    PubMed Central

    Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po

    2010-01-01

    An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors. PMID:22315561

  11. A macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask.

    PubMed

    Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po

    2010-01-01

    An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO(2) nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO(2) chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.

  12. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    DOEpatents

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  13. Controlling interferometric properties of nanoporous anodic aluminium oxide

    PubMed Central

    2012-01-01

    A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated. PMID:22280884

  14. Adhesive Bonding Experiments for Titanium 6 Aluminum 4 Vanadium (Ti6Al4V). Part I. Anodization Treatments.

    DTIC Science & Technology

    1979-12-01

    Identification of Surface Treat- 4 ments of Ti 6-4 II Effect of Increasing Oxide Porosity on H20 Contact Angle on Titanium 6 Aluminum 4 Vanadium 26 viii SECTIONI...and a high SIMS yield. The lithium does not appear in the oxide formed on titanium by this mixture. Similarly porosity may be induced by anodization at...Porous Oxide (B). 25 TABLE II EFFECT OF INCREASING OXIDE POROSITY ON H2 0 CONTACT ANGLE ON TITANIUM 6 ALUMINUM 4 VANADIUM - I H 2 0Sample Electrolyte

  15. Removal of titanium plates coated with anodic titanium oxide ceramic: retrospective study.

    PubMed

    Velich, Norbert; Németh, Zsolt; Suba, Csongor; Szabó, György

    2002-09-01

    Transformation of the surface of metallic titanium with titanium oxides prepared in various ways is a modern procedure. For more than 15 years, the authors have been utilizing fixing elements coated with titanium oxide ceramics, prepared by anodic oxidation and thermal treatment, for purposes of jawbone osteosynthesis. The aim of the authors' work was to assess the extent to which the titanium oxide ceramic coating influences the fate of the plates used for osteosynthesis within the human organism, in regard to the possible need for their removal. During a 5-year period, 108 of 1,396 plates coated with anodic titanium oxide had to be removed for various reasons: plate exposure (47), osteomyelitis (25), palpable swelling and tenderness (21), patient request for psychological reasons (13), or fracture of the plate (2). In none of these 108 cases was metallosis observed, which otherwise is reported relatively frequently in the vicinity of traditional titanium fixing elements, nor was any tissue damage connected with the surface of the plates. The results indicate the favorable properties of the titanium oxide ceramic surface.

  16. Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage

    NASA Astrophysics Data System (ADS)

    Gan, Qingmeng; Zhao, Kuangmin; He, Zhen; Liu, Suqin; Li, Aikui

    2018-04-01

    We propose a new strategy to uniformly coat zeolitic imidazolate framework-8 (ZIF-8) on iron oxides containing no Zn to obtain an α-Fe2O3@ZIF-8 composite. After carbonization, the α-Fe2O3@ZIF-8 transforms into iron oxides@N-doped porous carbon (FeOx@NC). The uniform N-doped porous carbon layer gives rise to a superior electrical conductivity, highly-increased specific BET surface area (179.2 m2 g-1), and abundant mesopores for the FeOx@NC composite. When served as the LIB anode, the FeOx@NC shows a high reversible capacity (of 1064 mA h g-1 at 200 mA g-1), excellent rate performance (of 198.1 mA h g-1 at 10000 mA g-1) as well as brilliant long-term cyclability (with a capacity retention of 93.3% after 800 cycles), which are much better than those of the FeOx@C and pristine FeOx anodes. Specifically, the Li-ion intercalation pseudocapacitive behavior of the FeOx@NC anode is improved by this N-doped porous carbon coating, which is beneficial for rapid Li-ion insertion/extraction processes. The excellent electrochemical performance of FeOx@NC should be ascribed to the increased electrolyte penetration areas, improved electrical conductivity, boosted lithium storage kinetics, and shortened Li-ion transport length.

  17. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.

    PubMed

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60min at 50mA. Direct electron transfer was mainly responsible at the current below 30mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20mM), while was dramatically increased with increasing the concentration of chloride (0-10mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Facile Fabrication of Ordered Anodized Aluminum Oxide Membranes with Controlled Pore Size by Improved Hard Anodization.

    PubMed

    Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong

    2018-05-01

    We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.

  19. Kinetic models of controllable pore growth of anodic aluminum oxide membrane

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin

    2012-06-01

    An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.

  20. Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside

    NASA Astrophysics Data System (ADS)

    Dridi, H.; Haji, L.; Moadhen, A.

    2017-12-01

    Starting from a rough backside of silicon wafer, we have formed a porous layer by electrochemical anodization and then coated by a thin film of gold. The morphological characteristics of the porous silicon and in turn the metal film are governed by the anodization process and also by the starting surface. So, in order to investigate the Plasmonic aspect of such rough surface which combines roughness inherent to the porous nature and that due to rough starting surface, we have used a dye target molecule to study its SERS signal using a porous silicon layer obtained on the rough backside surface. The use of unusual backside of silicon wafer could be, beside the others, an interesting way to made SERS effective substrate thanks to reproducible rough porous gold on porous layer from this starting face. The morphological results correspond to the silicon rough surface as a function of the crystallographic orientation showed the presence of two different substrate structure. The optical reflectivity results obtained of gold deposited on oxidized porous silicon showed a dependence of its Localized Surface Plasmon band frequency of the deposit time. SERS results, obtained for a dye target molecule (Rhodamine 6G), show a higher intensities in the case of the 〈110〉 orientation, which characterized by the higher roughness surface. Voici "the most relevant and important aspects of our work".

  1. Metal-Organic Framework Derived Porous Hollow Co3O4/N-C Polyhedron Composite with Excellent Energy Storage Capability.

    PubMed

    Kang, Wenpei; Zhang, Yu; Fan, Lili; Zhang, Liangliang; Dai, Fangna; Wang, Rongming; Sun, Daofeng

    2017-03-29

    Metal-organic frameworks (MOFs) derived transition metal oxides exhibit enhanced performance in energy conversion and storage. In this work, porous hollow Co 3 O 4 with N-doped carbon coating (Co 3 O 4 /N-C) polyhedrons have been prepared using cobalt-based MOFs as a sacrificial template. Assembled from tiny nanoparticles and N-doped carbon coating, Co 3 O 4 /N-C composite shortens the diffusion length of Li + /Na + ions and possesses an enhanced conductivity. And the porous and hollow structure is also beneficial for tolerating volume changes in the galvanostatic discharge/charge cycles as lithium/sodium battery anode materials. As a result, it can exhibit impressive cycling and rating performance. At 1000 mA g -1 , the specific capacities maintaine stable values of ∼620 mAh g -1 within 2000 cycles as anodes in lithium ion battery, while the specific capacity keeps at 229 mAh g -1 within 150 cycles as sodium ion battery anode. Our work shows comparable cycling performance in lithium ion battery but even better high-rate cycling stability as sodium ion battery anode. Herein, we provide a facile method to construct high electrochemical performance oxide/N-C composite electrode using new MOFs as sacrificial template.

  2. Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors.

    PubMed

    Zhang, Fan; Tang, Yongbing; Liu, Hui; Ji, Hongyi; Jiang, Chunlei; Zhang, Jing; Zhang, Xiaolong; Lee, Chun-Sing

    2016-02-01

    Hybrid supercapacitors (HSCs) with lithium-ion battery-type anodes and electric double layer capacitor-type cathodes are attracting extensive attention and under wide investigation because of their combined merits of both high power and energy density. However, the performance of most HSCs is limited by low kinetics of the battery-type anode which cannot match the fast kinetics of the capacitor-type cathode. In this study, we have synthesized a three-dimensional (3D) porous composite with uniformly incorporated MoS2 flocculent nanostructure onto 3D graphene via a facile solution-processed method as an anode for high-performance HSCs. This composite shows significantly enhanced electrochemical performance due to the synergistic effects of the conductive graphene sheets and the interconnected porous structure, which exhibits a high rate capability of 688 mAh/g even at a high current density of 8 A/g and a stable cycling performance (997 mAh/g after 700 cycles at 2 A/g). Furthermore, by using this composite as the anode for HSCs, the HSC shows a high energy density of 156 Wh/kg at 197 W/kg, which also remains at 97 Wh/kg even at a high power density of 8314 W/kg with a stable cycling life, among the best results of the reported HSCs thus far.

  3. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.

    PubMed

    Ge, Xiaoli; Li, Zhaoqiang; Wang, Chengxiang; Yin, Longwei

    2015-12-09

    Metal-organic frameworks (MOFs) derived porous core/shell ZnO/ZnCo2O4/C hybrids with ZnO as a core and ZnCo2O4 as a shell are for the first time fabricated by using core/shell ZnCo-MOF precursors as reactant templates. The unique MOFs-derived core/shell structured ZnO/ZnCo2O4/C hybrids are assembled from nanoparticles of ZnO and ZnCo2O4, with homogeneous carbon layers coated on the surface of the ZnCo2O4 shell. When acting as anode materials for lithium-ion batteries (LIBs), the MOFs-derived porous ZnO/ZnCo2O4/C anodes exhibit outstanding cycling stability, high Coulombic efficiency, and remarkable rate capability. The excellent electrochemical performance of the ZnO/ZnCo2O4/C LIB anodes can be attributed to the synergistic effect of the porous structure of the MOFs-derived core/shell ZnO/ZnCo2O4/C and homogeneous carbon layer coating on the surface of the ZnCo2O4 shells. The hierarchically porous core/shell structure offers abundant active sites, enhances the electrode/electrolyte contact area, provides abundant channels for electrolyte penetration, and also alleviates the structure decomposition induced by Li(+) insertion/extraction. The carbon layers effectively improve the conductivity of the hybrids and thus enhance the electron transfer rate, efficiently prevent ZnCo2O4 from aggregation and disintegration, and partially buffer the stress induced by the volume change during cycles. This strategy may shed light on designing new MOF-based hybrid electrodes for energy storage and conversion devices.

  4. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    DOEpatents

    Marina, Olga A.; Pederson, Larry R.

    2008-12-23

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  5. Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries.

    PubMed

    Zhang, Jin; Cai, Yibing; Hou, Xuebin; Song, Xiaofei; Lv, Pengfei; Zhou, Huimin; Wei, Qufu

    2017-01-01

    Titanium dioxide (TiO 2 ) nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder its rapid development in lithium-ion batteries (LIB). In order to improve the electrochemical performances of TiO 2 nanomaterials as anode for LIB, hierarchically porous TiO 2 nanofibers with different tetrabutyl titanate (TBT)/paraffin oil ratios were prepared as anode for LIB via a versatile single-nozzle microemulsion electrospinning (ME-ES) method followed by calcining. The experimental results indicated that TiO 2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage properties in terms of specific capacity, rate capability and cycling performance compared with solid TiO 2 nanofibers for LIB. The initial discharge and charge capacity of porous TiO 2 nanofibers with a TBT/paraffin oil ratio of 2.25 reached up to 634.72 and 390.42 mAh·g -1 , thus resulting in a coulombic efficiency of 61.51%; and the discharge capacity maintained 264.56 mAh·g -1 after 100 cycles, which was much higher than that of solid TiO 2 nanofibers. TiO 2 nanofibers with TBT/paraffin oil ratio of 2.25 still obtained a high reversible capacity of 204.53 mAh·g -1 when current density returned back to 40 mA·g -1 after 60 cycles at increasing stepwise current density from 40 mA·g -1 to 800 mA·g -1 . Herein, hierarchically porous TiO 2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications.

  6. Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass.

    PubMed

    Chin, Ching-Ju Monica; Chen, Tsan-Yao; Lee, Menshan; Chang, Chiung-Fen; Liu, Yu-Ting; Kuo, Yu-Tsun

    2014-07-30

    This study investigated applications of the electrochemical anodic oxidation process with Pt-FTO and Pt/MWCNTs-FTO glasses as anodes on the treatment of one of the most important emerging contaminants, naproxen. The anodes used in this study have been synthesized using commercial FTO, MWCNTs and Pt nanoparticles (PtNP). XRD patterns of Pt nanoparticles coated on FTO and MWCNTs revealed that MWCNTs can prevent the surface of PtNPs from sintering and thus provide a greater reaction sites density to interact with naproxen, which have also been confirmed by higher degradation and mineralization efficiencies in the Pt/MWCNTs-FTO system. Results from the CV analysis showed that the Pt-FTO and Pt/MWCNTs-FTO electrodes possessed dual functions of decreasing activation energy and interactions between hydroxyl radicals to effectively degrade naproxen. The lower the solution pH value, the better the degradation efficiency. The existence of humic acid indeed inhibited the degradation ability of naproxen due to the competitions in the multiple-component system. The electrochemical degradation processes were controlled by diffusion mechanism and two major intermediates of 2-acetyl-6-methoxynaphthalene and 2-(6-Hydroxy-2-naphthyl)propanoic acid were identified. This study has successfully demonstrated new, easy, flexible and effective anodic materials which can be feasibly applied to the electrochemical oxidation of naproxen. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials

    NASA Astrophysics Data System (ADS)

    Zaraska, L.; Sulka, G. D.; Jaskuła, M.

    2009-01-01

    The influence of the process duration, anodizing potential and methanol addition on the structural features of porous anodic alumina formed in a 0.3 M H3PO4 solutions by twostep self-organized anodizing was investigated for potentials ranging from 100 to 170 V. The structural features of porous structures including pore diameter and interpore distance were evaluated from FE-SEM top-view images for samples anodized in the presence and absence of methanol. For the highest studied anodizing time and methanol volume fraction, an excellent agreement between experimental values of the interpore distance and theoretical predictions was observed. The pore arrangement regularity was analyzed for various electrolyte compositions and anodizing potentials. It was found that the regularity ratio of porous alumina increases linearly with increasing anodizing potential and time. The addition of methanol improves the quality of nanostructures and especially better uniformity of pore sizes is observed in the presence of the highest studied methanol content.

  8. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  9. Development of Carbon and Sulphur Tolerant Anodes of Solid Oxide Fuel Cells

    DTIC Science & Technology

    2010-01-14

    LSCM/YSZ) composite anode is investigated in detail for the direct utilization of ethanol and methane (the main component of natural gas) in SOFCs...Impregnation of Pd nanoparticles significantly promotes the electrocatalytic activity of LSCM/YSZ composite anodes for the ethanol and methane... electrooxidation reaction. At 800°C, the electrode polarization resistance for the methane oxidation is reduced by a factor of 3 after impregnation of 0.10

  10. Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation.

    PubMed

    Menapace, Hannes M; Diaz, Nicolas; Weiss, Stefan

    2008-07-01

    Wastewater effluents from sewage treatment plants (STP) are important point sources for residues of pharmaceuticals and complexing agents in the aquatic environment. For this reason a research project, which started in December 2006, was established to eliminate pharmaceutical substances and complexing agents found in wastewater as micropollutants. For the treatment process a combination of anodic oxidation by boron-doped diamond (BDD) electrodes and ozonation is examined and presented. For the ozone production a non-conventional, separate reactor was used, in which ozone was generated by electrolysis with diamond electrodes For the determination of the achievable remediation rates four complexing agents (e.g., EDTA, NTA) and eight pharmaceutical substances (e.g., diazepam, carbamazepin) were analyzed in several test runs under different conditions (varied flux, varied current density for the diamond electrode and the ozone producing electrode of the ozone generator, different packing materials for the column in the ozone injection system). The flowrates of the treated water samples were varied from 3 L/h up to 26 L/h. For the anodic oxidation the influence of the current density was examined in the range between 22.7 and 45.5 mA/cm(2), for the ozone producing reactor two densities (1.8 a/cm(2) and 2.0 A/cm(2)) were tested. Matrix effects were investigated by test runs with samples from the effluent of an STP and synthetic waste water. Therefore the impact of the organic material in the samples could be determined by the comparison of the redox potential and the achievable elimination rates of the investigated substances. Comparing both technologies anodic oxidation seems to be superior to ozonation in each investigated area. With the used technology of anodic oxidation elimination rates up to 99% were reached for the investigated pharmaceutical substances at a current density of 45.5 mA/cm(2) and a maximum sample flux of 26 L/h.

  11. [Research of the surface oxide film on anodizing Ni-Cr porcelain alloy].

    PubMed

    Zhu, Song; Sun, Hong-Chen; Zhang, Jing-Wei; Li, Zong-Hui

    2006-08-01

    To study the shape, thickness and oxide percentage of major metal element of oxide film on Ni-Cr porcelain alloy after anodizing pretreatment. 10 samples were made and divided into 2 groups at random. Then after surface pretreatment, the oxide films of two samples of each group were analyzed using electronic scanning microscope. The rest 3 samples were measured by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Lightly selective solution appeared because the different component parts of the alloy have dissimilar electrode, whose dissolve velocity were quite unlike. The sample's metal surface expanded, so the mechanical interlocking of porcelain and metal increased bond strength. The thickness of oxide film was 1.72 times of the control samples. The oxide percentage of major metal elements such as Cr, Ni and Mo were higher, especially Cr. It initially involved the formation of a thin oxide bound to the alloy and second, the ability of the formed oxide to saturate the porcelain, completing the chemical bond of porcelain to metal. The method of anodizing Ni-Cr porcelain alloy can easily control the forming of oxide film which was thin and its surface pattern was uniform. It is repeated and a good method of surface pretreatment before firing cycle.

