Science.gov

Sample records for porous matrices constituted

  1. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material.

    PubMed

    Nayak, Sunita; Kundu, S C

    2014-06-01

    In this study, porous three-dimensional (3D) hydrogel matrices are fabricated composed of silk cocoon protein sericin of non-mulberry silkworm Antheraea mylitta and carboxymethyl cellulose. The matrices are prepared via freeze-drying technique followed by dual cross-linking with glutaraldehyde and aluminum chloride. The microstructure of the hydrogel matrices is assessed using scanning electron microscopy and biophysical characterization are carried out using Fourier transform infrared spectroscopy and X-ray diffraction. The transforming growth factor β1 release from the cross-linked matrices as a growth factor is evaluated by immunosorbent assay. Live dead assay and 3-[4,5-dimethylthiazolyl-2]-2,5-diphenyl tetrazolium bromide assay show no cytotoxicity of blended matrices toward human keratinocytes. The matrices support the cell attachment and proliferation of human keratinocytes as observed through scanning electron microscope and confocal images. Gelatin zymography demonstrates the low levels of matrix metalloproteinase 2 (MMP-2) and insignificant amount of MMP-9 in the culture media of cell seeded matrices. Low inflammatory response of the matrices is indicated through tumor necrosis factor alpha release assay. The results indicate that the fabricated matrices constitute 3D cell-interactive environment for tissue engineering applications and its potential use as a future cellular biological wound dressing material. PMID:23853114

  2. NMR studies of metallic tin confined within porous matrices

    SciTech Connect

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  3. Optical properties of Ge nanostructures embedded into porous alumina matrices

    NASA Astrophysics Data System (ADS)

    Beltiukov, A.; Valeev, R.; Zakirova, R.

    2016-04-01

    The effect of structural properties and the morphology of Ge@PAA nanocomposites synthesized by thermal deposition of Ge on porous anodic alumina matrices with different porosity on the band gap value and PL properties is investigated. PL in the range of 330–520 nm may be due to F and F2 luminescent centers in the surface of nanopores of PAA matrices. The density of electronic states in this interface depends on the temperature of matrices during deposition and on the surface morphology. The role of radiative recombination centers is played by the broken bonds in a thin intermediate Ge x –Al y –O z layer in the Ge/oxide matrix interface. No obvious effect of the crystalline structure of germanium nanoparticles on the PL maximum position is observed, but the spatial localization of electron–hole pairs of small-sized Ge crystallites of which nanoparticles consist leads to an increase in the optical band gap.

  4. A variational constitutive model for porous metal plasticity

    NASA Astrophysics Data System (ADS)

    Weinberg, K.; Mota, A.; Ortiz, M.

    2006-01-01

    This paper presents a variational formulation of viscoplastic constitutive updates for porous elastoplastic materials. The material model combines von Mises plasticity with volumetric plastic expansion as induced, e.g., by the growth of voids and defects in metals. The finite deformation theory is based on the multiplicative decomposition of the deformation gradient and an internal variable formulation of continuum thermodynamics. By the use of logarithmic and exponential mappings the stress update algorithms are extended from small strains to finite deformations. Thus the time-discretized version of the porous-viscoplastic constitutive updates is described in a fully variational manner. The range of behavior predicted by the model and the performance of the variational update are demonstrated by its application to the forced expansion and fragmentation of U-6%Nb rings.

  5. Upscaling of Constitutive Relations I Unsaturated Heterogeneous Porous Media

    SciTech Connect

    H. H. Liu; G. S. Bodvarsson

    2001-05-31

    When numerical model are used for modeling field scale flow and transport processes in the subsurface, the problem of ''upscaling'' arises. Typical scales, corresponding to spatial resolutions of subsurface heterogeneity in numerical models, are generally much larger than the measurement scale of the parameters and physical processes involved. The upscaling problems is, then, one of assigning parameters to gridblock scale based on parameter values measured on small scales. The focus of this study is to develop an approach to determine large-scale (upscaled) constitutive relations (relationships among relative permeability, capillary pressure and saturation) from small-scale measurements for porous media for a range of air entry values that are typical for the tuff matrix in the unsaturated zone of Yucca Mountain. For porous media with large air entry values, capillary forces play a key role in determining spatial water distribution at large-scales. Therefore, a relatively uniform capillary pressure approximately exists even for a large gridblock scale under steady state flow conditions. Based on these reasoning, we developed formulations that relate upscaled constitutive relations to ones measured at core-scale. Numerical experiments with stochastically generated heterogeneous porous media were used to evaluate the upscaling formulations.

  6. An Experimental Study and Constitutive Modeling of Saturated Porous Rocks

    NASA Astrophysics Data System (ADS)

    Xie, S. Y.; Shao, J. F.

    2015-01-01

    This paper is devoted to the experimental characterization and constitutive modeling of saturated porous rocks. A typical porous chalk is investigated. Drained hydrostatic and triaxial compression tests are first performed to characterize the basic mechanical behavior of chalk. Drained triaxial tests with constant interstitial pressure are then carried out to study the effects of interstitial pressure on the plastic deformation and failure criterion. Finally, undrained triaxial compression tests are performed to investigate poromechanical coupling in saturated conditions. Based on the experimental data and some relevant micromechanical considerations, a micromechanics-based plastic model is proposed and extended to poroplastic coupling using the effective stress concept. The proposed model is verified through comparisons between the numerical results and experimental data for both drained and undrained tests.

  7. Immobilization of plutonium from solutions on porous matrices by the method of high temperature sorption

    SciTech Connect

    Nardova, A.K.; Filippov, E.A.; Glagolenko, Y.B.

    1996-05-01

    This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.

  8. Compaction localization and constitutive behavior of weak porous sandstone.

    SciTech Connect

    Holcomb, David Joseph; Dewers, Thomas A.; Issen, Kathleen

    2009-06-01

    A combined experimental and constitutive modeling program for weak porous sandstone deformation is described. A series of axisymmetric compression tests were performed over a range of mean stresses to study dilatational, compactional and transitional regimes. Experimental results were used both to derive constitutive parameters for testing localization theory and to parameterize a poroelastic-plastic model. Observed strain localization, imaged syn-deformationally using acoustic emissions, includes high- and low-angle shear and low angle compactional features or 'bands'. Isotropic elastic moduli measured via unloading loops show a progressive degradation pre-failure as decreasing functions of work-conjugate plastic strains and increasing functions of stress magnitude. The degradation pathway is unique for samples which underwent localization versus those that underwent spatially pervasive pore collapse. Total shear and volume strains are partitioned into elastic and plastic portions including the ''coupling'' strain associated with modulus degradation. Plastic strain calculated with and without the coupling term is compared with regard to localization predictions. Both coupled and uncoupled cases predict high angle shear bands for uniaxial and low mean stress conditions on the dilatational side of the yield surface. Uncoupled predictions show progressively lower angle shear bands approaching the transitional regime (stress conditions approaching the 'cap' surface). When elastic-plastic coupling is accounted for, compaction bands are predicted for the transitional regime, as are observed in the experiments. Finite element modeling efforts are described using a 3-invariant, mixed-hardening, continuous yield surface, elasto-plasticity model that includes several features important for porous sandstone constitutive behavior and observed experimentally, including non-associativity, nonlinear elasticity, elastic-plastic coupling, and kinematic hardening. Modeled

  9. Preparation, characterization, and in vivo evaluation of valsartan porous matrices using emulsion solvent evaporation technique

    PubMed Central

    Babu, Govada Kishore; Babu, Puttagunta Srinivasa; Khagga, Mukkanti

    2016-01-01

    Introduction: Valsartan is a type II Biopharmaceutics Classification System (BCS) classified drug. The poor aqueous solubility restricts its use in developing sustained or controlled release systems for the treatment of chronic hypertensive conditions. The present investigation was conducted with an objective to formulate porous matrices (PMs) of valsartan in order to enhance aqueous solubility. Materials and Methods: Polyvinylpyrrolidone (PVP) K30 and poloxamer 407 were used as hydrophilic carriers; hexane was used as a pore-forming agent, ethanol was used as a solvent, and tween 20 was used as an emulgent. The prepared porous matrices were characterized and based on the maximum slope obtained from the Washburn method and other characterization results; the drug PVP K30 (1:1.5) was selected and further evaluated in vivo by the rat gut method. Results: The prepared porous matrices are white, free-flowing powders. Among prepared formulations drug PVP K30 (1:1.5) showed maximum Washburn slope of 0.0103. The mean particle size was found to be 0.82 μ and D50 (median) value was found to be 0.55 μ. The scanning of particles at various magnifications by scanning electron microscopy (SEM) analysis revealed that the method had effectively induced porosity. The Q value of valsartan from porous matrices was observed at 20 min with a first order regression value of 0.917. The calculated difference factor (F1) when compared with pure valsartan was observed to be 63.32%. From the values obtained, it was evident that the method amplifies the percentage of drug dissolution between sixfold and eightfold when compared to pure drug. From the absorption studies by the rat gut method, the absorption of porous matrices increased threefold. Conclusion: Porous matrices of valsartan: PVP K30 (1:1.5 ratio) hold promise for the enhancement of solubility and consecutive formulation of controlled release systems even with poorly soluble drugs. PMID:27606260

  10. Numerical Modelling of The Response of Porous Sensors of The Matric Potential of Soil Water

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Whalley, R.

    Porous sensors are used to give an indirect estimate of the matric potential of soil water. In these sensors the water content of a porous matrix in equilibrium with the soil can be used to calculate the matric potential, provided that moisture retention characteristic of the porous matrix is known. The original design of these sensors used a plaster of Paris matrix and AC resistance electrodes to estimate its water content. More recently a ceramic matrix has been used with a dielectric measurement of its water content (e.g. Or and Wraith 1999; Whalley et al. 2001). The advantage of the more recent designs is that they can be used at relatively high water potentials in comparison with plaster of Paris based sensors which have application in dry soils. However, the development of the sensors that are designed to be used in wetter soils, raises the question of the sensor response time. In this paper we use an axial-symmetric 3D numerical solution of the Richards equation to investigate the effect of sensor geometry on the time taken for it to equilibrate with the potential of the soil water. We consider the sensor to have a cylindrical ceramic porous matrix. The effect of the shape of the porous matrix on the equilibration time after changes in soil water potential is modelled. We view the shape of the porous matrix in terms of the ratio of diameter to length and also the volume. The results are discussed in terms of the design requirements of a porous sensor for soil water matric potential. Or, D. &Wraith, J.M. 1999. A new soil matric-potential sensor based on time-domain- reflectometry. Water Resources Research, 35: 3399-3407. Whalley W.R., Watts C.W., Hilhorst M.A., Bird N.R.A., Balendonck J. &Longstaff D. J. 2001. The design of porous material sensors to measure matric potential of water in soil. European Journal of Soil Science, 53: 511-519.

  11. Cell colonization in degradable 3D porous matrices

    PubMed Central

    Lawrence, Benjamin J

    2008-01-01

    Cell colonization is an important in a wide variety of biological processes and applications including vascularization, wound healing, tissue engineering, stem cell differentiation and biosensors. During colonization porous 3D structures are used to support and guide the ingrowth of cells into the matrix. In this review, we summarize our understanding of various factors affecting cell colonization in three-dimensional environment. The structural, biological and degradation properties of the matrix all play key roles during colonization. Further, specific scaffold properties such as porosity, pore size, fiber thickness, topography and scaffold stiffness as well as important cell material interactions such as cell adhesion and mechanotransduction also influence colonization. PMID:19262124

  12. Porous media matric potential and water content measurements during parabolic flight.

    PubMed

    Norikane, Joey H; Jones, Scott B; Steinberg, Susan L; Levine, Howard G; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications. PMID:15751144

  13. Porous media matric potential and water content measurements during parabolic flight

    NASA Technical Reports Server (NTRS)

    Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  14. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    PubMed

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings. PMID:25528691

  15. Modeling thermochemical heat storage in porous media with local thermal nonequilibrium - From constitutive theory to application

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Shao, H.; Linder, M.; Wörner, A.; Kolditz, O.

    2013-12-01

    Heat processes in industry and for power generation can be made more cost-efficient and climate friendly by the integration of thermal energy storage devices. Due to high storage densities and superior long term storage characteristics, systems relying on thermochemical reactions are of great interest and often based on porous or granular media. As such, they share characteristic features in terms of mass and heat transport that are strongly coupled by physical and chemical phenomena. We have employed the theory of porous media to establish a model featuring reactive multicomponent compressible fluid mass transport through solid particle bed coupled to local thermal nonequilibrium heat transport. The model development has been based on an extensive evaluation of the Clausius-Duhem inequality to derive thermodynamically consistent constitutive relations for secondary variables as well as direct and indirect coupling terms. The model has then been implemented into the open source scientific simulation code OpenGeoSys using the finite element method. Lab and pilot scale thermochemical heat storage reactors with different reaction systems (oxidation reactions, hydration reactions) have been simulated successfully using axisymmetric geometries. The simulations show the strong coupling of pressure, concentration and temperature fields as well as the gas-solid reactions occurring inside the reactors. The effect of certain process parameters, such as mass flow and particle size, on the occurrence of local thermal nonequilibrium is illustrated. It is shown that the reactors can be used in a number of operating modes such as the extraction or release of heat accompanied by significant temperature drops or raises; the buffering or smoothing of temperature fluctuations at the inlet; the up- or downgrading of heat. The developed model therefore represents a useful tool to understand reactor behavior, optimize operating parameters, estimate thermal and parasitic losses, and

  16. Encapsulation of protein molecules in transparent porous silica matrices via an aqueous colloidal sol-gel process

    SciTech Connect

    Liu, D.M.; Chen, I.W.

    1999-12-10

    Encapsulation of several biologically important proteins, cytochrome c, catalase, myoglobin, and hemoglobin, into transparent porous silica matrices by an aqueous colloidal sol-gel process that requires no alcohol is reported. Optical characterization indicates a successful retention of protein conformation after encapsulation. The conformation retention is strongly correlated to both the rate of gelation and the subsequent drying speed. Using hemoglobin as a model protein, a higher colloidal solid concentration and a lower synthesis pH were found, both causing faster gelation, resulting in a better retention of conformation. Hemoglobin encapsulated in a thin film, which dries faster, also showed a better retention than in the bulk. This is attributed to the fact that when a protein is isolated, and especially when it is confined to a space close to its own dimensions, conformational changes are sterically hindered, hence the structural stability. Enzymatic activity of bovine liver catalase was also monitored and showed a remarkable improvement when encapsulated using the aqueous colloidal process, compared to using the conventional alkoxide-based process. Thus, the aqueous colloidal sol-gel process offers a promising alternative to the conventional sol-gel process for encapsulating biomolecules into transparent, porous matrices.

  17. The Pressurized Porous Surface Model: an improved tool to study bacterial behavior under a wide range of environmentally relevant matric potentials.

    PubMed

    Gülez, Gamze; Dechesne, Arnaud; Smets, Barth F

    2010-09-01

    To study bacterial behavior under varying hydration conditions similar to surface soil, we have developed a system called the Pressurized Porous Surface Model (PPSM). Thin liquid films created by imposing a matric potential of -0.4 MPa impact gene expression and colony development in Pseudomonas putida. PMID:20599568

  18. Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices

    NASA Astrophysics Data System (ADS)

    Starly, Binil

    Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.

  19. Development and assessment of two-phase porous matrices for use in all-oxide ceramic composites

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroki

    The study focuses on a class of all-oxide continuous-fiber ceramic composite (CFCC) in which damage tolerance is derived from a highly-porous matrix, without an interphase at the fiber-matrix boundary. It includes experiments and analyses on both a representative oxide CFCC (developed earlier at UCSB) and a series of alumina-mullite matrices. The first part of the thesis addresses the stability of the porosity against densification and the associated implications for long-term durability at elevated temperatures. For this purpose, changes in the mechanical properties of the CFCC following 1000 hour exposure at 1000--1200°C were examined. Despite evidence of some strengthening of the matrix, the tensile properties in the 0°/90° orientation, including strength and failure strain, are unchanged. This strengthening is manifested to a more significant extent in the composite properties in the +/-45° orientation. The remainder of the thesis focuses on the assessment of weakly bonded mixtures of mullite and alumina as candidate matrices. Stability against densification is accomplished by using mullite particles as the major phase. This stability arises from the sluggish sintering kinetics of mullite. The matrix is strengthened by adding alumina, either as small particulates in the starting slurry or by subsequent impregnation and pyrolysis of a precursor solution. The modulus and the toughness of both types of mixtures as well as the changes in these properties following aging at 1200°C are examined. Models based on bonded particle aggregates are presented, assessed and calibrated. When coupled with a crack deflection parameter, the models are useful in determining the conditions under which damage tolerance is lost, because of excessive strengthening of the matrix. The implications of these results in matrix design are discussed.

