Science.gov

Sample records for porous biphasic calcium

  1. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect.

    PubMed

    Kim, Ji-Hyun; Linh, Nguyen T B; Min, Young K; Lee, Byong-Taek

    2014-10-01

    In this study, polycaprolactone scaffolds fabricated by a salt-leaching process were loaded with biphasic calcium phosphate successfully to improve the osteoconductivity in bone regeneration. The surface of polycaprolactone/biphasic calcium phosphate scaffolds was aminolyzed by 1,6-hexamethylenediamine to introduce amino groups onto the surface, which was verified qualitatively by ninhyrin staining. Collagen was further immobilized on the aminolyzed porous polycaprolactone via N-ethyl-N'-(3-dimethylaminopropy) carbodiimide hydrochloride/hydroxy-2,5-dioxopyrolidine-3-sulfonic acid sodium cross-linking. The pore size of polycaprolactone/biphasic calcium phosphate-collagen scaffolds was 200-300 µm, which was suitable for bone in-growth. The X-ray photoelectron spectroscopy confirmed the coupling of collagen immobilized on the surface of polycaprolactone/biphasic calcium phosphate. In vitro results demonstrated that the spreading and viability of MC3T3-E1 cells were remarkably improved in the polycaprolactone/biphasic calcium phosphate-collagen scaffolds. The in vivo study was carried out by implanting the porous polycaprolactone, polycaprolactone/biphasic calcium phosphate, and polycaprolactone/biphasic calcium phosphate-collagen to the skulls of rats. Although the addition of biphasic calcium phosphate particles in the polycaprolactone scaffolds does not have a strong effect on the new bone formation, the immobilization of collagen on the polycaprolactone/biphasic calcium phosphate scaffolds significantly improved the bone regeneration even though the implantation time was short, 6 weeks. The present results provide more evidence that functionalizing polycaprolactone with biphasic calcium phosphate and collagen may be a feasible way to improve the osteoconduction in bone regeneration. PMID:24939961

  2. Cytocompatibility of porous biphasic calcium phosphate granules with human mesenchymal cells by a multiparametric assay.

    PubMed

    Mitri, Fabio; Alves, Gutemberg; Fernandes, Gustavo; König, Bruno; Rossi, Alexandre J R; Granjeiro, Jose

    2012-06-01

    This work aims to evaluate the cytocompatibility of injectable and moldable restorative biomaterials based on granules of dense or porous biphasic calcium phosphates (BCPs) with human primary mesenchymal cells, in order to validate them as tools for stem cell-induced bone regeneration. Porous hydroxyapatite (HA) and HA/beta-tricalcium phosphate (β-TCP) (60:40) granules were obtained by the addition of wax spheres and pressing at 20 MPa, while dense materials were compacted by pressing at 100 MPa, followed by thermal treatment (1100°C), grinding, and sieving. Extracts were prepared by 24-h incubation of granules on culture media, with subsequent exposition of human primary mesenchymal cells. Three different cell viability parameters were evaluated on the same samples. Scanning electron microscopy analysis of the granules revealed distinct dense and porous surfaces. After cell exposition to extracts, no significant differences on mitochondrial activity (2,3-bis(2-methoxy-4-nitro-5-sulfophenly)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) or cell density (Crystal Violet Dye Elution) were observed among groups. However, Neutral Red assay revealed that dense materials extracts induced lower levels of total viable cells to porous HA/β-TCP (P < 0.01). Calcium ion content was also significantly lower on the extracts of dense samples. Porogenic treatments on BCP composites do not affect cytocompatibility, as measured by three different parameters, indicating that these ceramics are well suited for further studies on future bioengineering applications. PMID:22372877

  3. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic.

    PubMed

    He, Fupo; Ren, Weiwei; Tian, Xiumei; Liu, Wei; Wu, Shanghua; Chen, Xiaoming

    2016-07-01

    In a previous study, robust calcium carbonate composite ceramics (CC/PG) were prepared by using phosphate-based glass (PG) as an additive, which showed good cell response. In the present study the in vivo response of porous CC/PG was compared to that of porous biphasic calcium phosphate ceramics (BCP), using a rabbit femoral critical-size grafting model. The materials degradation and bone formation processes were evaluated by general observation, X-ray radiography, micro-computed tomography, and histological examination. The results demonstrated excellent biocompatibility and osteoconductivity, and progressive degradation of CC/PG and BCP. Although the in vitro degradation rate of CC/PG was distinctly faster than that of BCP, at 4week post-implantation, the bone generation and material degradation of CC/PG were less than those of BCP. Nevertheless, at postoperative week 8, the increment of bone formation and material degradation of CC/PG was pronouncedly larger than that of BCP. These results show that CC/PG is a potential resorbable bone graft aside from the traditional synthetic ones. PMID:27127035

  4. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics

    PubMed Central

    2014-01-01

    Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more

  5. Design and application of chitosan/biphasic calcium phosphate porous scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sendemir-Urkmez, Aylin

    For the restoration of maxillofacial bone tissue, design of novel tissue engineering scaffolds capable of inducing bone remodeling through the delivery of mesenchymal stem cells (MSCs) and an angiogenic growth factor, directly at the site of the defect was investigated in order to replace autogenous cancellous bone grafts with synthetic materials. Porous, three dimensional scaffolds were fabricated by a freeze drying method. In culture media, biphasic calcium phosphate particles within chitosan produced a surface reprecipitate of a composition similar to natural apatite that led to a uniform distribution of cells and mineralized ECM through chemotaxis. Further, the reprecipitation regulated the differentiation pathway and phenotype commitment of stem cells by altering the initial cell attachment morphology and actin cytoskeleton organization. In order to induce neovascularization after implantation, constructs were designed to be loaded with gelatin microspheres that delivered basic fibroblast growth factor (bFGF), a potent angiogenic factor. In vitro proliferation tests performed on fibroblastic cells showed no detectible loss of bFGF activity when delivered through enzymatic degradation of gelatin. Laser scanning confocal microscopy was used to demonstrate that gelatin microspheres can be injected evenly into cell-scaffold constructs owing to the spongy characteristics of the scaffold. To examine the binding interactions of bFGF with surface bound gelatin, a label free biosensor system, Biomolecular INteraction Detection sensor (BIND) was used. Results confirm that the principal interaction that takes place between bFGF and gelatin is electrostatic. Cell loaded tissue engineered constructs were produced in vitro at clinically relevant sizes and implanted with and without bFGF into a porcine mandibular defect model. Tissue engineered constructs facilitated the healing of mandibular defects only if combined with delivery of bFGF via gelatin microspheres. b

  6. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic. PMID:26449447

  7. Biphasic calcium phosphate in periapical surgery

    PubMed Central

    Suneelkumar, Chinni; Datta, Krithika; Srinivasan, Manali R; Kumar, Sampath T

    2008-01-01

    Calcium phosphate ceramics like hydroxyapatite and β -tricalcium phosphate (β -TCP) possess mineral composition that closely resembles that of the bone. They can be good bone substitutes due to their excellent biocompatibility. Biphasic calcium phosphate is a bone substitute which is a mixture of hydroxyapatite and β -tricalcium phosphate in fixed ratios. Studies have demonstrated the osteoconductive potential of this composition. This paper highlights the clinical use of biphasic calcium phosphate as a bone substitute in periapical surgery. PMID:20142892

  8. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.

    PubMed

    Amirian, Jhaleh; Linh, Nguyen Thuy Ba; Min, Young Ki; Lee, Byong-Taek

    2015-05-01

    A composite scaffold of gelatin (Gel)-pectin (Pec)-biphasic calcium phosphate (BCP) was fabricated for the successful delivery of growth factors. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) were coated on the Gel-Pec-BCP surface to investigate of effect of them on bone healing. Surface morphology was investigated by scanning electron microscopy, and BCP dispersion in the hydrogel scaffolds was measured by energy dispersive X-ray spectroscopy. The results obtained from Fourier transform infrared spectroscopy showed that BMP-2 and VEGF were successfully coated on Gel-Pec-BCP hydrogel scaffolds. MC3T3-E1 preosteoblasts were cultivated on the scaffolds to investigate the effect of BMP-2 and VEGF on cell viability and proliferation. VEGF and BMP-2 loaded on Gel-Pec-BCP scaffold facilitated increased cell spreading and proliferation compared to Gel-Pec-BCP scaffolds. In vivo, bone formation was examined using rat models. Bone formation was observed in Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds within 4 weeks, and was greatest with Gel-Pec-BCP/BMP-2 scaffolds. In vitro and in vivo results suggest that Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds could enhance bone regeneration. PMID:25709009

  9. Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering.

    PubMed

    Sadiasa, Alexander; Kim, Min Sung; Lee, Byong Taek

    2013-09-01

    In this study, simvastatin (SIM) drug incorporated poly(D,L-lactic-co-glycolide) (PLGA)/biphasic calcium phosphate (BCP) composite material (SPB) was coated on the BCP/ZrO2 (SPB-BCP/ZrO2) scaffold to enhance the mechanical and bioactive properties of the BCP/ZrO2 scaffold for bone engineering applications. The composite coating was prepared by combining different ratios of PLGA and BCP (1:2, 1:1, 2:1). After completion of the coating process, the compressive strength of the scaffolds was shown to increase with an increase in PLGA concentration from 8.5 ± 0.52 MPa for the SPB1-BCP/ZrO2 (1:2) to 11 ± 0.65 MPa for SPB3-BCP/ZrO2 (2:1) scaffolds when PLGA concentration was increased. Furthermore, the increase of PLGA in the coating composition corresponds to a decrease in porosity, degradation rate and weight loss of the scaffolds after 4 weeks. SIM release study demonstrated sustained release of the drug for the three kinds of scaffolds with improved biocompatibility. The increase of PLGA concentration also resulted in a lower release rate of SIM. Thus, the lower release rate of SIM brought upon by the increase of PLGA concentration further enhanced the performance of the scaffold in vitro making it a promising approach in the field of bone tissue regeneration. PMID:23815378

  10. In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ɛ-caprolactone: Effect of bio-functionalization for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-A.; Jyoti, Md. Anirban; Song, Ho-Yeon

    2014-05-01

    Biphasic calcium phosphate (BCP) and poly ɛ-caprolactone (PCL) each have many applications as tissue repair materials. In this study, a three dimensional (3D) PCL infiltrated BCP scaffold was prepared. This composite was further modified and bio-functionalized for bone tissue engineering by subsequent amination and immobilization technique using silicon (Si) and fibronectin (FN) on the surfaces (BCP/PCL + Si and BCP/PCL + Si + FN). In this study, such 3D porous scaffolds were evaluated for bone formation applicability. In vitro studies by immunocytochemistry showed cell morphology and adherence on these scaffolds. Interconnected networks like appearance of tubulin and vinculin expression were notably higher in BCP/PCL + Si and BCP/PCL + Si + FN scaffold surfaces than BCP/PCL surfaces. The scaffolds were also investigated detailed and quantitatively using micro-CT tomography for the repair of bone defects (4 mm diameter) in rats. Micro-CT tomography showed the BCP/PCL + Si + FN scaffolds were almost replaced by newly grown bone within 12 weeks after surgery, suggesting that they have an especially strong capacity for osteogenesis, mineralization, and biodegradation for bone replacement.

  11. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics.

    PubMed

    Xie, Lu; Yu, Haiyang; Deng, Yi; Yang, Weizhong; Liao, Li; Long, Qin

    2016-02-01

    The ideal bone tissue engineering scaffolds are long-cherished with the properties of interconnected macroporous structures, adjustable degradation and excellent biocompatibility. Here, a series of porous α/β-tricalcium phosphate (α/β-TCP) biphasic bioceramics with different phase ratios of α-TCP and β-TCP were successfully synthesized by heating an amorphous calcium phosphate precursor. The chemical and morphological characterization showed that α- and β-TCP phases co-existed in the α/β-TCP bioceramics and they had interconnected pore structures with size between 200 and 500μm. The in vitro dissolution behavior and bioactivity of the dual α/β-TCP were also probed in static and dynamic SBF for the first time. The results revealed that α/β-TCP scaffolds had good in vitro bioactivity, as the formation of bone-like apatite layers was induced on the scaffolds after mineralization in SBF. Moreover, dissolution rate of α/β-TCP bioceramics in dynamic environment was higher than that under static condition. Compared with monophasic TCP ceramics, these porous α/β-TCP bioceramics displayed a tailored dissolution rate proportionate to the TCP content (α and β) in the materials. Further, the degradation profile of porous α/β-TCP was well-described by Avrami equation. The porous dual α/β-TCP bioceramics with controllable degradation behavior hold great potential to be applied in bone tissue engineering as bone substitutes. PMID:26652459

  12. Surface modification of biphasic calcium phosphate bioceramic powders

    NASA Astrophysics Data System (ADS)

    Yang, W. Z.; Zhou, D. L.; Yin, G. F.; Li, G. D.

    2008-11-01

    Biphasic calcium phosphate (BCP)/poly L-lactide (PLLA) biocomposite is proven to be a promising bone graft material or scaffold for bone tissue engineering. To improve the interfacial compatibility of BCP bioceramic with biopolymer-PLLA, BCP powders were surface-modified in different condition to graft polymer groups onto the surface of the BCP powders. L-lactide and L-lactic acid (LA) oligomer were used to modify the BCP surface with stannous octanoate (Sn(Oct) 2) and stannous chloride (SnCl 2) as catalyst, respectively. Results show that the surface modification effect is obvious and the amount of grafted organic group is above 6.5 wt.%. Sn(Oct) 2 and SnCl 2 are the optimal catalysts for the surface grafting reaction of L-lactide and L-LA oligomer, respectively. The surface grafting slightly increase the particle size of BCP powders and reduce the tendency for their agglomeration.

  13. Role of calcium in biphasic immunomodulation by gamma-HCH (lindane) in mice.

    PubMed

    Meera, P; Tripathi, O; Kamboj, K K; Rao, P R

    1993-01-01

    gamma-HCH (Lindane) is reported to cause a biphasic immunomodulation-stimulation followed by suppression-after oral administration in mice. Role of calcium in this biphasic immunomodulation was assessed after 4, 12 and 24 wks of gamma-HCH administration. 45Ca-uptake was enhanced during the initial immunostimulation followed by decrease concomitant with immunosuppression. Lymphocyte proliferation was inhibited during both the phases of immune response by verapamil, a calcium channel blocker, and by trifluoperazine, a calmodulin inhibitor. These findings show an impairment of calcium homeostasis in lymphocytes culminating into the biphasic immunomodulatory effects of gamma-HCH. PMID:7680676

  14. Macrophage and osteoblast responses to biphasic calcium phosphate microparticles.

    PubMed

    Fellah, Borhane Hakim; Delorme, Bruno; Sohier, Jérôme; Magne, David; Hardouin, Pierre; Layrolle, Pierre

    2010-06-15

    The aim of this work was to investigate in vitro the biological events leading to ectopic bone formation in contact with microporous biphasic calcium phosphate (BCP) ceramics. After implantation, microparticles may arise from their degradation and induce an inflammatory response involving macrophages. The secretion of pro-inflammatory cytokines may affect the differentiation of osteoblasts. Mouse macrophage-like (J774) and osteoblast-like (MC3T3-E1) cells were cultured in the presence of BCP microparticles of different sizes (<20, 40-80, or 80-200 microm). The smallest microparticles decreased the viability of both cell types as measured with LDH and methyl tetrazolium salt assays, and enhanced the secretion of pro-inflammatory cytokines (IL-6 and TNF-alpha) by macrophages after 24 h, as revealed by ELISA. Osteoblastic cells were then cultured for 96 h in the presence of these pro-inflammatory cytokines and their differentiation studied by RT-PCR. MC3T3-E1 cells cultured with TNF-alpha showed a decrease in osterix, PTH receptor (PTHR1), and osteocalcin gene expression. On the contrary, IL-6 enhanced the expression of osterix, Runx2, alkaline phosphatase, and osteocalcin compared with plastic. In conclusion, this study shows that the inflammatory response initiated by BCP microparticles may have both detrimental and beneficial effects on osteogenesis. PMID:20014296

  15. Calcium phosphate porous composites and ceramics prospective as bone implants

    NASA Astrophysics Data System (ADS)

    Rabadjieva, D.; Tepavitcharova, S.; Gergulova, R.; Sezanova, K.; Ilieva, R.; Gabrashanska, M.; Alexandrov, M.

    2013-12-01

    Two types of calcium phosphate materials prospective as bone implants were prepared in the shape of granules and their biochemical behavior was tested by in vivo studies: (i) composite materials consisting of gelatin and bi-phase ion modified calcium phosphate Mg,Zn-(HA + β-TCP); and (ii) ceramics of ion modified calcium phosphate Mg,Zn-(HA + β-TCP). The starting fine powders were prepared by the method of biomimetic precipitation of the precursors followed by hightemperature treatment. Then granules were prepared by dispersion in liquid paraffin of a thick suspension containing 20% of gelatin gel and thus prepared calcium phosphate powders (1:1 ratios). The composite granules were obtained by subsequent hardening in a glutaraldehyde solution, while the highly porous ceramic granules - by further sintering at 1100°C. The in vivo behavior of both types of granules was tested in experimental rat models. Bone defects were created in rat tibia and were filled with the implants. Biochemical studies were performed. Three months after operation both bio-materials displayed analogous behavior.

  16. Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways

    PubMed Central

    Alvau, Antonio; Escoffier, Jessica; Krapf, Dario; Sánchez-Cárdenas, Claudia; Salicioni, Ana M.; Darszon, Alberto; Visconti, Pablo E.

    2016-01-01

    Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca2+ and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca2+ ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca2+ salts (nominal zero Ca2+) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca2+. However, chelation of the extracellular Ca2+ traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca2+ media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca2+ ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca2+ media. Therefore, sperm lacking Catsper Ca2+ channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca2+ involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation. PMID:25597298

  17. Effect of biphasic calcium phosphate nanocomposite on healing of surgically created alveolar bone defects in beagle dogs

    NASA Astrophysics Data System (ADS)

    Wang, Lanlei; Guan, Aizhong; Shi, Han; Chen, Yangxi; Liao, Yunmao

    2009-09-01

    The aim of the present study was to investigate the effect of porous biphasic calcium phosphate nanocomposite (nanoBCP) scaffolds bioceramic. Alveolar bone defects were surgically created bilaterally at the buccal aspects of the upper second premolar in fourteen beagle dogs. After root conditioning with ethylenediaminetetraacetate (EDTA), nanoBCP was randomly filled in the defects and nothing was put into the contralaterals as controls. Dogs were killed at the 12th weeks. Histological observations were processed through a light microscopy. The results revealed that a great amount of functional periodontal fissures formed in the defects in the nanoBCP groups while minimal bone took shape in the controls. In this study, nanoBCP has proved to work well as a biocompatible and osteoconductive scaffold material to promote periodontal regeneration effectively.

  18. Three dimensional biphasic calcium phosphate nanocomposites for load bearing bioactive bone grafts.

    PubMed

    Garai, Subhadra; Sinha, Arvind

    2016-02-01

    Mimicking matrix mediated bio-mineralization process, three dimensional blocks of biphasic calcium phosphate (BCP, hydroxyapatite (HA) and β-tricalcium phosphate (TCP)) nanocomposites, having three different stoichiometries have been synthesized for possible application as load bearing synthetic bone graft or scaffolds. Biphasic blocks with three weight ratios of 20:80, 25:75 and 30:70 of HA and TCP respectively have been synthesized. Detailed structural and chemical characterization of the samples revealed a strong dependence of porosity and mechanical properties on the stoichiometry of biphasic blocks. Effect of physiological medium on the microstructure and mechanical properties of the three different blocks has also been studied. Bioactivity of the BCP block, exhibiting highest compressive strength in air as well as in physiological medium, has been evaluated through adhesion, proliferation and differentiation of mesenchymal stem cells using different markers. PMID:26652386

  19. Response of stem cells from different origins to biphasic calcium phosphate bioceramics.

    PubMed

    Lobo, Sonja E; Glickman, Robert; da Silva, Wagner N; Arinzeh, Treena L; Kerkis, Irina

    2015-08-01

    Biphasic calcium phosphate (BCP) bioceramics have been successfully applied in a broad variety of presentation forms and with different ratios of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). BCPs have been loaded with stem cells from different origins for bone tissue engineering purposes, but evidence of stem cell behavior on different compositions (various HA/β-TCP ratios) and physical features of BCPs is limited. We compared the adhesion, proliferation, viability and osteogenic potential of human mesenchymal stem cells (MSCs) on granular BCPs with equal HA/β-TCP ratio of diverse particle sizes and on porous blocks which had different chemical compositions. In addition, the osteogenic differentiation of MSCs was compared to adipose-derived (ADSC) and dental pulp (DPSC) stem cells, as well as to pre-osteoblasts on a particulate BCP. MSCs growing on granular BCPs demonstrated increased number as compared to MSCs growing on blocks. Cells proliferated to a greater extent on small granular BCPs, while large granular BCPs and blocks promoted cell differentiation. Surprisingly, the expression of genes involved in osteogenesis was upregulated in MSCs on bioceramics in basal medium which indicates that BCPs may have osteoinductive potential. This was confirmed with the upregulation of osteochondrogenic markers, at different time points, when stem cells from various tissues were grown on the BCP. This study demonstrates that BCPs, depending on their physical features and chemical composition, modulate stem cell behavior, and that stem cells from different origins are inherently distinct in their gene expression profile and can be triggered toward osteochondrogenic fate by BCPs. PMID:25676006

  20. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model.

    PubMed

    Park, Kwang-Won; Yun, Young-Pil; Kim, Sung Eun; Song, Hae-Ryong

    2015-01-01

    This study investigated the effect of alendronate (Aln) released from biphasic calcium phosphate (BCP) scaffolds. We evaluated the in vitro osteogenic differentiation of Aln/BCP scaffolds using MG-63 cells and the in vivo bone regenerative capability of Aln/BCP scaffolds using a rat tibial defect model with radiography, micro-computed tomography (CT), and histological examination. In vitro studies included the surface morphology of BCP and Aln-loaded BCP scaffolds visualized using field-emission scanning electron microscope, release kinetics of Aln from BCP scaffolds, alkaline phosphatase (ALP) activity, calcium deposition, and gene expression. The in vitro studies showed that sustained release of Aln from the BCP scaffolds consisted of porous microstructures, and revealed that MG-63 cells cultured on Aln-loaded BCP scaffolds showed significantly increased ALP activity, calcium deposition, and gene expression compared to cells cultured on BCP scaffolds. The in vivo studies using radiograph and histology examination revealed abundant callus formation and bone maturation at the site in the Aln/BCP groups compared to the control group. However, solid bony bridge formation was not observed at plain radiographs until 8 weeks. Micro-CT analysis revealed that bone mineral density and bone formation volume were increased over time in an Aln concentration-dependent manner. These results suggested that Aln/BCP scaffolds have the potential for controlling the release of Aln and enhance bone formation and mineralization. PMID:26561810

  1. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model

    PubMed Central

    Park, Kwang-Won; Yun, Young-Pil; Kim, Sung Eun; Song, Hae-Ryong

    2015-01-01

    This study investigated the effect of alendronate (Aln) released from biphasic calcium phosphate (BCP) scaffolds. We evaluated the in vitro osteogenic differentiation of Aln/BCP scaffolds using MG-63 cells and the in vivo bone regenerative capability of Aln/BCP scaffolds using a rat tibial defect model with radiography, micro-computed tomography (CT), and histological examination. In vitro studies included the surface morphology of BCP and Aln-loaded BCP scaffolds visualized using field-emission scanning electron microscope, release kinetics of Aln from BCP scaffolds, alkaline phosphatase (ALP) activity, calcium deposition, and gene expression. The in vitro studies showed that sustained release of Aln from the BCP scaffolds consisted of porous microstructures, and revealed that MG-63 cells cultured on Aln-loaded BCP scaffolds showed significantly increased ALP activity, calcium deposition, and gene expression compared to cells cultured on BCP scaffolds. The in vivo studies using radiograph and histology examination revealed abundant callus formation and bone maturation at the site in the Aln/BCP groups compared to the control group. However, solid bony bridge formation was not observed at plain radiographs until 8 weeks. Micro-CT analysis revealed that bone mineral density and bone formation volume were increased over time in an Aln concentration-dependent manner. These results suggested that Aln/BCP scaffolds have the potential for controlling the release of Aln and enhance bone formation and mineralization. PMID:26561810

  2. Biphasic release of indomethacin from HPMC/pectin/calcium matrix tablet: I. Characterization and mechanistic study.

    PubMed

    Wu, Baojian; Chen, Zhukang; Wei, Xiuli; Sun, Ningyun; Lu, Yi; Wu, Wei

    2007-11-01

    Calcium-induced crosslinking of pectin acts as the dominating factor controlling drug release from pectin-based matrices. The same interaction was employed to modify indomethacin release from HPMC/pectin/calcium matrix in this study. The aim was to characterize the release profiles, and to study the formulation variables and the underlying mechanisms. The matrix tablet was made up of pectin HM 70, calcium chloride and HPMC K4M, and prepared by the wet granulation method. In vitro release was performed in water and characterized by the power law. Matrix erosion was evaluated by studying the weight loss and pectin release. Biphasic release of indomethacin from the HPMC/pectin/calcium matrix tablet was observed, and extraordinary power law exponent n values of over 1.0 were observed. Increase in calcium amount led to more significant retardation on drug release. The two power law parameters, n and K, correlated to the amount of calcium in the matrix. A lag time of over 4 h can be achieved at HPMC/pectin/calcium chloride amount of 100 mg/100 mg/100 mg. Both matrix weight loss and pectin release were linearly correlated to indomethacin release, indicating erosion-controlled drug release mechanisms. The hybrid matrix showed retarded erosion and hydration rate, which served as the basis for retarded indomethacin release. It is concluded that the pectin/calcium interaction can be employed to modify drug release from HPMC/pectin/calcium matrix tablet with biphasic release patterns for potential timed or site-specific drug delivery. PMID:17540549

  3. Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics.

    PubMed

    Li, Xiangfeng; Guo, Bo; Xiao, Yumei; Yuan, Tun; Fan, Yujiang; Zhang, Xingdong

    2016-01-01

    The influences of steam sterilization on the physicochemical properties of calcium phosphate (Ca-P) porous bioceramics, including β-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP) and hydroxyapatite (HA) are investigated. After being steam sterilized in an autoclave (121 °C for 40 min), the porous bioceramics are dried and characterized. The steam sterilization has no obvious effects on the phase composition, thermal stability, pH value and dissolubility of β-TCP porous bioceramic, but changes its morphology and mechanical strength. Meanwhile, the steam sterilization leads to the significant changes of the morphology, phase composition, pH value and dissolubility of BCP porous bioceramic. The increase of dissolubility and mechanical strength, the decrease of pH value of the immersed solution and partial oriented growth of crystals are also observed in HA porous bioceramic after steam sterilization. These results indicate that the steam sterilization can result in different influences on the physicochemical properties of β-TCP, BCP and HA porous bioceramics, thus the application of the steam sterilization on the three kinds of Ca-P porous bioceramics should be considered carefully based on the above changed properties. PMID:26610928

  4. Interaction between hydroxypropyl methylcellulose and biphasic calcium phosphate after steam sterilisation: capillary gas chromatography studies.

    PubMed

    Bourges, X; Schmitt, M; Amouriq, Y; Daculsi, G; Legeay, G; Weiss, P

    2001-01-01

    The purpose of this study was to check the chemical stability of an injectable bone substitute (IBS) composed of a 50/50 w/w mixture of 2.92% hydroxypropyl methylcellulose (HPMC) solution in deionized water containing biphasic calcium phosphate (BCP) granules (60% hydroxyapatite/40% beta-tricalcium phosphate w/w). After separation of the organic and mineral phases, capillary gas chromatography (GC) was used to study the possible modification of HPMC due to the contact with BCP granules following steam sterilisation and 32 days storage at room temperature. HPMC was extracted from IBS in aqueous medium, and a dialytic method was then used to extract calcium phosphate salts from the HPMC. The percentage of HPMC extracted from BCP was 98.5%+/-0.5%, as measured by UV. GC showed no chemical modifications after steam sterilisation and storage. PMID:11556737

  5. Interaction between hydroxypropyl methylcellulose and biphasic calcium phosphate after steam sterilisation: capillary gas chromatography studies

    PubMed Central

    Bourges, Xavier; Schmitt, Michel; Amouriq, Yves; Daculsi, Guy; Legeay, Gilbert; Weiss, Pierre

    2001-01-01

    The purpose of this study was to check the chemical stability of an injectable bone substitute (IBS) composed of a 50/50 w/w mixture of a 2.92% hydroxypropyl methylcellulose (HPMC) solution in deionised water containing biphasic calcium phosphate (BCP) granules (60% hydroxyapatite/40% β-tricalcium phosphate w/w). After separation of the organic and mineral phases, capillary gas chromatography (GC) was used to study the possible modification of HPMC due to the contact with BCP granules following steam sterilisation and 32 days of storage at room temperature. HPMC was extracted from IBS in aqueous medium, and a dialytic method was then use to extract calcium phosphate salts from HPMC. The percentage of HPMC extracted from BCP was 98.5% ± 0.5% as measured by a UV method. GC showed no chemical modifications after steam sterilisation and storage. PMID:11556737

  6. A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation

    PubMed Central

    Smeets, Ralf; Kolk, Andreas; Gerressen, Marcus; Driemel, Oliver; Maciejewski, Oliver; Hermanns-Sachweh, Benita; Riediger, Dieter; Stein, Jamal M

    2009-01-01

    The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants. PMID:19523239

  7. In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation

    SciTech Connect

    Kim, Tae-Wan; Lee, Hyeong-Shin; Kim, Dong-Hyun; Jin, Hyeong-Ho; Hwang, Kyu-Hong; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young

    2012-09-15

    Highlights: ► Mg–BCP were successfully prepared through in situ aqueous co-precipitation method. ► The amount of β-TCP phase was changed with the magnesium substitution level. ► The substitution of magnesium led to a decrease in the unit cell volume. ► Mg–BCP could be able to develop a new apatite phase on the surface faster than BCP. -- Abstract: In situ preparation of magnesium (Mg) substituted biphasic calcium phosphate (BCP) of hydroxyapatite (HAp)/β-tricalcium phosphate (β-TCP) were carried out through aqueous co-precipitation method. The concentrations of added magnesium were varied with the calcium in order to obtain constant (Ca + Mg)/P ratios of 1.602. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized magnesium substituted BCP powders. The results have shown that substitution of magnesium in the calcium deficient apatites revealed the formation of biphasic mixtures of different HAp/β-TCP ratios after heating at 1000 °C. The ratios of the formation of phase mixtures were dependent on the content of magnesium. After immersing in Hanks’ balanced salt solution (HBSS) for 1 week, 1 wt% magnesium substituted BCP powders were degraded and precipitation started to be formed with small granules consisting of number of flake-like crystal onto the surface of synthesized powders. On the other hand, in the case of pure BCP powders, the formation of new precipitates was detected after immersion in HBSS for 2 weeks. On the basis of these results, magnesium substituted BCP could be able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. In addition, the retention time to produce the new apatite phase in implantation operation for the BCP powder could be controlled by the amount of magnesium substitution.

