Science.gov

Sample records for porous polycaprolactone scaffold

  1. Development of polycaprolactone/chitosan blend porous scaffolds.

    PubMed

    Wan, Ying; Xiao, Bo; Dalai, Siqin; Cao, Xiaoying; Wu, Quan

    2009-03-01

    Polycaprolactone (PCL) and chitosan were blended to fabricate porous scaffolds for tissue-engineering applications by employing a concentrated acetic acid solution as solvent and salt particles as porogen. These scaffolds showed well-controlled and interconnected porous structures. The pore size and porosity of the scaffolds could be effectively modulated by selecting appropriate amounts and sizes of porogen. The results obtained from compressive mechanical measurements indicated that PCL/chitosan could basically retain their strength in their dry state compared to individual components. In a hydrated state, their compressive stress and modulus could be still well maintained even though the weight ratio of chitosan reached around 50 wt%. PMID:18987952

  2. In vitro mineralization of surface-modified porous polycaprolactone scaffolds in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Ning, Chengyun; Cheng, Haimei; Zhu, Wenjun; Yin, Zhaoyi; Chen, Hao; Zheng, Huade; Lei, Shumei; Yin, Shiheng; Tan, Guoxin

    2008-11-01

    Porous polycaprolactone (PCL) scaffolds were fabricated by combination of porogen-leaching and freeze-drying processes. Ice particulates were used as porogen materials. The porous PCL scaffolds were modified by potassium hydroxide solution with concentration of 1 mol/L at room temperature for 8 h, subsequently biomineralized in simulated body fluid for 2 h and 8 h, respectively. The microstructure and characteristics of the PCL scaffolds were investigated by scanning electron microscope (SEM) and EDS. The results showed (1) PCL scaffolds had high degree of connectivity and different pore sizes. (2) Plate-like apatite was observed on the surface of the scaffolds after being immersed into SBF for 8 h.

  3. Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Liu, Changsheng; O'Neill, Brian; Wei, Jie; Ngothai, Yung

    2012-07-01

    In this study, porous scaffolds made of magnesium phosphate (MP)/polycaprolactone (PCL) biocomposite were developed for bone tissue engineering applications. The composite scaffolds were fabricated by the particulate leaching method using sodium chloride particles as porogen. The obtained scaffold with porosity around 73% presents a porous structure with interconnected open pores. Hydrophilicity of the scaffolds was enhanced by the incorporation of MP component as demonstrated by the water contact angle measurement. The results of the in vitro degradation study show that the MP/PCL composite scaffolds degraded faster than PCL scaffolds in phosphate buffered saline (PBS). In addition, the degradation rate of the scaffolds could be tuned by adjusting the content of MP component in the composite. The results indicate that the MP/PCL composite scaffold has a potential application in bone tissue engineering.

  4. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect.

    PubMed

    Kim, Ji-Hyun; Linh, Nguyen T B; Min, Young K; Lee, Byong-Taek

    2014-10-01

    In this study, polycaprolactone scaffolds fabricated by a salt-leaching process were loaded with biphasic calcium phosphate successfully to improve the osteoconductivity in bone regeneration. The surface of polycaprolactone/biphasic calcium phosphate scaffolds was aminolyzed by 1,6-hexamethylenediamine to introduce amino groups onto the surface, which was verified qualitatively by ninhyrin staining. Collagen was further immobilized on the aminolyzed porous polycaprolactone via N-ethyl-N'-(3-dimethylaminopropy) carbodiimide hydrochloride/hydroxy-2,5-dioxopyrolidine-3-sulfonic acid sodium cross-linking. The pore size of polycaprolactone/biphasic calcium phosphate-collagen scaffolds was 200-300 µm, which was suitable for bone in-growth. The X-ray photoelectron spectroscopy confirmed the coupling of collagen immobilized on the surface of polycaprolactone/biphasic calcium phosphate. In vitro results demonstrated that the spreading and viability of MC3T3-E1 cells were remarkably improved in the polycaprolactone/biphasic calcium phosphate-collagen scaffolds. The in vivo study was carried out by implanting the porous polycaprolactone, polycaprolactone/biphasic calcium phosphate, and polycaprolactone/biphasic calcium phosphate-collagen to the skulls of rats. Although the addition of biphasic calcium phosphate particles in the polycaprolactone scaffolds does not have a strong effect on the new bone formation, the immobilization of collagen on the polycaprolactone/biphasic calcium phosphate scaffolds significantly improved the bone regeneration even though the implantation time was short, 6 weeks. The present results provide more evidence that functionalizing polycaprolactone with biphasic calcium phosphate and collagen may be a feasible way to improve the osteoconduction in bone regeneration. PMID:24939961

  5. The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Duan, K.; Zhang, J. W.; Lu, X.; Weng, J.

    2010-05-01

    Polycaprolactone (PCL)-coated porous hydroxyapatite (HA) composite scaffolds were prepared by combining polymer impregnating method with dip-coating method. Three different PCL solution concentrations were used in dip-coating process to improve the mechanical properties of porous HA scaffolds. The results indicated that as the concentration of PCL solution increases the compressive strength significantly increased from 0.09 MPa to 0.51 MPa while the porosity decreased from 90% to 75% for the composite scaffolds. An interlaced structure was found inside the pore wall for all composite scaffolds due to the penetration of PCL. The porous HA/PCL composite scaffolds dip-coated with 10% PCL exhibited optimal combination of mechanical properties and pore interconnectivity, and may be a potential bone candidate for the tissue engineering applications.

  6. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering.

    PubMed

    Thadavirul, Napaphat; Pavasant, Prasit; Supaphol, Pitt

    2014-10-01

    Sodium chloride and polyethylene glycol (PEG) were used as water-soluble porogens for the formation of porous polycaprolactone (PCL) scaffolds. The main purpose was to prepare and evaluate in vitro efficacy of highly interconnected, three-dimensional, porous polymeric scaffolds, as obtained from the combined particulate and polymer leaching techniques. Microscopic analysis confirmed the high interconnectivity of the pores and relatively uniform pore size of 378-435 μm. The PCL scaffolds were further characterized for their density and pore characteristics, water absorption and flow behaviors, and mechanical properties and the potential for their use as bone scaffolding materials was evaluated in vitro using mouse calvaria-derived preosteoblastic cells (MC3T3-E1). Evidently, the use of PEG as the secondary porogen not only improved the interconnectivity of the pore structures but also resulted in the PCL scaffolds that exhibited much better support for the proliferation and differentiation of the cultured bone cells. PMID:24132871

  7. Chondrogenic Regeneration Using Bone Marrow Clots and a Porous Polycaprolactone-Hydroxyapatite Scaffold by Three-Dimensional Printing

    PubMed Central

    Yao, Qingqiang; Wei, Bo; Liu, Nancy; Li, Chenshuang; Guo, Yang; Shamie, Arya Nick; Chen, James; Tang, Cheng; Jin, Chengzhe; Xu, Yan

    2015-01-01

    Scaffolds play an important role in directing three-dimensional (3D) cartilage regeneration. Our recent study reported the potential advantages of bone marrow clots (MC) in promoting extracellular matrix (ECM) scaffold chondrogenic regeneration. The aim of this study is to build a new scaffold for MC, with improved characteristics in mechanics, shaping, and biodegradability, compared to our previous study. To address this issue, this study prepared a 3D porous polycaprolactone (PCL)-hydroxyapatite (HA) scaffold combined with MC (Group A), while the control group (Group B) utilized a bone marrow stem cell seeded PCL-HA scaffold. The results of in vitro cultures and in vivo implantation demonstrated that although an initial obstruction of nutrient exchange caused by large amounts of fibrin and erythrocytes led to a decrease in the ratio of live cells in Group A, these scaffolds also showed significant improvements in cell adhesion, proliferation, and chondrogenic differentiation with porous recanalization in the later culture, compared to Group B. After 4 weeks of in vivo implantation, Group A scaffolds have a superior performance in DNA content, Sox9 and RunX2 expression, cartilage lacuna-like cell and ECM accumulation, when compared to Group B. Furthermore, Group A scaffold size and mechanics were stable during in vitro and in vivo experiments, unlike the scaffolds in our previous study. Our results suggest that the combination with MC proved to be a highly efficient, reliable, and simple new method that improves the biological performance of 3D PCL-HA scaffold. The MC-PCL-HA scaffold is a candidate for future cartilage regeneration studies. PMID:25530453

  8. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing.

    PubMed

    Yao, Qingqiang; Wei, Bo; Liu, Nancy; Li, Chenshuang; Guo, Yang; Shamie, Arya Nick; Chen, James; Tang, Cheng; Jin, Chengzhe; Xu, Yan; Bian, Xiuwu; Zhang, Xinli; Wang, Liming

    2015-04-01

    Scaffolds play an important role in directing three-dimensional (3D) cartilage regeneration. Our recent study reported the potential advantages of bone marrow clots (MC) in promoting extracellular matrix (ECM) scaffold chondrogenic regeneration. The aim of this study is to build a new scaffold for MC, with improved characteristics in mechanics, shaping, and biodegradability, compared to our previous study. To address this issue, this study prepared a 3D porous polycaprolactone (PCL)-hydroxyapatite (HA) scaffold combined with MC (Group A), while the control group (Group B) utilized a bone marrow stem cell seeded PCL-HA scaffold. The results of in vitro cultures and in vivo implantation demonstrated that although an initial obstruction of nutrient exchange caused by large amounts of fibrin and erythrocytes led to a decrease in the ratio of live cells in Group A, these scaffolds also showed significant improvements in cell adhesion, proliferation, and chondrogenic differentiation with porous recanalization in the later culture, compared to Group B. After 4 weeks of in vivo implantation, Group A scaffolds have a superior performance in DNA content, Sox9 and RunX2 expression, cartilage lacuna-like cell and ECM accumulation, when compared to Group B. Furthermore, Group A scaffold size and mechanics were stable during in vitro and in vivo experiments, unlike the scaffolds in our previous study. Our results suggest that the combination with MC proved to be a highly efficient, reliable, and simple new method that improves the biological performance of 3D PCL-HA scaffold. The MC-PCL-HA scaffold is a candidate for future cartilage regeneration studies. PMID:25530453

  9. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite.

    PubMed

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Tayebi, Lobat

    2015-04-01

    A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds. PMID:25686970

  10. Composite tissue engineering on polycaprolactone nanofiber scaffolds.

    PubMed

    Reed, Courtney R; Han, Li; Andrady, Anthony; Caballero, Montserrat; Jack, Megan C; Collins, James B; Saba, Salim C; Loboa, Elizabeth G; Cairns, Bruce A; van Aalst, John A

    2009-05-01

    Tissue engineering has largely focused on single tissue-type reconstruction (such as bone); however, the basic unit of healing in any clinically relevant scenario is a compound tissue type (such as bone, periosteum, and skin). Nanofibers are submicron fibrils that mimic the extracellular matrix, promoting cellular adhesion, proliferation, and migration. Stem cell manipulation on nanofiber scaffolds holds significant promise for future tissue engineering. This work represents our initial efforts to create the building blocks for composite tissue reflecting the basic unit of healing. Polycaprolactone (PCL) nanofibers were electrospun using standard techniques. Human foreskin fibroblasts, murine keratinocytes, and periosteal cells (4-mm punch biopsy) harvested from children undergoing palate repair were grown in appropriate media on PCL nanofibers. Human fat-derived mesenchymal stem cells were osteoinduced on PCL nanofibers. Cell growth was assessed with fluorescent viability staining; cocultured cells were differentiated using antibodies to fibroblast- and keratinocyte-specific surface markers. Osteoinduction was assessed with Alizarin red S. PCL nanofiber scaffolds supported robust growth of fibroblasts, keratinocytes, and periosteal cells. Cocultured periosteal cells (with fibroblasts) and keratinocytes showed improved longevity of the keratinocytes, though growth of these cell types was randomly distributed throughout the scaffold. Robust osteoinduction was noted on PCL nanofibers. Composite tissue engineering using PCL nanofiber scaffolds is possible, though the major obstacles to the trilaminar construct are maintaining an appropriate interface between the tissue types and neovascularization of the composite structure. PMID:19387150

  11. Biofunctionalization of polycaprolactone scaffolds with RGD peptides for the better cells integration

    NASA Astrophysics Data System (ADS)

    Matveeva, V. G.; Seifalian, A. M.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-08-01

    Here we tested in vitro electrospun polycaprolactone (PCL) scaffolds carbodiimide linkage with RGD peptides and their unconjugated counterparts. The scaffolds possessed highly porous structure and were formed by randomly distributed fibers. Orange II staining and ninhydrin test confirmed successful amination of the PCL. For the assessment of cell adhesion, we colonized scaffolds with primary human fibroblasts and counted the number of alive and dead cells. After 6 days of incubation, the number of fibroblasts on the scaffolds modified by RGD peptides significantly exceeded the number on unmodified scaffolds; however, the distribution of the cells on functionalized scaffolds was uneven, possibly due to uneven distribution of RGD peptides. The percentage of dead cells on the scaffolds with RGD peptides was significantly lower compared to their unmodified counterparts. Therefore, conjugation of PCL scaffolds with RGD peptides improves their integration with cells. This can be used in regenerative medicine.

  12. Healing properties of surface-coated polycaprolactone-co-lactide scaffolds: a pilot study in sheep.

    PubMed

    Rentsch, Claudia; Schneiders, Wolfgang; Hess, Ricarda; Rentsch, Barbe; Bernhardt, Ricardo; Spekl, Kathrin; Schneider, Konrad; Scharnweber, Dieter; Biewener, Achim; Rammelt, Stefan

    2014-01-01

    The aim of this pilot study was to evaluate the bioactive, surface-coated polycaprolactone-co-lactide scaffolds as bone implants in a tibia critical size defect model. Polycaprolactone-co-lactide scaffolds were coated with collagen type I and chondroitin sulfate and 30 piled up polycaprolactone-co-lactide scaffolds were implanted into a 3 cm sheep tibia critical size defect for 3 or 12 months (n = 5 each). Bone healing was estimated by quantification of bone volume in the defects on computer tomography and microcomputer tomography scans, plain radiographs, biomechanical testing as well as by histological evaluations. New bone formation occurred at the proximal and distal ends of the tibia in both groups. The current pilot study revealed a mean new bone formation of 63% and 172% after 3 and 12 months, respectively. The bioactive, surface coated, highly porous three-dimensional polycaprolactone-co-lactide scaffold stack itself acted as a guide rail for new bone formation along and into the implant. These preliminary data are encouraging for future experiments with a larger group of animals. PMID:23413230

  13. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    NASA Astrophysics Data System (ADS)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  14. Preparation of bioactive porous HA/PCL composite scaffolds

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  15. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration.

    PubMed

    Li, Dawei; Wu, Tong; He, Nanfei; Wang, Jing; Chen, Weiming; He, Liping; Huang, Chen; Ei-Hamshary, Hany A; Al-Deyab, Salem S; Ke, Qinfei; Mo, Xiumei

    2014-09-01

    Electrospinning has been widely used in fabrication of tissue engineering scaffolds. Currently, most of the electrospun nanofibers performed like a conventional two-dimensional (2D) membrane, which hindered their further applications. Moreover, the low production rate of the traditional needle-electrospinning (NE) also limited the commercialization. In this article, disc-electrospinning (DE) was utilized to fabricate a three-dimensional (3D) scaffold consisting of porous macro/nanoscale fibers. The morphology of the porous structure was investigated by scanning electron microscopy images, which showed irregular pores of nanoscale spreading on the surface of DE polycaprolactone (PCL) fibers. Protein adsorption assessment illustrated the porous structure could significantly enhance proteins pickup, which was 55% higher than that of solid fiber scaffolds. Fibroblasts were cultured on the scaffold. The results demonstrated that DE fiber scaffold could enhance initial cell attachment. In the 7 days of culture, fibroblasts grew faster on DE fiber scaffold in comparison with solid fiber, solvent cast (SC) film and TCP. Fibroblasts on DE fibers showed a stretched shape and integrated with the porous surface tightly. Cells were also found to migrate into the DE scaffold up to 800μm. Results supported the use of DE PCL fibers as a 3D tissue engineering scaffold in soft tissue regeneration. PMID:24996758

  16. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

    PubMed

    Baylan, Nuray; Bhat, Samerna; Ditto, Maggie; Lawrence, Joseph G; Lecka-Czernik, Beata; Yildirim-Ayan, Eda

    2013-08-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  17. Hierarchical porous polycaprolactone microspheres generated via a simple pathway combining nanoprecipitation and hydrolysis.

    PubMed

    Fan, Hailong; Jin, Zhaoxia

    2015-10-21

    We demonstrated a one-pot, soap-free fabrication of porous polycaprolactone microspheres by combining nanoprecipitation and hydrolysis. The obtained porous polycaprolactone microspheres show great advantages for application in drug delivery. PMID:26324843

  18. Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate.

    PubMed

    Sharifi, Shahriar; Shafieyan, Yousef; Mirzadeh, Hamid; Bagheri-Khoulenjani, Shadab; Rabiee, Sayed Mahmood; Imani, Mohammad; Atai, Mohammad; Shokrgozar, Mohammad Ali; Hatampoor, Ali

    2011-08-01

    In this work, two unsaturated derivatives of polycaprolactone (PCL), polycaprolactone fumarate (PCLF), and polycaprolactone itaconate (PCLI), have been synthesized and used as an infiltrating polymer to improve the mechanical properties of brittle hydroxyapatite (HA) scaffolds. PCLF and PCLI were first synthesized through polyesterification of the low molecular weight PCL diols with fumaryl chloride and itaconyl chloride respectively, and then characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatography, and differential scanning calorimetry analysis. HA scaffolds were sintered using a foam replication technique, with porosity of about 60%. Polymer-HA composites were obtained by infiltrating the HA scaffolds with PCLF and PCLI solution (12.5 and 30 w/v in dichloromethane) followed by thermal crosslinking. The polymer infiltrated HA scaffolds were characterized by scanning electron microscopy, porosimetry, and gravimetrical analysis. The polyesterification reaction of PCL diols with fumarate chloride was more efficient than itaconyl chloride and dependent upon the molecular weight of the initial PCL precursor; the resultant PCLF demonstrated a degree of substitution of 1.2, 4.2, and 2.7 times higher than PCLIs. Polymer infiltration improved the compressive strength of the HA scaffolds, and based upon the type of macromer (PCLF or PCLI) and also their concentration in infiltrating solution (12.5 or 30 w/v %) compressive strength increased about 14-328%. In all studied samples, the reinforcement effect of PCLF infiltration was higher than PCLI. The macromers and their corresponding infiltrated HA scaffolds did not show any significant cytotoxicity toward human primary osteogenic sarcoma cell (G92 cell lines), in vitro. PMID:21626657

  19. Embroidered and surface coated polycaprolactone-co-lactide scaffolds

    PubMed Central

    Rentsch, Barbe; Bernhardt, Ricardo; Scharnweber, Dieter; Schneiders, Wolfgang; Rammelt, Stefan; Rentsch, Claudia

    2012-01-01

    Tissue engineering and regenerative techniques targeting bone include a broad range of strategies and approaches to repair, augment, replace or regenerate bone tissue. Investigations that are aimed at optimization of these strategies until clinical translation require control of systemic factors as well as modification of a broad range of key parameters. This article reviews a possible strategy using a tissue engineering approach and systematically describes a series of experiments evaluating the properties of an embroidered and surface coated polycaprolactone-co-lactide scaffold being considered as bone graft substitute for large bone defects. The scaffold design and fabrication, the scaffolds properties, as well as its surface modification and their influence in vitro are evaluated, followed by in vivo analysis of the scaffolds using orthotopic implantation models in small and large animals. PMID:23507867

  20. Electrospun polycaprolactone scaffolds under strain and their application in cartilage tissue engineering

    NASA Astrophysics Data System (ADS)

    Nam, Jin

    Electrospinning is a promising fabrication method for three dimensional tissue engineering scaffolds due to its ability to produce a nano-/micro-sized non-woven fibrous structure which resembles the natural extracellular matrix. We investigated the mechanical behavior of two different electrospun microstructures. Polycaprolactone (PCL) fibers with or without "point-bonding" exhibited different deformation behaviors having significant biomedical consequences. While fibers with point-bonded structure failed due to the generation of voids by the fracture of fiber interconnections under strain, fibers without point-bonds produced a 'bamboo' structure with fiber joining visible at higher levels of strain. In addition, gelatin and PCL were electrospun and the residual solvent contents were systematically investigated. A simple and effective means of reducing residual solvent content was developed. The interaction between these electrospun matrices and chondrocytic cells were compared to other topographies having the same chemistry. Electrospun polycaprolactone fibers supported better proliferation and extracellular matrix production than the corresponding semi-porous and dense surfaces and even, at some time points, glass surfaces. The intrinsic capability of electrospinning to produce high porosity appears to offset the relative hydrophobicity of polycaprolactone resulting in a more uniform cell seeding. Electrospun fibers induced a higher level of glycosaminoglycans (GAG) production by providing a 'dynamic scaffold' in which chondrocytes are able to maintain a morphology associated with the appropriate phenotype. Finally, based on this study, a method producing macro-pores within an electrospun scaffold was developed. With this method, not only can cellular infiltration into a thick electrospun scaffold be facilitated, but scaffolds having designed, anisotropic structures can be produced that better approximate the final tissue.

  1. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering.