  20. PARAMETRIC MODEL FOR CONSTITUTIVE PROPERTIES GOVERNING MULTIPHASE FLOW IN POROUS MEDIA

    EPA Science Inventory

    A parametric model is developed to describe relative permeability-saturation-fluid pressure functional relationships in two- or three-fluid phase porous media systems subject to monotonic saturation paths. All functions are obtained as simple closed-form expressions convenient fo...

  1. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    DOEpatents

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  2. Constitutive model for geological and other porous materials under dynamic loading

    SciTech Connect

    Dey, T.N.

    1991-01-01

    An effective stress model is described for use in numerical calculations on porous materials which are partially or fully saturated with water. The flow rule chosen for the shear failure portion of the model is examined and shown to have significant influence on wave propagation results. A flow rule which produces dilatancy results in less attenuation than a rule producing shear-enhanced void collapse. The dilatancy producing rule is less prone to producing liquefaction and results in significantly higher stress levels behind the wave front. 8 refs., 6 figs.

  3. Lower-bound and Upper-bound Rigid-plastic Constitutive Models for Porous Materials:Comparison and Examination

    NASA Astrophysics Data System (ADS)

    Yin, Yajun; Xue, Mingde; Yu, Shouwen

    A lower bound rigid plastic constitutive model for porous materials has been published recently, but its reliability and accuracy is still kept unknown. Therefore, this paper is confined to examine this model by comparing it with other ones such as the upper bound one and experimental-based one. Under three loading states (i.e. uniaxial stress condition, biaxial equal stress condition and uniaxial strain condition), the sintered copper’s ductility, compressibility, strength property, deformation characteristics, stress˜strain curves and damage evolution process predicted by these models are systematically compared. The advantage of the lower bound model in describing the yield property and its limitations in evaluating the ductility, compressibility, strength variation and damage evolution process of porous materials are clarified. Systematical analysis reveals that these limitations may be attributed to the short of void interaction mechanism in the lower bound model. This discovery lays the foundation for further improvement and modification of the lower bound model in the future research.

  4. Electroluminescent layers based on ZnS:Cu deposited into matrices of porous anodic Al2O3

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Petukhov, D. I.; Chukavin, A. I.; Bel'tyukov, A. N.

    2016-02-01

    It is suggested to use a new nanocomposite material—nanostructures of copper-doped zinc sulfide in a matrix of porous aluminum oxide—as a light-emitting layer of electroluminescent sources of light. The material was deposited by thermal evaporation in a vacuum. The microstructure of the layers, impurity distribution in the electroluminescent-phosphor layer, and electroluminescence spectra at various copper concentrations in ZnS:Cu were studied.

  5. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.

    PubMed

    Kramschuster, Adam; Turng, Lih-Sheng

    2010-02-01

    In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed. PMID:19957359

  6. Constitution and in vivo test of micro-porous tubular scaffold for esophageal tissue engineering.

    PubMed

    Hou, Lei; Jin, Jiachang; Lv, Jingjing; Chen, Ling; Zhu, Yabin; Liu, Xingyu

    2015-11-01

    Current clinical techniques in treating long-gap esophageal defects often lead to complications and high morbidity. Aiming at long-gap synthetic esophageal substitute, we had synthesized a biodegradable copolymer, poly(L-lactide-co-caprolactone) (PLLC), with low glass transition temperature. In this work, we developed a tubular PLLC porous scaffold using a self-designed tubular mold and thermal induced phase separation (TIPS) method. In order to enhance the interaction between tissue and scaffold, fibrin, a natural fibrous protein derived from blood fibrinogen, was coated on the scaffold circumferential surface. The fibrin density was measured to be 1.23 ± 0.04 mg/cm(2). Primary epithelial cell culture demonstrated the improved in vitro biocompatibility. In animal study with partial scaffold implantation, in situ mucosa regeneration was observed along the degradation of the scaffold. These indicate that fibrin incorporated PLLC scaffold can greatly improve epithelial regeneration in esophagus repair, therefore serve as a good candidate for long-term evaluation of post-implantation at excision site. PMID:26208515

  7. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  8. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media

    SciTech Connect

    Lenhard, Robert J.; Oostrom, Mart; Dane, J H.

    2004-07-01

    A hysteretic constitutive model describing relations among relative permeabilities, saturations, and pressures in fluid systems consisting of air, nonaqueous-phase liquid (NAPL), and water is modified to account for NAPL that is postulated to be immobile in small pores and pore wedges and as films or lenses on water surfaces. A direct outcome of the model is prediction of the NAPL saturation that remains in the vadose zone after long drainage periods (residual NAPL). Using the modified model, water and NAPL (free, trapped by water, and residual) saturations can be predicted from the capillary pressures and the water and total-liquid saturation-path histories. Relations between relative permeabilities and saturations are modified to account for the residual NAPL by adjusting the limits of integration in the integral expression used for predicting the NAPL relative permeability. When all of the NAPL is either residual or trapped (i.e., no free NAPL), then the NAPL relative permeability will be zero. We model residual NAPL using concepts similar to those used to model residual water. As an initial test of the constitutive model, we compare predictions to published measurements of residual NAPL. Furthermore, we present results using the modified constitutive theory for a scenario involving NAPL imbibition and drainage.

  9. A Constitutive Model for Air-NAPL-Water Flow in the Vadose Zone Accounting for Immobile, Non-Occluded (Residual) NAPL in Strongly Water-Wet Porous Media

    SciTech Connect

    R. J. Lenhard; M. Oostrom; J. H. Dane

    2004-07-01

    A hysteretic constitutive model describing relations among relative permeabilities, saturations, and pressures in fluid systems consisting of air, nonaqueous-phase liquid (NAPL), and water is modified to account for NAPL that is postulated to be immobile in small pores and pore wedges and as films or lenses on water surfaces. A direct outcome of the model is prediction of the NAPL saturation that remains in the vadose zone after long drainage periods (residual NAPL). Using the modified model, water and NAPL (free, entrapped by water, and residual) saturations can be predicted from the capillary pressures and the water and total-liquid saturation-path histories. Relations between relative permeabilities and saturations are modified to account for the residual NAPL by adjusting the limits of integration in the integral expression used for predicting the NAPL relative permeability. When all of the NAPL is either residual or entrapped (i.e., no free NAPL), then the NAPL relative permeability will be zero. We model residual NAPL using concepts similar to those used to model residual water. As an initial test of the constitutive model, we compare predictions to published measurements of residual NAPL. Furthermore, we present results using the modified constitutive theory for a scenario involving NAPL imbibition and drainage.

  10. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media

    SciTech Connect

    Lenhard, Robert J.; Oostrom, Mart; Dane, J H.

    2004-09-01

    A hysteretic constitutive model describing relations among relative permeabilities, saturations, and pressures in fluid systems consisting of air, nonaqueous-phase liquid (NAPL), and water is modified to account for NAPL that is postulated to be immobile in small pores and pore wedges and as films or lenses on water surfaces. A direct outcome of the model is prediction of the NAPL saturation that remains in the vadose zone after long drainage periods (residual NAPL). Using the modified model, water and NAPL (free, entrapped by water, and residual) saturations can be predicted from the capillary pressures and the water and total-liquid saturation-path histories. Relations between relative permeabilities and saturations are modified to account for the residual NAPL by adjusting the limits of integration in the integral expression used for predicting the NAPL relative permeability. When all of the NAPL is either residual or entrapped (i.e., no free NAPL), then the NAPL relative permeability will be zero. We model residual NAPL using concepts similar to those used to model residual water. As an initial test of the constitutive model, we compare predictions to published measurements of residual NAPL. Furthermore, we present results using the modified constitutive theory for a scenario involving NAPL imbibition and drainage.

  11. Stiffness and mass matrices for shells of revolution (SAMMSOR II)

    NASA Technical Reports Server (NTRS)

    Tillerson, J. R.; Haisler, W. E.

    1974-01-01

    Utilizing element properties, structural stiffness and mass matrices are generated for as many as twenty harmonics and stored on magnetic tape. Matrices generated constitute input data to be used by other stiffness of revolution programs. Variety of boundary and loading conditions can be employed without having to create new mass and stiffness matrices for each case.

  12. Synbiotic matrices derived from plant oligosaccharides and polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A porous synbiotic matrix was prepared by lyophilization of alginate and pectin or fructan oligosaccharides and polysaccharides cross-linked with calcium. These synbiotic matrices were excellent physical structures to support the growth of Lactobacillus acidophilus (1426) and Lactobacillus reuteri (...

  13. Constitutional Conservatism

    ERIC Educational Resources Information Center

    Berkowitz, Peter

    2009-01-01

    After their dismal performance in election 2008, conservatives are taking stock. As they examine the causes that have driven them into the political wilderness and as they explore paths out, they should also take heart. After all, election 2008 shows that America's constitutional order is working as designed. Indeed, while sorting out their errors…

  14. Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon

    PubMed Central

    2012-01-01

    Fluorescence spectra of anti-tumoral drug emodin loaded on nanostructured porous silicon have been recorded. The use of colloidal nanoparticles allowed embedding of the drug without previous porous silicon functionalization and leads to the observation of an enhancement of fluorescence of the drug. Mean pore size of porous silicon matrices was 60 nm, while silver nanoparticles mean diameter was 50 nm. Atmospheric and vacuum conditions at room temperature were used to infiltrate emodin-silver nanoparticles complexes into porous silicon matrices. The drug was loaded after adsorption on metal surface, alone, and bound to bovine serum albumin. Methanol and water were used as solvents. Spectra with 1 μm spatial resolution of cross-section of porous silicon layers were recorded to observe the penetration of the drug. A maximum fluorescence enhancement factor of 24 was obtained when protein was loaded bound to albumin, and atmospheric conditions of inclusion were used. A better penetration was obtained using methanol as solvent when comparing with water. Complexes of emodin remain loaded for 30 days after preparation without an apparent degradation of the drug, although a decrease in the enhancement factor is observed. The study reported here constitutes the basis for designing a new drug delivery system with future applications in medicine and pharmacy. PMID:22748115

  15. Higher dimensional Hadamard matrices

    NASA Technical Reports Server (NTRS)

    Schlichta, P. J.

    1979-01-01

    The paper defines higher dimensional Hadamard matrices and enumerates on some of the simplest three-, four-, and five-dimensional cases and procedures for generating them. Special emphasis is given to proper matrices that have a dimensional hierarchy of orthogonalities. It is determined that this property lends itself primarily to the application of higher dimensional Hadamard matrices to error-correcting codes. A list of derived statements for n-dimensional Hadamard matrices are given, as well as a definition of Hadamard matrix families, such as minimal, Petrie polygon, antipodal (n-2)-dimensional sections, and double proximity shells.

  16. What Is a Constitution?

    ERIC Educational Resources Information Center

    OAH Magazine of History, 1988

    1988-01-01

    Provides a lesson plan designed to help students better understand the concept of a constitution, distinguish constitutional law from statutory law, and recognize examples of constitutional government. (BSR)

  17. Optical detection of parasitic protozoa in sol-gel matrices

    NASA Astrophysics Data System (ADS)

    Livage, Jacques; Barreau, J. Y.; Da Costa, J. M.; Desportes, I.

    1994-10-01

    Whole cell parasitic protozoa have been entrapped within sol-gel porous silica matrices. Stationary phase promastigote cells of Leishmania donovani infantum are mixed with a silica sol before gelation occurs. They remain trapped within the growing oxide network and their cellular organization appears to be well preserved. Moreover protozoa retain their antigenic properties in the porous gel. They are still able to detect parasite specific antibodies in serum samples from infected patients via an enzyme linked immunosorbent assay (ELISA). Antigen- antibody associations occurring in the gel are optically detected via the reactions of a peroxidase conjugate with ortho-phenylenediamine leading to the formation of a yellow coloration. A clear-cut difference in optical density is measured between positive and negative sera. Such an entrapment of antigenic species into porous sol-gel matrices avoids the main problems due to non specific binding and could be advantageously used in diagnostic kits.

  18. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  19. Enzymatic Biofuel Cells on Porous Nanostructures.

    PubMed

    Wen, Dan; Eychmüller, Alexander

    2016-09-01

    Biofuel cells (BFCs) that utilize enzymes as catalysts represent a new sustainable and renewable energy technology. Numerous efforts have been directed to improve the performance of the enzymatic BFCs (EBFCs) with respect to power output and operational stability for further applications in portable power sources, self-powered electrochemical sensing, implantable medical devices, etc. The latest advances in EBFCs based on porous nanoarchitectures over the past 5 years are detailed here. Porous matrices from carbon, noble metals, and polymers promote the development of EBFCs through the electron transfer and mass transport benefits. Some key issues regarding how these nanostructured porous media improve the performance of EBFCs are also discussed. PMID:27377976

  20. The Constitutional Amendment Process

    ERIC Educational Resources Information Center

    Chism, Kahlil

    2005-01-01

    This article discusses the constitutional amendment process. Although the process is not described in great detail, Article V of the United States Constitution allows for and provides instruction on amending the Constitution. While the amendment process currently consists of six steps, the Constitution is nevertheless quite difficult to change.…

  1. Frequency filtering decompositions for unsymmetric matrices and matrices with strongly varying coefficients

    SciTech Connect

    Wagner, C.

    1996-12-31

    In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.

  2. Singular Mueller matrices

    NASA Astrophysics Data System (ADS)

    Gil, José J.; Ossikovski, Razvigor; José, Ignacio San

    2016-04-01

    Singular Mueller matrices play an important role in polarization algebra and have peculiar properties that stem from the fact that either the medium exhibits maximum diattenuation and/or polarizance, or because its associated canonical depolarizer has the property of fully randomizing, the circular component (at least) of the states of polarization of light incident on it. The formal reasons for which the Mueller matrix M of a given medium is singular are systematically investigated, analyzed and interpreted in the framework of the serial decompositions and the characteristic ellipsoids of M. The analysis allows for a general classification and geometric representation of singular Mueller matrices, of potential usefulness to experimentalists dealing with such media.

  3. Singular Mueller matrices.

    PubMed

    Gil, José J; Ossikovski, Razvigor; José, Ignacio San

    2016-04-01

    Singular Mueller matrices play an important role in polarization algebra and have peculiar properties that stem from the fact that either the medium exhibits maximum diattenuation and/or polarizance or because its associated canonical depolarizer has the property of fully randomizing the circular component (at least) of the states of polarization of light incident on it. The formal reasons for which the Mueller matrix M of a given medium is singular are systematically investigated, analyzed, and interpreted in the framework of the serial decompositions and the characteristic ellipsoids of M. The analysis allows for a general classification and geometric representation of singular Mueller matrices, which are of potential usefulness to experimentalists dealing with such media. PMID:27140769

  4. Shear representations of beam transfer matrices.

    PubMed

    Başkal, S; Kim, Y S

    2001-05-01

    The beam transfer matrix, often called the ABCD matrix, is one of the essential mathematical instruments in optics. It is a unimodular matrix whose determinant is 1. If all the elements are real with three independent parameters, this matrix is a 2 x 2 representation of the group Sp(2). It is shown that a real ABCD matrix can be generated by two shear transformations. It is then noted that, in para-axial lens optics, the lens and translation matrices constitute two shear transformations. It is shown that a system with an arbitrary number of lenses can be reduced to a system consisting of three lenses. PMID:11415030

  5. Porous bioactive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a

  6. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions.

    PubMed

    Dechesne, Arnaud; Or, Dani; Gülez, Gamze; Smets, Barth F

    2008-08-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations of bacterial growth and activity under controlled unsaturated conditions. Bacteria are inoculated on a porous ceramic plate, wetted by a liquid medium. The thickness of the liquid film at the surface of the plate is set by imposing suction, corresponding to soil matric potential, to the liquid medium. The utility of the PSM was demonstrated using Pseudomonas putida KT2440 tagged with gfp as a model bacterium. Single cells were inoculated at the surface of the PSM, and the rate at which colonies expanded laterally was measured for three matric potentials (-0.5, -1.2, and -3.6 kPa). The matric potential exerted significant influence on colony expansion rates, with a faster rate of spreading at -0.5 than at -1.2 or -3.6 kPa (diameter increase rate, ca. 1,000, 200, and 17 microm h(-1), respectively). These differences can be attributed to cell motility, strongly limited under the most negative matric potential. The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments. PMID:18586968

  7. The Porous Surface Model, a Novel Experimental System for Online Quantitative Observation of Microbial Processes under Unsaturated Conditions ▿ †

    PubMed Central

    Dechesne, Arnaud; Or, Dani; Gülez, Gamze; Smets, Barth F.