  8. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts.

    PubMed

    Strobel, L A; Rath, S N; Maier, A K; Beier, J P; Arkudas, A; Greil, P; Horch, R E; Kneser, U

    2014-03-01

    Bone tissue engineering strategies mainly depend on porous scaffold materials. In this study, novel biphasic calcium phosphate (BCP) matrices were generated by 3D-printing. High porosity was achieved by starch consolidation. This study aimed to characterise the porous BCP-scaffold properties and interactions of osteogenic cells and growth factors under in vivo conditions. Five differently treated constructs were implanted subcutaneously in syngeneic rats: plain BCP constructs (group A), constructs pre-treated with BMP-2 (group B; 1.6 µg BMP-2 per scaffold), seeded with primary osteoblasts (OB) (group C), seeded with OB and BMP-2 (group D) and constructs seeded with OB and pre-cultivated in a flow bioreactor for 6 weeks (group E). After 2, 4 and 6 weeks, specimens were explanted and subjected to histological and molecular biological analyses. Explanted scaffolds were invaded by fibrovascular tissue without significant foreign body reactions. Morphometric analysis demonstrated significantly increased bone formation in samples from group D (OB + BMP-2) compared to all other groups. Samples from groups B-E displayed significant mRNA expression of bone-specific genes after 6 weeks. Pre-cultivation in the flow bioreactor (group E) induced bone formation comparable with group B. In this study, differences in bone distribution between samples with BMP-2 or osteoblasts could be observed. In conclusion, combination of osteoblasts and BMP-2 synergistically enhanced bone formation in novel ceramic scaffolds. These results provide the basis for further experiments in orthotopic defect models with a focus on future applications in orthopaedic and reconstructive surgery. PMID:22740314

  9. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  10. Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control.

    PubMed

    Wagner, Darcy E; Jones, Andrew D; Zhou, Huan; Bhaduri, Sarit B

    2013-04-01

    Compounds belonging to the calcium phosphate (CaP) system are known to be major constituents of bone and are bioactive to different extents in vitro and in vivo. Their chemical similarity makes them prime candidates for implants and bone tissue engineering scaffolds. CaP nanoparticles of amorphous hydroxyapatite (aHA) and dicalcium phosphate dihydrate (DCPD) were synthesized using chemical precipitation. Uniaxially pressed aHA and DCPD powders were subjected to microwave radiation to promote solid state phase transformations resulting in crystalline hydroxyapatite (HA), tricalcium phosphate (TCP) and biphasic compositions: HA/TCP and TCP/calcium pyrophosphate (CPP) and their subsequent densification. Phase composition of microwave sintered compacts was confirmed via X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Solution pH during crystal growth was found to have a profound effect on particle morphology and post-sintered phases, despite constant sintering temperature. Cytocompatibility assessment using 7F2 cells, corresponding to adult mouse osteoblasts, on microwave and conventional, furnace sintered samples demonstrated that manufacturing method does not impact cellular viability after 24 h or proliferation over 7 days. New CaP deposition and extracellular matrix components were observed in vitro via scanning electron microscopy (SEM). PMID:23827628

  11. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair. PMID:26052107

  12. Laser engineered multilayer coating of biphasic calcium phosphate/titanium nanocomposite on metal substrates.

    PubMed

    Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J

    2011-02-01

    In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells. PMID:21207950

  13. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs.

    PubMed

    Davison, N L; Su, J; Yuan, H; van den Beucken, J J J P; de Bruijn, J D; Barrère-de Groot, F

    2015-01-01

    It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs), and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of ≤ 1 μm trigger osteoinduction and osteoclast formation irrespective of macrostructure (e.g., concavities, interconnected macropores, interparticle space) or surface chemistry. To test this, planar discs made of biphasic calcium phosphate (BCP: 80% hydroxyapatite, 20% tricalcium phosphate) were prepared with different surface structural dimensions - either ~ 1 μm (BCP1150) or ~ 2-4 μm (BCP1300) - and no macropores or concavities. A third material was made by sputter coating BCP1150 with titanium (BCP1150Ti), thereby changing its surface chemistry but preserving its surface structure and chemical reactivity. After intramuscular implantation in 5 dogs for 12 weeks, BCP1150 formed ectopic bone in 4 out of 5 samples, BCP1150Ti formed ectopic bone in 3 out of 5 samples, and BCP1300 formed no ectopic bone in any of the 5 samples. In vivo, large multinucleated osteoclast-like cells densely colonised BCP1150, smaller osteoclast-like cells formed on BCP1150Ti, and osteoclast-like cells scarcely formed on BCP1300. In vitro, RAW264.7 cells cultured on the surface of BCP1150 and BCP1150Ti in the presence of osteoclast differentiation factor RANKL (receptor activator for NF-κB ligand) proliferated then differentiated into multinucleated osteoclast-like cells with positive tartrate resistant acid phosphatase (TRAP) activity. However, cell proliferation, fusion, and TRAP activity were all significantly inhibited on BCP1300. These results indicate that of the material parameters tested - namely, surface microstructure, macrostructure, and surface chemistry - microstructural dimensions are critical in promoting osteoclastogenesis and triggering ectopic bone formation. PMID:26091730

  14. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass.

    PubMed

    Yang, Yanqiu; He, Fupo; Ye, Jiandong

    2016-12-01

    In this study, phosphate-based glass (PG) was used as a sintering aid for freeze-cast porous biphasic calcium phosphate (BCP) ceramic, which was sintered under a lower temperature (1000°C). The phase composition, pore structure, compressive strength, and cytocompatibility of calcium phosphate composite ceramics (PG-BCP) were evaluated. The results indicated that PG additive reacted with calcium phosphate during the sintering process, forming β-Ca2P2O7; the ions of sodium and magnesium from PG partially substituted the calcium sites of β-calcium phosphate in BCP. The PG-BCP showed good cytocompatibility. The pore width of the porous PG-BCP ceramics was around 50μm, regardless of the amount of PG sintering aid. As the content of PG increased from 0wt.% to 15wt.%, the compressive strength of PG-BCP increased from 0.02 MP to 0.28MPa. When the PG additive was 17.5wt.%, the compressive strength of PG-BCP dramatically increased to 5.66MPa. Addition of 15wt.% PG was the critical point for the properties of PG-BCP. PG is considered as an effective sintering aid for freeze-cast porous bioceramics. PMID:27612796

  15. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.

    PubMed

    Roohani-Esfahani, Seyed-Iman; Nouri-Khorasani, Saied; Lu, Zufu; Appleyard, Richard; Zreiqat, Hala

    2010-07-01

    We developed a composite biphasic calcium phosphate (BCP) scaffold by coating a nanocomposite layer, consisting of hydroxyapatite (HA) nanoparticles and polycaprolactone (PCL), over the surface of BCP. The effects of HA particle size and shape in the coating layer on the mechanical and biological properties of the BCP scaffold were examined. Micro-computerized tomography studies showed that the prepared scaffolds were highly porous (approximately 91%) with large pore size (400-700 microm) and an interconnected porous network of approximately 100%. The HA nanoparticle (needle shape)-composite coated scaffolds displayed the highest compressive strength (2.1 +/- 0.17 MPa), compared to pure HA/beta-TCP (0.1 +/- 0.05 MPa) and to the micron HA - composite coated scaffolds (0.29 +/- 0.07 MPa). These needle shaped scaffolds also showed enhanced elasticity and similar stress-strain profile to natural bone. Needle shaped coated HA/PCL particles induced the differentiation of primary human bone derived cells, with significant upregulation of osteogenic gene expression (Runx2, collagen type I, osteocalcin and bone sialoprotein) and alkaline phosphatase activity compared to other groups. These properties are essential for enhancing bone ingrowth in load-bearing applications. The developed composite scaffolds possessed superior physical, mechanical, elastic and biological properties rendering them potentially useful for bone tissue regeneration. PMID:20398935

  16. Quantitative evaluation of the biocompatible and osteogenic properties of a range of biphasic calcium phosphate (BCP) granules using primary cultures of human osteoblasts and monocytes.

    PubMed

    Rice, J M; Hunt, J A; Gallagher, J A

    2003-06-01

    A range of 50% porous gamma-sterilized biphasic calcium phosphate (BCP) granules, (20, 50, 80, and 100% tricalcium phosphate, TCP) were classified into two distinct size ranges, small 2-4 mm in diameter and large 4-6 mm in diameter, and their potential as bone graft extender materials was assessed in vitro using culture systems of primary-derived peripheral human blood monocytes and human osteoblasts isolated from bone. The effect of the in vitro culture conditions was evaluated prior to the introduction of the test substrates. The cellular response was assessed via quantification of viable cell adhesion to the materials, lactate dehydrogenase (LDH), the production and release of interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and prostaglandin E2 (PGE2). The higher content TCP materials, 80% and 100% TCP, had a detrimental effect on viable cell adhesion after day 1, which was not related to calcium release from the granules within the local environment. TCP granules (20% and 50%) initiated a controlled level of inflammatory response that sustained and promoted viable macrophage adhesion throughout the test period, The percentage of TCP within the BCP granules was a governing factor in determining the cellular response. PMID:14563002

  17. Preferential occupancy of strontium in the hydroxyapatite lattice in biphasic mixtures formed from non-stoichiometric calcium apatites.

    PubMed

    Nandha Kumar, P; Mishra, Sandeep K; Udhay Kiran, R; Kannan, S

    2015-05-01

    The present study reports the variations in phase content of biphasic mixtures and structural changes induced by different levels of strontium addition in calcium-deficient apatite (Ca/P = 1.60) powders during heat treatment. The synthesis was attempted by an in situ aqueous precipitation technique and X-ray diffraction, Raman spectroscopy and Rietveld refinement of the powder X-ray diffraction data were employed for comprehensive analysis. The results confirm the preferential occupancy of Sr(2+) at two different Ca(2+) sites of the hydroxyapatite [Ca10(PO4)6(OH)2, HAP] lattice, with the Ca(2+) (2) site accommodating more Sr(2+) than the Ca(2+) (1) site. Increasing Sr(2+) addition in calcium-deficient apatite has led to a decline in the phase content of β-tricalcium phosphate [β-Ca3(PO4)2, β-TCP] in biphasic mixtures of HAP and β-TCP. Sr(2+) addition exceeding the critical limit of a (Ca + Sr)/P > 1.75 molar ratio has resulted in the formation of CaO as an additional phase, and this justifies the lack of enough PO4(3-) ions to promote any kind of calcium phosphate precipitation. Sr(2+) accommodation in the lattice sites of HAP has induced an increase in the lattice parameters and has also led to the significant distortion of the PO4 tetrahedron and OH groups, confirmed by Raman and FT-IR spectroscopic techniques. PMID:25851342

  18. A finite element implementation for biphasic contact of hydrated porous media under finite deformation and sliding

    PubMed Central

    Guo, Hongqiang; Shah, Mitul; Spilker, Robert L.

    2014-01-01

    The study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. However, to date, few biphasic finite element contact analysis for 3D physiological geometries under finite deformation has been developed. The objective of this paper is to develop a hyperelastic biphasic contact implementation for finite deformation and sliding problem. An augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The finite element implementation was based on a general purpose software, COMSOL Multiphysics. The accuracy of the implementation is verified using example problems, for which solutions are available by alternative analyses. The implementation was proven to be robust and able to handle finite deformation and sliding. PMID:24496915

  19. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone.

    PubMed

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm(3)) as compared to rhBMP-2 alone (10.9 ± 2.1 mm(3)) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  20. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    PubMed Central

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  1. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique

    NASA Astrophysics Data System (ADS)

    Elayaraja, K.; Chandra, V. Sarath; Joshy, M. I. Ahymah; Suganthi, R. V.; Asokan, K.; Kalkura, S. Narayana

    2013-06-01

    Biphasic calcium phosphate (BCP) thin film having resorbable β-tricalcium phosphate (β-TCP) and non-resorbable hydroxyapatite (HAp) phases having enhanced bioactivity was synthesized by electron beam evaporation technique. Nanosized BCP was deposited as a layer (500 nm) on (0 0 1) silicon substrate by electron beam evaporation and crystalline phase of samples were found to improve on annealing at 700 °C. Uniform deposition of calcium phosphate on silicon substrate was verified from elemental mapping using scanning electron microscope (SEM-EDX). Annealing of the samples led to a decrease in surface roughness, hydrophobicity and dissolution of the coating layer. Amoxicillin loaded thin films exhibited significant bacterial resistance. In addition, BCP thin films did not exhibit any cytotoxicity. Antibiotics incorporated BCP coated implants might prevent the post-surgical infections and could promote bone-bonding of orthopedic devices.

  2. Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds

    NASA Astrophysics Data System (ADS)

    Lan, Sheeny K.

    Bone grafts are utilized clinically to guide tissue regeneration. Autologous bone and allogeneic bone are the current clinical standards. However, there are significant limitations to their use. To address the need for alternatives to autograft and allograft, researchers have worked to develop synthetic grafts, also referred to as scaffolds. Despite extensive efforts in this area, a gap persists between basic research and clinical application. In particular, solutions for repairing critical size and/or load-bearing defects are lacking. The aim of this thesis work was to address two critical barriers preventing design of successful tissue engineering constructs for bone regeneration within critical size and/or load-bearing defects. Those barriers are insufficient osteointegration and slow neovascularization. In this work, the effects of scaffold microporosity, recombinant human bone morphogenetic protein-2 delivery and endothelial colony forming cell vasculogenesis were evaluated in the context of bone formation in vivo. This was accomplished to better understand the role of these factors in bone regeneration, which may translate to improvements in tissue engineering construct design. Biphasic calcium phosphate (BCP) scaffolds with controlled macro- and microporosity were implanted in porcine mandibular defects. Evaluation of the BCP scaffolds after in vivo implantation showed, for the first time, osteocytes embedded in bone within scaffold micropores (< 10 microm) as well as the most extensive bone growth into micropores to date with bone penetration throughout rods 394 microm in diameter. The result is the first truly osteointegrated bone scaffolds with integration occurring at both the macro and micro length scales, leaving no "dead space" or discontinuities of bone in the defect site. The scaffold forms a living composite upon integration with regenerating bone and this has significant implications with regard to improved scaffold mechanical properties. The

  3. A novel strategy for preparing nanoporous biphasic calcium phosphate of controlled composition via a modified nanoparticle-assembly method.

    PubMed

    Fujiwara, Keiko; Okada, Masahiro; Takeda, Shoji; Matsumoto, Naoyuki

    2014-02-01

    Biphasic calcium phosphate (BCP) consisting of hydroxyapatite (HAp) and β-tricalcium phosphate is usually prepared by thermal decomposition of calcium-deficient HAp (CDHAp). However, the calcium deficiency and morphology of CDHAp are difficult to manipulate in parallel. In this study, we report a novel strategy for controlling the composition of nanoporous BCP by using only CDHAp nanoparticles with specific properties (Ca/P molar ratio, 1.61; particle size, 50 nm) as a building block and by adjusting the calcium deficiency of the nanoparticle-assembled CDHAp (Ca/P molar ratio, 1.50-1.67; pore size, 8 nm) with the addition of water-soluble Ca(NO3)2 or (NH4)2HPO4. After thermal treatment at 1000 °C, the composition of BCP could be predictably controlled by adjusting the Ca/P ratio of the nanoparticle-assembled CDHAp. Changes in the Ca/P ratio did not significantly affect the surface morphology of BCP, but the grain size (210-300 nm) and pore size (140-170 nm) tended to increase slightly as the Ca/P ratio decreased. The porosity significantly decreased upon the addition of Ca salts (porosity, 20%) or PO4 salts (porosity, 14%) compared with that of the sample without additives (porosity, 53%). In vitro tests demonstrated enhanced cell adhesion on nanoporous BCP compared with densely sintered pure HAp, and cell differentiation was promoted on the nanoporous pure HAp. PMID:24411377

  4. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties.

    PubMed

    Schumacher, M; Deisinger, U; Detsch, R; Ziegler, G

    2010-12-01

    While various materials have been developed for bone substitute and bone tissue engineering applications over the last decades, processing techniques meeting the high demands of scaffold shaping are still under development. Individually adapted and mechanically optimised scaffolds can be derived from calcium phosphate (CaP-) ceramics via rapid prototyping (RP). In this study, porous ceramic scaffolds with a periodic pattern of interconnecting pores were prepared from hydroxyapatite, β-tricalcium phosphate and biphasic calcium phosphates using a negative-mould RP technique. Moulds predetermining various pore patterns (round and square cross section, perpendicular and 60° inclined orientation) were manufactured via a wax printer and subsequently impregnated with CaP-ceramic slurries. Different pore patterns resulted in macroporosity values ranging from about 26.0-71.9 vol% with pore diameters of approximately 340 μm. Compressive strength of the specimens (1.3-27.6 MPa) was found to be mainly influenced by the phase composition as well as the macroporosity, both exceeding the influence of the pore geometry. A maximum was found for scaffolds with 60 wt% hydroxyapatite and 26.0 vol% open porosity. It has been shown that wax ink-jet printing allows to process CaP-ceramic into scaffolds with highly defined geometry, exhibiting strength values that can be adjusted by phase composition and pore geometry. This strength level is within and above the range of human cancellous bone. Therefore, this technique is well suited to manufacture scaffolds for bone tissue engineering. PMID:20953674

  5. Photostable Solid Dispersion of Nifedipine by Porous Calcium Silicate.

    PubMed

    Fujimoto, Yumi; Hirai, Nobuaki; Takatani-Nakase, Tomoka; Takahashi, Koichi

    2016-01-01

    Nifedipine (NIF) is a typical light-sensitive drug requiring protection from light during manufacture, storage, and handling of its dosage forms. The purpose of this study was to evaluate the utility of porous calcium silicate (PCS) for maintaining the photostability of NIF in a solid dispersion formulation. Adsorption solid dispersion (ASD) prepared using NIF and PCS as an amorphous formulation was more stable to light irradiation than a physical mixture of NIF and microcrystalline cellulose (a control physical mixture) as a crystalline formulation. In addition, PCS in physical mixtures with NIF adequately protected NIF from photodegradation, suggesting that this protective effect could be because of some screening effect by the porous structure of PCS blocking the passage of light reaching NIF in pores of PCS. These findings suggest that PCS is useful for improving the solubility and photostability of NIF in solid dispersion formulation. PMID:27477662

  6. A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media.

    PubMed

    Ehlers, W; Markert, B

    2001-10-01

    Based on the Theory of Porous Media (mixture theories extended by the concept of volume fractions), a model describing the mechanical behavior of hydrated soft tissues such as articular cartilage is presented. As usual, the tissue will be modeled as a materially incompressible binary medium of one linear viscoelastic porous solid skeleton saturated by a single viscous pore-fluid. The contribution of this paper is to combine a descriptive representation of the linear viscoelasticity law for the organic solid matrix with an efficient numerical treatment of the strongly coupled solid-fluid problem. Furthermore, deformation-dependent permeability effects are considered. Within the finite element method (FEM), the weak forms of the governing model equations are set up in a system of differential algebraic equations (DAE) in time. Thus, appropriate embedded error-controlled time integration methods can be applied that allow for a reliable and efficient numerical treatment of complex initial boundary-value problems. The applicability and the efficiency of the presented model are demonstrated within canonical, numerical examples, which reveal the influence of the intrinsic dissipation on the general behavior of hydrated soft tissues, exemplarily on articular cartilage. PMID:11601726

  7. Bioactivity studies and adhesion of human osteoblast (hFOB) on silicon-biphasic calcium phosphate material.

    PubMed

    Ibrahim, S; Sabudin, S; Sahid, S; Marzuke, M A; Hussin, Z H; Kader Bashah, N S; Jamuna-Thevi, K

    2016-01-01

    Surface reactivity of bioactive ceramics contributes in accelerating bone healing by anchoring osteoblast cells and the connection of the surrounding bone tissues. The presence of silicon (Si) in many biocompatible and bioactive materials has been shown to improve osteoblast cell adhesion, proliferation and bone regeneration due to its role in the mineralisation process around implants. In this study, the effects of Si-biphasic calcium phosphate (Si-BCP) on bioactivity and adhesion of human osteoblast (hFOB) as an in vitro model have been investigated. Si-BCP was synthesised using calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) via wet synthesis technique at Ca/P ratio 1.60 of material precursors. SiO2 at 3 wt% based on total precursors was added into apatite slurry before proceeding with the spray drying process. Apatite powder derived from the spray drying process was pressed into discs with Ø 10 mm. Finally, the discs were sintered at atmospheric condition to obtain biphasic hydroxyapatite (HA) and tricalcium phosphate (TCP) peaks simultaneously and examined by XRD, AFM and SEM for its bioactivity evaluation. In vitro cell viability of L929 fibroblast and adhesion of hFOB cell were investigated via AlamarBlue® (AB) assay and SEM respectively. All results were compared with BCP without Si substitution. Results showed that the presence of Si affected the material's surface and morphology, cell proliferation and cell adhesion. AFM and SEM of Si-BCP revealed a rougher surface compared to BCP. Bioactivity in simulated body fluid (SBF) was characterised by pH, weight gain and apatite mineralisation on the sample surface whereby the changes in surface morphology were evaluated using SEM. Immersion in SBF up to 21 days indicated significant changes in pH, weight gain and apatite formation. Cell viability has demonstrated no cytotoxic effect and denoted that Si-BCP promoted good initial cell adhesion and proliferation. These results suggest that Si

  8. Bioactivity studies and adhesion of human osteoblast (hFOB) on silicon-biphasic calcium phosphate material

    PubMed Central

    Ibrahim, S.; Sabudin, S.; Sahid, S.; Marzuke, M.A.; Hussin, Z.H.; Kader Bashah, N.S.; Jamuna-Thevi, K.

    2015-01-01

    Surface reactivity of bioactive ceramics contributes in accelerating bone healing by anchoring osteoblast cells and the connection of the surrounding bone tissues. The presence of silicon (Si) in many biocompatible and bioactive materials has been shown to improve osteoblast cell adhesion, proliferation and bone regeneration due to its role in the mineralisation process around implants. In this study, the effects of Si-biphasic calcium phosphate (Si-BCP) on bioactivity and adhesion of human osteoblast (hFOB) as an in vitro model have been investigated. Si-BCP was synthesised using calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) via wet synthesis technique at Ca/P ratio 1.60 of material precursors. SiO2 at 3 wt% based on total precursors was added into apatite slurry before proceeding with the spray drying process. Apatite powder derived from the spray drying process was pressed into discs with Ø 10 mm. Finally, the discs were sintered at atmospheric condition to obtain biphasic hydroxyapatite (HA) and tricalcium phosphate (TCP) peaks simultaneously and examined by XRD, AFM and SEM for its bioactivity evaluation. In vitro cell viability of L929 fibroblast and adhesion of hFOB cell were investigated via AlamarBlue® (AB) assay and SEM respectively. All results were compared with BCP without Si substitution. Results showed that the presence of Si affected the material’s surface and morphology, cell proliferation and cell adhesion. AFM and SEM of Si-BCP revealed a rougher surface compared to BCP. Bioactivity in simulated body fluid (SBF) was characterised by pH, weight gain and apatite mineralisation on the sample surface whereby the changes in surface morphology were evaluated using SEM. Immersion in SBF up to 21 days indicated significant changes in pH, weight gain and apatite formation. Cell viability has demonstrated no cytotoxic effect and denoted that Si-BCP promoted good initial cell adhesion and proliferation. These results suggest that Si

  9. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    NASA Astrophysics Data System (ADS)

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S.

    2015-11-01

    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca10(PO4)6(OH)2 and β-Ca3(PO4)2 after heat treatment at 1000 °C with the preferential occupancy of Mg2+ at the crystal lattice of β-Ca3(PO4)2. The concentration of Mg2+ uptake in β-Ca3(PO4)2 is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometric value [(Ca+Mg)/P>1.67], Mg2+ precipitates as Mg(OH)2 and thereafter gets converted to MgO during heat treatment. Any kind of Mg2+ uptake in the crystal lattice of Ca10(PO4)6(OH)2 is discarded from the investigation.

  10. The Crosstalk between Osteoclasts and Osteoblasts Is Dependent upon the Composition and Structure of Biphasic Calcium Phosphates

    PubMed Central

    Shiwaku, Yukari; Neff, Lynn; Nagano, Kenichi; Takeyama, Ken-Ichi; de Bruijn, Joost; Dard, Michel; Gori, Francesca; Baron, Roland

    2015-01-01

    Biphasic calcium phosphates (BCPs), consisting of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), exhibit good biocompatibility and osteoconductivity, maintaining a balance between resorption of the biomaterial and formation of new bone. We tested whether the chemical composition and/or the microstructure of BCPs affect osteoclasts (OCs) differentiation and/or their ability to crosstalk with osteoblasts (OBs). To this aim, OCs were cultured on BCPs with HA content of 5, 20 or 60% and their differentiation and activity were assessed. We found that OC differentiation is partially impaired by increased HA content, but not by the presence of micropores within BCP scaffolds, as indicated by TRAP staining and gene profile expression. We then investigated whether the biomaterial-induced changes in OC differentiation also affect their ability to crosstalk with OBs and regulate OB function. We found that BCPs with low percentage of HA favored the expression of positive coupling factors, including sphingosine-kinase 1 (SPHK1) and collagen triple helix repeat containing 1 (Cthrc1). In turn, the increase of these secreted coupling factors promotes OB differentiation and function. All together our studies suggest that the chemical composition of biomaterials affects not only the differentiation and activity of OCs but also their potential to locally regulate bone formation. PMID:26193362

  11. The Effect of Covalently Immobilized FGF-2 on Biphasic Calcium Phosphate Bone Substitute on Enhanced Biological Compatibility and Activity

    PubMed Central

    Moon, Kyung-Suk; Choi, Eun-Joo; Oh, Seunghan; Kim, Sungtae

    2015-01-01

    The purpose of this research was to covalently graft fibroblast growth factor 2 (FGF-2) onto biphasic calcium phosphate (BCP) via a bifunctional cross-linker technique and to estimate the optimal dose of FGF-2 resulting in the best osteogenic differentiation of human mesenchymal stem cells (hMSCs). SEM observation revealed that the surface of the 100 ng FGF-2 coated BCP was completely covered with the nanoparticles expected to be from the silane coupling agent. XRD, FT-IR, and XPS analysis showed that silane treatment, bifunctional cross-linker coating, and FGF-2 covalent grafts were conducted successfully without deforming the crystalline structure of BCP. An MTT assay demonstrated that FGF-2 coated BCP had good biocompatibility, regardless of the concentration of FGF-2, after 24 or 48 h of incubation. An alkaline phosphatase (ALP) activity assay (14 days of incubation) and the ALP gene expression level of real-time PCR analysis (7 days of incubation) revealed that 50, 100, and 200 ng FGF-2 coated BCP induced the highest activities among all experimental groups and control group (P < 0.05). Thus, low concentrations of FGF-2 facilitated excellent osteogenesis and were effective at enhancing osteogenic potential. Also, the bifunctional cross-linker technique is expected to be a more feasible way to induce osteogenic differentiation while minimizing the risk of FGF-2 overdose. PMID:26436096

  12. Poly(trimethylene carbonate) and biphasic calcium phosphate composites for orbital floor reconstruction: a feasibility study in sheep.

    PubMed

    van Leeuwen, A C; Yuan, H; Passanisi, G; van der Meer, J W; de Bruijn, J D; van Kooten, T G; Grijpma, D W; Bos, R R M

    2014-01-01

    In the treatment of orbital floor fractures, bone is ideally regenerated. The materials currently used for orbital floor reconstruction do not lead to the regeneration of bone. Our objective was to render polymeric materials based on poly(trimethylene carbonate) (PTMC) osteoinductive, and to evaluate their suitability for use in orbital floor reconstruction. For this purpose, osteoinductive biphasic calcium phosphate (BCP) particles were introduced into a polymeric PTMC matrix. Composite sheets containing 50 wt% BCP particles were prepared. Also laminates with poly(D,L-lactide) (PDLLA) were prepared by compression moulding PDLLA films onto the composite sheets. After sterilisation by gamma irradiation, the sheets were used to reconstruct surgically-created orbital floor defects in sheep. The bone inducing potential of the different implants was assessed upon intramuscular implantation. The performance of the implants in orbital floor reconstruction was assessed by cone beam computed tomography (CBCT). Histological evaluation revealed that in the orbital and intramuscular implantations of BCP containing specimens, bone formation could be seen after 3 and 9 months. Analysis of the CBCT scans showed that the composite PTMC sheets and the laminated composite sheets performed well in orbital floor reconstruction. It is concluded that PTMC/BCP composites and PTMC/BCP composites laminated with PDLLA have osteoinductive properties and seem suitable for use in orbital floor reconstruction. PMID:24488822

  13. Porous polymer film calcium ion chemical sensor and method of using the same

    DOEpatents

    Porter, M.D.; Chau, L.K.

    1991-02-12

    A method of measuring calcium ions is disclosed wherein a calcium sensitive reagent, calcichrome, is immobilized on a porous polymer film. The reaction of the calcium sensitive reagent to the Ca(II) is then measured and concentration determined as a function of the reaction. 1 figure.

  14. Biphasic modulation by mGlu5 receptors of TRPV1-mediated intracellular calcium elevation in sensory neurons contributes to heat sensitivity

    PubMed Central

    Masuoka, T; Nakamura, T; Kudo, M; Yoshida, J; Takaoka, Y; Kato, N; Ishibashi, T; Imaizumi, N; Nishio, M

    2015-01-01

    Background and Purpose Elevation of glutamate, an excitatory amino acid, during inflammation and injury plays a crucial role in the reception and transmission of sensory information via ionotropic and metabotropic receptors. This study aimed to investigate the mechanisms underlying the biphasic effects of metabotropic glutamate mGlu5 receptor activation on responses to noxious heat. Experimental Approach We assessed the effects of intraplantar quisqualate, a non-selective glutamate receptor agonist, on heat and mechanical pain behaviours in mice. In addition, the effects of quisqualate on the intracellular calcium response and on membrane currents mediated by TRPV1 channels, were examined in cultured dorsal root ganglion neurons from mice. Key Results Activation of mGlu5 receptors in hind paw transiently increased, then decreased, the response to noxious heat. In sensory neurons, activation of mGlu5 receptors potentiated TRPV1-mediated intracellular calcium elevation, while terminating activation of mGlu5 receptors depressed it. TRPV1-induced currents were potentiated by activation of mGlu5 receptors under voltage clamp conditions and these disappeared after washout. However, voltage-gated calcium currents were inhibited by the mGlu5 receptor agonist, even after washout. Conclusions and Implications These results suggest that, in sensory neurons, mGlu5 receptors biphasically modulate TRPV1-mediated intracellular calcium response via transient potentiation of TRPV1 channel-induced currents and persistent inhibition of voltage-gated calcium currents, contributing to heat hyper- and hypoalgesia. PMID:25297838

  15. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics.