  12. High-pressure-assisted design of porous topological semimetal carbon for Li-ion battery anode with high-rate performance

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Wang, Shuo; Qie, Yu; Zhang, Cunzhi; Sun, Qiang

    2018-02-01

    It has been a great challenge to develop a high-rate anode material with high-capacity, fast Li-ions diffusion and long cycling life going beyond the commercially used graphite in Li-ion battery. Here for the first time we propose a strategy combined high-pressure synthesis method with the global structure search to find a topological semimetal porous carbon as the desired anode. Our crystal-structure searching shows that we can obtain the ground state of an orthorhombic phase Li C6 with regular pores at 30 GPa, and when the Li atoms are removed, the resulting carbon structure is the recently predicted interlocked graphene network (IGN) that is a topological semimetal with an intrinsic high electronic conductivity. Based on the state-of-the-art first-principles calculations, we further find that the Li-ion migration energy barrier in the IGN is extremely low and the estimated diffusion coefficient can reach a magnitude of 10-4c m2/s at both low and high Li concentrations, which is three orders of magnitude larger than that of graphite anode. Moreover, the volume changes during the Li insertion and deinsertion are smaller than 3.2 % , while the theoretical specific capacity is the same as that of graphite anode. Our studies not only suggest a practical way of synthesizing the topological semimetal carbon but also propose a new anode material for Li-ion battery.

  13. Porous ceramics mimicking nature—preparation and properties of microstructures with unidirectionally oriented pores

    PubMed Central

    Okada, Kiyoshi; Isobe, Toshihiro; Katsumata, Ken-ichi; Kameshima, Yoshikazu; Nakajima, Akira; MacKenzie, Kenneth J D

    2011-01-01

    Porous ceramics with unidirectionally oriented pores have been prepared by various methods such as anodic oxidation, templating using wood, unidirectional solidification, extrusion, etc. The templating method directly replicates the porous microstructure of wood to prepare porous ceramics, whereas the extrusion method mimics the microstructures of tracheids and xylems in trees. These two methods are therefore the main focus of this review as they provide good examples of the preparation of functional porous ceramics with properties replicating nature. The well-oriented cylindrical through-hole pores prepared by the extrusion method using fibers as the pore formers provide excellent permeability together with high mechanical strength. Examples of applications of these porous ceramics are given, including their excellent capillary lift of over 1 m height which could be used to counteract urban heat island phenomena, and other interesting properties arising from anisotropic unidirectional porous structures. PMID:27877451

  14. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Simões, Mário; Surace, Yuri; Yoon, Songhak; Battaglia, Corsin; Pokrant, Simone; Weidenkaff, Anke

    2015-09-01

    Vanadium manganese oxides with Mn content up to 33 at% were synthesized by a low temperature hydrothermal route allowing for the preparation of both anodic and cathodic materials for Li-ion batteries. Low amounts of manganese (below 13 at%) lead to the formation of elongated particles of layered hydrated vanadium oxides with manganese and water intercalated between the V2O5 slabs, while for higher Mn content of 33 at%, monoclinic MnV2O6 is formed. Former materials are suitable for high energy cathodes while the latter one is an anodic compound. The material containing 10 at% Mn has the composition Mn0.2V2O5·0.9H2O and shows the best cathodic activity with 20% capacity improvement over V2O5·0.5H2O. Lithiated MnV2O6 with Li5MnV2O6 composition prepared electrochemically was evaluated for the first time as anode in a full-cell against Mn0.2V2O5·0.9H2O cathode. An initial capacity ca. 300 A h kg-1 was measured with this battery corresponding to more than 500 Wh kg-1. These results confirm the prospect of using Li5MnV2O6 anodes in lithium-ion batteries as well as high-capacity layered hydrated vanadium oxides cathodes such as V2O5·0.5H2O and Mn0.2V2O5·0.9H2O.

  15. Fabrication and optical property of metal nanowire arrays embedded in anodic porous alumina membrane

    NASA Astrophysics Data System (ADS)

    Takase, Kouichi; Shimizu, Tomohiro; Sugawa, Kosuke; Aono, Takashige; Shirai, Yuma; Nishida, Tomohiko; Shingubara, Shoso

    2016-06-01

    Nanowires embedded in nanopores are potentially tough against surface scraping and agglomeration. In this study, we have fabricated Au and Ni nanowires embedded into anodic porous alumina (APA) and investigated their reflectance to study the effects of surface plasmon absorption properties and conversion from solar energy to thermal energy. Au nanowires embedded into APA show typical gold surface plasmon absorption at approximately 530 nm. On the other hand, Ni nanowires show quite a low reflectance under 600 nm. In the temperature elevation test, both Au and Ni nanowire samples present the same capability to warm up water. It means that Ni nanowires embedded into APA have almost the same photothermal activity as Au nanowires.

  16. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoshuai; Shi, Zhuanzhuan; Zou, Long; Li, Chang Ming; Qiao, Yan

    2018-02-01

    A three dimensional (3D) porous nickel oxide (NiO)/graphene composite is developed through one-pot hydrothermal synthesis with a biopolymer-pectin for tailoring the porous structure. The introduction of pectin makes the NiO grow into nanoflakes-assembled micro spheres that insert in the graphene layers rather than just deposit on the surface of graphene nanosheets as nanoparticles. As the increase of pectin ratio, the size and the amount of NiO micro spheres are both increased, which resulting a 3D hierarchical porous structure. With the optimized pectin concentration, the obtained NiO/graphene nanocomposite anode possesses good electrocatalytic capability and delivers maximum power density of 3.632 Wm-2 in Shewanella putrefaciens CN32 microbial fuel cells (MFCs). This work provides a new way to develop low cost, high performance anode materials for MFCs.

  17. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.

    PubMed

    Yuan, Yating; Li, Wei; Chen, Hualin; Wang, Zhiyong; Jin, Xianbo; Chen, George Z

    2016-08-15

    Electrolysis of solid metal oxides has been demonstrated in MgCl2-NaCl-KCl melt at 700 °C taking the electrolysis of Ta2O5 as an example. Both the cathodic and anodic processes have been investigated using cyclic voltammetry, and potentiostatic and constant voltage electrolysis, with the cathodic products analysed by XRD and SEM and the anodic products by GC. Fast electrolysis of Ta2O5 against a graphite anode has been realized at a cell voltage of 2 V, or a total overpotential of about 400 mV. The energy consumption was about 1 kW h kgTa(-1) with a nearly 100% Ta recovery. The cathodic product was nanometer Ta powder with sizes of about 50 nm. The main anodic product was Cl2 gas, together with about 1 mol% O2 gas and trace amounts of CO. The graphite anode was found to be an excellent inert anode. These results promise an environmentally-friendly and energy efficient method for metal extraction by electrolysis of metal oxides in MgCl2 based molten salts.

  18. Fabrication of a Ni nano-imprint stamp for an anti-reflective layer using an anodic aluminum oxide template.

    PubMed

    Park, Eun-Mi; Lim, Seung-Kyu; Ra, Senug-Hyun; Suh, Su-Jung

    2013-11-01

    Aluminum anodizing can alter pore diameter, density distribution, periodicity and layer thickness in a controlled way. Because of this property, porous type anodic aluminum oxide (AAO) was used as a template for nano-structure fabrication. The alumina layer generated at a constant voltage increased the pore size from 120 nm to 205 nm according to an increasing process time from 60 min to 150 min. The resulting fabricated AAO templates had pore diameters at or less than 200 nm. Ni was sputtered as a conductive layer onto this AAO template and electroplated using DC and pulse power. Comparing these Ni stamps, those generated from electroplating using on/reverse/off pulsing had an ordered pillar array and maintained the AAO template morphology. This stamp was used for nano-imprinting on UV curable resin coated glass wafer. Surface observations via electron microscopy showed that the nano-imprinted patterned had the same shape as the AAO template. A soft mold was subsequently fabricated and nano-imprinted to form a moth-eye structure on the glass wafer. An analysis of the substrate transmittance using UV-VIS/NIR spectroscopy showed that the transmittance of the substrate with the moth-eye structure was 5% greater that the non-patterned substrate.

  19. Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.

    PubMed

    Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk

    2013-11-20

    Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Heat treatment condition of EN AW-7075 influencing the anodic oxidation process and coating properties

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Scharf, I.; Lampke, T.

    2018-06-01

    The age-hardenable aluminium alloy EN AW-7075 exhibits outstanding specific mechanical properties and therefore offers a high potential for lightweight construction. Anodising in aqueous oxalic acid solutions is suitable to produce a protective oxide ceramic conversion layer on this alloy. This study examines the influence of the precipitation state of the substrate alloy on microstructure and properties of anodic oxide layers. Therefore, EN AW-7075 sheets in the heat treatment conditions T4, T6 and T73 were anodized in 0.8 M oxalic acid solution at constant voltage. The current efficiency was determined on the basis of the electrical charge quantity, coating thickness and coating mass. Instrumented indentation tests were applied in order to evaluate the coating hardness. The microstructure of the anodic oxide layer was illustrated using field emission electron microscopy. It was shown that the current efficiency strongly depends on the heat treatment condition.

  1. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  2. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  3. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  4. N/S Co-Doped 3 D Porous Carbon Nanosheet Networks Enhancing Anode Performance of Sodium-Ion Batteries.

    PubMed

    Zou, Lei; Lai, Yanqing; Hu, Hongxing; Wang, Mengran; Zhang, Kai; Zhang, Peng; Fang, Jing; Li, Jie

    2017-10-12

    A facile and scalable method is realized for the in situ synthesis of N/S co-doped 3 D porous carbon nanosheet networks (NSPCNNs) as anode materials for sodium-ion batteries. During the synthesis, NaCl is used as a template to prepare porous carbon nanosheet networks. In the resultant architecture, the unique 3 D porous architecture ensures a large specific surface area and fast diffusion paths of both electrons and ions. In addition, the import of N/S produces abundant defects, increased interlayer spacings, more active sites, and high electronic conductivity. The obtained products deliver a high specific capacity and excellent long-term cycling performance, specifically, a capacity of 336.2 mA h g -1 at 0.05 A g -1 , remaining as large as 214.9 mA h g -1 after 2000 charge/discharge cycles at 0.5 A g -1 . This material has great prospects for future applications of scalable, low-cost, and environmentally friendly sodium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recent Studies on Metal Oxides as Anodes for Li-ION Batteries

    NASA Astrophysics Data System (ADS)

    Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R.

    Commercial lithium ion batteries (LIB) use layer-type compounds as the electrode materials and Li-ion conducting liquid or polymeric gel as the electrolyte. The preferred cathode and anode are LiCoO2 and graphite respectively. Efforts to improve the performance as well as safety-in-operation of LIB led to the search for alternate electrode materials. As regards the anodes, metal-oxide systems received special attention: Tin (Sn) containing mixed oxides and various 3d- and 4d- transition metal (M) mixed oxides. The reversible capacities in these systems arise either from alloying/de-alloying, formation/decomposition of Li2O aided by the nanosize metal (M) particles/Li-M-O bronze or Li-intercalation/de-intercalation. A brief account of the recent studies is presented.

  6. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  7. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF.

    PubMed

    Wallace, Ryan A; Sepaniak, Michael J; Lavrik, Nickolay V; Datskos, Panos G

    2017-06-06

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this work, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  8. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Ryan A.; Sepaniak, Michael J.; Lavrik, Nickolay V.

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this paper, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Finally, profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  9. Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF

    DOE PAGES

    Wallace, Ryan A.; Sepaniak, Michael J.; Lavrik, Nickolay V.; ...

    2017-05-10

    Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this paper, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air. Finally, profilometry and the signal generated by the stress-induced porous silicon oxide (PSO) coating and bending of the MC were used as methods of evaluation.

  10. Hierarchical Porous Intercalation-Type V2 O3 as High-Performance Anode Materials for Li-Ion Batteries.

    PubMed

    Liu, Pengcheng; Zhu, Kongjun; Xu, Yuan; Bian, Kan; Wang, Jing; Tai, Guo'an; Gao, Yanfeng; Luo, Hongjie; Lu, Li; Liu, Jinsong

    2017-06-01

    As intercalation-type anode materials for Li-ion batteries (LIBs), the commercially used graphite and Li 4 Ti 5 O 12 exhibit good cycling and rate properties, but their theoretical specific capacities are too low to meet the ever-growing demands of high-energy applications such as electric vehicles. Therefore, the development of new intercalation-type anode materials with larger capacity is very desirable. Herein, we design and synthesize novel 3 D hierarchical porous V 2 O 3 @C micro/nanostructures consisting of crumpled nanosheets, through self-reduction under annealing from the structurally similar VO 2 (B)@C precursors without the addition of any other reducing reagent or gas. Excitingly, it is found for the first time through ex situ XRD technology that V 2 O 3 is a new, promising intercalation-type anode material for LIBs with a high capacity. V 2 O 3 @C micro/nanostructures can deliver a large capacity of 732 mAh g -1 without capacity loss at 100 mA g -1 even after 136 cycles, as well as exhibiting excellent cycling and rate performances. The application of V 2 O 3 for Na-ion batteries (NIBs) is elaborated for the first time, and excitingly, it is found that V 2 O 3 @C micro/nanostructures may be promising anode materials for NIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Local Anodic Oxidation of Thin GeO Films and Formation of Nanostructures Based on Them

    NASA Astrophysics Data System (ADS)

    Astankova, K. N.; Kozhukhov, A. S.; Azarov, I. A.; Gorokhov, E. B.; Sheglov, D. V.; Latyshev, A. V.

    2018-04-01

    The process of local anodic oxidation of thin GeO films has been studied using an atomic force microscope. The electron-probe microanalysis showed that oxidized areas of a GeO film were germanium dioxide. The effect of the voltage pulse duration applied to the probe-substrate system and the atmospheric humidity on the height of the oxide structures has been studied. The kinetics of the local anodic oxidation (LAO) in a semi-contact mode obeys the Cabrera-Mott model for large times. The initial growth rate of the oxide ( R 0) significantly increases and the time of starting the oxidation ( t 0) decreases as the atmospheric humidity increases by 20%, which is related to an increase in the concentration of oxygen-containing ions at the surface of the oxidized GeO film. It was shown that nanostructures in thin GeO layers can be formed by the LAO method.

  12. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  13. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, Arnold O.

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  14. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes.

    PubMed

    Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.

  15. Insights into the dominant factors of porous gold for CO oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kameoka, Satoshi, E-mail: kameoka@tagen.tohoku.ac.jp; Miyamoto, Kanji; Tanabe, Toyokazu

    2016-01-21

    Three different porous Au catalysts that exhibit high catalytic activity for CO oxidation were prepared by the leaching of Al from an intermetallic compound, Al{sub 2}Au, with 10 wt. %-NaOH, HNO{sub 3}, or HCl aqueous solutions. The catalysts were investigated using Brunauer-Emmett-Teller measurements, synchrotron X-ray powder diffraction, hard X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy (TEM). Broad diffraction peaks generated during the leaching process correlated with high activity for all the porous Au catalysts. CO oxidation catalyzed by porous Au leached with NaOH and HNO{sub 3} is considered to be dominated by different mechanisms atmore » low (< 320 K) and high (> 370 K) temperatures. Activity in the low-temperature region is mainly attributed to the perimeter interface between residual Al species (AlO{sub x}) and porous Au, whereas activity in the high-temperature region results from a high density of lattice defects such as twins and dislocations, which were evident from diffraction peak broadening and were observed with high-resolution TEM in the porous Au leached with NaOH. It is proposed that atoms located at lattice defects on the surfaces of porous Au are the active sites for catalytic reactions.« less

  16. Growth and Etch Rate Study of Low Temperature Anodic Silicon Dioxide Thin Films

    PubMed Central

    Ashok, Akarapu; Pal, Prem

    2014-01-01

    Silicon dioxide (SiO2) thin films are most commonly used insulating films in the fabrication of silicon-based integrated circuits (ICs) and microelectromechanical systems (MEMS). Several techniques with different processing environments have been investigated to deposit silicon dioxide films at temperatures down to room temperature. Anodic oxidation of silicon is one of the low temperature processes to grow oxide films even below room temperature. In the present work, uniform silicon dioxide thin films are grown at room temperature by using anodic oxidation technique. Oxide films are synthesized in potentiostatic and potentiodynamic regimes at large applied voltages in order to investigate the effect of voltage, mechanical stirring of electrolyte, current density and the water percentage on growth rate, and the different properties of as-grown oxide films. Ellipsometry, FTIR, and SEM are employed to investigate various properties of the oxide films. A 5.25 Å/V growth rate is achieved in potentiostatic mode. In the case of potentiodynamic mode, 160 nm thickness is attained at 300 V. The oxide films developed in both modes are slightly silicon rich, uniform, and less porous. The present study is intended to inspect various properties which are considered for applications in MEMS and Microelectronics. PMID:24672287

  17. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  18. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  19. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  20. Effect of Adding SiO2-Al2O3 Sol into Anodizing Bath on Corrosion Resistance of Oxidation Film on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Huicong; Zhu, Liqun; Li, Weiping

    Due to the widely use in automobile and construction field, AZ91D magnesium alloy need to be protected more effectively for its high chemical activity. In this paper, three kinds of films were formed on magnesium alloy. The first kind of film, named as anodic oxidation film, was prepared by anodic oxidation in the alkaline solution. The processes for preparing the second kind of film, named as multiple film, involved coating sol-gel on the samples and heat-treating before anodic oxidation. The third kind of film was prepared by anodic oxidation in the alkaline oxidation solution containning 5% (vol) SiO2-Al2O3 sol, named as modified oxidation film. The corrosion resistance of the three different films was investigated. The results showed that the modified oxidation film had the highest corrosion resistance due to the largest thickness and most dense surface morphology. Sol was discussed to react during the film forming process, which leaded to the difference between modified oxidation film and anodic oxidation film.