    2008-01-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations of bacterial growth and activity under controlled unsaturated conditions. Bacteria are inoculated on a porous ceramic plate, wetted by a liquid medium. The thickness of the liquid film at the surface of the plate is set by imposing suction, corresponding to soil matric potential, to the liquid medium. The utility of the PSM was demonstrated using Pseudomonas putida KT2440 tagged with gfp as a model bacterium. Single cells were inoculated at the surface of the PSM, and the rate at which colonies expanded laterally was measured for three matric potentials (−0.5, −1.2, and −3.6 kPa). The matric potential exerted significant influence on colony expansion rates, with a faster rate of spreading at −0.5 than at −1.2 or −3.6 kPa (diameter increase rate, ca. 1,000, 200, and 17 μm h−1, respectively). These differences can be attributed to cell motility, strongly limited under the most negative matric potential. The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments. PMID:18586968

  8. Porous liquids: A promising class of media for gas separation

    DOE PAGESBeta

    Zhang, Jinshui; Chai, Song -Hai; Qiao, Zhen -An; Mahurin, Shannon M.; Chen, Jihua; Fang, Youxing; Wan, Shun; Nelson, Kimberly; Zhang, Pengfei; Dai, Sheng

    2014-11-17

    In porous liquids with empty cavities we successfully has been successfully fabricated by surface engineering of hollow structures with suitable corona and canopy species. By taking advantage of the liquid-like polymeric matrices as a separation medium and the empty cavities as gas transport pathway, this unique porous liquid can function as a promising candidate for gas separation. A facile synthetic strategy can be further extended to other types of nanostructure-based porous liquid fabrication, opening up new opportunities for preparation of porous liquids with attractive properties for specific tasks.

  9. Intermittency and random matrices

    NASA Astrophysics Data System (ADS)

    Sokoloff, Dmitry; Illarionov, E. A.

    2015-08-01

    A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.

  10. Novel Factor-loaded Polyphosphazene Matrices

    PubMed Central

    Oredein-McCoy, Olugbemisola; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Allcock, Harry R.; Laurencin, Cato T.

    2009-01-01

    Currently employed bone tissue engineered scaffolds often lack the potential for vascularization, which may be enhanced through the incorporation of and regulated release of angiogenic factors. For this reason, our objective was to fabricate and characterize protein-loaded amino acid ester polyphosphazene (Pphos)-based scaffolds and evaluate the novel sintering method used for protein incorporation, a method which will ultimately allow for the incorporation of proangiogenic agents. To test the hypothesis, Pphos and their composite microspheres with nanocrystalline hydroxyapatite (Pphos-HAp) were fabricated via the emulsion solvent evaporation method. Next, bovine serum albumin (BSA)-containing microsphere matrices were created using a novel solvent-non solvent approach for protein loading. The resulting protein (BSA) loaded-circular porous microsphere based scaffolds were characterized for morphology, porosity, protein structure, protein distribution, and subsequent protein release pattern. Scanning electron microscopy revealed porous microsphere scaffolds with a smooth surface and sufficient level of sintering, illustrated by fusion of adjacent microspheres. The porosity measured for the PNPhGly and PNPhGly-HAp scaffolds were 23 +/- 0.11% and 18+/- 4.02%, respectively, and within the range of trabecular bone. Circular dichroism confirmed an intact secondary protein structure for BSA following the solvent sintering method used for loading, and confocal microscopy verified that FITC-BSA was successfully entrapped both between adjacent microspheres and within the surface of the microspheres while sintering. For both Pphos and their composite microsphere scaffolds, BSA was released at a steady rate over a 21day time period, following a zero order release profile. HAp particles in the composite scaffolds served to improve the release profile pattern, underscoring the potential of HAp for growth factor delivery. Moreover, the results of this work suggests that the

  11. Interpreting the Constitution.

    ERIC Educational Resources Information Center

    Brennan, William J., Jr.

    1987-01-01

    Discusses constitutional interpretations relating to capital punishment and protection of human dignity. Points out the document's effectiveness in creating a new society by adapting its principles to current problems and needs. Considers two views of the Constitution that lead to controversy over the legitimacy of judicial decisions. (PS)

  12. The Constitution by Cell

    ERIC Educational Resources Information Center

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to participate…

  13. Constitution of the AFT.

    ERIC Educational Resources Information Center

    American Federation of Teachers, Washington, DC.

    This document contains the constitution and the bylaws of the American Federation of Teachers. The constitution is comprised of 12 articles which deal with the name and objectives of the organization, membership, chartering of state and local units, federation officers, the Executive Council, conventions, representation of state and local units at…

  14. Teaching the Constitution.

    ERIC Educational Resources Information Center

    Weatherman, Donald V.

    1987-01-01

    Courses on the Constitution must focus on the principles of government. Those principles and how the understanding of those principles shaped the document are appropriate subjects for consideration. The best sources for an examination of the Constitution are "The Records of the Federal Convention of 1787" and "The Federalist." (MLW)

  15. Enhancing Understanding of Transformation Matrices

    ERIC Educational Resources Information Center

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  16. Micromechanical analysis of porous SMA

    NASA Astrophysics Data System (ADS)

    Sepe, V.; Auricchio, F.; Marfia, S.; Sacco, E.

    2015-08-01

    The present paper deals with computational micromechanical analyses of porous shape memory alloy (SMA). Porous SMAs are considered composite materials made of a dense SMA matrix including voids. A three-dimensional constitutive law is presented for the dense SMA able to reproduce the pseudo-elastic as well as the shape memory effects and, moreover, to account for the different elastic properties of the austenite and martensite phases. Furthermore, a numerical procedure is developed and the overall behavior of the porous SMA is recovered studying a representative volume element. Comparisons between the numerical results, recovered using the proposed modeling, and experimental data available in the literature are presented. The case of closed and open porosity is investigated. Parametric studies have been conducted in order to investigate the influence of the porosity, the shape and orientation of the pores on the overall mechanical response and, mainly, on the energy absorption dissipation capability.

  17. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  18. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-05-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/√{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/√{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  19. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/√{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/√{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  20. Numerical inversion of finite Toeplitz matrices and vector Toeplitz matrices

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Numerical technique increases the efficiencies of the numerical methods involving Toeplitz matrices by reducing the number of multiplications required by an N-order Toeplitz matrix from N-cubed to N-squared multiplications. Some efficient algorithms are given.

  1. What's wrong with risk matrices?

    PubMed

    Cox, Louis Anthony

    2008-04-01

    Risk matrices-tables mapping "frequency" and "severity" ratings to corresponding risk priority levels-are popular in applications as diverse as terrorism risk analysis, highway construction project management, office building risk analysis, climate change risk management, and enterprise risk management (ERM). National and international standards (e.g., Military Standard 882C and AS/NZS 4360:1999) have stimulated adoption of risk matrices by many organizations and risk consultants. However, little research rigorously validates their performance in actually improving risk management decisions. This article examines some mathematical properties of risk matrices and shows that they have the following limitations. (a) Poor Resolution. Typical risk matrices can correctly and unambiguously compare only a small fraction (e.g., less than 10%) of randomly selected pairs of hazards. They can assign identical ratings to quantitatively very different risks ("range compression"). (b) Errors. Risk matrices can mistakenly assign higher qualitative ratings to quantitatively smaller risks. For risks with negatively correlated frequencies and severities, they can be "worse than useless," leading to worse-than-random decisions. (c) Suboptimal Resource Allocation. Effective allocation of resources to risk-reducing countermeasures cannot be based on the categories provided by risk matrices. (d) Ambiguous Inputs and Outputs. Categorizations of severity cannot be made objectively for uncertain consequences. Inputs to risk matrices (e.g., frequency and severity categorizations) and resulting outputs (i.e., risk ratings) require subjective interpretation, and different users may obtain opposite ratings of the same quantitative risks. These limitations suggest that risk matrices should be used with caution, and only with careful explanations of embedded judgments. PMID:18419665

  2. Computer-Access-Code Matrices

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.

  3. Nanocomposites obtained by embedding of conjugated polymers in porous silicon and silica

    NASA Astrophysics Data System (ADS)

    Errien, N.; Vellutini, L.; Froyer, G.; Louarn, G.; Simos, C.; Skarka, V.; Haesaert, S.; Joubert, P.

    2005-06-01

    Porous silicon and porous silica matrices are filled up by conjugated polymers in order to obtain nanocomposite with enhanced third order optical nonlinearity. The active component is either PDA-TS thermally polymerized in situ or PT12 electropolymerized in porous silicon. The first measurements of the nonlinear properties of these nanocomposites give evidence of a significant increase of the nonlinear refractive index with respect to the standard optical materials.

  4. Constructions of Factorizable Multilevel Hadamard Matrices

    NASA Astrophysics Data System (ADS)

    Matsufuji, Shinya; Fan, Pingzhi

    Factorization of Hadamard matrices can provide fast algorithm and facilitate efficient hardware realization. In this letter, constructions of factorizable multilevel Hadamard matrices, which can be considered as special case of unitary matrices, are inverstigated. In particular, a class of ternary Hadamard matrices, together with its application, is presented.

  5. Sexuality and the Constitution.

    ERIC Educational Resources Information Center

    Copelon, Rhonda

    1987-01-01

    Argues for abortion rights and protection of intimate decisions and relationships. Describes the role and position of women in eighteenth century American society as a means of exposing the fallacy of the anti-abortion movement's insistence on adherence to constitutional text. Discusses the recent attempts to overturn the Roe v. Wade ruling. (PS)

  6. The Constitution in Action

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2007-01-01

    In this article, the author describes the experiences middle school students on a field trip to the new Constitution in Action Learning Lab in the Boeing Learning Center at the National Archives can expect. There, middle school students take on the roles of archivists and researchers collecting and analyzing primary sources from the holdings of…

  7. Constituting children's bodily integrity.

    PubMed

    Hill, B Jessie

    2015-04-01

    Children have a constitutional right to bodily integrity. Courts do not hesitate to vindicate that right when children are abused by state actors. Moreover, in at least some cases, a child's right to bodily integrity applies within the family, giving the child the right to avoid unwanted physical intrusions regardless of the parents' wishes. Nonetheless, the scope of this right vis-à-vis the parents is unclear; the extent to which it applies beyond the narrow context of abortion and contraception has been almost entirely unexplored and untheorized. This Article is the first in the legal literature to analyze the constitutional right of minors to bodily integrity within the family by spanning traditionally disparate doctrinal categories such as abortion rights; corporal punishment; medical decisionmaking; and nontherapeutic physical interventions such as tattooing, piercing, and circumcision. However, the constitutional right of minors to bodily integrity raises complex philosophical questions concerning the proper relationship between family and state, as well as difficult doctrinal and theoretical issues concerning the ever-murky idea of state action. This Article canvasses those issues with the ultimate goal of delineating a constitutional right of bodily security and autonomy for children. PMID:26016017

  8. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  9. President's Report: Constitutional Legacy.

    ERIC Educational Resources Information Center

    Tucker, Jan L.

    1987-01-01

    States that the proper business of social studies is civic education and contends that civic education must take into account the way in which global connections and uncertainties will affect citizenship in the Constitution's third century. Cites the problems associated with AIDS and the Iran-Contra affair as examples. (JDH)

  10. The Constitutional Heritage.

    ERIC Educational Resources Information Center

    Baxter, Maurice

    Changing political, social, economic, and intellectual conditions over the past two hundred years have demanded innovation and adjustment of legal doctrine, thus giving the United States Constitution a character which the framers of the document could not have predicted. Historically, one must not only understand developments since 1787 but also…

  11. Disputing the Constitution.

    ERIC Educational Resources Information Center

    Pyle, Christopher H.

    1987-01-01

    Constitutional law is a good way to introduce students to fundamental debates over means and ends, over what means work and at what costs, and over what ends are not merely desirable, but may be legitimately achieved even through the application of collective force. It also offers an exciting way to teach logic. (MLW)

  12. Constitutional Law--Elective.

    ERIC Educational Resources Information Center

    Gallagher, Joan; Wood, Robert J.

    The elective unit on Constitutional Law is intended for 11th and 12th grade students. The unit is designed around major course goals which are to develop those concepts whereby students recognize and understand the following three topic areas: 1) Role of the Federal Judicial Branch of Government, 2) Supreme Court Cases Involving the Three Branches…

  13. Biaxial constitutive equation development

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Walker, K. P.

    1984-01-01

    In developing the constitutive equations an interdisciplinary approach is being pursued. Specifically, both metallurgical and continuum mechanics considerations are recognized in the formulation. Experiments will be utilized to both explore general qualitative features of the material behavior that needs to be modeled and to provide a means of assessing the validity of the equations being developed. The model under development explicitly recognizes crystallographic slip on the individual slip systems. This makes possible direct representation of specific slip system phenomena. The present constitutive formulation takes the anisotropic creep theory and incorporates two state variables into the model to account for the effect of prior inelastic deformation history on the current rate-dependent response of the material.

  14. [Constitutional requirements of rationing].

    PubMed

    Kluth, Winfried

    2008-01-01

    Rationing is an emotive issue in the field of public health. This complicates the rational discourse, which is indispensable for analyzing the rationing conditions as set out by constitutional law and which requires manifold differentiation and consideration that shall briefly be outlined in the following short contribution. Of central significance is the distinction between indirect and direct rationing as well as the reference to the essential responsibility of legislators for rationing decisions. PMID:19004184

  15. Constitution, 29 March 1987.

    PubMed

    1987-01-01

    This document contains provisions of Haiti's 1987 Constitution relating to the family; the protection of children, aliens, and refugees; and individual rights. The age of majority in Haiti is 18, and political and civil rights are attained at age 21 regardless of sex or marital status. Haitians are equal before the law but native-born Haitians who have never renounced their nationality have special advantages. Human rights are guaranteed in conformity with the Universal Declaration of the Rights of Man. Every citizen has the right to decent housing, education, food, and social security. The state is obligated to provide citizens with appropriate means to protect, maintain, and restore their health. Primary schooling is compulsory and free. Aliens in Haiti enjoy the protection offered citizens, including a limited right to own real property. Political refugees have a right to asylum. The family is considered the foundation of society and enjoys state protection regardless of whether the family is constituted within the bonds of marriage. Legal protection is afforded mothers, children, and the aged. The Constitution also calls for creation of a Family Code to ensure protection and respect for the rights of the family. PMID:12346668

  16. Iterative methods for Toeplitz-like matrices

    SciTech Connect

    Huckle, T.

    1994-12-31

    In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.

  17. Shrinking mechanism of a porous collagen matrix immersed in solution.

    PubMed

    Chen, Po-Yang; Hsieh, Hsyue-Jen; Huang, Lynn L H

    2014-12-01

    The porous structure of collagen-based matrices enables the infiltration of cells both in in vitro and clinical applications. Reconstituted porous collagen matrices often collapse when they are in contact with aqueous solutions; however, the mechanism for the collapse of the pores is not understood. We, therefore, investigated the interactions between the collagen matrix and different solutions, and discuss the mechanisms for the change in microstructure of the matrix on immersing it in solution. When a dried collagen matrix was immersed in aqueous solutions, the matrix shrunk and pores close to the surface closed. The shrinkage ratio and thickness of the compact microstructure close to the superficial area decreased with increasing ethanol content in the solution. The original porous structure of the collagen matrix was preserved when the matrix was immersed in absolute ethanol. The shrinkage of a porous collagen matrix in contact with aqueous solutions was attributed to the liquid/gas interfacial tension. The average pore diameter of the matrix also significantly affected the shrinkage of the matrix. The shrinkage of the matrix, explained using the Young-Laplace equation, was found to result from the pressure drop, and especially in the pores located superficially, leading to the collapse of the matrix microstructure. The integrity of the porous microstructure allows better penetration of cells in medical applications. The numbers of NIH/3T3 fibroblasts penetrated through the hydrated Col/PBS porous collagen matrices pre-immersed in absolute ethanol with subsequent water and DMEM culture medium replacements were significantly higher than those through matrices hydrated directly in DMEM. PMID:24678021

  18. The Bicentennial and State Constitutions.

    ERIC Educational Resources Information Center

    Clay, Henry

    1988-01-01

    Illustrates how the Bicentennial of the U.S. Constitution provides an opportunity to teach about the broader concept of constitutionalism through study of the state constitutions. Presents an argument for teaching about state constitutions, their role in the federal system, and the values they convey. (LS)

  19. Thomas Jefferson and the Constitution.

    ERIC Educational Resources Information Center

    Peterson, Merrill D.