    PubMed

    Radwan, M M; Abd El-Hamid, H K; Mohamed, A F

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C2S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C2S (27-30 nm) was prepared by solid state reaction at 1450°C, while biphasic compound TCP/HAp (7-15 nm) was synthesized from an aqueous solution of Ca(NO3)2·4H2O and (NH4)2HPO4·12H2O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C2S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. PMID:26354276

  16. Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application.

    PubMed

    Baradaran, S; Moghaddam, E; Nasiri-Tabrizi, Bahman; Basirun, W J; Mehrali, M; Sookhakian, M; Hamdi, M; Alias, Y

    2015-04-01

    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value. PMID:25686995

  17. Histological and immunohistochemical evaluation of biphasic calcium phosphate and a mineral trioxide aggregate for bone healing in rat calvaria.

    PubMed

    Silva, L G R deC; Kim, S H; Luczyszyn, S M; Papalexiou, V; Giovanini, A; Almeida, L E; Tramontina, V A

    2015-04-01

    This work focused on the process of bone repair of defects in standardized calvaria of Wistar rats treated with biphasic calcium phosphate (BCP), mineral trioxide aggregate (MTA), or a combination of the two. Eighty Wistar rats were divided into four treatment groups and were examined at 2 and 8 weeks. A surgical defect was created in the calvaria using a 6-mm diameter trephine drill. The cavity was treated with BCP, MTA, or BCP+MTA; untreated rats with clot formation served as controls. Samples were evaluated histologically and by immunohistochemical staining for areas of new osteoid tissue and new bone tissue, as well as the percentage of labelled cells using anti-bone morphogenetic protein receptor type 1B (anti-BMPR1B) antibodies. Statistically significant differences were found for all dependent variables (area of new osteoid tissue, area of new bone, and percentage immunostaining) by group (P<0.0001) and time (P<0.0001), and for the interaction of the two (P<0.0001). The MTA group at 8 weeks showed the highest amount of osteoid tissue. The same group also exhibited the highest amount of bone tissue formation. The 2-week MTA samples and 2-week BCP+MTA samples exhibited the highest percentages of stained cells. The best results in terms of the area of osteoid and bone tissue formation and the percentage of BMPR1B were observed for the MTA group, confirming that the combination of BCP+MTA does not result in a significant improvement. PMID:25468630

  18. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels.

    PubMed

    van Esterik, Fransisca A S; Zandieh-Doulabi, Behrouz; Kleverlaan, Cornelis J; Klein-Nulend, Jenneke

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  19. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    PubMed Central

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  20. The Role of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Micro-Scaffolds in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Kim, Dong-Hyun; Shin, Keun-Koo; Jung, Jin Sup; Chun, Ho Hwan; Park, Seong Soo; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young

    2015-08-01

    This study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14. After in vitro biological tests, Mg-BCP micro-scaffolds with hAT-MSCs showed more enhanced osteogenicity than pure hAT-MSCs as control group by unique biodegradation of TCP phase and influence of substituted Mg2+ ion in biphasic nanostructure. Therefore, these results suggest that Mg-BCP micro-scaffolds promote osteogenic differentiation of hAT-MSCs. PMID:26369111

  1. The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants.

    PubMed

    Jun, Youn Ki; Kim, Wan Hee; Kweon, Oh Kyeong; Hong, Seong Hyeon

    2003-09-01

    Alumina reinforced calcium phosphate porous implants were manufactured to improve the mechanical strength while maintaining the bioactivity of calcium phosphate ceramics. The alumina porous bodies, which provided the mechanical strength, were fabricated by a polyurethane sponge method and multiple coating techniques resulted in the porous bodies with a 90-75% porosity and a compressive strength of up to approximately 6MPa. The coating of hydroxyapatite (HAp) or tricalcium phosphate (beta-TCP) was performed by dipping the alumina porous bodies into calcium phosphate ceramic slurries and sintering the specimens. The fairly strong bonding between the HAp or TCP coating layer and the alumina substrate was obtained by repeating the coating and sintering processes. The biochemical evaluations of the porous implants were conducted by in vitro and in vivo tests. For in vitro test, the implants were immersed in Ringer's solution and the release of Ca and P ions were detected and compared with those of calcium phosphate powders. For in vivo test, the porous bodies were implanted into mixed breed dogs and bone mineral density measurements and histological studies were conducted. The alumina reinforced HAp porous implants had a higher strength than the HAp porous implants and exhibited a similar bioactivity and osteoconduction property to the HAp porous implants. PMID:12818545

  2. Adsorption of anionic and cationic polymers on porous and non-porous calcium carbonate surfaces

    NASA Astrophysics Data System (ADS)

    Bjorklund, Robert B.; Arwin, Hans; Järnström, Lars

    1994-01-01

    The adsorption of anionic and cationic polymers onto calcium carbonate surfaces was studied by ellipsometry. Sodium polyacrylate was observed to both adsorb on and promote dissolution of polished limestone surfaces in 5 mM CaSO 4 solution at pH 10.3. It was not possible to differentiate between the two processes when they occurred simultaneously. Cationic starch adsorbed on the limestone surfaces at low concentrations and caused mineral dissolution at higher concentrations. The adsorbed amount of starch was higher on surfaces which were first made porous by partial dissolution than on freshly polished surfaces. Surfaces created by cleavage of Iceland spar calcite were quite stable against dissolution and the amount of starch adsorbed determined by ellipsometry agreed well with the adsorbed mass determined from batch adsorption experiments on ground calcite.

  3. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    PubMed Central

    2011-01-01

    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated. PMID:21711603

  4. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers.

    PubMed

    Chen, Feng; Zhu, Ying-Jie; Zhang, Kui-Hua; Wu, Jin; Wang, Ke-Wei; Tang, Qi-Li; Mo, Xiu-Mei

    2011-01-01

    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated. PMID:21711603

  5. Effects of a novel calcium channel agonist dihydropyridine analogue, Bay k 8644, on pig coronary artery: biphasic mechanical response and paradoxical potentiation of contraction by diltiazem and nimodipine.

    PubMed

    Dubé, G P; Baik, Y H; Schwartz, A

    1985-01-01

    Bay k 8644 is a structural analogue of the 1,4-dihydropyridines whose pharmacological actions on heart and vascular smooth muscle are opposite from those of nifedipine and other similar calcium antagonists. We have examined the action of Bay k 8644 ("calcium channel agonist") on isolated porcine coronary artery rings. The interactions between Bay k 8644 and the vasodilators isosorbide dinitrate (ISDN), diltiazem, and nimodipine were quantitated. Bay k 8644 produced a biphasic, dose-dependent mechanical response, with contraction occurring over the concentration range of 1-350 nM (ED50 = 11.4 nM) and relaxation observed at concentrations greater than 350 nM (IC50 = 5.7 microM). ISDN, diltiazem, and nimodipine relaxed, in a dose-dependent manner, maximal Bay k 8644-induced contractions. When the coronary rings were pretreated for 25-90 min with 80% inhibitory concentrations of these vasodilators, there was little or no effect by ISDN on Bay k 8644-induced contractions; however, there was a surprising potentiation by diltiazem and by nimodipine. Pretreatment of coronary rings with higher concentrations of ISDN or diltiazem caused an inhibition of Bay k 8644-induced contraction, while pretreatment with higher concentrations of nimodipine caused further potentiation of contraction elicited by Bay k 8644. Bay k 8644 increased the tension developed in response to high potassium (potential-operated channel activation) or histamine (receptor-operated channel activation). To account for the biphasic response to Bay k 8644 (dose-dependent contraction and relaxation), and the unexpected potentiation of Bay k 8644-induced contraction by nimodipine and by diltiazem, a molecular model is proposed for vascular smooth muscle in which Bay k 8644 functions as a partial calcium channel agonist at two functionally distinct 1,4-dihydropyridine "receptor sites." PMID:2581094

  6. Drug loading into porous calcium carbonate microparticles by solvent evaporation.

    PubMed

    Preisig, Daniel; Haid, David; Varum, Felipe J O; Bravo, Roberto; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim

    2014-08-01

    Drug loading into porous carriers may improve drug release of poorly water-soluble drugs. However, the widely used impregnation method based on adsorption lacks reproducibility and efficiency for certain compounds. The aim of this study was to evaluate a drug-loading method based on solvent evaporation and crystallization, and to investigate the underlying drug-loading mechanisms. Functionalized calcium carbonate (FCC) microparticles and four drugs with different solubility and permeability properties were selected as model substances to investigate drug loading. Ibuprofen, nifedipine, losartan potassium, and metronidazole benzoate were dissolved in acetone or methanol. After dispersion of FCC, the solvent was removed under reduced pressure. For each model drug, a series of drug loads were produced ranging from 25% to 50% (w/w) in steps of 5% (w/w). Loading efficiency was qualitatively analyzed by scanning electron microscopy (SEM) using the presence of agglomerates and drug crystals as indicators of poor loading efficiency. The particles were further characterized by mercury porosimetry, specific surface area measurements, differential scanning calorimetry, and USP2 dissolution. Drug concentration was determined by HPLC. FCC-drug mixtures containing equivalent drug fractions but without specific loading strategy served as reference samples. SEM analysis revealed high efficiency of pore filling up to a drug load of 40% (w/w). Above this, agglomerates and separate crystals were significantly increased, indicating that the maximum capacity of drug loading was reached. Intraparticle porosity and specific surface area were decreased after drug loading because of pore filling and crystallization on the pore surface. HPLC quantification of drugs taken up by FCC showed only minor drug loss. Dissolution rate of FCC loaded with metronidazole benzoate and nifedipine was faster than the corresponding FCC-drug mixtures, mainly due to surface enlargement, because only small

  7. Characterization of human periodontal ligament cells cultured on three-dimensional biphasic calcium phosphate scaffolds in the presence and absence of L-ascorbic acid, dexamethasone and β-glycerophosphate in vitro

    PubMed Central

    AN, SHAOFENG; GAO, YAN; LING, JUNQI

    2015-01-01

    The aim of this study was to evaluate the effect of porous biphasic calcium phosphate (BCP) scaffolds on the proliferation and osteoblastic differentiation of human periodontal ligament cells (hPDLCs) in the presence and absence of osteogenic inducer (L-ascorbic acid, dexamethasone and β-glycerophosphate). The cell growth within the scaffolds in the absence of osteogenic inducers was studied by cell counting kit-8 (CCK-8) assay and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and osteoblastic differentiation markers of hPDLCs in BCP scaffolds were examined in the presence and absence of osteogenic inducers. The cell number of hPDLCs in the BCP scaffolds was less than that of hPDLCs cultured in microplates (control). SEM images showed that cells successfully adhered to the BCP scaffolds and spread amongst the pores; they also produced abundant extracellular cell matrix. In the presence and absence of osteogenic inducers, the ALP activity of hPDLCs within BCP scaffolds was suppressed in varying degrees at all time-points. In the absence of osteogenic inducers, hPDLCs in BCP scaffolds express significant higher levels of osteopontin (OPN) mRNA than the control, and there were no significant differences for Runx2 and osteocalcin (OCN) mRNA levels compared with those cultured in microplates. In the presence of osteogenic inducers, Runx2 expression levels were significantly higher than those in control. OPN and OCN mRNA levels were downregulated slightly. Three-dimensional porous BCP scaffolds are able to stimulate the osteoblastic differentiation of hPDLCs in the presence and absence of osteogenic inducer and may be capable of supporting hPDLC-mediated bone formation. PMID:26622495

  8. Multiple silk coatings on biphasic calcium phosphate scaffolds: Effect on physical and mechanical properties, and in vitro osteogenic response of human mesenchymal stem cells

    PubMed Central

    Li, Jiao Jiao; Gil, Eun Seok; Hayden, Rebecca S.; Li, Chunmei; Roohani-Esfahani, Seyed-Iman; Kaplan, David L.; Zreiqat, Hala

    2013-01-01

    Ceramic scaffolds such as biphasic calcium phosphate (BCP) have been widely studied and used for bone regeneration, but their brittleness and low mechanical strength are major drawbacks. We report the first systematic study on the effect of silk coating in improving the mechanical and biological properties of BCP scaffolds, including 1) optimisation of the silk coating process by investigating multiple coatings, and 2) in vitro evaluation of the osteogenic response of human mesenchymal stem cells (hMSCs) on the coated scaffolds. Our results show that multiple silk coatings on BCP ceramic scaffolds can achieve a significant coating effect to approach the mechanical properties of native bone tissue and positively influence osteogenesis by hMSCs over an extended period. The silk coating method developed in this study represents a simple yet effective means of reinforcement that can be applied to other types of ceramic scaffolds with similar microstructure to improve osteogenic outcomes. PMID:23745709

  9. Physical characteristics and biocompatibility of the polycaprolactone-biphasic calcium phosphate scaffolds fabricated using the modified melt stretching and multilayer deposition.

    PubMed

    Thuaksuban, Nuttawut; Luntheng, Thunmaruk; Monmaturapoj, Naruporn

    2016-05-01

    Physical properties and biocompatibility of polycaprolactone (PCL)-biphasic calcium phosphate (BCP) scaffolds fabricated by the modified melt stretching and multilayer deposition (mMSMD) technique were evaluated in vitro. The PCL-BCP scaffold specimens included group A; PCL: BCP (wt%) = 80:20 and group B; 70:30. Mechanical properties of the scaffolds were assessed using a universal testing machine. Degradation behaviors of the scaffolds were assessed over 60 days. The amount of calcium and phosphate ions released from the scaffolds was detected over 30 days. Attachment and growth of osteoblasts on the scaffolds and indirect cytocompatibility to those cells were evaluated. The results showed that the scaffolds of both groups could withstand compressive forces on their superior aspect very well; however, their lateral aspect could only withstand light forces. Degradation of the scaffolds over 2 months was low (group A = 1.92 ± 0.47% and group B = 2.9 ± 1.3%,p > 0.05). The concentrations of calcium and phosphate ions released from the scaffolds of both groups significantly increased on day 7 (p < 0.05). Growth of the cells seemed to relate to accumulative increase in those ions. All results between the two ratios of the scaffolds were not statistically different. PMID:27013219

  10. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes.

    PubMed

    Badr-Mohammadi, Mohammad-Reza; Hesaraki, Saeed; Zamanian, Ali

    2014-01-01

    In the present study, different amounts (0.5-5 wt%) of a sol gel-derived zinc-containing nano-bioactive glass (NBG-Zn) powder were added to biphasic calcium phosphate (BCP). The mixtures were sintered at 1,100-1,300 °C and physical characteristics, mechanical properties, phase composition and morphology of them were studied. The samples were also soaked in human blood plasma for 15 days to evaluate variations in their surface morphologies. Rat calvarium-derived osteoblastic cells were seeded on tops of various samples and cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different culturing periods. The maximum bending strength (62 MPa) was obtained for BCP containing 0.5 wt% NBG-Zn at temperature 1,200 °C. This value was approximately 80% higher than that of pure BCP. The bending strength failed when both sintering temperature and amount of added NBG-Zn increased. At 1,100 °C, NBG-Zn additive did not change the phase composition of BCP. At temperatures 1,200 and 1,300 °C, both alpha-tricalcium calcium phosphate (α-TCP) and beta-tricalcium phosphate (β-TCP and) phases were detected. However, adding higher amount of NBG-Zn to BCP resulted in elevation of β-TCP at 1,200 °C and progression of α-TCP at 1,300 °C. Based on the microscopic observations, adding 0.5 wt% NBG-Zn to BCP led to disappearance of grain boundaries, reduction of micropores and formation of a monolithic microstructure. No calcium phosphate precipitation was observed on sample surfaces after soaking in blood plasma, but some pores were produced by phase dissolution. The size and volume of these pores were directly proportional to NBG-Zn content. Based on the cell studies, both BCP and NBG-Zn-added BCP samples supported attachment and proliferation of osteoblasts, but higher alkaline phosphatase enzyme was synthesized within the cells cultured on NBG-Zn-added BCP. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties

  11. Study of hMSC proliferation and differentiation on Mg and Mg-Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics.

    PubMed

    Singh, Satish S; Roy, Abhijit; Lee, Boeun; Kumta, Prashant N

    2016-07-01

    Biphasic mixtures of either Mg(2+) or combined Mg(2+) and Sr(2+) cation substituted β-tricalcium phosphate (β-TCP) and amorphous calcium phosphate (ACP) were prepared using a low temperature chemical phosphatizing and hydrolysis reaction approach. Scaffolds prepared using the cation substituted calcium phosphates were capable of supporting similar levels of human mesenchymal stem cell proliferation in comparison to commercially available β-TCP. The concentrations of Mg(2+), Sr(2+), and PO4(3-) released from these scaffolds were also within the ranges desired from previous reports to support both hMSC proliferation and osteogenic differentiation. Interestingly, hMSCs cultured directly on scaffolds prepared with only Mg(2+) substituted β-TCP were capable of supporting statistically significantly increased alkaline phosphatase activity, osteopontin, and osteoprotegerin expression in comparison to all compositions containing both Mg(2+) and Sr(2+), and commercially available β-TCP. hMSCs cultured in the presence of scaffold extracts also exhibited similar trends in the expression of osteogenic markers as was observed during direct culture. Therefore, it was concluded that the enhanced differentiation observed was due to the release of bioactive ions rather than the surface microstructure. The role of these ions on transforming growth factor-β and bone morphogenic protein signaling was also evaluated using a PCR array. It was concluded that the release of these ions may support enhanced differentiation through SMAD dependent TGF-β and BMP signaling. PMID:27127047

  12. Fabrication and mechanical testing of porous calcium phosphate bioceramic granules.

    PubMed

    Hsu, Y H; Turner, I G; Miles, A W

    2007-10-01

    Porous hydroxyapatite/tricalcium phosphate (HA/TCP) granules were fabricated by a novel technique of vacuum impregnation of reticulated polyurethane (PU) foams with ceramic slip. The resultant granules had 5-10% interconnected porosity with controlled pore sizes necessary to allow bone ingrowth combined with good mechanical properties. Using PU foams with a different number of pores per inch (ppi), porous HA/TCP granules in the size range of 2-8 mm were successfully manufactured. Dieplunger tests were used to compare the compression and relaxation properties of the granules with those of a commercially available bone graft product, BoneSave. The results of the die-plunger testing showed that the experimental granules were stiffer than the BoneSave materials and had less of a tendency to crumble to powder after testing. This therefore suggests that these experimental granules would be useful for impaction grafting and space filling applications. PMID:17554596

  13. General quantitative analysis of stress partitioning and boundary conditions in undrained biphasic porous media via a purely macroscopic and purely variational approach

    NASA Astrophysics Data System (ADS)

    Serpieri, Roberto; Travascio, Francesco

    2016-03-01

    In poroelasticity, the effective stress law relates the external stress applied to the medium to the macroscopic strain of the solid phase and the interstitial pressure of the fluid saturating the mixture. Such relationship has been formerly introduced by Terzaghi in form of a principle. To date, no poroelastic theory is capable of recovering a stress partitioning law in agreement with Terzaghi's postulated one in the absence of ad hoc constitutive assumptions on the medium. We recently proposed a variational macroscopic continuum description of two-phase poroelasticity to derive a general biphasic formulation at finite deformations, termed variational macroscopic theory of porous media (VMTPM). Such approach proceeds from the inclusion of the intrinsic volumetric strain among the kinematic descriptors aside to macroscopic displacements, and as a variational theory, uses the Hamilton least-action principle as the unique primitive concept of mechanics invoked to derive momentum balance equations. In a previous related work it was shown that, for the subclass of undrained problems, VMTPM predicts that stress is partitioned in the two phases in strict compliance with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. In the present contribution, we further develop the linearized framework of VMTPM to arrive at a general operative formula that allows the quantitative determination of stress partitioning in a jacketed test over a generic isotropic biphasic specimen. This formula is quantitative and general, in that it relates the partial phase stresses to the externally applied stress as function of partitioning coefficients that are all derived by strictly following a purely variational and purely macroscopic approach, and in the absence of any specific hypothesis on the microstructural or constitutive features of a given medium. To achieve this result, the stiffness coefficients of the theory are derived by using

  14. Thermodynamics and kinetics of the sulfation of porous calcium silicate

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Kohl, F. J.

    1981-01-01

    The sulfation of plasma sprayed calcium silicate in flowing SO2/air mixtures at 900 and 1000 C was investigated thermogravimetrically. Reaction products were analyzed using electron microprobe and X-ray diffraction analysis techniques, and results were compared with thermodynamic predictions. The percentage, by volume, of SO2 in air was varied between 0.036 and 10 percent. At 10 percent SO2 the weight gain curve displays a concave downward shoulder early in the sulfation process. An analytical model was developed which treats the initial process as one which decays exponentially with increasing time and the subsequent process as one which decays exponentially with increasing weight gain. At lower SO2 levels the initial rate is controlled by the reactant flow rate. At 1100 C and 0.036 percent SO2 there is no reaction, in agreement with thermodynamic predictions.

  15. Custom-Made Computer-Aided-Design/Computer-Aided-Manufacturing Biphasic Calcium-Phosphate Scaffold for Augmentation of an Atrophic Mandibular Anterior Ridge.

    PubMed

    Mangano, Francesco Guido; Zecca, Piero Antonio; van Noort, Ric; Apresyan, Samvel; Iezzi, Giovanna; Piattelli, Adriano; Macchi, Aldo; Mangano, Carlo

    2015-01-01

    This report documents the clinical, radiographic, and histologic outcome of a custom-made computer-aided-design/computer-aided-manufactured (CAD/CAM) scaffold used for the alveolar ridge augmentation of a severely atrophic anterior mandible. Computed tomographic (CT) images of an atrophic anterior mandible were acquired and modified into a 3-dimensional (3D) reconstruction model; this was transferred to a CAD program, where a custom-made scaffold was designed. CAM software generated a set of tool-paths for the manufacture of the scaffold on a computer-numerical-control milling machine into the exact shape of the 3D design. A custom-made scaffold was milled from a synthetic micromacroporous biphasic calcium phosphate (BCP) block. The scaffold closely matched the shape of the defect: this helped to reduce the time for the surgery and contributed to good healing. One year later, newly formed and well-integrated bone was clinically available, and two implants (AnyRidge, MegaGen, Gyeongbuk, South Korea) were placed. The histologic samples retrieved from the implant sites revealed compact mature bone undergoing remodelling, marrow spaces, and newly formed trabecular bone surrounded by residual BCP particles. This study demonstrates that custom-made scaffolds can be fabricated by combining CT scans and CAD/CAM techniques. Further studies on a larger sample of patients are needed to confirm these results. PMID:26064701

  16. Decontamination Using a Desiccant with Air Powder Abrasion Followed by Biphasic Calcium Sulfate Grafting: A New Treatment for Peri-Implantitis

    PubMed Central

    Lombardo, Giorgio; Corrocher, Giovanni; Rovera, Angela; Pighi, Jacopo; Marincola, Mauro; Lehrberg, Jeffrey; Nocini, Pier Francesco

    2015-01-01

    Peri-implantitis is characterized by inflammation and crestal bone loss in the tissues surrounding implants. Contamination by deleterious bacteria in the peri-implant microenvironment is believed to be a major factor in the etiology of peri-implantitis. Prior to any therapeutic regenerative treatment, adequate decontamination of the peri-implant microenvironment must occur. Herein we present a novel approach to the treatment of peri-implantitis that incorporates the use of a topical desiccant (HYBENX), along with air powder abrasives as a means of decontamination, followed by the application of biphasic calcium sulfate combined with inorganic bovine bone material to augment the intrabony defect. We highlight the case of a 62-year-old man presenting peri-implantitis at two neighboring implants in positions 12 and 13, who underwent access flap surgery, followed by our procedure. After an uneventful 2-year healing period, both implants showed an absence of bleeding on probing, near complete regeneration of the missing bone, probing pocket depth reduction, and clinical attachment gain. While we observed a slight mucosal recession, there was no reduction in keratinized tissue. Based on the results described within, we conclude that the use of HYBENX and air powder abrasives, followed by bone defect grafting, represents a viable option in the treatment of peri-implantitis. PMID:26000178

  17. Effect of Local Sustainable Release of BMP2-VEGF from Nano-Cellulose Loaded in Sponge Biphasic Calcium Phosphate on Bone Regeneration

    PubMed Central

    Sukul, Mousumi; Nguyen, Thuy Ba Linh; Min, Young-Ki; Lee, Sun-Young

    2015-01-01

    Bone regeneration is a coordinated process mainly regulated by multiple growth factors. Vascular endothelial growth factor (VEGF) stimulates angiogenesis and bone morphogenetic proteins (BMPs) induce osteogenesis during bone healing process. The aim of this study was to investigate how these growth factors released locally and sustainably from nano-cellulose (NC) simultaneously effect bone formation. A biphasic calcium phosphate (BCP)-NC-BMP2-VEGF (BNBV) scaffold was fabricated for this purpose. The sponge BCP scaffold was prepared by replica method and then loaded with 0.5% NC containing BMP2-VEGF. Growth factors were released from NC in a sustainable manner from 1 to 30 days. BNBV scaffolds showed higher cell attachment and proliferation behavior than the other scaffolds loaded with single growth factors. Bare BCP scaffolds and BNBV scaffolds seeded with rat bone marrow mesenchymal stem cells were implanted ectopically and orthotopically in nude mice for 4 weeks. No typical bone formation was exhibited in BNBV scaffolds in ectopic sites. BMP2 and VEGF showed positive effects on new bone formation in BNBV scaffolds, with and without seeded stem cells, in the orthotopic defects. This study demonstrated that the BNBV scaffold could be beneficial for improved bone regeneration. Stem cell incorporation into this scaffold could further enhance the bone healing process. PMID:25808925

  18. Bone formation with deproteinized bovine bone mineral or biphasic calcium phosphate in the presence of autologous platelet lysate: comparative investigation in rabbit.

    PubMed

    Chakar, Carole; Naaman, Nada; Soffer, Emmanuel; Cohen, Nicolas; El Osta, Nada; Petite, Hervé; Anagnostou, Fani

    2014-01-01

    Bone substitutes alone or supplemented with platelet-derived concentrates are widely used to promote bone regeneration but their potency remains controversial. The aim of this study was, therefore, to compare the regenerative potential of preparations containing autologous platelet lysate (APL) and particles of either deproteinized bovine bone mineral (DBBM) or biphasic calcium phosphate (BCP), two bone substitutes with different resorption patterns. Rabbit APL was prepared by freeze-thawing a platelet suspension. Critical-size defects in rabbit femoral condyle were filled with DBBM or DBBM+APL and BCP or BCP+APL. Rabbits were sacrificed after six weeks and newly formed bone and residual implanted material were evaluated using nondemineralized histology and histomorphometry. New bone was observed around particles of all fillers tested. In the defects filled with BCP, the newly formed bone area was greater (70%; P < 0.001) while the residual material area was lower (60%; P < 0.001) than that observed in those filled with DBBM. New bone and residual material area of defects filled with either APL+DBBM or APL+BCP were similar to those observed in those filled with the material alone. In summary, osteoconductivity and resorption of BCP were greater than those of DBBM, while APL associated with either DBBM or BCP did not have an additional benefit. PMID:24982676

  19. Enzyme-mediated in situ preparation of biocompatible hydrogel composites from chitosan derivative and biphasic calcium phosphate nanoparticles for bone regeneration

    NASA Astrophysics Data System (ADS)

    Phuong Nguyen, Thi; Hai Phuong Doan, Bach; Dang, Dinh Vu; Khoa Nguyen, Cuu; Quyen Tran, Ngoc

    2014-03-01

    Injectable chitosan-based hydrogels have been widely studied toward biomedical applications because of their potential performance in drug/cell delivery and tissue regeneration. In this study we introduce tetronic-grafted chitosan containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles (NPs) of biphasic calcium phosphate (BCP), mixture of hydroxyapatite (HAp) and tricalcium phosphate (TCP), forming injectable biocomposites. The grafted copolymers were well-characterized by 1H NMR. BCP nanoparticles were prepared by precipitation method under ultrasonic irradiation and then characterized by using x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The suspension of the copolymer and BCP nanoparticles rapidly formed hydrogel biocomposite within a few seconds of the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The compressive stress failure of the wet hydrogel was at 591 ± 20 KPa with the composite 10 wt% BCP loading. In vitro study using mesenchymal stem cells showed that the composites were biocompatible and cells are well-attached on the surfaces.

  20. The Use of Platelet-Rich Fibrin in Combination With Biphasic Calcium Phosphate in the Treatment of Bone Defects: A Histologic and Histomorphometric Study☆

    PubMed Central

    Bölükbaşı, Nilüfer; Yeniyol, Sinem; Tekkesin, Merva Soluk; Altunatmaz, Kemal

    2013-01-01

    Background Platelet-rich fibrin (PRF) is a leukocyte and platelet concentrate containing many growth factors. Its potential for hard tissue augmentation as a sole grafting material or in combination with other grafting materials has been investigated in many studies. Objective The aim of this histologic study was to evaluate the efficacy of PRF mixed with biphasic calcium phosphate (BCP) on bone regeneration in surgically created bone defects. Methods Defects 5 mm in diameter were created in both tibias of 6 sheep. The defects were left empty or grafted with BCP, PRF, or BCP+PRF. Animals were killed at 10, 20, and 40 days. The specimens underwent histologic and histomorphometric analysis. Results None of the groups displayed any signs of necrosis. Inflammation was observed in all groups at 10 days; 2 specimens of PRF+BCP and all empty defects showed inflammatory cell infiltration at 20 days. During the 40-day evaluation period, the PRF+BCP group showed the highest ratios of new bone. The other 3 groups showed statistically similar results. In the BCP and PRF+BCP groups, the residual graft ratios were decreased at consecutive time intervals. The difference between the 2 groups was not statistically significant during follow-up. Conclusions The current study revealed a histomorphometric increase in bone formation with the addition of PRF to BCP in surgically created defects in sheep tibia. PMID:24465037

  1. Custom-Made Computer-Aided-Design/Computer-Aided-Manufacturing Biphasic Calcium-Phosphate Scaffold for Augmentation of an Atrophic Mandibular Anterior Ridge

    PubMed Central

    Mangano, Francesco Guido; van Noort, Ric; Apresyan, Samvel; Piattelli, Adriano; Macchi, Aldo

    2015-01-01

    This report documents the clinical, radiographic, and histologic outcome of a custom-made computer-aided-design/computer-aided-manufactured (CAD/CAM) scaffold used for the alveolar ridge augmentation of a severely atrophic anterior mandible. Computed tomographic (CT) images of an atrophic anterior mandible were acquired and modified into a 3-dimensional (3D) reconstruction model; this was transferred to a CAD program, where a custom-made scaffold was designed. CAM software generated a set of tool-paths for the manufacture of the scaffold on a computer-numerical-control milling machine into the exact shape of the 3D design. A custom-made scaffold was milled from a synthetic micromacroporous biphasic calcium phosphate (BCP) block. The scaffold closely matched the shape of the defect: this helped to reduce the time for the surgery and contributed to good healing. One year later, newly formed and well-integrated bone was clinically available, and two implants (AnyRidge, MegaGen, Gyeongbuk, South Korea) were placed. The histologic samples retrieved from the implant sites revealed compact mature bone undergoing remodelling, marrow spaces, and newly formed trabecular bone surrounded by residual BCP particles. This study demonstrates that custom-made scaffolds can be fabricated by combining CT scans and CAD/CAM techniques. Further studies on a larger sample of patients are needed to confirm these results. PMID:26064701

  2. Decontamination using a desiccant with air powder abrasion followed by biphasic calcium sulfate grafting: a new treatment for peri-implantitis.