  1. Improving the direct electron transfer in monolithic bioelectrodes prepared by immobilization of FDH enzyme on carbon-coated anodic aluminum oxide films

    NASA Astrophysics Data System (ADS)

    Castro-Muñiz, Alberto; Hoshikawa, Yasuto; Komiyama, Hiroshi; Nakayama, Wataru; Itoh, Tetsuji; Kyotani, Takashi

    2016-02-01

    The present work reports the preparation of binderless carbon-coated porous films and the study of their performance as monolithic bioanodes. The films were prepared by coating anodic aluminum oxide (AAO) films with a thin layer of nitrogen-doped carbon by chemical vapor deposition. The films have cylindrical straight pores with controllable diameter and length. These monolithic films were used directly as bioelectrodes by loading the films with D-fructose dehydrogenase (FDH), an oxidoreductase enzyme that catalyzes the oxidation of D-fructose to 5-keto-D-fructose. The immobilization of the enzymes was carried out by physical adsorption in liquid phase and with an electrostatic attraction method. The latter method takes advantage of the fact that FDH is negatively charged during the catalytic oxidation of fructose. Thus the immobilization was performed under the application of a positive voltage to the CAAO film in a FDH-fructose solution in McIlvaine buffer (pH 5) at 25 ºC. As a result, the FDH modified electrodes with the latter method show much better electrochemical response than that with the conventional physical adsorption method. Due to the singular porous structure of the monolithic films, which consists of an array of straight and parallel nanochannels, it is possible to rule out the effect of the diffusion of the D-fructose into the pores. Thus the improvement in the performance upon using the electrostatic attraction method can be ascribed not only to a higher uptake, but also to a more appropriate molecule orientation of the enzyme units on the surface of the electrodes.

  2. Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes.

    PubMed

    Zhang, Yaguang; Du, Ning; Chen, Yifan; Lin, Yangfan; Jiang, Jinwei; He, Yuanhong; Lei, Yu; Yang, Deren

    2018-03-28

    Si/C composite is one of the most promising candidate materials for next-generation lithium-ion battery anodes. Herein, we demonstrate the novel structure of carbon cages encapsulating porous Si synthesized by the reaction between magnesium silicide (Mg 2 Si) and carbon dioxide (CO 2 ) and subsequent acid washing. Benefitting from the in situ deposition through magnesiothermic reduction of CO 2 , the carbon cage seals the inner Si completely and shows higher graphitization than that obtained from the decomposition of acetylene. After removing MgO, pores are created, which can accommodate the volume change of the Si anode during the charge/discharge process. As the anode material for lithium-ion batteries, the porous Si/C electrode shows a charge capacity of ∼1124 mA h g -1 after 100 cycles with 86.4% capacity retention at the current density of 0.4 A g -1 . When the current density increases to 1.6 and 3.2 A g -1 , the capacity can still be maintained at ∼860 and ∼460 mA h g -1 , respectively. The prominent cycling and rate performance is contributed by the built-in space for Si expansion, static carbon cages that prevent penetration of electrolyte and stabilize the solid electrolyte interface (SEI) outside, and fast charge transport by the novel structure.

  3. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers.

    PubMed

    Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia

    2016-03-08

    Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.

  4. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h.

    PubMed

    Mohamed, Lamiaa Z; Ghanem, Wafaa A; El Kady, Omayma A; Lotfy, Mohamed M; Ahmed, Hafiz A; Elrefaie, Fawzi A

    2017-11-01

    The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10 -8  g/cm 2  s and 3.4 × 10 -8  g/cm 2  s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  5. Structural and wetting properties of porous anodic alumina templates prepared by different electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchitra, S. M., E-mail: suchitra.ph14f03@nitk.edu.in; Reddy, P. Ramana; Udayashankar, N. K.

    2016-05-06

    Porous anodic alumina (PAA) has been extensively studied in recent years due to their unique properties and applications for manufacturing nanostructured materials. In this article, we report our studies on structural and wetting properties of PAA membranes prepared using different electrolytes such as sulphuric, oxalic and phosphoric acids. The morphological parameters such as pore diameter and porosity were measured using SEM and analysed using image-J software. The structural investigation of PAA membranes was carried out through X-ray diffraction analysis and it was confirmed that PAA membranes were amorphous in nature. The wetting behaviour of PAA membranes were measured using contactmore » angle measurement technique. The results show that PAA membranes were hydrophilic in nature with contact angles 26.03°, 35.21° and 42.0° for sulphuric, oxalic and phosphoric acids respectively.« less

  6. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  7. Microhardness of anodic aluminum oxide formed in an alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Kanygina, O. N.; Filyak, M. M.

    2017-04-01

    The microhardness of anodic aluminum oxide formed by anodizing of aluminum sheet in electrolyte on the basis of sodium hydroxide has been determined experimentally. The microhardness of the hard film/soft substrate system has been estimated by three approaches: indentation geometry (length of diagonals) in film surfaces, the sum of the hardnesses of the film and the surface with allowance for the indentation surface area and geometry, and with allowance for the indentation depth. It is demonstrated that the approach accounting for the indentation depth makes it possible to eliminate the influence of the substrate. It is established that the microhardness of the films formed in alkaline electrolytes is comparable with that formed in acid electrolytes.

  8. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu; Hosseini, Mahsa; Edalatpour, Roya

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts aremore » considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.« less

  9. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (<100 mg L(-1), the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    NASA Astrophysics Data System (ADS)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-06-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  11. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  12. Pseudocapacitive Behaviors of Li2FeTiO4/C Hybrid Porous Nanotubes for Novel Lithium-Ion Battery Anodes with Superior Performances.

    PubMed

    Tang, Yakun; Liu, Lang; Zhao, Hongyang; Zhang, Yue; Kong, Ling Bing; Gao, Shasha; Li, Xiaohui; Wang, Lei; Jia, Dianzeng

    2018-06-20

    Hybrid nanotubes of cation disordered rock salt structured Li 2 FeTiO 4 nanoparticles embedded in porous CNTs were developed. Such unique hybrids with continuous 3D electron transportation paths and isolated small particles have been shown to be an ideal architecture that brought out enhanced electrochemical performances. Meanwhile, they exhibited improved extrinsic capacitive characteristics. In addition, we demonstrate a successful example to use cathode active material as anode for lithium-ion batteries (LIBs). More importantly, our hybrids had much superior electrochemical performances than most of the reported Li 4 Ti 5 O 12 -based nanocomposites. Therefore, it is concluded that Li 2 FeTiO 4 can be a prospective anode material for LIBs.

  13. Degradation analysis of anode-supported intermediate temperature-solid oxide fuel cells under various failure modes

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hee; Park, Ka-Young; Kim, Ji-Tae; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-02-01

    This study focuses on mechanisms and symptoms of several simulated failure modes, which may have significant influences on the long-term durability and operational stability of intermediate temperature-solid oxide fuel cells (IT-SOFCs), including fuel/oxidation starvation by breakdown of fuel/air supply components and wet and dry cycling atmospheres. Anode-supported IT-SOFCs consisting of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-Nd0.1Ce0.9O2-δ (NDC) composite cathode with an NDC electrolyte on a Ni-NDC anode substrate are fabricated via dry-pressings followed by the co-firing method. Comprehensive and systematic research based on the failure mode and effect analysis (FMEA) of anode-supported IT-SOFCs is conducted using various electrochemical and physiochemical analysis techniques to extend our understanding of the major mechanisms of performance deterioration under SOFC operating conditions. The fuel-starvation condition in the fuel-pump failure mode causes irreversible mechanical degradation of the electrolyte and cathode interface by the dimensional expansion of the anode support due to the oxidation of Ni metal to NiO. In contrast, the BSCF cathode shows poor stability under wet and dry cycling modes of cathode air due to the strong electroactivity of SrO with H2O. On the other hand, the air-depletion phenomena under air-pump failure mode results in the recovery of cell performance during the long-term operation without the visible microstructural transformation through the reduction of anode overvoltage.

  14. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors.

    PubMed

    Song, Haoran; Yan, Linxia; Ma, Jun; Jiang, Jin; Cai, Guangqiang; Zhang, Wenjuan; Zhang, Zhongxiang; Zhang, Jiaming; Yang, Tao

    2017-06-01

    Electrochemical activation of peroxydisulfate (PDS) at Ti/Pt anode was systematically investigated for the first time in this work. The synergistic effect produced from the combination of electrolysis and the addition of PDS demonstrates that PDS can be activated at Ti/Pt anode. The selective oxidation towards carbamazepine (CBZ), sulfamethoxazole (SMX), propranolol (PPL), benzoic acid (BA) rather than atrazine (ATZ) and nitrobenzene (NB) was observed in electrochemical activation of PDS process. Moreover, addition of excess methanol or tert-butanol had negligible impact on CBZ (model compound) degradation, demonstrating that neither sulfate radical (SO 4 - ) nor hydroxyl radical (HO) was produced in electrochemical activation of PDS process. Direct oxidation (PDS oxidation alone and electrolysis) and nonradical oxidation were responsible for the degradation of contaminants. The results of linear sweep voltammetry (LSV) and chronoamperometry suggest that electric discharge may integrate PDS molecule with anode surface into a unique transition state structure, which is responsible for the nonradical oxidation in electrochemical activation of PDS process. Adjustment of the solution pH from 1.0 to 7.0 had negligible effect on CBZ degradation. Increase of either PDS concentration or current density facilitated the degradation of CBZ. The presence of chloride ion (Cl - ) significantly enhanced CBZ degradation, while addition of bicarbonate (HCO 3 - ), phosphate (PO 4 3- ) and humic acid (HA) all inhibited CBZ degradation with the order of HA > HCO 3 -  > PO 4 3- . The degradation products of CBZ and chlorinated products were also identified. Electrochemical activation of PDS at Ti/Pt anode may serve as a novel technology for selective oxidation of organic contaminants in water and soil. Copyright © 2017. Published by Elsevier Ltd.

  15. Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.

    PubMed

    Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang

    2017-08-25

    A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Advanced oxidation of real sulfamethoxazole + trimethoprim formulations using different anodes and electrolytes.

    PubMed

    Murillo-Sierra, Juan C; Sirés, Ignasi; Brillas, Enric; Ruiz-Ruiz, Edgar J; Hernández-Ramírez, Aracely

    2018-02-01

    A commercial sulfamethoxazole + trimethoprim formulation has been degraded in 0.050 M Na 2 SO 4 at pH 3.0 by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton with a 6-W UVA lamp (PEF) and solar photoelectro-Fenton (SPEF). The tests were performed in an undivided cell with an IrO 2 -based, Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H 2 O 2 electrogeneration. The anode material had little effect on the accumulated H 2 O 2 concentration. Both drugs always obeyed a pseudo-first-order decay with low apparent rate constant in EO-H 2 O 2 . Much higher values were found in EF, PEF and SPEF, showing no difference because the main oxidant was always OH formed from Fenton's reaction between H 2 O 2 and added Fe 2+ . The solution mineralization increased in the sequence EO-H 2 O 2  < EF < PEF < SPEF regardless of the anode. The IrO 2 -based and Pt anodes behaved similarly but BDD was always more powerful. In SPEF, similar mineralization profiles were found for all anodes because of the rapid removal of photoactive intermediates by sunlight. About 87% mineralization was obtained as maximum for the powerful SPEF with BDD anode. Addition of Cl - enhanced the decay of both drugs due to their quicker reaction with generated active chlorine, but the formation of persistent chloroderivatives decelerated the mineralization process. Final carboxylic acids like oxalic and oxamic were detected, yielding Fe(III) complexes that remained stable in EF with BDD but were rapidly photolyzed in SPEF with BDD, explaining its superior mineralization ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tu, Hengyong; Liu, Xin; Yu, Qingchun

    2011-03-01

    Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.

  18. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ) anode of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Choi, Gyeong Man

    2015-10-01

    Perovskite oxides have potential for use as alternative anode materials in solid oxide fuel cells (SOFCs) due to stability in anode atmosphere; donor-doped SrTiO3 (e.g., La0.2Sr0.8TiO3-δ) is a good candidate for this purpose. Electro-catalytic nanoparticles can be produced in oxide anodes by the ex-solution method, e.g., by incorporating Ni into a perovskite oxide in air, then reducing the oxide in H2 atmosphere. In this study, we varied the temperature (1100, 1250 °C) and atmosphere (air, H2) of La0.2Sr0.8Ti0.9Ni0.1O3-δ (LSTN) anode firing to control the degree of Ni ex-solution and microstructure. LSTN fired at 1250 °C in H2 showed the best anodic performance for scandia-stabilized zirconia (ScSZ) electrolyte-supported cells in H2 and CH4 fuels due to the favorable microstructure and Ni ex-solution.

  19. Oxidative stability of high-oleic sunflower oil in a porous starch carrier.

    PubMed

    Belingheri, Claudia; Giussani, Barbara; Rodriguez-Estrada, Maria Teresa; Ferrillo, Antonio; Vittadini, Elena

    2015-01-01

    This study evaluates the oxidation level of high-oleic sunflower oil (HOSO) plated onto porous starch as an alternative to spray drying. Encapsulated oils were subjected to accelerated oxidation by heat and light exposure, and peroxide value (PV) and conjugated dienes (CD) were measured. Bulk oil was the control. PV increased in all samples with increased light exposure, with similar values being reached by oil carried on porous starch and spray dried oil. The encapsulation processes determined a reduced effect of light on the increase of CD in the oil, as compared to bulk oil. Spray dried oil presented the highest CD in the experimental domain considered. Since similar levels of PV and lower levels of CD were shown in the HOSO carried on porous starch compared to the spray dried HOSO, plating flavour oils on porous starch could be a suitable technological alternative to spray drying, for flavour encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  1. Plasma-deposited fluoropolymer film mask for local porous silicon formation

    PubMed Central

    2012-01-01

    The study of an innovative fluoropolymer masking layer for silicon anodization is proposed. Due to its high chemical resistance to hydrofluoric acid even under anodic bias, this thin film deposited by plasma has allowed the formation of deep porous silicon regions patterned on the silicon wafer. Unlike most of other masks, fluoropolymer removal after electrochemical etching is rapid and does not alter the porous layer. Local porous regions were thus fabricated both in p+-type and low-doped n-type silicon substrates. PMID:22734507

  2. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    PubMed Central

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-01-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm−1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm−2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm−2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode. PMID:26648509

  3. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-01

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm-1 in 5% H2 and peak power densities of 1.72 and 0.54 W cm-2 using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm-2. To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  4. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.

    PubMed

    Ding, Hanping; Tao, Zetian; Liu, Shun; Zhang, Jiujun

    2015-12-09

    Development of alternative ceramic oxide anode materials is a key step for direct hydrocarbon solid oxide fuel cells (SOFCs). Several lanthanide based layered perovskite-structured oxides demonstrate outstanding oxygen diffusion rate, favorable electronic conductivity, and good oxygen surface exchange kinetics, owing to A-site ordered structure in which lanthanide and alkali-earth ions occupy alternate (001) layers and oxygen vacancies are mainly located in [LnOx] planes. Here we report a nickel-free cation deficient layered perovskite, (PrBa)0.95(Fe0.9Mo0.1)2O5 + δ (PBFM), for SOFC anode, and this anode shows an outstanding performance with high resistance against both carbon build-up and sulfur poisoning in hydrocarbon fuels. At 800 °C, the layered PBFM showed high electrical conductivity of 59.2 S cm(-1) in 5% H2 and peak power densities of 1.72 and 0.54 W cm(-2) using H2 and CH4 as fuel, respectively. The cell exhibits a very stable performance under a constant current load of 1.0 A cm(-2). To our best knowledge, this is the highest performance of ceramic anodes operated in methane. In addition, the anode is structurally stable at various fuel and temperature conditions, suggesting that it is a feasible material candidate for high-performing SOFC anode.

  5. Fabrication and characterization of lithographically patterned and optically transparent anodic aluminum Oxide (AAO) nanostructure thin film.

    PubMed

    He, Yuan; Li, Xiang; Que, Long

    2012-10-01

    Optically transparent anodic aluminum oxide (AAO) nanostructure thin film has been successfully fabricated from lithographically patterned aluminum on indium tin oxide (ITO) glass substrates for the first time, indicating the feasibility to integrate the AAO nanostructures with microdevices or microfluidics for a variety of applications. Both one-step and two-step anodization processes using sulfuric acid and oxalic acid have been utilized for fabricating the AAO nanostructure thin film. The optical properties of the fabricated AAO nanostructure thin film have been evaluated and analyzed.

  6. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    PubMed

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  7. Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Jiang, Hongmei; Yang, Lu; Deng, Wenfang; Tan, Yueming; Xie, Qingji

    2017-09-01

    Herein, a macroporous graphitic carbon foam (MGCF) electrode decorated with polydopamine (PDA) is used as a high-performance anode for microbial fuel cell (MFC) applications. The MGCF is facilely prepared by pyrolysis of a powder mixture comprising maltose, nickel nitrate, and ammonia chloride, without using solid porous template. The MGCF is coated with PDA by self-polymerization of dopamine in a basic solution. The MGCF can provide a large surface area for bacterial attachment, and PDA coated on the MGCF electrode can further promote bacterial adhesion resulting from the improved hydrophility, so the MGCF-PDA electrode as an anode in a MFC can show ultrahigh bacterial loading capacity. Moreover, the electrochemical oxidation of flavins at the MGCF-PDA electrode is greatly accelerated, so the extracellular electron transfer mediated by flavins is improved. As a result, the MFC equipped with a MGCF-PDA anode can show a maximum power density of 1735 mW cm-2, which is 6.7 times that of a MFC equipped with a commercial carbon felt anode, indicating a promising anode for MFC applications.