    1987-01-01

    Examines Thomas Jefferson's role in the making and interpretation of the United States Constitution. Discusses the dominant features of Jefferson's constitutional theory; the character of Jefferson's presidency; and Jefferson's ongoing concern about constitutional preservation and change. Lists important dates in the history of the constitution.…

  20. Making almost commuting matrices commute

    SciTech Connect

    Hastings, Matthew B

    2008-01-01

    Suppose two Hermitian matrices A, B almost commute ({parallel}[A,B]{parallel} {<=} {delta}). Are they close to a commuting pair of Hermitian matrices, A', B', with {parallel}A-A'{parallel},{parallel}B-B'{parallel} {<=} {epsilon}? A theorem of H. Lin shows that this is uniformly true, in that for every {epsilon} > 0 there exists a {delta} > 0, independent of the size N of the matrices, for which almost commuting implies being close to a commuting pair. However, this theorem does not specifiy how {delta} depends on {epsilon}. We give uniform bounds relating {delta} and {epsilon}. The proof is constructive, giving an explicit algorithm to construct A' and B'. We provide tighter bounds in the case of block tridiagonal and tridiagnonal matrices. Within the context of quantum measurement, this implies an algorithm to construct a basis in which we can make a projective measurement that approximately measures two approximately commuting operators simultaneously. Finally, we comment briefly on the case of approximately measuring three or more approximately commuting operators using POVMs (positive operator-valued measures) instead of projective measurements.

  1. Outstanding properties of bistochastic matrices

    NASA Astrophysics Data System (ADS)

    Brugia, O.; Wolfowicz, W.

    1981-10-01

    The statistical properties of many devices used in communication systems, such as scramblers and line coding and decoding devices, are described by mathematical models in which the transition probability matrix is bistochastic. To facilitate the analysis of systems response, the specific properties of the bistochastic matrices are described in six theorems which are demonstrated.

  2. Fibonacci Identities, Matrices, and Graphs

    ERIC Educational Resources Information Center

    Huang, Danrun

    2005-01-01

    General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…

  3. Photoisomerization of azobenzenes isolated in cryogenic matrices.

    PubMed

    Duarte, Luís; Khriachtchev, Leonid; Fausto, Rui; Reva, Igor

    2016-06-22

    2,2'-Dihydroxyazobenzene (DAB), 2,2'-azotoluene (AT) and azobenzene (AB) were isolated in argon and xenon matrices and their molecular structures and photochemical transformations were characterized by infrared spectroscopy and theoretical calculations. All these compounds can adopt the E and Z isomeric forms around the central CNNC moiety, which can be enriched by several conformational and tautomeric modifications for DAB and AT. A number of DAB and AT isomeric forms were identified for the first time. For DAB, the E azo-enol isomer with two intramolecular six-membered quasi-rings formed via OHN hydrogen bonds was found after deposition. Irradiation with UV light generated a different E azo-enol form with two intramolecular H-bonded five-membered quasi-rings. Phototransformation was shown to be reversible and the forms could be interconverted by irradiation at different wavelengths. The isomerization between these two forms constitutes a direct experimental observation of an E → E isomerization in azobenzene-type molecules. Further irradiation generated a form(s) bearing both OH and NH groups. For AT, two E isomers with the CH3 groups forming five-membered and five/six-membered quasi-rings with the azo group were observed in the as-deposited matrices. Irradiation of AT with UV light generated a Z form that can be converted back to the E form at different irradiation wavelengths. E-AB was deposited in a xenon matrix and both E → Z and Z → E phototransformations were observed (contrary to what was previously reported in an argon matrix where only the Z → E conversion occurred). AB photoisomerization becomes more pronounced at elevated temperatures, thus indicating that the matrix effects responsible for hindering the AB photoisomerization are essentially due to steric restrictions. The different photoisomerization channels observed for these compounds are discussed in terms of a small-amplitude pedal motion. PMID:27279432

  4. A constitutive law for degrading bioresorbable polymers.

    PubMed

    Samami, Hassan; Pan, Jingzhe

    2016-06-01

    This paper presents a constitutive law that predicts the changes in elastic moduli, Poisson's ratio and ultimate tensile strength of bioresorbable polymers due to biodegradation. During biodegradation, long polymer chains are cleaved by hydrolysis reaction. For semi-crystalline polymers, the chain scissions also lead to crystallisation. Treating each scission as a cavity and each new crystal as a solid inclusion, a degrading semi-crystalline polymer can be modelled as a continuum solid containing randomly distributed cavities and crystal inclusions. The effective elastic properties of a degrading polymer are calculated using existing theories for such solid and the tensile strength of the degrading polymer is predicted using scaling relations that were developed for porous materials. The theoretical model for elastic properties and the scaling law for strength form a complete constitutive relation for the degrading polymers. It is shown that the constitutive law can capture the trend of the experimental data in the literature for a range of biodegradable polymers fairly well. PMID:26971070

  5. Constitution, 30 September 1987.

    PubMed

    1987-01-01

    This document reprints provisions of Suriname's 1987 Constitution relating to freedom of movement, equality of the sexes, the right to life, the right to physical integrity, equal opportunity in employment, the family, children, maternity benefits, the right to health care, parental responsibilities, free and compulsory education, illiteracy, and housing. All citizens enjoy freedom of movement within the bounds of the law. All people within the territory may claim protection of their person and property, and discrimination is forbidden on the basis of birth, sex, race, language, religion, education, political beliefs, economic position, or other status. Torture or inhuman treatment and punishment is banned, and the right to life is protected by the law. The state guarantees the right to work, and all employees have the right to equal remuneration for equal work, safe working conditions, and sufficient rest and recreation. The family is protected, and husbands and wives are equal before the law. Children have the right to protection, and working women are entitled to paid maternity leave. The state promotes the right to good health by systematic improvements in living and working conditions and dissemination of health education. The right to education is protected by the provision of free general primary education and efforts of the state to enable all citizens to achieve the highest educational levels possible. The Constitution also calls for the institution of a plan to allow the state to create public housing. PMID:12346681

  6. Ethics and constitutional government.

    PubMed

    Albright, James A

    2007-01-01

    The term ethics refers to a set of principles that govern acceptable, proper conduct. Attacks on the Constitution of the United States pose the most serious breach of ethics today. Our country was founded as a republic, not as a democracy. Our Founding Fathers' main concern was to protect citizens from the power of the federal government, so constitutionally, the central government has little or no authority over individual citizens except on federal property. One of the major problems today is the fact that we now have professional politicians. This is due in large part to the lure of financial gain from countless special interest groups. This would change under constitutional law because the federal budget would decrease drastically. Article 1 states that all legislative power is vested in Congress. Congress has only 18 enumerated powers, and almost half of these pertain to defense of the country. Many of our current problems are due to regulatory agencies that have become independent fiefdoms with unconstitutional legislative, as well as executive and judicial, powers. The regulatory agency most relevant to medicine, both clinical care and research, is the FDA. It is now obvious that its basic structure needs to be changed or abolished because its actions are identical to those inherent in authoritarian systems. Constructive change could come from Congress, but it would be most desirable if the Supreme Court would take the lead and reestablish the authority of the Constitution as the Supreme Law of the Land. The FDA's function could be limited to the determination of safety, but preferably its mission would be altered to that of product certification. Defenders of the current system claim that such a drastic change would be too dangerous and their prime example is thalidomide. But it is now known that the market has already solved that problem prior to the government-imposed sanctions. Realistically, market forces and their ramifications, including our legal

  7. Constitution, 5 May 1989.

    PubMed

    1989-01-01

    This document contains provisions of Cambodia's Constitution of May 5, 1989. Article 7 gives men and women equal rights in marriage and the family, calls for monogamous marriages, and affords social protection to mothers and children. Article 8 guides parent-child relationships. The 14th article defines state property, and the 15th gives citizens full rights to own, use, and inherit land. The use of agricultural and forested land can only be changed with permission. Article 22 assigns educational responsibilities to the state, including free elementary education and a gradual expansion of higher education. Adult literacy classes are also promoted. Article 26 guarantees free medical consultations, and article 27 gives women a 90-day paid maternity leave. Breast-feeding women are also given special privileges. Article 33 guarantees the right to pay equity and to social security benefits. Article 36 grants the freedom to travel, the inviolability of homes, and privacy in correspondence of all types. PMID:12344287

  8. Constitution, 5 October 1988.

    PubMed

    1989-01-01

    This document contains major provisions of the constitution adopted by Brazil on 5 October 1988. This constitution seeks to promote the welfare of all citizens without discrimination. The equality of all citizens is guaranteed, and the equal rights of women are specifically mentioned. Property rights are also guaranteed and defined. Female inmates are granted the right to remain with their children while breast feeding. Workers are guaranteed a minimum wage, a family allowance for dependents, maternity/paternity leave, specific incentives to protect the labor market for women, retirement benefits, free day care for preschool-age children, pay equity, and equal rights between tenured and sporadically employed workers. Agrarian reform provisions are given, including the authority to expropriate land. Social and economic policies to promote health are called for, and public health services are to be decentralized, to be integrated, and to foster community participation. Pension plan and social assistance provisions are outlined as are duties of the state in regard to education. The amount of money to be dedicated to education is set out, and a national educational plan is called for to achieve such goals as the eradication of illiteracy, the universalization of school attendance, the improvement of instruction, and the provision of vocational training. Specific measures are set out to protect and preserve the environment. Family policy deals with issues of marriage, the definition of a family, divorce, the right to family planning services, and the deterrence of domestic violence. Social protection provisions cover mothers and children, handicapped persons, and protection of minors. Finally, the customs and rights of Indians are protected, with special provisions given to protect land tenure and to protect the rights of Indians in water resource development and prospecting and mining activities. PMID:12344286

  9. S-matrices and integrability

    NASA Astrophysics Data System (ADS)

    Bombardelli, Diego

    2016-08-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU(2), SU(3) chiral Gross–Neveu models. In loving memory of Lilia Grandi.

  10. Threaded Operations on Sparse Matrices

    SciTech Connect

    Sneed, Brett

    2015-09-01

    We investigate the use of sparse matrices and OpenMP multi-threading on linear algebra operations involving them. Several sparse matrix data structures are presented. Implementation of the multi- threading primarily occurs in the level one and two BLAS functions used within the four algorithms investigated{the Power Method, Conjugate Gradient, Biconjugate Gradient, and Jacobi's Method. The bene ts of launching threads once per high level algorithm are explored.

  11. Householder factorizations of unitary matrices

    NASA Astrophysics Data System (ADS)

    Urías, Jesús

    2010-07-01

    A method to construct all representations of finite dimensional unitary matrices as the product of Householder reflections is given. By arbitrarily severing the state space into orthogonal subspaces, the method may, e.g., identify the entangling and single-component quantum operations that are required in the engineering of quantum states of composite (multipartite) systems. Earlier constructions are shown to be extreme cases of the unifying scheme that is presented here.

  12. Compliance matrices for cracked bodies

    NASA Technical Reports Server (NTRS)

    Ballarini, R.

    1986-01-01

    An algorithm is presented which can be used to develop compliance matrices for cracked bodies. The method relies on the numerical solution of singular integral equations with Cauchy-type kernels and provides an efficient and accurate procedure for relating applied loadings to crack opening displacements. The algorithm should be of interest to those performing repetitive calculations in the analysis of experimental results obtained from fracture specimens.

  13. Making Porous Luminescent Regions In Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  14. Constitutive models in LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented

  15. The Constitution and American Diversity.

    ERIC Educational Resources Information Center

    Glazer, Nathan

    1987-01-01

    Diversity in American constitutional law refers to differences among the laws of the states. However, key phrases in the Constitution have been used to ensure individual rights. The expansion of those rights has led to conflict between community needs and those of the individual, with each side referring to the Constitution for support. (PS)

  16. How Democratic Is the Constitution?

    ERIC Educational Resources Information Center

    Goldwin, Robert A., Ed.; Schambra, William A., Ed.

    Designed to help prepare the nation for a thoughtful observance of the Constitutional bicentennial, this publication contains seven essays on the topic of democracy and the Constitution. "Democracy and the Constitution" (Gordon S. Wood) looks at the popular and democratic rhetoric used to justify the federalist system in the late 1700's. "Decent,…

  17. Rotationally invariant ensembles of integrable matrices

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, Emil A.; Shastry, B. Sriram; Scaramazza, Jasen A.

    2016-05-01

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)—a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N -M independent commuting N ×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.

  18. Socialist Constitution [1992].

    PubMed

    1992-12-15

    This document contains the text of the Constitution of the Democratic People's Republic of Korea. Chapter 1 sets out the political principles which govern the existence of the state. Chapter 2 outlines the principles of the socialist economy as they apply to the collective and private ownership of property, to meeting the needs of working people, to the technological revolution, to labor regulations (including a minimum working age of 16 years), to development plans, and to external trade. Chapter 3 covers aspects of culture including education, which involves 11-years of compulsory schooling, scholarships to universities and professional schools, and social education. Children of preschool age are enrolled in nurseries and kindergartens at the state's expense. Other issues dealt with in this chapter are the advancement of science and technology, the work of writers and artists, the provision of cultural facilities, protection of the language, the availability of physical fitness facilities, a universal free medical system, and environmental protection. Chapter 4 outlines national defense measures, and chapter 5 sets out the fundamental rights and duties of citizens. This chapter accords women equal social status and rights as men and protects marriage and the family. State institutions (such as the Supreme People's Assembly, the presidency, the National Defense Committee, the Central People's Committee, the Administrative Council, local assemblies and committees, and the court and procurator's office) are discussed in chapter 6. Chapter 7 describes the national emblem and flag and designates Pyongyang as the capital. PMID:12347140

  19. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  20. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  1. Constitutive equations for an electroactive polymer

    NASA Astrophysics Data System (ADS)

    Tixier, Mireille; Pouget, Joël

    2015-07-01

    Ionic electroactive polymers can be used as sensors or actuators. For this purpose, a thin film of polyelectrolyte is saturated with a solvent and sandwiched between two platinum electrodes. The solvent causes a complete dissociation of the polymer and the release of small cations. The application of an electric field across the thickness results in the bending of the strip and vice versa. The material is modeled by a two-phase continuous medium. The solid phase, constituted by the polymer backbone inlaid with anions, is depicted as a deformable porous media. The liquid phase is composed of the free cations and the solvent (usually water). We used a coarse grain model. The conservation laws of this system have been established in a previous work. The entropy balance law and the thermodynamic relations are first written for each phase and then for the complete material using a statistical average technique and the material derivative concept. One deduces the entropy production. Identifying generalized forces and fluxes provides the constitutive equations of the whole system: the stress-strain relations which satisfy a Kelvin-Voigt model, generalized Fourier's and Darcy's laws and the Nernst-Planck equation.

  2. Constitutive equations for an electroactive polymer

    NASA Astrophysics Data System (ADS)

    Tixier, Mireille; Pouget, Joël

    2016-07-01

    Ionic electroactive polymers can be used as sensors or actuators. For this purpose, a thin film of polyelectrolyte is saturated with a solvent and sandwiched between two platinum electrodes. The solvent causes a complete dissociation of the polymer and the release of small cations. The application of an electric field across the thickness results in the bending of the strip and vice versa. The material is modeled by a two-phase continuous medium. The solid phase, constituted by the polymer backbone inlaid with anions, is depicted as a deformable porous media. The liquid phase is composed of the free cations and the solvent (usually water). We used a coarse grain model. The conservation laws of this system have been established in a previous work. The entropy balance law and the thermodynamic relations are first written for each phase and then for the complete material using a statistical average technique and the material derivative concept. One deduces the entropy production. Identifying generalized forces and fluxes provides the constitutive equations of the whole system: the stress-strain relations which satisfy a Kelvin-Voigt model, generalized Fourier's and Darcy's laws and the Nernst-Planck equation.

  3. Superalgebraic representation of Dirac matrices

    NASA Astrophysics Data System (ADS)

    Monakhov, V. V.

    2016-01-01

    We consider a Clifford extension of the Grassmann algebra in which operators are constructed from products of Grassmann variables and derivatives with respect to them. We show that this algebra contains a subalgebra isomorphic to a matrix algebra and that it additionally contains operators of a generalized matrix algebra that mix states with different numbers of Grassmann variables. We show that these operators are extensions of spin-tensors to the case of superspace. We construct a representation of Dirac matrices in the form of operators of a generalized matrix algebra.

  4. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  5. Tailored Porous Materials

    SciTech Connect

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  6. Constitutional Issues--Watergate and the Constitution. Teaching with Documents.

    ERIC Educational Resources Information Center

    National Archives and Records Administration, Washington, DC.