    PubMed

    Lombardo, Giorgio; Corrocher, Giovanni; Rovera, Angela; Pighi, Jacopo; Marincola, Mauro; Lehrberg, Jeffrey; Nocini, Pier Francesco

    2015-01-01

    Peri-implantitis is characterized by inflammation and crestal bone loss in the tissues surrounding implants. Contamination by deleterious bacteria in the peri-implant microenvironment is believed to be a major factor in the etiology of peri-implantitis. Prior to any therapeutic regenerative treatment, adequate decontamination of the peri-implant microenvironment must occur. Herein we present a novel approach to the treatment of peri-implantitis that incorporates the use of a topical desiccant (HYBENX), along with air powder abrasives as a means of decontamination, followed by the application of biphasic calcium sulfate combined with inorganic bovine bone material to augment the intrabony defect. We highlight the case of a 62-year-old man presenting peri-implantitis at two neighboring implants in positions 12 and 13, who underwent access flap surgery, followed by our procedure. After an uneventful 2-year healing period, both implants showed an absence of bleeding on probing, near complete regeneration of the missing bone, probing pocket depth reduction, and clinical attachment gain. While we observed a slight mucosal recession, there was no reduction in keratinized tissue. Based on the results described within, we conclude that the use of HYBENX and air powder abrasives, followed by bone defect grafting, represents a viable option in the treatment of peri-implantitis. PMID:26000178

  3. A prospective, randomized controlled preclinical trial to evaluate different formulations of biphasic calcium phosphate in combination with a hydroxyapatite collagen membrane to reconstruct deficient alveolar ridges.

    PubMed

    Nevins, Myron; Nevins, Marc L; Schupbach, Peter; Kim, Soo-Woo; Lin, Zhao; Kim, David M

    2013-04-01

    Many patients and clinicians would prefer a synthetic particulate bone replacement graft, but most available alloplastic biomaterials have limited osteogenic potential. An alloplast with increased regenerative capacity would be advantageous for the treatment of localized alveolar ridge defects. This prospective, randomized controlled preclinical trial utilized 6 female foxhounds to analyze the osteogenic impact of different formulations of biphasic calcium phosphate (BCP) in combination with an hydroxyapatite-collagen membrane and their ability to reconstruct deficient alveolar ridges for future implant placement. The grafted sites were allowed to heal 3 months, and then trephine biopsies were obtained to perform light microscopic and histomorphometric analyses. All treated sites healed well with no early membrane exposure or adverse soft tissue responses during the healing period. The grafted sites exhibited greater radiopacity than the surrounding native bone with BCP particles seen as radiopaque granules. The graft particles appeared to be well-integrated and no areas of loose particles were observed. Histologic evaluation demonstrated BCP particles embedded in woven bone with dense connective tissue/marrow space. New bone growth was observed around the graft particles as well as within the structure of the graft particulate. There was intimate contact between the graft particles and newly formed bone, and graft particles were bridged by the newly formed bone in all biopsies from the tested groups. The present study results support the potential of these BCP graft particulates to stimulate new bone formation. Clinical studies are recommended to confirm these preclinical findings. PMID:23611676

  4. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells.

    PubMed

    Trojani, Christophe; Boukhechba, Florian; Scimeca, Jean-Claude; Vandenbos, Fanny; Michiels, Jean-François; Daculsi, Guy; Boileau, Pascal; Weiss, Pierre; Carle, Georges F; Rochet, Nathalie

    2006-06-01

    We have used a new synthetic injectable composite constituted of hydroxyapatite/tricalcium phosphate (HA/TCP) particles in suspension in a self-hardening Si-hydroxypropylmethylcellulose (HPMC) hydrogel. The aim of this study was to evaluate in vivo the biocompatibility and the new bone formation efficacy of this scaffold loaded with undifferentiated bone marrow stromal cells (BMSCs). This biomaterial was mixed extemporaneously with BMSCs prepared from C57BL/6 mice, injected in subcutaneous and intramuscular sites and retrieved 4 and 8 weeks after implantation. Dissection of the implants revealed a hard consistency and the absence of a fibrous capsule reflecting a good integration into the host tissues. Histological analysis showed mineralized woven bone in the granule inter-space with numerous active osteoclasts attached to the particles as assessed by the presence of multinucleated cells positively stained for TRAP activity and for the a3 subunit of the V-ATPase. Small vessels were homogenously distributed in the whole implants. Similar results were obtained in SC and IM sites and no bone formation was observed in the control groups when cell-free and particle-free transplants were injected. These results indicate that this injectable biphasic calcium phosphate-hydrogel composite mixed with undifferentiated BMSCs is a new promising osteoinductive bone substitute. It also provides with an original in vivo model of osteoclast differentiation and function. PMID:16510180

  5. Porous calcium phosphate cement for alveolar bone regeneration.

    PubMed

    Félix Lanao, R P; Hoekstra, J W M; Wolke, J G C; Leeuwenburgh, S C G; Plachokova, A S; Boerman, O C; van den Beucken, J J J P; Jansen, J A

    2014-06-01

    The present study aimed to provide information on material degradation and subsequent alveolar bone formation, using composites consisting of calcium phosphate cement (CPC) and poly(lactic-co-glycolic) acid (PLGA) with different microsphere morphology (hollow vs dense). In addition to the plain CPC-PLGA composites, loading the microspheres with the growth factors platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF) was investigated. A total of four different CPC composites were applied into one-wall mandible bone defects in beagle dogs in order to evaluate them as candidates for alveolar bone regeneration. These composites consisted of CPC and hollow or dense PLGA microspheres, with or without the addition of PDGF-IGF growth factor combination (CPC-hPLGA, CPC-dPLGA, CPC-hPLGAGF , CPC-dPLGAGF ). Histological evaluation revealed significantly more bone formation in CPC-dPLGA than in CPC-hPLGA composites. The combination PDGF-IGF enhanced bone formation in CPC-hPLGA materials, but significantly more bone formation occurred when CPC-dPLGA was used, with or without the addition of growth factors. The findings demonstrated that CPC-dPLGA composite was the biologically superior material for use as an off-the-shelf material, due to its good biocompatibility, enhanced degradability and superior bone formation. PMID:22777771

  6. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.

    PubMed

    Chen, Y; Wang, J; Zhu, X D; Tang, Z R; Yang, X; Tan, Y F; Fan, Y J; Zhang, X D

    2015-01-01

    Neovascularization plays a key role in bone repair and regeneration. In the present study, four types of porous calcium phosphate (CaP) ceramics, namely hydroxyapatite (HA), biphasic calcium phosphates (BCP-1 and BCP-2) and β-tricalcium phosphate (β-TCP), with HA to β-TCP ratios of 100/0, 70/30, 30/70 and 2/98, respectively, were investigated in terms of their angiogenic induction. The in vitro cell culture revealed that the ceramics could promote proliferation and angiogenesis of human umbilical vein endothelial cells (HUVECs). This result could be achieved by stimulating CCD-18Co human fibroblasts to secrete angiogenic factors (vascular endothelial growth factor, basic fibroblast growth factor and transforming growth factor-β) as a paracrine effect, as well as by up-regulating HUVECs to express these angiogenic factors and their receptors (KDR, FGFR1 and ACVRL1) and the downstream eNOS as an autocrine effect. These effects were more significant in β-TCP and BCP-2, which had a higher content of β-TCP phase. In the in vivo implantation into the thigh muscles of mice, the process of neovascularization of the ceramics was initiated at 2 weeks and the mature vascular networks were formed at 4 weeks as visualized by hematoxylin and eosin staining and scanning electron microscopy. Microvessel density count confirmed that β-TCP and BCP-2 induced more microvessels to form than HA or BCP-1. This phenomenon was further confirmed by the significantly up-regulated expressions of angiogenesis-related genes in the ingrowth of cells into the inner pores of the two ceramics. All the results confirmed the angiogenic induction of porous CaP ceramics, and a higher content of β-TCP phase had an enhanced effect on the neovascularization of the ceramics. PMID:25246313

  7. Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules

    PubMed Central

    Nam, Sunyoung; Won, Jong-Eun; Kim, Cheol-Hwan; Kim, Hae-Won

    2011-01-01

    Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. PMID:21772958

  8. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole

    PubMed Central

    Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae

    2015-01-01

    Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing. PMID:26491693

  9. Vertical bone regeneration with deproteinised bovine bone mineral or biphasic calcium phosphate in the rabbit calvarium: effect of autologous platelet lysate.

    PubMed

    Chakar, C; Soffer, E; Cohen, N; Petite, H; Naaman, N; Anagnostou, F

    2015-01-01

    Although bone substitutes associated with platelet concentrates are widely used to vertically reconstruct alveolar ridges, their respective and specific contribution remain controversial. The aim of this study was to evaluate the benefit of using either biphasic calcium phosphate (BCP) or demineralised bovine bone mineral (DBBM) alone or with autologous platelet lysate (APL) in vertical bone regeneration. The study involved fourteen New Zealand rabbits. Autologous APL was prepared by freeze-thawing from a platelet suspension (10(9) platelets/ml). Four CP titanium (cpTi) cylinders were fixed to each calvarium; one cylinder was empty, one was filled with APL alone and the others were filled either with BCP or BCP + APL or DBBM or DBBM + APL. New bone formation and biomaterial resorption were evaluated using non-demineralised histology and histomorphometry. After 6 weeks, new bone formation was observed in all cylinders. The newly formed bone in the cylinders filled with APL alone, DBBM and BCP was significantly increased by (0.6-, 2.5- and 3.3-fold, respectively) (P < 0.0001) compared to results obtained with the empty cylinders. Vertical bone height in the cylinders filled with BCP was greater to that observed with DBBM. The residual material in the cylinders filled with BCP was significantly (P < 0.0001) lower (0.35-fold) than that with DBBM. Both newly formed bone and residual material in the cylinders filled with BCP + APL or DBBM + APL were similar to those filled with either BCP or DBBM, respectively. This study provided evidence that APL alone, as well as DBBM and BCP, have a beneficial effect on vertical bone formation and remodelling. APL associated with either DBBM or BCP did not provide additional benefits. PMID:25578693

  10. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.

    PubMed

    Kunert-Keil, Christiane; Scholz, Franziska; Gedrange, Tomasz; Gredes, Tomasz

    2015-05-01

    The aim of this study was to evaluate the in vivo biocompatibility of a biphasic calcium phosphate (BCP) bone graft substitute consisting of 60% hydroxyapatite and 40% β-tricalcium phosphate (β-TCP) in comparison to a pure β-TCP of identical shape and porosity. The materials were evaluated using an established rat cranial defect model in 24 animals. One bone defect with a diameter of 5mm was created per animal. The defects were filled with either BCP or β-TCP and left to heal for 4 weeks. Twelve samples (6 per material) were processed for histological evaluation and immunohistochemistry. The remaining 12 samples were processed for mRNA expression analysis. No signs of inflammation or adverse material reactions were detected. New bone formation in the former defect site did not differ between the two groups (BCP: 49.2%; β-TCP: 52.4%). Osteoblast-like and TRAP-positive osteoclast-like cells were found at the surface of the bone graft substitute granules. The β-TCP group showed significantly higher mRNA levels for the bone resorption marker Acp5 and osteogenic differentiation marker Runx2. The expression of IGF1, IGF2, VEGF, Phex, Alpl, Col1, Col2, Bglap and MMP8 did not differ between the groups. The in vivo biocompatibility of BCP is to a large part identical to those of TCP. Within the limitation of the animal model, the implantation study shows that BCP can be used as bone graft substitute, due to the fact that the material integrates into tissue, remains stable in the implantation bed and serves as an osteoconductive scaffold. PMID:24439994

  11. Late-term healing in an augmented sinus with different ratios of biphasic calcium phosphate: a pilot study using a rabbit sinus model

    PubMed Central

    2016-01-01

    Purpose The aim of this pilot study was to determine the osteoconductivity and dimensional stability of augmented sinuses using different ratios of biphasic calcium phosphate (BCP) in a rabbit sinus model. Methods Each sinus of New Zealand white rabbits (2.5–3.5 kg) was assigned to one of two groups: BCP with a hydroxyapatite to β-tricalcium phosphate (HA:β-TCP) ratio of 70:30 (group TCP30) and BCP with an HA:β-TCP ratio of 30:70 (group TCP70). After preparing a window in the antral wall of a sinus, the Schneiderian membrane was elevated, and the applicable material was grafted. A fluorochrome calcein green was injected five days before euthanizing the animals at four months post-surgery. The specimens were analyzed histologically, histomorphometrically, and by using micro-computed tomography (micro-CT). Results Micro-CT analysis revealed that the total augmented volume and the new bone volume did not differ significantly between the two groups whereas the resorption of materials was greater in the TCP70 group. The trabecular thickness, number, and separation also did not differ significantly between the two groups. Histomorphometrically, the areas of total augmentation, new bone, and residual material, as well as the ratio of new-bone-material contact did not differ significantly between the groups. Histologically, the residual particles were more scattered in the TCP70 group than in the TCP30 group. The fluorescence of the calcein green did not differ notably between the two groups. Conclusions The osteoconductivity and dimensional stability of the two BCPs with different ratios tested in this study were comparable after four months of healing. Therefore, we conclude that both BCPs show promise as a bone substitute for sinus augmentation. PMID:26937294

  12. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture.

    PubMed

    Cuadros, Teresa R; Erices, Alejandro A; Aguilera, José M

    2015-06-01

    Hydrophilic polysaccharides can be used to prepare porous matrices with a range of possible applications. One such application involves acting as scaffolds for cell culture. A new homogeneous and highly porous biopolymeric porous matrix (BPM) of calcium alginate/gelatin was produced by following a simple process. The key to this process was the selection of the porogen (aerated gelatin). The preparation technique comprises the following steps: incorporating the porogen into the solution of alginate (3%), molding, cross-linking the alginate in 1.41% CaCl2 (maximum gel strength; Cuadros et al., 2012. Carbohydr. Polym. 89, 1198-1206), molding, leaching and lyophilization. Cylinders of BPM were shown to have a relative density of 0.0274 ± 0.002, porosity of 97.26 ± 0.18%, an average internal pore size of 204 ± 58 µm and enhanced mechanical properties, while imbibing more than 11 times their dry weight in water. In vitro cell culture testing within BPM using mesenchymal stem cells was demonstrated by MTT assays and expression of alkaline phosphatase. The BPM provided a suitable microenvironment for seeding, adhesion, proliferation and osteogenic differentiation of cells. The preparation technique and resulting porous matrix represent potential tools for future study and further applications. PMID:25661688

  13. Bacterially induced calcium carbonate precipitation and strontium coprecipitation in a porous media flow system.

    PubMed

    Lauchnor, Ellen G; Schultz, Logan N; Bugni, Steven; Mitchell, Andrew C; Cunningham, Alfred B; Gerlach, Robin

    2013-02-01

    Strontium-90 is a principal radionuclide contaminant in the subsurface at several Department of Energy sites in the Western U.S., causing a threat to groundwater quality in areas such as Hanford, WA. In this work, we used laboratory-scale porous media flow cells to examine a potential remediation strategy employing coprecipitation of strontium in carbonate minerals. CaCO(3) precipitation and strontium coprecipitation were induced via ureolysis by Sporosarcina pasteurii in two-dimensional porous media reactors. An injection strategy using pulsed injection of calcium mineralization medium was tested against a continuous injection strategy. The pulsed injection strategy involved periods of lowered calcite saturation index combined with short high fluid velocity flow periods of calcium mineralization medium followed by stagnation (no-flow) periods to promote homogeneous CaCO(3) precipitation. By alternating the addition of mineralization and growth media the pulsed strategy promoted CaCO(3) precipitation while sustaining the ureolytic culture over time. Both injection strategies achieved ureolysis with subsequent CaCO(3) precipitation and strontium coprecipitation. The pulsed injection strategy precipitated 71-85% of calcium and 59% of strontium, while the continuous injection was less efficient and precipitated 61% of calcium and 56% of strontium. Over the 60 day operation of the pulsed reactors, ureolysis was continually observed, suggesting that the balance between growth and precipitation phases allowed for continued cell viability. Our results support the pulsed injection strategy as a viable option for ureolysis-induced strontium coprecipitation because it may reduce the likelihood of injection well accumulation caused by localized mineral plugging while Sr coprecipitation efficiency is maintained in field-scale applications. PMID:23282003

  14. Development of hollow/porous calcium pectinate beads for floating-pulsatile drug delivery.

    PubMed

    Badve, Shraddha S; Sher, Praveen; Korde, Aruna; Pawar, Atmaram P

    2007-01-01

    The purpose of this work was to develop hollow calcium pectinate beads for floating-pulsatile release of diclofenac sodium intended for chronopharmacotherapy. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. To overcome limitations of various approaches for imparting buoyancy, hollow/porous beads were prepared by simple process of acid-base reaction during ionotropic crosslinking. The floating beads obtained were porous (34% porosity), hollow with bulk density<1 and had Ft50% of 14-24 h. In vivo studies by gamma scintigraphy determined on rabbits showed gastroretention of beads up to 5 h. The floating beads provided expected two-phase release pattern with initial lag time during floating in acidic medium followed by rapid pulse release in phosphate buffer. This approach suggested the use of hollow calcium pectinate microparticles as promising floating-pulsatile drug delivery system for site- and time-specific release of drugs acting as per chronotherapy of diseases. PMID:16971097

  15. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability.

    PubMed

    Yang, Jingzhou; Hu, Xiaozhi; Huang, Juntong; Chen, Kai; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Sun, Xudong

    2016-02-14

    Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering. PMID:26805036

  16. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    NASA Astrophysics Data System (ADS)

    Lindahl, Carl; Xia, Wei; Engqvist, Håkan; Snis, Anders; Lausmaa, Jukka; Palmquist, Anders

    2015-10-01

    The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca2+ in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300-500 nm. Cross-section imaging showed a thickness of 300-500 nm. In addition, dissolution tests in Tris-HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  17. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability

    NASA Astrophysics Data System (ADS)

    Yang, Jingzhou; Hu, Xiaozhi; Huang, Juntong; Chen, Kai; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Sun, Xudong

    2016-02-01

    Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering.

  18. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate.

    PubMed

    Zhao, Xiu-Lan; Masaihiko, Saigusa

    2007-01-01

    Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnO(x)), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnO(x)-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaCl2 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS. PMID:17918598

  19. Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Han, Shuguang; Pang, Xiaofeng; Ding, Qionqion; Yan, Yajing

    2013-04-01

    A novel method of electrolytic porous hydroxyapatite/calcium silicate (HA/CaSiO3) composite coating was conducted on pure titanium in a mixed solution of nano-SiO2, Ca(NO3)2 and NH4H2PO4. SEM observation showed that the composite layer was porous, thereby providing abundant sites for the osteoblast adhesion. XRD results showed that the composite coating was mainly composed of HA and CaSiO3. Bond strength testing exhibited that HA-CaSiO3/Ti had higher bond strength than HA/Ti. The HA/CaSiO3 coating was more corrosion resistant than the HA coating based on the polarization tests. In vitro cell experiments demonstrated that both the HA and HA/CaSiO3 coatings showed better cell response than the bared titanium. In addition, the proliferation of MC3T3-E1 osteoblast cells grown on the HA/CaSiO3 coating were remarkably higher than those on the bared Ti and pure HA coating.

  20. Phase transformations during processing and in vitro degradation of porous calcium polyphosphates.

    PubMed

    Hu, Youxin; Pilliar, Robert; Grynpas, Marc; Kandel, Rita; Werner-Zwanziger, Ulrike; Filiaggi, Mark

    2016-07-01

    A 2-Step sinter/anneal treatment has been reported previously for forming porous CPP as biodegradable bone substitutes [9]. During the 2-Step annealing treatment, the heat treatment used strongly affected the rate of CPP degradation in vitro. In the present study, x-ray diffraction and (31)P solid state nuclear magnetic resonance were used to determine the phases that formed using different heat treating processes. The effect of in vitro degradation (in PBS at 37 °C, pH 7.1 or 4.5) was also studied. During CPP preparation, β-CPP and γ-CPP were identified in powders formed from a calcium monobasic monohydrate precursor after an initial calcining treatment (10 h at 500 °C). Melting of this CPP powder (at 1100 °C), quenching and grinding formed amorphous CPP powders. Annealing powders at 585 °C (Step-1) resulted in rapid sintering to form amorphous porous CPP. Continued annealing to 650 °C resulted in crystallization to form a multi-phase structure of β-CPP primarily plus lesser amounts of α-CPP, calcium ultra-phosphates and retained amorphous CPP. Annealing above 720 °C and up to 950 °C transformed this to β-CPP phase. In vitro degradation of the 585 °C (Step-1 only) and 650 °C Step-2 annealed multi-phase samples occurred significantly faster than the β-CPP samples formed by Step-2 annealing at or above 720 °C. This faster degradation was attributable to preferential degradation of thermodynamically less stable phases that formed in samples annealed at 650 °C (i.e. α-phase, ultra-phosphate and amorphous CPP). Degradation in lower pH solutions significantly increased degradation rates of the 585 and 650 °C annealed samples but had no significant effect on the β-CPP samples. PMID:27255688

  1. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds.

    PubMed

    Qiu, Kai; Zhao, Xiao Jun; Wan, Chang Xiu; Zhao, Chang Sheng; Chen, Yuan Wei

    2006-03-01

    Preparation, characterization and cellular biocompatibility study of a series of calcium polyphosphate containing 0-100 mol% of Ca2+ replaced by Sr2+ were reported. The osteoblastic ROS17/2.8 cell line was used and seeded on the strontium-doped calcium polyphosphate (SCPP) scaffolds to estimate its optimal dose and to study its potential to support the growth of osteoblastic cells for bone tissue engineering. The effects of SCPP on cells' proliferation and differentiation were evaluated by MTT and ALP activity assay. The results showed that porous SCPP did not exert cytotoxic effect on the cells. In addition, the proliferation and differentiation of the growth of ROS17/2.8 cells on the SCPP containing a low dose of strontium showed a higher level compared to the control, and the SCPP containing 1% strontium was optimal according to the results of MTT and ALP activity assay. The cells on the porous SCPP formed a continuous layer on the outer and inner surface observed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The bunchy collagens were excreted from the cells and the calcium granules wrapped by collagens were sedimentated on the surface of cells. The results suggested that the biodegradable SCPP could stimulate the proliferation and differentiation of ROS17/2.8 cells in vitro after addition of proper dose of strontium. The porous SCPP may be a promising material for the bone tissue engineering. PMID:16143392

  2. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications.

    PubMed

    Tian, Meng; Chen, Feng; Song, Wei; Song, Yancheng; Chen, Yuanwei; Wan, Changxiu; Yu, Xixun; Zhang, Xiaohua

    2009-07-01

    The purpose of this study was to investigate in vivo biocompatibility and osteogenesis as well as degradability of the porous strontium-doped calcium polyphosphate (SCPP) scaffolds as a biomaterial for bone substitute applications. The evaluation was performed on a rabbit model over a period of 16 weeks by histology combined with image analysis, X-ray microradiography and immunohistochemistry methods. The histological and X-ray microradiographic results showed that the SCPP scaffold exhibited good biocompatibility and extensive osteoconductivity with host bone. Moreover, a significant more bone formation was observed in the SCPP group compared with that in the CPP group, especially at the initial stage after implantation. New bone volumes (NBVs) of the SCPP group determined at week 4, 8 and 16 were 14, 27 and 45%, respectively. Accordingly, NBVs of the CPP group were 10, 19 and 40%. Immunohistochemical results revealed that both the expression of collagen type I and bone morphogenetic proteins in the SCPP group were higher than that in the CPP group, which might be associated with the release of strontium ions during the implantation. In addition, during 16 weeks implantation the SCPP scaffold exhibited similar degradability with the CPP scaffold in vivo. Both scaffolds showed the greatest degradation rate for the first 4 weeks, and then the degradation rate gradually decreased. The results presented in this study demonstrated that SCPP scaffold can be considered as a biocompatible material, making it attractive for bone substitute application purposes. PMID:19267259

  3. Porous polymer film calcium ion chemical sensor and method of using the same

    DOEpatents

    Porter, Marc D.; Chau, Lai-Kwan

    1991-02-12

    A method of measuring calcium ions is disclosed wherein a calcium sensitive reagent, calcichrome, is immobilized on a porour polymer film. The reaction of the calcium sensitive reagent to the Ca(II) is then measured and concentration determined as a function of the reaction.

  4. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  5. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    NASA Astrophysics Data System (ADS)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  6. Water vapor absorption in porous media polluted by calcium nitrate studied by time domain nuclear magnetic resonance.

    PubMed

    Gombia, Mirko; Bortolotti, Villiam; Brown, Robert J S; Camaiti, Mara; Cavallero, Luisa; Fantazzini, Paola

    2009-08-01

    Nuclear magnetic resonance relaxation analysis of liquid water (1)H nuclei in real porous media, selected for their similar composition (carbonate rocks) and different pore space architecture, polluted with calcium nitrate, is presented to study the kinetics of water condensation and salt deliquescence inside the pore space. These phenomena are responsible for deterioration of porous materials when exposed to environmental injury by pollution in a humid atmosphere. The theory is well described for simple pore geometries, but it is not yet well understood in real porous media with wide distributions of pore sizes and connections. The experiment is performed by following in time the formation of liquid water inside the pore space by T(1) and T(2) relaxation time distributions. The distributions allow one to see the effects of both the salt concentration and the pore space structure on the amount of water vapor condensed and its kinetics. It is shown that, for a given lithotype, even with different amounts of pollutant, the rate-average relaxation time T(1ra) tends to increase monotonically with NMR signal, proportional to the amount of liquid water. T(1ra) is often inversely associated with surface-to-volume ratio. This suggests a trend toward the filling of larger pores as amounts of liquid water increase, but it does not indicate a strict sequential filling of pores in order of size and starting with the smallest; in fact, relaxation time distributions show clearly that this is not the case. Increased amounts of salt lead to both markedly increased rates and markedly increased amounts of water absorption. NMR measurements of amounts of water, together with relaxation time distributions, give the possibility of information on the effect of pollution in porous materials exposed to humid atmospheres but sheltered from liquid water, even before the absorption of large amounts of moisture and subsequent damage. These phenomena are of importance also in other fields

  7. Synthesis of eucalyptus/tea tree oil absorbed biphasic calcium phosphate-PVDF polymer nanocomposite films: a surface active antimicrobial system for biomedical application.

    PubMed

    Bagchi, Biswajoy; Banerjee, Somtirtha; Kool, Arpan; Thakur, Pradip; Bhandary, Suman; Hoque, Nur Amin; Das, Sukhen

    2016-06-22

    A biocompatible poly(vinylidene) difluoride (PVDF) based film has been prepared by in situ precipitation of calcium phosphate precursors. Such films were surface absorbed with two essential oils namely eucalyptus and tea tree oil. Physico-chemical characterization of the composite film revealed excellent stability of the film with 10% loading of oils in the PVDF matrix. XRD, FTIR and FESEM measurements confirmed the presence of hydroxyapatite and octacalcium phosphate in the PVDF matrix which showed predominantly β phase. Strong bactericidal activity was observed with very low minimum bactericidal concentration (MBC) values on both E. coli and S. aureus. The composite films also resisted biofilm formation as observed by FESEM. The release of essential oils from the film showed an initial burst followed by a very slow release over a period of 24 hours. Antibacterial action of the film was found to be primarily due to the action of essential oils which resulted in leakage of vital fluids from the microorganisms. Both necrotic and apoptotic morphologies were observed in bacterial cells. Biocompatibility studies with the composite films showed negligible cytotoxicity to mouse mesenchymal and myoblast cells at MBC concentration. PMID:27271864

  8. Calcium

    MedlinePlus

    ... body stores more than 99 percent of its calcium in the bones and teeth to help make and keep them ... in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and ...

  9. Radiological evaluation of the effect of biphasic calcium phosphate scaffold (HA+TCP) with 5, 10 and 20 percentage of porosity on healing of segmental bone defect in rabbit radius.

    PubMed

    Farahpour, M R; Sharifi, D; B, A A; Veshkini, A; Soheil, A

    2012-01-01

    The objective of this study is to radiologically evaluate the effects of biphasic calcium phosphate scaffold with 5, 10 and 20 percentage of porosity on cortical bone repair in rabbits. In this study, 28 male white rabbits were examined. Rabbits were divided into four groups. After induction of general anesthesia, a segmental bone defect of 10 mm in length was created in the middle of the right radius shaft. In group A, the defect was stabilized with miniplate and 2 screws and left untreated. In groups B, C and D tricalcium phosphate scaffold mixed with hydroxyapatite (TCP+HA) with 5%, 10% and 20% porosity was used to fi ll the bone defect. Bone regeneration and HA+TCP scaffold resorption were assessed by X-ray at 1, 2 and 3 months after the surgery. In group A, 3 months after surgery, periosteal callus was not found but intercortical callus was observed. In groups B and C, 3 months after surgery medullary bridging callus and intercortical callus were found, periosteal callus was not found, TCP+HA scaffold were observed. In group D, 2 months after the surgery, medullary bridging callus and intercortical callus were found, 3 months later, periosteal callus was not found, most of scaffold had disappeared and were unclear and partial bone formation was recognized. Differences observed in radiological findings were significant between group A and groups B, C, D. Differences between groups B and C were not significant, but between group D and groups B and C were significant. The results of this study showed that TCP+HA scaffold is an osteoconductive and osteoinductive biomaterial. Scaffold of TCP+HA can increase the amount of newly formed bone and more rapid regeneration of bone defects. These results suggest TCP+HA scaffold may considerably be used in the treatment of cortical bone defect and other orthopaedic defects PCL (Tab. 2, Fig. 4, Ref. 20). PMID:22979907

  10. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. A.; Balestra, R. M.; Rocha, M. N.; Peripolli, S. B.; Andrade, M. C.; Pereira, L. C.; Oliveira, M. V.