  8. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    NASA Astrophysics Data System (ADS)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  9. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOEpatents

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  10. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOEpatents

    Delnick, Frank M.; Even, Jr., William R.; Sylwester, Alan P.; Wang, James C. F.; Zifer, Thomas

    1995-01-01

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

  11. Investigation of porous silicon obtained under different conditions by the contact angle method

    NASA Astrophysics Data System (ADS)

    Belorus, A. O.; Bukina, Y. V.; Pastukhov, A. I.; Stebko, D. S.; Spivak, Yu M.; Moshnikov, V. A.

    2017-11-01

    This paper investigates a hydrophobicity/hydrophilicity of porous silicon by the contact angle method. Porous silicon series were obtained by electrochemical anodic etching of n-Si (100) and (111) under the current anodization density range of 5-120 mA/cm2. For this purpose the original laboratory installation and the software «Measurement of contact angle» were developed. It is shown that, the contact angle can vary significantly (up to 80 degrees for (100)) depending on the current anodization Discussion of the results is carried out taking in account the composition of the functional groups and of surface morphology of the porous silicon. These results are important for developing porous silicon particles as nanocontainers in the targeted drug delivery.

  12. Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method.

    PubMed

    Markovics, Akos; Kovács, Barna

    2013-05-15

    In this comparative study, the fabrication and the sensing properties of various reflectometric optical ammonia gas sensors are described. In the first set of experiments the role of the support material was investigated on four different sensor membranes. Two of them were prepared by the adsorption of bromocresol green indicator on anodized aluminum plates. The applied anodizing voltages were 12 V and 24 V, which resulted in different dynamic ranges and response times for gaseous ammonia. The sol-gel method was used for the preparation of the other batch of sensors. These layers were coated on anodized aluminum plates (24 V) and on standard microscope cover glasses. In spite of the identical sensing chemistry, slightly different response times were measured merely because of the aluminum surface porosity. Gas molecules can remain entrapped in the pores, which results in delayed recovery time. On the other hand, the porous oxide film provides excellent adhesion, making the anodized aluminum an attractive support for the sol-gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances.

    PubMed

    Liu, Shengwen; Kang, Shenghong; Wang, Guozhong; Zhao, Huijun; Cai, Weiping

    2015-11-15

    A simple method is presented to synthesize micro/nano-structured Fe-Ni binary oxides based on co-precipitation and subsequent calcination. It has been found that the Fe-Ni binary oxides are composed of the porous microsized aggregates built with nanoparticles. When the atomic ratio of Fe to Ni is 2 to 1 the binary oxide is the micro-scaled aggregates consisting of the ultrafine NiFe2O4 nanoparticles with 3-6nm in size, and shows porous structure with pore diameter of 3nm and a specific surface area of 245m(2)g(-1). Such material is of abundant surface functional groups and has exhibited high adsorption performance to As(III) and As(V). The kinetic adsorption can be described by pseudo-second order model and the isothermal adsorption is subject to Langmuir model. The maximum adsorption capacity on such Fe-Ni porous binary oxide is up to 168.6mgg(-1) and 90.1mgg(-1) for As(III) and As(V), respectively, which are much higher than the arsenic adsorption capacity for most commercial adsorbents. Such enhanced adsorption ability for this material is mainly attributed to its porous structure and high specific surface area as well as the abundant surface functional groups. Further experiments have revealed that the influence of the anions such as sulfate, carbonate, and phosphate, which commonly co-exist in water, on the arsenic adsorption is insignificant, exhibiting strong adsorption selectivity to arsenic. This micro/nano-structured porous Fe-Ni binary oxide is hence of good practicability to be used as a highly efficient adsorbent for arsenic removal from the real arsenic-contaminated waters. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Two-dimensional Transport and Retention of Graphene Oxide in Porous Media

    NASA Astrophysics Data System (ADS)

    Dong, S.; Sun, Y.; Gao, B.; Wu, J.; Shi, X.; Xu, H.

    2017-12-01

    Graphene oxide (GO) as an exceptional carbon nanomaterial has been used in a wide variety of applications. It is important to understand the fate and transport behaviors of GO in porous media. Lots of laboratory and model studies have focused on the mobility of GO in porous media, indicating complex mechanism such as solution chemistry, media characters, and particle input conditions all influenced GO transport and retention behavior. However, all of the previous studies of GO fate and transport were conducted in column equipment, which were insufficient with its extremely limited boundary conditions. In this work, 2-D homogeneous and heterogeneous sand tank experiments visualized by light transmission were used to examine the fate of graphene oxide (GO) nanoparticles in 2-D porous media under various conditions. A two-dimensional model was applied to describe GO retention and transport in 2-D porous media. The visualized experimental pictures and model results both showed that GO retention and transport in all 2-D porous media were influenced by media grain size, ionic strength, structural heterogeneity and injected location. The retention of GO particles in 2-D porous media increased when the gain size and the ionic strength. In addition, even though the preferential flow phenomena in 2-D heterogeneous porous media dramatically influence the transport of GO, the injected location of GO also has the important effects on its transport. Interestingly, the deposition of GO in 2-D heterogeneous fine sand layer was higher than in corresponding 2-D homogeneous porous media, even though under low ionic strength condition. For all the sand tanks, partly previous retained GO particles that were trapped in the secondary minimum energy well could be instantaneous remobilized from sand grain surface by reducing solution IS, but a portion of GO still retained in 2-D porous media and could not be remobilized. This result demonstrated that extra mechanism also control the

  15. Increasing the Thermal Stability of Aluminum Titanate for Solid Oxide Fuel Cell Anodes

    NASA Technical Reports Server (NTRS)

    Bender, Jeffrey B.

    2004-01-01

    Solid-oxide fuel cells (SOFCs) show great potential as a power source for future space exploration missions. Because SOFCs operate at temperatures significantly higher than other types of fuel cells, they can reach overall efficiencies of up to 60% and are able to utilize fossil fuels. The SOFC team at GRC is leading NASA's effort to develop a solid oxide fuel cell with a power density high enough to be used for aeronautics and space applications, which is approximately ten times higher than ground transport targets. layers must be able to operate as a single unit at temperatures upwards of 900'C for at least 40,000 hours with less than ten percent degradation. One key challenge to meeting this goal arises from the thermal expansion mismatch between different layers. The amount a material expands upon heating is expressed by its coefficient of thermal expansion (CTE). If the CTEs of adjacent layers are substantially different, thermal stresses will arise during the cell's fabrication and operation. These stresses, accompanied by thermal cycling, can fracture and destroy the cell. While this is not an issue at the electrolyte-cathode interface, it is a major concern at the electrolyte-anode interface, especially in high power anode-supported systems. electrolyte are nearly identical. Conventionally, this has been accomplished by varying the composition of the anode to match the CTE of the yittria-stabilized zirconia (YSZ) electrolyte (approx.10.8x10(exp -6/degC). A Ni/YSZ composite is typically used as a base material for the anode due to its excellent electrochemical properties, but its CTE is about 13.4x10(exp -6/degC). One potential way to lower the CTE of this anode is to add a small percentage of polycrystalline Al2TiO5, with a CTE of 0.68x10(exp -6/degC, to the Ni/YSZ base. However, Al2TiO5 is thermally unstable and loses its effectiveness as it decomposes to Al2O3 and TiO2 between 750 C and 1280 C. be used as additives to increase the thermal stability of Al2

  16. Porous Alumina Films with Width-Controllable Alumina Stripes

    PubMed Central

    2010-01-01

    Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406

  17. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    PubMed

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  18. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    PubMed Central

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  19. A Vaporizing Liquid-Metal Anode for High-Power Hall Thrusters

    DTIC Science & Technology

    2007-06-14

    45 Figure 4-1. Dual-propellant anode cross section. Porous phase descriminator was constructed fro m stain less-steel...section. Porous phase descriminator was constructed from stainless-steel. The external bismuth reservoir is simply a welded stainless steel tube that

  20. Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kazunari; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2017-10-01

    In this study, the availability of Ni-Ba(Zr,Y)O3-δ (BZY) cermet for the anode of direct ammonia-fueled solid oxide fuel cells (SOFCs) is evaluated. In this device, the anodes need to be active for the catalytic ammonia decomposition as well as the electrochemical hydrogen oxidation. In the catalytic activity test, ammonia decomposes completely over Ni-BZY at ca. 600 °C, while higher temperature is required to accomplish the complete decomposition over the conventional SOFC anode of Ni-yttria-stabilized zirconia cermet. The high activity of Ni-BZY is attributed to the high basicity of BZY and the high resistance to hydrogen poisoning effect. The electrochemical property of Ni-BZY anode is also evaluated with the anode-supported cell of Ni-BZY|BZY|Pt at 600-700 °C with feeding ammonia or hydrogen as a fuel. Since the residence time of ammonia fuel in the thick Ni-BZY anode is long, the difference in the cell performance between two fuels is relatively small. Furthermore, it is proved that the steam concentration in the fuel strongly affects the cell performance. We find that this factor is important to satisfy the above mentioned requirements for the anode of direct ammonia-fueled SOFCs. Throughout this study, it is concluded that Ni-BZY cermet will be a promising anode.

  1. Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.

    PubMed

    Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A

    2015-02-07

    The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 μm, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions.

  2. Nanostructured porous Si optical biosensors: effect of thermal oxidation on their performance and properties.

    PubMed

    Shtenberg, Giorgi; Massad-Ivanir, Naama; Fruk, Ljiljana; Segal, Ester

    2014-09-24

    The influence of thermal oxidation conditions on the performance of porous Si optical biosensors used for label-free and real-time monitoring of enzymatic activity is studied. We compare three oxidation temperatures (400, 600, and 800 °C) and their effect on the enzyme immobilization efficiency and the intrinsic stability of the resulting oxidized porous Si (PSiO2), Fabry-Pérot thin films. Importantly, we show that the thermal oxidation profoundly affects the biosensing performance in terms of greater optical sensitivity, by monitoring the catalytic activity of horseradish peroxidase and trypsin-immobilized PSiO2. Despite the significant decrease in porous volume and specific surface area (confirmed by nitrogen gas adsorption-desorption studies) with elevating the oxidation temperature, higher content and surface coverage of the immobilized enzymes is attained. This in turn leads to greater optical stability and sensitivity of PSiO2 nanostructures. Specifically, films produced at 800 °C exhibit stable optical readout in aqueous buffers combined with superior biosensing performance. Thus, by proper control of the oxide layer formation, we can eliminate the aging effect, thus achieving efficient immobilization of different biomolecules, optical signal stability, and sensitivity.

  3. Studies of porous anodic alumina using spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Stonaha, Paul

    The properties of a neutron make it a useful tool for use in scattering experiments. We have developed a method, dubbed SESAME, in which specially designed magnetic fields encode the scattering signal of a neutron beam into the beam's average Larmor phase. A geometry is presented that delivers the correct Larmor phase (to first order), and it is shown that reasonable variations of the geometry do not significantly affect the net Larmor phase. The solenoids are designed using an analytic approximation. Comparison of this approximate function with finite element calculations and Hall probe measurements confirm its validity, allowing for fast computation of the magnetic fields. The coils were built and tested in-house on the NBL-4 instrument, a polarized neutron reflectometer whose construction is another major portion of this work. Neutron scattering experiments using the solenoids are presented, and the scattering signal from porous anodic alumina is investigated in detail. A model using the Born Approximation is developed and compared against the scattering measurements. Using the model, we define the necessary degree of alignment of such samples in a SESAME measurement, and we show how the signal retrieved using SESAME is sensitive to range of detectable momentum transfer.

  4. Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Baji, Dona Susan; Jadhav, Harsharaj S.; Nair, Shantikumar V.; Rai, Alok Kumar

    2018-06-01

    Pyro synthesis is a method to coat nanoparticles by uniform layer of carbon without using any conventional carbon source. The resultant carbon coating can be evaporated in the form of CO or CO2 at high temperature with the creation of large number of nanopores on the sample surface. Hence, a porous MnCo2O4 is successfully synthesized here with the same above strategy. It is believed that the electrolyte can easily permeate through these nanopores into the bulk of the sample and allow rapid access of Li+ ions during charge/discharge cycling. In order to compare the superiority of the porous sample synthesized by pyro synthesis method, MnCo2O4 nanoparticles are also synthesized by sol-gel synthesis method at the same parameters. When tested as anode materials for lithium ion battery application, porous MnCo2O4 electrode shows high capacity with long lifespan at all the investigated current rates in comparison to MnCo2O4 nanoparticles electrode.

  5. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Liu, Yanguo; Arandiyan, Hamidreza; Yang, Hongping; Bai, Lu; Mujtaba, Jawayria; Wang, Qingguo; Liu, Shanghe; Sun, Hongyu

    2016-12-01

    Uniform Fe3O4 microflowers assembled with porous nanoplates were successfully synthesized by a solvothermal method and subsequent annealing process. The structural and compositional analysis of the Fe3O4 microflowers were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The Bruauer-Emmett-Teller (BET) specific surface area was calculated by the nitrogen isotherm curve and pore size distribution of Fe3O4 microflowers was determined by the Barret-Joyner-Halenda (BJH) method. When evaluated as anode material for lithium-ion batteries, the as-prepared Fe3O4 microflowers electrodes delivered superior capacity, better cycling stability and rate capability than that of Fe3O4 microspheres electrodes. The improved electrochemical performance was attributed to the microscale flowerlike architecture and the porous sheet structural nature.

  6. Analyzing the anodic reactions for iron surface with a porous Al2O3 cluster with the scanning vibrating electrode

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez

    2017-09-01

    The Scanning Vibrating Electrode Technique (SVET) was used to analyze the anodic reactions inside and around a porous Al2O3 cluster embedded onto an iron foil. The tests were carried out at -0.7 V vs. Saturated Calomel Electrode, in naturally aerated solutions of 0.1, 0.2, 0.35, and 0.5 M bicarbonate concentration. During 10 h of testing, the SVET showed evidence for a formation of a passive film in and around the cluster, in the scanning area shown in the graphical abstract. In the dilute 0.1 and 0.2 M solutions, the passive films formed slower than those in 0.35 and 0.5 M solutions. In the SVET maps, the passive films showed that they could suppress dissolution to currents comparable to those of slower dissolution under the porous Al2O3 cluster.

  7. Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Canavar, Murat; Timurkutluk, Bora

    2017-04-01

    In this study, nickel based woven meshes are tested as not only anode current collecting meshes but also anode flow fields instead of the conventional gas channels fabricated by machining. For this purpose, short stacks with different anode flow fields are designed and built by using different number of meshes with various wire diameters and widths of opening. A short stack with classical machined flow channels is also constructed. Performance and impedance measurements of the short stacks with commercial size cells of 81 cm2 active area are performed and compared. The results reveal that it is possible to create solid oxide fuel cell anode flow fields with woven meshes and obtain acceptable power with a proper selection of the mesh number, type and orientation.

  8. Preparation and Evaluation of Multi-Layer Anodes of Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Santiago, Diana; Farmer, Serene C.; Setlock, John A.

    2012-01-01

    The development of an energy device with abundant energy generation, ultra-high specific power density, high stability and long life is critical for enabling longer missions and for reducing mission costs. Of all different types of fuel cells, the solid oxide fuel cells (SOFC) is a promising high temperature device that can generate electricity as a byproduct of a chemical reaction in a clean way and produce high quality heat that can be used for other purposes. For aerospace applications, a power-to-weight of (is) greater than 1.0 kW/kg is required. NASA has a patented fuel cell technology under development, capable of achieving the 1.0 kW/kg figure of merit. The first step toward achieving these goals is increasing anode durability. The catalyst plays an important role in the fuel cells for power generation, stability, efficiency and long life. Not only the anode composition, but its preparation and reduction are key to achieving better cell performance. In this research, multi-layer anodes were prepared varying the chemistry of each layer to optimize the performance of the cells. Microstructure analyses were done to the new anodes before and after fuel cell operation. The cells' durability and performance were evaluated in 200 hrs life tests in hydrogen at 850 C. The chemistry of the standard nickel anode was modified successfully reducing the anode degradation from 40% to 8.4% in 1000 hrs and retaining its microstructure.

  9. Development and understanding of La0.85Sr0.15Cr1-xNixO3-δ anodes for La5.6WO11.4-δ-based Proton Conducting Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Solís, Cecilia; Navarrete, Laura; Balaguer, María; Serra, José M.

    2014-07-01

    Porous electrodes based on the system La0.85Sr0.15Cr1-xNixO3-δ (x = 0.1 and 0.2) have been investigated as anodes for proton conducting solid oxide fuel cells based on the La5.6WO11.4-δ (LWO) electrolyte material. The microstructure of the anodes was optimized by varying both the starting powder morphology and the final anode sintering temperature. Two different electrode thicknesses were studied, i.e. 15 and 30 μm. The importance of the catalytic role of Ni was also studied by using different concentrations of Ni (10% and 20%) in the chromite and by tuning the Ni particle sizes through the control of the reduction temperature. Additionally, a ceramic-ceramic (cer-cer) composite electrode comprising a physical mixture of the optimized chromite and LWO phase was also considered. Finally, a kinetics study and modeling based on Langmuir-Hinshelwood mechanism was carried out in order to quantitatively describe the rate of dissociative adsorption of H2 on the Ni particles spread on the chromite surface.