    When U.S. President Richard Nixon resigned in 1974 in the wake of the Watergate scandal, it was only the second time that impeachment of a president had been considered. Although the U.S. Constitution has provisions for a person removed from office to be indicted, there are no guidelines in the Constitution about a President who has resigned. The…

  7. Constitutive Theory for Velocity Dispersion in Rock with Dual Porosity

    SciTech Connect

    Wang, H F; Berryman, J G

    2002-03-28

    The high frequency behavior of the bulk modulus of fluid-saturated rock can be obtained from a double-porosity constitutive model, which is a direct conceptual extension of Biot's (1941) constitutive equations and which provides additional stiffening due to unrelaxed induced pore pressures in the soft porosity phase. Modeling the stiffening of the shear modulus at high frequency requires an effective medium average over the unequal induced pore pressures in cracks of different orientations. The implicit assumptions are that pore fluid equilibration does not occur between cracks of different orientations and between cracks and porous matrix. The correspondence between the constitutive equations of Berryman and Wang (1995) and Mavko and Jizba (1991) is explicitly noted.

  8. Characterization of a new heat dissipation matric potential sensor.

    PubMed

    Matile, Luzius; Berger, Roman; Wächter, Daniel; Krebs, Rolf

    2013-01-01

    Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare sensor it is possible to measure the matric potential indirectly to monitor or control irrigation. This sensor is based on thermal properties of a synthetic felt. After a defined heating phase the cooling time to a threshold temperature is a function of the water content in the synthetic felt. The water content in this porous matrix is controlled by the matric potential in the surrounding soil. Calibration measurements have shown that the sensor is most sensitive to -400 hPa and allows lower sensitivity measurements to -800 hPa. The disturbing effect of the temperature change during the measurement on the cooling time can be corrected by a linear function and the differences among sensors are minimized by a two point calibration. PMID:23344384

  9. How Capitalistic Is the Constitution?

    ERIC Educational Resources Information Center

    Goldwin, Robert A., Ed.; Schambra, William A., Ed.

    Second in a three-part series designed to help prepare the nation for a thoughtful observance of the Constitutional bicentennial, this publication contains seven essays on the topic of capitalism and the Constitution. "American Democracy and the Acquisitive Spirit" (Marc F. Plattner) supports the argument that the framers of the Constitution…

  10. The Constitution and Its Critics

    ERIC Educational Resources Information Center

    Main, Thomas J.

    2011-01-01

    In planning a freshman undergraduate curriculum with colleagues recently, the question arose as to what type of understanding educators wanted to impart to their students about the Constitution. The alleged defects of the Constitution that these books point to are wide-ranging and can be classified into various categories. Some problems--such as…

  11. The Constitution and Citizenship Education.

    ERIC Educational Resources Information Center

    Shoemaker, Rebecca S.

    The paper takes the position that the study and understanding of the United States Constitution should be a critical part of citizenship education, especially as its Bicentennial approaches. Several factors suggest that the Constitution has become the most durable document of its kind in history, and that its teaching should be centered in both…

  12. The Constitution and American Radicalism.

    ERIC Educational Resources Information Center

    Lobel, Jules

    1987-01-01

    Discusses the history of the following movements' attitudes towards the Constitution: (1) abolition; (2) feminism; (3) trade unions; (4) socialism and communism; and (5) civil rights and anti-war. Maintains that the tensions in these movements' towards the Constitution represent basic contradictions in the document itself. (PS)

  13. Reordering American Constitutional Law Teaching.

    ERIC Educational Resources Information Center

    Gerber, Scott D.

    1994-01-01

    Maintains that constitutional law is the cornerstone of an undergraduate public law curriculum. Asserts that there is a welcome trend toward teaching the subject over a two-semester sequence, instead of only one. Describes course content and teaching strategies used in a college constitutional law course. (CFR)

  14. Constitutional Law and Liberal Education.

    ERIC Educational Resources Information Center

    Clor, Harry

    1985-01-01

    By studying constitutional law, students learn about the relationship between democratic theory and practice, one of the main concerns of liberal education. The mind is enlarged when it must apply ethical standards and political ideas to real human problems. How a political science professor teaches constitutional law is discussed. (RM)

  15. Engineered matrices for bone regeneration

    NASA Astrophysics Data System (ADS)

    Winn, Shelley R.; Hu, Yunhua; Pugh, Amy; Brown, Leanna; Nguyen, Jesse T.; Hollinger, Jeffrey O.

    2000-06-01

    Traditional therapies of autografts and allogeneic banked bone can promote reasonable clinical outcome to repair damaged bone. However, under certain conditions the success of these traditional approaches plummets, providing the incentive for researchers to develop clinical alternatives. The evolving field of tissue engineering in the musculoskeletal system attempts to mimic many of the components from the intact, healthy subject. Those components consist of a biologic scaffold, cells, extracellular matrix, and signaling molecules. The bone biomimetic, i.e., an engineered matrix, provides a porous structural architecture for the regeneration and ingrowth of osseous tissue at the site of injury. To further enhance the regenerative cascade, our strategy has involved porous biodegradable scaffolds containing and releasing signaling molecules and providing a suitable environment for cell attachment, growth and differentiation. In addition, the inclusion of genetically modified osteogenic precursor cells has brought the technology closer to developing a tissue-engineered equivalent. The presentation will describe various formulations and the methods utilized to evaluate the clinical utility of these biomimetics.

  16. Quasiperiodic tilings generated by matrices

    NASA Astrophysics Data System (ADS)

    Rao, Nagaraja S.; Suryanarayan, E. R.

    1994-02-01

    Using the inflation method, Watanabe, Ito and Soma [3], Clark and Suryanarayan [4] and Balagurusamy, Ramesh and Gopal [5] have obtained nonperiodic tilings of the plane with n-fold rotational symmetry, n = 2, 3, 4, 5, 8, using two unit prototiles. Fortunately, there is an easier way to generate a more general class of nonperiodic tilings which contains the above-mentioned tilings as special cases. We do this by specifying two matrices of order two which define the two classes of tilings; thus, our approach uses the basic techniques from linear algebra in the study of quasiperiodic tilings and the method can be generalized to obtain tilings that have more than two prototiles. The tilings generated are fractals and their dimensions and the rate of growth are determined.

  17. Shrinkage estimators for covariance matrices.

    PubMed

    Daniels, M J; Kass, R E

    2001-12-01

    Estimation of covariance matrices in small samples has been studied by many authors. Standard estimators, like the unstructured maximum likelihood estimator (ML) or restricted maximum likelihood (REML) estimator, can be very unstable with the smallest estimated eigenvalues being too small and the largest too big. A standard approach to more stably estimating the matrix in small samples is to compute the ML or REML estimator under some simple structure that involves estimation of fewer parameters, such as compound symmetry or independence. However, these estimators will not be consistent unless the hypothesized structure is correct. If interest focuses on estimation of regression coefficients with correlated (or longitudinal) data, a sandwich estimator of the covariance matrix may be used to provide standard errors for the estimated coefficients that are robust in the sense that they remain consistent under misspecification of the covariance structure. With large matrices, however, the inefficiency of the sandwich estimator becomes worrisome. We consider here two general shrinkage approaches to estimating the covariance matrix and regression coefficients. The first involves shrinking the eigenvalues of the unstructured ML or REML estimator. The second involves shrinking an unstructured estimator toward a structured estimator. For both cases, the data determine the amount of shrinkage. These estimators are consistent and give consistent and asymptotically efficient estimates for regression coefficients. Simulations show the improved operating characteristics of the shrinkage estimators of the covariance matrix and the regression coefficients in finite samples. The final estimator chosen includes a combination of both shrinkage approaches, i.e., shrinking the eigenvalues and then shrinking toward structure. We illustrate our approach on a sleep EEG study that requires estimation of a 24 x 24 covariance matrix and for which inferences on mean parameters critically

  18. Biocompatibility of Experimental Polymeric Tracheal Matrices.

    PubMed

    Kiselevskii, M V; Chikileva, I O; Vlasenko, R Ya; Sitdikova, S M; Tenchurin, T Kh; Mamagulashvili, V G; Shepelev, A D; Grigoriev, T A; Chvalun, S N

    2016-08-01

    Biocompatibility of a new tracheal matrix is studied. The new matrix is based on polymeric ultra-fiber material colonized by mesenchymal multipotent stromal cells. The experiments demonstrate cytoconductivity of the synthetic matrices and no signs of their degradation within 2 months after their implantation to recipient mice. These data suggest further studies of the synthetic tracheal matrices on large laboratory animals. PMID:27591876

  19. Proper Values of Matrices and Some Applications.

    ERIC Educational Resources Information Center

    Amir-Moez, Ali R.

    1992-01-01

    Presents a short study of proper values of two-by-two matrices with real entries. Gives examples of symmetric matrices and applications to systems of linear equations of perpendicular lines intersecting at the origin and central conics rotated about the origin to eliminate the xy term from its equation. (MDH)

  20. Harmonic balance calculations by using matrices

    NASA Astrophysics Data System (ADS)

    Fergusson, N. J.; Leung, A. Y. T.

    1995-05-01

    The computation of the total and tangential stiffness matrices associated with the harmonic balance method for non-linear ordinary differential equations requires some complicated calculations involving double sums. Some matrix results are presented here that ease the associated book-keeping and allow the matrices to be programmed easily.

  1. Products of Independent Elliptic Random Matrices

    NASA Astrophysics Data System (ADS)

    O'Rourke, Sean; Renfrew, David; Soshnikov, Alexander; Vu, Van

    2015-07-01

    For fixed , we study the product of independent elliptic random matrices as tends to infinity. Our main result shows that the empirical spectral distribution of the product converges, with probability , to the -th power of the circular law, regardless of the joint distribution of the mirror entries in each matrix. This leads to a new kind of universality phenomenon: the limit law for the product of independent random matrices is independent of the limit laws for the individual matrices themselves. Our result also generalizes earlier results of Götze-Tikhomirov (On the asymptotic spectrum of products of independent random matrices, available at http://arxiv.org/abs/1012.2710) and O'Rourke-Soshnikov (J Probab 16(81):2219-2245, 2011) concerning the product of independent iid random matrices.

  2. Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media

    SciTech Connect

    Parra, J.O.; Xu, P. )

    1994-01-01

    The analysis of acoustic wave propagation in fluid-filled porous media based on Biot and homogenization theories has been adapted to calculate dispersion and attenuation of guided waves trapped in low-velocity layered media. Constitutive relations, the balance equation, and the generalized Darcy law of the modified Biot theory yield a coupled system of differential equations which governs the wave motion in each layer. The displacement and stress fields satisfy the boundary conditions of continuity of displacements and tractions across each interface, and the radiation condition at infinity. To avoid precision problems caused by the growing exponential in individual matrices for large wave numbers, the global matrix method was implemented as an alternative to the traditional propagation approach to determine the periodic equations. The complex wave numbers of the guided wave modes were determined using a combination of two-dimensional bracketing and minimization techniques. The results of this work indicate that the acoustic guided wave attenuation is sensitive to the [ital in] [ital situ] permeability. In particular, the attenuation changes significantly as the [ital in] [ital situ] permeability of the low-velocity layer is varied at the frequency corresponding to the minimum group velocity (Airy phase). Alternatively, the attenuation of the wave modes are practically unaffected by those permeability variations in the layer at the frequency corresponding to the maximum group velocity.

  3. Remarks on turbulent constitutive relations

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1993-01-01

    The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form.

  4. The Constitution's Prescription for Freedom.

    ERIC Educational Resources Information Center

    Peach, Lucinda

    1986-01-01

    Examines how the framers of the Constitution came to choose our system of government, how that system was designed to function, and how the separation of powers has served to maintain our democracy despite attempts to violate it. (JDH)

  5. Are Sanctions on Employers Constitutional?

    ERIC Educational Resources Information Center

    Gollobin, Ira

    1988-01-01

    Questions the constitutional validity of employer sanctions used to deter illegal immigration under the Immigration Reform and Control Act. Points out the anomaly of using criminal penalties to deter a civil, administrative violation. (FMW)

  6. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  7. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.

    1984-01-01

    A state-of-the-art review of applicable constitutive models with selection of two for detailed comparison with a wide range of experimental tests was conducted. The experimental matrix contained uniaxial and biaxial tensile, creep, stress relaxation, and cyclic fatigue tests at temperatures to 1093 C and strain rates from .0000001 to .001/sec. Some nonisothermal cycles will also be run. The constitutive models will be incorporated into the MARC finite element structural analysis program with a demonstration computation made for advanced turbine blade configuration. In the code development work, particular emphasis is being placed on developing efficient integration algorithms for the highly nonlinear and stiff constitutive equations. Another area of emphasis is the appropriate and efficient methodology for determing constitutive constants from a minimum extent of experimental data.

  8. Rotationally invariant ensembles of integrable matrices

    NASA Astrophysics Data System (ADS)

    Scaramazza, Jasen; Yuzbashyan, Emil; Shastry, Sriram

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT) - a counterpart of random matrix theory (RMT) for quantum integrable models. A type- M family of integrable matrices consists of exactly N - M independent commuting N × N matrices linear in a real parameter. We first develop a rotationally invariant parameterization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice-versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, in a manner similar to the construction of Gaussian ensembles in the RMT. This work was supported in part by the David and Lucille Packard Foundation. The work at UCSC was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # FG02-06ER46319.

  9. Ventilation of porous media

    DOEpatents

    Neeper, D.A.

    1994-02-22

    Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

  10. Ventilation of porous media

    DOEpatents

    Neeper, Donald A.

    1994-01-01

    Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

  11. Community Detection for Correlation Matrices

    NASA Astrophysics Data System (ADS)

    MacMahon, Mel; Garlaschelli, Diego

    2015-04-01

    A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.

  12. Kerov's interlacing sequences and random matrices

    NASA Astrophysics Data System (ADS)

    Bufetov, Alexey

    2013-11-01

    To a N × N real symmetric matrix Kerov assigns a piecewise linear function whose local minima are the eigenvalues of this matrix and whose local maxima are the eigenvalues of its (N - 1) × (N - 1) submatrix. We study the scaling limit of Kerov's piecewise linear functions for Wigner and Wishart matrices. For Wigner matrices the scaling limit is given by the Verhik-Kerov-Logan-Shepp curve which is known from asymptotic representation theory. For Wishart matrices the scaling limit is also explicitly found, and we explain its relation to the Marchenko-Pastur limit spectral law.

  13. LU decompositions of generalized diagonally dominant matrices

    SciTech Connect

    Funderlic, R.E.; Neumann, M.; Plemmons, R.J.

    1982-02-01

    Using the simple vehicle of M-matrices, the existence and stability of LU decompositions of matrices A which can be scaled to diagonally dominant (possibly singular) matrices are investigated. Bounds on the growth factor for Gaussian elimination on A are derived. Motivation for this study is provided in part by applications to solving homogeneous systems of linear equations Ax = 0, arising in Markov queuing networks, input-output models in economics and compartmental systems, where A or -A is an irreducible, singular M-matrix.

  14. Kerov's interlacing sequences and random matrices

    SciTech Connect

    Bufetov, Alexey

    2013-11-15

    To a N × N real symmetric matrix Kerov assigns a piecewise linear function whose local minima are the eigenvalues of this matrix and whose local maxima are the eigenvalues of its (N − 1) × (N − 1) submatrix. We study the scaling limit of Kerov's piecewise linear functions for Wigner and Wishart matrices. For Wigner matrices the scaling limit is given by the Verhik-Kerov-Logan-Shepp curve which is known from asymptotic representation theory. For Wishart matrices the scaling limit is also explicitly found, and we explain its relation to the Marchenko-Pastur limit spectral law.

  15. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  16. Speciation of nanoscale objects by nanoparticle imprinted matrices

    NASA Astrophysics Data System (ADS)

    Hitrik, Maria; Pisman, Yamit; Wittstock, Gunther; Mandler, Daniel

    2016-07-01

    The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects.The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The

  17. Synchronous correlation matrices and Connes' embedding conjecture

    NASA Astrophysics Data System (ADS)

    Dykema, Kenneth J.; Paulsen, Vern

    2016-01-01

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes' embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes' embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  18. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

    PubMed Central

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    2016-01-01

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986

  19. A Computer Program for Clustering Large Matrices

    ERIC Educational Resources Information Center

    Koch, Valerie L.

    1976-01-01

    A Fortran V program is described derived for the Univac 1100 Series Computer for clustering into hierarchical structures large matrices, up to 1000 x 1000 and larger, of interassociations between objects. (RC)

  20. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.

    1985-01-01

    The objective is to develop a unified constitutive model for finite element structural analysis of turbine engine hot-section components. This effort constitutes a different approach for non-linear finite-element computer codes which have heretofore been based on classical inelastic methods. The unified constitutive theory to be developed will avoid the simplifying assumptions of classical theory and should more accurately represent the behavior of superalloy materials under cyclic loading conditions and high temperature environments. During the first two years of the program, extensive experimental correlations were made with two representative unified models. The experiments were both uniaxial and biaxial at temperatures up to 1093 C (2000 F). In addition, the unified models were adopted to the MARC finite element code and used for stress analysis of notched bar and turbine blade geometries.