    2013-01-01

    The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  11. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  12. Interaction of Parallel Flow Mixing Zones and Calcium Carbonate Precipitation with High and Low Permeability Inclusions in Porous Media

    NASA Astrophysics Data System (ADS)

    Redden, G. D.; Fox, D. T.; Zundel, M.; Guo, L.; Lu, C.; Huang, H.; Fujita, Y.

    2012-12-01

    Engineered precipitation in porous media involves tight, non-linear coupling between reactant transport, mixing and reaction front propagation. We conducted an experimental campaign to investigate this coupling in homogenous and heterogeneous media where reactant mixing occurs across the interface between two solutions and a mineral precipitate (CaCO_{3}) is formed. Two solutions containing the components for precipitation of calcium carbonate (Ca^{2+} and HCO^{-}_{3}) were injected side-by-side into intermediate-scale flow cells packed with silica sand. Both of the individual influent solutions were undersaturated with respect to calcite. At the interface between the solutions, reactants mix by a combination of dispersive and diffusive transport, and calcium carbonate precipitation results. In homogeneous media we observed that transport across the interface decreased with time, as expected, and the volume-averaged rate of reaction decreased. When high and low permeability inclusions were placed in the path of the original mixing interface, the spatial and temporal evolution of the calcium carbonate precipitation zone showed more complicated coupling between transport and reaction kinetics. Low permeability inclusions (permeability 25X lower than the surrounding media) caused deflection of the mixing zone. Precipitate initially forms in the center of the mixing zone. Subsequently, lateral migration of the mixing/precipitation zone was observed that resulted in the inclusion being encapsulated by carbonate mineral. Precipitate that is subsequently exposed to the undersaturated calcium containing solution persists. For a high permeability inclusion (permeability 17X greater than the surrounding media) placed in the path of the mixing zone, the flow and mixing zone was initially focused and passed through the inclusion. Interestingly, enhanced dispersion was observed downstream of the inclusion, and the spatial extent of calcium carbonate precipitation was greater

  13. Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface.

    PubMed

    Stirnimann, Tanja; Atria, Susanna; Schoelkopf, Joachim; Gane, Patrick A C; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim

    2014-05-15

    In the present study, we aimed to characterize the compressibility and compactibility of the novel pharmaceutical excipient, functionalized calcium carbonate (FCC). We studied three FCC modifications and compared the values for compressibility and compactibility with mannitol, microcrystalline cellulose (MCC), and ground calcium carbonate (CC 330) as well as mixtures of paracetamol and MCC or FCC at drug loads of 0%, 25%, 50%, 75%, and 100% (w/w). We used Heckel analysis, modified Heckel analysis, and Leuenberger analysis to characterize the compaction and compression behavior of the mixtures. Compaction analysis of FCC showed this material to markedly differ from ground calcium carbonate, exhibiting properties, i.e. plastic deformability, similar to those of MCC. This effect was attributed to the highly lamellar structure of FCC particles whose thickness is of the order of a single crystal unit cell. According to Leuenberger parameters, we concluded that FCC-based tablet formulations had mechanical properties equal or superior to those formulated with MCC. FCC tablets with high tensile strength were obtained already at low compressive pressures. Owing to these favorable properties (i.e. marked tensile strength and porosity), FCC promises to be suitable for the preparation of solid dosage forms. PMID:24631309

  14. Evaluation of In Vivo Osteogenic Potential of Bone Morphogenetic Protein 2-Overexpressing Human Periodontal Ligament Stem Cells Combined with Biphasic Calcium Phosphate Block Scaffolds in a Critical-Size Bone Defect Model.

    PubMed

    Yi, TacGhee; Jun, Choong-Man; Kim, Su Jin; Yun, Jeong-Ho

    2016-03-01

    Human periodontal ligament stem cells (hPDLSCs) are considered potential cellular carriers for gene delivery in the field of tissue regeneration. This study tested the osseoregenerative potential of hPDLSCs transduced with replication-deficient recombinant adenovirus (rAd) containing the gene encoding bone morphogenetic protein-2 (BMP2; hPDLSCs/rAd-BMP2) in both in vivo and in vitro osteogenic environments. After the optimal condition for rAd-mediated transduction was determined, hPDLSCs were transduced to express BMP2. In vivo bone formation was evaluated in a critical-size rat calvarial bone defect model that more closely mimics the harsher in vivo milieu for bone regeneration than subcutaneous transplantation model. As support materials for bone regeneration, block-type biphasic calcium phosphate (BCP) scaffolds were combined with hPDLSCs and/or BMP2 and transplanted into critical-size bone defects in rats. Experimental groups were as follows: BCP scaffold control (group 1 [Gr1]), scaffold containing recombinant human BMP2 (rhBMP2; group 2 [Gr2]), scaffold loaded with normal hPDLSCs (group 3 [Gr3]), scaffold combined with both normal hPDLSCs and rhBMP2 (group 4 [Gr4]), and scaffold loaded with hPDLSCs transduced with rAd-BMP2 (hPDLSCs/rAd-BMP2; group 5 [Gr5]). Our data showed that new bone formation was highest in Gr2. Less mineralization was observed in Gr3, Gr4, and Gr5 in which hPDLSCs were transplanted. In vitro transwell assay demonstrated that hPDLSCs exert an inhibitory activity on BMP2-induced osteogenic differentiation. Our findings suggest that the in vivo bone regenerative potential of BMP2-overexpressing hPDLSCs could be compromised in a critical-size rat calvarial bone defect model. Thus, further investigations are required to elucidate the underlying mechanisms and to develop efficient techniques for improved tissue regeneration. PMID:26825430

  15. The Effects of Void Geometry and Contact Angle on the Absorption of Liquids into Porous Calcium Carbonate Structures.

    PubMed

    Ridgway, Cathy J.; Schoelkopf, Joachim; Matthews, G. Peter; Gane, Patrick A. C.; James, Philip W.

    2001-07-15

    The absorption (permeation) of alcohols into porous blocks of calcium carbonate has been studied experimentally and with a computer model. The experimental measurement was of change in apparent weight of a block with time after contact with liquid. The modeling used the previously developed 'Pore-Cor' model, based on unit cells of 1000 cubic pores connected by cylindrical throats. To gain some insight into absorption into voids of complex geometry, and to provide a representation of heterogeneities in surface interaction energy, the cylindrical throats were converted to double cones. Relative to cylinders, such geometries caused hold-ups of the percolation of nonwetting fluids with respect to increasing applied pressure, and a change in the rate of absorption of wetting fluids. Both the measured absorption of the alcohols and the simulated absorption of the alcohols and of water showed significant deviations from that predicted by an effective hydraulic radius approximation. The simulation demonstrated the development of a highly heterogeneous wetting front, and of preferred wetting pathways that were perturbed by inertial retardation. The findings are useful in the design of high-performance, low-waste pigments for paper coatings, and environmentally friendly printing inks, as well as in wider industrial, environmental, and geological contexts. Copyright 2001 Academic Press. PMID:11427007

  16. Osseointegration aspects of placed implant in bone reconstruction with newly developed block-type interconnected porous calcium hydroxyapatite

    PubMed Central

    DOI, Kazuya; KUBO, Takayasu; MAKIHARA, Yusuke; OUE, Hiroshi; MORITA, Koji; OKI, Yoshifumi; KAJIHARA, Shiho; TSUGA, Kazuhiro

    2016-01-01

    ABSTRACT Artificial bone has been employed to reconstruct bone defects. However, only few reports on implant placement after block bone grafting exist. Objectives The purpose of this study was to evaluate the osseointegration of dental implant in bone reconstructions with interconnected porous calcium hydroxyapatite (IP-CHA). Material and Methods The IP-CHA cylinders (D; 4.3 mm, H; 10.0 mm) were placed into bone sockets in each side of the femurs of four male dogs. The IP-CHA on the right side was a 24-week sample. Twelve weeks after placement, a titanium implant was placed into a socket that was prepared in half of the placed IP-CHA cylinder on the right side. On the left side, another IP-CHA cylinder was placed as a 12-week sample. After another 12 weeks, the samples were harvested, and the bone regeneration and bone-implant contact (BIC) ratios were measured. Results New bone formation area was superior in the 24-week IP-CHA compared with the 12-week IP-CHA. BIC was not significantly different between IP-CHA and the parent sites. Osseointegration was detected around the implant in IP-CHA-reconstructed bone. Conclusion Our preliminary results suggest that IP-CHA may be a suitable bone graft material for reconstructing bones that require implant placement. PMID:27556202

  17. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

    PubMed

    Hu, Yang; Ma, Shanshan; Yang, Zhuohong; Zhou, Wuyi; Du, Zhengshan; Huang, Jian; Yi, Huan; Wang, Chaoyang

    2016-04-01

    In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of d-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications. PMID:26774574

  18. Porous calcium niobate nanosheets prepared by an exfoliation-restacking route.

    PubMed

    Hashemzadeh, Fatemeh

    2016-01-01

    The single phase layered perovskite-type niobate KCa2Nb3O10 was obtained by a solid state reaction of the starting materials (K2CO3, CaCO3 and Nb2O5) at 1,200 °C. Then the H(+)-exchanged form (HCa2Nb3O10) was successfully exfoliated into colloidal porous single layers on the intercalating action of tetra(butyl)ammonium ion. The various characterization techniques such as X-ray diffraction (XRD), field-emission scanning electron microscopy, N2 absorption-desorption and diffuse reflectance UV-visible spectrometry gave important information on the unusual structural features of the perovskite-related niobate nanosheets. XRD analysis of the exfoliated nanosheets showed a unique profile with wide peaks that represented individual molecular aspects of the nanosheets. The Brunauer-Emmett-Teller isotherm of the exfoliated coiled nanosheets showed a sharp increase in the surface area by a factor of >30 in comparison to parent layered material, which is due to the exfoliation and restacking process. The nanosheets in this study were also found to act as a semiconductor with a wide band gap that is due to the quantum size effect. PMID:27003079

  19. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion.

    PubMed

    Perez, Roman A; Del Valle, Sergio; Altankov, George; Ginebra, Maria-Pau

    2011-04-01

    Hydroxyapatite and hybrid gelatine/hydroxyapatite microspheres were obtained through a water in oil emulsion of a calcium phosphate cement (CPC). The setting reaction of the CPC, in this case the hydrolysis of α-tricalcium phosphate, was responsible for the consolidation of the microspheres. After the setting reaction, the microspheres consisted of an entangled network of hydroxyapatite crystals, with a high porosity and pore sizes ranging between 0.5 and 5 μm. The size of the microspheres was tailored by controlling the viscosity of the hydrophobic phase, the rotation speed, and the initial powder size of the CPC. The incorporation of gelatin increased the sphericity of the microspheres, as well as their size and size dispersion. To assess the feasibility of using the microspheres as cell microcarriers, Saos-2 cells were cultured on the microspheres. Fluorescent staining, SEM studies, and LDH quantification showed that the microspheres were able to sustain cell growth. Cell adhesion and proliferation was significantly improved in the hybrid gelatin/hydroxyapatite microspheres as compared to the hydroxyapatite ones. PMID:21290594

  20. Asymmetry In Biphase Data Signals

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1992-01-01

    Report presents analysis of some effects of asymmetry in Manchester (biphase) binary data signal transmitted by phase modulation of sinusoidal carrier signal. Report extends analysis described in article, "Effects of Asymmetry of NRZ Data Signals on Performance" (NPO-18261), to include case where data biphase-modulated directly on residual carrier.

  1. Processing highly porous calcium phosphate ceramics for use in bioreactor cores for culturing human liver cells in-vitro

    NASA Astrophysics Data System (ADS)

    Finoli, Anthony

    Chronic liver disease is the 11th highest cause of death in the United States claiming over 30,000 lives in 2009. The current treatment for chronic liver failure is liver transplantation but the availability of tissue is far less than the number of patients in need. To develop human liver tissue in the lab a 3D culturing environment must be created to support the growth of a complex tissue. Hydroxyapatite (HAp) has been chosen as a scaffold material because of its biocompatibility in the body and the ability to create a bioresorbable scaffold. By using a ceramic material, it is possible to create a three dimensional, protective environment in which tissue can grow. The first part of this study is to examine the behavior of adult human liver cells grown on composites of HAp and different biocompatible hydrogels. Porous HAp has been created using an emulsion foaming technique and cells are injected into the structure after being suspended in a hydrogel and are kept in culture for up to 28 days. Functional assays, gene expression and fluorescent microscopy will be used to examine these cultures. The second part of this study will be to develop a processing technique to create a resorbable scaffold that incorporates a vascular system template. Previous experiments have shown the high temperature decomposition of HAp into resorbable calcium phosphates will be used to create a multiphase material. By controlling the amount of transformation product formed, it is proposed that the resorption of the scaffold can be tailored. To introduce a pore network to guide the growth of a vascular system, a positive-negative casting technique has also been developed. A positive polymer copy can be made of a natural vascular system and ceramic is foamed around the copy. During sintering, the polymer is pyrolyzed leaving a multiscale pore network in the ceramic. By combining these techniques, it is proposed that a calcium phosphate bioreactor core can be processed that is suitable for

  2. Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, μCT, SEM, and XRD.

    PubMed

    de Wild, Michael; Amacher, Fabienne; Bradbury, Christopher R; Molenberg, Aart

    2016-04-01

    Resorbable bone substitute materials are widely used for bone augmentation after tumor resection, parallel to implant placement, or in critical size bone defects. In this study, the structural dissolution of a biphasic calcium phosphate bone substitute material with a hydroxyapatite (HA)/tricalcium phosphate (β-TCP) ratio of 60/40 was investigated by repeatedly placing porous blocks in EDTA solution at 37 °C. At several time points, the blocks were investigated by SEM, µCT, and gravimetry. It was found that always complete 2-3 µm sized grains were removed from the structure and that the β-TCP is dissolved more rapidly. This selective dissolution of the β-TCP grains was confirmed by XRD measurements. The blocks were eroded from the outside toward the center. The structure remained mechanically stable because the central part showed a delayed degradation and because the slower dissolving HA grains preserved the integrity of the structure. PMID:25952407

  3. Preparation and Evaluation of Solid Dispersion Tablets by a Simple and Manufacturable Wet Granulation Method Using Porous Calcium Silicate.

    PubMed

    Fujimoto, Yumi; Hirai, Nobuaki; Takatani-Nakase, Tomoka; Takahashi, Koichi

    2016-01-01

    The aim of this study was to prepare and evaluate solid dispersion tablets containing a poorly water-soluble drug using porous calcium silicate (PCS) by a wet granulation method. Nifedipine (NIF) was used as the model poorly water-soluble drug. Solid dispersion tablets were prepared with the wet granulation method using ethanol and water by a high-speed mixer granulator. The binder and disintegrant were selected from 7 and 4 candidates, respectively. The dissolution test was conducted using the JP 16 paddle method. The oral absorption of NIF was studied in fasted rats. Xylitol and crospovidone were selected as the binder and disintegrant, respectively. The dissolution rates of NIF from solid dispersion formulations were markedly enhanced compared with NIF powder and physical mixtures. Powder X-ray diffraction (PXRD) confirmed the reduced crystallinity of NIF in the solid dispersion formulations. Fourier transform infrared (FT-IR) showed the physical interaction between NIF and PCS in the solid dispersion formulations. NIF is present in an amorphous state in granules prepared by the wet granulation method using water. The area under the plasma concentration-time curve (AUC) and peak concentration (C(max)) values of NIF after dosing rats with the solid dispersion granules were significantly greater than those after dosing with NIF powder. The solid dispersion formulations of NIF prepared with PCS using the wet granulation method exhibited accelerated dissolution rates and superior oral bioavailability. This method is very simple, and may be applicable to the development of other poorly water-soluble drugs. PMID:27039831

  4. Effect of strontium ions on calcification of preosteoblasts cultured on porous calcium- and phosphate-containing titanium oxide layers formed by micro-arc oxidation.

    PubMed

    Sato, Mizuki; Chen, Peng; Tsutsumi, Yusuke; Shiota, Makoto; Hanawa, Takao; Kasugai, Shohei

    2016-01-01

    Strontium (Sr) ions were added to calcium- and phosphate-containing porous titanium oxide layers formed by micro-arc oxidation (MAO) of titanium (Ti) substrates to improve their osseointegration. An MC3T3-E1 preosteoblast was used to evaluate the effect of the incorporated Sr species on cell calcification. Similar surface microporous morphologies of the oxide layers were observed for all specimens produced by MAO, while the contents of the incorporated Sr ions increased with increasing Sr concentrations in MAO electrolytes. The calcium- and phosphate-containing porous layers promoted the cell alkaline phosphatase (ALP) activity, while cell calcification was promoted by the Sr addition. In particular, the ALP activity significantly increased after 10 days of culture, and larger areas of calcified deposits were observed for the specimens treated with MAO electrolytes containing 0.15 mol L(-1) of Sr species. The effect of Sr addition on the calcification of the MAO-treated Ti oxide layers was established in this study. PMID:27477229

  5. EQUIVALENCE BETWEEN SHORT-TIME BIPHASIC AND INCOMPRESSIBLE ELASTIC MATERIAL RESPONSES

    PubMed Central

    Ateshian, Gerard A.; Ellis, Benjamin J.; Weiss, Jeffrey A.

    2009-01-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response δt≪Δ2/‖C4‖||K||, where Δ is a characteristic dimension, C4 is the elasticity tensor and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components. PMID:17536908

  6. Development and Characterization of Biphasic Hydroxyapatite/β-TCP Cements

    PubMed Central

    Gallinetti, Sara; Canal, Cristina; Ginebra, Maria-Pau; Ferreira, J

    2014-01-01

    Biphasic calcium phosphate bioceramics composed of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have relevant properties as synthetic bone grafts, such as tunable resorption, bioactivity, and intrinsic osteoinduction. However, they have some limitations associated to their condition of high-temperature ceramics. In this work self-setting Biphasic Calcium Phosphate Cements (BCPCs) with different HA/β-TCP ratios were obtained from self-setting α-TCP/β-TCP pastes. The strategy used allowed synthesizing BCPCs with modulated composition, compressive strength, and specific surface area. Due to its higher solubility, α-TCP was fully hydrolyzed to a calcium-deficient HA (CDHA), whereas β-TCP remained unreacted and completely embedded in the CDHA matrix. Increasing amounts of the non-reacting β-TCP phase resulted in a linear decrease of the compressive strength, in association to the decreasing amount of precipitated HA crystals, which are responsible for the mechanical consolidation of apatitic cements. Ca2+ release and degradation in acidic medium was similar in all the BCPCs within the timeframe studied, although differences might be expected in longer term studies once β-TCP, the more soluble phase was exposed to the surrounding media. PMID:25866411

  7. Intervertebral Disk Tissue Engineering Using Biphasic Silk Composite Scaffolds

    PubMed Central

    Park, Sang-Hyug; Gil, Eun Seok; Cho, Hongsik; Mandal, Biman B.; Tien, Lee W.; Min, Byoung-Hyun

    2012-01-01

    Scaffolds composed of synthetic, natural, and hybrid materials have been investigated as options to restore intervertebral disk (IVD) tissue function. These systems fall short of the lamellar features of the native annulus fibrosus (AF) tissue or focus only on the nucleus pulposus (NP) tissue. However, successful regeneration of the entire IVD requires a combination approach to restore functions of both the AF and NP. To address this need, a biphasic biomaterial structure was generated by using silk protein for the AF and fibrin/hyaluronic acid (HA) gels for the NP. Two cell types, porcine AF cells and chondrocytes, were utilized. For the AF tissue, two types of scaffold morphologies, lamellar and porous, were studied with the porous system serving as a control. Toroidal scaffolds formed out of the lamellar, and porous silk materials were used to generate structures with an outer diameter of 8 mm, inner diameter of 3.5 mm, and a height of 3 mm (the interlamellar distance in the lamellar scaffold was 150–250 μm, and the average pore sizes in the porous scaffolds were 100–250 μm). The scaffolds were seeded with porcine AF cells to form AF tissue, whereas porcine chondrocytes were encapsulated in fibrin/HA hydrogels for the NP tissue and embedded in the center of the toroidal disk. Histology, biochemical assays, and gene expression indicated that the lamellar scaffolds supported AF-like tissue over 2 weeks. Porcine chondrocytes formed the NP phenotype within the hydrogel after 4 weeks of culture with the AF tissue that had been previously cultured for 2 weeks, for a total of 6 weeks of cultivation. This biphasic scaffold simulating in combination of both AF and NP tissues was effective in the formation of the total IVD in vitro. PMID:21919790

  8. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    PubMed

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres. PMID:26652353

  9. 3D Porous Calcium-Alginate Scaffolds Cell Culture System Improved Human Osteoblast Cell Clusters for Cell Therapy

    PubMed Central

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects. PMID:25825603

  10. Preliminary study on removing Cs⁺/Sr²⁺ by activated porous calcium silicate-A by-product from high-alumina fly ash recycling industry.

    PubMed

    Chu, Yingying; Wang, Rong; Chen, Mengjun

    2015-01-01

    ¹³⁷Cs⁺/⁹⁰Sr²⁺-containing radioactive wastewater is one of the most important problems that the world has been facing with. A by-product, activated porous calcium silicate, is generated at high levels by the pre-desiliconizing and soda-lime-sintering processes for producing Al₂O₃from high-alumina fly ash. In order to examine if this by-product could be used as an absorbent for removal of ¹³⁷Cs⁺/⁹⁰Sr²⁺ from radioactive wastewater, various parameters, such as pH, adsorbent dose, contact time, and initial concentration, were discussed. Results indicated that the equilibrium reached in about 2 hr. Activated porous calcium silicate was highly pH sensitive and able to remove Cs(+)/Sr²⁺ in a near-neutral environment. The adsorption equilibrium was best described by Freundlich isotherm equations, and the adsorption of Cs⁺/Sr²⁺ was a physical process. The adsorption kinetic data could be better fitted by the pseudo-second-order model, and the adsorption was controlled by multidiffusion. Current study showed that activated porous calcium silicate has a good adsorption of Cs⁺/Sr²⁺ for their removal. However, other characteristics, such as selectivity because of coexisting cations, elution and regeneration, thermal stability, and acid resistance, should be discussed carefully before using it in an actual field. PMID:25946962

  11. Analysis of bone formation on porous and calcium phosphate-coated acetabular cups: a randomised clinical [18F]fluoride PET study.

    PubMed

    Ullmark, Gösta; Sörensen, Jens; Nilsson, Olle

    2012-01-01

    We present a study using Fluoride-Positron Emission Tomography (F-PET/CT) to analyse new bone formation in periacetabular bone adjacent to press fit cups following THA. In 16 THA (8 patients) with bilateral hip osteoarthritis simultaneous bilateral total hip arthroplasty (THA) was performed, employing electrochemically applied calcium phosphate coated (HA) cups or porous-coated (PC) cups allocated at random to compare the two sides. A reference group of 13 individuals with a normal healthy hip was used to determine 'normal' bone metabolism. [18F]fluoride -PET/CT was used to analyze bone formation adjacent to the cups 1 week, 4 months and 12 months after surgery. Clinical and radiographic evaluation was performed preoperatively, postoperatively and at 2 years. Bone forming activity had a mean of 5.71, 4.69 and 3.47 SUV around the HA- and 5.04, 4.80 and 3.50 SUV around the PC-cups at 1 week, 4 months and 12 months respectively. Normal bone metabolism was 3.68 SUV. After 1 year activity had declined to normal levels for both groups. The clinical results were good in all cases. HA coating resulted in higher uptake indicating higher bone forming activity after 1 week. F-PET/CT is a valuable tool to analyse bone formation and secondary stabilisation of an acetabular cup. PMID:22547382

  12. Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium

    NASA Astrophysics Data System (ADS)

    Oliveira, Fernando G.; Ribeiro, Ana R.; Perez, Geronimo; Archanjo, Bráulio S.; Gouvea, Cristol P.; Araújo, Joyce R.; Campos, Andrea P. C.; Kuznetsov, Alexei; Almeida, Clara M.; Maru, Márcia M.; Achete, Carlos A.; Ponthiaux, Pierre; Celis, Jean-Pierre; Rocha, Luis A.

    2015-06-01

    The growth of the dental implant market increases the concern regarding the quality, efficiency, and lifetime of dental implants. Titanium and its alloys are dominant materials in this field thanks to their high biocompatibility and corrosion resistance, but they possess a very low wear resistance. Besides problems related to osteointegration and bacterial infections, tribocorrosion phenomena being the simultaneous action between corrosion and wear, are likely to occur during the lifetime of the implant. Therefore, tribocorrosion resistant surfaces are needed to guarantee the preservation of dental implants. This work focused on the incorporation of magnesium, together with calcium and phosphorous, in the structure of titanium oxide films produced by micro-arc oxidation (MAO). The characterization of morphology, chemical composition, and crystalline structure of the surfaces provided important insights leading to (1) a better understanding of the oxide film growth mechanisms during the MAO treatment; and (2) a better awareness on the degradation process during tribocorrosion tests. The addition of magnesium was shown to support the formation of rutile which improves the tribocorrosion properties of the surfaces.

  13. Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation.

    PubMed

    Zhang, Le; Qiao, Minna; Gao, Hongjie; Hu, Bin; Tan, Hua; Zhou, Xiaobo; Li, Chang Ming

    2016-08-21

    Herein, we have developed a novel approach to investigate the mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model, experimental optimization of key parameters and experimental data validation of the predictive power of the model. The advantages of this study are that the impact of mechanical stimulation on bone regeneration in a porous biodegradable CaP scaffold is considered, experimental design is used to investigate the optimal combination of growth factors loaded on the porous biodegradable CaP scaffold to promote bone regeneration and the training, testing and analysis of the model are carried out by using experimental data, a data-mining algorithm and related sensitivity analysis. The results reveal that mechanical stimulation has a great impact on bone regeneration in a porous biodegradable CaP scaffold and the optimal combination of growth factors that are encapsulated in nanospheres and loaded into porous biodegradable CaP scaffolds layer-by-layer can effectively promote bone regeneration. Furthermore, the model is robust and able to predict the development of bone regeneration under specified conditions. PMID:27460959

  14. Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Qiao, Minna; Gao, Hongjie; Hu, Bin; Tan, Hua; Zhou, Xiaobo; Li, Chang Ming

    2016-08-01

    Herein, we have developed a novel approach to investigate the mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model, experimental optimization of key parameters and experimental data validation of the predictive power of the model. The advantages of this study are that the impact of mechanical stimulation on bone regeneration in a porous biodegradable CaP scaffold is considered, experimental design is used to investigate the optimal combination of growth factors loaded on the porous biodegradable CaP scaffold to promote bone regeneration and the training, testing and analysis of the model are carried out by using experimental data, a data-mining algorithm and related sensitivity analysis. The results reveal that mechanical stimulation has a great impact on bone regeneration in a porous biodegradable CaP scaffold and the optimal combination of growth factors that are encapsulated in nanospheres and loaded into porous biodegradable CaP scaffolds layer-by-layer can effectively promote bone regeneration. Furthermore, the model is robust and able to predict the development of bone regeneration under specified conditions.

  15. Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/{beta}-tricalcium phosphate ratios

    SciTech Connect

    Kannan, S.; Lemos, I.A.F.; Rocha, J.H.G.; Ferreira, J.M.F. . E-mail: jmf@cv.ua.pt

    2005-10-15

    The present paper investigates the preparation of magnesium (Mg) substituted biphasic mixtures of different hydroxyapatite (HAP)/{beta}-tricalcium phosphate ({beta}-TCP) ratios through aqueous precipitation method. The concentrations of added magnesium (Mg) were varied with the calcium in order to obtain constant (Ca+Mg)/P ratios of 1.67 ranging from 1.62+0.05, 1.58+0.09 and 1.54+0.13, respectively. The as prepared powders were calcined at different temperatures to study the phase behaviour and thermal stability. The powders were characterized by the following analytical techniques: TG-DTA, X-ray diffraction and FT-IR. The results have shown that substitution of Mg in the calcium-deficient apatites resulted in the formation of biphasic mixtures of different HAP/{beta}-TCP ratios after heating above 700 deg. C. The ratios of the formation of phase mixtures were dependent on the calcium deficiency in the apatites with the higher deficiency having the strongest impact on the increased formation of {beta}-TCP and the substituted Mg was found to stabilize the {beta}-TCP phase. - Graphical abstract: Role of Mg in the behaviour of calcium-deficient apatites during calcination to form biphasic mixtures.