    PubMed

    Reddy, Chaganti Srinivasa; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Zussman, Eyal

    2014-10-01

    Polycaprolactone (PCL), a synthetic biocompatible and biodegradable polymer generally used as a scaffold material for tissue engineering applications. The high stiffness and hydrophobicity of the PCL fiber mesh does not provide significant cell attachment and proliferation in cardiac tissue engineering. Towards this goal, the study focused on a compound of PCL and oligomer hydrogel [Bisphenol A ethoxylated dimethacrylate (BPAEDMA)] processed into electrospun nanofibrous scaffolds. The composition, morphology and mechanical properties of the compound scaffolds, composed of varying ratios of PCL and hydrogel were characterized by scanning electron microscopy, infrared spectroscopy and dynamic mechanical analyzer. The elastic modulus of PCL/BPAEDMA nanofibrous scaffolds was shown to be varying the BPAEDMA weight fraction and was decreased by increasing the BPAEDMA weight fraction. Compound fiber meshes containing 75 wt % BPAEDMA oligomer hydrogel exhibited lower modulus (3.55 MPa) and contact angle of 25(o) . Rabbit cardiac cells cultured for 10 days on these PCL/BPAEDMA compound nanofibrous scaffolds remained viable and expressed cardiac troponin and alpha-actinin proteins for the normal functioning of myocardium. Cell adhesion and proliferations were significantly increased on compound fiber meshes containing 75 wt % BPAEDMA, when compared with other nanofibrous scaffolds. The results observed that the produced PCL/BPAEDMA compound nanofibrous scaffolds promote cell adhesion, proliferation and normal functioning of cardiac cells to clinically beneficial levels, relevant for cardiac tissue engineering. PMID:24288184

  2. Poly(caprolactone) based magnetic scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Bañobre-López, M.; Piñeiro-Redondo, Y.; De Santis, R.; Gloria, A.; Ambrosio, L.; Tampieri, A.; Dediu, V.; Rivas, J.

    2011-04-01

    Synthetic scaffolds for tissue engineering coupled to stem cells represent a promising approach aiming to promote the regeneration of large defects of damaged tissues or organs. Magnetic nanocomposites formed by a biodegradable poly(caprolactone) (PCL) matrix and superparamagnetic iron doped hydroxyapatite (FeHA) nanoparticles at different PCL/FeHA compositions have been successfully prototyped, layer on layer, through 3D bioplotting. Magnetic measurements, mechanical testing, and imaging were carried out to calibrate both model and technological processing in the magnetized scaffold prototyping. An amount of 10% w/w of magnetic FeHA nanoparticles represents a reinforcement for PCL matrix, however, a reduction of strain at failure is also observed. Energy loss (absorption) measurements under a radio-frequency applied magnetic field were performed in the resulting magnetic scaffolds and very promising heating properties were observed, making them very useful for potential biomedical applications.

  3. Melt-electrospun polycaprolactone-strontium substituted bioactive glass scaffolds for bone regeneration.

    PubMed

    Ren, Jiongyu; Blackwood, Keith A; Doustgani, Amir; Poh, Patrina P; Steck, Roland; Stevens, Molly M; Woodruff, Maria A

    2013-10-01

    Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt-electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be non-cytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes. PMID:24123950

  4. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration.

    PubMed

    Ren, Jiongyu; Blackwood, Keith A; Doustgani, Amir; Poh, Patrina P; Steck, Roland; Stevens, Molly M; Woodruff, Maria A

    2014-09-01

    Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium-substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here, we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be noncytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes. PMID:24133006

  5. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal.

    PubMed

    Salerno, Aurelio; Saurina, Javier; Domingo, Concepción

    2015-12-30

    The manufacture of porous polycaprolactone (PCL) scaffolds containing three different drugs, namely 5-fluorouracil, nicotinamide and triflusal, was investigated in this work with the aim of obtaining bioactive systems with controlled drug delivery capabilities. The scaffolds were prepared by means of a supercritical CO2 (scCO2) foaming technique by optimizing the drug loading process. This was achieved by dissolving the drugs in organic solvents miscible with scCO2 and by mixing these drug/solvent solutions with PCL powder. The as prepared mixtures were further compressed to eliminate air bubbles and finally processed by the scCO2 foaming technique. ScCO2 saturation and foaming conditions were optimized to create the porosity within the samples and to allow for the concomitant removal of the organic solvents. Physical and chemical properties of porous scaffolds, as well as drug content and delivery profiles, were studied by HPLC. The results of this study demonstrated that the composition of the starting PCL/drug/solvent mixtures affected polymer crystallization, scaffold morphology and pore structure features. Furthermore, it was found that drug loading efficiency depended on both initial solution composition and drug solubility in scCO2. Nevertheless, in the case of highly scCO2-soluble drugs, such as triflusal, loading efficiency was improved by adding a proper amount of free drug inside of the pressure vessel. The drug delivery study indicated that release profiles depended mainly upon scaffolds composition and pore structure features. PMID:26570986

  6. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering

    PubMed Central

    Kamath, Manjunath Srinivas; Ahmed, Shiek SSJ; Dhanasekaran, M; Santosh, S Winkins

    2014-01-01

    Biomaterials-based three-dimensional scaffolds are being extensively investigated in bone tissue engineering. A potential scaffold should be osteoconductive, osteoinductive, and osteogenic for enhanced bone formation. In this study, a three-dimensional porous polycapro-lactone (PCL) scaffold was engineered for prolonged release of resveratrol. Resveratrol-loaded albumin nanoparticles (RNP) were synthesized and entrapped into a PCL scaffold to form PCL-RNP by a solvent casting and leaching method. An X-ray diffraction study of RNP and PCL-RNP showed that resveratrol underwent amorphization, which is highly desired in drug delivery. Furthermore, Fourier transform infrared spectroscopy indicates that resveratrol was not chemically modified during the entrapment process. Release of resveratrol from PCL-RNP was sustained, with a cumulative release of 64% at the end of day 12. The scaffold was evaluated for its bone-forming potential in vitro using human bone marrow-derived mesenchymal stem cells for 16 days. Alkaline phosphatase activity assayed on days 8 and 12 showed a significant increase in activity (1.6-fold and 1.4-fold, respectively) induced by PCL-RNP compared with the PCL scaffold (the positive control). Moreover, von Kossa staining for calcium deposits on day 16 showed increased mineralization in PCL-RNP. These results suggest PCL-RNP significantly improves mineralization due to its controlled and prolonged release of resveratrol, thereby increasing the therapeutic potential in bone tissue engineering. PMID:24399875

  7. Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: a study in vivo.

    PubMed

    Lebourg, M; Martínez-Díaz, S; García-Giralt, N; Torres-Claramunt, R; Gómez-Tejedor, J A; Ribelles, J L Gómez; Vila-Canet, G; Monllau, J C

    2014-05-01

    Polycaprolactone scaffolds modified with cross-linked hyaluronic acid were prepared in order to establish whether a more hydrophilic and biomimetic microenvironment benefits the progenitor cells arriving from bone marrow in a cell-free tissue-engineering approach. The polycaprolactone and polycaprolactone/hyaluronic acid scaffolds were characterized in terms of morphology and water absorption capacity. The polycaprolactone and polycaprolactone/hyaluronic acid samples were implanted in a chondral defect in rabbits; bleeding of the subchondral bone was provoked to generate a spontaneous healing response. Repair at 1, 4, 12, and 24 weeks was assessed macroscopically using the International Cartilage Repair Society score and the Oswestry Arthroscopy Score and microscopically using immunohistological staining for collagen type I and type II, and for Ki-67. The presence of hyaluronic acid improves scaffold performance, which supports a good repair response without biomaterial pre-seeding. PMID:24108064

  8. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

    PubMed Central

    Poh, Patrina S.P.; Hutmacher, Dietmar W.; Holzapfel, Boris M.; Solanki, Anu K.; Woodruff, Maria A.

    2016-01-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  9. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

    PubMed

    Poh, Patrina S P; Hutmacher, Dietmar W; Holzapfel, Boris M; Solanki, Anu K; Woodruff, Maria A

    2016-06-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  10. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.

    PubMed

    Hoque, Md Enamul; San, Wong Yoke; Wei, Feng; Li, Suming; Huang, Ming-Hsi; Vert, Michel; Hutmacher, Dietmar W

    2009-10-01

    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study. PMID:19331580

  11. Use of polycaprolactone (PCL) as scaffolds for the regeneration of nerve tissue.

    PubMed

    Barbarisi, Manlio; Marino, Gerardo; Armenia, Emilia; Vincenzo, Quagliariello; Rosso, Francesco; Porcelli, Marina; Barbarisi, Alfonso

    2015-05-01

    Adipose tissue is an easily accessible source of stem cells for use in tissue regenerative medicine. In the literature, different methods have been used to stimulate acquisition of neuronal characteristics by adipose-derived stem cells (ADSC). Herein we study the growth and neuronal differentiation potential of ADSC seeded onto a porous polycaprolactone (PCL) scaffold. The objective of this study is to demonstrate that PCL can be used as a scaffold to support reconstruction of new nervous tissue using adipose stem cells. We have previously shown that undifferentiated ADSC adhere and grow on PCL. Herein we show that, after culture on PCL in neuronal differentiation medium, ADSC expressed molecular markers characteristic of neuronal cells (β-tubulin-III, Neuron-Specific Enolase (NSE), Nestin) and secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF). This study suggests that PCL can be used as a scaffold to generate nervous tissue in vitro. PLC has excellent mechanical properties and a slow degradation rate. Moreover, on the basis of our results, we propose that PCL could be used for to make in vitro, scaffold coated with neuronal cells derived from Adipose stem cells (ADSC). Neuronal cells-coated PCL could find several applications to replace damaged area of ​​the body; for example, a possible use could be the generation of nerves. PMID:25202882

  12. The significance of grafting collagen on polycaprolactone composite scaffolds: processing-structure-functional property relationship.

    PubMed

    Kiran, S; Nune, K C; Misra, R D K

    2015-09-01

    The study concerns processing-structure-functional property relationship in organic-inorganic hybrid scaffolds based on grafted collagen for bone tissue engineering. Biodegradable polyester, polycaprolactone (PCL) and nanohydroxyapatite were used to fabricate three-dimensional porous scaffolds by adopting a combination of solvent casting, particulate leaching, and polymer leaching approaches. The PCL scaffold was subsequently surface modified by chemical bonding of 1,6-hexanediamine to the ester groups of PCL to introduce free NH2 groups. The introduction of NH2 groups as active sites enabled immobilization of biocompatible macromolecule, collagen, on the aminolyzed PCL via a cross-linking agent, glutaraldehyde. The osteoblasts' functions, notably cell adhesion, proliferation, and mineralization, were favorably modulated because of the chemical interaction between Arg-Gly-Asp domains in collagen molecule and integrin receptor in the cell membrane. The study underscores the significance of grafting collagen on PCL-nHA scaffold in modulating cellular activity and biological functions expanding its current use in soft tissue engineering to hard tissue regeneration. PMID:25691223

  13. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications

    PubMed Central

    Domingos, Marco; Dinucci, Dinuccio; Cometa, Stefania; Alderighi, Michele; Bártolo, Paulo Jorge; Chiellini, Federica

    2009-01-01

    The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(ε-caprolactone) was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material. PMID:20126577

  14. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications.

    PubMed

    Domingos, Marco; Dinucci, Dinuccio; Cometa, Stefania; Alderighi, Michele; Bártolo, Paulo Jorge; Chiellini, Federica

    2009-01-01

    The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(epsilon-caprolactone) was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material. PMID:20126577

  15. Reinforcing bioceramic scaffolds with in situ synthesized ε-polycaprolactone coatings.

    PubMed

    Martínez-Vázquez, Francisco J; Miranda, Pedro; Guiberteau, Fernando; Pajares, Antonia

    2013-12-01

    In situ ring-opening polymerization of ε-caprolactone (ε-CL) was performed to coat β-tricalcium phosphate (β-TCP) scaffolds fabricated by robocasting in order to enhance their mechanical performance while preserving the predesigned macropore architecture. Concentrated colloidal inks prepared from β-TCP commercial powders were used to fabricate porous structures consisting of a three-dimensional mesh of interpenetrating rods. Then, ε-CL was in situ polymerized within the ceramic structure using a lipase as catalyst and toluene as solvent, to obtain a highly homogeneous coating and full impregnation of in-rod microporosity. The strength and toughness of scaffolds coated by ε-polycaprolactone (ε-PCL) were significantly increased (twofold and fivefold increase, respectively) over those of the bare structures. Enhancement of both properties is associated to the healing of preexisting microdefects in the bioceramic rods. These enhancements are compared to results from previous work on fully impregnated structures. The implications of the results for the optimization of the mechanical and biological performance of scaffolds for bone tissue engineering applications are discussed. PMID:23629876

  16. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    PubMed

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. PMID:27612726

  17. Modeling of porous scaffold deformation induced by medium perfusion.

    PubMed

    Podichetty, Jagdeep T; Madihally, Sundararajan V

    2014-05-01

    In this study, we tested the possibility of calculating permeability of porous scaffolds utilized in soft tissue engineering using pore size and shape. We validated the results using experimental measured pressure drop and simulations with the inclusion of structural deformation. We prepared Polycaprolactone (PCL) and Chitosan-Gelatin (CG) scaffolds by salt leaching and freeze drying technique, respectively. Micrographs were assessed for pore characteristics and mechanical properties. Porosity for both scaffolds was nearly same but the permeability varied 10-fold. Elastic moduli were 600 and 9 kPa for PCL and CG scaffolds, respectively, while Poisson's ratio was 0.3 for PCL scaffolds and ∼1.0 for CG scaffolds. A flow-through bioreactor accommodating a 10 cm diameter and 0.2 cm thick scaffold was used to determine the pressure-drop at various flow rates. Additionally, computational fluid dynamic (CFD) simulations were performed by coupling fluid flow, described by Brinkman equation, with structural mechanics using a dynamic mesh. The experimentally obtained pressure drop matched the simulation results of PCL scaffolds. Simulations were extended to a broad range of permeabilities (10(-10) m(2) to 10(-14) m(2) ), elastic moduli (10-100,000 kPa) and Poisson's ratio (0.1-0.49). The results showed significant deviation in pressure drop due to scaffold deformation compared to rigid scaffold at permeabilities near healthy tissues. Also, considering the scaffold as a nonrigid structure altered the shear stress profile. In summary, scaffold permeability can be calculated using scaffold pore characteristics and deformation could be predicted using CFD simulation. These relationships could potentially be used in monitoring tissue regeneration noninvasively via pressure drop. PMID:24259467

  18. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing.

    PubMed

    Wang, Zhenbei; Qian, Yuna; Li, Linhao; Pan, Lianhong; Njunge, Lucy W; Dong, Lili; Yang, Li

    2016-01-01

    Wound healing scaffolds provide cells with structural integrity and can also deliver biological agents to establish a skin tissue-specific microenvironment to regulate cell functions and to accelerate the healing process. In this study, we fabricated biodegradable nanofibrous scaffolds with an emulsion electrospinning technique. The scaffolds were composed of polycaprolactone, hyaluronan and encapsulating epidermal growth factor. The morphology and core-sheath structure of the nanofibers were characterized by scanning electron microscopy and transmission electron microscopy. The scaffolds were also characterized for chemical composition and hydrophilicity with a Fourier-transform infrared analysis, energy dispersive spectroscopy and the water contact angle. An in vitro model protein bovine serum albumin and epidermal growth factor release study was conducted to evaluate the sustained release potential of the core-sheath structured nanofibers with and without the hyaluronan component. Additionally, an in vitro cultivation of human skin keratinocytes (HaCaT) and fibroblasts on polycaprolactone/hyaluronan and polycaprolactone/hyaluronan-epidermal growth factor scaffolds showed a significant synergistic effect of hyaluronan and epidermal growth factor on cell proliferation and infiltration. Furthermore, there was an up-regulation of the wound-healing-related genes collagen I, collagen III and TGF-β in polycaprolactone/hyaluronan/epidermal growth factor scaffolds compared with control groups. In the full-thickness wound model, the enhanced regeneration of fully functional skin was facilitated by epidermal regeneration in the polycaprolactone/hyaluronan/epidermal growth factor treatment group. Our findings suggest that bioactivity and hemostasis of the hyaluronan-based nanofibrous scaffolds have the capability to encapsulate and control the release of growth factors that can serve as skin tissue engineering scaffolds for wound healing. PMID:26012354

  19. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.

    PubMed

    Yao, Qingqing; Nooeaid, Patcharakamon; Detsch, Rainer; Roether, Judith A; Dong, Yanming; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

    2014-12-01

    Polymer-coated 45S5 Bioglass(®) (BG)/chitosan-polycaprolactone (BG/CS-PCL) bilayered composite scaffolds were prepared via foam replication and freeze-drying techniques for application in osteochondral tissue engineering. The CS-PCL coated and uncoated BG scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the coated scaffolds were significantly improved in comparison to uncoated scaffolds. The bioactivity and biodegradation behavior of scaffolds were studied in simulated body fluid (SBF) for up to 28 days. The interface between the BG scaffold and the polymer coating layer was observed by SEM and a suitable interpenetration of the polymer into the scaffold struts was found. The effects of coated and uncoated BG scaffolds on MG-63 osteoblast-like cells were evaluated by cell viability, adhesion and proliferation. PMID:24677705

  20. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications.

    PubMed

    Nair, Bindu P; Sindhu, Megha; Nair, Prabha D

    2016-07-01

    We report polycaprolactone-laponite composite scaffold for the controlled release of strontium ranelate (SRA), a drug for osteoporosis. Laponite-SRA complex with electrostatic interaction between the drug and laponite was obtained through an aqueous phase reaction. Structural evaluation verified complexation of the bulky SRA molecules with the negatively charged laponite tactoid surfaces, leading to extended ordering of the tactoids, leaving behind the interlayer spacing of the laponite unchanged. The laponite-SRA complex was solution blended with polycaprolactone to obtain composite scaffolds. The strategy was found improving the dispersibility of laponite in PCL due to partial organomodification imparted through interaction with the SRA. The composite scaffolds with varying laponite-SRA complex content of 3-12wt% were evaluated in vitro using human osteosarcoma cells. It was confirmed that an optimum composition of the scaffold with 3wt% laponite-SRA complex loading would be ideal for obtaining enhanced ALP activity, by maintaining cell viability. PMID:27037779

  1. Development of an indirect solid freeform fabrication process based on microstereolithography for 3D porous scaffolds

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Wook; Seol, Young-Joon; Cho, Dong-Woo

    2009-01-01

    Scaffold fabrication using solid freeform fabrication (SFF) technology is a hot topic in tissue engineering. Here, we present a new indirect SFF technology based on microstereolithography (MSTL), which has the highest resolution of all SFF methods, to construct a three-dimensional (3D) porous scaffold by combining SFF with molding technology. To realize this indirect method, we investigated and modified a water-soluble photopolymer. We used MSTL technology to fabricate a high-resolution 3D porous mold composed of the modified polymer. The mold can be removed using an appropriate solvent. We tested two materials, polycaprolactone and calcium sulfate hemihydrate, using the molding process, and developed a lost-mold shape forming process by dissolving the mold. This procedure demonstrated that the proposed method can yield scaffold pore sizes as small as 60-70 µm. In addition, cytotoxicity test results indicated that the proposed process is feasible for producing 3D porous scaffolds.

  2. A three-dimensional polycaprolactone scaffold combined with a drug delivery system consisting of electrospun nanofibers.

    PubMed

    Yoon, Hyeon; Kim, Geunhyung

    2011-02-01

    A new three-dimensional (3D) scaffold containing a functional drug delivery system (DDS) consisting of electrospun micro/nanofibers is proposed. In the DDS scaffold, a core-shell laminated, structured, electrospun mat of hydrophobic polycaprolactone (PCL) and hydrophilic poly(ethylene oxide) (PEO)/rhodamine-B fibers was embedded in the normal 3D PCL scaffold, which was fabricated by a melt-plotting system. Rhodamine release from the scaffold was controlled physically by the thickness change of the PCL layer, and initial burst in drug release was eliminated by an appropriate thickness of the PCL layer. This simple technique may be useful in fabricating DDS-functional scaffolds for the clinical areas not only of bone and skin regeneration, but also of other tissue regeneration areas, regardless of the degradation rate of the structural scaffold. PMID:20740676

  3. Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering.

    PubMed

    Won, Jong-Eun; Mateos-Timoneda, Miguel A; Castano, Oscar; Planell, Josep A; Seo, Seog-Jin; Lee, Eun-Jung; Han, Cheol-Min; Kim, Hae-Won

    2015-04-01

    Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration. PMID:25502922

  4. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair.

    PubMed

    Rai, Bina; Oest, Megan E; Dupont, Ken M; Ho, Kee H; Teoh, Swee H; Guldberg, Robert E

    2007-06-15

    Porous scaffold biomaterials may offer a clinical alternative to bone grafts; however, scaffolds alone are typically insufficient to heal large bone defects. Numerous studies have demonstrated that osteoinductive growth factor or gene delivery significantly improves bone repair. However, given the important role of vascularization during bone regeneration, it may also be beneficial to incorporate factors that promote vascular ingrowth into constructs. In this study, a strategy combining structural polycaprolactone-20% tricalcium phosphate (PCL-TCP) composite scaffolds with platelet-rich plasma (PRP) was tested. Following bilateral implantation of constructs into 8 mm rat nonunion femoral defects, 3D vascular and bone ingrowth were quantified at 3 and 12 weeks using contrast-enhanced microcomputed tomography (micro-CT) imaging. At week 3, PRP-treated femurs displayed 70.3% higher vascular volume fraction than control femurs. Interestingly, bone volume fraction (BVF) was significantly higher for the empty scaffold group at the early time point. At 12 weeks, BVF measurements between the two groups were statistically equivalent. However, a greater proportion of PRP-treated femurs (83%) achieved bone union as compared to empty scaffold controls (33%). Consistent with this observation, biomechanical evaluation of functional integration also revealed a significantly higher torsional stiffness observed for PRP-treated defects compared to empty scaffolds. Ultimate torque at failure was not improved, however, perhaps due to the slow resorption profile of the scaffold material. Histological evaluation illustrated infiltration of vascularized connective tissue and bone in both groups. Given that bone ingrowth into untreated defects in this model is minimal, PCL-TCP scaffolds were clearly able to promote bone ingrowth but failed to consistently bridge the defect. The addition of PRP to PCL-TCP scaffolds accelerated early vascular ingrowth and improved longer-term functional

  5. Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers.