  10. A simplified approach to predict performance degradation of a solid oxide fuel cell anode

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Zubair; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Jong-Won; Lee, Seung-Bok; Lim, Tak-Hyoung

    2018-07-01

    The agglomeration of nickel (Ni) particles in a Ni-cermet anode is a significant degradation phenomenon for solid oxide fuel cells (SOFCs). This work aims to predict the performance degradation of SOFCs due to Ni grain growth by using a simplified approach. Accelerated aging of Ni-scandia stabilized zirconia (SSZ) as an SOFC anode is carried out at 900 °C and subsequent microstructural evolution is investigated every 100 h up to 1000 h using scanning electron microscopy (SEM). The resulting morphological changes are quantified using a two-dimensional image analysis technique that yields the particle size, phase proportion, and triple phase boundary (TPB) point distribution. The electrochemical properties of an anode-supported SOFC are characterized using electrochemical impedance spectroscopy (EIS). The changes of particle size and TPB length in the anode as a function of time are in excellent agreement with the power-law coarsening model. This model is further combined with an electrochemical model to predict the changes in the anode polarization resistance. The predicted polarization resistances are in good agreement with the experimentally obtained values. This model for prediction of anode lifetime provides deep insight into the time-dependent Ni agglomeration behavior and its impact on the electrochemical performance degradation of the SOFC anode.

  11. Heterogeneous electrolyte (YSZ-Al 2O 3) based direct oxidation solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Thokchom, J. S.; Xiao, H.; Rottmayer, M.; Reitz, T. L.; Kumar, B.

    Bilayers comprised of dense and porous YSZ-Al 2O 3 (20 wt%) composite were tape cast, processed, and then fabricated into working solid oxide fuel cells (SOFCs). The porous part of the bilayer was converted into anode for direct oxidation of fuels by infiltrating CeO 2 and Cu. The cathode side of the bilayer was coated with an interlayer [YSZ-Al 2O 3 (20 wt%)]: LSM (1:1) and LSM as cathode. Several button cells were evaluated under hydrogen/air and propane/air atmospheres in intermediate temperature range and their performance data were analyzed. For the first time the feasibility of using YSZ-Al 2O 3 material for fabricating working SOFCs with high open circuit voltage (OCV) and power density is demonstrated. AC impedance spectroscopy and scanning electron microscopy (SEM) techniques were used to characterize the membrane and cell.

  12. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  13. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    PubMed Central

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  14. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  15. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    PubMed

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  16. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    NASA Astrophysics Data System (ADS)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was

  17. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces.

    PubMed

    Nyan, Myat; Hao, Jia; Miyahara, Takayuki; Noritake, Kanako; Rodriguez, Reena; Kasugai, Shohei

    2014-10-01

    With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring accelerated osseointegration and enhanced peri-implant bone regeneration is increased. A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous titanium oxide surface. Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 μg of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of variance followed by Tukey's post hoc test. New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since 2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05). These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration and peri-implant bone formation and it would be potentially applicable in poor-quality bones. © 2013 Wiley Periodicals, Inc.

  18. Electrochemically deposited cobalt/platinum (Co/Pt) film into porous silicon: Structural investigation and magnetic properties

    NASA Astrophysics Data System (ADS)

    Harraz, F. A.; Salem, A. M.; Mohamed, B. A.; Kandil, A.; Ibrahim, I. A.

    2013-01-01

    A nanostructured CoPt magnetic film was deposited from a single electrolyte into porous silicon layer by an electrochemical technique, followed by annealing at 600 °C in Ar atmosphere during which the CoPt alloy was converted to L10 ordered phase. Porous silicon with pore diameter between 5 and 100 nm was firstly fabricated by galvanostatic anodization of n-type silicon wafer in the presence of CrO3 as oxidizing agent and ethanol or sodium lauryl sulfate as surfactants. The role of the surfactant on the produced pore size and morphology was investigated by means of UV-vis spectra. As-formed porous silicon was consequently used as a template for the electrodeposition of magnetic CoPt film. The phase formation, microstructure and the magnetic properties were fully analyzed by XRD, FE-SEM, EDS and VSM measurements. It was found that, upon annealing the coercivity was significantly increased due to the transformation to the L10 ordered structure. The saturation magnetization and remanence ratio were also found to increase, indicating no loss of Co content or oxidation reaction after the annealing. Results of synthesis and characterization of CoPt/porous silicon nanocomposite are addressed and thoroughly discussed.

  19. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.

    2010-11-01

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  20. Investigation of anodic and chemical oxides grown on p-type InP with applications to surface passivation for n(+)-p solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Goradia, Manju; Goradia, Chandra; Jenkins, Phillip; Jayne, Douglas; Weinberg, Irving

    1991-01-01

    Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data.

  1. Investigation on Sr0.2Na0.8Nb1-xVxO3 (x=0.1, 0.2, 0.3) as new ceramic anode materials for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, Ke-Ji; Hussain, A. Mohammed; Wachsman, Eric D.

    2017-04-01

    Variants of SNNV (Sr0.2Na0.8Nb1-xVxO3, X = 0.1-0.3) ceramic oxides were synthesized via wet chemical method. SNNVs show high electronic conductivity of >100 S/cm when reduced in hydrogen at a relatively low temperature of 650 °C. In particular, 30% V-doped SNNV exhibited the highest conductivity of 300 S/cm at 450 °C. In order to investigate the fuel cell performance, Gd0.1Ce0.9O2-δ (GDC) based electrolyte-supported fuel cells were prepared to study the anode characteristics. Sr0.2Na0.8Nb0.9V0.1O3 (SNNV10)-GDC composite was used as an anode and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-GDC as a cathode. Both electrodes were porous and sintered at 1050 °C for 2 h in air. The anode side of the fuel cell was infiltrated with 10 wt% GDC/Ni-GDC precursor to activate the anode for fuel oxidation. I-V characteristics were determined in gas conditions such as dry/humidified hydrogen and methane at 650 °C. With the infiltration Ni-GDC, peak power density (PPD) of 280 mW/cm2 and 220 mW/cm2 in dry H2 and CH4, respectively, were obtained at 650 °C, which is higher than GDC alone as infiltrate. The high resistances in the humidified conditions are attributed to the lower conductivity of SNNV10 in high PO2 atmospheres.

  2. A simplified biomolecule attachment strategy for biosensing using a porous Si oxide interferometer

    PubMed Central

    Perelman, Loren A.; Schwartz, Michael P.; Wohlrab, Aaron M.; VanNieuwenhze, Michael S.; Sailor, Michael J.

    2008-01-01

    A simple strategy for linking biomolecules to porous Si surfaces and detecting peptide/drug binding is described. Porous Si is prepared using an electrochemical etch and then thermally oxidized by heating in ambient atmosphere. Bovine serum albumin (BSA) is then non-covalently adsorbed to the inner pore walls of the porous Si oxide (PSiO2) matrix. The BSA layer is used as a linker for covalent attachment of the peptide Ac-L-Lysine-D-Alanine-D-Alanine (KAA) using published bioconjugation chemistry. BSA-coated surfaces functionalized with KAA display specificity for the glycopeptide vancomycin while resisting adsorption of non-specific reagents. While the biomolecule attachment strategy reported here is used to bind peptides, the scheme can be generalized to the linking of any primary amine-containing molecule to PSiO2 surfaces. PMID:18458749

  3. Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water

    PubMed Central

    Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji

    2016-01-01

    Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329

  4. The anodic surface film and hydrogen evolution on Mg

    DOE PAGES

    Song, Guang -Ling; Unocic, Kinga A.

    2015-06-04

    This paper clarifies that the inner and outer layers of the anodic film consist of a nano/micro-porous MgO+Mg(OH) 2 mixture. The film becomes thicker and more porous with increasing potential. It can rupture when potential is too positive in a non-corrosive Mg(OH) 2 solution. Hydrogen evolution becomes more intensive as polarization potential increases, particularly when the potential at the film-covered Mg surface is close to or more positive than the hydrogen equilibrium potential, suggesting that an “anodic hydrogen evolution” (AHE) reaction occurs on the substrate Mg in film pores, and the significantly intensified AHE causes film rupture at high potential.

  5. Sr 2Fe 1.5Mo 0.5O 6- δ as a regenerative anode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Bugaris, Daniel E.; Xiao, Guoliang; Chmara, Maxwell; Ma, Shuguo; zur Loye, Hans-Conrad; Amiridis, Michael D.; Chen, Fanglin

    Sr 2Fe 1.5Mo 0.5O 6- δ (SFM) was prepared using a microwave-assisted combustion synthesis method. Rietveld refinement of powder X-ray diffraction data reveals that SFM crystallizes in the simple cubic perovskite structure with iron and molybdenum disordered on the B-site. No structure transition was observed by variable temperature powder X-ray diffraction measurements in the temperature range of 25-800 °C. XPS results show that the iron and molybdenum valences change with an increase in temperature, where the mixed oxidation states of both iron and molybdenum are believed to be responsible for the increase in the electrical conductivity with increasing temperature. SFM exhibits excellent redox stability and has been used as both anode and cathode for solid oxide fuel cells. Presence of sulfur species in the fuel or direct utilization of hydrocarbon fuel can result in loss of activity, however, as shown in this paper, the anode performance can be regenerated from sulfur poisoning or coking by treating the anode in an oxidizing atmosphere. Thus, SFM can be used as a regenerating anode for direct oxidation of sulfur-containing hydrocarbon fuels.

  6. Photolytic generation of nitric oxide through a porous glass partitioning membrane.

    PubMed

    Zhelyaskov, V R; Godwin, D W

    1998-01-01

    We report a new method of generating nitric oxide that possesses several potential advantages for experimental use. This method consists of a microphotolysis chamber where NO is released by illuminating photolabile NO donors with light from a xenon lamp. NO then diffuses through a porous glass membrane to the experimental preparation. We observed that the rate of NO generation is a linear function of light intensity. Due to a dynamic equilibrium between the mechanisms of NO generation and dissipation (by diffusion or oxidation) the NO concentration in the experimental cuvette can be reversibly and reproducibly controlled. The major potential advantages of this device include its use as a NO point source, and the ability to partition the NO donor compound from the experimental preparation by a porous glass membrane. The diffusion of the caging moiety through the membrane is insignificant as seen by absorption spectroscopy due to its large relative size to NO. In this way, the porous glass membrane protects the preparation from the potential bioactive effects of the caging moiety, which is an important consideration for biological experiments.

  7. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode.

    PubMed

    Wang, Jianbing; Zhi, Dan; Zhou, Hao; He, Xuwen; Zhang, Dayi

    2018-06-15

    Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti 4 O 7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti 4 O 7 as active constituent. The TC electrochemical oxidation on the Ti/Ti 4 O 7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40

  8. A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyu; Sun, Xin; Zhang, Li; Chen, Xuan; Mao, Yachun; Sun, Kening

    2018-06-01

    Derivates of metal-organic frameworks are promising materials of self-supported Li ion battery anodes due to the good dispersion of active materials, conductive scaffold, and mass transport channels in them. However, the discontinuous growth and poor adherence of metal-organic framework films on substrates hamper their development in self-supported electrodes. In the present study, cobalt-based metal-organic frameworks are anchored on Ti nanowire arrays through an electrochemically assistant method, and then the metal-organic framework films are pyrolyzed to carbon-containing, porous, self-supported anodes of Li ion battery anodes. Scanning electron microscope images indicate that, a layer cobaltosic oxide polyhedrons inserted by the nanowires are obtained with the controllable in-situ synthesis. Thanks to the good dispersion and adherence of cobaltosic oxide polyhedrons on Ti substrates, the self-supported anodes exhibit remarkable rate capability and durability. They possess a capacity of 300 mAh g-1 at a rate current of 20 A g-1, and maintain 2000 charge/discharge cycles without obvious decay.

  9. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    PubMed Central

    Cascos, Vanessa; Alonso, José Antonio; Fernández-Díaz, María Teresa

    2016-01-01

    SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2) oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC) with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2) oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD) experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features. PMID:28773708

  10. Influence of anode thickness on the power output of solid oxide fuel cells with (La,Sr)(Co,Fe)-type cathode

    NASA Astrophysics Data System (ADS)

    Menzler, Norbert H.; Haanappel, Vincent A. C.

    The influence of the thickness of the anode (functional layer) on the power output of anode-supported solid oxide fuel cells with a lanthanum-strontium-cobalt-ferrite cathode was investigated. The anode was applied by vacuum slip casting and the thickness varied between 1 and 22 μm. All other material and microstructural parameters were kept constant. Single cells with dimensions of 50 mm × 50 mm and with an active cathode area of 40 mm × 40 mm were manufactured and tested in an alumina housing with air as oxidant and hydrogen with 3% water vapour as the fuel gas. Results have shown that SOFCs with anodes between 1 and 13 μm have slightly better performance than those with thicker anodes (∼1.7 A cm -2 versus 1.5 A cm -2 at 800 °C and 0.7 V). The current densities were discussed with respect to cell area specific resistance, helium leak rate of the half-cell, and microstructure.

  11. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    PubMed Central

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-01-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767

  12. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry.

    PubMed

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J Antonio; Tagüeña-Martínez, Julia

    2016-04-21

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.

  13. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Kevin A.; Key, Baris; Li, Jianlin

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less

  14. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    DOE PAGES

    Hays, Kevin A.; Key, Baris; Li, Jianlin; ...

    2018-04-24

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less

  15. Measurement of the surface charge accumulation using anodic aluminum oxide(AAO) structure in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Park, Ji-Hwan; Oh, Seung-Ju; Lee, Hyo-Chang; Kim, Yu-Sin; Kim, Young-Cheol; Kim, June Young; Ha, Chang-Seoung; Kwon, Soon-Ho; Lee, Jung-Joong; Chung, Chin-Wook

    2014-10-01

    As the critical dimension of the nano-device shrinks, an undesired etch profile occurs during plasma etch process. One of the reasons is the local electric field due to the surface charge accumulation. To demonstrate the surface charge accumulation, an anodic aluminum oxide (AAO) membrane which has high aspect ratio is used. The potential difference between top electrode and bottom electrode in an anodic aluminum oxide contact structure is measured during inductively coupled plasma exposure. The voltage difference is changed with external discharge conditions, such as gas pressure, input power, and gas species and the result is analyzed with the measured plasma parameters.

  16. Template synthesis of indium nanowires using anodic aluminum oxide membranes.

    PubMed

    Chen, Feng; Kitai, Adrian H

    2008-09-01

    Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire approximately 60 microm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.

  17. On hydrophilicity improvement of the porous anodic alumina film by hybrid nano/micro structuring

    NASA Astrophysics Data System (ADS)

    Wang, Weichao; Zhao, Wei; Wang, Kaige; Wang, Lei; Wang, Xuewen; Wang, Shuang; Zhang, Chen; Bai, Jintao

    2017-09-01

    In both, laboratory and industry, tremendous attention is paid to discover an effective technique to produce uniform, controllable and (super) hydrophilic surfaces over large areas that are useful in a wide range of applications. In this investigation, by combing porous anodic alumina (PAA) film with nano-structures and microarray of aluminum, the hydrophilicity of hybrid nano-micro structure has been significantly improved. It is found some factors can affect the hydrophilicity of film, such as the size and aspect ratio of microarray, the thickness of nano-PAA film etc. Comparing with pure nano-PAA films and microarray, the hybrid nano-micro structure can provide uniform surface with significantly better hydrophilicity. The improvement can be up to 84%. Also, this technique exhibits good stability and repeatability for industrial production. By optimizing the thickness of nano-PAA film and aspect ratio of micro-structures, super-hydrophilicity can be reached. This study has obvious prospect in the fields of chemical industry, biomedical engineering and lab-on-a-chip applications.

  18. A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Wang, H. H.; Indacochea, J. E.

    2011-12-15

    Simple and low cost colorimetric sensors for explosives detection were explored and developed. Anodized aluminum oxide (AAO) with large surface area through its porous structure and light background color was utilized as the substrate for colorimetric sensors. Fabricated thin AAO films with thickness less than {approx} 500 nm allowed us to observe interference colors which were used as the background color for colorimetric detection. AAO thin films with various thickness and pore-to-pore distance were prepared through anodizing aluminum foils at different voltages and times in dilute sulfuric acid. Various interference colors were observed on these samples due to their differencemore » in structures. Accordingly, suitable anodization conditions that produce AAO samples with desired light background colors for optical applications were obtained. Thin film interference model was applied to analyze the UV-vis reflectance spectra and to estimate the thickness of the AAO membranes. We found that the thickness of produced AAO films increased linearly with anodization time in sulfuric acid. In addition, the growth rate was higher for AAO anodized using higher voltages. The thin film interference formulism was further validated with a well established layer by layer deposition technique. Coating poly(styrene sulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) layer by layer on AAO thin film consistently shifted its surface color toward red due to the increase in thickness. The red shift of UV-vis reflectance was correlated quantitatively to the number of layers been assembled. This sensitive red shift due to molecular attachment (increase in thickness) on AAO substrate was applied toward nitroaromatics detection. Aminopropyltrimethoxysilane (APTS) which can be attached onto AAO nanowells covalently through silanization and attract TNT molecules was coated and applied for TNT detection. UV-vis spectra of AAO with APTS shifted to the longer wavelength

  19. The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode

    PubMed Central

    Li, Yan; Luo, Zhong-yang; Yu, Chun-jiang; Luo, Dan; Xu, Zhu-an; Cen, Ke-fa

    2005-01-01

    Ni-Ce0.8Sm0.2O1.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800 °C) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.8Sm0.2O1.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect of microstructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3·2Ni(OH)2·4H2O or Ni(NO3)2·6H2O decomposition technique. PMID:16252348

  20. High-performance low-temperature solid oxide fuel cell with novel BSCF cathode

    NASA Astrophysics Data System (ADS)

    Liu, Q. L.; Khor, K. A.; Chan, S. H.