  1. Fermion masses from SO(10) Hermitian matrices

    SciTech Connect

    Moorhouse, R. G.

    2008-03-01

    Masses of fermions in the SO(10) 16-plet are constructed using only the 10, 120, and 126 scalar multiplets. The mass matrices are restricted to be Hermitian and the theory is constructed to have certain assumed quark masses, charged lepton masses, and Cabibbo-Kobayashi-Maskawa (CKM) matrix in accord with data. The remaining free parameters are found by fitting to light neutrino masses and Maki-Nakagawa-Sakata (MNS) matrices result as predictions.

  2. Fermion masses from SO(10) Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Moorhouse, R. G.

    2008-03-01

    Masses of fermions in the SO(10) 16-plet are constructed using only the 10, 120, and 126¯ scalar multiplets. The mass matrices are restricted to be Hermitian and the theory is constructed to have certain assumed quark masses, charged lepton masses, and Cabibbo-Kobayashi-Maskawa (CKM) matrix in accord with data. The remaining free parameters are found by fitting to light neutrino masses and Maki-Nakagawa-Sakata (MNS) matrices result as predictions.

  3. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N.

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  4. Fabricating porous silicon carbide

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  5. Take Advantage of Constitution Day

    ERIC Educational Resources Information Center

    McCune, Bonnie F.

    2008-01-01

    The announcement of the mandate for Constitution and Citizenship Day shortly before September, 2005, probably led to groans of dismay. Not another "must-do" for teachers and schools already stressed by federal and state requirements for standardized tests, increasingly rigid curricula, and scrutiny from the public and officials. But the idea and…

  6. Lazy Elephants and the Constitution.

    ERIC Educational Resources Information Center

    Hantula, James

    1989-01-01

    Depicts an eighth grade unit utilizing the production of a newspaper to teach U.S. history, 1787 to 1791, in a combined social studies and language arts class at Malcolm Price Laboratory School (Iowa). Two teachers used both large- and small-group instruction to focus on the development of the U.S. Constitution. (LS)

  7. Constitutional Reform of School Finance.

    ERIC Educational Resources Information Center

    Alexander, Kern, Ed.; Jordan, K. Forbis, Ed.

    This book contains conference papers by experts in educational administration, law, and economics. Six of the papers are devoted to a legal analysis of fiscal inequality among school attendance units, school districts, and States. These contributions are: (1) K. Forbis Jordan and Kern Alexander, "Constitutional Methods of Financing Public…

  8. A Venture in Constitutional Law.

    ERIC Educational Resources Information Center

    Cole, W. Graham; Dillon, Dorothy H.

    1980-01-01

    Senior high girls and boys from two single-sex schools undertook a study of a Supreme Court case that provided insight not only into constitutional law and history but also into how men and women can work together and relate in other ways than dating. (DS)

  9. A Brief Historical Introduction to Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  10. Developmental Differences in Strategies for Solving Figural Matrices.

    ERIC Educational Resources Information Center

    Foorman, Barbara R.; And Others

    In order to study children's strategies for solving geometric matrices similar to those in the Raven's Progressive Matrices, ninety 7-, 10-, and 13-year-old boys and girls were administered tests of auditory and visual memory, the Raven's, and geometric matrices. The matrices varied in number of elements (1 to 3) and number of transformations (0…

  11. Porous Organic Molecular Materials

    SciTech Connect

    Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-01-01

    Most nanoporous materials with molecular-scale pores are extended frameworks composed of directional covalent or coordination bonding, such as porous metal-organic frameworks and organic network polymers. By contrast, nanoporous materials comprised of discrete organic molecules, between which there are only weak non-covalent interactions, are seldom encountered. Indeed, most organic molecules pack efficiently in the solid state to minimize the void volume, leading to non-porous materials. In recent years, a significant number of nanoporous organic molecular materials, which may be either crystalline or amorphous, have been confirmed by the studies of gas adsorption and they are surveyed in this Highlight. In addition, the possible advantages of porous organic molecular materials over porous networks are discussed.

  12. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method. PMID:25816331

  13. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  14. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  15. Porous airfoil and process

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M. (Inventor)

    1992-01-01

    A porous airfoil having venting cavities with contoured barrier walls, formed by a core piece, placed beneath a porous upper and lower surface area that stretches over the nominal chord of an airfoil is employed, to provide an airfoil configuration that becomes self-adaptive to very dissimilar flow conditions to thereby improve the lift and drag characteristics of the airfoil at both subcritical and supercritical conditions.

  16. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    PubMed

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms. PMID:27046838

  17. Sex Differences in Constitutive Autophagy

    PubMed Central

    Oliván, Sara; Calvo, Ana Cristina; Manzano, Raquel; Zaragoza, Pilar

    2014-01-01

    Sex bias has been described nowadays in biomedical research on animal models, although sexual dimorphism has been confirmed widely under pathological and physiological conditions. The main objective of our work was to study the sex differences in constitutive autophagy in spinal cord and skeletal muscle tissue from wild type mice. To examine the influence of sex on autophagy, mRNA and proteins were extracted from male and female mice tissues. The expressions of microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), markers to monitor autophagy, were analyzed at 40, 60, 90, and 120 days of age. We found significant sex differences in the expression of LC3 and p62 in both tissues at these ages. The results indicated that sex and tissue specific differences exist in constitutive autophagy. These data underlined the need to include both sexes in the experimental groups to minimize any sex bias. PMID:24719882

  18. [Women, gender, and the Constitution].

    PubMed

    1993-12-01

    Although all the constitutions of Latin America directly or indirectly acknowledge the juridical equality of the sexes, these patriarchal societies continue to maintain institutional power in male hands and to neutralize legal actions favoring women. International instruments such as the Convention on Elimination of All Forms of Discrimination Against Women, approved by the UN in 1979, have given a firmer basis to policies and actions to improve the status of women. Obstacles to full equality of Latin American women are rooted in economic and sociopolitical factors, but lack of true political will also plays a significant role. A number of new laws in the past several years as well as the new Constitution have improved the legal position of Colombian women. The new Constitution recognizes fundamental rights that may be claimed directly before a judge, and social, economic, and collective rights requiring legislative development. Article 43 of the new Constitution states that women will not be subjected to any form of discrimination. Another norm states that women will enjoy special assistance and protection before and after childbirth, in recognition of the social functions of maternity. Article 43 also states that women who are heads of households will receive special assistance, but the corresponding regulations have not yet been promulgated. The mechanism of tutelage has become an important recourse that has been used in several cases in which fundamental rights of women have been violated or threatened because of their sex. The order of tutelage has been used in cases of adolescents expelled from school for pregnancy and of abused wives, as well as to force recognition of the social and economic contributions of housework. PMID:12287889

  19. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  20. Hysteresis of liquid adsorption in porous media by coarse-grained Monte Carlo with direct experimental validation

    NASA Astrophysics Data System (ADS)

    Zeidman, Benjamin D.; Lu, Ning; Wu, David T.

    2016-05-01

    The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres and a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.

  1. Hysteresis of liquid adsorption in porous media by coarse-grained Monte Carlo with direct experimental validation.

    PubMed

    Zeidman, Benjamin D; Lu, Ning; Wu, David T

    2016-05-01

    The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres and a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images. PMID:27155649

  2. Porous matrix structures for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Vine, R. W.; Narsavage, S. T.

    1975-01-01

    A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.

  3. Octonion generalization of Pauli and Dirac matrices

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2015-10-01

    Starting with octonion algebra and its 4 × 4 matrix representation, we have made an attempt to write the extension of Pauli's matrices in terms of division algebra (octonion). The octonion generalization of Pauli's matrices shows the counterpart of Pauli's spin and isospin matrices. In this paper, we also have obtained the relationship between Clifford algebras and the division algebras, i.e. a relation between octonion basis elements with Dirac (gamma), Weyl and Majorana representations. The division algebra structure leads to nice representations of the corresponding Clifford algebras. We have made an attempt to investigate the octonion formulation of Dirac wave equations, conserved current and weak isospin in simple, compact, consistent and manifestly covariant manner.

  4. Origin of symmetric PMNS and CKM matrices

    NASA Astrophysics Data System (ADS)

    Rodejohann, Werner; Xu, Xun-Jie

    2015-03-01

    The Pontecorvo-Maki-Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa matrices are phenomenologically close to symmetric, and a symmetric form could be used as zeroth-order approximation for both matrices. We study the possible theoretical origin of this feature in flavor symmetry models. We identify necessary geometric properties of discrete flavor symmetry groups that can lead to symmetric mixing matrices. Those properties are actually very common in discrete groups such as A4 , S4 , or Δ (96 ) . As an application of our theorem, we generate a symmetric lepton mixing scheme with θ12=θ23=36.21 ° ; θ13=12.20 ° , and δ =0 , realized with the group Δ (96 ) .

  5. Advanced incomplete factorization algorithms for Stiltijes matrices

    SciTech Connect

    Il`in, V.P.

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  6. The Constitution: Perspectives on Contemporary American Democracy.

    ERIC Educational Resources Information Center

    Close Up Foundation, Arlington, VA.

    Four articles expressing the views of nine prominent United States citizens about the Constitution provide a context for reflecting on the meaning of the Constitution in present-day America. In "Why Has the Constitution Endured So Long?" Don Edwards, chairman of the House Civil and Constitutional Rights Subcommittee, discusses why the Constitution…

  7. Cryogenic cooling of x-ray crystals using porous matrix

    SciTech Connect

    Kuzay, T.M.

    1991-01-01

    It is well established that Si and SiC have very desirable thermophysical properties at cryogenic temperatures. This feature makes cryo-cooled optics potentially a good candidate for the first optical crystal of the presently built third generation synchrotron machines with very high heat flux levels. Currently, there is a great deal of interest in such cryo-cooled crystals pursued both experimentally and analytically. The analytical studies involve cut micro or capillary channel crystals. As opposed to the machined channels, porous matrices provide significant advantages. They operate very quietly. Such matrices are known to affect superior heat transfer enhancement. Data available in open literature suggest that surface heat flux levels up to {approximately}8 kW/cm{sup 2} are possible. For cryogens for which the boiling heat transfer heat flux is rather a low value in conventional geometries, the enhancement available with such matrices is a very significant characteristic. Cryogens are poor thermal conductors themselves. The fact that at the cryogenic temperatures the Si and/or SiC matrix itself becomes highly conductive, the matrix distributes the surface heat flux into the full volume effectively offsetting the poor conductivity of the coolant. In addition the tortuous path of the coolant through the matrix increases the dwell time for better heat transfer, however, at the expense of increased pressure drop. In this study, thermal conductivity of such composite matrices and the effective heat transfer coefficient obtainable using them are investigated. A first optics crystal model of Si with Si and/or Sic porous matrix as its heat exchanger and subject to prototype synchrotron level heat flux is analyzed and limits of the cooling possible with liquid nitrogen in single phase and subcooled boiling heat transfer modes are delineated.

  8. Fast transforms: Banded matrices with banded inverses

    PubMed Central

    Strang, Gilbert

    2010-01-01

    It is unusual for both A and A-1 to be banded—but this can be a valuable property in applications. Block-diagonal matrices F are the simplest examples; wavelet transforms are more subtle. We show that every example can be factored into A = F1…FN where N is controlled by the bandwidths of A and A-1 (but not by their size, so this extends to infinite matrices and leads to new matrix groups). PMID:20615937

  9. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  10. Spectral properties of ghost Neumann matrices

    SciTech Connect

    Bonora, L.; Santos, R. J. Scherer; Tolla, D. D.

    2008-05-15

    We continue the analysis of the ghost wedge states in the oscillator formalism by studying the spectral properties of the ghost matrices of Neumann coefficients. We show that the traditional spectral representation is not valid for these matrices and propose a new heuristic formula that allows one to reconstruct them from the knowledge of their eigenvalues and eigenvectors. It turns out that additional data, which we call boundary data, are needed in order to actually implement the reconstruction. In particular our result lends support to the conjecture that there exists a ghost three strings vertex with properties parallel to those of the matter three strings vertex.

  11. Constitutive upscaling of MR fluids

    NASA Astrophysics Data System (ADS)

    Nika, Grigor; Vernescu, Bogdan

    2015-11-01

    We consider a suspension of solid magnetizable particles in a viscous fluid with an applied external magnetic field. We assume the fluid to be electrically non-conducting. Thus, we use the quasi-static Maxwell equations coupled with the Stokes equations to capture the magnetorheological effect. We upscale using two scale asymptotic expansions to obtain the effective equations consisting of a coupled nonlinear system in a connected phase domain as well as the new constitutive laws. Qualitative properties of the solution of this nonlinear system are studied.

  12. A probabilistic model of a porous heat exchanger

    NASA Technical Reports Server (NTRS)

    Agrawal, O. P.; Lin, X. A.

    1995-01-01

    This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.

  13. Foams in porous media

    SciTech Connect

    Marsden, S.S.

    1986-07-01

    In 1978 a literature search on selective blocking of fluid flow in porous media was done by Professor S.S. Marsden and two of his graduate students, Tom Elson and Kern Huppy. This was presented as SUPRI Report No. TR-3 entitled ''Literature Preview of the Selected Blockage of Fluids in Thermal Recovery Projects.'' Since then a lot of research on foam in porous media has been done on the SUPRI project and a great deal of new information has appeared in the literature. Therefore we believed that a new, up-to-date search should be done on foam alone, one which would be helpful to our students and perhaps of interest to others. This is a chronological survey showing the development of foam flow, blockage and use in porous media, starting with laboratory studies and eventually getting into field tests and demonstrations. It is arbitrarily divided into five-year time periods. 81 refs.

  14. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba; Kocsis, Menyhert

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  15. FLUID TRANSPORT THROUGH POROUS MEDIA

    EPA Science Inventory

    Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...

  16. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V. G.; Vanstone, R. H.; Dame, L. T.; Laflen, J. H.

    1985-01-01

    The first year of progress on a NASA-Lewis contract with the General Electric Co is documented. The purpose of this contract (NAS3-23927) is to develop and evaluate unified constitutive equations for applications to hot-path components of aircraft gas turbine engines such as high pressure turbine blades and vanes. To accomplish this goal, uniaxial, notched, and multiaxial specimens made of conventionally cast Rene 80 are being tested under conditions that simulate engine operating conditions. To reduce the raw data, automated data reduction techniques are being developed that produce computer files containing the information needed to analyze proposed constitutive theories. Described are the analytical methods being developed to determine the parameters for these nonlinear unified theories by using the reduced data files. In another activity, a dedicated finite-element computer code is being developed to use unified theories in the structural analysis of hot-section components. This code was extensively verified for one such theory by successfully predicting the strain histories measured experimentally at the notch root of complex specimens taken from complex laboratory specimens.

  17. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.

    1986-01-01

    The objective of the program is to evaluate and develop existing constitutive models for use in finite-element structural analysis of turbine engine hot section components. The class of constitutive equation studied is considered unified in that all inelastic deformation including plasticity, creep, and stress relaxation are treated in a single term rather than a classical separation of plasticity (time independent) and creep (time dependent) behavior. The unified theories employed also do not utilize the classical yield surface or plastic potential concept. The models are constructed from an appropriate flow law, a scalar kinetic relation between strain rate, temperature and stress, and evolutionary equations for internal variables describing strain or work hardening, both isotropic and directional (kinematic). This and other studies have shown that the unified approach is particularly suited for determining the cyclic behavior of superalloy type blade and vane materials and is entirely compatible with three-dimensional inelastic finite-element formulations. The behavior was examined of a second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model, further examined procedures for determining the material-specific constants in the models, and exercised the MARC code for a turbine blade under simulated flight spectrum loading. Results are summarized.

  18. Noisy covariance matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, S.; Kondor, I.

    2002-05-01

    According to recent findings [#!bouchaud!#,#!stanley!#], empirical covariance matrices deduced from financial return series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding eigenvectors, their structure can essentially be regarded as random. In [#!bouchaud!#], e.g., it is reported that about 94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropriately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio optimization as well as in industry-wide risk management practices, we analyze the possible implications of this effect. Simulation experiments with matrices having a structure such as described in [#!bouchaud!#,#!stanley!#] lead us to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance under linear constraints) noise has relatively little effect. To leading order the solutions are determined by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise is rather small: depending on the size of the portfolio and on the length of the time series, it is of the order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a high degree of degeneracy of the solutions.