    PubMed

    Yuan, Han; Shi, Hongfei; Qiu, Xushen; Chen, Yixin

    2016-01-01

    The mechanical strength, biocompatibility, and sterilizability of silk fibroin allow it to be a possible candidate as a natural bone regenerate material. To improve mechanical character and reinforce the cell movement induction, silk fibroin (SF)-polycaprolactone (PCL) alloy was fabricated by electrospinning techniques with a rotating collector to form aligned fibrous scaffolds and random-oriented scaffolds. The scanning electron microscope image of the scaffold and the mechanical properties of the scaffold were investigated by tensile mechanical tests, which were compared to random-oriented scaffolds. Furthermore, mesenchymal stem cells were planted on these scaffolds to investigate the biocompatibility, elongation, and cell movement in situ. Scanning electron microscopy shows that 91% fibers on the aligned fibroin scaffold were distributed between the dominant direction ±10°. With an ideal support for stem cell proliferation in vitro, the aligned fibrous scaffold induces cell elongation at a length of 236.46 ± 82 μm and distribution along the dominant fiber direction with a cell alignment angle at 6.57° ± 4.45°. Compared with random-oriented scaffolds made by artificial materials, aligned SF-PCL scaffolds could provide a moderate mesenchymal stem cell engraftment interface and speed up early stage cell movement toward the bone defect. PMID:26588014

  6. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.

    PubMed

    Wei, Jie; Chen, Fangping; Shin, Jung-Woog; Hong, Hua; Dai, Chenglong; Su, Jiancan; Liu, Changsheng

    2009-02-01

    A well-defined mesoporous structure of wollastonite with high specific surface area was synthesized using surfactant P123 (triblock copolymer) as template, and its composite scaffolds with poly(epsilon-caprolactone) (PCL) were fabricated by a simple method of solvent casting-particulate leaching. The measurements of the water contact angles suggest that the incorporation of either mesoporous wollastonite (m-WS) or conventional wollastonite (c-WS) into PCL could improve the hydrophilicity of the composites, and the former was more effective than the later. The bioactivity of the composite scaffold was evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the m-WS/PCL composite (m-WPC) scaffolds can induce a dense and continuous layer of apatite after soaking for 1 week, as compared with the scattered and discrete apatite particles on the c-WS/PCL composite (c-WPC) scaffolds. The m-WPC had a significantly enhanced apatite-forming bioactivity compared with the c-WPC owing to the high specific surface area and pore volume of m-WS. In addition, attachment and proliferation of MG(63) cells on m-WPC scaffolds were significantly higher than that of c-WPC, revealing that m-WPC scaffolds had excellent biocompatibility. Such improved properties of m-WPC should be helpful for developing new biomaterials and may have potential use in hard tissue repair. PMID:19019424

  7. Cell Proliferation on Macro/Nano Surface Structure and Collagen Immobilization of 3D Polycaprolactone Scaffolds.

    PubMed

    Park, Young-Ouk; Myung, Sung-Woon; Kook, Min-Suk; Jung, Sang-Chul; Kim, Byung-Hoon

    2016-02-01

    In this study, 3D polycaprolactone (PCL) scaffolds were fabricated by 3D printing technique. The macro/nano morphology of, 3D PCL scaffolds surface was etched with oxygen plasma. Acrylic acid (AA) plasma-polymerization was performed to functionalize the macro/nano surface with carboxyl groups and then collagen was immobilized with plasma-polymerized 3D PCL scaffolds. After O2 plasma and AA plasma-polymerization, contact angles were decreased. The FE-SEM and AFM results showed that O2 plasma is increased the surface roughness. The MTT assay results showed that proliferation of the M3CT3-E1 cells increased on the oxygen plasma treated and collagen immobilized 3D PCL scaffolds. PMID:27433597

  8. Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration.

    PubMed

    Lee, Hyeongjin; Yeo, Myunggu; Ahn, SeungHyun; Kang, Dong-Oan; Jang, Chul Ho; Lee, Haengnam; Park, Gil-Moon; Kim, Geun Hyung

    2011-05-01

    Biomedical scaffolds used in bone tissue engineering should have various properties including appropriate bioactivity, mechanical strength, and morphologically optimized pore structures. Collagen has been well known as a good biomaterial for various types of tissue regeneration, but its usage has been limited due to its low mechanical property and rapid degradation. In this work, a new hybrid scaffold consisting of polycaprolactone (PCL) and collagen is proposed for bone tissue regeneration. The PCL enhances the mechanical properties of the hybrid scaffold and controls the pore structure. Layered collagen nanofibers were used to enhance the initial cell attachment and proliferation. The results showed that the hybrid scaffold yielded better mechanical properties of pure PCL scaffold as well as enhanced biological activity than the pure PCL scaffold did. The effect of pore size on bone regeneration was investigated using two hybrid scaffolds with pore sizes of 200 ± 20 and 300 ± 27 μm. After post-seeding for 7 days, the cell proliferation with pore size, 200 ± 20 μm, was greater than that with pore size, 300 ± 27 μm, due to the high surface area of the scaffold. PMID:21384546

  9. In-vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing.

    PubMed

    Meseguer-Olmo, Luis; Vicente-Ortega, Vicente; Alcaraz-Baños, Miguel; Calvo-Guirado, José Luis; Vallet-Regí, María; Arcos, Daniel; Baeza, Alejandro

    2013-07-01

    Scaffolds made of polycaprolactone and nanocrystalline silicon-substituted hydroxyapatite have been fabricated by 3D printing rapid prototyping technique. To asses that the scaffolds fulfill the requirements to be considered for bone grafting applications, they were implanted in New Zealand rabbits. Histological and radiological studies have demonstrated that the scaffolds implanted in bone exhibited an excellent osteointegration without the interposition of fibrous tissue between bone and implants and without immune response after 4 months of implantation. In addition, we have evaluated the possibility of improving the scaffolds efficiency by incorporating demineralized bone matrix during the preparation by 3D printing. When demineralized bone matrix (DBM) is incorporated, the efficacy of the scaffolds is enhanced, as new bone formation occurs not only in the peripheral portions of the scaffolds but also within its pores after 4 months of implantation. This enhanced performance can be explained in terms of the osteoinductive properties of the DBM in the scaffolds, which have been assessed through the new bone tissue formation when the scaffolds are ectopically implanted. PMID:23255259

  10. Bioinspired Strong and Highly Porous Glass Scaffolds

    PubMed Central

    Saiz, Eduardo; Tomsia, Antoni P.

    2011-01-01

    The quest for more efficient energy-related technologies is driving the development of porous and high-performance structural materials with exceptional mechanical strength. Natural materials achieve their strength through complex hierarchical designs and anisotropic structures that are extremely difficult to replicate synthetically. We emulate nature’s design by direct-ink-write assembling of glass scaffolds with a periodic pattern, and controlled sintering of the filaments into anisotropic constructs similar to biological materials. The final product is a porous glass scaffold with a compressive strength (136 MPa) comparable to that of cortical bone and a porosity (60%) comparable to that of trabecular bone. The strength of this porous glass scaffold is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities reported elsewhere. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for a broad array of applications, including tissue engineering, filtration, lightweight composites, and catalyst support. PMID:21544222

  11. Use of ultra-high molecular weight polycaprolactone scaffolds for ACL reconstruction.

    PubMed

    Leong, Natalie L; Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Jiang, Jie; Wu, Ben M; Petrigliano, Frank A; McAllister, David R

    2016-05-01

    Previously, we reported on the implantation of electrospun polycaprolactone (PCL) grafts for use in ACL tissue engineering in a small animal model. In the present study, we hypothesized that grafts fabricated from ultra-high molecular weight polycaprolactone (UHMWPCL) would have similarly favorable biologic properties but superior mechanical properties as compared to grafts fabricated from PCL. Two forms of polycaprolactone were obtained (UHMWPCL, MW = 500 kD, and PCL, MW = 80 kD) and electrospun into scaffolds that were used to perform ACL reconstruction in 7-8 week old male Lewis rats. The following groups were examined: UHMWPCL, PCL, flexor digitorum longus (FDL) allograft, native ACL, as well as sham surgery in which the ACL was transsected. At 16 weeks post-operatively, biomechanical testing, histology, and immunohistochemistry (IHC) were performed. Analysis of cellularity indicated that there was no significant difference among the UHMWPCL, PCL, and FDL allograft groups. Quantification of birefringence from picrosirius red staining demonstrated significantly more aligned collagen fibers in the allograft than the PCL group, but no difference between the UHMWPCL and allograft groups. The peak load to failure of the UHMWPCL grafts was significantly higher than PCL, and not significantly different from FDL allograft. This in vivo study establishes the superiority of the higher molecular weight version of polycaprolactone over PCL as a scaffold material for ACL reconstruction. By 16 weeks after implantation, the UHMWPCL grafts were not significantly different from the FDL allografts in terms of cellularity, peak load to failure, stiffness, and collagen fiber alignment. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:828-835, 2016. PMID:26497133

  12. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering.

    PubMed

    Mondrinos, Mark J; Dembzynski, Robert; Lu, Lin; Byrapogu, Venkata K C; Wootton, David M; Lelkes, Peter I; Zhou, Jack

    2006-09-01

    Drop on demand printing (DDP) is a solid freeform fabrication (SFF) technique capable of generating microscale physical features required for tissue engineering scaffolds. Here, we report results toward the development of a reproducible manufacturing process for tissue engineering scaffolds based on injectable porogens fabricated by DDP. Thermoplastic porogens were designed using Pro/Engineer and fabricated with a commercially available DDP machine. Scaffolds composed of either pure polycaprolactone (PCL) or homogeneous composites of PCL and calcium phosphate (CaP, 10% or 20% w/w) were subsequently fabricated by injection molding of molten polymer-ceramic composites, followed by porogen dissolution with ethanol. Scaffold pore sizes, as small as 200 microm, were attainable using the indirect (porogen-based) method. Scaffold structure and porosity were analyzed by scanning electron microscopy (SEM) and microcomputed tomography, respectively. We characterized the compressive strength of 90:10 and 80:20 PCL-CaP composite materials (19.5+/-1.4 and 24.8+/-1.3 Mpa, respectively) according to ASTM standards, as well as pure PCL scaffolds (2.77+/-0.26 MPa) fabricated using our process. Human embryonic palatal mesenchymal (HEPM) cells attached and proliferated on all scaffolds, as evidenced by fluorescent nuclear staining with Hoechst 33258 and the Alamar Blue assay, with increased proliferation observed on 80:20 PCL-CaP scaffolds. SEM revealed multilayer assembly of HEPM cells on 80:20 PCL-CaP composite, but not pure PCL, scaffolds. In summary, we have developed an SFF-based injection molding process for the fabrication of PCL and PCL-CaP scaffolds that display in vitro cytocompatibility and suitable mechanical properties for hard tissue repair. PMID:16678255

  13. An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage.

    PubMed

    Vikingsson, L; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-05-01

    The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress-strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold's pores. PMID:25814177

  14. Bioactive fish collagen/polycaprolactone composite nanofibrous scaffolds fabricated by electrospinning for 3D cell culture.

    PubMed

    Choi, Da Jeong; Choi, Seung Mi; Kang, Hae Yeong; Min, Hye-Jin; Lee, Rira; Ikram, Muhammad; Subhan, Fazli; Jin, Song Wan; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik

    2015-07-10

    One of the most challenging objectives of 3D cell culture is the development of scaffolding materials with outstanding biocompatibility and favorable mechanical strength. In this study, we fabricated a novel nanofibrous scaffold composed of fish collagen (FC) and polycaprolactone (PCL) blends by using the electrospinning method. Nanofibrous scaffolds were characterized using a scanning electron microscope (SEM), and it was revealed that the diameter of nanofibers decreased as FC content was increased in the FC/PCL composite nanofibers. The cytocompatibility of the FC/PCL scaffolds was evaluated by SEM, WST-1 assay, confocal microscopy, western blot, and RT-PCR. It was found that the scaffolds not only facilitated the adhesion, spreading, protrusions, and proliferation of thymic epithelial cells (TECs), but also stimulated the expression of genes and proteins involved in cell adhesion and T-cell development. Thus, these results suggest that the FC/PCL composite nanofibrous scaffolds will be a useful model of 3D cell culture for TECs and may have wide applicability in the future for engineering tissues or organs. PMID:25617682

  15. Effect of inhomogeneity of the electrospun fibrous scaffolds of gelatin/polycaprolactone hybrid on cell proliferation.

    PubMed

    Feng, Bei; Duan, Huichuan; Fu, Wei; Cao, Yilin; Jie Zhang, Wen; Zhang, Yanzhong

    2015-02-01

    In this article, gelatin (GT) and polycaprolactone (PCL) blended with a weight ratio of 50:50 were dissolved in the trifluoroethanol (TFE) or the acetic acid-doped TFE solvent system (0.2% relative to TFE) to prepare fibrous scaffolds of GT/PCL with different compositional and morphological homogeneities (denoted as the group 1 and the group 2 scaffolds) by electrospinning. The morphology and composition of the two groups of fibrous scaffolds were examined by scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. Then, using green fluorescence protein-labeled mouse fibroblasts and HaCaT cells (a human keratinocyte cell line) as the model cells, cell adhesion, morphology, and proliferation were assessed by laser scanning confocal microscopy, scanning electron microscopy, and cell counting kit-8 assay, respectively. The results showed that the morphological and compositional inhomogeneity of the group 1 scaffolds had a remarkable influence on cell adhesion and proliferation. In contrast, there was no significant difference among the group 2 scaffolds because of their good consistency in fiber morphology and composition. Phase separation resultant GT content variance in the group 1 scaffolds is suggested as one of the major causes. This study highlighted the importance of producing morphologically uniform and compositionally homogeneous composite nanofibers while electrospinning natural and synthetic polymer blends. PMID:24677612

  16. Nano/macro porous bioactive glass scaffold

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  17. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. PMID:25766036

  18. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds.

    PubMed

    Vatankhah, Elham; Semnani, Dariush; Prabhakaran, Molamma P; Tadayon, Mahdi; Razavi, Shahnaz; Ramakrishna, Seeram

    2014-02-01

    Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue. PMID:24075888

  19. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    NASA Astrophysics Data System (ADS)

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  20. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization.

    PubMed

    Rentsch, Barbe; Hofmann, Andre; Breier, Annette; Rentsch, Claudia; Scharnweber, Dieter

    2009-10-01

    The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2-1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute. PMID:19626441

  1. Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis

    PubMed Central

    2015-01-01

    The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca2+ ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca2+ release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague–Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation. PMID:24826838

  2. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro.

    PubMed

    Jensen, Jonas; Kraft, David Christian Evar; Lysdahl, Helle; Foldager, Casper Bindzus; Chen, Muwan; Kristiansen, Asger Albæk; Rölfing, Jan Hendrik Duedal; Bünger, Cody Eric

    2015-02-01

    In this study, we sought to assess the osteogenic potential of human dental pulp stem cells (DPSCs) on three different polycaprolactone (PCL) scaffolds. The backbone structure of the scaffolds was manufactured by fused deposition modeling (PCL scaffold). The composition and morphology was functionalized in two of the scaffolds. The first underwent thermal induced phase separation of PCL infused into the pores of the PCL scaffold. This procedure resulted in a highly variable micro- and nanostructured porous (NSP), interconnected, and isotropic tubular morphology (NSP-PCL scaffold). The second scaffold type was functionalized by dip-coating the PCL scaffold with a mixture of hyaluronic acid and β-TCP (HT-PCL scaffold). The scaffolds were cylindrical and measured 5 mm in height and 10 mm in diameter. They were seeded with 1×10(6) human DPSCs, a cell type known to express bone-related markers, differentiate into osteoblasts-like cells, and to produce a mineralized bone-like extracellular matrix. DPSCs were phenotypically characterized by flow cytometry for CD90(+), CD73(+), CD105(+), and CD14(-). DNA, ALP, and Ca(2+) assays and real-time quantitative polymerase chain reaction for genes involved in osteogenic differentiation were analyzed on day 1, 7, 14, and 21. Cell viability and distribution were assessed on day 1, 7, 14, and 21 by fluorescent-, scanning electron-, and confocal microscopy. The results revealed that the DPSCs expressed relevant gene expression consistent with osteogenic differentiation. The NSP-PCL and HT-PCL scaffolds promoted osteogenic differentiation and Ca(2+) deposition after 21 days of cultivation. Different gene expressions associated with mature osteoblasts were upregulated in these two scaffold types, suggesting that the methods in which the scaffolds promote osteogenic differentiation, depends on functionalization approaches. However, only the HT-PCL scaffold was also able to support cell proliferation and cell migration resulting in

  3. Functionalization of Polycaprolactone Scaffolds with Hyaluronic Acid and β-TCP Facilitates Migration and Osteogenic Differentiation of Human Dental Pulp Stem Cells In Vitro

    PubMed Central

    Kraft, David Christian Evar; Lysdahl, Helle; Foldager, Casper Bindzus; Chen, Muwan; Kristiansen, Asger Albæk; Rölfing, Jan Hendrik Duedal; Bünger, Cody Eric

    2015-01-01

    In this study, we sought to assess the osteogenic potential of human dental pulp stem cells (DPSCs) on three different polycaprolactone (PCL) scaffolds. The backbone structure of the scaffolds was manufactured by fused deposition modeling (PCL scaffold). The composition and morphology was functionalized in two of the scaffolds. The first underwent thermal induced phase separation of PCL infused into the pores of the PCL scaffold. This procedure resulted in a highly variable micro- and nanostructured porous (NSP), interconnected, and isotropic tubular morphology (NSP-PCL scaffold). The second scaffold type was functionalized by dip-coating the PCL scaffold with a mixture of hyaluronic acid and β-TCP (HT-PCL scaffold). The scaffolds were cylindrical and measured 5 mm in height and 10 mm in diameter. They were seeded with 1×106 human DPSCs, a cell type known to express bone-related markers, differentiate into osteoblasts-like cells, and to produce a mineralized bone-like extracellular matrix. DPSCs were phenotypically characterized by flow cytometry for CD90+, CD73+, CD105+, and CD14−. DNA, ALP, and Ca2+ assays and real-time quantitative polymerase chain reaction for genes involved in osteogenic differentiation were analyzed on day 1, 7, 14, and 21. Cell viability and distribution were assessed on day 1, 7, 14, and 21 by fluorescent-, scanning electron-, and confocal microscopy. The results revealed that the DPSCs expressed relevant gene expression consistent with osteogenic differentiation. The NSP-PCL and HT-PCL scaffolds promoted osteogenic differentiation and Ca2+ deposition after 21 days of cultivation. Different gene expressions associated with mature osteoblasts were upregulated in these two scaffold types, suggesting that the methods in which the scaffolds promote osteogenic differentiation, depends on functionalization approaches. However, only the HT-PCL scaffold was also able to support cell proliferation and cell migration resulting in even cell

  4. Porous scaffold architecture guides tissue formation.

    PubMed

    Cipitria, Amaia; Lange, Claudia; Schell, Hanna; Wagermaier, Wolfgang; Reichert, Johannes C; Hutmacher, Dietmar W; Fratzl, Peter; Duda, Georg N

    2012-06-01

    Critical-sized bone defect regeneration is a remaining clinical concern. Numerous scaffold-based strategies are currently being investigated to enable in vivo bone defect healing. However, a deeper understanding of how a scaffold influences the tissue formation process and how this compares to endogenous bone formation or to regular fracture healing is missing. It is hypothesized that the porous scaffold architecture can serve as a guiding substrate to enable the formation of a structured fibrous network as a prerequirement for later bone formation. An ovine, tibial, 30-mm critical-sized defect is used as a model system to better understand the effect of the scaffold architecture on cell organization, fibrous tissue, and mineralized tissue formation mechanisms in vivo. Tissue regeneration patterns within two geometrically distinct macroscopic regions of a specific scaffold design, the scaffold wall and the endosteal cavity, are compared with tissue formation in an empty defect (negative control) and with cortical bone (positive control). Histology, backscattered electron imaging, scanning small-angle X-ray scattering, and nanoindentation are used to assess the morphology of fibrous and mineralized tissue, to measure the average mineral particle thickness and the degree of alignment, and to map the local elastic indentation modulus. The scaffold proves to function as a guiding substrate to the tissue formation process. It enables the arrangement of a structured fibrous tissue across the entire defect, which acts as a secondary supporting network for cells. Mineralization can then initiate along the fibrous network, resulting in bone ingrowth into a critical-sized defect, although not in complete bridging of the defect. The fibrous network morphology, which in turn is guided by the scaffold architecture, influences the microstructure of the newly formed bone. These results allow a deeper understanding of the mode of mineral tissue formation and the way this is

  5. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering.

    PubMed

    Ganesh, Nitya; Jayakumar, Rangasamy; Koyakutty, Manzoor; Mony, Ullas; Nair, Shantikumar V

    2012-09-01

    Poly(caprolactone) (PCL) has been frequently considered for bone tissue engineering because of its excellent biocompatibility. A drawback, however, of PCL is its inadequate mechanical strength for bone tissue engineering and its inadequate bioactivity to promote bone tissue regeneration from mesenchymal stem cells. To correct this deficiency, this work investigates the addition of nanoparticles of silica (nSiO(2)) to the scaffold to take advantage of the known bioactivity of silica as an osteogenic material and also to improve the mechanical properties through nanoscale reinforcement of the PCL fibers. The nanocomposite scaffolds and the pristine PCL scaffolds were evaluated physicochemically, mechanically, and biologically in the presence of human mesenchymal stem cells (hMSCs). The results indicated that, when the nanoparticles of size approximately 10 nm (concentrations of 0.5% and 1% w/v) were embedded within, or attached to, the PCL nanofibers, there was a substantial increase in scaffold strength, protein adsorption, and osteogenic differentiation of hMSCs. These nSiO(2) nanoparticles, when directly added to the cells evidently pointed to ingestion of these particles by the cells followed by cell death. The polymer nanofibers appeared to protect the cells by preventing ingestion of the silica nanoparticles, while at the same time adequately exposing them on fiber surfaces for their desired bioactivity. PMID:22725098

  6. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.