    An anode-supported solid oxide fuel cell (SOFC), consisting of a dense 10 μm Gd 0.1Ce 0.9O 1.95 (GDC) electrolyte, a porous Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) cathode and a porous Ni-GDC cermet anode, is successfully assembled and electrochemically characterized. With humidified (3% water vapour) hydrogen as the fuel and air as the oxidant, the cell exhibits open-circuit voltages of 0.903 and 0.984 V when operating at 600 and 500 °C, respectively. The cell produces peak power densities of 1329, 863, 454, 208 and 83 mW cm -2 at 600, 550, 500, 450 and 400 °C, respectively. These results are impressive and demonstrate the potential of BSCF for use as the cathode material in new-generation SOFCs with GDC as the electrolyte. In addition, the sustained performance at temperatures below 600 °C warrants commercial exploitation of this SOFC in stationary and mobile applications.

  1. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  2. Laser surface treatment of porous ceramic substrate for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mahmod, D. S. A.; Khan, A. A.; Munot, M. A.; Glandut, N.; Labbe, J. C.

    2016-08-01

    Laser has offered a large number of benefits for surface treatment of ceramics due to possibility of localized heating, very high heating/cooling rates and possibility of growth of structural configurations only produced under non-equilibrium high temperature conditions. The present work investigates oxidation of porous ZrB2-SiC sintered ceramic substrates through treatment by a 1072 ± 10 nm ytterbium fiber laser. A multi-layer structure is hence produced showing successively oxygen rich distinct layers. The porous bulk beneath these layers remained unaffected as this laser-formed oxide scale and protected the substrate from oxidation. A glassy SiO2 structure thus obtained on the surface of the substrate becomes subject of interest for further research, specifically for its utilization as solid protonic conductor in Solid Oxide Fuel Cells (SOFCs).

  3. Fabricating porous silicon carbide

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  4. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    PubMed

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  5. Fabrication of Aluminum-Based Thermal Radiation Plate for Thermoelectric Module Using Aluminum Anodic Oxidization and Copper Electroplating.

    PubMed

    Choi, Yi Taek; Bae, Sung Hwa; Son, Injoon; Sohn, Ho Sang; Kim, Kyung Tae; Ju, Young-Wan

    2018-09-01

    In this study, electrolytic etching, anodic oxidation, and copper electroplating were applied to aluminum to produce a plate on which a copper circuit for a thermoelectric module was formed. An oxide film insulating layer was formed on the aluminum through anodic oxidation, and platinum was coated by sputtering to produce conductivity. Finally, copper electroplating was performed directly on the substrate. In this structure, the copper plating layer on the insulating layer served as a conductive layer in the circuit. The adhesion of the copper plating layer was improved by electrolytic etching. As a result, the thermoelectric module fabricated in this study showed excellent adhesion and good insulation characteristics. It is expected that our findings can contribute to the manufacture of plates applicable to thermoelectric modules with high dissipation performance.

  6. Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media

    NASA Astrophysics Data System (ADS)

    Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa; Hsu, Todd; Tsai, Huei-Ting; Chen, Chien-Chon; Liu, Shiu-Mei; Lin, Tai-Yuan; Chen, Chin-Hsing

    2011-02-01

    The use of titanium dioxide (TiO2) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH4F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously.

  7. Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution. PMID:26980545

  8. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. Copyright © 2016. Published by Elsevier B.V.

  9. Thermal investigation of an electrical high-current arc with porous gas-cooled anode

    NASA Technical Reports Server (NTRS)

    Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.

    1984-01-01

    The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.

  10. Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) in chloride medium at boron doped diamond (BDD) and platinum anodes.

    PubMed

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens

    2015-02-01

    For electrochemical oxidation to become applicable in water treatment outside of laboratories, a number of challenges must be elucidated. One is the formation and fate of degradation intermediates of targeted organics. In this study the degradation of the pesticide residue 2,6-dichlorobenzamide, an important groundwater pollutant, was investigated in a chloride rich solution with the purpose of studying the effect of active chlorine on the degradation pathway. To study the relative importance of the anodic oxidation and active chlorine oxidation in the bulk solution, a non-active BDD and an active Pt anode were compared. Also, the effect of the active chlorine oxidation on the total amount of degradation intermediates was investigated. We found that for 2,6-dichlorobenzamide, active chlorine oxidation was determining for the initial step of the degradation, and therefore yielded a completely different set of degradation intermediates compared to an inert electrolyte. For the Pt anode, the further degradation of the intermediates was also largely dependent on active chlorine oxidation, while for the BDD anode anodic oxidation was most important. It was also found that the presence of active chlorine led to fewer degradation intermediates compared to treatment in an inert electrolyte. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane.

    PubMed

    Chen, Wenjun; Gui, Xuchun; Liang, Binghao; Yang, Rongliang; Zheng, Yongjia; Zhao, Chengchun; Li, Xinming; Zhu, Hai; Tang, Zikang

    2017-07-19

    Nature-motivated pressure sensors have been greatly important components integrated into flexible electronics and applied in artificial intelligence. Here, we report a high sensitivity, ultrathin, and transparent pressure sensor based on wrinkled graphene prepared by a facile liquid-phase shrink method. Two pieces of wrinkled graphene are face to face assembled into a pressure sensor, in which a porous anodic aluminum oxide (AAO) membrane with the thickness of only 200 nm was used to insulate the two layers of graphene. The pressure sensor exhibits ultrahigh operating sensitivity (6.92 kPa -1 ), resulting from the insulation in its inactive state and conduction under compression. Formation of current pathways is attributed to the contact of graphene wrinkles through the pores of AAO membrane. In addition, the pressure sensor is also an on/off and energy saving device, due to the complete isolation between the two graphene layers when the sensor is not subjected to any pressure. We believe that our high-performance pressure sensor is an ideal candidate for integration in flexible electronics, but also paves the way for other 2D materials to be involved in the fabrication of pressure sensors.

  12. Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode.

    PubMed

    Xu, Shaomao; McOwen, Dennis W; Wang, Chengwei; Zhang, Lei; Luo, Wei; Chen, Chaoji; Li, Yiju; Gong, Yunhui; Dai, Jiaqi; Kuang, Yudi; Yang, Chunpeng; Hamann, Tanner R; Wachsman, Eric D; Hu, Liangbing

    2018-06-13

    Solid-state electrolytes (SSEs) have been widely considered as enabling materials for the practical application of lithium metal anodes. However, many problems inhibit the widespread application of solid state batteries, including the growth of lithium dendrites, high interfacial resistance, and the inability to operate at high current density. In this study, we report a three-dimensional (3D) mixed electron/ion conducting framework (3D-MCF) based on a porous-dense-porous trilayer garnet electrolyte structure created via tape casting to facilitate the use of a 3D solid state lithium metal anode. The 3D-MCF was achieved by a conformal coating of carbon nanotubes (CNTs) on the porous garnet structure, creating a composite mixed electron/ion conductor that acts as a 3D host for the lithium metal. The lithium metal was introduced into the 3D-MCF via slow electrochemical deposition, forming a 3D lithium metal anode. The slow lithiation leads to improved contact between the lithium metal anode and garnet electrolyte, resulting in a low resistance of 25 Ω cm 2 . Additionally, due to the continuous CNT coating and its seamless contact with the garnet we observed highly uniform lithium deposition behavior in the porous garnet structure. With the same local current density, the high surface area of the porous garnet framework leads to a higher overall areal current density for stable lithium deposition. An elevated current density of 1 mA/cm 2 based on the geometric area of the cell was demonstrated for continuous lithium cycling in symmetric lithium cells. For battery operation of the trilayer structure, the lithium can be cycled between the 3D-MCF on one side and the cathode infused into the porous structure on the opposite side. The 3D-MCF created by the porous garnet structure and conformal CNT coating provides a promising direction toward new designs in solid-state lithium metal batteries.

  13. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  14. Performance and properties of anodes reinforced with metal oxide nanoparticles for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Accardo, Grazia; Frattini, Domenico; Yoon, Sung Pil; Ham, Hyung Chul; Nam, Suk Woo

    2017-12-01

    Development of electrode materials for molten carbonate fuel cells is a fundamental issue as a balance between mechanical and electrochemical properties is required due to the particular operating environments of these cells. As concern the anode, a viable strategy is to use nano-reinforced particles during electrodes' fabrication. Candidate nanomaterials comprise, but are not limited to, ZrO2, CeO2, TiO2, Ti, Mg, Al, etc. This work deals with the characterization and test of two different types of hard oxide nanoparticles as reinforce for NiAl-based anodes in molten carbonate fuel cells. Nano ceria and nano zirconia are compared each other and single cell test performances are presented. Compared to literature, the use of hard metal oxide nanoparticles allows good performance and promising perspectives with respect to the use a third alloying metal. However, nano zirconia performed slightly better than nano ceria as polarization and power curves are higher even if nano ceria has the highest mechanical properties. This means that the choice of nanoparticles to obtain improved anodes performance and properties is not trivial and a trade-off between relevant properties plays a key role.

  15. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle

    NASA Astrophysics Data System (ADS)

    Carré, Maxime; Brandenburger, Ralf; Friede, Wolfgang; Lapicque, François; Limbeck, Uwe; da Silva, Pedro

    2015-05-01

    In this work a combined heat and power unit (CHP unit) based on the solid oxide fuel cell (SOFC) technology is analysed. This unit has a special feature: the anode offgas is partially recycled to the anode inlet. Thus it is possible to increase the electrical efficiency and the system can be operated without external water feeding. A feed-forward control concept which allows secure operating conditions of the CHP unit as well as a maximization of its electrical efficiency is introduced and validated experimentally. The control algorithm requires a limited number of measurement values and few deterministic relations for its description.

  16. Electrochemical oxidation of cyanide on 3D Ti-RuO2 anode using a filter-press electrolyzer.

    PubMed

    Pérez, Tzayam; López, Rosa L; Nava, José L; Lázaro, Isabel; Velasco, Guillermo; Cruz, Roel; Rodríguez, Israel

    2017-06-01

    The novelty of this communication lies in the use of a Ti-RuO 2 anode which has not been tested for the oxidation of free cyanide in alkaline media at concentrations similar to those found in wastewater from the Merrill Crowe process (100 mg L -1 KCN and pH 11), which is typically used for the recovery of gold and silver. The anode was prepared by the Pechini method and characterized by SEM. Linear sweep voltammetries on a Ti-RuO 2 rotating disk electrode (RDE) confirmed that cyanide is oxidized at 0.45 < E < 1.0 V vs SHE, while significant oxygen evolution reaction (OER) occurred. Bulk oxidation of free cyanide was investigated on Ti-RuO 2 meshes fitted into a filter-press electrolyzer. Bulk electrolyzes were performed at constant potentials of 0.85 V and 0.95 V and at different mean linear flow rates ranging between 1.2 and 4.9 cm s -1 . The bulk anodic oxidation of cyanide at 0.85 V and 3.7 cm s -1 achieved a degradation of 94%, with current efficiencies of 38% and an energy consumption of 24.6 kWh m -3 . Moreover, the degradation sequence of cyanide was also examined by HPLC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis

    NASA Astrophysics Data System (ADS)

    Shi, Zhongning; Xu, Junli; Qiu, Zhuxian; Wang, Zhaowen; Gao, Bingliang

    2003-11-01

    The superalloys Cu-Ni-Al, Cu-Ni-Fe, and Cu-Ni-Cr were studied as anodes for aluminum electrolysis. The alloys were tested for corrosion in acidic electrolyte molten salt and for oxidation in both air and oxygen. The results showed that the Cu-Ni-Al anodes possess excellent resistance to oxidation and corrosion, and the oxidation rates of Cu-Ni-Fe and Cu-Ni-Al anodes were slower than those of pure copper or nickel. During electrolysis, the cell voltage of the Cu-Ni-Al anode was affected most by the concentration of alumina in cryolite molten salt. The Cu-Ni-Fe anode exhibited corrosion resistance in electrolyte molten salt. Comparatively, the Cu-Ni-Cr anode showed poor resistance to oxidation and corrosion. The testing found that further study is warranted on the use of Cu-Ni-Al and Cu-Ni-Fe as inert alloy anodes.

  18. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    NASA Astrophysics Data System (ADS)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  19. High rate sodium ion battery anodes from block copolymer templated mesoporous nickel–cobalt carbonates and oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaway, Sarang M.; Tangvijitsakul, Pattarasai; Lee, Jeongwoo

    2015-09-16

    Micelle-templated ordered mesoporous nickel–cobalt carbonates and oxides are fabricated using a metal nitrate–citric acid strategy, which avoids the hydrolysis and aging requirements associated with sol–gel chemistry. A series of mesoporous Ni xCo (3-x)(CO 3) y and Ni xCo (3-x)O 4 films with varying Ni–Co compositions and 14 ± 4 nm mesopores are fabricated with the same block copolymer template. AFM and GISAXS analysis indicates that the mesostructure is maintained through the formation of the carbonate and oxide, while GIXD profiles confirm formation of pure spinel phases of semi-crystalline Ni xCo (3-x)O 4. The micelle templated mesopores are interconnected and providemore » transport paths for the electrolyte to minimize the solid-state diffusion requirements associated with battery electrodes. These materials exhibit good performance as sodium ion battery anodes even at high current densities of 4 A g -1. Amongst the mixed-metal oxides, Ni 2CoO 4 exhibits the highest specific capacity of 239 mA h g -1 after galvanostatic cycling at a current density of 1 A g -1 for 10 cycles. We attribute the superior performance of Ni 2CoO 4 at high rates to the high surface area and short ion-diffusion paths of the nanoporous anode architecture, while the higher nickel content in the mixed metal oxide provides enhanced stability during oxide formation along with enhanced electronic conductivity, leading to improved cycling stability of the anode. This micelle template metal nitrate–citric acid method enables new possibilities for fabricating variety of ordered mesoporous mixed-metal carbonates and oxides that could be used in a wide range of applications.« less

  20. Doping profile measurements in silicon using terahertz time domain spectroscopy (THz-TDS) via electrochemical anodic oxidation

    NASA Astrophysics Data System (ADS)

    Tulsyan, Gaurav

    Doping profiles are engineered to manipulate device properties and to determine electrical performances of microelectronic devices frequently. To support engineering studies afterward, essential information is usually required from physically characterized doping profiles. Secondary Ion Mass Spectrometry (SIMS), Spreading Resistance Profiling (SRP) and Electrochemical Capacitance Voltage (ECV) profiling are standard techniques for now to map profile. SIMS yields a chemical doping profile via ion sputtering process and owns a better resolution, whereas ECV and SRP produce an electrical doping profile detecting free carriers in microelectronic devices. The major difference between electrical and chemical doping profiles is at heavily doped regions greater than 1020 atoms/cm3. At the profile region over the solubility limit, inactive dopants induce a flat plateau and detected by electrical measurements only. Destructive techniques are usually designed as stand-alone systems to study impurities. For an in-situ process control purpose, non-contact methods, such as ellipsometry and non-contact capacitance voltage (CV) techniques are current under development. In this theses work, terahertz time domain spectroscopy (THz-TDS) is utilized to achieve electrical doping profile in both destructive and non-contact manners. In recent years the Terahertz group at Rochester Institute Technology developed several techniques that use terahertz pulses to non-destructively map doping profiles. In this thesis, we study a destructive but potentially higher resolution version of the terahertz based approach to map the profile of activated dopants and augment the non-destructive approaches already developed. The basic idea of the profile mapping approach developed in this MS thesis is to anodize, and thus oxidize to silicon dioxide, thin layers (down to below 10 nm) of the wafer with the doping profile to be mapped. Since the dopants atoms and any free carriers in the silicon oxide thin

  1. Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition.

    PubMed

    Xu, Xun; Zhao, Qingliang; Wu, Mingsong; Ding, Jing; Zhang, Weixian

    2017-02-01

    To enhance the biodegradation of organic matter in sediment microbial fuel cell (SMFC), Fe(III) oxide, as an alternative electron acceptor, was added into the sediment. Results showed that the SMFC with Fe(III) oxide addition obtained higher removal efficiencies for organics than the SMFC without Fe(III) oxide addition and open circuit bioreactor, and produced a maximum power density (P max ) of 87.85mW/m 2 with a corresponding maximum voltage (V max ) of 0.664V. The alteration of UV-254 and specific ultraviolet absorbance (SUVA) also demonstrated the organic matter in sediments can be effectively removed. High-throughput sequencing of anodic microbial communities indicated that bacteria from the genus Geobacter were predominantly detected (21.23%) in the biofilm formed on the anode of SMFCs, while Pseudomonas was the most predominant genus (18.12%) in the presence of Fe(III) oxide. Additionally, compared with the open circuit bioreactor, more electrogenic bacteria attached to the biofilm of anode in SMFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Novel approaches for fabrication of thin film layers for solid oxide electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Murugesamoorthi, K. A.; Srinivasan, S.; Cocke, D. L.; Appleby, A. J.

    1990-01-01

    The main objectives of the SOFC (solid oxide fuel cell) project are to (1) identify viable and cost-effective techniques to prepare cell components for stable MSOFCs (monolithic SOFCs); (2) fabricate half and single cells; and (3) evaluate their performances. The approach used to fabricate stable MSOFCs is as follows: (1) the electrolyte layer is prepared in the form of a honeycomb structure by alloy oxidation and other cell components are deposited on it; (2) the electrolyte and anode layers are deposited on the cathode layer, which has a porous, honeycomb structure; and (3) the electrolyte and cathode layers are deposited on the anode layer. The current status of the project is reported.