  19. Multifunctional matrices for oral peptide delivery.

    PubMed

    Bernkop-Schnürch, A; Walker, G

    2001-01-01

    The oral administration of peptide drugs represents one of the greatest challenges in pharmaceutical technology. To gain a sufficient bioavailability of these therapeutic agents, various barriers including the mucus-layer barrier, the enzymatic barrier, and the membrane barrier have to be overcome. A promising strategy for achieving this goal is the use of multifunctional matrices. These matrices are based on polymers that display mucoadhesive properties, a permeation-enhancing effect, enzyme-inhibiting properties, and/or a high buffer capacity. Moreover, a sustained or delayed drug release can be provided by delivery systems that contain such polymers. Among them, polyacrylates, cellulose derivatives, and chitosan are promising excipients that can also be customized by chemical modification to improve certain properties. For example, the covalent attachment of thiol moieties on these polymers leads to improved mucoadhesive and permeation-enhancing properties, and the conjugation of enzyme inhibitors enables the matrices to provide protection for peptide drugs against enzymatic degradation. The efficacy of multifunctional matrices in oral peptide delivery has been verified by various in vivo studies that could pave the way for the development of commercially viable formulations. PMID:11763498

  20. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  1. Parameterized BLOSUM Matrices for Protein Alignment.

    PubMed

    Song, Dandan; Chen, Jiaxing; Chen, Guang; Li, Ning; Li, Jin; Fan, Jun; Bu, Dongbo; Li, Shuai Cheng

    2015-01-01

    Protein alignment is a basic step for many molecular biology researches. The BLOSUM matrices, especially BLOSUM62, are the de facto standard matrices for protein alignments. However, after widely utilization of the matrices for 15 years, programming errors were surprisingly found in the initial version of source codes for their generation. And amazingly, after bug correction, the "intended" BLOSUM62 matrix performs consistently worse than the "miscalculated" one. In this paper, we find linear relationships among the eigenvalues of the matrices and propose an algorithm to find optimal unified eigenvectors. With them, we can parameterize matrix BLOSUMx for any given variable x that could change continuously. We compare the effectiveness of our parameterized isentropic matrix with BLOSUM62. Furthermore, an iterative alignment and matrix selection process is proposed to adaptively find the best parameter and globally align two sequences. Experiments are conducted on aligning 13,667 families of Pfam database and on clustering MHC II protein sequences, whose improved accuracy demonstrates the effectiveness of our proposed method. PMID:26357279

  2. Malware Analysis Using Visualized Image Matrices

    PubMed Central

    Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202

  3. Malware analysis using visualized image matrices.

    PubMed

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202

  4. Spectral averaging techniques for Jacobi matrices

    SciTech Connect

    Rio, Rafael del; Martinez, Carmen; Schulz-Baldes, Hermann

    2008-02-15

    Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner-type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.

  5. On reduced density matrices for disjoint subsystems

    NASA Astrophysics Data System (ADS)

    Iglói, F.; Peschel, I.

    2010-02-01

    We show that spin and fermion representations for solvable quantum chains lead in general to different reduced density matrices if the subsystem is not singly connected. We study the effect for two sites in XX and XY chains as well as for sublattices in XX and transverse Ising chains.

  6. Constructing random matrices to represent real ecosystems.

    PubMed

    James, Alex; Plank, Michael J; Rossberg, Axel G; Beecham, Jonathan; Emmerson, Mark; Pitchford, Jonathan W

    2015-05-01

    Models of complex systems with n components typically have order n(2) parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species' trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems. PMID:25905510

  7. Chemically Layered Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    1991-01-01

    Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.

  8. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  9. Porous block nanofiber composite filters

    DOEpatents

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  10. Porous metal for orthopedics implants

    PubMed Central

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Summary Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery. PMID:24133527

  11. Porous silicon biosensor: current status.

    PubMed

    Dhanekar, Saakshi; Jain, Swati

    2013-03-15

    Biosensing technologies cater to modern day diagnostics and point of care multi-specialty clinics, hospitals and laboratories. Biosensors aggregate the sensitivity of detection methodologies and constitutional selectivity of biomolecules. Endeavors to develop highly sensitive, fast, stable and low cost biosensors have been made possible by extensive and arduous research. Immense research work is going on for detection of molecules using various materials as immobilization substrate and sensing elements. Amongst materials being used as bio-sensing substrates, nano-porous silicon (PS) has amassed attention and gained popularity in recent years. It has captivating and tunable features like ease of fabrication, special optico-physico properties, tailored morphological structure and versatile surface chemistry enhancing its prospects as transducer for fabricating biosensors. The present review describes the fabrication of PS and its biosensing capabilities for detection of various analytes including, but not limited to, glucose, DNA, antibodies, bacteria and viruses. Attention has been consecrated on the various methodologies such as electrical, electrochemical, optical and label free techniques along with the performances of these biosensors. It concludes with some future prospects and challenges of PS based biosensors. PMID:23122704

  12. Unborn children as constitutional persons.

    PubMed

    Roden, Gregory J

    2010-01-01

    In Roe v. Wade, the state of Texas argued that "the fetus is a 'person' within the language and meaning of the Fourteenth Amendment." To which Justice Harry Blackmun responded, "If this suggestion of personhood is established, the appellant's case, of course, collapses, for the fetus' right to life would then be guaranteed specifically by the Amendment." However, Justice Blackmun then came to the conclusion "that the word 'person,' as used in the Fourteenth Amendment, does not include the unborn." In this article, it is argued that unborn children are indeed "persons" within the language and meaning of the Fourteenth and Fifth Amendments. As there is no constitutional text explicitly holding unborn children to be, or not to be, "persons," this argument will be based on the "historical understanding and practice, the structure of the Constitution, and thejurisprudence of [the Supreme] Court." Specifically, it is argued that the Constitution does not confer upon the federal government a specifically enumerated power to grant or deny "personhood" under the Fourteenth Amendment. Rather, the power to recognize or deny unborn children as the holders of rights and duties has been historically exercised by the states. The Roe opinion and other Supreme Court cases implicitly recognize this function of state sovereignty. The states did exercise this power and held unborn children to be persons under the property, tort, and criminal law of the several states at the time Roe was decided. As an effect of the unanimity of the states in holding unborn children to be persons under criminal, tort, and property law, the text of the Equal Protection Clause of the Fourteenth Amendment compels federal protection of unborn persons. Furthermore, to the extent Justice Blackmun examined the substantive law in these disciplines, his findings are clearly erroneous and as a whole amount to judicial error. Moreover, as a matter of procedure, according to the due process standards recognized in

  13. Porous metallic bodies

    DOEpatents

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  14. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  15. POROUS DIKE INTAKE EVALUATION

    EPA Science Inventory

    The report gives results of an evaluation of a porous dike intake. A small-scale test facility was constructed and continuously operated for 2 years under field conditions. Two stone dikes of gabion construction were tested: one consisted of 7.5 cm stones; and the other, 20 cm st...

  16. Improved Separability Criteria Based on Bloch Representation of Density Matrices

    PubMed Central

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  17. Improved Separability Criteria Based on Bloch Representation of Density Matrices.

    PubMed

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  18. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  19. Written Constitution or None: Which Works Better?

    ERIC Educational Resources Information Center

    Cowen, Zelman

    1987-01-01

    Explores the differences between the U.S. Constitution and British constitutional law. Specifically examines the concept of the U.S. Bill of Rights in relation to the United Kingdom common law doctrine of parliamentary sovereignty. (BSR)

  20. Mössbauer Investigation of Highly Dispersed Iron Particles in Crazed Porous Polymers

    NASA Astrophysics Data System (ADS)

    Trofimchuk, E. S.; Nikonorova, N. I.; Dedushenko, S. K.; Perfiliev, Y. D.

    2004-12-01

    Formation and stability of highly dispersed iron particles in crazed porous polymer matrices were studied. The iron polymer composites obtained were characterized by different morphologies and dimensions of iron particles. The phase content of the iron constituent in a composite studied by Mössbauer spectroscopy was shown to depend on the type of the iron salt and the method of introduction of the initial reagents into a polymer.

  1. 17 CFR 200.54 - Constitutional obligations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Constitutional obligations... ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Canons of Ethics § 200.54 Constitutional... against any infringement of the constitutional rights, privileges, or immunities of those who are...

  2. The Constitutional Politics of Charitable Choice.

    ERIC Educational Resources Information Center

    Knippenberg, Joseph M.

    2003-01-01

    Clarifies the constitutional issue raised by government efforts to cooperate with faith-based organizations, noting that while programs can be constitutional without necessarily being good public policy, too frequently political and constitutional controversies mix these two considerations, thus confusing those trying to understand and resolve…

  3. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Constitutional torts. 536.42 Section 536.42... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim... any subpart. A constitutional claim will be scrutinized in order to determine whether it is totally...

  4. 7 CFR 718.201 - Farm constitution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Farm constitution. 718.201 Section 718.201 Agriculture... Reconstitution of Farms, Allotments, Quotas, and Bases § 718.201 Farm constitution. (a) In order to implement... this section. The constitution and identification of land as a farm for the first time and...

  5. American Focus on World Constitutions. Teacher's Guide.

    ERIC Educational Resources Information Center

    Holmes, Stanley T., III

    This curriculum project was designed to familiarize high school students with their own constitutional roots while gaining a better understanding of governmental systems developed by other nations. The project uses the U.S. Constitution as a baseline for analyzing the constitutions of other nations, and is intended to supplement courses in such…

  6. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable...

  7. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable...

  8. Antithetical Ethics: Kenneth Burke and the Constitution.

    ERIC Educational Resources Information Center

    Anderson, Virginia

    1995-01-01

    Shows how the textuality of the United States Constitution, the most venerable of classic democratic icons, might be exploited to nurture postmodern ethics. Shows how Kenneth Burke's reading of the Constitution accords with and augments the postmodern theories of J.-F. Lyotard and S. Jarratt. Discusses a postmodern Constitution and the…

  9. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable...

  10. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable...

  11. About Our Constitution: 1787-1987.

    ERIC Educational Resources Information Center

    National Council for the Social Studies, Washington, DC.

    Designed to assist elementary school teachers, these materials present a series of lessons about the United States Constitution. Ten lesson plans and appropriate work sheets are included for grades K-3. The topics covered include the age of the Constitution, a constitutional convention, elected representatives, majority rule, voting, law making,…

  12. State Constitutional Law: Teaching and Scholarship.

    ERIC Educational Resources Information Center

    Williams, Robert F.

    1991-01-01

    State constitutional law is an emerging area for legal education, partly because of state supreme court decisions relying on state rather than federal constitutional law. Studying state constitutional law highlights similarities and diversity of legal and governmental systems. Interest in establishment of curricula and materials in state law is…

  13. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  14. Bioisosteric matrices for ligands of serotonin receptors.

    PubMed

    Warszycki, Dawid; Mordalski, Stefan; Staroń, Jakub; Bojarski, Andrzej J

    2015-04-01

    The concept of bioisosteric replacement matrices is applied to explore the chemical space of serotonin receptor ligands, aiming to determine the most efficient ways of manipulating the affinity for all 5-HT receptor subtypes. Analysis of a collection of over 1 million bioisosteres of compounds with measured activity towards serotonin receptors revealed that an average of 31 % of the ligands for each target are mutual bioisosteres. In addition, the collected dataset allowed the development of bioisosteric matrices-qualitative and quantitative descriptions of the biological effects of each predefined type of bioisosteric substitution, providing favored paths of modifying the compounds. The concept exemplified here for serotonin receptor ligands can likely be more broadly applied to other target classes, thus representing a useful guide for medicinal chemists designing novel ligands. PMID:25772514

  15. Evolutionary Games with Randomly Changing Payoff Matrices

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  16. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  17. Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices

    NASA Astrophysics Data System (ADS)

    Ramiro-Manzano, Fernando; Fenollosa, Roberto; Xifré-Pérez, Elisabet; Garín, Moises; Meseguer, Francisco

    2012-09-01

    We have recently developed a new type of porous silicon we name as porous silicon colloids. They consist of almost perfect spherical silicon nanoparticles with a very smooth surface, able to scatter (and also trap) light very efficiently in a large-span frequency range. Porous silicon colloids have unique properties because of the following: (a) they behave as optical microcavities with a high refractive index, and (b) the intrinsic photoluminescence (PL) emission is coupled to the optical modes of the microcavity resulting in a unique luminescence spectrum profile. The PL spectrum constitutes an optical fingerprint identifying each particle, with application for biosensing. In this paper, we review the synthesis of silicon colloids for developing porous nanoparticles. We also report on the optical properties with special emphasis in the PL emission of porous silicon microcavities. Finally, we present the photonic barcode concept.

  18. Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices

    PubMed Central

    2012-01-01

    We have recently developed a new type of porous silicon we name as porous silicon colloids. They consist of almost perfect spherical silicon nanoparticles with a very smooth surface, able to scatter (and also trap) light very efficiently in a large-span frequency range. Porous silicon colloids have unique properties because of the following: (a) they behave as optical microcavities with a high refractive index, and (b) the intrinsic photoluminescence (PL) emission is coupled to the optical modes of the microcavity resulting in a unique luminescence spectrum profile. The PL spectrum constitutes an optical fingerprint identifying each particle, with application for biosensing. In this paper, we review the synthesis of silicon colloids for developing porous nanoparticles. We also report on the optical properties with special emphasis in the PL emission of porous silicon microcavities. Finally, we present the photonic barcode concept. PMID:22943136

  19. Determination of W states equivalent under stochastic local operations and classical communication by their bipartite reduced density matrices with tree form

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Tian, Guo-Jing; Huang, Wei; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei

    2014-07-01

    It has been known that, among pure states, N-qubit W states cannot be uniquely determined by their arbitrary (N-1) bipartite reduced density matrices. Parashar and Rana proved that among arbitrary states, (N-1) bipartite reduced density matrices that the pairs of qubits constitute a star graph or a line graph can uniquely determine stochastic local operations and classical communication (SLOCC) equivalent W states, and we generalize this conclusion into tree graph. In this paper, we show that all SLOCC equivalent W states can be uniquely determined (among pure, mixed states) by their (N-1) bipartite reduced density matrices, if the (N-1) pairs of qubits constitute a tree graph on N vertices, where each pair of qubits represents an edge.

  20. Analysis of thematic map classification error matrices.

    USGS Publications Warehouse

    Rosenfield, G.H.

    1986-01-01

    The classification error matrix expresses the counts of agreement and disagreement between the classified categories and their verification. Thematic mapping experiments compare variables such as multiple photointerpretation or scales of mapping, and produce one or more classification error matrices. This paper presents a tutorial to implement a typical problem of a remotely sensed data experiment for solution by the linear model method.-from Author

  1. Photochromic Behavior of Spiropyran in Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Tork, Amir; Boudreault, Francois; Roberge, Mathieu; Ritcey, Anna M.; Lessard, Roger A.; Galstian, Tigran V.

    2001-03-01

    The photoexcitation, relaxation, and optical erasure regimes of spiropyran- (SP-) doped polymer films were studied. Cellulose acetate, poly(vinyl acetate), and poly(methyl methacrylate) (PMMA) were used as host polymer matrices. We studied the character of the photoreaction for both coloring and bleaching processes. Reversible holographic recording in SP -PMMA films and the origin of the photochemical fatigue was studied upon repeated UV -visible irradiation cycles.

  2. Some physical applications of random hierarchical matrices

    SciTech Connect

    Avetisov, V. A.; Bikulov, A. Kh.; Vasilyev, O. A.; Nechaev, S. K.; Chertovich, A. V.

    2009-09-15

    The investigation of spectral properties of random block-hierarchical matrices as applied to dynamic and structural characteristics of complex hierarchical systems with disorder is proposed for the first time. Peculiarities of dynamics on random ultrametric energy landscapes are discussed and the statistical properties of scale-free and polyscale (depending on the topological characteristics under investigation) random hierarchical networks (graphs) obtained by multiple mapping are considered.

  3. Preconditioning matrices for Chebyshev derivative operators

    NASA Technical Reports Server (NTRS)

    Rothman, Ernest E.

    1986-01-01

    The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev approximations of first order operators is considered in both one and two dimensions. In one dimension a preconditioner represented by a full matrix which leads to preconditioned eigenvalues that are real, positive, and lie between 1 and pi/2, is already available. Since there are cases in which it is not computationally convenient to work with such a preconditioner, a large number of preconditioners were studied which were more sparse (in particular three and four diagonal matrices). The eigenvalues of such preconditioned matrices are compared. The results were applied to the problem of finding the steady state solution to an equation of the type u sub t = u sub x + f, where the Chebyshev collocation is used for the spatial variable and time discretization is performed by the Richardson method. In two dimensions different preconditioners are proposed for the matrix which arises from the pseudo-spectral discretization of the steady state problem. Results are given for the CPU time and the number of iterations using a Richardson iteration method for the unpreconditioned and preconditioned cases.