    PubMed

    Ambre, Avinash H; Katti, Dinesh R; Katti, Kalpana S

    2015-06-01

    Nanoclay modified with unnatural amino acid was used to design a nanoclay-hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two-stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100-595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering. PMID:25331212

  7. Porous ceramic scaffolds with complex architectures

    SciTech Connect

    Saiz, Eduardo; Munch, Etienne; Franco, Jaime; Deville, Sylvain; Hunger, Phillip; Saiz, Eduardo; Tomsia, Antoni P.

    2008-03-15

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional (3-D) geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  8. Polycaprolactone foam functionalized with chitosan microparticles - a suitable scaffold for cartilage regeneration.

    PubMed

    Filová, E; Jakubcová, B; Danilová, I; KuŽelová Košťáková, E; Jarošíková, T; Chernyavskiy, O; Hejda, J; Handl, M; Beznoska, J; Nečas, A; Rosina, J; Amler, E

    2016-03-14

    For biodegradable porous scaffolds to have a potential application in cartilage regeneration, they should enable cell growth and differentiation and should have adequate mechanical properties. In this study, our aim was to prepare biocompatible scaffolds with improved biomechanical properties. To this end, we have developed foam scaffolds from poly-epsilon-caprolactone (PCL) with incorporated chitosan microparticles. The scaffolds were prepared by a salt leaching technique from either 10 or 15 wt% PCL solutions containing 0, 10 and 20 wt% chitosan microparticles, where the same amount and size of NaCl was used as a porogen in all the cases. PCL scaffolds without and with low amounts of chitosan (0 and 10 wt% chitosan) showed higher DNA content than scaffolds with high amounts of chitosan during a 22-day experiment. 10 wt% PCL with 10 and 20 wt% chitosan showed significantly increased viscoelastic properties compared to 15 wt% PCL scaffolds with 0 and 10 wt% chitosan. Thus, 10 wt% PCL scaffolds with 0 wt% and 10 wt% chitosan are potential scaffolds for cartilage regeneration. PMID:26596314

  9. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds.

    PubMed

    Roohani-Esfahani, S I; Dunstan, C R; Davies, B; Pearce, S; Williams, R; Zreiqat, H

    2012-11-01

    This is the first reported study to prepare highly porous baghdadite (Ca₃ZrSi₂O₉) scaffolds with and without surface modification and investigate their ability to repair critical-sized bone defects in a rabbit radius under normal load. The modification was carried out to improve the mechanical properties of the baghdadite scaffolds (particularly to address their brittleness) by coating their surfaces with a thin layer (∼400 nm) of polycaprolactone (PCL)/bioactive glass nanoparticles (nBGs). The β-tricalcium phosphate/hydroxyapatite (TCP/HA) scaffolds with and without modification were used as the control groups. All of the tested scaffolds had an open and interconnected porous structure with a porosity of ∼85% and average pore size of 500 μm. The scaffolds (six per scaffold type and size of 4 mm × 4 mm × 15 mm) were implanted (press-fit) into the rabbit radial segmental defects for 12 weeks. Micro-computed tomography and histological evaluations were used to determine bone ingrowth, bone quality, and implant integration after 12 weeks of healing. Extensive new bone formation with complete bridging of the radial defect was evident with the baghdadite scaffolds (modified/unmodified) at the periphery and in close proximity to the ceramics within the pores, in contrast to TCP/HA scaffolds (modified/unmodified), where bone tended to grow between the ulna adjacent to the implant edge. Although the modification of the baghdadite scaffolds significantly improved their mechanical properties, it did not show any significant effect on in vivo bone formation. Our findings suggest that baghdadite scaffolds with and without modification can serve as a potential material to repair critical sized bone defects. PMID:22842031

  10. [Preparation of porous ceramic macro-tubes scaffold].

    PubMed

    Zheng, Wei

    2011-05-01

    In this study, a porous hydroxyapatite/tricalcium phosphate (HA/TCP) macro-tubes scaffold was fabricated, so that the PU (Polyurethane) can be coated onto the scaffold in order to increase the compressive strength. PMID:21954576

  11. Functionalization of polycaprolactone/hydroxyapatite scaffolds with Usnea lethariiformis extract by using supercritical CO2.

    PubMed

    Fanovich, M A; Ivanovic, J; Zizovic, I; Misic, D; Jaeger, P

    2016-01-01

    Investigation of an integrated supercritical fluid extraction and supercritical solvent impregnation process for fabrication of microporous polycaprolactone-hydroxyapatite (PCL-HA) scaffolds with antibacterial activity is presented. The HA content and particle size as well as the operating conditions of the integrated process is optimized regarding the amount of impregnated antibacterial agent (Usnea lethariiformis extract) in the PCL-HA matrix, scaffold morphology and antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) strains. High pressure differential scanning calorimetry (HP-DSC) assay reveals that an increasing amount of HA results in decreasing melting temperature as well as crystallinity at an operating pressure of 17 MPa. The PCL-HA composites with micrometric sizes of the HA particles are convenient for being processed by the integrated process due to the simple preparation, a good interaction between the PCL matrix and filler and the advantageous impact on sorption. The scaffold obtained from PCL-HA with 20% of the HA shows the highest impregnation yield at 17 MPa and 35 °C (5.9%) and subsequently also the best bactericidal effect on the tested MRSA strains at an initial bacterial inoculum of 2 × 10(-4)CFU/mL. PMID:26478304

  12. Nanomechanical properties of electrospun composite scaffolds based on polycaprolactone and hydroxyapatite.

    PubMed

    Tyagi, Parul; Catledge, Shane A; Stanishevsky, Andrei; Thomas, Vinoy; Vohra, Y K

    2009-08-01

    Fibrous nanocomposite scaffolds were electrospun from dispersions of hydroxyapatite nanoparticles (nanoHA) in polycaprolactone (PCL) with varying nanoHA contents (from 0% to 50% by weight). Such scaffolds were produced to mimic the nano-features of the extracellular matrix (ECM) for natural bone tissue regeneration. NanoHA was found to be well dispersed in the PCL fibers up to the addition of 30 wt%, whereas beads and agglomeration of HA particles was observed above this nanoHA concentration. The structural and morphological characterizations were evaluated by scanning electron microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD). The average fiber diameter decreased with increased nanoHA concentration. The nanomechanical properties of the as-spun fibrous scaffolds as well as pressure-consolidated (pelletized) composites were evaluated by nanoindentation. Elastic modulus increased with increasing HA content, but was especially pronounced for 40-50% HA content where the indenter tip is more likely to probe agglomerated HA particles. PMID:19928159

  13. Mechanical Improvements to Reinforced Porous Silk Scaffolds

    PubMed Central

    Gil, Eun Seok; Kluge, Jonathan A.; Rockwood, Danielle N.; Rajkhowa, Rangam; Wang, Lijing; Wang, Xungai; Kaplan, David L

    2012-01-01

    Load bearing porous biodegradable scaffolds are required to engineer functional tissues such as bone. Mechanical improvements to porogen leached scaffolds prepared from silk proteins were systematically studied through the addition of silk particles in combination with silk solution concentration, exploiting interfacial compatibility between the two components. Solvent solutions of silk up to 32 w/v% were successfully prepared in hexafluoroisopropanaol (HFIP) for the study. The mechanical properties of the reinforced silk scaffolds correlated to the material density and matched by a power law relationship, independent of the ratio of silk particles to matrix. These results were similar to the relationships previously shown for cancellous bone. The mechanism behind the increased mechanical properties was a densification effect, and not the effect of including stiffer silk particles into the softer silk continuous matrix. A continuous interface between the silk matrix and the silk particles, as well as homogeneous distribution of the silk particles within the matrix were observed. Furthermore, we note that the roughness of the pore walls was controllable by varying the ratio of particles matrix, providing a route to control topography. The rate of proteolytic hydrolysis of the scaffolds decreased with increase in mass of silk used in the matrix and with increasing silk particle content. PMID:21793193

  14. Hierarchical porous polymer scaffolds from block copolymers.

    PubMed

    Sai, Hiroaki; Tan, Kwan Wee; Hur, Kahyun; Asenath-Smith, Emily; Hovden, Robert; Jiang, Yi; Riccio, Mark; Muller, David A; Elser, Veit; Estroff, Lara A; Gruner, Sol M; Wiesner, Ulrich

    2013-08-01

    Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents. We used scanning electron microscopy, small-angle x-ray scattering, transmission electron tomography, and nanoscale x-ray computed tomography for quantitative pore-structure characterization. The method was demonstrated for AB- and ABC-type block copolymers, and resulting materials were used as scaffolds for calcite crystal growth. PMID:23908232

  15. In vitro small intestinal epithelial cell growth on a nanocomposite polycaprolactone scaffold

    PubMed Central

    Gupta, Ashish; Vara, Dina S.; Punshon, Geoffrey; Sales, Kevin M.; Winslet, Marc C.; Seifalian, Alexander M.

    2009-01-01

    Tissue engineering of the small intestine remains experimental despite worldwide attempts to develop a functional substitute for short bowel syndrome. Most published studies have reported predominant use of PLLA (poly-L-lactide acid)/PGA (polyglycolic acid) copolymer as the scaffold material, and studies have been limited by in vivo experiments. This lack of progress has inspired a fresh perspective and provoked further investigation and development in this field of tissue engineering. In the present paper, we exploit a relatively new nanocomposite of POSS (polyhedral oligomeric silsesquioxane) and PCL [poly(caprolactone-urea)urethane] as a material to develop porous scaffolds using a solvent casting/particulate leaching technique to fabricate porous scaffolds in different pore sizes and porosities. Scaffolds were characterized for pore morphology and porosity using scanning electron microscopy and micro-computed tomography. Rat intestinal epithelial cells were then seeded on to the polymer scaffolds for an in vitro study of cell compatibility and proliferation, which was assessed by Alamar Blue™ and lactate dehydrogenase assays performed for 21 days post-seeding. The results obtained demonstrate that POSS–PCL nanocomposite was produced as a macroporous scaffold with porosity over the range of 40–80% and pore size over the range of 150–250 μm. This scaffold was shown to support epithelial cell proliferation and growth. In conclusion, as a further step in investigating small intestinal tissue engineering, the nanocomposite employed in this study may prove to be a useful alternative to poly(lactic-co-glycolic acid) in the future. PMID:19860739

  16. Laminin- and basement membrane-polycaprolactone blend nanofibers as a scaffold for regenerative medicine

    PubMed Central

    Neal, Rebekah A.; Lenz, Steven M.; Wang, Tiffany; Abebayehu, Daniel; Brooks, Benjamin P.C.; Ogle, Roy C.; Botchwey, Edward A.

    2016-01-01

    Mimicking one or more components of the basement membrane (BM) holds great promise for overcoming insufficiencies in tissue engineering therapies. We have electrospun laminin nanofibers (NFs) isolated from the murine Engelbreth-Holm Swarm (EHS) tumor and evaluated them as a scaffold for embryonic stem cell culture. Seeded human embryonic stem cells were found to better maintain their undifferentiated, colony environment when cultured on laminin NFs compared to laminin mats, with 75% remaining undifferentiated on NFs. Mouse embryonic stem cells cultured on 10% laminin-polycaprolactone (PCL) NFs maintained their colony formation for twice as long without passage compared to those on PCL or gelatin substrates. In addition, we have established a protocol for electrospinning reconstituted basement membrane aligned (RBM)-PCL NFs within 10° of angular deviation. Neuron-like PC12 cells show significantly greater attachment (p < 0.001) and percentage of neurite-extending cells in vitro on 10% RBM-PCL NFs when compared to 1% and 0% RBM-PCL NFs (p < 0.015 and p < 0.001, respectively). Together, these results implicate laminin- and RBM-PCL scaffolds as a promising biomimetic substrate for regenerative medicine applications.

  17. Effect of the internal microstructure in rapid-prototyped polycaprolactone scaffolds on physical and cellular properties for bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Jeon, Hojun; Kim, Geun Hyung

    2012-09-01

    Biomedical scaffolds should be designed to optimize their inter-microstructure to enable cell infiltration and nutrient/waste transport. To acquire these properties, several structural parameters, such as pore size, pore shape, porosity, pore interconnectivity, permeability, and tortuosity are required. In this study, we explored the effect of tortuosity on the viable cell proliferation and mineralization of osteoblast-like-cells (MG63) in polycaprolactone scaffolds. For analysis, we designed four different scaffolds of various tortuosities ranging from 1.0 to 1.3 under the same porosity (56 %) and 100 % pore interconnectivity. The pore size of the scaffolds was set as 150 and 300 µm, and a mixture of these sizes. We found that despite the porosity being same, the elastic modulus was dependent on the pore size of the scaffolds due to the distributed stress concentration. In addition, the relative water movement within scaffolds was also related to the internal microstructure. Cell viability and Ca2+ deposition of the cell-seeded scaffolds showed that the proliferation of viable cells and mineralization in the scaffolds with appropriate tortuosity (1.2) was relatively high compared to those of the scaffolds displaying low (1.05 and 1.1) or high (1.3) tortuosity. Our findings indicated that the internal microstructure of the scaffolds may influence not only the physical properties, but in addition the cellular behavior.

  18. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model.

    PubMed

    Li, Yi; Wu, Zhi-gang; Li, Xiao-kang; Guo, Zheng; Wu, Su-hua; Zhang, Yong-quan; Shi, Lei; Teoh, Swee-hin; Liu, Yu-chun; Zhang, Zhi-yong

    2014-07-01

    Titanium (Ti) based spinal fusion cages are frequently used in the clinics for the treatment of spinal degeneration and related diseases, however, their further clinical application is generally harassed by several drawbacks such as stress shielding, non-biodegradability and additional bone grafting procedure. Our earlier work has demonstrated the efficacy of a biodegradable macro-porous polycaprolactone-tricalcium phosphate (PCL-TCP) composite scaffold in promoting bony tissue ingrowth as well as its ability to sustain mechanical loads upon implantation into an orthotopic defect site. In this study, we investigated the use of PCL-TCP scaffold as an autograft-free spinal fusion cage in a preclinical sheep model over 12 months, and compared the fusion efficacy against Ti cages incorporated with autografts. Results showed that despite PCL-TCP scaffold as an autograft-free cage attaining a slower fusion rate at early stage (6 month), it achieved similar degree of spinal fusion efficacy as Ti cages aided with autograft at 12 month post-operation as evidenced by the radiographic and histological evaluation. PCL-TCP cages alone demonstrated better bone ingrowth with 2.6 fold higher bone/interspace ratio (B/I) and more homogeneous bone tissue distribution compared with that of the Ti cages (88.10  ±  3.63% vs. 33.74  ±  2.78%, p < 0.05) as seen from the histological and micro-CT analysis. Moreover, besides the bone tissue ingrowth, a quantitative approach was illustrated to accurately evaluate the osteointegration of fusion cage with surrounding bone tissue, and showed a 1.36 fold higher degree of osteointegration occurred in PCL-TCP cage group than Ti cage group (CS/PC: 79.31  ±  3.15% vs 58.44  ±  2.43%, p < 0.05). Furthermore, biomechanical analysis showed comparable mechanical strength of fused segments in both groups in terms of the range of motion and stiffness at 12 month (p > 0.05). The degradation profile of the PCL-TCP cages was noted

  19. Embedding of magnetic nanoparticles in polycaprolactone nanofiber scaffolds to facilitate bone healing and regeneration

    NASA Astrophysics Data System (ADS)

    Kannarkat, Jacob T.; Battogtokh, Jugdersuren; Philip, John; Wilson, Otto C.; Mehl, Patrick M.

    2010-05-01

    Scaffolds used for tissue engineering are made to mimic natural surroundings of tissues, the extracellular matrix (ECM). The ECM plays a large part in maintaining the structural integrity of the connective tissue. When producing a tissue in the laboratory, structural integrity of the cells is ensured only when a biomimetic ECM is present. Nanofibrous polymer fibers have been chosen for their resemblance to natural fibers of the ECM and their capability to provide the support necessary for cells to grow and differentiate into tissue. Polycaprolactone based nanofibrous scaffolds for tissue engineering have been fabricated through the electrospinning process. Electrospinning is a simple and cost-effective method for producing nanofibers which involves applying a high voltage to a falling polymer solution to form a fluid jet producing nanofibers. Magnetic nanoparticles (MNPs) have been incorporated within the nanofibers by addition of MNPs to the polymer solution to increase the rate of bone cell growth, proliferation, and differentiation. Studies by Nomura and Takano-Yamamoto, [Matrix Biol. 19, 91 (2000)] demonstrated an increase in the expression levels of multiple genes in bone tissue including growth factors when shear stress was applied at the cellular level. MNPs are around 1-100 nm and exhibit superparamagnetism. These properties of MNPs allow for high noninvasive control over them using an external magnetic field. While under an ac (15 Hz, 1-6 Gauss) or pulsed magnetic fields, MNPs will induce low level mechanical stresses within the scaffold causing shear stresses at the cellular level of the preosteoblast MC3T3-E1 cells to stimulate their growth, proliferation, and differentiation.

  20. Porous allograft bone scaffolds: doping with strontium.

    PubMed

    Zhao, Yantao; Guo, Dagang; Hou, Shuxun; Zhong, Hongbin; Yan, Jun; Zhang, Chunli; Zhou, Ying

    2013-01-01

    Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes. PMID:23922703

  1. Porous Allograft Bone Scaffolds: Doping with Strontium

    PubMed Central

    Zhao, Yantao; Guo, Dagang; Hou, Shuxun; Zhong, Hongbin; Yan, Jun; Zhang, Chunli; Zhou, Ying

    2013-01-01

    Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28±0.23 µm/day vs. 2.60±0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes. PMID:23922703

  2. Three dimensional melt-deposition of polycaprolactone/bio-derived hydroxyapatite composite into scaffold for bone repair.

    PubMed

    Jiang, Wenbo; Shi, Jun; Li, Wei; Sun, Kang

    2013-01-01

    In this study, three dimensional (3D) polycaprolactone/bio-derived hydroxyapatite (PCL/BHA) composite scaffolds were fabricated by using a melt-deposition system (MDS) for the applications in bone repair. PCL/BHA composites with BHA contents of 0, 10, 20, and 40% were successfully processed into 3D scaffolds by using MDS, while it was failed to fabricate PCL/BHA scaffold with BHA content of 60%. The scaffolds produced were demonstrated to possess the same structures as the predefined with highly uniform and completely interconnected pores. The compressive modulus and strength of the PCL/BHA scaffold increased from 27 to 56 MPa and from 1.9 to 4.5 MPa, respectively, as BHA content increased from 0 to 40%. The wettability of PCL/BHA composite scaffold was also improved with the increase of BHA content. Moreover, the PCL/BHA scaffolds fabricated by MDS showed satisfactory biocompatibility and were capable of being integrated with the surrounding host bone. This study shows the feasibility of fabricating 3D PCL/BHA composite scaffolds with favorable pore structures, mechanical properties, wettability and biocompatibility by using MDS and supports further research of developing novel PCL/BHA composite scaffolds with MDS for the applications in bone repair. PMID:23565866

  3. Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulna.

    PubMed

    Bae, Ji-Hoon; Song, Hae-Ryong; Kim, Hak-Jun; Lim, Hong-Chul; Park, Jung-Ho; Liu, Yuchun; Teoh, Swee-Hin

    2011-10-01

    The choice of an appropriate carrier and its microarchitectural design is integral in directing bone ingrowth into the defect site and determining its subsequent rate of bone formation and remodeling. We have selected a three-dimensional polycaprolactone (PCL) scaffold with an interconnected honeycomb-like porous structure to provide a conduit for vasculature ingrowth as well as an osteoconductive pathway to guide recruited cells responding to a unique triphasic release of osteoinductive bone morphogenetic proteins (BMP) from these PCL scaffolds. We hypothesize that the use of recombinant human bone morphogenetic protein 2 (rhBMP2)-PCL constructs promotes rapid union and bone regeneration of a large defect. Results of our pilot study on a unilateral 15 mm mid-diaphyseal segmental rabbit ulna defect demonstrated enhanced bone healing with greater amount of bone formation and bridging under plain radiography and microcomputed tomography imaging when compared with an empty PCL and untreated group after 8 weeks postimplantation. Quantitative measurements showed significantly higher bone volume fraction and trabecular thickness, with lower trabecular separation in the rhBMP2-treated groups. Histology evaluation also revealed greater mature bone formation spanning across the entire scaffold region compared with other groups, which showed no bone regeneration within the central defect zone. We highlight that it is the uniqueness of the scaffold having a highly porous network of channels that promoted vascular integration and allowed for cellular infiltration, leading to a discontinuous triphasic BMP2 release profile that mimicked the release profile during natural repair mechanisms in vivo. This study serves as preclinical evidence demonstrating the potential of combining osteoinductive rhBMP2 with our PCL constructs for the repair of large defects in a large animal model. PMID:21682591

  4. Repairing calvarial defects with biodegradable polycaprolactone-chitosan scaffolds fabricated using the melt stretching and multilayer deposition technique.