  3. Fabrication, structural characterization and sensing properties of polydiacetylene nanofibers templated from anodized aluminum oxide

    USDA-ARS?s Scientific Manuscript database

    Polydiacetylene (PDA), a unique conjugated polymer, has shown its potential in the application of chem/bio-sensors and optoelectronics. In this work, we first infiltrated PDA monomer (10, 12-pentacosadiynoic acid, PCDA) melted into the anodized aluminum oxide template, and then illuminated the infil...

  4. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode

    PubMed Central

    Nguyen, Thuy Thu; Luong, Tha Thanh Thi; Tran, Phuong Hoang Nguyen; Bui, Ha Thi Viet; Nguyen, Huy Quang; Dinh, Hang Thuy; Kim, Byung Hong; Pham, Hai The

    2015-01-01

    In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm–2 of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe2+ as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm–2 of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples. PMID:25712332

  5. Towards deriving Ni-rich cathode and oxide-based anode materials from hydroxides by sharing a facile co-precipitation method.

    PubMed

    Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng

    2018-05-22

    Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.

  6. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  7. Non-oxidized porous silicon-based power AC switch peripheries.

    PubMed

    Menard, Samuel; Fèvre, Angélique; Valente, Damien; Billoué, Jérôme; Gautier, Gaël

    2012-10-11

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries.

  8. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    PubMed Central

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  9. Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors.

    PubMed

    Ma, Yuan; Ma, Chang; Sheng, Jie; Zhang, Haixia; Wang, Ranran; Xie, Zhenyu; Shi, Jingli

    2016-01-01

    A nitrogen-doped hierarchical porous carbon has been prepared through one-step KOH activation of pitch oxide/graphene oxide composite. At a low weight ratio of KOH/composite (1:1), the as-prepared carbon possesses high specific surface area, rich nitrogen and oxygen, appropriate mesopore/micropore ratio and considerable small-sized mesopores. The addition of graphene oxide plays a key role in forming 4 nm mesopores. The sample PO-GO-16 presents the characteristics of large surface area (2196 m(2) g(-1)), high mesoporosity (47.6%), as well as rich nitrogen (1.52 at.%) and oxygen (6.9 at.%). As a result, PO-GO-16 electrode shows an outstanding capacitive behavior: high capacitance (296 F g(-1)) and ultrahigh-rate performance (192 F g(-1) at 10 A g(-1)) in 6 M KOH aqueous electrolyte. The balanced structure characteristic, low-cost and high performance, make the porous carbon a promising electrode material for supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions.

    PubMed

    Meijide, J; Gómez, J; Pazos, M; Sanromán, M A

    2016-12-05

    In this work, a comparative study using anodic oxidation, Fenton and electro-Fenton treatments was performed in order to determine the synergic effect for the removal of thiamethoxan. The results determined that electro-Fenton process showed high efficiency in comparison with Fenton or anodic oxidation. After that, this hybrid process was optimized and the influence of iron catalyst concentration and applied current intensity on the degradation and mineralization were evaluated. Degradation profiles were monitored by high performance liquid chromatography (HPLC) being satisfactorily described by pseudo-first order kinetic model. At the optimal experimental conditions (300mA and 0.2mM Fe(+2)), the complete degradation of thiamethoxam was achieved after 10min. On the other hand, mineralization of thiamethoxam was monitored by total organic carbon (TOC) decay reaching more than 92% of TOC removal after 8h. Furthermore, a plausible mineralization pathway for the thiamethoxam degradation was proposed based on the identification of by-products such as aromatic intermediates, carboxylic acids and inorganic ions released throughout electro-Fenton process. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Porous silicon based anode material formed using metal reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V tomore » 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.« less

  12. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    NASA Astrophysics Data System (ADS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-09-01

    In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  13. Additional Electrochemical Treatment Effects on the Switching Characteristics of Anodic Porous Alumina Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Otsuka, Shintaro; Takeda, Ryouta; Furuya, Saeko; Shimizu, Tomohiro; Shingubara, Shouso; Iwata, Nobuyuki; Watanabe, Tadataka; Takano, Yoshiki; Takase, Kouichi

    2012-06-01

    We have investigated the current-voltage characteristics of a resistive switching memory (ReRAM), especially the reproducibility of the switching voltage between an insulating state and a metallic state. The poor reproducibility hinders the practical use of this memory. According to a filament model, the variation of the switching voltage may be understood in terms of the random choice of filaments with different conductivities and lengths at each switching. A limitation of the number of conductive paths is expected to lead to the suppression of the variation of switching voltage. In this study, two strategies for the limitation have been proposed using an anodic porous alumina (APA). The first is the reduction of the number of conductive paths by restriction of the contact area between the top electrodes and the insulator. The second is the lowering of the resistivity of the insulator, which makes it possible to grow filaments with the same characteristics by electrochemical treatments using a pulse-electroplating technique.

  14. Highly stable porous silicon-carbon composites as label-free optical biosensors.

    PubMed

    Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang

    2012-12-21

    A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.

  15. Two-Step Cycle for Producing Multiple Anodic Aluminum Oxide (AAO) Films with Increasing Long-Range Order

    PubMed Central

    2017-01-01

    Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle. PMID:28630684

  16. Two-Step Cycle for Producing Multiple Anodic Aluminum Oxide (AAO) Films with Increasing Long-Range Order.

    PubMed

    Choudhary, Eric; Szalai, Veronika

    2016-01-01

    Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle.

  17. Nitric oxide-releasing porous silicon nanoparticles

    PubMed Central

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment. PMID:25114633

  18. Nitric oxide-releasing porous silicon nanoparticles.

    PubMed

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J; McInnes, Steven Jp; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  19. Nitric oxide-releasing porous silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J.; McInnes, Steven JP; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H.

    2014-07-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  20. Development of Plasma-Sprayed Molybdenum Carbide-Based Anode Layers with Various Metal Oxides for SOFC

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Ahmed, R.; Katikaneni, S. P.; Souentie, S.; Goosen, M. F. A.

    2015-12-01

    Air plasma-sprayed (APS) coatings provide an ability to deposit a range of novel fuel cell materials at competitive costs. This work develops three separate types of composite anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS process parameters on Hastelloy®X for application in intermediate temperature proton-conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) was used to prepare three separate composite feedstock powders to fabricate three different anodes. Each of the modified composition anode feedstock powders included a stoichiometric weight ratio of 0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, nanoindentation, and conductivity. We report herein that three optimized anode layers of thicknesses between 200 and 300 µm and porosity as high as 20% for Mo-Mo2C/Al2O3 (250-µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-Mo2C/ZrO2 (220-µm thick), controllable by a selection of the APS process parameters with no addition of sacrificial pore-forming material. The nanohardness results indicate the upper layers of the coatings have higher values than the subsurface layers in coatings with some effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.

  1. Bacterial adherence to anodized titanium alloy

    NASA Astrophysics Data System (ADS)

    Pérez-Jorge Peremarch, C.; Pérez Tanoira, R.; Arenas, M. A.; Matykina, E.; Conde, A.; De Damborenea, J. J.; Gómez Barrena, E.; Esteban, J.

    2010-11-01

    The aim of this study was to evaluate Staphylococcus sp adhesion to modified surfaces of anodized titanium alloy (Ti-6Al-4V). Surface modification involved generation of fluoride-containing titanium oxide nanotube films. Specimens of Ti-6Al-4V alloy 6-4 ELI-grade 23- meets the requirements of ASTM F136 2002A (AMS 2631B class A1) were anodized in a mixture of sulphuric/hydrofluoric acid at 20 V for 5 and 60 min to form a 100 nm-thick porous film of 20 nm pore diameter and 230 nm-thick nanotube films of 100 nm in diameter. The amount of fluorine in the oxide films was of 6% and of 4%, respectively. Collection strains and six clinical strains each of Staphylococcus aureus and Staphylococcus epidermidis were studied. The adherence study was performed using a previously published protocol by Kinnari et al. The experiments were performed in triplicates. As a result, lower adherence was detected for collection strains in modified materials than in unmodified controls. Differences between clinical strains were detected for both species (p<0.0001, Kruskal-Wallis test), although global data showed similar results to that of collection strains (p<0.0001, Kruskal-Wallis test). Adherence of bacteria to modified surfaces was decreased for both species. The results also reflect a difference in the adherence between S. aureus and S. epidermidis to the modified material. As a conclusion, not only we were able to confirm the decrease of adherence in the modified surface, but also the need to test multiple clinical strains to obtain more realistic microbiological results due to intraspecies differences.

  2. Fuel cell having dual electrode anode or cathode

    DOEpatents

    Findl, Eugene

    1985-01-01

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  3. Fuel cell having dual electrode anode or cathode

    DOEpatents

    Findl, E.

    1984-04-10

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  4. Anode for a secondary, high-temperature electrochemical cell

    DOEpatents

    Vissers, Donald R.; Tani, Benjamin S.

    1976-01-01

    A high-temperature, secondary electrochemical cell includes an anode containing lithium, an electrolyte containing lithium ions and a cathode containing a chalcogen material such as sulfur or a metallic sulfide. The anode includes a porous substrate formed of, for instance, a compacted mass of entangled metallic fibers providing interstitial crevices for receiving molten lithium metal. The surfaces of the interstitial crevices are provided with a coating of cobalt metal to enhance the retention of the molten lithium metal within the substrate.

  5. Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency.

    PubMed

    Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing

    2018-06-13

    Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

  6. Phenol Contaminated Water Treatment on Several Modified Dimensionally Stable Anodes.

    PubMed

    Jayathilaka, Pavithra Bhakthi; Hapuhinna, Kushani Umanga Kumari; Bandara, Athula; Nanayakkara, Nadeeshani; Subasinghe, Nalaka Deepal

    2017-08-01

      Phenolic compounds are some of the most common hazardous organics in wastewater. Removal of these pollutants is important. Physiochemical method such as electrochemical oxidation on dimensionally stable anodes is more convenient in removing such organic pollutants. Therefore, this study focuses on development of three different anodes for phenol contaminated water treatment. The performances of steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes were tested and compared. Nearly 50, 76, and 84% of chemical oxygen demand removal efficiencies were observed for steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes, respectively. The formation of intermediates was monitored for three anodes and the Ti/IrO2-Sb2O3 anode showed the most promising results. Findings suggest that the developed anode materials can enhance phenol oxidation efficiency and that mixed metal oxide layer has major influence on the anode. Among the selected metal oxide mixtures IrO2-Sb2O3 was the most suitable under given experimental conditions.

  7. Anodic aluminium oxide membranes used for the growth of carbon nanotubes.

    PubMed

    López, Vicente; Morant, Carmen; Márquez, Francisco; Zamora, Félix; Elizalde, Eduardo

    2009-11-01

    The suitability of anodic aluminum oxide (AAO) membranes as template supported on Si substrates for obtaining organized iron catalyst for carbon nanotube (CNT) growth has been investigated. The iron catalyst was confined in the holes of the AAO membrane. CVD synthesis with ethylene as carbon source led to a variety of carbon structures (nanotubes, helices, bamboo-like, etc). In absence of AAO membrane the catalyst was homogeneously distributed on the Si surface producing a high density of micron-length CNTs.

  8. Titanium dental implant surfaces obtained by anodic spark deposition - From the past to the future.

    PubMed

    Kaluđerović, Milena R; Schreckenbach, Joachim P; Graf, Hans-Ludwig

    2016-12-01

    Commercial titanium-based dental implants are obtained applying various methods such as machining, acid etching, anodization, plasma spraying, grit blasting or combination techniques yielding materials with smooth or micro-roughened surfaces. Those techniques are used to optimize the surface properties and to maximize biocompatibility and bioactivity with bone tissue. Present review is focused on the material surfaces obtained by anodic spark deposition (ASD). From the early 1980s till present, the results of numerous studies have shown that anodically oxidized surfaces with different dopants express a positive effect on osteoblasts behavior in vitro and osseointegration in vivo. Those surfaces demonstrated a high biocompatibility and rapid osseointegration in clinical application. This paper provides an overview of the preparation of implant surfaces by employing ASD process. Moreover, reviewed are clinically used ASD implant surfaces (Ticer, TiUnite, Osstem, etc.). The electrolyte variations in ASD process and their influence on surface properties are given herein. Using different electrolytes, anode voltages and temperatures, the above fabrication process can yield various surface morphologies from smooth to rough, porous surfaces. Furthermore, ASD enables thickening of oxide layers and enrichment with different dopands from used electrolyte, which hinder release of potentially toxic titanium ions in surrounding tissue. Particularly exciting results were achieved by calcium and phosphorus doping of the oxide layer (Ticer, ZL Microdent; TiUnite, Nobel Biocare Holding AB) which significantly increased the osteocompatibility. Ticer, a dental implant with anodically oxidized surface and the first among similar materials employed in clinical practice, was found to promote fast osteoblast cell differentiation and mineralization processes. Moreover, Ticer accelerate the integration with the bone, increase the bone/implant contact and improve primary and secondary

  9. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

  10. Carbon-free Li4Ti5O12 porous nanofibers as high-rate and ultralong-life anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Bian, Min; Yang, Yong; Tian, Ling

    2018-02-01

    In this work, the carbon-free Li4Ti5O12 porous nanofibers (Li4Ti5O12-P-NFs) have been successfully fabricated through an electrospinning approach followed by a one-step solid-state reaction. The structural and morphological characterization indicates that the as-prepared Li4Ti5O12-P-NFs has a spinel Li4Ti5O12 phase and many nanosized pores are homogeneously dispersed in the one-dimensional nanofibers. When used as anode material for lithium-ion batteries, the Li4Ti5O12-P-NFs exhibit excellent battery performances in terms of high-rate capability and ultralong-life stability, which can be attributed to the unique carbon-free porous nanostructure composed of well-crystallized Li4Ti5O12 nanocrystals. Thus, we can speculate that this novel concept may also be applicable to prepare other electrode materials for high-performance lithium-ion batteries.

  11. High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, F. J.; Beltrán, A. M.; Yubero, F.; González-Elipe, A. R.; Lambert, R. M.

    2017-09-01

    Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable Isbnd V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.

  12. Anode materials for electrochemical waste destruction

    NASA Technical Reports Server (NTRS)

    Molton, Peter M.; Clarke, Clayton

    1990-01-01

    Electrochemical Oxidation (ECO) offers promise as a low-temperature, atmospheric pressure method for safe destruction of hazardous organic chemical wastes in water. Anode materials tend to suffer corrosion in the intensely oxidizing environment of the ECO cell. There is a need for cheaper, more resistant materials. In this experiment, a system is described for testing anode materials, with examples of several common anodes such as stainless steel, graphite, and platinized titanium. The ECO system is simple and safe to operate and the experiment can easily be expanded in scope to study the effects of different solutions, temperatures, and organic materials.

  13. Facile synthesis of PdSx/C porous nanospheres and their applications for ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Fuhua; Ma, Xuemei; Zheng, Yiqun; Hou, Shifeng

    2016-12-01

    We report a facile approach for the synthesis of carbon-supported palladium polysulphide porous nanospheres (PdSx/C) and their applications for ethanol oxidation reaction. Typical synthesis started with generation of palladium/poly (3,4-ethylenedioxythiophene)(Pd/PEDOT) nanospheres, followed by a calcination process at an optimized temperature to form PdSx/C, with an average size of 2.47 ± 0.60 and 50 nm of PdSx nanoparticles and carbon porous nanospheres, respectively. Various techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were performed to characterize their morphologies, compositions and structures. In contrary to most Pd-based electrochemical catalysts that could be easily poised with trace sulfur during the catalytic oxidation process, the as-prepared PdSx/C porous nanospheres exhibited high electrocatalytic activities and stabilities for the electrochemical catalytic oxidation of ethanol in alkaline medium. In particular, the forward peak current intensity achieved 162.1 mA mg-1 and still maintained at 46.7 mA mg-1 even after 1000 cycles. This current work not only offers a novel type of fuel-cell catalyst for ethanol oxidation reaction, but also provides a possible route for solving the sulfur-poisoning problem in catalysis.

  14. Oxygen-producing inert anodes for SOM process

    DOEpatents

    Pal, Uday B

    2014-02-25

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  15. Composite anode La0.8Sr0.2MnO3 impregnated with cobalt oxide for steam electrolysis

    NASA Astrophysics Data System (ADS)

    Li, Shisong; Cheng, Jigui; Xie, Kui; Li, Peipei; Wu, Yucheng

    2013-12-01

    Oxygen-ion conducting solid oxide electrolyzer (SOE) has attracted a great deal of interest because it converts electrical energy into chemical energy directly. The oxygen evolution reaction (OER) is occurred at the anode of solid oxide electrolyzer as the O2- being oxidized and form O2 gas, which is considered as one of the major cause of overpotentials in steam electrolyzers. This paper investigates the electrolysis of steam based on cobalt oxide impregnated La0.8Sr0.2MnO3 (LSM) composite anode in an oxide-ion-conducting solid oxide electrolyzer. The conductivity of LSM is studied versus temperature and oxygen partial pressure and correlated to the electrochemical properties of the composite electrodes in symmetric cells at 800 °C. Different contents of Co3O4 (wt.1%, 2%, 4%, 6%, 8%, 10%) were impregnated into LSM electrode and it was found that the polarization resistance (Rp) of symmetric cells gradually improved from 1.16 Ω•cm2 (LSM) to 0.24 Ω•cm2 (wt.10%Co3O4-LSM). Steam electrolysis based on LSM and wt.6%Co3O4-LSM anode electrolyzers are tested at 800°C and the AC impedance spectroscopy results indicated that the Rp of high frequency process significantly decreased from1.1 Ω•cm2 (LSM) to 0.5 Ω•cm2 (wt.6%Co3O4-LSM) under 1.8V electrolysis voltage and the Rp of low frequency process decreased from 14.9 Ω•cm2 to 5.7 Ω•cm2. Electrochemical catalyst Co3O4 can efficiently improve the electrode and enhance the performance of high temperature solid oxide electrolyzer.