  16. Monophasic and Biphasic Electrical Stimulation Induces a Precardiac Differentiation in Progenitor Cells Isolated from Human Heart

    PubMed Central

    Pietronave, Stefano; Zamperone, Andrea; Oltolina, Francesca; Colangelo, Donato; Follenzi, Antonia; Novelli, Eugenio; Diena, Marco; Pavesi, Andrea; Consolo, Filippo; Fiore, Gianfranco Beniamino; Soncini, Monica

    2014-01-01

    Electrical stimulation (ES) of cells has been shown to induce a variety of responses, such as cytoskeleton rearrangements, migration, proliferation, and differentiation. In this study, we have investigated whether monophasic and biphasic pulsed ES could exert any effect on the proliferation and differentiation of human cardiac progenitor cells (hCPCs) isolated from human heart fragments. Cells were cultured under continuous exposure to monophasic or biphasic ES with fixed cycles for 1 or 3 days. Results indicate that neither stimulation protocol affected cell viability, while the cell shape became more elongated and reoriented more perpendicular to the electric field direction. Moreover, the biphasic ES clearly induced the upregulation of early cardiac transcription factors, MEF2D, GATA-4, and Nkx2.5, as well as the de novo expression of the late cardiac sarcomeric proteins, troponin T, cardiac alpha actinin, and SERCA 2a. Both treatments increased the expression of connexin 43 and its relocation to the cell membrane, but biphasic ES was faster and more effective. Finally, when hCPCs were exposed to both monophasic and biphasic ES, they expressed de novo the mRNA of the voltage-dependent calcium channel Cav 3.1(α1G) subunit, which is peculiar of the developing heart. Taken together, these results show that ES alone is able to set the conditions for early differentiation of adult hCPCs toward a cardiac phenotype. PMID:24328510

  17. Biphasic Investigation of Tissue Mechanical Response During Freezing Front Propagation

    PubMed Central

    Wright, Jamie; Han, Bumsoo; Chuong, Cheng-Jen

    2012-01-01

    Cryopreservation of engineered tissue (ET) has achieved limited success due to limited understanding of freezing-induced biophysical phenomena in ETs, especially fluid-matrix interaction within ETs. To further our understanding of the freezing-induced fluid-matrix interaction, we have developed a biphasic model formulation that simulates the transient heat transfer and volumetric expansion during freezing, its resulting fluid movement in the ET, elastic deformation of the solid matrix and the corresponding pressure redistribution within. Treated as a biphasic material, the ET consists of a porous solid matrix fully saturated with interstitial fluid. Temperature-dependent material properties were employed and phase change was included by incorporating the latent heat of phase change into an effective specific heat term. Model-predicted temperature distribution, the location of the moving freezing front, and the ET deformation rates through the time course compare reasonably well with experiments reported previously. Results from our theoretical model show that behind the marching freezing front, the ET undergoes expansion due to phase change of its fluid contents. It compresses the region preceding the freezing front leading to its fluid expulsion and reduced regional fluid volume fractions. The expelled fluid is forced forward and upward into the region further ahead of the compression zone causing a secondary expansion zone; which then compresses the region further downstream with much reduced intensity. Overall, it forms an alternating expansion-compression pattern which moves with the marching freezing front. The present biphasic model helps us to gain insights into some facets of the freezing process and cryopreservation treatment that could not be gleaned experimentally. Its resulting understanding will ultimately be useful to design and improve cryopreservation protocols for ETs. PMID:22757502

  18. Biphasic Ferrogels for Triggered Drug and Cell Delivery

    PubMed Central

    Cezar, Christine A.; Kennedy, Stephen M.; Mehta, Manav; Weaver, James C.; Gu, Luo; Vandenburgh, Herman

    2014-01-01

    Ferrogels are an attractive material for many biomedical applications due to their ability to deliver a wide variety of therapeutic drugs on-demand. However, typical ferrogels have yet to be optimized for use in cell-based therapies, as they possess limited ability to harbor and release viable cells. Previously, we have demonstrated an active porous scaffold that exhibits large deformations under moderate magnetic fields, resulting in enhanced biological agent release. However, at small device sizes optimal for implantation (e.g., 2 mm thickness), these monophasic ferrogels no longer achieve significant deformation due to a reduced body force. In this study, we present a new biphasic ferrogel containing an iron oxide gradient capable of large deformations and triggered release even at small gel dimensions. Biphasic ferrogels demonstrate increased porosity, enhanced mechanical properties, and potentially increased biocompatibility due to their reduced iron oxide content. With their ability to deliver drugs and cells on-demand, it is expected that these ferrogels will have wide utility in the fields of tissue engineering and regenerative medicine. PMID:24862232

  19. Biphasic nature of gastric emptying.

    PubMed

    Siegel, J A; Urbain, J L; Adler, L P; Charkes, N D; Maurer, A H; Krevsky, B; Knight, L C; Fisher, R S; Malmud, L S

    1988-01-01

    The existence of a lag phase during the gastric emptying of solid foods is controversial. It has been hypothesised that among other early events, the stomach requires a period of time to process solid food to particles small enough to be handled as a liquid. At present no standardised curve fitting techniques exist for the characterisation and quantification of the lag phase or the emptying rate of solids and liquids. We have evaluated the ability of a modified power exponential function to define the emptying parameters of two different solid meals. Dual labelled meals were administered to 24 normal volunteers. The subjects received meals consisting of either Tc-99m in vivo labelled chicken liver or Tc-99m-egg, which have different densities, and In-111-DTPA in water. The emptying curves were biphasic in nature. For solids, this represented an initial delay in emptying or lag phase followed by an equilibrium emptying phase characterised by a constant rate of emptying. The curves were analysed using a modified power exponential function of the form y(t) = 1-(1-e-kt)beta, where y(t) is the fractional meal retention at time t, k is the gastric emptying rate in min-1, and beta is the extrapolated y-intercept from the terminal portion of the curve. The length of the lag phase and half-emptying time increased with solid food density (31 +/- 8 min and 77.6 +/- 11.2 min for egg and 62 +/- 16 min and 94.1 +/- 14.2 min for chicken liver, respectively). After the lag phase, both solids had similar emptying rates, and these rates were identical to those of the liquids. In vitro experiments indicated that the egg meal disintegrated much more rapidly than the chicken liver under mechanical agitation in gastric juice, lending further support to the hypothesis that the initial lag in emptying of solid food is due to the processing of food into particles small enough to pass the pylorus. We conclude that the modified power exponential model permits characterisation of the biphasic

  20. Acute Biphasic Effects of Ayahuasca

    PubMed Central

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D.; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A.; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8–13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30–50 and 50–100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca’s chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  1. Acute Biphasic Effects of Ayahuasca.

    PubMed

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  2. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    PubMed Central

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  3. Enhanced dibenzothiophene biodesulfurization by immobilized cells of Brevibacterium lutescens in n-octane-water biphasic system.

    PubMed

    Dai, Yong; Shao, Rong; Qi, Gang; Ding, Bin-Bin

    2014-11-01

    In this study, it was the first report that the Brevibacterium lutescens CCZU12-1 was employed as a sulfur removing bacteria. Using dibenzothiophene (DBT) as the sole sulfur source, B. lutescens could selectively degrade DBT into 2-hydroxybiphenyl (2-HBP) via the "4S" pathway. In the basal salt medium (BSM) supplemented with 0.25 mM DBT and 0.5 g/L Tween-80, high desulfurization rate (100 %) was obtained by growth cells after 60 h. Furthermore, the n-octane-water (10:90, v/v) biphasic system was built for the biodesulfurization by resting cells. Moreover, a combination of magnetic nano Fe3O4 particles with calcium alginate immobilization was used for enhancing biodesulfurization. In this n-octane-water biphasic system, immobilized B. lutescens cells could be reused for not less than four times. Therefore, B. lutescens CCZU12-1 shows high potential in the biodesulfurization. PMID:25173674

  4. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  5. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. PMID:26672465

  6. Metal separations using aqueous biphasic partitioning systems

    SciTech Connect

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  7. Biomimetic biphasic scaffolds for osteochondral defect repair

    PubMed Central

    Li, Xuezhou; Ding, Jianxun; Wang, Jincheng; Zhuang, Xiuli; Chen, Xuesi

    2015-01-01

    The osteochondral defects caused by vigorous trauma or physical disease are difficult to be managed. Tissue engineering provides a possible option to regenerate the damaged osteochondral tissues. For osteochondral reconstruction, one intact scaffold should be considered to support the regeneration of both cartilage and subchondral bone. Therefore, the biphasic scaffolds with the mimic structures of osteochondral tissues have been developed to close this chasm. A variety of biomimetic bilayer scaffolds fabricated from natural or synthetic polymers, or the ones loading with growth factors, cells, or both of them make great progresses in osteochondral defect repair. In this review, the preparation and in vitro and/or in vivo verification of bioinspired biphasic scaffolds are summarized and discussed, as well as the prospect is predicted. PMID:26816644

  8. Structure and dynamics of biphasic colloidal mixtures.

    PubMed

    Mohraz, Ali; Weeks, Eric R; Lewis, Jennifer A

    2008-06-01

    We investigate the structure and dynamics of biphasic colloidal mixtures composed of coexisting attractive and repulsive microspheres by confocal microscopy. Attractive gels formed in the presence of repulsive microspheres are more spatially homogeneous and, on average, are both more locally tenuous and have fewer large voids than their unary counterparts. The repulsive microspheres within these mixtures display heterogeneous dynamics, with some species exhibiting freely diffusive Brownian motion while others are trapped within the gel network during aggregation. PMID:18643205

  9. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.

    PubMed

    Dadsetan, Mahrokh; Guda, Teja; Runge, M Brett; Mijares, Dindo; LeGeros, Racquel Z; LeGeros, John P; Silliman, David T; Lu, Lichun; Wenke, Joseph C; Brown Baer, Pamela R; Yaszemski, Michael J

    2015-05-01

    Various calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regeneration capacity of biodegradable, porous poly(propylene fumarate) (PPF) scaffolds. PPF scaffolds were coated with three different calcium phosphate formulations: magnesium-substituted β-tricalcium phosphate (β-TCMP), carbonated hydroxyapatite (synthetic bone mineral, SBM) and biphasic calcium phosphate (BCP). In vivo bone regeneration was evaluated by implantation of scaffolds in a critical-sized rabbit calvarial defect loaded with different doses of rhBMP-2. Our data demonstrated that scaffolds with each of the calcium phosphate coatings were capable of sustaining rhBMP-2 release and retained an open porous structure. After 6weeks of implantation, micro-computed tomography revealed that the rhBMP-2 dose had a significant effect on bone formation within the scaffolds and that the SBM-coated scaffolds regenerated significantly greater bone than BCP-coated scaffolds. Mechanical testing of the defects also indicated restoration of strength in the SBM and β-TCMP with rhBMP-2 delivery. Histology results demonstrated bone growth immediately adjacent to the scaffold surface, indicating good osteointegration and osteoconductivity for coated scaffolds. The results obtained in this study suggest that the coated scaffold platform demonstrated a synergistic effect between calcium phosphate coatings and rhBMP-2 delivery and may provide a promising platform for the functional restoration of large bone defects. PMID:25575855

  10. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. PMID:27163199

  11. Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications

    SciTech Connect

    Mohamed, Khaled R.; Mousa, Sahar M.; El Bassyouni, Gehan T.

    2014-02-01

    Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could be obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.

  12. Comparison between FEBio and Abaqus for biphasic contact problems.

    PubMed

    Meng, Qingen; Jin, Zhongmin; Fisher, John; Wilcox, Ruth

    2013-09-01

    Articular cartilage plays an important role in the function of diarthrodial joints. Computational methods have been used to study the biphasic mechanics of cartilage, and Abaqus has been one of the most widely used commercial software packages for this purpose. A newly developed open-source finite element solver, FEBio, has been developed specifically for biomechanical applications. The aim of this study was to undertake a direct comparison between FEBio and Abaqus for some practical contact problems involving cartilage. Three model types, representing a porous flat-ended indentation test, a spherical-ended indentation test, and a conceptual natural joint contact model, were compared. In addition, a parameter sensitivity study was also performed for the spherical-ended indentation test to investigate the effects of changes in the input material properties on the model outputs, using both FEBio and Abaqus. Excellent agreement was found between FEBio and Abaqus for all of the model types and across the range of material properties that were investigated. PMID:23804955

  13. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.

    PubMed

    Suh, J K; Bai, S

    1998-04-01

    The purpose of the present study was to develop a computationally efficient finite element model that could be useful for parametric analysis of the biphasic poroviscoelastic (BPVE) behavior of articular cartilage under various loading conditions. The articular cartilage was modeled as the BPVE mixture of a porous, linear viscoelastic, and incompressible solid and an inviscid and incompressible fluid. A finite element (FE) formulation of the BPVE model was developed using two different algorithms, the continuous and discrete spectrum relaxation functions for the viscoelasticity of the solid matrix. These algorithms were applied to the creep and stress relaxation responses to the confined compression of articular cartilage, and a comparison of their performances was made. It was found that the discrete spectrum algorithm significantly saved CPU time and memory, as compared to the continuous spectrum algorithm. The consistency analysis for the present FE formulation was performed in comparison with the IMSL, a commercially available numerical software package. It was found that the present FE formulation yielded consistent results in predicting model behavior, whereas the IMSL subroutine produced inconsistent results in the velocity field, and thereby in the strain calculation. PMID:10412380

  14. Comparison between FEBio and Abaqus for biphasic contact problems

    PubMed Central

    Jin, Zhongmin; Fisher, John; Wilcox, Ruth

    2013-01-01

    Articular cartilage plays an important role in the function of diarthrodial joints. Computational methods have been used to study the biphasic mechanics of cartilage, and Abaqus has been one of the most widely used commercial software packages for this purpose. A newly developed open-source finite element solver, FEBio, has been developed specifically for biomechanical applications. The aim of this study was to undertake a direct comparison between FEBio and Abaqus for some practical contact problems involving cartilage. Three model types, representing a porous flat-ended indentation test, a spherical-ended indentation test, and a conceptual natural joint contact model, were compared. In addition, a parameter sensitivity study was also performed for the spherical-ended indentation test to investigate the effects of changes in the input material properties on the model outputs, using both FEBio and Abaqus. Excellent agreement was found between FEBio and Abaqus for all of the model types and across the range of material properties that were investigated. PMID:23804955

  15. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  16. Soil decontamination using aqueous biphasic separation

    SciTech Connect

    Chaiko, D.J.; Mensah-Biney, R.; Gupta, D.

    1994-02-01

    This paper summarizes efforts to develop a biphasic extraction process for separating ultrafine particulate contaminants from soils having high amounts of silt and clay. This work has thus far dealt with the removal of refractory uranium particles from the soils at Fernald, Ohio. The separation process involves the selective partitioning of ultra-fine particles between two immiscible aqueous phases. The authors have conducted batch extraction studies and are now beginning to scaleup the process for pilot-plant testing at Argonne National Laboratory (ANL). The results of these extraction studies are discussed.

  17. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  18. In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds.

    PubMed

    Yan, L-P; Oliveira, J M; Oliveira, A L; Reis, R L

    2015-05-01

    This study evaluates the biological performance of salt-leached macro/microporous silk scaffolds (S16) and silk-nano calcium phosphate scaffolds (SC16), both deriving from a 16 wt % aqueous SF solution. Enzymatic degradation results showed that the silk-based scaffolds presented desirable biostability, and the incorporation of calcium phosphate further improved the scaffolds' biostability. Human adipose tissue derived stromal cells (hASCs) were cultured onto the scaffolds in vitro. The Alamar blue assay and DNA content revealed that both scaffolds were non-cytotoxic and can support the viability and proliferation of the hASCs. Scanning electron microscopy observation demonstrated that the microporous structure was beneficial for the cell adhesion while the macroporous structure favored the cell migration and proliferation. The histological analysis displayed abundant extracellular matrix formed inside the scaffolds, leading to the significant increase of scaffolds' modulus. These results revealed that S16 and SC16 could be promising alternatives for cartilage and bone tissue engineering scaffolding applications, respectively. PMID:25164158

  19. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

    SciTech Connect

    Cheng, Xin; Chen, Jian-long; Ma, Zheng-lai; Zhang, Zhao-long; Lv, Shun; Mai, Dong-mei; Liu, Jia-jia; Chuai, Manli; Lee, Kenneth Ka Ho; Wan, Chao; Yang, Xuesong

    2014-11-15

    Dexamethasone (Dex) has anti-inflammatory and immunomodulatory properties against many conditions. There is a potential teratogenic risk, however, for pregnant women receiving Dex treatment. It has been claimed that Dex exposure during pregnancy could affect osteogenesis in the developing embryo, which still remains highly controversial. In this study, we employed chick embryos to investigate the effects of Dex exposure on skeletal development using combined in vivo and in vitro approach. First, we demonstrated that Dex (10{sup −8}–10{sup −6} μmol/egg) exposure resulted in a shortening of the developing long bones of chick embryos, and it accelerated the deposition of calcium salts. Secondly, histological analysis of chick embryo phalanxes exhibited Dex exposure inhibited the proliferation of chondrocytes, increased apoptosis of chondrocytes and osteocytes, and led to atypical arranged hypertrophic chondrocytes. The expression of genes related to skeletogenesis was also analyzed by semi-quantitative RT-PCR. The expression of ALP, Col1a2 and Col2a1 was decreased in the Dex treated phalanxes. A detectable increase was observed in Runx-2 and Mmp-13 expression. We next examined how Dex affected the different stages of skeletogenesis in vitro. Utilizing limb bud mesenchyme micromass cultures, we determined that Dex exposure exerted no effect on apoptosis but impaired chondrogenic cell proliferation. Interestingly, low dose of Dex moderately prompted nodule formation as revealed by alcian blue staining, but higher doses of Dex significantly inhibited similar chondrogenic differentiation. Dex exposure did not induce apoptosis when the chondrogenic precursors were still at the mesenchymal stage, however, cell viability was suppressed when the mesenchyme differentiated into chondrocytes. Alizarin red staining revealed that the capacity to form mineralized bone nodules was correspondingly enhanced as Dex concentrations increased. The mRNA level of Sox-9 was slightly

  20. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  1. Calcium - urine

    MedlinePlus

    ... best treatment for the most common type of kidney stone , which is made of calcium. This type of ... the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production ...

  2. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  3. Activation-dependent and biphasic electromagnetic field effects: Model based on cooperative enzyme kinetics in cellular signaling

    SciTech Connect

    Eichwald, C.; Walleczek, J.

    1996-12-31

    Experiments on field exposure effects of extremely-low-frequency electric and magnetic fields (EMFs) on biological systems have shown that, in many cases, the biological-functional status is of fundamental importance for an effective interaction. For example, studies of calcium uptake regulation in cells of the immune system, particularly in T lymphocytes, have revealed that, depending on the degree of cellular activation, either stimulatory, inhibitory, or no field exposure effects are observed for identical field parameters. A brief summary of the experimental findings is given, and a theoretical approach is presented that accounts in a qualitative manner for EMF exposure effects (1) that depend on the degree of cellular activation and (2) that exhibit a biphasic response behavior (stimulation/inhibition). In the model, biochemical stimulation of the cell results in activation of specific signaling pathways that regulate calcium dynamics in the cell (calcium release from intracellular calcium stores and capacitive calcium entry). The authors assume that, controlled by these pathways, a specific EMF-sensitive enzyme system becomes activated. The activated enzyme, in turn, exhibit a feedback control on the signal processes, thus leading to a modulation of calcium entry. This modulation may affect other cellular processes that are calcium dependent (e.g., DNA synthesis). Magnetic field exposure is assumed to alter the kinetics of a specific step within the enzyme-reaction cycle in accord with the radical-pair mechanism, although the formulism is not restricted to this specific example. Results show that inclusion of cooperative steps within the enzyme-reaction cycle provides a theoretical basis that enables a simple description of a biphasic response behavior to EMF exposure.

  4. Intervertebral Disc Tissue Engineering with Natural Extracellular Matrix-Derived Biphasic Composite Scaffolds

    PubMed Central

    Xu, Baoshan; Xu, Haiwei; Wu, Yaohong; Li, Xiulan; Zhang, Yang; Ma, Xinlong; Yang, Qiang

    2015-01-01

    Tissue engineering has provided an alternative therapeutic possibility for degenerative disc diseases. However, we lack an ideal scaffold for IVD tissue engineering. The goal of this study is to fabricate a novel biomimetic biphasic scaffold for IVD tissue engineering and evaluate the feasibility of developing tissue-engineered IVD in vitro and in vivo. In present study we developed a novel integrated biphasic IVD scaffold using a simple freeze-drying and cross-linking technique of pig bone matrix gelatin (BMG) for the outer annulus fibrosus (AF) phase and pig acellular cartilage ECM (ACECM) for the inner nucleus pulposus (NP) phase. Histology and SEM results indicated no residual cells remaining in the scaffold that featured an interconnected porous microstructure (pore size of AF and NP phase 401.4±13.1 μm and 231.6±57.2 μm, respectively). PKH26-labeled AF and NP cells were seeded into the scaffold and cultured in vitro. SEM confirmed that seeded cells could anchor onto the scaffold. Live/dead staining showed that live cells (green fluorescence) were distributed in the scaffold, with no dead cells (red fluorescence) being found. The cell—scaffold constructs were implanted subcutaneously into nude mice and cultured for 6 weeks in vivo. IVD-like tissue formed in nude mice as confirmed by histology. Cells in hybrid constructs originated from PKH26-labeled cells, as confirmed by in vivo fluorescence imaging system. In conclusion, the study demonstrates the feasibility of developing a tissue-engineered IVD in vivo with a BMG- and ACECM-derived integrated AF-NP biphasic scaffold. As well, PKH26 fluorescent labeling with in vivo fluorescent imaging can be used to track cells and analyse cell—scaffold constructs in vivo. PMID:25894203

  5. On the appropriateness of modelling brain parenchyma as a biphasic continuum.

    PubMed

    Tavner, A C R; Roy, T Dutta; Hor, K W W; Majimbi, M; Joldes, G R; Wittek, A; Bunt, S; Miller, K

    2016-08-01

    Computational methods originally developed for analysis in engineering have been applied to the analysis of biological materials for many years. One particular application of these engineering tools is the brain, allowing researchers to predict the behaviour of brain tissue in various traumatic, surgical and medical scenarios. Typically two different approaches have been used to model deformation of brain tissue: single-phase models which treat the brain as a viscoelastic material, and biphasic models which treat the brain as a porous deformable medium through which liquid can move. In order to model the brain as a biphasic continuum, the hydraulic conductivity of the solid phase is required; there are many theoretical values for this conductivity in the literature, with variations of up to three orders of magnitude. We carried out a series of simple experiments using lamb and sheep brain tissue to establish the rate at which cerebrospinal fluid moves through the brain parenchyma. Mindful of possible variations in hydraulic conductivity with tissue deformation, our intention was to carry out our experiments on brain tissue subjected to minimal deformation. This has enabled us to compare the rate of flow with values predicted by some of the theoretical values of hydraulic conductivity from the literature. Our results indicate that the hydraulic conductivity of the brain parenchyma is consistent with the lowest theoretical published values. These extremely low hydraulic conductivities lead to such low rates of CSF flow through the brain tissue that in effect the material behaves as a single-phase deformable solid. PMID:27136087

  6. Osteochondral regeneration using an oriented nanofiber yarn-collagen type I/hyaluronate hybrid/TCP biphasic scaffold.

    PubMed

    Liu, Shen; Wu, Jinglei; Liu, Xudong; Chen, Desheng; Bowlin, Gary L; Cao, Lei; Lu, Jianxi; Li, Fengfeng; Mo, Xiumei; Fan, Cunyi

    2015-02-01

    Osteochondral defects affect both the articular cartilage and the underlying subchondral bone, but poor osteochondral regeneration is still a daunting challenge. Although the tissue engineering technology provides a promising approach for osteochondral repair, an ideal biphasic scaffold is in high demand with regards to proper biomechanical strength. In this study, an oriented poly(l-lacticacid)-co-poly(ε-caprolactone) P(LLA-CL)/collagen type I(Col-I) nanofiber yarn mesh, fabricated by dynamic liquid electrospinning served as a skeleton for a freeze-dried Col-I/Hhyaluronate (HA) chondral phase (SPONGE) to enhance the mechanical strength of the scaffold. In vitro results show that the Yarn Col-I/HA hybrid scaffold (Yarn-CH) can allow the cell infiltration like sponge scaffolds. Using porous beta-tricalcium phosphate (TCP) as the osseous phase, the Yarn-CH/TCP biphasic scaffold was then assembled by freeze drying. After combination of bone marrow mesenchymal stem cells, the biphasic complex was successfully used to repair the osteochondral defects in a rabbit model with greatly improved repairing scores and compressive modulus. PMID:24771686

  7. Biphasic Janus particles with nanoscale anisotropy

    NASA Astrophysics Data System (ADS)

    Roh, Kyung-Ho; Martin, David C.; Lahann, Joerg

    2005-10-01

    Advances in the field of nanotechnology have fuelled the vision of future devices spawned from tiny functional components that are able to assemble according to a master blueprint. In this concept, the controlled distribution of matter or `patchiness' is important for creating anisotropic building blocks and introduces an extra design parameter - beyond size and shape. Although the reliable and efficient fabrication of building blocks with controllable material distributions will be of interest for many applications in research and technology, their synthesis has been addressed only in a few specialized cases. Here we show the design and synthesis of polymer-based particles with two distinct phases. The biphasic geometry of these Janus particles is induced by the simultaneous electrohydrodynamic jetting of parallel polymer solutions under the influence of an electrical field. The individual phases can be independently loaded with biomolecules or selectively modified with model ligands, as confirmed by confocal microscopy and transmission electron microscopy. The fact that the spatial distribution of matter can be controlled at such small length scales will provide access to unknown anisotropic materials. This type of nanocolloid may enable the design of multicomponent carriers for drug delivery, molecular imaging or guided self-assembly.

  8. Preparation and characterization of calcium phosphate ceramics and composites as bone substitutes

    NASA Astrophysics Data System (ADS)

    Zhang, Xing

    Marine CaCO3 skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone and sea urchin spines have interconnected porous structures. In our experiments, seashells, coral and cuttlebone were hydrothermally converted to hydroxyapatite (HAP), and sea urchin spines were converted to Mg-substituted tricalcium phosphate (beta-TCMP), while maintaining their original structures. Partially converted shell samples have mechanical strength, which is close to that of compact human bone. After implantation of converted shell and spine samples in rat femoral defects for 6 weeks, there was newly formed bone growth up to and around the implants. Some new bone was found to migrate through the pores of converted spine samples and grow inward. These results show good bioactivity and osteoconductivity of the implants, indicating the converted shell and spine samples can be used as bone defect fillers. Calcium phosphate powders were prepared through different synthesis methods. Micro-size HAP rods were synthesized by hydrothermal method through a nucleation-growth mechanism. On the other hand, HAP particles, which have good crystallinity, were prepared by wet precipitation with further hydrothermal treatment. beta-TCP or beta-TCMP powders were prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate ('precursor') and calcination of the precursor at 800°C for 3 hours. beta-TCMP or beta-TCP powders were also prepared by solid-state reactions from CaHPO4 and CaCO 3 with/without MgO. Biphasic calcium phosphate, which is mixture of HAP and beta-TCP, can be prepared though mechanical mixing of HAP and beta-TCP powders synthesized as above. Dense beta-TCP and beta-TCMP ceramics can be produced by pressing green bodies at 100MPa and further sintering above 1100°C for 2 hours. beta-TCMP ceramics ˜99.4% relative dense were prepared by

  9. Stoichiometric implications of a biphasic life cycle.

    PubMed

    Tiegs, Scott D; Berven, Keith A; Carmack, Douglas J; Capps, Krista A

    2016-03-01

    Animals mediate flows of elements and energy in ecosystems through processes such as nutrient sequestration in body tissues, and mineralization through excretion. For taxa with biphasic life cycles, the dramatic shifts in anatomy and physiology that occur during ontogeny are expected to be accompanied by changes in body and excreta stoichiometry, but remain little-explored, especially in vertebrates. Here we tested stoichiometric hypotheses related to the bodies and excreta of the wood frog (Lithobates sylvaticus) across life stages and during larval development. Per-capita rates of nitrogen (N) and phosphorus (P) excretion varied widely during larval ontogeny, followed unimodal patterns, and peaked midway through development (Taylor-Kollros stages XV and XII, respectively). Larval mass did not increase steadily during development but peaked at stage XVII and declined until the termination of the experiment at stage XXII. Mass-specific N and P excretion rates of the larvae decreased exponentially during development. When coupled with population-biomass estimates, population-level excretion rates were greatest at stages VIII-X. Percent carbon (C), N, and C:N of body tissue showed weak trends across major life stages; body P and C:P, however, increased sixfold during development from egg to adult. Our results demonstrate that intraspecific ontogenic changes in nutrient contents of excretion and body tissues can be significant, and that N and P are not always excreted proportionally throughout life cycles. These results highlight the dynamic roles that species play in ecosystems, and how the morphological and physiological changes that accompany ontogeny can influence ecosystem-level processes. PMID:26589522

  10. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Update Date 5/3/2015 Updated ...

  11. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.

    PubMed

    Guo, Hongqiang; Maher, Suzanne A; Torzilli, Peter A

    2015-01-01

    The aim of this study was to investigate the role of the superficial zone on the mechanical behavior of articular cartilage. Confined compression of articular cartilage was modeled using a biphasic finite element analysis to calculate the one-dimensional deformation of the extracellular matrix (ECM) and movement of the interstitial fluid through the ECM and articular surface. The articular cartilage was modeled as an inhomogeneous, nonlinear hyperelastic biphasic material with depth and strain-dependent material properties. Two loading conditions were simulated, one where the superficial zone was loaded with a porous platen (normal test) and the other where the deep zone was loaded with the porous platen (upside down test). Compressing the intact articular cartilage with 0.2 MPa stress reduced the surface permeability by 88%. Removing the superficial zone increased the rate of change for all mechanical parameters and decreased the fluid support ratio of the tissue, resulting in increased tissue deformation. Apparent permeability linearly increased after superficial removal in the normal test, yet it did not change in the upside down test. Orientation of the specimen affected the time-dependent biomechanical behavior of the articular cartilage, but not equilibrium behavior. The two tests with different specimen orientations resulted in very different apparent permeabilities, suggesting that in an experimental study which quantifies material properties of an inhomogeneous material, the specimen orientation should be stated along with the permeability result. The current study provides new insights into the role of the superficial zone on mechanical behavior of the articular cartilage. PMID:25465194

  12. Calcium supplements

    MedlinePlus

    ... SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the human body. It helps build and protect your teeth ... absorb calcium. You can get vitamin D from sunlight exposure to your skin and from your diet. Ask your provider whether ...

  13. Composites of porous metal and solid lubricants increase bearing life

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1967-01-01

    Self-lubricating composites of porous nickel and nickel-chromium alloy impregnated with a barium fluoride-calcium fluoride eutectic, and a thin film of solid lubricant increase wear life of load bearing surfaces.

  14. Biphasic catalysis in water/carbon dioxide micellar systems

    DOEpatents

    Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.

    2002-01-01

    A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.

  15. Biphasic nanoparticles made by electrified jetting

    NASA Astrophysics Data System (ADS)

    Lahann, Joerg

    2005-03-01

    Nano-colloids have recently attracted intense attention due to unique properties that are distinctly different from bulk solid-state materials; including unique magnetic, electronic, optical, chemical, and biological characteristics. The vision that these nano-objects could essentially act as functional components in novel device generations, which ``magically'' assemble following a master blueprint void any human manipulation, has resulted in a new ``gold rush'' in materials science. These concepts have results in the synthesis of a multitude of nano-objects, such as nano-wires, nano-rods, nano-disks, or nano-prisms.^ Recently, nano-particles with anisotropic materials distributions (biphasic nano-particles) moved in the focus of research. Our approach differs fundamentally from the above-mentioned methods in that it takes advantage of electrified polymer jets to create anisotropic materials distributions in nano-objects. jetting is a process to generate liquid jets by use of electrostatic forces. It is well-known that high electrical potentials (typically several thousand volts) applied between the jetting liquids that are fed through a capillary and a collecting substrate will induce jetting of a charged liquid. The differences in the final morphologies from similar processes are mainly determined by the properties of the jetting liquids and the process parameters. transmission electron microscopy, scanning electron microscopy, and scanning laser confocal microscopy, we demonstrate the applicability of the process to control size, shape, and materials distribution at the nanoscale. The resulting anisotropic nanoparticles may have potential applications for targeted drug delivery or as electro-rehological fluids. a) F. M. Van der Kooij, K. Kassapidou and H. N. W. Lekkerkerker, Liquid crystal phase transitions in suspensions of polydisperse plate-like particles, Nature 406, 868 (2000); b) C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, A DNA

  16. Progress on the biphase turbine at Cerro Prieto

    SciTech Connect

    Cerini, D.; Hays, L.; Studhalter, W.