    PubMed

    Thuaksuban, Nuttawut; Nuntanaranont, Thongchai; Suttapreyasri, Srisurang; Boonyaphiphat, Pleumjit

    2015-01-01

    The ability to repair bone defects of polycaprolactone-chitosan scaffolds containing 20% chitosan (PCL-20%CS) fabricated using the melt stretching and multilayer deposition (MSMD) technique was assessed and compared with commercial scaffolds. Two calvarium defects of 11 mm in diameter were created in each of the fifteen New Zealand white rabbits. The PCL-20%CS scaffolds were implanted in one site (group A) while another site was performed with PCL-tricalcium phosphate (TCP) scaffolds containing 20% TCP (PCL-20%TCP) fabricated by fused deposition modeling technique (FDM) (group B). At two, four and eight weeks thereafter, new bone regeneration within the defects was assessed using histomorphometric and micro-computed tomography (µ-CT) analysis. The result of histological sections demonstrated that chronic inflammatory reaction was generally detected along scaffolds of group A, but it was not found in group B. Over 8 weeks, the µ-CT analysis indicated that the average amount of new bone of group A was slightly less than that of group B (p>0.05). In conclusion, efficacy of the PCL-20%CS MSMD scaffolds for repairing bone defects was less than that of the PCL-20%TCP FDM scaffolds. However, MSMD scaffolding is still the technique of choice, but needed some modifications. PMID:26407197

  5. Material properties and electrical stimulation regimens through polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits

    PubMed Central

    Moroder, Philipp; Wang, Huan; Ruesink, Terry; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.; Runge, M. Brett

    2010-01-01

    Mechanical and electrical properties of polycaprolactone fumarate-polypyrrole (PCLF-PPy) scaffolds were studied under physiological conditions to evaluate their ability to maintain material properties necessary for application as conductive nerve conduits. PC12 cells cultured on PCLF-PPy scaffolds were stimulated with regimens of 10 μA of constant or 20 Hz frequency current passed through the scaffolds for 1 h/day. PC12 cellular morphologies were analyzed by fluorescence microscopy after 48 h. PCLF-PPy scaffolds exhibited excellent mechanical properties at 37°C which would allow suturing and flexibility. The surface resistivity of the scaffolds was 2kΩ and the scaffolds were electrically stable during application of electrical stimulation (ES). In vitro studies showed significant increases in percentage of neurite bearing cells, number of neurites per cell and neurite length in the presence of ES compared to no ES. Additionally, extending neurites were observed to align in the direction of the applied current. This study shows that electrically conductive PCLF-PPy scaffolds possess material properties necessary for application as nerve conduits. Additionally, the capability to significantly enhance and direct neurite extension by passing electrical current through PCLF-PPy scaffolds renders them even more promising as future therapeutic treatments for severe nerve injuries. PMID:20965280

  6. Electrospun Polycaprolactone Scaffolds for Small-Diameter Tissue Engineered Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Carol Hsiu-Yueh

    Cardiovascular disease is the leading cause of death in the United States with many patients requiring coronary artery bypass grafting. The current standard is using autografts such as the saphenous vein or intimal mammary artery, however creating a synthetic graft could eliminate this painful and inconvenient procedure. Large diameter grafts have long been established with materials such as DacronRTM and TeflonRTM, however these materials have not proved successful in small-diameter (< 6 mm) grafts where thrombosis and intimal hyperplasia are common in graft failure. With the use of a synthetic biodegradable polymer (polycaprolactone) we utilize our expertise in electrospinning and femtosecond laser ablation to create a novel tri-layered tissue engineered blood vessel containing microchannels. The benefits of creating a tri-layer is to mimic native arteries that contain an endothelium to prevent thrombosis in the inner layer, aligned smooth muscle cells in the middle to control vasodilation and constriction, and a mechanically robust outer layer. The following work evaluates the mechanical properties of such a graft (tensile, fatigue, burst pressure, and suture retention strength), the ability to rapidly align cells in laser ablated microchannels in PCL scaffolds, and the biological integration (co-culture of endothelial and smooth muscle cells) with electrospun PCL scaffolds. The conclusions from this work establish that the electrospun tri-layers provide adequate mechanical strength as a tissue engineered blood vessel, that laser ablated microchannels are able to contain the smooth muscle cells, and that cells are able to adhere to PCL fibers. However, future work includes adjusting microchannel dimensions to properly align smooth muscle cells along with perfect co-cultures of endothelial and smooth muscle cells on the electrospun tri-layer.

  7. Hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers

    PubMed Central

    Tambralli, Ajay; Blakeney, Bryan; Anderson, Joel; Kushwaha, Meenakshi; Andukuri, Adinarayana; Dean, Derrick; Jun, Ho-Wook

    2011-01-01

    Nanofibrous electrospun poly (ε-caprolactone) (ePCL) scaffolds have inherent structural advantages, but lack of bioactivity has limited their usefulness in biomedical applications. Thus, here we report the development of a hybrid, nanostructured, extracellular matrix (ECM) mimicking scaffold by a combination of ePCL nanofibers and self-assembled peptide amphiphile (PA) nanofibers. The PAs have ECM mimicking characteristics including a cell adhesive ligand (RGDS) and matrix metalloproteinase-2 (MMP-2) mediated degradable sites. TEM imaging verified successful PA self-assembly into nanofibers (diameters of 8 – 10 nm) using a solvent evaporation method. This evaporation coating method was then used to successfully coat PAs onto ePCL nanofibers (diameters of 300 – 400 nm), to develop the hybrid, bioactive scaffolds. SEM characterization showed that the PA coatings did not interfere with the porous ePCL nanofiber network. Human mesenchymal stem cells (hMSCs) were seeded onto the hybrid scaffolds to evaluate their bioactivity. Significantly greater attachment and spreading of hMSCs were observed on ePCL nanofibers coated with PA-RGDS as compared to ePCL nanofibers coated with PA-S (no cell adhesive ligand) and uncoated ePCL nanofibers. Overall, this novel strategy presents a new solution to overcome the current bioactivity challenges of electrospun scaffolds and combines the unique characteristics of ePCL nanofibers and self-assembled PA nanofibers to provide an ECM mimicking environment. This has great potential to be applied to many different electrospun scaffolds for various biomedical applications. PMID:20811101

  8. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone Hydrogels for Tissue Engineering Scaffolds

    PubMed Central

    Atzet, Sarah; Curtin, Scott; Trinh, Phalen; Bryant, Stephanie

    2009-01-01

    Biodegradable poly(2-hydroxyethyl methacrylate) hydrogels for engineered tissue constructs were developed using atom transfer radical polymerization (ATRP), a degradable crosslinker and a macroinitiator. Hydrogels are appropriate materials for tissue engineering scaffolds due to their tissue-like mechanical compliance and mass transfer properties. However, many hydrogels that have seen wide application in medicine are not biodegradable or cannot be easily cleared from the body. Poly(2-hydroxyethyl methacrylate) (pHEMA) was selected for the scaffold material due to its reasonable mechanical strength, elasticity, long history of successful use in medicine and because it can be easily fabricated into numerous configurations. pHEMA was studied at various molecular weights between 2 kDa and 50 kDa. The molecular weight range suitable for renal clearance was an important factor in the experimental design. The fabricated hydrogels contain oligomeric blocks of polycaprolactone (PCL), a hydrolytically and enzymatically degradable polymer, as a crosslinking agent. In addition a degradable macroinitiator also containing oligomeric PCL was used to initiate the ATRP. The chain length, crosslink density, and polymerization solvent were found to greatly affect the mechanical properties of the pHEMA hydrogels. Degradation of the pHEMA hydrogels was characterized using 0.007 M NaOH, lipase solutions and phosphate buffered saline. Mass loss, swelling ratio and tensile modulus were evaluated. Degradation products from the sodium hydroxide were measured using gel permeation chromatography (GPC) to verify the polymer lengths and polydispersity. Erosion was only observed in the sodium hydroxide and lipase solutions. However, swelling ratio and tensile modulus indicate bulk degradation in all PCL containing samples. Degradable hydrogels in enzymatic solutions showed 30% mass loss in 16 weeks. Initial cell toxicity studies indicate no adverse cellular response to the hydrogels or their

  9. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.

    PubMed

    Atzet, Sarah; Curtin, Scott; Trinh, Phalen; Bryant, Stephanie; Ratner, Buddy

    2008-12-01

    Biodegradable poly(2-hydroxyethyl methacrylate)(pHEMA) hydrogels for engineered tissue constructs were developed by the use of atom transfer radical polymerization (ATRP), a degradable cross-linker, and a macroinitiator. Hydrogels are appropriate materials for tissue engineering scaffolds because of their tissue-like mechanical compliance and mass transfer properties. However, many hydrogels that have seen wide application in medicine are not biodegradable or cannot be easily cleared from the body. pHEMA was selected for the scaffold material because of its reasonable mechanical strength, elasticity, and long history of successful use in medicine as well as because it can be easily fabricated into numerous configurations. pHEMA was studied at various molecular weights between 2 and 50 kDa. The molecular weight range suitable for renal clearance was an important factor in the experimental design. The fabricated hydrogels contain oligomeric blocks of polycaprolactone (PCL), a hydrolytically and enzymatically degradable polymer, as a cross-linking agent. In addition, a degradable macroinitiator that also contained oligomeric PCL was used to initiate the ATRP. The chain length, cross-link density, and polymerization solvent were found to affect the mechanical properties of the pHEMA hydrogels. Degradation of the pHEMA hydrogels was characterized by the use of 0.007 M NaOH, lipase solutions, and phosphate-buffered saline. The mass loss, swelling ratio, and tensile modulus were evaluated. Degradation products after sodium hydroxide treatment were measured by the use of gel permeation chromatography (GPC) to verify the polymer lengths and polydispersity. Erosion was observed in only the sodium hydroxide and lipase solutions. However, the swelling ratio and tensile modulus indicate bulk degradation in all PCL-containing samples. Degradable hydrogels in enzymatic solutions showed 30% mass loss in 16 weeks. Initial cell toxicity studies indicate no adverse cellular response

  10. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds.

    PubMed

    Ozkizilcik, Asya; Tuzlakoglu, Kadriye

    2014-03-01

    Tissue engineering using scaffolds and growth factors is a crucial approach in bone regeneration and repair. The combination of bioactive agents carrying microparticles with porous scaffolds can be an efficient solution when controlled release of bio-signalling molecules is required. The present study was based on a recent approach using a biodegradable scaffold and protein-loaded microparticles produced in an innovative manner in which protein loss is minimized during the loading process. Bovine serum albumin (BSA)-loaded gelatin microparticles were obtained by grinding freeze-dried membranes of gelatin and BSA. Porous scaffolds (250-355 µm pore size) produced from a polyactide (PLLA) and polycaprolactone (PCL) blend by salt leaching/supercritical CO₂ methods were used for the experiments. Gelatin microparticles containing three different BSA amounts were incorporated into the porous scaffolds by using a surfactant. In vitro release profiles showed up to 90% protein loading efficiency. This novel method appears to be an effective approach for producing particles that can minimize protein loss during the loading process. PMID:22499408

  11. Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review

    PubMed Central

    Yusop, A. H.; Bakir, A. A.; Shaharom, N. A.; Abdul Kadir, M. R.; Hermawan, H.

    2012-01-01

    Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds. PMID:22919393

  12. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.

    PubMed

    Eshraghi, Shaun; Das, Suman

    2012-08-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  13. Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone:hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering

    PubMed Central

    Eshraghi, Shaun; Das, Suman

    2012-01-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  14. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering.

    PubMed

    Chowdhury, S; Thomas, Vinoy; Dean, Derrick; Catledge, Shane A; Vohra, Yogesh K

    2005-11-01

    We report nanoindentation mechanical properties measurements on porous ceramic scaffolds made for tissue engineering applications. The scaffolds have been made from tricalcium phosphate (TCP), hydroxyapatite (HA) nanopowder and mixed powders of HA (50 wt%) and TCP (50 wt%) using the polyurethane sponge method, which produces open porous ceramic scaffolds through replication of a porous polymer template. The scaffolds prepared by this method have a controllable pore size and interconnected pore structure. The crystal structures and morphology of porous scaffolds were determined by X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. Nanoindentation measurements to a depth of 600 nm showed a Young's modulus value of 10.3 GPa for HA+TCP composite scaffolds and 1.5 GPa for TCP scaffolds. The hardness values were 240 MPa for HA+TCP composites and 21 MPa for TCP sample respectively. The results showed that the mechanical properties of the biodegradable scaffolds can be considerably enhanced with the addition of HA while maintaining the interconnected open pores and pore geometry desirable for bone tissue engineering. PMID:16433415

  15. Injection of porous polycaprolactone beads containing autologous myoblasts in a dog model of fecal incontinence

    PubMed Central

    Kang, Sung-Bum; Lee, Hye Seung; Lim, Jae-Young; Oh, Se Heang; Kim, Sang Joon; Hong, Sa-Min; Jang, Je-Ho; Cho, Jeong-Eun; Lee, Sung-Min

    2013-01-01

    Purpose Few studies have examined whether bioengineering can improve fecal incontinence. This study designed to determine whether injection of porous polycaprolactone beads containing autologous myoblasts improves sphincter function in a dog model of fecal incontinence. Methods The anal sphincter of dogs was injured and the dogs were observed without and with (n = 5) the injection of porous polycaprolactone beads containing autologous myoblasts into the site of injury. Autologous myoblasts purified from the gastrocnemius muscles were transferred to the beads. Compound muscle action potentials (CMAP) of the pudendal nerve, anal sphincter pressure, and histopathology were determined 3 months after treatment. Results The amplitudes of the CMAP in the injured sphincter were significantly lower than those measured before injury (1.22 mV vs. 3.00 mV, P = 0.04). The amplitudes were not different between dogs with and without the injection of autologous myoblast beads (P = 0.49). Resting and squeezing pressures were higher in dogs treated with autologous myoblast beads (2.00 mmHg vs. 1.80 mmHg; 6.13 mmHg vs. 4.02 mmHg), although these differences were not significant in analyses of covariance adjusted for baseline values. The injection site was stained for smooth muscle actin, but showed evidence of foreign body inflammatory reactions. Conclusion This was the first study to examine whether bioengineering could improve fecal incontinence. Although the results did not show definite evidence that injection of autologous myoblast beads improves sphincter function, we found that the dog model was suitable and reliable for studying the effects of a potential treatment modality for fecal incontinence. PMID:23577316

  16. Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering.

    PubMed

    Thomas, Vinoy; Jagani, Sunita; Johnson, Kalonda; Jose, Moncy V; Dean, Derrick R; Vohra, Yogesh K; Nyairo, Elijah

    2006-02-01

    Nanocomposite scaffolds based on nanofibrous poly(epsilon-caprolactone) (PCL) and nanohydroxyapatite (nanoHA) with different compositions (wt%) were prepared by electrostatic co-spinning to mimic the nano-features of the natural extracellular matrix (ECM). NanoHA was found to be well dispersed in polymers up to the addition of 20 wt%, after ultrasonication. The composite scaffolds were characterized for structure and morphology using XRD, EDX, SEM, and DSC. The scaffolds have a porous nanofibrous morphology with fibers (majority) having diameters in the range of 450-650 nm, depending on composition, and interconnected pore structures. SEM, EDX, and XRD analyses have confirmed the presence of nanoHA in the fibers. As the nanoHA content in the fibers increases, the surface of fibers becomes rougher. The mechanical (tensile) property measurement of the electrospun composites reveals that as the nanoHA content increases, the ultimate strength increases from 1.68 MPa for pure PCL to 2.17, 2.65, 3.91, and 5.49 MPa for PCL/nanoHA composites with the addition of 5, 10, 15, and 20 wt% nanoHA, respectively. Similarly the tensile modulus also increases gradually from 6.12 MPa to 21.05 MPa with the increase of nanoHA content in the PCL/nanoHA fibers, revealing an increase in stiffness of the fibers due to the presence of HA. DSC analysis reveals that as nanoHA in the composite scaffolds increases, the melting point slightly increases due to the good dispersion and interface bonding between PCL and nanoHA. PMID:16573049

  17. Engineered porous scaffolds for periprosthetic infection prevention.

    PubMed

    Iviglia, Giorgio; Cassinelli, Clara; Bollati, Daniele; Baino, Francesco; Torre, Elisa; Morra, Marco; Vitale-Brovarone, Chiara

    2016-11-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (<10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. PMID:27524071

  18. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications

    PubMed Central

    Guan, Jianjun; Fujimoto, Kazuro L.; Sacks, Michael S.; Wagner, William R.

    2010-01-01

    In the engineering of soft tissues, scaffolds with high elastance and strength coupled with controllable biodegradable properties are necessary. To fulfill such design criteria we have previously synthesized two kinds of biodegradable polyurethaneureas, namely poly(ester urethane)urea (PEUU) and poly(ether ester urethane)urea (PEEUU) from polycaprolactone, polycaprolactone-b-polyethylene glycol-b-polycaprolactone, 1,4-diisocyanatobutane and putrescine. PEUU and PEEUU were further fabricated into scaffolds by thermally induced phase separation using dimethyl sulfoxide (DMSO) as a solvent. The effect of polymer solution concentration, quenching temperature and polymer type on pore morphology and porosity was investigated. Scaffolds were obtained with open and interconnected pores having sizes ranging from several μm to more than 150 μm and porosities of 80–97%. By changing the polymer solution concentration or quenching temperature, scaffolds with random or oriented tubular pores could be obtained. The PEUU scaffolds were flexible with breaking strains of 214% and higher, and tensile strengths of approximately 1.0 MPa, whereas the PEEUU scaffolds generally had lower strengths and breaking strains. Scaffold degradation in aqueous buffer was related to the porosity and polymer hydrophilicity. Smooth muscle cells were filtration seeded in the scaffolds and it was shown that both scaffolds supported cell adhesion and growth, with smooth muscle cells growing more extensively in the PEEUU scaffold. These biodegradable and flexible scaffolds demonstrate potential for future application as cell scaffolds in cardiovascular tissue engineering or other soft tissue applications. PMID:15626443

  19. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration.

    PubMed

    Nourmohammadi, Jhamak; Ghaee, Azadeh; Liavali, Samira Hosseini

    2016-03-15

    The objective of this study was to fabricate and investigate the characteristics of a suitable scaffold for bone regeneration. Therefore, chitosan was combined with various amounts of oxidized starch through reductive alkylation process. Afterwards, chopped CaP-coated PCL nanofibers were added into the chitosan-starch composite scaffolds in order to obtain bioactivity and mimic bone extracellular matrix structure. Scanning electron microscopy confirmed that all scaffolds had well-interconnected porous structure. The mean pore size, porosity, and water uptake of the composite scaffolds increased by incorporation of higher amounts of starch, while this trend was opposite for compressive modulus and strength. Osteoblast-like cells (MG63) culturing on the scaffolds demonstrated that higher starch content could improve cell viability. Moreover, the cells spread and anchored well on the scaffolds, on which the surface was covered with a monolayer of cells. PMID:26794750

  20. Novel Biodegradable Porous Scaffold Applied to Skin Regeneration

    PubMed Central

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments. PMID:23762223

  1. Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering.

    PubMed

    Scaffaro, Roberto; Lopresti, Francesco; Botta, Luigi; Rigogliuso, Salvatrice; Ghersi, Giulio

    2016-10-01

    A novel bi-layered multiphasic scaffold (BLS) have been fabricated for the first time by combining melt mixing, compression molding and particulate leaching. One layer has been composed by polylactic acid (PLA) presenting pore size in the range of 90-110µm while the other layer has been made of polycaprolactone (PCL) with pores ranging from 5 to 40µm. The different chemo-physical properties of the two biopolymers combined with the tunable pore architecture permitted to realize monolithic functionally graded scaffolds engineered to be potentially used for interface tissues regenerations. BLS have been characterized from a morphological and a mechanical point of view. In particular, mechanical tests have been carried out both in air and immersing the specimens in phosphate buffered saline (PBS) solution at 37°C, in order to evaluate the elastic modulus and the interlayer adhesion strength. Fibroblasts and osteoblasts have been cultured and co-cultured in order to investigate the cells permeation trough the different layers. The results indicate that the presented method is appropriate for the preparation of multiphasic porous scaffolds with tunable morphological and mechanical characteristics. Furthermore, the cells seeded were found to grow with a different trend trough the different layers thus demonstrating that the presented device has good potential to be used in interface tissue regeneration applications. PMID:27442921

  2. Porous three-dimensional carbon nanotube scaffolds for tissue engineering.

    PubMed

    Lalwani, Gaurav; Gopalan, Anu; D'Agati, Michael; Sankaran, Jeyantt Srinivas; Judex, Stefan; Qin, Yi-Xian; Sitharaman, Balaji

    2015-10-01

    Assembly of carbon nanomaterials into three-dimensional (3D) architectures is necessary to harness their unique physiochemical properties for tissue engineering and regenerative medicine applications. Herein, we report the fabrication and comprehensive cytocompatibility assessment of 3D chemically crosslinked macrosized (5-8 mm height and 4-6 mm diameter) porous carbon nanotube (CNT) scaffolds. Scaffolds prepared via radical initiated thermal crosslinking of single- or multiwalled CNTs (SWCNTs and MWCNTs) possess high porosity (>80%), and nano-, micro-, and macroscale interconnected pores. MC3T3 preosteoblast cells on MWCNT and SWCNT scaffolds showed good cell viability comparable to poly(lactic-co-glycolic) acid (PLGA) scaffolds after 5 days. Confocal live cell and immunofluorescence imaging showed that MC3T3 cells were metabolically active and could attach, proliferate, and infiltrate MWCNT and SWCNT scaffolds. SEM imaging corroborated cell attachment and spreading and suggested that cell morphology is governed by scaffold surface roughness. MC3T3 cells were elongated on scaffolds with high surface roughness (MWCNTs) and rounded on scaffolds with low surface roughness (SWCNTs). The surface roughness of scaffolds may be exploited to control cellular morphology and, in turn, govern cell fate. These results indicate that crosslinked MWCNTs and SWCNTs scaffolds are cytocompatible, and open avenues toward development of multifunctional all-carbon scaffolds for tissue engineering applications. PMID:25788440

  3. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay

    PubMed Central

    Asefnejad, Azadeh; Khorasani, Mohammad Taghi; Behnamghader, Aliasghar; Farsadzadeh, Babak; Bonakdar, Shahin

    2011-01-01

    Background Biodegradable polyurethanes have found widespread use in soft tissue engineering due to their suitable mechanical properties and biocompatibility. Methods In this study, polyurethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and a copolymer of 1,4-butanediol as a chain extender. Polyurethane scaffolds were fabricated by a combination of liquid–liquid phase separation and salt leaching techniques. The effect of the NCO:OH ratio on porosity content and pore morphology was investigated. Results Scanning electron micrographs demonstrated that the scaffolds had a regular distribution of interconnected pores, with pore diameters of 50–300 μm, and porosities of 64%–83%. It was observed that, by increasing the NCO:OH ratio, the average pore size, compressive strength, and compressive modulus increased. L929 fibroblast and chondrocytes were cultured on the scaffolds, and all samples exhibited suitable cell attachment and growth, with a high level of biocompatibility. Conclusion These biodegradable polyurethane scaffolds demonstrate potential for soft tissue engineering applications. PMID:22072874

  4. Enhanced differentiation and delivery of mouse retinal progenitor cells using a micropatterned biodegradable thin-film polycaprolactone scaffold.