  16. Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Li, Mingqi

    2018-05-01

    To improve the cycling stability and rate capability of SiO electrodes, multi-channel and porous SiO@N-doped C (mp-SiO@N-doped C) rods are fabricated by the combination of electrospinning and heat treatment with the assistance of poly(methyl methacrylate) (PMMA). During annealing, in-situ PMMA degradation and gasification lead to the formation of multi-channel structure and more pores. As anodes for lithium ion batteries, the mp-SiO@N-doped C rods exhibit excellent cycling stability. At a current density of 400 mA g-1, a discharge capacity of 806 mAh g-1 can be kept after 250 cycles, the retention of which is over than 100% versus the initial reversible capacity. Compared with the SiO@N-doped C rods synthesized without the help of PMMA, the mp-SiO@N-doped C rods exhibit more excellent rate capability. The excellent electrochemical performance is attributed to the special structure of the mp-SiO@N-doped C rods. In addition to the conductivity improved by carbon fibers, the multi-channel and porous structures not only make ions/electrons transfer and electrolyte diffusion easier, but also contribute to the structural stability of the electrodes.

  17. Nano-Material and Structural Engineering for Thermal Highways

    DTIC Science & Technology

    2013-06-14

    which are covered with a porous anodized aluminum oxide ( AAO ) membrane that is compatible to most if not all semiconductor electronics chips and has... aluminum oxide ( AAO ) templates as hard masks for fabrication of nanomesh thermoelectric structures. Both USPI’s and KPI’s laboratories have accumulated...T. Bigioni, M. Moskovits, and J. M. Xu, “Electrochemical fabrication of CdS nano-wire arrays in porous anodic aluminum oxide templates”, J. Phys

  18. Band gap tuning of amorphous Al oxides by Zr alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less

  19. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview.

    PubMed

    Shishkin, M; Ziegler, T

    2014-02-07

    The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.

  20. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition.

    PubMed

    Jothiramalingam, R; Wang, M K

    2007-08-17

    The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R2 and standard error. The goodness to the linear fit was observed for Elovich model with high R2 (>or=0.9477) value.

  1. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  2. Enhanced performance of a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a glycerol fuel cell.

    PubMed

    Yahya, N; Kamarudin, S K; Karim, N A; Masdar, M S; Loh, K S

    2017-11-25

    This study presents a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a glycerol fuel cell. The reaction conditions are critical issues affecting the glycerol electro-oxidation performance. This study presents the effects of catalyst loading, temperature, and electrolyte concentration. The glycerol oxidation performance of the PdAu/VGCNF catalyst on the anode side is tested via cyclic voltammetry with a 3 mm 2 active area. The morphology and physical properties of the catalyst are examined using X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Then, optimization is carried out using the response surface method with central composite experimental design. The current density is experimentally obtained as a response variable from a set of experimental laboratory tests. The catalyst loading, temperature, and NaOH concentration are taken as independent parameters, which were evaluated previously in the screening experiments. The highest current density of 158.34 mAcm -2 is obtained under the optimal conditions of 3.0 M NaOH concentration, 60 °C temperature and 12 wt.% catalyst loading. These results prove that PdAu-VGCNF is a potential anodic catalyst for glycerol fuel cells.

  3. Investigation on porous MnO microsphere anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Kaifu; Zhang, Bin; Luo, Shihai; Wen, Wen; Li, Hong; Huang, Xuejie; Chen, Liquan

    MnO microspheres with and without carbon coating are prepared as anode materials for lithium ion batteries. The MnO microsphere material shows a reversible capacity of 800 mAh g -1 and an initial efficiency of 71%. It can deliver 600 mAh g -1 at a rate of 400 mA g -1. Results of Mn K-edge X-ray absorption near-edge structure (XANES) spectra and extended X-ray absorption fine structure (EXAFS) confirm further the conversion reaction mechanism, indicate that pristine MnO is reduced to Mn 0 after discharging to 0 V and part of reduced Mn 0 is not oxidized to Mn 2+ after charging to 3 V. This explains the origin of the initial irreversible capacity loss partially. The quasi open circuit voltage and the relationship between the current density and the overpotential are investigated. Both indicate that there is a significant voltage difference between the charging and discharging profiles even when the current density decreases to zero.

  4. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Smirnov, A. I.; Hahn, D.; Grebel, H.

    2007-06-01

    Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum's large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.

  5. Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl(-) from anodic oxidation.

    PubMed

    Tian, Shichao; Li, Yibing; Zeng, Huabin; Guan, Wei; Wang, Yan; Zhao, Xu

    2016-11-15

    Cyanide is widely present in electroplating wastewater or metallurgical effluents. In the present study, the electrochemical destruction of cyanide with various anode and cathode compositions under alkaline conditions was investigated. The results indicated that the electrochemical system using RuO2/Ti as anode and activated carbon fiber (ACF) as cathode in the presence of sodium chloride was efficient for the cyanide removal. In this system, in situ generation of HClO by anodic oxidation of Cl(-) at RuO2/Ti anode occurred with the H2O2 generation by O2 reduction at ACF cathode. As confirmed by the electron spin resonance technique, the reaction between HClO and H2O2 led to the generation of singlet oxygen, which was responsible for the cyanide removal. Further experiment indicated that the cyanide removal efficiency increased with the increase of the current density or the sodium chloride concentration. Cyanate was identified as main product in the system. Besides, the system exhibited good stability for the cyanide removal, which was beneficial to its practical application. Copyright © 2016. Published by Elsevier Inc.

  6. Size dependence effect of carbon-based anode material on intercalation characteristics of Li-ion battery

    NASA Astrophysics Data System (ADS)

    Anwar, Miftahul; Jupri, Dwi Rahmat; Saraswati, Teguh Endah

    2017-01-01

    This work aims to study the effect of the different size of Li-ion battery anode during charging state. Carbon-Based nanomaterial using arc-discharge in a liquid which is much simpler and cheaper compared to other techniques, i.e., CVD, laser vaporization, etc. The experiment was performed using intermediate DC power supply (1300 W) to produce an arc, and commercial graphite pencils (with 5 mm diameter) as negative and positive electrodes. Deionized water mixed with ethanol was used as a heat absorber. The result shows that arc discharge in deionized water could effectively produce carbon nanomaterial (i.e., nano-onions). In addition, finite element method-based simulation of the different intercalating process of Li-ion to the different shape of the anode, i.e., bulk semi-porous and porous anode materials for battery application is also presented. The results show that intercalation of Li ions depends on the anode structure due to the different potential density at anode region. This finding will provide support for design of Li-ion battery based on carbon nanomaterial

  7. Synthesis of porous Co3O4/C nanoparticles as anode for Li-ion battery application

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Feng, Chuanqi; Liu, Jianwen; Guo, Zaiping

    2018-06-01

    The porous Co3O4 with electrospun carbon (Co3O4/C) was synthesized simply through annealing the Co-based metal-organic-framework/polyacrylonitrile (ZIF-67/PAN) templates. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and Brunauer-Emmett-Teller (BET) techniques. The content of electrospun carbon in Co3O4/C was tested by thermogravimetric analysis (TG). The Co3O4/C not only shows a remarkable capacity of 1024.1 mAh g-1 after 100 cycles but also behaves superior rate capability. The superior electrochemical properties could be attributed to the electrospun carbon, which serves as a buffer layer to slow down the volumetric stresses and provides conductive paths for fast Li+ diffusion and easy electric charge transfer. Therefore, superior performance of the Co3O4/C electrode makes it possible to be used as promising anode for lithium ion battery application.

  8. Conducting metal oxide and metal nitride nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst supportmore » in a fuel cell.« less

  9. Effect of Samarium Oxide on the Electrical Conductivity of Plasma-Sprayed SOFC Anodes

    NASA Astrophysics Data System (ADS)

    Panahi, S. N.; Samadi, H.; Nemati, A.

    2016-10-01

    Solid oxide fuel cells (SOFCs) are rapidly becoming recognized as a new alternative to traditional energy conversion systems because of their high energy efficiency. From an ecological perspective, this environmentally friendly technology, which produces clean energy, is likely to be implemented more frequently in the future. However, the current SOFC technology still cannot meet the demands of commercial applications due to temperature constraints and high cost. To develop a marketable SOFC, suppliers have tended to reduce the operating temperatures by a few hundred degrees. The overall trend for SOFC materials is to reduce their service temperature of electrolyte. Meanwhile, it is important that the other components perform at the same temperature. Currently, the anodes of SOFCs are being studied in depth. Research has indicated that anodes based on a perovskite structure are a more promising candidate in SOFCs than the traditional system because they possess more favorable electrical properties. Among the perovskite-type oxides, SrTiO3 is one of the most promising compositions, with studies demonstrating that SrTiO3 exhibits particularly favorable electrical properties in contrast with other perovskite-type oxides. The main purpose of this article is to describe our study of the effect of rare-earth dopants with a perovskite structure on the electrical behavior of anodes in SOFCs. Sm2O3-doped SrTiO3 synthesized by a solid-state reaction was coated on substrate by atmospheric plasma spray. To compare the effect of the dopant on the electrical conductivity of strontium titanate, different concentrations of Sm2O3 were used. The samples were then investigated by x-ray diffraction, four-point probe at various temperatures (to determine the electrical conductivity), and a scanning electron microscope. The study showed that at room temperature, nondoped samples have a higher electrical resistance than doped samples. As the temperature was increased, the electrical

  10. Formation of multicomponent matrix metal oxide films in anodic alumina matrixes by chemical deposition

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.

    2017-11-01

    The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.

  11. Anodes for protonic ceramic fuel cells (PCFCs) =

    NASA Astrophysics Data System (ADS)

    Nasani, Narendar

    One of the more promising possibilities for future "green" electrical energy generation is the protonic ceramic fuel cell (PCFC). PCFCs offer a low-pollution technology to generate electricity electrochemically with high efficiency. Reducing the operating temperature of solid oxide fuel cells (SOFCs) to the 500-700°C range is desirable to reduce fabrication costs and improve overall longevity. This aim can be achieved by using protonic ceramic fuel cells (PCFCs) due to their higher electrolyte conductivity at these temperatures than traditional ceramic oxide-ion conducting membranes. This thesis deals with the state of the art Ni-BaZr0.85Y0.15O3-delta cermet anodes for PCFCs. The study of PCFCs is in its initial stage and currently only a few methods have been developed to prepare suitable anodes via solid state mechanical mixing of the relevant oxides or by combustion routes using nitrate precursors. This thesis aims to highlight the disadvantages of these traditional methods of anode preparation and to, instead, offer a novel, efficient and low cost nitrate free combustion route to prepare Ni-BaZr0.85Y0.15O3-delta cermet anodes for PCFCs. A wide range of techniques mainly X-ray diffraction (XRD), scanning electron microscopy (SEM), environmental scanning electron microscopy, (ESEM) and electrochemical impedance spectroscopy (EIS) were employed in the cermet anode study. The work also offers a fundamental examination of the effect of porosity, redox cycling behaviour, involvement of proton conducting oxide phase in PCFC cermet anodes and finally progresses to study the electrochemical performance of a state of the art anode supported PCFC. The polarisation behaviour of anodes has been assessed as a function of temperature (T), water vapour (pH2O), hydrogen partial pressures (pH2) and phase purity for electrodes of comparable microstructure. The impedance spectra generally show two arcs at high frequency R2 and low frequency R3 at 600 °C, which correspond to the

  12. Investigation of porous silicon nanopowders functionalized by antibiotic Kanamycin, fluorophore Indocyanine Green

    NASA Astrophysics Data System (ADS)

    Bespalova, K.; Somov, P. A.; Spivak, Yu M.

    2017-11-01

    Porous silicon nanopowders for target drug delivery were obtained by electrochemical anodic etching in a hydrofluoric acid solution using the monocrystalline silicon n-type conductivity. Porous silicon powders were obtained by sonification of porous silicon layers. The powders were functionalized by antibiotic Kanamycin and fluorophore Indocyanine Green by the passive adsorption method. The peculiarities of absorption spectra in 190-600 nm region were revealed for functionalized porous silicon powders dispersions in water.

  13. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature

    NASA Astrophysics Data System (ADS)

    Sauvet, A.-L.; Fouletier, J.

    The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.

  14. Fabrication and Characterization of Functionally Graded Cathodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Simonet, J.; Kapelski, G.; Bouvard, D.

    2008-02-01

    Solid oxide fuel cells are multi-layered designed. The most prevalent structure is an anode supported cell with a thick porous layer of nickel oxide NiO and yttrium stabilized zirconia (YSZ) composite acting as an anode, a thin dense layer of YSZ as an electrolyte, a composite thin porous layer of lanthanum strontium manganate LSM and YSZ and a current collector layer of porous LSM. Regular operating temperature is 1000 °C. The industrial development requires designing cathodes with acceptable electrochemical and mechanical properties at a lower temperature, typically between 700 and 800 °C. A solution consists in designing composite bulk cathodes with more numerous electro-chemical reaction sites. This requirement could be met by grading the composition of the cathode in increasing the YSZ volume fraction near the electrolyte and the LSM volume fraction near the current collector layer so that the repartition of reaction sites and the interfacial adhesion between the cathode and electrolyte layers are optimal. The fabrication of graded composite cathode has been investigated using a sedimentation process that consists of preparing a suspension containing the powder mixture and allowing the particles to fall by gravity upon a substrate. Different composite cathodes with continuous composition gradient have been obtained by sedimentation of LSM and YSZ powder mixture upon a dense YSZ substrate and subsequent firing. Their compositions and microstructures have been analysed with Scanning Electron Microscope (SEM) and Electron Dispersive Spectrometry (EDS).

  15. In situ fabrication of high-performance Ni-GDC-nanocube core-shell anode for low-temperature solid-oxide fuel cells

    PubMed Central

    Yamamoto, Kazuhiro; Qiu, Nan; Ohara, Satoshi

    2015-01-01

    A core–shell anode consisting of nickel–gadolinium-doped-ceria (Ni–GDC) nanocubes was directly fabricated by a chemical process in a solution containing a nickel source and GDC nanocubes covered with highly reactive {001} facets. The cermet anode effectively generated a Ni metal framework even at 500 °C with the growth of the Ni spheres. Anode fabrication at such a low temperature without any sintering could insert a finely nanostructured layer close to the interface between the electrolyte and the anode. The maximum power density of the attractive anode was 97 mW cm–2, which is higher than that of a conventional NiO–GDC anode prepared by an aerosol process at 55 mW cm–2 and 600 °C, followed by sintering at 1300 °C. Furthermore, the macro- and microstructure of the Ni–GDC-nanocube anode were preserved before and after the power-generation test at 700 °C. Especially, the reactive {001} facets were stabled even after generation test, which served to reduce the activation energy for fuel oxidation successfully. PMID:26615816

  16. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized alumina membrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  17. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode

    NASA Astrophysics Data System (ADS)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.

  18. Si-Mn/reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries.

    PubMed

    Park, A Reum; Kim, Jung Sub; Kim, Kwang Su; Zhang, Kan; Park, Juhyun; Park, Jong Hyeok; Lee, Joong Kee; Yoo, Pil J

    2014-02-12

    Although Si is a promising high-capacity anode material for Li-ion batteries (LIB), it suffers from capacity fading due to excessively large volumetric changes upon Li insertion. Nanocarbon materials have been used to enhance the cyclic stability of LIB anodes, but they have an inherently low specific capacity. To address these issues, we present a novel ternary nanocomposite of Si, Mn, and reduced graphene oxide (rGO) for LIB anodes, in which the Si-Mn alloy offers high capacity characteristics and embedded rGO nanosheets confer structural stability. Si-Mn/rGO ternary nanocomposites were synthesized by mechanical complexation and subsequent thermal reduction of mixtures of Si nanoparticles, MnO2 nanorods, and rGO nanosheets. Resulting ternary nanocomposite anodes displayed a specific capacity of 600 mAh/g with ∼90% capacity retention after 50 cycles at a current density of 100 mA/g. The enhanced performance is attributed to facilitated Li-ion reactions with the MnSi alloy phase and the formation of a structurally reinforced electroconductive matrix of rGO nanosheets. The ternary nanocomposite design paradigm presented in this study can be exploited for the development of high-capacity and long-life anode materials for versatile LIB applications.

  19. Oxygen absorption in free-standing porous silicon: a structural, optical and kinetic analysis.

    PubMed

    Cisneros, Rodolfo; Pfeiffer, Heriberto; Wang, Chumin

    2010-01-16

    Porous silicon (PSi) is a nanostructured material possessing a huge surface area per unit volume. In consequence, the adsorption and diffusion of oxygen in PSi are particularly important phenomena and frequently cause significant changes in its properties. In this paper, we study the thermal oxidation of p+-type free-standing PSi fabricated by anodic electrochemical etching. These free-standing samples were characterized by nitrogen adsorption, thermogravimetry, atomic force microscopy and powder X-ray diffraction. The results show a structural phase transition from crystalline silicon to a combination of cristobalite and quartz, passing through amorphous silicon and amorphous silicon-oxide structures, when the thermal oxidation temperature increases from 400 to 900 °C. Moreover, we observe some evidence of a sinterization at 400 °C and an optimal oxygen-absorption temperature about 700 °C. Finally, the UV/Visible spectrophotometry reveals a red and a blue shift of the optical transmittance spectra for samples with oxidation temperatures lower and higher than 700 °C, respectively.

  20. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).