    1997-12-31

    The status of a Biphase turbine power plant being installed at the Cerro Prieto geothermal field is presented. The major modules for the power plant are completed except for a back pressure steam turbine. The power plant will be started in April 1997 with the Biphase turbine alone followed by the addition of the steam turbine module two months later. The current power plant performance level is 2780 kWe due to a decline in the well. An increase in power output to 4060 kWe by adding the flow from another well is planned. The addition of five Biphase power plants with a total power output of 21.2 megawatts is described.

  17. Case Report: Multifocal biphasic squamoid alveolar renal cell carcinoma

    PubMed Central

    Lopez, Jose Ignacio

    2016-01-01

    A multifocal biphasic squamoid alveolar renal cell carcinoma in a 68-year-old man is reported. Four different peripheral tumor nodules were identified on gross examination. A fifth central tumor corresponded to a conventional clear cell renal cell carcinoma. Biphasic squamoid alveolar renal cell carcinoma is a rare tumor that has been very recently characterized as a distinct histotype within the spectrum of papillary renal cell carcinoma. Immunostaining with cyclin D1 seems to be specific of this tumor subtype. This is the first reported case with multifocal presentation. PMID:27158455

  18. Porous bioactive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a

  19. Bi-phase transition diagrams of metallic thin multilayers

    SciTech Connect

    Li, J.C.; Liu, W.; Jiang, Q. . E-mail: jiangq@jlu.edu.cn

    2005-02-01

    Phase transitions of metallic multilayers induced by differences in interface energy are considered thermodynamically, based on a thermodynamic model for interface energy and the Goldschmidt premise for lattice contraction. Bi-phase transition diagrams of Co/Cr, Zr/Nb, Ti/Nb and Ti/Al multilayers are constructed, which are in agreement with experimental results.

  20. Intrinsically Stretchable Biphasic (Solid-Liquid) Thin Metal Films.

    PubMed

    Hirsch, Arthur; Michaud, Hadrien O; Gerratt, Aaron P; de Mulatier, Séverine; Lacour, Stéphanie P

    2016-06-01

    Stretchable biphasic conductors are formed by physical vapor deposition of gallium onto an alloying metal film. The properties of the photolithography-compatible thin metal films are highlighted by low sheet resistance (0.5 Ω sq(-1) ) and large stretchability (400%). This novel approach to deposit and pattern liquid metals enables extremely robust, multilayer and soft circuits, sensors, and actuators. PMID:26923313

  1. Biphasic survival analysis of trypanotolerance QTL in mice.

    PubMed

    Koudandé, O D; Thomson, P C; Bovenhuis, H; Iraqi, F; Gibson, J P; van Arendonk, J A M

    2008-04-01

    A marker-assisted introgression (MAI) experiment was conducted to transfer trypanotolerance quantitative trait loci (QTL) from a donor mouse strain, C57BL/6, into a recipient mouse strain, A/J. The objective was to assess the effect of three previously identified chromosomal regions on mouse chromosomes 1 (MMU1), 5 (MMU5) and 17 (MMU17) in different genetic backgrounds on the survival pattern following infection with Trypanosoma congolense. An exploratory data analysis revealed a biphasic pattern of time to death, with highly distinct early and late mortality phases. In this paper, we present survival analysis methods that account for the biphasic mortality pattern and results of reanalyzing the data from the MAI experiment. The analysis with a Weibull mixture model confirmed the biphasic pattern of time to death. Mortality phase, an unobserved variable, appears to be an important factor influencing survival time and is modeled as a binary outcome variable using logistic regression analysis. Accounting for this biphasic pattern in the analysis reveals that a previously observed sex effect on average survival is rather an effect on proportion of mice in the two mortality phases. The C57BL/6 (donor) QTL alleles on MMU1 and MMU17 act dominantly in the late mortality phase while the A/J (recipient) QTL allele on MMU17 acts dominantly in the early mortality phase. From this study, we found clear evidence for a biphasic survival pattern and provided models for its analysis. These models can also be used when studying defense mechanisms against other pathogens. Finally, these approaches provide further information on the nature of gene actions. PMID:18253157

  2. Biphasic effects of sodium danshensu on vessel function in isolated rat aorta

    PubMed Central

    Zhang, Ning; Zou, Hao; Jin, Lei; Wang, Jian; Zhong, Mei-fang; Huang, Peng; Gu, Bing-qing; Mao, Shi-Long; Zhang, Chuan; Chen, Hong

    2010-01-01

    Aim: To investigate the effects of sodium danshensu on vessel function in isolated rat aortic ring. Methods: Thoracic aortae from normal rats were isolated and equilibrated in organ bath with Krebs-Henseleit buffer and ring tension was recorded. Effects of sodium danshensu on basal tonus of the vessel and its effects on vessel contraction and relaxation with or without endothelium were observed. Results: In thoracic arteries under basal tonus, sodium danshensu (0.3–3 g/L) produced a dose-dependent transient contraction. In phenylephrine-precontracted thoracic arteries with or without endothelium, low concentration (0.1–0.3 g/L) of sodium danshensu produced a weak contraction, while high concentrations (1–3 g/L) produced a pronounced vasodilator after a transient vasocontraction. Pre-incubation with sodium danshensu could inhibit vessel contraction induced by phenylephrine and potassium chloride in a concentration-dependent way. Sodium danshensu inhibited phenylephrine- and CaCl2-induced vasoconstriction in Ca2+-free medium. Pre-incubation with tetraethylammonium, a non-selective K+ channel blocker, and apamin, a small-conductance calcium-activated K+ channel blocker partially antagonized the relaxation response induced by sodium danshensu. However, iberiotoxin (big-conductance calcium-sensitive K+ channel blocker), barium chloride (inward rectifier K+ channel blocker), and glibencalmide (ATP-sensitive K+ channel blocker) had no influence on the vasodialtion effect of sodium danshensu. Conclusion: Sodium danshensu showed a biphasic effects on vessel tension. While low dosage of sodium danshensu produced small contraction possibly through transient enhancement of Ca2+ influx, high dosage produced significant vasodilation mainly through promoting the opening of non-selective K+ channels and small-conductance calcium-sensitive K+ channels in the vascular smooth muscle cells. PMID:20228827

  3. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model

  4. Calcium antagonists.

    PubMed

    Grossman, Ehud; Messerli, Franz H

    2004-01-01

    Calcium antagonists were introduced for the treatment of hypertension in the 1980s. Their use was subsequently expanded to additional disorders, such as angina pectoris, paroxysmal supraventricular tachycardias, hypertrophic cardiomyopathy, Raynaud phenomenon, pulmonary hypertension, diffuse esophageal spasms, and migraine. Calcium antagonists as a group are heterogeneous and include 3 main classes--phenylalkylamines, benzothiazepines, and dihydropyridines--that differ in their molecular structure, sites and modes of action, and effects on various other cardiovascular functions. Calcium antagonists lower blood pressure mainly through vasodilation and reduction of peripheral resistance. They maintain blood flow to vital organs, and are safe in patients with renal impairment. Unlike diuretics and beta-blockers, calcium antagonists do not impair glucose metabolism or lipid profile and may even attenuate the development of arteriosclerotic lesions. In long-term follow-up, patients treated with calcium antagonists had development of less overt diabetes mellitus than those who were treated with diuretics and beta-blockers. Moreover, calcium antagonists are able to reduce left ventricular mass and are effective in improving anginal pain. Recent prospective randomized studies attested to the beneficial effects of calcium antagonists in hypertensive patients. In comparison with placebo, calcium antagonist-based therapy reduced major cardiovascular events and cardiovascular death significantly in elderly hypertensive patients and in diabetic patients. In several comparative studies in hypertensive patients, treatment with calcium antagonists was equally effective as treatment with diuretics, beta-blockers, or angiotensin-converting enzyme inhibitors. From these studies, it seems that a calcium antagonist-based regimen is superior to other regimens in preventing stroke, equivalent in preventing ischemic heart disease, and inferior in preventing congestive heart failure

  5. Calcium in diet

    MedlinePlus

    ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ... the body on a full or empty stomach. Calcium carbonate is less expensive. It is absorbed better by ...

  6. Calcium - ionized

    MedlinePlus

    ... levels. These may include abnormal blood levels of albumin or immunoglobulins. Normal Results Children: 4.8 to ... 2016:chap 245. Read More Acute kidney failure Albumin - blood (serum) test Bone tumor Calcium blood test ...

  7. Calcium Test

    MedlinePlus

    ... as thyroid disease , parathyroid disorder , malabsorption , cancer, or malnutrition An ionized calcium test may be ordered when ... albumin , which can result from liver disease or malnutrition , both of which may result from alcoholism or ...

  8. Calcium Calculator

    MedlinePlus

    ... with Sarcopenia Skeletal Rare Disorders Data & Publications Facts and Statistics Vitamin D map Fracture Risk Map Hip Fracture ... Training Courses Working Groups Regional Audits Reports Facts and Statistics Popular content Calcium content of common foods What ...

  9. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    PubMed Central

    Passos, Helena; Luís, Andreia; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process. PMID:26843320

  10. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    NASA Astrophysics Data System (ADS)

    Passos, Helena; Luís, Andreia; Coutinho, João A. P.; Freire, Mara G.

    2016-02-01

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  11. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. PMID:26940168

  12. Biphasic Response of Ciprofloxacin in Human Fibroblast Cell Cultures

    PubMed Central

    Hincal, Filiz; Gürbay, Aylin; Favier, Alain

    2003-01-01

    To investigate the possibility of the involvement of an oxidative stress induction in the mechanism of the cytotoxic effect of quinolone antibiotics, we examined the viability of human fibroblast cells exposed to ciprofloxacin (CPFX), and measured the levels of lipid peroxidation (LP), glutathione (GSH), and the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX). The data showed that the effect of CPFX on the viability of cells, as determined by neutral red uptake assay, was time-dependent, and the dose-response relation was biphasic. Cytotoxicity was not observed in the concentration range 5–150 mg/l CPFX when the cells were incubated for 24 h. In contrast, lower concentrations (5 and 12.5 mg/l) of CPFX increased the cell growth in all incubation periods tested. Marked decreases in the viability of fibroblasts were observed at concentrations 50 and 75 mg/l, and ≥50 mg/l, following 48 and 72 h exposure, respectively (p < 0.05). However, when the cells were exposed to > 75 mg/l CPFX for 48 h, no cytotoxicity was observed. By exposing fibroblast cultures to 75 mg/l CPFX for 48 h, an induction of LP enhancement and a marked decrease in intracellular GSH were observed. Vitamin E pretreatment of the cells lowered the level of LP, increased the total GSH content, and provided significant protection against CPFX-induced cytotoxicity. The biphasic effect of CPFX possibly resulted from the complex dose-dependent relationships between reactive oxygen species (ROS), cell proliferation, and cell viability. It was previously reported, in fact, for several cell models that ROS exert a biphasic effect on cell growth. Furthermore, cultured fibroblasts release their own free radicals, and the inhibition of endogenous ROS inhibits the fibroblast cell proliferation, whereas the effect of exogenous ROS is biphasic. PMID:19330132

  13. Improved internal defibrillation efficacy with a biphasic waveform.

    PubMed

    Fain, E S; Sweeney, M B; Franz, M R

    1989-02-01

    Clinically available automatic implantable defibrillators use a monophasic truncated exponential waveform shock; after delivery the charge remaining on the device's capacitors is "dumped" internally and wasted. The efficacy of a monophasic and biphasic truncated exponential defibrillation waveform produced by a single capacitor discharge was compared in seven closed-chest, pentobarbital-anesthetized dogs. Defibrillation leads consisted of a new deployable intrapericardial electrode system. The monophasic waveform was positive and 6 msec in duration. The biphasic waveform had a positive phase identical to that of the monophasic waveform and a negative phase of equal duration with its initial voltage equal to 50% of the final voltage of the positive phase. Defibrillation shocks of varying initial voltage were delivered to construct curves of the percentage of successful defibrillation versus initial voltage and delivered energy, and the voltage and energy required for 50% (V50 and E50, respectively) and 80% (V80 and E80, respectively) success were compared. The biphasic waveform had significantly lower initial voltage (V50: 194 +/- 48 volts vs 227 +/- 48 volts, p less than 0.001; V80: 217 +/- 55 volts vs 256 +/- 66 volts, p less than 0.02) and energy (E50: 2.7 +/- 1.3 joules vs 3.4 +/- 1.5 joules, p less than 0.01; E80: 3.4 +/- 1.6 joules vs 4.3 +/- 2.2 joules, p less than 0.05) requirements than the monophasic waveform. It is concluded that a biphasic waveform produced by a single discharge that uses the "free" energy remaining on the capacitors significantly reduces the initial voltage and energy requirements for successful defibrillation and may improve the efficacy of future automatic implantable defibrillators. PMID:2916410

  14. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  15. Calcium Hydroxylapatite

    PubMed Central

    Yutskovskaya, Yana Alexandrovna; Philip Werschler, WM.

    2015-01-01

    Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for the correction of moderate-to-severe facial lines and folds and to replenish lost volume. Objectives: To mark the milestone of 10 years of use in the aesthetic field, this review will consider the evolution of calcium hydroxylapatite in aesthetic medicine, provide a detailed injection protocol for a global facial approach, and examine how the unique properties of calcium hydroxylapatite provide it with an important place in today’s market. Methods: This article is an up-to-date review of calcium hydroxylapatite in aesthetic medicine along with procedures for its use, including a detailed injection protocol for a global facial approach by three expert injectors. Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is associated with a high and well-established safety profile. Calcium hydroxylapatite combines high elasticity and viscosity with an ability to induce long-term collagen formation making it an ideal agent for a global facial approach. PMID:25610523

  16. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    SciTech Connect

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  17. Biphasic Dose Response in Low Level Light Therapy

    PubMed Central

    Huang, Ying-Ying; Chen, Aaron C.-H.; Carroll, James D.; Hamblin, Michael R.

    2009-01-01

    The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing cell death and tissue damage has been known for over forty years since the invention of lasers. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial in mainstream medicine. The biochemical mechanisms underlying the positive effects are incompletely understood, and the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. A biphasic dose response has been frequently observed where low levels of light have a much better effect on stimulating and repairing tissues than higher levels of light. The so-called Arndt-Schulz curve is frequently used to describe this biphasic dose response. This review will cover the molecular and cellular mechanisms in LLLT, and describe some of our recent results in vitro and in vivo that provide scientific explanations for this biphasic dose response. PMID:20011653

  18. The Impact of Compact Layer in Biphasic Scaffold on Osteochondral Tissue Engineering

    PubMed Central

    Cheng, Jian-Hua; Zhou, Wei; Xiong, Zhuo; Mu, Yun-Jing; Liu, Jian

    2013-01-01

    The structure of an osteochondral biphasic scaffold is required to mimic native tissue, which owns a calcified layer associated with mechanical and separation function. The two phases of biphasic scaffold should possess efficient integration to provide chondrocytes and osteocytes with an independent living environment. In this study, a novel biphasic scaffold composed of a bony phase, chondral phase and compact layer was developed. The compact layer-free biphasic scaffold taken as control group was also fabricated. The purpose of current study was to evaluate the impact of the compact layer in the biphasic scaffold. Bony and chondral phases were seeded with autogeneic osteoblast- or chondrocyte-induced bone marrow stromal cells (BMSCs), respectively. The biphasic scaffolds-cells constructs were then implanted into osteochondral defects of rabbits’ knees, and the regenerated osteochondral tissue was evaluated at 3 and 6 months after surgery. Anti-tensile and anti-shear properties of the compact layer-containing biphasic scaffold were significantly higher than those of the compact layer-free biphasic scaffold in vitro. Furthermore, in vivo studies revealed superior macroscopic scores, glycosaminoglycan (GAG) and collagen content, micro tomograph imaging results, and histological properties of regenerated tissue in the compact layer-containing biphasic scaffold compared to the control group. These results indicated that the compact layer could significantly enhance the biomechanical properties of biphasic scaffold in vitro and regeneration of osteochondral tissue in vivo, and thus represented a promising approach to osteochondral tissue engineering. PMID:23382984

  19. Partition of fine particles in aqueous biphase systems

    NASA Astrophysics Data System (ADS)

    Zeng, Xi

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems. In the polyethylene glycol (PEG)/salt/H2O system, it was found that pyrite partition was highly dependent upon pH conditions: at high pH the particles preferred the salt-rich (bottom) phase, while they moved to the polymer-rich (top) phase at low pH. This behavior is attributable to the different surface oxidation products associated with the pH variations: formation of FeOOH in alkaline solution, and a hydrophobic iron-deficient product (Fe 1-xS2) in acidic environment. The partitioning behavior of oxide particles (e.g., Al2O3, Fe2O 3, SiO2, TiO2) in the PEG/Na2SO 4/H2O system indicated that, in the absence of polymer-solid interaction, the surface hydrophilic/hydrophobic properties determined solid partition; otherwise, the specific polymer-solid interaction dominated the distribution of the solid particles. Aside from the polymer/salt aqueous biphase systems, the partitioning behavior of hematite and silica was also investigated in polymer/polymer (PEG/dextran) and polymer/nonionic surfactant (Triton X-100 (TX100

  20. Calcium and bones

    MedlinePlus

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  1. Get Enough Calcium

    MedlinePlus

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  2. Calcium carbonate overdose

    MedlinePlus

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  3. Biphasic Effects of Alcohol as a Function of Circadian Phase

    PubMed Central

    Van Reen, Eliza; Rupp, Tracy L.; Acebo, Christine; Seifer, Ronald; Carskadon, Mary A.

    2013-01-01

    Study Objectives: To assess how alcohol affects multiple sleep latency tests (MSLT) and subjective measures of stimulation/sedation when alcohol is given at different circadian phases. Participants: Twenty-seven healthy young adults (age 21-26 yr) were studied. Design: Double-blind placebo and alcohol (vodka tonic targeting 0.05 g% concentration) beverages were each administered three times during the 20-h forced desynchrony protocol. Sleep latency tests and Biphasic Effects of Alcohol Scale (BAES) were administered on each forced desynchrony day. The outcome variables for this study include sleep onset latency (SOL) and stimulation and sedation value (from the BAES). Each outcome variable was associated with the ascending or descending limb of the breath alcohol concentration (BrAC) curve and assigned a circadian phase within a 90° bin. Measurements and Results: BrAC confirmed targeted maximal levels. Only outcome variables associated with the ascending and descending limb of the alcohol curve were analyzed for this article. Alcohol administered at a circadian time associated with greatest sleepiness showed longer SOL compared with placebo when measured on the ascending limb of the BrAC curve. We also found longer SOL with alcohol on the ascending limb of the BrAC curve in a circadian bin that favors greatest alertness. We observed shorter SOLs on the descending limb of the BrAC curve, but with no circadian phase interaction. The subjective data were partially consistent with the objective data. Conclusions: The physiologic findings in this study support the biphasic stimulating and sedating properties of alcohol, but limit the effect to specific circadian times. Citation: Van Reen E; Rupp TL; Acebo C; Seifer R; Carskadon MA. Biphasic effects of alcohol as a function of circadian phase. SLEEP 2013;36(1):137-145. PMID:23288980

  4. Calcium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for calcium cyanide is included in th

  5. Biphasic patterns of diversification and the emergence of modules

    PubMed Central

    Mittenthal, Jay; Caetano-Anollés, Derek; Caetano-Anollés, Gustavo

    2012-01-01

    The intricate molecular and cellular structure of organisms converts energy to work, which builds and maintains structure. Evolving structure implements modules, in which parts are tightly linked. Each module performs characteristic functions. In this work we propose that a module can emerge through two phases of diversification of parts. Early in the first phase of this biphasic pattern, the parts have weak linkage—they interact weakly and associate variously. The parts diversify and compete. Under selection for performance, interactions among the parts increasingly constrain their structure and associations. As many variants are eliminated, parts self-organize into modules with tight linkage. Linkage may increase in response to exogenous stresses as well as endogenous processes. In the second phase of diversification, variants of the module and its functions evolve and become new parts for a new cycle of generation of higher-level modules. This linkage hypothesis can interpret biphasic patterns in the diversification of protein domain structure, RNA and protein shapes, and networks in metabolism, codes, and embryos, and can explain hierarchical levels of structural organization that are widespread in biology. PMID:22891076

  6. Biphasic Analysis of Cartilage Stresses in the Patellofemoral Joint.

    PubMed

    Jones, Brian; Hung, Clark T; Ateshian, Gerard

    2016-02-01

    The objective of this study was to examine the state of stress within the solid matrix of articular cartilage in the patellofemoral joint, using anatomically faithful biphasic models of the articular layers, with the joint subjected to physiologic muscle force magnitudes. Finite element models of five joints were created from human cadaver knees. Biphasic sliding contact analyses were performed using FEBio software to analyze the response of the joint from 30 to 60 degrees of knee flexion. Results demonstrated that the collagen matrix always sustains tensile stresses, despite the fact that the articular layers are loaded in compression. The principal direction of maximum solid stresses was consistent with the known orientation of collagen fibrils in cartilage. The magnitudes of these tensile stresses under muscle forces representative of activities of daily living were well below tensile failure stresses reported in the prior literature. Results also hinted that solid matrix stresses were higher in the patellar versus femoral superficial zone. These anatomically correct finite element models predicted outcomes consistent with our understanding of structure-function relationships in articular cartilage, while also producing solid matrix stress estimates not observable from experiments alone, yet highly relevant to our understanding of tissue degeneration. PMID:26641078

  7. Cell–material interactions on biphasic polyurethane matrix

    PubMed Central

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  8. Biphasic cardiovascular and respiratory effects induced by β-citronellol.

    PubMed

    Ribeiro-Filho, Helder Veras; de Souza Silva, Camila Meirelles; de Siqueira, Rodrigo JoséBezerra; Lahlou, Saad; dos Santos, Armênio Aguiar; Magalhães, Pedro Jorge Caldas

    2016-03-15

    β-Citronellol is a monoterpene found in the essential oil of various plants with antihypertensive properties. In fact, β-citronellol possesses hypotensive actions due to its vasodilator abilities. Here we aimed to show that β-citronellol recruits airway sensory neural circuitry to evoke cardiorespiratory effects. In anesthetized rats, intravenous injection of β-citronellol caused biphasic hypotension, bradycardia and apnea. Bilateral vagotomy, perivagal capsaicin treatment or injection into the left ventricle abolished first rapid phase (named P1) but not delayed phase P2 of the β-citronellol effects. P1 persisted after pretreatment with capsazepine, ondansetron, HC-030031 or suramin. Suramin abolished P2 of apnea. In awake rats, β-citronellol induced biphasic hypotension and bradycardia being P1 abolished by methylatropine. In vitro, β-citronellol inhibited spontaneous or electrically-evoked contractions of rat isolated right or left atrium, respectively, and fully relaxed sustained contractions of phenylephrine in mesenteric artery rings. In conclusion, chemosensitive pulmonary vagal afferent fibers appear to mediate the cardiovascular and respiratory effects of β-citronellol. The transduction mechanism in P1 seems not to involve the activation of transient receptor potential vanilloid subtype 1 (TRPV1), transient receptor potential ankyrin subtype 1 (TRPA1), purinergic (P2X) or 5-HT3 receptors located on airways sensory nerves. P2 of hypotension and bradycardia seems resulting from a cardioinhibitory and vasodilatory effect of β-citronellol and the apnea from a purinergic signaling. PMID:26872991

  9. Cell-material interactions on biphasic polyurethane matrix.

    PubMed

    Dicesare, Patrick; Fox, Wade M; Hill, Michael J; Krishnan, G Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-08-01

    Cell-matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell-matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  10. Biphasic behavior of energy in a stepped chain

    NASA Astrophysics Data System (ADS)

    Ping-Jian, Wang; Ai-Xiang, He; Zhong-Hai, Lin; Guang-Fen, Wei; Yan-Li, Liu

    2016-06-01

    The impact energy decay in a step-up chain containing two sections is numerically studied. There is a marked biphasic behavior of energy decay in the first section. Two sections close to the interface are in compression state. The degree of compression of the first section first decreases and becomes weakest at “crossing” time of biphasic behavior of energy, then increases. The further calculations provide the dependence of the character time on mass ratio (m 1/m 2), where m 1 and m 2 are the particle mass in the first and second section respectively. The bigger the α (α = [(Ωm 1 – m 2)/(Ωm 1 + m 2)]2 with Ω = 1.345), the bigger the energy ratio is. The multipulse structure restricts the transport of energy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61174007 and 61307041) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013AL014).

  11. An augmented Lagrangian finite element formulation for 3D contact of biphasic tissues.

    PubMed

    Guo, Hongqiang; Spilker, Robert L

    2014-01-01

    Biphasic contact analysis is essential to obtain a complete understanding of soft tissue biomechanics, and the importance of physiological structure on the joint biomechanics has long been recognised; however, up to date, there are no successful developments of biphasic finite element contact analysis for three-dimensional (3D) geometries of physiological joints. The aim of this study was to develop a finite element formulation for biphasic contact of 3D physiological joints. The augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The biphasic contact method was implemented in the commercial software COMSOL Multiphysics 4.2(®) (COMSOL, Inc., Burlington, MA). The accuracy of the implementation was verified using 3D biphasic contact problems, including indentation with a flat-ended indenter and contact of glenohumeral cartilage layers. The ability of the method to model multibody biphasic contact of physiological joints was proved by a 3D knee model. The 3D biphasic finite element contact method developed in this study can be used to study the biphasic behaviours of the physiological joints. PMID:23181617

  12. Formalin evokes calcium transients from the endoplasmatic reticulum.

    PubMed

    Fischer, Michael J M; Soller, Kailey J; Sauer, Susanne K; Kalucka, Joanna; Veglia, Gianluigi; Reeh, Peter W

    2015-01-01

    The formalin test is the most widely used behavioral screening test for analgesic compounds. The cellular mechanism of action of formaldehyde, inducing a typically biphasic pain-related behavior in rodents is addressed in this study. The chemoreceptor channel TRPA1 was suggested as primary transducer, but the high concentrations used in the formalin test elicit a similar response in TRPA1 wildtype and knockout animals. Here we show that formaldehyde evokes a dose-dependent calcium release from intracellular stores in mouse sensory neurons and primary keratinocytes as well as in non-neuronal cell lines, and independent of TRPA1. The source of calcium is the endoplasmatic reticulum and inhibition of the sarco/endoplasmic reticulum calcium-ATPase has a major contribution. This TRPA1-independent mechanism may underlie formaldehyde-induced pan-neuronal excitation and subsequent inflammation. PMID:25875358

  13. Formalin Evokes Calcium Transients from the Endoplasmatic Reticulum

    PubMed Central

    Fischer, Michael J. M.; Soller, Kailey J.; Sauer, Susanne K.; Kalucka, Joanna; Veglia, Gianluigi; Reeh, Peter W.

    2015-01-01

    The formalin test is the most widely used behavioral screening test for analgesic compounds. The cellular mechanism of action of formaldehyde, inducing a typically biphasic pain-related behavior in rodents is addressed in this study. The chemoreceptor channel TRPA1 was suggested as primary transducer, but the high concentrations used in the formalin test elicit a similar response in TRPA1 wildtype and knockout animals. Here we show that formaldehyde evokes a dose-dependent calcium release from intracellular stores in mouse sensory neurons and primary keratinocytes as well as in non-neuronal cell lines, and independent of TRPA1. The source of calcium is the endoplasmatic reticulum and inhibition of the sarco/endoplasmic reticulum calcium-ATPase has a major contribution. This TRPA1-independent mechanism may underlie formaldehyde-induced pan-neuronal excitation and subsequent inflammation. PMID:25875358

  14. Oscillatory Motion of a Bi-Phasic Slug in a Teflon Reactor

    NASA Astrophysics Data System (ADS)

    Abolhasani, Milad; Jensen, Klavs

    2015-11-01

    Bi-phasic physical/chemical processes require transfer of solute/reagent molecules across the interface. Continuous multi-phase flow approaches (using gas as the continuous phase), usually fail in providing sufficient interfacial area for transfer of molecules between the aqueous and organic phases. In continuous segmented flow platforms (with a fluorinated polymer-based reactor), the higher surface tension of the aqueous phase compared to the organic phase of a bi-phasic slug, in combination with the low surface energy of the reactor wall result in a more facile motion of the aqueous phase. Thus, upon applying a pressure gradient across the bi-phasic slug, the aqueous phase of the slug moves through the organic phase and leads the bi-phasic slug, thereby limiting the available interfacial area for the bi-phasic mass transfer only to the semi-spherical interface between the two phases. Disrupting the quasi-equilibrium state of the bi-phasic slug through reversing the pressure gradient across the bi-phasic slug causes the aqueous phase to move back through the organic phase. In this work, we experimentally investigate the dynamics of periodic alteration of the pressure gradient across a bi-phasic slug, and characterize the resulting enhanced interfacial area on the bi-phasic mass transfer rate. We demonstrate the enhanced mass transfer rate of the oscillatory flow strategy compared to the continuous multi-phase approach using bi-phasic Pd catalyzed carbon-carbon and carbon-nitrogen cross coupling reactions. NSERC Postdoctoral Fellowship, Novartis Center for Continuous Manufacturing.

  15. [Effect of the dispersion of calcium deposits on allogenic aortic valves durability. Mineralization phases].