    PubMed

    Yao, Jing; Ko, Chi Wan; Baranov, Petr Y; Regatieri, Caio V; Redenti, Stephen; Tucker, Budd A; Mighty, Jason; Tao, Sarah L; Young, Michael J

    2015-04-01

    The deterioration of retinal tissue in advanced stages of retinitis pigmentosa and age-related macular degeneration and the lack of signaling cues for laminar regeneration are significant challenges highlighting the need for a tissue engineering approach to retinal repair. In this study, we fabricated a biodegradable thin-film polycaprolactone (PCL) scaffold with varying surface topographies using microfabrication techniques. Mouse retinal progenitor cells (mRPCs) cultured on PCL scaffolds exhibited enhanced potential to differentiate toward a photoreceptor fate in comparison to mRPCs cultured on control substrates, suggesting that PCL scaffolds are promising as substrates to guide differentiation of mRPCs toward a photoreceptor fate in vitro before transplantation. When cocultured with the retinal explants of rhodopsin null mice, mRPC/PCL constructs showed increased mRPC integration rates compared to directly applied dissociated mRPCs. Moreover, these mRPC/PCL constructs could be delivered into the subretinal space of rhodopsin null mice with minimal disturbance of the host retina. Whether cocultured with retinal explants or transplanted into the subretinal space, newly integrated mRPCs localized to the outer nuclear layer and expressed appropriate markers of photoreceptor fate. Thus, the PCL scaffold provides a platform to guide differentiation and organized delivery of mRPCs as a practical strategy to repair damaged retina. PMID:25517296

  5. The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets.

    PubMed

    Dan, Hongxia; Vaquette, Cédryck; Fisher, Anthony G; Hamlet, Stephen M; Xiao, Yin; Hutmacher, Dietmar W; Ivanovski, Saso

    2014-01-01

    Cell-based therapy is considered a promising approach to achieving predictable periodontal regeneration. In this study, the regenerative potential of cell sheets derived from different parts of the periodontium (gingival connective tissue, alveolar bone and periodontal ligament) were investigated in an athymic rat periodontal defect model. Periodontal ligament (PDLC), alveolar bone (ABC) and gingival margin-derived cells (GMC) were obtained from human donors. The osteogenic potential of the primary cultures was demonstrated in vitro. Cell sheets supported by a calcium phosphate coated melt electrospun polycaprolactone (CaP-PCL) scaffold were transplanted to denuded root surfaces in surgically created periodontal defects, and allowed to heal for 1 and 4 weeks. The CaP-PCL scaffold alone was able to promote alveolar bone formation within the defect after 4 weeks. The addition of ABC and PDLC sheets resulted in significant periodontal attachment formation. The GMC sheets did not promote periodontal regeneration on the root surface and inhibited bone formation within the CaP-PCL scaffold. In conclusion, the combination of either PDLC or ABC sheets with a CaP-PCL scaffold could promote periodontal regeneration, but ABC sheets were not as effective as PDLC sheets in promoting new attachment formation. PMID:24120045

  6. Enhanced Differentiation and Delivery of Mouse Retinal Progenitor Cells Using a Micropatterned Biodegradable Thin-Film Polycaprolactone Scaffold

    PubMed Central

    Yao, Jing; Ko, Chi Wan; Baranov, Petr Y.; Regatieri, Caio V.; Redenti, Stephen; Tucker, Budd A.; Mighty, Jason; Tao, Sarah L.

    2015-01-01

    The deterioration of retinal tissue in advanced stages of retinitis pigmentosa and age-related macular degeneration and the lack of signaling cues for laminar regeneration are significant challenges highlighting the need for a tissue engineering approach to retinal repair. In this study, we fabricated a biodegradable thin-film polycaprolactone (PCL) scaffold with varying surface topographies using microfabrication techniques. Mouse retinal progenitor cells (mRPCs) cultured on PCL scaffolds exhibited enhanced potential to differentiate toward a photoreceptor fate in comparison to mRPCs cultured on control substrates, suggesting that PCL scaffolds are promising as substrates to guide differentiation of mRPCs toward a photoreceptor fate in vitro before transplantation. When cocultured with the retinal explants of rhodopsin null mice, mRPC/PCL constructs showed increased mRPC integration rates compared to directly applied dissociated mRPCs. Moreover, these mRPC/PCL constructs could be delivered into the subretinal space of rhodopsin null mice with minimal disturbance of the host retina. Whether cocultured with retinal explants or transplanted into the subretinal space, newly integrated mRPCs localized to the outer nuclear layer and expressed appropriate markers of photoreceptor fate. Thus, the PCL scaffold provides a platform to guide differentiation and organized delivery of mRPCs as a practical strategy to repair damaged retina. PMID:25517296

  7. Bio-functionalization of polycaprolactone infiltrated BCP scaffold with silicon and fibronectin enhances osteoblast activity in vitro

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-A.; Kim, Young-Hee; Kim, Minsung; Lee, Byong-Taek; Song, Ho-Yeon

    2013-08-01

    The surface property of a biomaterial plays a fundamental role in cell attachment, proliferation, differentiation, resorption, and biomolecular expression. In this study, the surface of a polycaprolactone-infiltrated biphasic calcium phosphate scaffold was biofunctionalized by silicon (Si) and fibronectin (FN) coating to evaluate the osteoblast-like cells activity in vitro. The surfaces of all scaffolds were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), whereas the presence of the functional group was determined by Fourier-transform infrared spectroscopy (FT-IR). Coomassie brilliant blue staining was applied to confirm the presence of FN on the scaffold surface. The in vitro bioactivity of the osteoblast-like cells was determined by one cell morphology and proliferation assay at 3, 7, and 14 days by SEM. Cell viability assay by MTT showed higher cell viability rate on coated scaffolds than in those coated with Si only or non-coated surfaces. The mRNA expressions of alkaline phosphatase (ALP) and osteocalcin (OC) were determined using RT-PCR and the expressions of osteopontin (OPN), type I collagen, and osteocalcin (OC) proteins were determined using Western blot. Thus the expression of genes and proteins further confirmed both early and intermediate phases of osteoblast-like cell activity which was found increased by Si-and Fn coating on PCL infiltrated BCP surfaces.

  8. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres.

    PubMed

    Sakai, Shinji; Takagi, Yousuke; Yamada, Yusuke; Yamaguchi, Tetsu; Kawakami, Koei

    2008-09-01

    The mechanical properties of scaffolds play a vital role in transmitting input mechanical signals to the cells within them. We aimed to modify mechanical properties of porous scaffolds by incorporating electrospun fibres into their frameworks. Porous constructs containing electrospun silicate fibres were prepared from Na-alginate aqueous solutions suspending the silicate fibres with (ASF) or without amino groups (NASF) via an all-aqueous method based on a freeze-drying technique. The repulsion forces of constructs containing ASF towards compression increased as the fibre content increased. In contrast, constructs containing NASF showed no such increases in repulsion forces. Cells seeded onto constructs containing ASF exhibited suppressed growth, similar to cells seeded onto alginate scaffolds without fibres. In contrast, cells seeded onto scaffolds containing NASF showed about two-fold faster growth than cells seeded onto scaffolds containing ASF. The differences in the mechanical properties and cell growth profiles between the scaffolds containing ASF and NASF can be explained by the formation and non-formation of electrostatic bonds between the fibres and alginate, respectively. The results obtained in the present study demonstrate the feasibility of incorporating electrospun fibres for reinforcement of alginate scaffolds and enhancement of cell growth. PMID:18689918

  9. Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds.

    PubMed

    Sant, Shilpa; Iyer, Dharini; Gaharwar, Akhilesh K; Patel, Alpesh; Khademhosseini, Ali

    2013-04-01

    The development of living heart valves that grow with the patient is a promising strategy for heart valve replacements in pediatric patients. Despite active research in the field of tissue engineered heart valves there have been limited efforts to optimize the balance between biodegradation of the scaffolds and de novo extracellular matrix (ECM) synthesis by cells and study their consequences on the mechanical properties of the cell-seeded construct. This study investigates the effect of in vitro degradation and ECM secretion on the mechanical properties of hybrid polyester scaffolds. The scaffolds were synthesized from blends of fast degrading polyglycerol sebacate (PGS) and slowly degrading polycaprolactone (PCL). PGS-PCL scaffolds were electrospun using a 2:1 ratio of PGS to PCL. Accelerated hydrolytic degradation in 0.1 mM sodium hydroxide revealed 2-fold faster degradation of PGS-PCL scaffolds compared with PCL scaffolds. Thermal analysis and scanning electron microscopy demonstrated marginal change in PCL scaffold properties, while PGS-PCL scaffolds showed preferential mass loss of PGS and thinning of the individual fibers during degradation. Consequently, the mechanical properties of PGS-PCL scaffolds decreased gradually with no significant change for PCL scaffolds during accelerated degradation. Valvular interstitial cells (VICs) seeded on PGS-PCL scaffolds showed higher ECM protein secretion compared with PCL. Thus the mechanical properties of the cell-seeded PCL scaffolds did not change significantly compared with acellular scaffolds, probably due to slower degradation and ECM deposition by VICs. In contrast, the PGS-PCL scaffolds exhibited a gradual decrease in the mechanical properties of the acellular scaffolds due to degradation, which was compensated for by new matrix secreted by VICs seeded on the scaffolds. Our study demonstrated that the faster degrading PGS component of PGS-PCL accelerated the degradation rate of the scaffolds. VICs, on the other

  10. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation.

    PubMed

    Keivani, F; Shokrollahi, P; Zandi, M; Irani, S; F Shokrolahi; Khorasani, S C

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1-21days, P<0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. PMID:27523999

  11. Brain tissue interaction with three-dimensional, honeycomb polycaprolactone-based scaffolds designed for cranial reconstruction following traumatic brain injury.

    PubMed

    Choy, David Kim Seng; Nga, Vincent Diong Weng; Lim, Jing; Lu, Jia; Chou, Ning; Yeo, Tseng Tsai; Teoh, Swee-Hin

    2013-11-01

    Following traumatic brain injury (TBI), resultant voids are unable to support injections of suspension treatments, leading to ineffective healing. Moreover, without a structure to support the large defect, the defect site suffers from mechanical instability, which may impair the healing process. Therefore, having a delivery vehicle that can temporarily fill and provide mechanical support to the defect site may alleviate the healing process. In this work, we reported for the first time, the inflammatory response of brain tissue with polycaprolactone (PCL) and PCL-tricalcium phosphate (TCP) scaffolds designed and fabricated for cranial reconstruction. After cranial defects were created in Sprague-Dawley rats, PCL and PCL-TCP scaffolds were implanted for a period of 1 week and 1 month. Following histology and immunofluorescence staining with the ionized calcium binding adaptor molecule-1 (IBA-1), glial fibrillary acidic protein (GFAP), nestin, and neuronal nuclei (NeuN), results indicated that IBA-1-positive activated microglia were observed across all groups, and declined significantly by 1 month (p<0.05). Interestingly, IBA-1-positive microglia were significantly fewer in the PCL-TCP group (p<0.05), suggesting a relatively milder inflammatory response. A decrease in the number of GFAP-positive cells among all groups over time (>29%) was also observed. Initially, astrocyte hypertrophy was observed proximal to the TBI site (55% in PCL and PCL-TCP groups, 75% in control groups), but it subsided by 1 month. Proximal to the TBI site, nestin immunoreactivity was intense during week 1, and which reduced by 1 month across all groups. NeuN-positive neurons were shrunken proximal to the TBI site (<0.9 mm), 32% smaller in the PCL-TCP group and 27% smaller in the PCL group. Based on above data indicating the comparatively milder, initial inflammatory response of brain tissue to PCL-TCP scaffolds, it is suggested that PCL-TCP scaffolds have notable clinical advantages as

  12. Living Bacterial Sacrificial Porogens to Engineer Decellularized Porous Scaffolds

    PubMed Central

    Xu, Feng; Sridharan, BanuPriya; Durmus, Naside Gozde; Wang, ShuQi; Yavuz, Ahmet Sinan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density and size, which leads to inefficient nutrient and oxygen transport to cells embedded in the scaffolds. Here, we demonstrated an innovative approach to develop a new platform for tissue engineered constructs using live bacteria as sacrificial porogens. E.coli were patterned and cultured in an interconnected three-dimensional (3D) hydrogel network. The growing bacteria created interconnected micropores and microchannels. Then, the scafold was decellularized, and bacteria were eliminated from the scaffold through lysing and washing steps. This 3D porous network method combined with bioprinting has the potential to be broadly applicable and compatible with tissue specific applications allowing seeding of stem cells and other cell types. PMID:21552485

  13. Functionally graded porous scaffolds made of Ti-based agglomerates.

    PubMed

    Nazari, Keivan A; Hilditch, Tim; Dargusch, Matthew S; Nouri, Alireza

    2016-10-01

    Mono- and double-layer porous scaffolds were successfully fabricated using ball-milled agglomerates of Ti and Ti-10Nb-3Mo alloy. For selectively controlling the level of porosity and pore size, the agglomerates were sieved into two different size fractions of 100-300μm and 300-500μm. Compressive mechanical properties were measured on a series of cylindrical sintered compacts with different ratios of solid core diameter to porous layer width. The graded porous scaffolds exhibited stress-strain curves typical for metallic foams with a defined plateau region after yielding. The compressive strengths and elastic moduli ranged from 300 to 700MPa and 14 to 55GPa, respectively, depending on the core diameter and the material used. The obtained properties make these materials suitable for load-bearing implant applications. PMID:27389321

  14. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration.

    PubMed

    Gorna, Katarzyna; Gogolewski, Sylwester

    2006-10-01

    Critical-size bone defects usually require the insertion of autogenous bone graft to heal. Harvesting of bone is traumatic and results in high morbidity at the donor site. A potential alternative to bone graft may be a bone substitute with adequate biocompatibility and biological properties produced from ceramics or bioresorbable/biodegradable polymers. In the present study, new elastomeric biodegradable polyurethanes with an enhanced affinity toward cells and tissues were synthesized using aliphatic diisocyanate, poly(epsilon-caprolactone) diol, and biologically active 1,4:3,6-dianhydro-D-sorbitol (isosorbide diol) as chain extender. The polymers were processed into 3D porous scaffolds by applying a combined salt leaching-phase inverse process. The critical parameters controlling pore size and geometry were the solvents and nonsolvents used for scaffold preparation and the sizes of the solid porogen crystals. Scaffolds prepared from the polymer solution in solvents such as dimethylsulfoxide or methyl-2-pyrrolidone did not have a homogenous pore structure. Many pores were interconnected, but numerous pores were closed. Irrespective of the high pore-to-volume ratio (75%), the scaffolds showed poor water permeability. The best solvent for the preparation of scaffolds from the polyurethane used in the study was dimethylformamide (DMF). The type of nonsolvent admixed to the polymer solution in DMF strongly affected the scaffolds' pore structure. The elastomeric polyurethane scaffold prepared from the optimal solvent-nonsolvent mixture had regular interconnected pores, high water permeability, and a pore-to-volume ratio of 90%. The osteoconductive properties of the 3D porous polyurethane scaffolds can be additionally promoted by loading them with calcium phosphate salts such as hydroxyapatite or tricalcium phosphate, thus making them promising candidates for bone graft substitutes. PMID:16779769

  15. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration.

    PubMed

    Hendrikson, Wilhelmus J; Zeng, Xiangqiong; Rouwkema, Jeroen; van Blitterswijk, Clemens A; van der Heide, Emile; Moroni, Lorenzo

    2016-01-21

    Additive manufactured scaffolds are fabricated from three commonly used biomaterials, polycaprolactone (PCL), poly (L\\DL) lactic acid (P(L\\DL)LA), and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT). Scaffolds are compared biologically and tribologically. Cell-seeded PEOT/PBT scaffolds cultured in osteogenic and chondrogenic differentiation media show statistical significantly higher alkaline phosphatase (ALP) activity/DNA and glycosaminoglycans (GAG)/DNA ratios, followed by PCL and P(L\\DL)LA scaffolds, respectively. The tribological performance is assessed by determining the friction coefficients of the scaffolds at different loads and sliding velocities. With increasing load or decreasing sliding velocity, the friction coefficient value decreases. PEOT/PBT show to have the lowest friction coefficient value, followed by PCL and P(L\\DL)LA. The influence of the scaffold architecture is further determined with PEOT/PBT. Reducing of the fiber spacing results in a lower friction coefficient value. The best and the worst performing scaffold architecture are chosen to investigate the effect of cell culture on the friction coefficient. Matrix deposition is low in the cell-seeded scaffolds and the effect is, therefore, undetermined. Taken together, our studies show that PEOT/PBT scaffolds support better skeletal differentiation of seeded stromal cells and lower friction coefficient compared to PCL and P(L/DL)A scaffolds. PMID:26775915

  16. Physical characteristics and biocompatibility of the polycaprolactone-biphasic calcium phosphate scaffolds fabricated using the modified melt stretching and multilayer deposition.

    PubMed

    Thuaksuban, Nuttawut; Luntheng, Thunmaruk; Monmaturapoj, Naruporn

    2016-05-01

    Physical properties and biocompatibility of polycaprolactone (PCL)-biphasic calcium phosphate (BCP) scaffolds fabricated by the modified melt stretching and multilayer deposition (mMSMD) technique were evaluated in vitro. The PCL-BCP scaffold specimens included group A; PCL: BCP (wt%) = 80:20 and group B; 70:30. Mechanical properties of the scaffolds were assessed using a universal testing machine. Degradation behaviors of the scaffolds were assessed over 60 days. The amount of calcium and phosphate ions released from the scaffolds was detected over 30 days. Attachment and growth of osteoblasts on the scaffolds and indirect cytocompatibility to those cells were evaluated. The results showed that the scaffolds of both groups could withstand compressive forces on their superior aspect very well; however, their lateral aspect could only withstand light forces. Degradation of the scaffolds over 2 months was low (group A = 1.92 ± 0.47% and group B = 2.9 ± 1.3%,p > 0.05). The concentrations of calcium and phosphate ions released from the scaffolds of both groups significantly increased on day 7 (p < 0.05). Growth of the cells seemed to relate to accumulative increase in those ions. All results between the two ratios of the scaffolds were not statistically different. PMID:27013219

  17. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature

    PubMed Central

    Qutachi, Omar; Vetsch, Jolanda R.; Gill, Daniel; Cox, Helen; Scurr, David J.; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A.; Shakesheff, Kevin M.; Rahman, Cheryl V.

    2014-01-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  18. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.

    PubMed

    Qutachi, Omar; Vetsch, Jolanda R; Gill, Daniel; Cox, Helen; Scurr, David J; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A; Shakesheff, Kevin M; Rahman, Cheryl V

    2014-12-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84±24μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37°C to form scaffold structures. The average compressive strength of the scaffolds after 24h at 37°C was 0.9±0.1MPa, and the average Young's modulus was 9.4±1.2MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54±38μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  19. Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments.

    PubMed

    Jensen, Jonas; Rölfing, Jan Hendrik Duedal; Le, Dang Quang Svend; Kristiansen, Asger Albaek; Nygaard, Jens Vinge; Hokland, Lea Bjerre; Bendtsen, Michael; Kassem, Moustapha; Lysdahl, Helle; Bünger, Cody Eric

    2014-09-01

    A porcine calvaria defect study was carried out to investigate the bone repair potential of three-dimensional (3D)-printed poly-ε-caprolactone (PCL) scaffolds embedded with nanoporous PCL. A microscopic grid network was created by rapid prototyping making a 3D-fused deposition model (FDM-PCL). Afterward, the FDM-PCL scaffolds were infused with a mixture of PCL, water, and 1,4-dioxane and underwent a thermal-induced phase separation (TIPS) followed by lyophilization. The TIPS process lead to a nanoporous structure shielded by the printed microstructure (NSP-PCL). Sixteen Landrace pigs were divided into two groups with 8 and 12 weeks follow-up, respectively. A total of six nonpenetrating holes were drilled in the calvaria of each animal. The size of the cylindrical defects was h 10 mm and Ø 10 mm. The defects were distributed randomly using following groups: (a) NSP-PCL scaffold, (b) FDM-PCL scaffold, (c) autograft, (d) empty defect, (a1) NSP-PCL scaffold + autologous mononuclear cells, and (a2) NSP-PCL scaffold + bone morphogenetic protein 2. Bone volume to total volume was analyzed using microcomputed tomography (µCT) and histomorphometry. The µCT and histological data showed significantly less bone formation in the NSP-PCL scaffolds in all three variations after both 8 and 12 weeks compared to all other groups. The positive autograft control had significantly higher new bone formation compared to all other groups except the FDM-PCL when analyzed using histomorphometry. The NSP-PCL scaffolds were heavily infiltrated with foreign body giant cells suggesting an inflammatory response and perhaps active resorption of the scaffold material. The unmodified FDM-PCL scaffold showed good osteoconductivity and osseointegration after both 8 and 12 weeks. PMID:24123983

  20. Effect of solid freeform fabrication-based polycaprolactone/poly(lactic-co-glycolic acid)/collagen scaffolds on cellular activities of human adipose-derived stem cells and rat primary hepatocytes.