  4. Quark flavor mixings from hierarchical mass matrices

    NASA Astrophysics Data System (ADS)

    Verma, Rohit; Zhou, Shun

    2016-05-01

    In this paper, we extend the Fritzsch ansatz of quark mass matrices while retaining their hierarchical structures and show that the main features of the Cabibbo-Kobayashi-Maskawa (CKM) matrix V, including |V^{}_{us}| ˜eq |V^{}_{cd}|, |V^{}_{cb}| ˜eq |V^{}_{ts}| and |V^{}_{ub}|/|V^{}_{cb}| < |V^{}_{td}|/|V^{}_{ts}|, can be well understood. This agreement is observed especially when the mass matrices have non-vanishing (1, 3) and (3, 1) off-diagonal elements. The phenomenological consequences of these for the allowed texture content and gross structural features of `hierarchical' quark mass matrices are addressed from a model-independent prospective under the assumption of factorizable phases in these. The approximate and analytical expressions of the CKM matrix elements are derived and a detailed analysis reveals that such structures are in good agreement with the observed quark flavor mixing angles and the CP-violating phase at the 1σ level and call upon a further investigation of the realization of these structures from a top-down prospective.

  5. Continuum description of quasi-static intrusion of non-wetting liquid into a porous body

    NASA Astrophysics Data System (ADS)

    Cieszko, M.; Czapla, E.; Kempiński, M.

    2015-01-01

    This paper proposes a continuum description of the quasi-static processes of non-wetting liquid intrusion into a porous body. The description of such processes is important in the interpretation of mercury porosimetry data, which is commonly used to determine the pore space structure parameters of porous materials. A new macroscopic model of capillary transport of non-wetting liquid in porous material is proposed. It is assumed that a quasi-static process of liquid intrusion takes place in the pore space-pressure continuum and that liquid filling an undeformable porous material forms a macroscopic continuum constituted by a mobile and a capillary liquid which exchange mass and energy. The capillary liquid forms a thin layer on the surface of the liquid filling the porous material that is in contact with the internal surface of the pores. It is immoveable and contains the whole capillary energy. Mass balance equations for both constituents and constitutive relations describing capillary transport in the pore space-pressure continuum are formulated, and a boundary condition on the surface of the porous body is proposed. The equations obtained are solved for the special case of liquid intrusion into a ball of porous material. Analytical expressions are obtained for the saturation distribution of non-wetting liquid in the ball and for the capillary potential curve. Their dependence on parameters of the system is analyzed.

  6. Aerodynamic Synthesis of Biocompatible Matrices and their Functionalization by Nanoparticles Obtained by the Method of Laser Ablation

    NASA Astrophysics Data System (ADS)

    Bol'basov, E. N.; Lapin, I. N.; Tverdokhlebov, S. I.; Svetlichnyi, V. A.

    2014-07-01

    For applications in tissue engineering, three-dimensional biodegradable polymeric matrices, whose surface is functionalized by nanoparticles obtained in the liquid phase by the method of laser ablation from bulk metal (Ag or Zn) targets, are synthesized by the method of aerodynamic synthesis from a solution of poly-l-lactide acid. Their properties are investigated. It is demonstrated that the matrices represent a very porous spatial fibrous structure consisting of polymorphic fibers with diameters from 0.25 to 2.5 μm. It is established that functional coatings consisting of agglomerates of semiconductor (ZnO) or metal (Ag) nanoparticles can be produced on the surface of structural matrix elements by repeated matrix impregnation.

  7. Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks.

    PubMed

    Zhou, Jianping; Do, Minh N; Kovaĉević, Jelena

    2006-02-01

    We characterize and design multidimensional (MD) orthogonal filter banks using special paraunitary matrices and the Cayley transform. Orthogonal filter banks are represented by paraunitary matrices in the polyphase domain. We define special paraunitary matrices as paraunitary matrices with unit determinant. We show that every paraunitary matrix can be characterized by a special paraunitary matrix and a phase factor. Therefore, the design of paraunitary matrices (and thus of orthogonal filter banks) becomes the design of special paraunitary matrices, which requires a smaller set of nonlinear equations. Moreover, we provide a complete characterization of special paraunitary matrices in the Cayley domain, which converts nonlinear constraints into linear constraints. Our method greatly simplifies the design of MD orthogonal filter banks and leads to complete characterizations of such filter banks. PMID:16479821

  8. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  9. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  10. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  11. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  12. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    PubMed Central

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  13. Reciprocating magnetic refrigerator employing tandem porous matrices within a reciprocating displacer

    NASA Technical Reports Server (NTRS)

    Johnson, D. L. (Inventor)

    1985-01-01

    Disclosed is a method and apparatus for a magnetic refrigeration system. A continuously reciprocating displacer houses at least a pair of paramagnetic substances each of which is alternately driven into and out of a magnetic field. Two separate bidirectional pumping systems flow helium gas through the displacer and through both paramagnetic substances to create heat exchange conditions at two separate temperature extremes.

  14. Modeling structure-function relationships for diffusive drug transport in inert porous geopolymer matrices.

    PubMed

    Jämstorp, Erik; Strømme, Maria; Frenning, Göran

    2011-10-01

    A unique structure-function relationship investigation of mechanically strong geopolymer drug delivery vehicles for sustained release of potent substances is presented. The effect of in-synthesis water content on geopolymer pore structure and diffusive drug transport is investigated. Scanning electron microscopy, N2 gas adsorption, mercury intrusion porosimetry, compression strength test, drug permeation, and release experiments are performed. Effective diffusion coefficients are measured and compared with corresponding theoretical values as derived from pore size distribution and connectivity via pore-network modeling. By solely varying the in-synthesis water content, mesoporous and mechanically strong geopolymers with porosities of 8%-45% are obtained. Effective diffusion coefficients of the model drugs Saccharin and Zolpidem are observed to span two orders of magnitude (∼1.6-120 × 10(-8) cm(2) /s), comparing very well to theoretical estimations. The ability to predict drug permeation and release from geopolymers, and materials alike, allows future formulations to be tailored on a structural and chemical level for specific applications such as controlled drug delivery of highly potent substances. PMID:21656516

  15. Osteoblast growth and function in porous poly epsilon -caprolactone matrices for bone repair: a preliminary study.

    PubMed

    Ciapetti, G; Ambrosio, L; Savarino, L; Granchi, D; Cenni, E; Baldini, N; Pagani, S; Guizzardi, S; Causa, F; Giunti, A

    2003-09-01

    Current methods for the replacement of skeletal tissue involve the use of autografts, allografts and, recently, synthetic substitutes, which provide a proper amount of material to repair large bone defects. Engineered bone seems a promising approach, but a number of variables have to be set prior to any clinical application. In this study, four different poly caprolactone-based polymers (PCL) were prepared and tested in vitro using osteoblast-like Saos-2 cells. Differences among three-dimensional polymers include porosity, addition of hydroxyapatite (HA) particles, and treatment with simulated body fluid. Biochemical parameters to assess cell/material interactions include viability, growth, alkaline phosphatase release, and mineralization of osteoblastic cells seeded onto three-dimensional samples, while their morphology was observed using light microscopy and SEM. Preliminary results show that the polymers, though degrading in the medium, have a positive interaction with cells, as they support cell growth and functions. In the short-term culture (3-7 days) of Saos-2 on polymers, little differences were found among PCL samples, with the presence of HA moderately improving the number of cells onto the surfaces. In the long term (3-4 weeks), it was found that the HA-added polymers obtained the best colonization by cells, and more mineral formation was observed after coating with SBF. It can be concluded that PCL is a promising material for three-dimensional scaffold for bone formation, and the presence of bone-like components improves osteoblast activity. PMID:12818554

  16. Speciation of nanoscale objects by nanoparticle imprinted matrices.

    PubMed

    Hitrik, Maria; Pisman, Yamit; Wittstock, Gunther; Mandler, Daniel

    2016-08-01

    The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of "nanoparticles imprinted matrices" (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects. PMID:26955908

  17. Constitutional and Non-Constitutional Governments...Similarities and Differences throughout History. Resource Packet.

    ERIC Educational Resources Information Center

    Pallasch, Brian Thomas

    This civic education resource packet is designed to provide teachers, community leaders, and other civic educators with an understanding of the differences between constitutional and non-constitutional governments. Six papers discussing the topic are included: "The Differences bewteen Constitutional and Non-Constitutional Governments" (John…

  18. 3 CFR 8418 - Proclamation 8418 of September 16, 2009. Constitution Day and Citizenship Day, Constitution Week...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Proclamation 8418 of September 16, 2009. Constitution Day and Citizenship Day, Constitution Week, 2009 8418 Proclamation 8418 Presidential Documents Proclamations Proclamation 8418 of September 16, 2009 Proc. 8418 Constitution Day and Citizenship Day, Constitution Week, 2009By the President of...

  19. State Constitutionalism: Completing the Interdisciplinary Study of Constitutional Law and Political Theory.

    ERIC Educational Resources Information Center

    Williams, Robert F.

    1993-01-01

    Argues that a complete and accurate understanding of constitutional history and constitutional law requires the study of state constitutions. Maintains that state constitutions contain a coherent political theory that is, in important respects, at variance with the concept of federalism. (CFR)

  20. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  1. Natural convection in porous media

    SciTech Connect

    Prasad, V.; Hussain, N.A.

    1986-01-01

    This book presents the papers given at a conference on free convection in porous materials. Topics considered at the conference included heat transfer, nonlinear temperature profiles and magnetic fields, boundary conditions, concentrated heat sources in stratified porous media, free convective flow in a cavity, heat flux, laminar mixed convection flow, and the onset of convection in a porous medium with internal heat generation and downward flow.

  2. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  3. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  4. Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices.

    PubMed

    Zobel, Kathrin; Hansen, Uwe; Galla, Hans-Joachim

    2016-08-01

    Brain capillary endothelial cells, which constitute the blood-brain barrier (BBB), are enveloped by the extracellular matrix (ECM) produced by endothelial cells, pericytes and astrocytes. The contribution of matrix components secreted by the various cell types at the neurovascular unit, however, remains unclear with respect to their effect on endothelial barrier function. In this study, a new in vitro model was established by growing endothelial cells on an ECM produced by pericytes, astrocytes or a serial combination of both. The last-mentioned was found to be more in vivo-like. We investigated the role of the composition and morphology of ECM supra-structures in maintaining BBB function. The composition was analysed by protein analysis (enzyme-linked immunosorbent assay) and the ultrastructure of generated matrices was analysed by transmission electron microscopy including immunogold labelling. We could show by electric cell-substrate impedance sensing measurements that pericytes and combined matrices significantly improved the barrier tightness of porcine brain capillary endothelial cells (PBCEC). The increase of the resistance was verified by enhanced expression of tight junction proteins. Thus, for the first time, we have shown that barrier integrity is strictly controlled by the ECM, which is a product of all cells involved in the secretion of ECM components and their modification by corresponding cells. Moreover, we have demonstrated that complex matrices by the various cells of the BBB induce barrier marker enzymes in PBCEC, such as alkaline phosphatase. PMID:27053246

  5. A new metric of analyzing the surface optical characteristic based on the measurement of Mueller matrices

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-jun; Wang, Xiu-qin; Gu, Guo-hua; Yang, Wei; Qian, Wei-xian

    2014-12-01

    In this paper, we propose to obtain the optical characteristics on material surface by Mueller calculus. In our research, a new metric for Mueller matrices, named R(M) , is defined to describe the polarization and depolarization characteristics on material surface by analyzing the constitute of Mueller matrices. The definition of R(M) is derived from the definition of the depolarization scalar metric for Mueller matrices named Q (M ) which can show the diattenuation and depolarization characteristics. With the advantage of Q (M ) , we assumed and proved the advantage of R(M) against the traditional metrics, the polarizance parameter P(M) and the depolarization index DI (M ) . This comparison can fully illustrate the value of R(M) . It is considered that P(M) and DI (M ) which cannot analyze the optical characteristics commonly to give a comprehensive evaluation. However, composed of P(M) and DI (M ) , R(M) can comprehensively reflect the optical signification which P(M) and DI (M ) represent. R(M) can be used to analyze different optical polarized characteristics on material surface with five bounds as totally depolarizing, partially depolarizing, totally polarizing, partially polarizing, nondepolarizing nonpolarizing. This means that R(M) can enable us to distinguish different materials by their different polarized characteristic on surface. With the definition of R(M) , it can be known that how the optical polarized characteristics work to change the polarized state of incident light on material surface.

  6. Decontamination of matrices containing actinide oxides

    SciTech Connect

    Villarreal, Robert

    1997-12-01

    There is provided a method for removing actinides and actinide oxides, particularly fired actinides, from soil and other contaminated matrices, comprising: (a) contacting a contaminated material with a solution of at least one inhibited fluoride and an acid to form a mixture; (b) heating the mixture of contaminated material and solution to a temperature in the range from about 30 C to about 90 C while stirring; (c) separating the solution from any undissolved matrix material in the mixture; (d) washing the undissolved matrix material to remove any residual materials; and (e) drying and returning the treated matrix material to the environment.

  7. Quantum groups, braiding matrices and coset models

    SciTech Connect

    Itoyama, H.

    1989-07-01

    We discuss a few results on quantum groups in the context of rational conformal field theory with underlying affine Lie algebras. A vertex-height correspondence - a well-known procedure in solvable lattice models - is introduced in the WZW theory. This leads to a new definition of chiral vertex operator in which the zero mode is given by the q-Clebsch Gordan coefficients. Braiding matrices of coset models are found to factorize into those of the WZW theories. We briefly discuss the construction of the generators of the universal enveloping algebra in Toda field theories. 21 refs., 2 figs.

  8. Defining the criteria for identifying constitutional epimutations.

    PubMed

    Sloane, Mathew A; Ward, Robyn L; Hesson, Luke B

    2016-01-01

    In the January 2016 issue of Clinical Epigenetics, Quiñonez-Silva et al. (Clin Epigenetics 8:1, 2016) described a possible constitutional epimutation of the RB1 gene as a cause of hereditary predisposition to retinoblastoma. The term constitutional epimutation describes an epigenetic aberration in normal tissues that predisposes to disease. The data presented by Quiñonez-Silva et al. are interesting, but further analysis is required to demonstrate a constitutional epimutation in this family. Here, we define the criteria and describe the experimental approach necessary to identify an epigenetic aberration as a constitutional epimutation. PMID:27096027

  9. Testing of constitutive models in LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of ensuring that the model continues to behave correctly. A second purpose of a test suite for constitutive models is that it gives application code developers confidence that the constitutive models work correctly. This is extremely important since any analyst that uses an application code for an engineering analysis will associate a constitutive model in LAME with the application code, not LAME. Therefore, ensuring the correct implementation of constitutive models is essential for application code teams. A third purpose of a constitutive model test suite is that it provides analysts with example problems that they can look at to understand the behavior of a specific model. Since the choice of a constitutive model, and the properties that are used in that model, have an enormous effect on the results of an

  10. Characterization of porous hydroxyapatite.

    PubMed

    Hing, K A; Best, S M; Bonfield, W

    1999-03-01

    Hydroxyapatite has been considered for use in the repair of osseous defects for the last 20 years. Recent developments have led to interest in the potential of porous hydroxyapatite as a synthetic bone graft. However, despite considerable activity in this field, regarding assessment of the biological response to such materials, the basic materials characterization is often inadequate. This paper documents the characterization of the chemical composition, mechanical integrity, macro- and microstructure of a porous hydroxyapatite, Endobon (E. Merck GmbH), intended for the bone-graft market. Specimens possesed a range of apparent densities from 0.35 to 1.44 g cm(-3). Chemical analysis demonstrated that the natural apatite precursor of Endobon was not converted to pure hydroxyapatite, but retained many of the ionic substituents found in bone mineral, notably carbonate, sodium and magnesium ions. Investigation of the microstructure illustrated that the struts of the material were not fully dense, but had retained some traces of the network of osteocyte lacunae. Macrostructural analysis demonstrated the complex inter-relationship between the structural features of an open pore structure. Both pore size and connectivity were found to be inversely dependent on apparent density. Furthermore, measurement of pore aspect ratio and orientation demonstrated a relationship between apparent density and the degree of macrostructural anisotropy within the specimens, while, it was also noted that pore connectivity was sensitive to anisotropy. Compression testing demonstrated the effect of apparent density and macrostructural anisotropy on the mechanical properties. An increase in apparent density from 0.38 to 1.25 g cm(-3) resulted in increases in ultimate compressive stress and compressive modulus of 1 to 11 MPa and 0.2 to 3.1 GPa, respectively. Furthermore, anisotropic high density (> 0.9 g cm(-3)) specimens were found to possess lower compressive moduli than isotropic specimens