    PubMed

    Lis, Grzegorz J; Rokita, Eugeniusz; Podolec, Piotr; Gajda, Mariusz; Sadowski, Jerzy; Cichocki, Tadeusz

    2004-01-01

    This investigation was aimed at comparison of calcium content and calcium dispersion in allogenic aortic valve leaflets removed due to dysfunction, to establish the influence of both parameters on graft durability. Calcification was assessed histochemically (von Kossa) as well as physicochemically using atomic absorption spectroscopy (AAS). The morpho-metric data (leaflet area involved in the calcification process) were obtained by computer-assisted image analysis system. The dry weight content of leaflet calcium and phosphorus were assessed by atomic absorptive spectroscopy (AAS) and Ca/P ratio was calculated. Calcium dispersion coefficient (Dc) was established according to the formula: Dc = 1/Ca(c)/Ap, where Ca(c) = calcium dry weight concentration; Ap = percent of leaflet area involved in calcification. We found biphasic correlation between calcium concentration and area involved in calcification. The first one was characterized by rising dispersion of calcium deposits while for the second one saturation with hydroxyapatite of formerly calcified areas was predominant, negatively influencing graft durability. Allograft durability was correlated with calcium dispersion (Dc) (p<0.001), while no significant correlation was found with calcium concentration. Decreased Dc was characteristic for 93.8% of low durability grafts (<11.6 years). Our results suggest that lowered calcium dispersion decreasing allograft lifetime and is a better predictor of allograft durability than the total calcium content. PMID:15724647

  16. [Subantral augmentation with porous titanium in experiment and clinic].

    PubMed

    Sirak, S V; Shchetinin, E V; Sletov, A A

    2016-01-01

    The article discusses the use of porous titanium for subantral augmentation. Experimental study was conducted on 12 yearling rams. Subantral augmentation using porous titanium was performed in 33 patients. In the control group consisting of 14 patients calcium phosphates and bone collagen based agents ("Bio-Оss" and "Collost") were used. In the main and control groups 46 and 32 implant were placed, respectively. Pilot histological and clinical studies proved that the granules of porous titanium are biocompatible with bone tissue, provide the optimal surface microrelief, thus creating good conditions for adhesion, expansion and migration of osteoforming cells, have negligible kinetics of resorption, are porous to ensure effective neovascularization of de novo formed bone tissue. Porous titanium is an effective alternative material for subantral bone augmentation for dental implantation and reconstructive operations on the maxillary sinus. PMID:26925568

  17. Calcium and Vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium is required for the bone formation phase of bone remodeling. Typically about 5 nmol (200 mg) of calcium is removed from the adult skeleton and replaced each day. To supply this amount, one would need to consume about 600 mg of calcium, since calcium is not very efficiently absorbed. Calcium ...

  18. Bioplastique: a new biphasic polymer for minimally invasive injection implantation.

    PubMed

    Ersek, R A; Beisang, A A

    1992-01-01

    The search for prosthetic materials that are biocompatible, nontoxic, and permanent led the authors to develop a micronized, inert, biphasic polymer particle for permanent soft tissue augmentation which neither migrates nor is absorbed by the body. Placed in a bioexcretable gel carrier, these textured microparticles are easily implanted using a specially designed blunt-tipped cannula with local anesthesia on an outpatient basis. Research using this implant material, Bioplastique (Bioplasty, St. Paul, MN), in rabbits has shown that when the textured particle size is maintained within a critical range, neither particle migration nor storage disease occurs. The gel carrier is rapidly phagocytized and replaced by fibrin matrix within a few days. Host collagen then gradually forms a fibrotic capsule around each textured particle, making use of the naturally occurring foreign body reaction to create a stable inplant. After being followed for over two years, Bioplastique has proven to be useful in many clinical applications with few complications. PMID:1734632

  19. On optimization of integration properties of biphase coded signals

    NASA Astrophysics Data System (ADS)

    Qiu, Wanzhi; Xiang, Jingcheng

    Within the context of the requirements for agile waveforms with a large compression ratio in biphase coded radars and on the basis of the characteristics of interpulse integration processing of radar signals, the study proposes two sequence optimization criteria which are suitable for radar processing patterns: interpulse waveform agility - pulse compression - FFT, and MTI - pulse compression - noncoherent integration. Applications of these criteria to optimizing sequences of length 127 are carried out. The output peak ratio of mainlobe to sidelobe (RMS) is improved considerably without a weighting network, while the autocorrelation and cross correlation profles of the sequences are very satisfactory. The RMS of coherent integration and noncoherent integration of eight sequences are 34.12 and 28.1 dB, respectively, when the return signals have zero Doppler shift. These values are about 12 and 6 dB higher than the RMS of single signals before integration.

  20. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of hematite in the dextran (Dex)/Triton X-100 (TX100) and polyethylene glycol (PEG)/dextran systems were investigated and the effects of some ionic surfactants on solid partition were studied. In both biphase systems, the particles stayed in the bottom dextran-rich phase under all pH conditions. This behavior is attributable to the fact that the hydrophilic oxide particles prefer the more hydrophilic bottom phase. Also, the strong favorable interaction between dextran and ferric oxide facilitates the dispersion of the solids in the polysaccharide-rich phase. In the Dex/TX100 system, addition of sodium dodecylsulfate (SDS) or potassium oleate had no effect on the solid partition; on the other hand, addition of dodecyltrimethylammonium bromide (DTAB) transferred the particles to the top phase or interface at high pH values. In the PEG/Dex system, the preferred location of hematite remained the bottom phase in the presence of either SDS or DTAB. The effects of anionic surfactants on the partition behavior are attributable to the fact that they are not able to replace the strongly adsorbed polysaccharide layer on the ferric oxide surface. The results with the cationic surfactant are due to electrostatic interaction between the cationic surfactant and the charged surface of the solid particles. The difference in solids partitioning in the two systems is the result of the different distribution of DTAB in these systems. In the Dex/TX100 system, DTAB prefers the top surfactant-rich phase, while it concentrates in the bottom phase in the PEG/dextran system.

  1. Biphasic Presence of Fibrocytes in a Porcine Hypertrophic Scar Model

    PubMed Central

    Travis, Taryn E.; Mino, Matthew J.; Moffatt, Lauren T.; Mauskar, Neil A.; Prindeze, Nicholas J.; Ghassemi, Pejhman; Ramella-Roman, Jessica C.; Jordan, Marion H.; Shupp, Jeffrey W.

    2014-01-01

    Objective The duroc pig has been described as a promising animal model for use in the study of human wound healing and scar formation. However little is known about the presence and chronology of the fibrocyte cell population in the healing process of these animals. Methods Wounds known to form scar were created on red duroc swine (3“ × 3”) with a dermatome to a total depth of either 0.06“ or 0.09”. These wounds were allowed to heal completely and were biopsied at scheduled time points during the healing process. Biopsies were formalin-fixed and paraffin embedded for immunohistochemical analysis. Porcine-reactive antibodies to CD-45 and procollagen-1 and a human-reactive antibody to LSP-1 were used to detect the presence of fibrocytes in immunohistochemistry an immunocytochemistry. Results Initial immunohistochemical studies showed evidence of a biphasic presence of fibrocytes. Pigs with 0.06“ deep wounds showed positive staining for CD-45 and LSP-1 within highly cellular areas at days 2 and 4 after wounding. Additional animals with 0.09” deep wounds showed positive staining within similar areas at days 56, 70, and 113 after wounding. There was no immunohistochemical evidence of fibrocytes in skin biopsies taken at days 14, 28, or 42. Procollagen-1 staining was diffuse in all samples. Cultured cells stained for CD-45, LSP-1, and procollagen-1 by immunocytochemistry. Conclusions These data confirm that fibrocytes are indeed present in this porcine model. We conclude that these cells are present after initial wounding and later during scar formation and remodeling. We believe that this is evidence of a biphasic presence of fibrocytes, first as an acute response to skin wounding followed by later involvement in the remodeling process, prompted by continued inflammation in a deep partial thickness wound. PMID:25051518

  2. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  3. Calcium source (image)

    MedlinePlus

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  4. Coronary Calcium Scan

    MedlinePlus

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  5. Calcium hydroxide poisoning

    MedlinePlus

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  6. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGESBeta

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; Hartman, Alan; Tupta, Mary Ann; Baczewski, Andrew David; Crimp, Martin A.; Halpern, Joshua B.; He, Maoqi; Shaw, Harry C.

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  7. Nod Factor Elicits Two Separable Calcium Responses in Medicago truncatula Root Hair Cells1

    PubMed Central

    Shaw, Sidney L.; Long, Sharon R.

    2003-01-01

    Modulation of intracellular calcium levels plays a key role in the transduction of many biological signals. Here, we characterize early calcium responses of wild-type and mutant Medicago truncatula plants to nodulation factors produced by the bacterial symbiont Sinorhizobium meliloti using a dual-dye ratiometric imaging technique. When presented with 1 nm Nod factor, root hair cells exhibited only the previously described calcium spiking response initiating 10 min after application. Nod factor (10 nm) elicited an immediate increase in calcium levels that was temporally earlier and spatially distinct from calcium spikes occurring later in the same cell. Nod factor analogs that were structurally related, applied at 10 nm, failed to initiate this calcium flux response. Cells induced to spike with low Nod factor concentrations show a calcium flux response when Nod factor is raised from 1 to 10 nm. Plant mutants previously shown to be deficient for the calcium spiking response (dmi1 and dmi2) exhibited an immediate, truncated calcium flux with 10 nm Nod factor, demonstrating a competence to respond to Nod factor but an impaired ability to generate a full biphasic response. These results demonstrate that the legume root hair cell exhibits two independent calcium responses to Nod factor triggered at different agonist concentrations and suggests an early branch point in the Nod factor signal transduction pathway. PMID:12644650

  8. Calcium-phospholipid enhanced protein phosphorylation in human placenta

    SciTech Connect

    Moore, J.J.; Moore, R.; Cardaman, R.C.

    1986-07-01

    Calcium-activated, phospholipid-dependent protein phosphorylation has not been studied in placenta. Human placental cytosol was subjected to an endogenous protein phosphorylation assay using (..gamma..-/sup 32/P)ATP in the presence of calcium and phosphatidylserine. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When compared to basal levels, calcium (10/sup -6/ M) in combination with phosphatidylserine (50 ..mu..g/ml) significantly enhanced (P < 100) /sup 32/P incorporation into phosphoproteins having mol wt 47,000, 43,000, and 37,000. Half-maximal /sup 22/P incorporation was observed with 3.5 x 10/sup -7/ M Ca/sup 2 +/ in the presence of phosphatidylserine (50 ..mu..g/ml). The effect of phosphatidylserine was biphasic. In the presence of Ca 10/sup -6/ M, /sup 32/P incorporation increased to a maximum at 70 /sup +/g/ml of phosphatidylserine. The increase was suppressed at 150 ..mu..g/ml. Tetracaine caused a dose-dependent inhibition of calcium-activated, phospholipid-dependent enhancement of the three phosphoproteins. Calcium in the absence of phospholipid enhanced the phosphorylation of a protein of 98,000 mol wt. Phosphatidylserine suppressed this enhancement. Calmodulin (10/sup -6/ M) had no detectable effect upon phosphorylation beyond that of calcium alone, but the calmodulin inhibitor R-24571 specifically inhibited the calcium-stimulated 98,000 mol wt phosphoprotein. Calcium-activated, phospholipid-dependent phospholipid-dependent phosphoproteins are present in human placental cytosol; whether calcium-activated, calmodulin-dependent phosphoproteins also are present remains a question.

  9. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  10. Tailored Porous Materials

    SciTech Connect

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  11. Microscale extraction and phase separation using a porous capillary.

    PubMed

    Phillips, Thomas W; Bannock, James H; deMello, John C

    2015-07-21

    We report the use of a porous polytetrafluoroethylene capillary for the inline separation of liquid-liquid segmented flows, based on the selective wetting and permeation of the porous capillary walls by one of the liquids. Insertion of a narrow flow restriction at the capillary outlet allows the back pressure to be tuned for multiple liquid-liquid combinations and flow conditions. In this way, efficient separation of aqueous-organic, aqueous-fluorous and organic-fluorous segmented flows can be readily achieved over a wide range of flow rates. The porous-capillary-separator enables the straightforward regeneration of a continuous flow from a segmented flow, and may be applied to various applications, including inline analysis, biphasic reactions, and purification. As a demonstration of the latter, we performed a simple inline aqueous-organic extraction of the pH indicator 2,6-dichloroindophenol. An aqueous solution of the conjugate base was mixed with hydrochloric acid in continuous flow to protonate the indicator and render it organic-soluble. The indicator was then extracted from the aqueous feed into chloroform using a segmented flow. The two liquids were finally separated inline using a porous PTFE capillary, with the aqueous phase emerging as a continuous stream from the separator outlet. UV-visible absorption spectroscopy showed the concentration of indicator in the outflowing aqueous phase to be less than one percent of its original value, confirming the efficacy of the extraction and separation process. PMID:26054926

  12. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  13. Evaluation of a new biphasic culture system for the recovery of mycobacteria.

    PubMed

    Giger, T; Burkardt, H J

    1990-06-01

    A newly developed biphasic culture system (MB-Check) for recovery of mycobacteria was evaluated. The biphasic system consists of a bottle containing selective modified Middlebrook 7H9 broth and a mounted dip slide with chocolate agar and modified Middlebrook 7H11 agar with and without NAP. The system was compared with culture on two egg-based media, Lowenstein medium and a selective Gottsacker medium, using 995 routine specimens and 90 artificially seeded sputa. Mycobacterium tuberculosis was detected in 17 of the 995 routine specimens by the biphasic system and in 14 specimens by the egg-based media together. In the artificially seeded sputa the biphasic system showed higher sensitivity in detection of both tuberculosis complex and non-tuberculous mycobacteria than the egg-based media. The recovery times of the new system were comparable to those of the two conventional culture methods. PMID:2387296

  14. Generation of useful energy from process fluids using the biphase turbine

    NASA Astrophysics Data System (ADS)

    Helgeson, N. L.

    1981-01-01

    The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.

  15. Dynamic gene expression patterns in animal models of early and late heart failure reveal biphasic-bidirectional transcriptional activation of signaling pathways.

    PubMed

    Rowell, Janelle; Koitabashi, Norimichi; Kass, David A; Barth, Andreas S

    2014-10-15

    Altered cardiac gene expression in heart failure (HF) has mostly been identified by single-point analysis of end-stage disease. This may miss earlier changes in gene expression that are transient and/or directionally opposite to those observed later. Myocardial datasets from the largest microarray data repository (Gene Expression Omnibus) yielded six HF studies with time-course data. Differentially expressed transcripts between nonfailing controls, early HF (<3 days after cardiac insult) and late HF (usually >2 wk) were determined, and analysis of KEGG pathways and predicted regulatory control elements performed. We found that gene expression followed varying patterns: Downregulation of metabolic pathways occurred early and was sustained into late-stage HF. In contrast, most signaling pathways undergo a complex biphasic pattern: Calcium signaling, p53, apoptosis, and MAPK pathways displayed a bidirectional response, declining early but rising late. These profiles were compatible with specific microRNA (miRNA) and transcription regulators: Estrogen-related receptor-α and myocyte-enhancer factor-2 binding sites were overrepresented in the promoter regions of downregulated transcripts. Concurrently, there were overrepresented binding sites for E2f and ETS family members (E-Twenty Six, including Gabp, Elf1, and Ets2), serum response and interferon regulated factor in biphasic-bidirectional and late-upregulated transcripts. Binding sites for miRNAs downregulated by HF were more common in upregulated transcripts (e.g., miRNA-22,-133a/b, and -150 in early HF and miRNA-1,-9,-499 in late HF). During the development of HF, gene expression is characterized by dynamic overlapping sets of transcripts controlled by specific interrelated regulatory mechanisms. While metabolic gene classes show early and sustained downregulation in HF, signaling pathways undergo a complex biphasic pattern with early down- and more pronounced late upregulation. PMID:25159852

  16. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of silica in the polyethylene glycol (PEG)/dextran (Dex) and dextran/Triton X-100 (TX100) systems have been investigated, and the effects of sodium dodecylsulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) on solid partition have been studied. In both biphase systems, silica particles stayed in the top PEG-rich phase at low pH. With increase in pH, the particles moved from the top phase to the interface, then to the bottom phase. At very high pH, the solids preferred the top phase again. These trends are attributable to variations in the polymer/solid and nonionic surfactant/solid interactions. Addition of ionic surfactants into these two systems introduces a weakly charged environment, since ionic surfactants concentrate into one phase, either the top phase or the bottom phase. Therefore, coulombic forces also play a key role in the partition of silica particles because electrostatic attractive or repulsive forces are produced between the solid surface and the ionic-surfactant-concentrated phase. For the PEG/dextran system in the presence of SDS, SiO{sub 2} preferred the bottom dextran-rich phase above its pH{sub PZC}. However, addition of DTAB moved the oxide particles from the top phase to the interface, and then to the bottom phase, with increase in pH. These different behaviors are attributable to the fact that SDS and DTAB concentrated into the opposite phase of the PEG/dextran system. On the other hand, in the dextran/Triton X-100 system, both ionic surfactants concentrated in the top surfactant-rich phase and formed mixed micelles with TX100. Therefore, addition of the anionic surfactant, SDS, moved the silica particles from top phase to the

  17. Progressive and biphasic cardiac responses during extreme mountain ultramarathon.

    PubMed

    Maufrais, Claire; Millet, Grégoire P; Schuster, Iris; Rupp, Thomas; Nottin, Stéphane

    2016-05-15

    Investigations on the cardiac function consequences of mountain ultramarathon (MUM) >100 h are lacking. The present study assessed the progressive cardiac responses during the world's most challenging MUM (Tor des Géants; Italy; 330 km; 24,000 m of cumulative elevation gain). Resting echocardiographic evaluation of morphology, function, and mechanics of left and right ventricle (LV and RV) including speckle tracking echocardiography was conducted in 15 male participants (46 ± 13 yr) before (pre), during (mid; 148 km), and after (post) the race. Runners completed the race in 126 ± 15 h. From pre to post, the increase in stroke volume (SV) (103 ± 19 vs. 110 ± 23 vs. 116 ± 21 ml; P < 0.001 at pre, mid, and post) was concomitant to the increase in LV early filling (peak E; 72.9 ± 15.7 vs. 74.6 ± 13.1 vs. 82.1 ± 11.5 cm/s; P < 0.05). Left and right atrial end-diastolic areas, RV end-diastolic area, and LV end-diastolic volume were 12-19% higher at post compared with pre (P < 0.05). Resting heart rate and LV systolic strain rates demonstrated a biphasic adaptation with an increase from pre to mid (55 ± 8 vs. 72 ± 11 beats/min, P < 0.001) and a return to baseline values from mid to post (59 ± 8 beats/min). Significant correlations were found between pre-to-post percent changes in peak E and LV end-diastolic volume (r = 0.63, P < 0.05) or RV (r = 0.82, P < 0.001) or atrial end-diastolic areas (r = 0.83, P < 0.001). An extreme MUM induced a biphasic pattern of heart rate in parallel with specific cardiac responses characterized by a progressive increase in diastolic filling, biventricular volumes, and SV. The underlying mechanisms and their clinical implications remain challenging for the future. PMID:26921434

  18. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare

    2000-06-02

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behavior of fly ash in the PEG-2000 Na{sub 2}SO{sub 4}/H{sub 2}O system was studied and the solid in each fraction was characterized by CHN analysis (carbon content), X-ray diffraction (XRD; crystal component), and inductively coupled plasma spectrophotometry (ICP; elemental composition in the ash). In the pH range from 2 to 5, the particles separated into two different layers, i.e., the polymer-rich (top) and salt-rich (bottom) layers. However, above pH 5, the particles in the polymer-rich phase split into two zones. The percent carbon content of the solids in the upper zone ({approximately}80 wt%) was higher than that in the parent sample (63.2 wt%), while the lower zone in the polymer-rich phase had the same percent ash content as the original sample. The particles in the salt-rich phase were mainly composed of ash (with < 4 wt% carbon content). However, when the solid concentration in the whole system increased from 1 wt% to 2 wt%, this 3-fraction phenomenon only occurred above pH 10. XRD results showed that the main crystal components in the ash included quartz, hematite, and mullite. The ICP results showed that Si, Al, and Fe were the major elements in the fly ash, with minor elements of Na, K, Ca, Mg, and Ba. The composition of the ash in the lower zone of the polymer-rich phase remained almost the same as that in the parent fly ash. The largest amount of product ({approximately}60% yield) with the highest carbon content ({approximately}80 wt% C) was obtained in the range pH 6-9. Based on the experimental results obtained, a flowsheet is proposed for the beneficiation of high-carbon fly ash with the aqueous biphase extraction process.

  19. Facilitatory effect of paired-pulse stimulation by transcranial magnetic stimulation with biphasic wave-form.

    PubMed

    Julkunen, Petro; Järnefelt, Gustaf; Savolainen, Petri; Laine, Jarmo; Karhu, Jari

    2016-08-01

    Transcranial magnetic stimulation (TMS) is used to probe corticospinal excitability by stimulating the motor cortex. Our aim was to enhance the effects of biphasic TMS by coupling a suprathreshold test pulse and a following subthreshold priming pulse to induce short-interval intracortical facilitation (SICF), which is conventionally produced with monophasic TMS. Biphasic TMS could potentially induce the SICF effect with better energy-efficiency and with lower stimulus intensities. This would make the biphasic paired-pulses better applicable in patients with reduced cortical excitability. A prototype stimulator was built to produce biphasic paired-pulses. Resting motor thresholds (rMTs) from the right and left hand abductor pollicis brevis muscles, and the right tibialis anterior muscle of eight healthy volunteers were determined using single-pulse paradigm with neuronavigated TMS. The rMTs and MEPs were measured using single-pulses and three paired-pulse setups (interstimulus interval, ISI of 3, 7 or 15ms). The rMTs were lower and MEPs were higher with biphasic paired-pulses compared to single-pulses. The SICF effect was greatest at 3ms ISI. This suggests that the application of biphasic paired-pulses to enhance stimulation effects is possible. PMID:27215172

  20. A nonlinear biphasic viscohyperelastic model for articular cartilage.

    PubMed

    García, José Jaime; Cortés, Daniel Humberto

    2006-01-01

    Experiments on articular cartilage have shown nonlinear stress-strain curves under finite deformations as well as intrinsic viscous effects of the solid phase. The aim of this study was to propose a nonlinear biphasic viscohyperelastic model that combines the intrinsic viscous effects of the proteoglycan matrix with a nonlinear hyperelastic constitutive equation. The proposed equation satisfies objectivity and reduces for uniaxial loading to a solid type viscous model in which the actions of the springs are represented by the hyperelastic function proposed by Holmes and Mow [1990. J. Biomechanics 23, 1145-1156.]. Results of the model, that were efficiently implemented in an updated Lagrangian algorithm, were compared with experimental infinitesimal data reported by DiSilverstro and Suh [2001. J. Biomechanics 34, 519-525.] and showed acceptable fitting for the axial force (R(2)=0.991) and lateral displacement (R(2)=0.914) curves in unconfined compression as well as a good fitting of the axial indentation force curve (R(2)=0.982). In addition, the model showed an excellent fitting of finite-deformation confined compression stress relaxation data reported by Ateshian et al. [1997. J. Biomechanics 30, 1157-1164.] and Huang et al. [2005. J. Biomechanics 38, 799-809.] (R(2)=0.993 and R(2)=0.995, respectively). The constitutive equation may be used to represent the mechanical behavior of the proteoglycan matrix in a fiber reinforced model of articular cartilage. PMID:16316659

  1. Biphasic Effect of Rifampicin on Bilirubin- A Case Report

    PubMed Central

    Seshadri, Mandalam Subramanian

    2016-01-01

    Drug induced hepatitis is a major problem which a physician encounters in his clinical practice. In view of increasing incidence of tuberculosis in our country a large number of infected individuals are started on Antituberculous (ATT) drugs and rifampicin is invariably part of the regimen. One of the major adverse effects of ATT drugs is drug- induced hepatitis which is characterized by elevation of liver enzymes and bilirubin. Hepatotoxicity is usually idiosyncratic or dose-dependent. Rifampicin causes transient elevation of transaminases in 10-20 percent of individuals and this does not warrant dose adjustments of the drug. Rarely rifampicin can lead to severe hepatitis with hyperbilirubinaemia and marked elevations of SGOT and SGPT and in some patients this can be fatal. The exact mechanism of Rifampicin induced hepatotoxicity is not known but it is postulated to be due to idiosyncratic reaction to rifampicin metabolites which may be directly toxic or induce an immunologically mediated liver injury. Rarely rifampicin may cause hyperbilirubinaemia without enzyme elevation. Here we report a patient with bilateral pulmonary tuberculosis who developed transient severe indirect hyperbilirubinaemia on rifampicin. On review of relevant literature we find that rifampicin can have a biphasic effect on bilirubin, an initial increase in indirect bilirubin and later normalization of bilirubin. We have reported this case because of its rarity in clinical practice. PMID:27190870

  2. Biphasic Effect of Rifampicin on Bilirubin- A Case Report.

    PubMed

    Gopi, Manigandan; Seshadri, Mandalam Subramanian

    2016-04-01

    Drug induced hepatitis is a major problem which a physician encounters in his clinical practice. In view of increasing incidence of tuberculosis in our country a large number of infected individuals are started on Antituberculous (ATT) drugs and rifampicin is invariably part of the regimen. One of the major adverse effects of ATT drugs is drug- induced hepatitis which is characterized by elevation of liver enzymes and bilirubin. Hepatotoxicity is usually idiosyncratic or dose-dependent. Rifampicin causes transient elevation of transaminases in 10-20 percent of individuals and this does not warrant dose adjustments of the drug. Rarely rifampicin can lead to severe hepatitis with hyperbilirubinaemia and marked elevations of SGOT and SGPT and in some patients this can be fatal. The exact mechanism of Rifampicin induced hepatotoxicity is not known but it is postulated to be due to idiosyncratic reaction to rifampicin metabolites which may be directly toxic or induce an immunologically mediated liver injury. Rarely rifampicin may cause hyperbilirubinaemia without enzyme elevation. Here we report a patient with bilateral pulmonary tuberculosis who developed transient severe indirect hyperbilirubinaemia on rifampicin. On review of relevant literature we find that rifampicin can have a biphasic effect on bilirubin, an initial increase in indirect bilirubin and later normalization of bilirubin. We have reported this case because of its rarity in clinical practice. PMID:27190870

  3. Biphasic binding kinetics between FepA and its ligands.

    PubMed

    Payne, M A; Igo, J D; Cao, Z; Foster, S B; Newton, S M; Klebba, P E

    1997-08-29

    The Escherichia coli FepA protein is an energy- and TonB-dependent, ligand-binding porin that functions as a receptor for the siderophore ferric enterobactin and colicins B and D. We characterized the kinetic and thermodynamic parameters associated with the initial, energy-independent steps in ligand binding to FepA. In vivo experiments produced Kd values of 24, 185, and 560 nM for ferric enterobactin, colicin B, and colicin D, respectively. The siderophore and colicin B bound to FepA with a 1:1 stoichiometry, but colicin D bound to a maximum level that was 3-fold lower. Preincubation with ferric enterobactin prevented colicin B binding, and preincubation with colicin B prevented ferric enterobactin binding. Colicin B release from FepA was unexpectedly slow in vivo, about 10-fold slower than ferric enterobactin release. This slow dissociation of the colicin B.FepA complex facilitated the affinity purification of FepA and FepA mutants with colicin B-Sepharose. Analysis of a fluorescent FepA derivative showed that ferric enterobactin and colicin B adsorbed with biphasic kinetics, suggesting that both ligands bind in at least two distinct steps, an initial rapid stage and a subsequent slower step, that presumably establishes a transport-competent complex. PMID:9268330

  4. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems

    DOE PAGESBeta

    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; Heller, William T.

    2016-06-16

    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO3)4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/Rg, where Rg is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis from SANS data when Rgmore » is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less

  5. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis

    PubMed Central

    Fan, Fan; Ji, Chen; Wu, Yumei; Ferguson, Shawn M.; Tamarina, Natalia; Philipson, Louis H.; Lou, Xuelin

    2015-01-01

    Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus. PMID:26413867

  6. A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: Potential application to hypercompliant soft tissues.

    PubMed

    Olberding, Joseph E; Francis Suh, J-K

    2006-01-01

    A dual-indentation creep and stress relaxation methodology was developed and validated for the material characterization of very soft biological tissue within the framework of the biphasic poroviscoelastic (BPVE) constitutive model. Agarose hydrogel, a generic porous medium with mobile fluid, served as a mechanical tissue analogue for validation of the experimental procedure. Indentation creep and stress relaxation tests with a solid plane-ended cylindrical indenter were performed at identical sites on a gel sample with dimensions large enough with respect to indenter size in order to satisfy an infinite layer assumption. A finite element (FE) formulation coupled to a global optimization algorithm was utilized to simultaneously curve-fit the creep and stress relaxation data and extract the BPVE model parameters for the agarose gel. A numerical analysis with artificial data was conducted to validate the uniqueness of the computational procedure. The BPVE model was able to successfully cross-predict both creep and stress relaxation behavior for each pair of experiments with a single unique set of material parameters. Optimized elastic moduli were consistent with those reported in the literature for agarose gel. With the incorporation of appropriately-sized indenters to satisfy more stringent geometric constraints, this simple yet powerful indentation methodology can provide a straightforward means by which to obtain the BPVE model parameters of biological soft tissues that are difficult to manipulate (such as brain and adipose) while maintaining a realistic in situ loading environment. PMID:16153650

  7. Spatiotemporal calcium signaling in a Drosophila melanogaster cell line stably expressing a Drosophila muscarinic acetylcholine receptor.

    PubMed

    Cordova, D; Delpech, V Raymond; Sattelle, D B; Rauh, J J

    2003-11-01

    A muscarinic acetylcholine receptor (mAChR), DM1, expressed in the nervous system of Drosophila melanogaster, has been stably expressed in a Drosophila S2 cell line (S2-DM1) and used to investigate spatiotemporal calcium changes following agonist activation. Carbamylcholine (CCh) and oxotremorine are potent agonists, whereas application of the vertebrate M1 mAChR agonist, McN-A-343, results in a weak response. Activation of S2-DM1 receptors using CCh resulted in an increase in intracellular calcium ([Ca(2+)](i)) that was biphasic. Two distinct calcium sources were found to contribute to calcium signaling: (1) internal stores that are sensitive to both thapsigargin and 2-aminoethoxydiphenyl borate and (2) capacitative calcium entry. Spatiotemporal imaging of individual S2-DM1 cells showed that the CCh-induced [Ca(2+)](i) transient resulted from a homogeneous calcium increase throughout the cell, indicative of calcium release from internal stores. In contrast, ionomycin induced the formation of a "calcium ring" at the cell periphery, consistent with external calcium influx. PMID:12827518

  8. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model

  9. The stability mechanisms of an injectable calcium phosphate ceramic suspension

    PubMed Central

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A. V.; Weiss, Pierre

    2010-01-01

    Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of “ready to use” injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity. PMID:20229185

  10. The stability mechanisms of an injectable calcium phosphate ceramic suspension.

    PubMed

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A V; Weiss, Pierre

    2010-06-01

    Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of "ready to use" injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity. PMID:20229185