    PubMed

    Shim, Jin-Hyung; Kim, Arthur Joon; Park, Ju Young; Yi, Namwoo; Kang, Inhye; Park, Jaesung; Rhie, Jong-Won; Cho, Dong-Woo

    2013-04-01

    Highly biocompatible polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA)/collagen scaffolds in which the PCL/PLGA collagen solution was selectively dispensed into every other space between the struts were fabricated using solid freeform fabrication (SFF) technology, as we described previously. The objective of this study was to evaluate and compare the PCL/PLGA/collagen scaffolds (group 3) with PCL/PLGA-only scaffolds (group 1) and PCL/PLGA scaffolds with collagen by the dip-coating method (group 2) using human adipose-derived stem cells (hASCs) and rat primary hepatocytes. The selectively dispensed collagen formed a three-dimensional (3D) network of nanofibers in group 3, as observed by scanning electron microscopy. The compressive strength and modulus of group 3 were approximately 140 and 510 times higher, respectively, than those of a sponge-type collagen scaffold whose weak mechanical properties were regarded as a critical drawback. Proliferation and osteogenic differentiation of hASCs were promoted significantly in group 3 compared to groups 1 and 2. In addition, we found that the viability and albumin secretion ability of rat primary hepatocytes were highly retained for 10 days in group 3 but not group 1. Interestingly, hepatocyte aggregation, which enhances hepatic function through cell-cell interactions, was observed particularly in group 3. In conclusion, group 3, in which the collagen was selectively dispensed in the 3D space of the porous PCL/PLGA framework, will be a promising 3D scaffold for culturing various cell types. PMID:23430333

  1. Highly porous 3D nanofiber scaffold using an electrospinning technique.

    PubMed

    Kim, Geunhyung; Kim, WanDoo

    2007-04-01

    A successful 3D tissue-engineering scaffold must have a highly porous structure and good mechanical stability. High porosity and optimally designed pore size provide structural space for cell accommodation and migration and enable the exchange of nutrients between the scaffold and environment. Poly(epsilon-carprolactone) fibers were electrospun using an auxiliary electrode and chemical blowing agent (BA), and characterized according to porosity, pore size, and their mechanical properties. We also investigated the effect of the BA on the electrospinning processability. The growth characteristic of human dermal fibroblasts cells cultured in the webs showed the good adhesion with the blown web relative to a normal electrospun mat. The blown nanofiber web had good tensile properties and high porosity compared to a typical electrospun nanofiber scaffold. PMID:16924612

  2. The role of biodegradable engineered random polycaprolactone nanofiber scaffolds seeded with nestin-positive hair follicle stem cells for tissue engineering

    PubMed Central

    Yari, Abazar; Teimourian, Shahram; Amidi, Fardin; Bakhtiyari, Mehrdad; Heidari, Fatemeh; Sajedi, Nayereh; Veijouye, Sanaz Joulai; Dodel, Masumeh; Nobakht, Maliheh

    2016-01-01

    Background: Tissue engineering is a new approach to reconstruction and/or regeneration of lost or damaged tissue. The purpose of this study was to fabricate the polycaprolactone (PCL) random nanofiber scaffold as well as evaluation of the cell viability, adhesion, and proliferation of rat nestin-positive hair follicle stem cells (HFSCs) in the graft material using electrospun PCL nanofiber scaffold in regeneration medicine. Materials and Methods: The bulge HFSCs was isolated from rat whiskers and cultivated in Dulbecco's modified Eagle's medium/F12. To evaluate the biological nature of the bulge stem cells, flow cytometry using nestin, CD34 and K15 antibodies was performed. Electrospinning was used for the production of PCL nanofiber scaffolds. Furthermore, scanning electron microscopy (SEM) for HFSCs attachment, infiltration, and morphology, 3-(4, 5-di-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay for cell viability and cytotoxicity, tensile strength of the scaffolds mesh, and histology analysis were used. Results: Flow cytometry showed that HFSCs were nestin and CD34 positive but K15 negative. The results of the MTT assay showed cell viability and cell proliferation of the HFSCs on PCL nanofiber scaffolds. SEM microscopy photographs indicated that HFSCs are attached and spread on PCL nanofiber scaffolds. Furthermore, tensile strength of the scaffolds mesh was measured. Conclusion: The results of this study revealed that modified PCL nanofiber scaffolds are suitable for HFSCs seeding, attachment, and proliferation. Furthermore, HFSCs are attached and proliferated on PCL nanofiber scaffolds. PMID:26962524

  3. Controlled release of pentoxifylline from porous chitosan-pectin scaffolds.

    PubMed

    Lin, Hsin-Yi; Yeh, Chih-Tsung

    2010-07-01

    Measures to suppress inflammatory reactions are taken to prevent fibrous encapsulation of implants. It is proposed in this study that tissue engineered scaffolds that can slowly release anti-inflammatory drugs can help reduce inflammatory reactions around implants. Chitosan and chitosan cross-linked with different concentrations of pectin were made into films and porous scaffolds. Results seen from Fourier-transform infrared spectra and thermal gravimetric analysis showed that polyelectrolyte complexation took place between chitosan and pectin units. As the amounts of pectin added to chitosan increased (0%, 0.5%, 1%, and 2%) the scaffolds became more wettable (contact angle decreased from 81 degrees to 76 degrees ), less swellable (swelling ratio decreased from 35% to 30%), and less capable of releasing pentoxifylline (PTX) (release efficacies decreased from 93% to 83%). Higher degrees of pectin cross-linking made the scaffolds more resistant to compression (Young's modulus increased from 2.4 kPa to 3.7 kPa) and more favorable for initial cell attachment (percentage of attached cells increased from 55% to 67%). In vitro tests showed that, with the reduction of PTX release rates, PTX became more effective in inhibiting TNF-alpha and IL-6 production from activated macrophages. This investigation has demonstrated that the changes in the basic drug release properties of chitosan scaffolds were proportional to the amount of pectin added. The changes could help improve the effectiveness of PTX. PMID:20370329

  4. Long-bone critical-size defects treated with tissue-engineered polycaprolactone-co-lactide scaffolds: a pilot study on rats.

    PubMed

    Rentsch, Claudia; Rentsch, Barbe; Breier, Annette; Spekl, Kathrin; Jung, Roland; Manthey, Suzanne; Scharnweber, Dieter; Zwipp, Hans; Biewener, Achim

    2010-12-01

    The aim of this study was to evaluate the osteogenic potential of embroidered, tissue-engineered polycaprolactone-co-lactide (trade name: PCL) scaffolds for the reconstruction of large bone defects. Ten piled-up PCL scaffolds were implanted in femura with a critical size defect of immunodeficient nude rats for 12 weeks [n = 4, group 1: noncoated, group 2: collagen I (coll I), group 3: collagen I/chondroitin sulfate (coll I/CS), and group 4: collagen I/chondroitin sulfate/human mesenchymal stem cells (coll I/CS/hMSC)]. X-ray examination, computer tomography, and histological analyses of the explanted scaffold pads were performed. The quantification of the bone volume ratio showed a significantly higher rate of new bone formation at coll I/CS-coated scaffolds compared with the other groups. Histological investigations revealed that the defect reconstruction started from the peripheral bone ends and incorporated into the scaffold material. Additionally seeded hMSC on coll I/CS-coated scaffolds showed a higher matrix deposition inside the implant but no higher bone formation was observed. These data imply that the coll I/CS-coated PCL scaffolds have the highest potential for treating critical size defects. The scaffolds, being variable in size and structure, can be adapted to any bone defect. PMID:20824650

  5. Graded Porous β-Tricalcium Phosphate Scaffolds Enhance Bone Regeneration in Mandible Augmentation

    PubMed Central

    Yang, Jingwen; Kang, Yunqing; Browne, Christopher; Jiang, Ting; Yang, Yunzhi

    2015-01-01

    Abstract Bone augmentation requires scaffold to promote forming of natural bone structure. Currently, most of the reported bone scaffolds are porous solids with uniform pores. The aim of the currentstudy is to evaluate the effect of a graded porous β-tricalcium phosphate scaffolds on alveolar bone augmentation. Three groups of scaffolds were fabricated by a template-casting method: (1) graded porous scaffolds with large pores in the center and small pores at theperiphery, (2) scaffolds with large uniform pores, and (3) scaffolds with small uniform pores. Bone augmentation on rabbit mandible wasinvestigated by microcomputed tomography, sequential fluorescentlabeling, and histologic examination 3 months after implantation.The result presents that all the scaffold groups maintain their augmented bone height after 3-month observation, whereas the autograftinggroup presents an obvious bone resorption. Microcomputed tomography reveals that the graded porous group has significantly greater volume of new bone (P < 0.05) and similar bone density compared with the uniform pores groups. Bone substance distributes unevenly in all the 3 experimental groups. Greater bone volume can be observed in the area closer to the bone bed. The sequential fluorescentlabeling observation reveals robust bone regeneration in the first month and faster bone growth in the graded porous scaffold group than that in the large porous scaffold group. Histologic examinationsconfirm bone structure in the aspect of distribution, activity, and maturity. We conclude that graded porous designed biodegradableβ-tricalcium phosphate scaffolds are beneficial to promote bone augmentation in the aspect of bone volume. PMID:25675019

  6. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration.

    PubMed

    Flores-Cedillo, M L; Alvarado-Estrada, K N; Pozos-Guillén, A J; Murguía-Ibarra, J S; Vidal, M A; Cervantes-Uc, J M; Rosales-Ibáñez, R; Cauich-Rodríguez, J V

    2016-02-01

    Conventional approaches to bone regeneration rarely use multiwall carbon nanotubes (MWCNTs) but instead use polymeric matrices filled with hydroxyapatite, calcium phosphates and bioactive glasses. In this study, we prepared composites of MWCNTs/polycaprolactone (PCL) for bone regeneration as follows: (a) MWCNTs randomly dispersed on PCL, (b) MWCNTs aligned with an electrical field to determine if the orientation favors the growing of human dental pulp stem cells (HDPSCs), and (c) MWCNTs modified with β-glycerol phosphate (BGP) to analyze its osteogenic potential. Raman spectroscopy confirmed the presence of MWCNTs and BGP on PCL, whereas the increase in crystallinity by the addition of MWCNTs to PCL was confirmed by X-ray diffraction and differential scanning calorimetry. A higher elastic modulus (608 ± 4.3 MPa), maximum stress (42 ± 6.1 MPa) and electrical conductivity (1.67 × 10(-7) S/m) were observed in non-aligned MWCNTs compared with the pristine PCL. Cell viability at 14 days was similar in all samples according to the live/dead assay, but the 21 day cell proliferation, measured by MTT was higher in MWCNTs aligned with BGP. Von Kossa and Alizarin red showed larger amounts of mineral deposits on MWCNTs aligned with BGP, indicating that at 21 days, this scaffold promotes osteogenic differentiation of HDPSCs. PMID:26704552

  7. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo.

    PubMed

    Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V

    2016-03-01

    Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes. PMID:26820240

  8. Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications.

    PubMed

    Lee, HyeongJin; Kim, GeunHyung

    2014-09-15

    Biomedical scaffolds have been widely investigated because they are essential for support and promotion of cell adhesion, proliferation and differentiation in three-dimensional (3D) structures. An ideal scaffold should be highly porous to enable efficient nutrient and oxygen transfer and have a 3D structure that provides optimal micro-environmental conditions for the seeded cells to obtain homogeneous growth after a long culture period. In this study, new hierarchical osteoblast-like cell (MG-63)-laden scaffolds consisting of micro-sized struts/inter-layered micro-nanofibres and cell-laden hydrogel struts with mechanically stable and biologically superior properties were introduced. Poly(ethylene oxide) (PEO) was used as a sacrificial component to generate pores within the cell-laden hydrogel struts to attain a homogeneous cell distribution and rapid cell growth in the scaffold interior. The alginate-based cell-laden struts with PEO induced fast/homogeneous cell release, in contrast to nonporous cell-laden struts. Various weight fractions (0.5, 1, 2, 3 and 3.5 wt%) of PEO were used, of which 2 wt% PEO in the cell-laden strut resulted in the most appropriate cell release and enhanced biological activities (cell proliferation and calcium deposition), compared to nonporous cell-laden struts. PMID:24974244

  9. Exploiting novel sterilization techniques for porous polyurethane scaffolds.

    PubMed

    Bertoldi, Serena; Farè, Silvia; Haugen, Håvard Jostein; Tanzi, Maria Cristina

    2015-05-01

    Porous polyurethane (PU) structures raise increasing interest as scaffolds in tissue engineering applications. Understanding the effects of sterilization on their properties is mandatory to assess their potential use in the clinical practice. The aim of this work is the evaluation of the effects of two innovative sterilization techniques (i.e. plasma, Sterrad(®) system, and ozone) on the morphological, chemico-physical and mechanical properties of a PU foam synthesized by gas foaming, using water as expanding agent. In addition, possible toxic effects of the sterilization were evaluated by in vitro cytotoxicity tests. Plasma sterilization did not affect the morphological and mechanical properties of the PU foam, but caused at some extent degradative phenomena, as detected by infrared spectroscopy. Ozone sterilization had a major effect on foam morphology, causing the formation of new small pores, and stronger degradation and oxidation on the structure of the material. These modifications affected the mechanical properties of the sterilized PU foam too. Even though, no cytotoxic effects were observed after both plasma and ozone sterilization, as confirmed by the good values of cell viability assessed by Alamar Blue assay. The results here obtained can help in understanding the effects of sterilization procedures on porous polymeric scaffolds, and how the scaffold morphology, in particular porosity, can influence the effects of sterilization, and viceversa. PMID:25893387

  10. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  11. Electrospun Scaffolds for Osteoblast Cells: Peptide-Induced Concentration-Dependent Improvements of Polycaprolactone

    PubMed Central

    Dettin, Monica; Zamuner, Annj; Roso, Martina; Gloria, Antonio; Iucci, Giovanna; Messina, Grazia M. L.; D'Amora, Ugo; Marletta, Giovanni; Modesti, Michele; Castagliuolo, Ignazio; Brun, Paola

    2015-01-01

    The design of hybrid poly-ε-caprolactone (PCL)-self-assembling peptides (SAPs) matrices represents a simple method for the surface functionalization of synthetic scaffolds, which is essential for cell compatibility. This study investigates the influence of increasing concentrations (2.5%, 5%, 10% and 15% w/w SAP compared to PCL) of three different SAPs on the physico-chemical/mechanical and biological properties of PCL fibers. We demonstrated that physico-chemical surface characteristics were slightly improved at increasing SAP concentrations: the fiber diameter increased; surface wettability increased with the first SAP addition (2.5%) and slightly less for the following ones; SAP-surface density increased but no change in the conformation was registered. These results could allow engineering matrices with structural characteristics and desired wettability according to the needs and the cell system used. The biological and mechanical characteristics of these scaffolds showed a particular trend at increasing SAP concentrations suggesting a prevailing correlation between cell behavior and mechanical features of the matrices. As compared with bare PCL, SAP enrichment increased the number of metabolic active h-osteoblast cells, fostered the expression of specific osteoblast-related mRNA transcripts, and guided calcium deposition, revealing the potential application of PCL-SAP scaffolds for the maintenance of osteoblast phenotype. PMID:26361004

  12. Diffusion model to describe osteogenesis within a porous titanium scaffold.

    PubMed

    Schmitt, M; Allena, R; Schouman, T; Frasca, S; Collombet, J M; Holy, X; Rouch, P

    2016-01-01

    In this study, we develop a two-dimensional finite element model, which is derived from an animal experiment and allows simulating osteogenesis within a porous titanium scaffold implanted in ewe's hemi-mandible during 12 weeks. The cell activity is described through diffusion equations and regulated by the stress state of the structure. We compare our model to (i) histological observations and (ii) experimental data obtained from a mechanical test done on sacrificed animal. We show that our mechano-biological approach provides consistent numerical results and constitutes a useful tool to predict osteogenesis pattern. PMID:25573031

  13. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.

    PubMed

    Sadiasa, Alexander; Nguyen, Thi Hiep; Lee, Byong-Taek

    2014-01-01

    Three dimensional porous scaffolds composed of various ratios of polycaprolactone and poly(L-lactic acid) (PLLA) were prepared using salt leaching method for bone regeneration applications. Surfaces of the scaffolds were visualized using scanning electron microscope (SEM) and the combination of the polymers was confirmed by FT-IR. Addition of PLLA increased the porosity and pore sizes of the scaffolds and also the scaffolds' compressive strength initially. Osteoblast-like cells were used and it was found that the samples' cell biocompatibility was further promoted with the increase in PLLA content as observed via cell proliferation assays using MTT, gene expression with RT-PCR, and micrographs from SEM and confocal microscopy. Samples were then implanted into male rabbits for 2 months, and histological staining and micro-CT histomorphometry show that new bone formations were detected in the site containing the implants of the scaffolds and that bone regeneration was further promoted with the increased concentration of PLLA in the scaffold. PMID:24138179

  14. Janus emulsion mediated porous scaffold bio-fabrication.

    PubMed

    Kovach, Ildiko; Rumschöttel, Jens; Friberg, Stig E; Koetz, Joachim

    2016-09-01

    A three dimensional biopolymer network structure with incorporated nano-porous calcium phosphate (CaP) balls was fabricated by using gelatin-chitosan (GC) polymer blend and GC stabilized olive/silicone oil Janus emulsions, respectively. The emulsions were freeze-dried, and the oil droplets were washed out in order to prepare porous scaffolds with larger surface area. The morphology, pore size, chemical composition, thermal and swelling behavior was studied by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and micro-Differential Scanning Calorimetry (micro-DSC). Microscopic analysis confirmed that the pore size of the GC based sponges after freeze-drying may be drastically reduced by using Janus emulsions. Besides, the incorporation of nanoporous calcium phosphate balls is also lowering the pore size and enhancing thermal stability. PMID:27214784

  15. AB173. Fibroblast-derived extracellular matrix formation in the 3D fiber-deposited polycaprolactone (PCL) scaffold for tunica albuginea replacement

    PubMed Central

    Lee, Hyun-Suk; Park, Jinju; Lee, Mina; Yu, Ho Song; Yim, Sang Un; Park, Su A.; Park, Kwangsung

    2015-01-01

    Objective To investigate the effects of growth factors fibroblast-derived extracellular matrix formation in the 3D fiber-deposited polycaprolactone (PCL) scaffold fabricated by 3D printing technique for tissue engineering applications of tunica albuginea. Methods PCL scaffold was fabricated by 3D bioprinting system. For in vitro cell study, scaffolds were seeded with human fibroblast cell at 5×105 cells and were cultured for up to 2 weeks. Cell survival and cell proliferation were monitored by EZ-cytox assay. The effect of growth factors on the extracellular matrix formation was evaluated by fastin elastin assay and enzyme immunoassay (EIA). Results SEM images showed the surface morphology of PCL scaffolds. Human fibroblasts were grown on 3D PCL scaffolds in the presence/absence of basic fibroblast growth factor (bFGF) or transforming growth factor-beta 1 (TGF-β1). bFGF or TGF-β1 stimulated proliferation of fibroblasts and also increased collagen and elastin formation in vitro study. Conclusions This study shows that bFGF or TGF-β1 modulates the fibroblast-derived extracellular matrix formation in the 3D PCL scaffold.

  16. Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques

    NASA Astrophysics Data System (ADS)

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon

    2014-11-01

    In this work, protein adsorption and cell adhesion on three-dimensional (3D) polycaprolactone (PCL) scaffolds treated by plasma etching and deposition were performed. The 3D PCL scaffold used as a substrate of a bone tissue was fabricated by recent rapid prototype techniques. To increase surface properties, such as hydrophilicity, roughness, and surface chemistry, through good protein adhesion on scaffolds, oxygen (O2) plasma etching and acrylic acid or allyamine plasma deposition were performed on the 3D PCL scaffolds. The O2 plasma etching induced the formation of random nanoporous structures on the roughened surfaces of the 3D PCL scaffolds. The plasma deposition with acrylic acid and allyamine induced the chemical modification for introducing a functional group. The protein adsorption increased on the O2 plasma-etched surface compared with an untreated 3D PCL scaffold. MC3T3-E1 cells adhered bioactively on the etched and deposited surface compared with the untreated surface. The present plasma modification might be sought as an effective technique for enhancing protein adsorption and cell adhesion.

  17. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. PMID:24411349

  18. Rapid prototyped porous nickel-titanium scaffolds as bone substitutes.

    PubMed

    Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; de Wild, Michael; Wendt, David

    2014-01-01

    While calcium phosphate-based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel-titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel-titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel-titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel-titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel-titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel-titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold's pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel-titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165

  19. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.

    PubMed

    Zhao, Jing; Xiao, Suguang; Lu, Xiong; Wang, Jianxin; Weng, Jie

    2006-12-01

    Various interconnected porous hydroxyapatite (HA) ceramic scaffolds are universally used to induct the tissue growth for bone repair and replacement, and serve to support the adhesion, transfer, proliferation and differentiation of cells. Impregnation of polyurethane sponges with a ceramic slurry is adopted to produce highly porous HA ceramic scaffolds with a 3D interconnected structure. However, high porosity always accompanies a decrease in the strength of the HA ceramic scaffolds. Therefore, it is significant to improve the strength of the HA ceramic scaffolds with highly interconnected porosity so that they are more suitable in clinical applications. In this work, highly porous HA ceramic scaffolds are first produced by the polymer impregnation approach, and subsequently further sintered by hot isostatic pressing (HIP). The phase composition, macro- and micro-porous structure, sintering and mechanical properties of the porous HA scaffolds are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), nanoindentation analysis and compressive test. The experimental results show that the nanohardness and compressive strength of HIP-sintered porous HA ceramics are higher than those of commonly sintered HA scaffolds. The HIP technique can effectively improve the sintering property and densification of porous HA ceramic scaffolds, so inducing an increase in the compression strength. PMID:18458404

  20. Fabrication and characterization of polycaprolactone cross- linked and highly-aligned 3-D artificial scaffolds for bone tissue regeneration via electrospinning technology

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.

    2015-11-01

    Novel technologies allowed the scientific community to develop scaffolds for regeneration of bone tissue. A successful scaffold should possess specific macroscopic geometry and internal architecture to perform biological and biophysical functions. In this study the process of polycaprolactone microfibrous development with either cross-linked or highly-aligned three-dimensional artificial mats via electrospinning technology for potential application in tissue engineering is described. The morphology and size of electrospun fibers were assessed systematically by varying the rotation speed of grounded collector. It was found that the diameter of the fibers decreased by increasing the rotation speed of collector. The morphology of the fibers changed from cross-linked to highly-aligned at appr. 1000-1100 rpm.

  1. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    PubMed Central

    Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David

    2014-01-01

    While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165

  2. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect.

    PubMed

    Liu, Xian; Zhao, Kun; Gong, Tao; Song, Jian; Bao, Chongyun; Luo, En; Weng, Jie; Zhou, Shaobing

    2014-03-10

    Implantation of a porous scaffold with a large volume into the body in a convenient and safe manner is still a challenging task in the repair of bone defects. In this study, we present a porous smart nanocomposite scaffold with a combination of shape memory function and controlled delivery of growth factors. The shape memory function enables the scaffold with a large volume to be deformed into its temporal architecture with a small volume using hot-compression and can subsequently recover its original shape upon exposure to body temperature after it is implanted in the body. The scaffold consists of chemically cross-linked poly(ε-caprolactone) (c-PCL) and hydroxyapatite nanoparticles. The highly interconnected pores of the scaffold were obtained using the sugar leaching method. The shape memory porous scaffold loaded with bone morphogenetic protein-2 (BMP-2) was also fabricated by coating the calcium alginate layer and BMP-2 on the surface of the pore wall. Under both in vitro and in vivo environmental conditions, the porous scaffold displays good shape memory recovery from the compressed shape with deformed pores of 33 μm in diameter to recover its porous shape with original pores of 160 μm in diameter. In vitro cytotoxicity based on the MTT test revealed that the scaffold exhibited good cytocompatibility. The in vivo micro-CT and histomorphometry results demonstrated that the porous scaffold could promote new bone generation in the rabbit mandibular bone defect. Thus, our results indicated that this shape memory porous scaffold demonstrated great potential for application in bone regenerative medicine. PMID:24467335

  3. Hybrid Polycaprolactone/Alginate Scaffolds Functionalized with VEGF to Promote de Novo Vessel Formation for the Transplantation of Islets of Langerhans.

    PubMed

    Marchioli, Giulia; Luca, Andrea Di; de Koning, Eelco; Engelse, Marten; Van Blitterswijk, Clemens A; Karperien, Marcel; Van Apeldoorn, Aart A; Moroni, Lorenzo

    2016-07-01

    Although regarded as a promising treatment for type 1 diabetes, clinical islet transplantation in the portal vein is still hindered by a low transplantation outcome. Alternative transplantation sites have been proposed, but the survival of extra-hepatically transplanted islets of Langerhans critically depends on quick revascularization after engraftment. This study aims at developing a new 3D scaffold platform that can actively boost vascularization and may find an application for extra-hepatic islet transplantation. The construct consists of a 3D ring-shaped polycaprolactone (PCL) scaffold with heparinized surface to electrostatically bind vascular endothelial growth factor (VEGF), surrounding a hydrogel core for islets encapsulation. Heparin immobilization improves the amount of VEGF retained by the construct, up to 3.6 fold, compared to untreated PCL scaffolds. In a chicken chorioallanthoic membrane model, VEGF immobilized on the construct enhances angiogenesis in close proximity and on the surface of the scaffolds. After 7 days, islets encapsulated in the alginate core show functional response to glucose stimuli comparable to free-floating islets. Thus, the developed platform has the potential to support rapid vascularization and islet endocrine function. PMID:27113576

  4. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells.

    PubMed

    Xuan, Yiwen; Tang, Hua; Wu, Bin; Ding, Xinyu; Lu, Zhongyuan; Li, Wei; Xu, Zhifei

    2014-10-01

    The reconstruction of sternal defects remains clinically challenging for thoracic surgeons. Here we aimed to explore the individualized reconstruction of partial sternal defects with new biodegradable material in a large animal model. We used the fused deposition modeling (FDM) technique to manufacture polycaprolactone/hydroxyapatite (PCL/HA) tissue scaffolds with individualized grooves to repair the sternal defect. The defects were surgically created in a sternocostal joint of eighteen Beagle dogs. The animals were separated into three groups (n = 6): Blank group, PCL/HA group, and PCL/HA/BMSCs group. Radiographic examination, histological, and histomorphometric analyses were performed to evaluate the result. In the blank group, the defect site couldn't maintain its original integrity due to no bone union. In the PCL/HA group and PCL/HA/BMSCs group, it was observed that the scaffolds retained their shapes without significant degradation at 12 weeks. Both groups could observe new bone-union by radiographic and histological examination. And PCL/HA/BMSCs would be more mineralized tissue area at implant sites (p < 0.05). These results reveal that using the FDM technique to manufacture the PCL/HA scaffolds with specific grooves could repair the sternal defect satisfactorily. Furthermore the scaffolds with BMSCs-seeded could enhance the amount of bone ingrowth and seemed to be more promising. PMID:24142768

  5. Gelatin-layered and multi-sized porous β-tricalcium phosphate for tissue engineering scaffold

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Min; Yi, Soon-Aei; Choi, Seong-Ho; Kim, Kwang-Mahn; Lee, Yong-Keun

    2012-01-01

    The multi-sized porous β-tricalcium phosphate scaffolds were fabricated by freeze drying followed by slurry coating using a multi-sized porous sponge as a template. Then, gelatin was dip coated on the multi-sized porous β-tricalcium phosphate scaffolds under vacuum. The mechanical and biological properties of the fabricated scaffolds were evaluated and compared to the uniformly sized porous scaffolds and scaffolds that were not coated by gelatin. The compressive strength was tested by a universal testing machine, and the cell viability and differentiation behavior were measured using a cell counting kit and alkaline phosphatase activity using the MC3T3-E1 cells. In comparison, the gelatin-coated multi-sized porous β-tricalcium phosphate scaffold showed enhanced compressive strength. After 14 days, the multi-sized pores were shown to affect cell differentiation, and gelatin coatings were shown to affect the cell viability and differentiation. The results of this study demonstrated that the multi-sized porous β-tricalcium phosphate scaffold coated by gelatin enhanced the mechanical and biological strengths.

  6. Nano-TiO2/collagen-chitosan porous scaffold for wound repairing.

    PubMed

    Fan, Xialian; Chen, Keke; He, Xichan; Li, Na; Huang, Jinbao; Tang, Keyong; Li, Yijin; Wang, Fang

    2016-10-01

    Collagen-Chitosan (COL-CS) porous scaffolds have been widely used as a dermal equivalent to induce fibroblasts infiltration and dermal regeneration. To improve the anti-bacterial properties, nano-TiO2 hydrosol was introduced into COL-CS scaffolds. TiO2/COL-CS porous scaffolds were fabricated through a freeze-drying process, and scanning electron microscopy (SEM) was employed to study the micro-structure of the scaffolds. Fourier transform infrared spectroscopy (FT-IR) was used to study the intermolecular interactions in the scaffolds. The swelling property, porosity, degradation, antibacterial behavior, red blood cell aggregation, and cytotoxicity of the composite were investigated. The results showed that the scaffold is good in permeability and it may provide a humid environment for wound repairing. The degradation in lysozyme solution for 4 weeks showed that porous scaffolds are good in stability, which may satisfy the wound coverage protection in the repairing period. An obvious inhibitory effect on Staphylococcus aureus of the porous scaffolds was found, and the red blood cells were easy to form clusters aggregation to stop bleeding. It was suggested that the TiO2/COL-CS composite scaffolds could be a promising candidate for wound repairing dressing. PMID:27238587

  7. Porous alumina scaffold produced by sol-gel combined polymeric sponge method

    NASA Astrophysics Data System (ADS)

    Hasmaliza, M.; Fazliah, M. N.; Shafinaz, R. J.

    2012-09-01

    Sol gel is a novel method used to produce high purity alumina with nanometric scale. In this study, three-dimensional porous alumina scaffold was produced using sol-gel polymeric sponge method. Briefly, sol gel alumina was prepared by evaporation and polymeric sponge cut to designated sizes were immersed in the sol gel followed by sintering at 1250 and 1550°C. In order to study the cell interaction, the porous alumina scaffold was sterilized using autoclave prior to Human Mesenchymal Stem Cells (HMSCs) seeding on the scaffold and the cell proliferation was assessed by alamarBlue® assay. SEM results showed that during the 21 day period, HMSCs were able to attach on the scaffold surface and the interconnecting pores while maintaining its proliferation. These findings suggested the potential use of the porous alumina produced as a scaffold for implantation procedure.

  8. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    SciTech Connect

    Matveeva, V. G. Antonova, L. V. Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  9. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    NASA Astrophysics Data System (ADS)

    Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  10. Multiple approaches to predicting oxygen and glucose consumptions by HepG2 cells on porous scaffolds in an axial-flow bioreactor.

    PubMed

    Podichetty, Jagdeep T; Bhaskar, Prasana R; Singarapu, Kumar; Madihally, Sundararajan V

    2015-02-01

    In this study, the distribution of oxygen and glucose was evaluated along with consumption by hepatocytes using three different approaches. The methods include (i) Computational Fluid Dynamics (CFD) simulation, (ii) residence time distribution (RTD) analysis using a step-input coupled with segregation model or dispersion model, and (iii) experimentally determined consumption by HepG2 cells in an open-loop. Chitosan-gelatin (CG) scaffolds prepared by freeze-drying and polycaprolactone (PCL) scaffolds prepared by salt leaching technique were utilized for RTD analyses. The scaffold characteristics were used in CFD simulations i.e. Brinkman's equation for flow through porous medium, structural mechanics for fluid induced scaffold deformation, and advection-diffusion equation coupled with Michaelis-Menten rate equations for nutrient consumption. With the assumption that each hepatocyte behaves like a micro-batch reactor within the scaffold, segregation model was combined with RTD to determine exit concentration. A flow rate of 1 mL/min was used in the bioreactor seeded with 0.6 × 10(6) HepG2 cells/cm(3) on CG scaffolds and oxygen consumption was measured using two flow-through electrodes located at the inlet and outlet. Glucose in the spent growth medium was also analyzed. RTD results showed distribution of nutrients to depend on the surface characteristics of scaffolds. Comparisons of outlet oxygen concentrations between the simulation results, and experimental results showed good agreement with the dispersion model. Outlet oxygen concentrations from segregation model predictions were lower. Doubling the cell density showed a need for increasing the flow rate in CFD simulations. This integrated approach provide a useful strategy in designing bioreactors and monitoring tissue regeneration. PMID:25116006

  11. Fabrication of uniformly cell-laden porous scaffolds using a gas-in-liquid templating technique.

    PubMed

    Takei, Takayuki; Aokawa, Ryuta; Shigemitsu, Takamasa; Kawakami, Koei; Yoshida, Masahiro

    2015-11-01

    Design of porous scaffolds in tissue engineering field was challenging. Uniform immobilization of cells in the scaffolds with high porosity was essential for homogeneous tissue formation. The present study was aimed at fabricating uniformly cell-laden porous scaffolds with porosity >74% using the gas-in-liquid foam templating technique. To this end, we used gelatin, microbial transglutaminase and argon gas as a scaffold material, cross-linker of the protein and porogen of scaffold, respectively. We confirmed that a porosity of >74% could be achieved by increasing the gas volume delivered to a gelatin solution. Pore size in the scaffold could be controlled by stirring speed, stirring time and the pore size of the filter through which the gas passed. The foaming technique enabled us to uniformly immobilize a human hepatoblastoma cell line in scaffold. Engraftment efficiency of the cell line entrapped within the scaffold in nude mice was higher than that of cells in free-form. These results showed that the uniformly cell-laden porous scaffolds were promising for tissue engineering. PMID:25912452

  12. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.

    PubMed

    Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P

    2008-09-01

    One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications. PMID:18556060

  13. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds.

    PubMed

    Xiao, Guiyong; Yin, Han; Xu, Wenhua; Lu, Yupeng

    2016-10-01

    Poly(L-lactic acid) and hydroxyapatie (PLLA/HA) composite scaffolds have good properties and suit to use as bone tissue engineering. In this work, hollow HA microspheres (HAM) with poor crystallinity were fabricated by a flame-drying method. The HAM has the potential to be used to release drugs or proteins in addition to improve osteoconductivity. Different ratios of PLLA/HAM were used to prepare porous composite scaffolds using the thermally induced phase separation technique. The HAMs were randomly incorporated into the PLLA porous scaffolds. As the HAMs ratio was increased, the porous composite scaffolds changed from ladder-like into isotropic structure. In addition, the compressive strength of PLLA/HAMs composite scaffolds improved first and declined with the increasing of HAMs ratio in the scaffolds. In vitro experiment showed that PLLA/HAMs composite scaffolds improved the attachment, migration, and differentiation of osteoblastic cells. These results demonstrated that the PLLA/HAMs composite scaffolds were superior to plain PLLA scaffold for bone tissue engineering. PMID:27398630

  14. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study.

    PubMed

    Carvalho, Pedro P; Leonor, Isabel B; Smith, Brenda J; Dias, Isabel R; Reis, Rui L; Gimble, Jeffrey M; Gomes, Manuela E

    2014-09-01

    The repair of large bony defects remains challenging in the clinical setting. Human adipose-derived stromal/stem cells (hASCs) have been reported to differentiate along different cell lineages, including the osteogenic. The objective of the present study was to assess the bone regeneration potential of undifferentiated hASCs loaded in starch-polycaprolactone (SPCL) scaffolds, in a critical-sized nude mice calvarial defect. Human ASCs were isolated from lipoaspirate of five female donors, cryopreserved, and pooled together. Critical-sized (4 mm) calvarial defects were created in the parietal bone of adult male nude mice. Defects were either left empty, treated with an SPCL scaffold alone, or SPCL scaffold with human ASCs. Histological analysis and Micro-CT imaging of the retrieved implants were performed. Improved new bone deposition and osseointegration was observed in SPCL loaded with hASC engrafted calvarial defects as compared to control groups that showed little healing. Nondifferentiated human ASCs enhance ossification of nonhealing nude mice calvarial defects, and wet-spun SPCL confirmed its suitability for bone tissue engineering. This study supports the potential translation for ASC use in the treatment of human skeletal defects. PMID:24123913

  15. Undifferentiated Human Adipose-derived Stromal/Stem Cells loaded onto Wet-Spun Starch-polycaprolactone Scaffolds Enhance Bone Regeneration: Nude Mice Calvarial Defect in vivo Study

    PubMed Central

    Carvalho, Pedro P.; Leonor, Isabel B.; Smith, Brenda J.; Dias, Isabel R.; Reis, Rui L.; Gimble, Jeffrey M.; Gomes, Manuela E.

    2014-01-01

    The repair of large bony defects remains challenging in the clinical setting. Human adipose-derived stromal/stem cells (hASCs) have been reported to differentiate along different cell lineages, including the osteogenic. The objective of the present study was to assess the bone regeneration potential of undifferentiated hASCs loaded in starch-polycaprolactone (SPCL) scaffolds, in a critical-sized nude mice calvarial defect. Human ASCs were isolated from lipoaspirate of five female donors, cryopreserved and pooled together. Critical-sized (4 mm) calvarial defects were created in the parietal bone of adult male nude mice. Defects were either left empty, treated with an SPCL scaffold alone, or SPCL scaffold with human ASCs. Histological analysis and Micro-CT imaging of the retrieved implants were performed. Improved new bone deposition and osseointegration was observed in SPCL loaded with hASC engrafted calvarial defects as compared to control groups that showed little healing. Non differentiated human ASCs enhance ossification of non-healing nude mice calvarial defects, and wet-spun SPCL confirmed its suitability for bone tissue engineering. This study supports the potential translation for ASC use in the treatment of human skeletal defects. PMID:24123913

  16. A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye.

    PubMed

    Irani, Yazad D; Tian, Yuan; Wang, Mengjia; Klebe, Sonja; McInnes, Steven J; Voelcker, Nicolas H; Coffer, Jeffery L; Williams, Keryn A

    2015-10-01

    Dysfunction of corneal epithelial stem cells can result in painful and blinding disease of the ocular surface. In such cases, treatment may involve transfer of growth factor and normal adult stem cells to the ocular surface. Our purpose was to develop an implantable scaffold for the delivery of drugs and cells to the ocular surface. We examined the potential of novel composite biomaterials fabricated from electrospun polycaprolactone (PCL) fibres into which nanostructured porous silicon (pSi) microparticles of varying sizes (150-250 μm or <40 μm) had been pressed. The PCL fabric provided a flexible support for mammalian cells, whereas the embedded pSi provided a substantial surface area for efficient delivery of adsorbed drugs and growth factors. Measurements of tensile strength of these composites revealed that the pSi did not strongly influence the mechanical properties of the polymer microfiber component for the Si loadings evaluated. Human lens epithelial cells (SRA01/04) attached to the composite materials, and exhibited enhanced attachment and growth when the materials were coated with foetal bovine serum. To examine the ability of the materials to deliver a small-drug payload, pSi microparticles were loaded with fluorescein diacetate prior to cell attachment. After 6 hours (h), cells exhibited intracellular fluorescence, indicative of transfer of the fluorescein diacetate into viable cells and its subsequent enzymatic conversion to fluorescein. To investigate loading of large-molecule biologics, murine BALB/c 3T3 cells, responsive to epidermal growth factor, insulin and transferrin, were seeded on composite materials. The cells showed significantly more proliferation at 48 h when seeded on composites loaded with these biologics, than on unloaded composites. No cell proliferation was observed on PCL alone, indicating the biologics had loaded into the pSi microparticles. Drug release, measured by ELISA for insulin, indicated a burst followed by a slower

  17. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering

    PubMed Central

    Maji, Kanchan; Dasgupta, Sudip; Pramanik, Krishna; Bissoyi, Akalabya

    2016-01-01

    The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S) in the size range of 20–30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading. Samples were cross-linked with glutaraldehyde to obtain interconnected porous 3D microstructure with improved mechanical strength. The prepared scaffolds exhibited >80% porosity with a mean pore size range between 100 and 300 microns. Scaffold containing 30 wt% bioglass (GCB 30) showed a maximum compressive strength of 2.2 ± 0.1 MPa. Swelling and degradation studies showed that the scaffold had excellent properties of hydrophilicity and biodegradability. GCB 30 scaffold was shown to be noncytotoxic and supported mesenchymal stem cell attachment, proliferation, and differentiation as indicated by MTT assay and RUNX-2 expression. Higher cellular activity was observed in GCB 30 scaffold as compared to GCB 0 scaffold suggesting the fact that 58S bioglass nanoparticles addition into the scaffold promoted better cell adhesion, proliferation, and differentiation. Thus, the study showed that the developed composite scaffolds are potential candidates for regenerating damaged bone tissue. PMID:26884764

  18. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering.

    PubMed

    Kanimozhi, K; Khaleel Basha, S; Sugantha Kumari, V

    2016-04-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. PMID:26838875

  19. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications.

    PubMed

    Guo, Miao; Li, Xiang

    2016-01-01

    A novel composite scaffold consisting of porous Ti6Al4V part filled with chitosan sponge was fabricated using a combination of electron beam melting and freeze-drying. The mechanical properties of porous Ti6Al4V part were examined via compressive test. The ultimate compressive strength was 85.35 ± 8.68 MPa and the compressive modulus was 2.26 ± 0.42 GPa. The microstructure of composite scaffold was characterized using scanning electron microscopy. The chitosan sponge filled in Ti6Al4V part exhibited highly porous and well-interconnected micro-pore architecture. The osteoblastic cells were seeded on scaffolds to test their seeding efficiency and biocompatibility. Significantly higher cell seeding efficiency was found on composite scaffold. The biological response of osteoblasts on composite scaffolds was superior in terms of improved cell attachment, higher proliferation, and well-spread morphology in relation to porous Ti6Al4V part. These results suggest that the Ti6Al4V/chitosan composite scaffold is potentially useful as a biomedical scaffold for orthopedic applications. PMID:26478418

  20. Fabrication and characterization of porous EH scaffolds and EH-PEG bilayers.

    PubMed

    Falco, Erin E; Coates, Emily E; Li, Erik; Roth, J Scott; Fisher, John P

    2011-06-01

    Biomaterials made from synthetic polymers are becoming more pervasive in the medical field. Synthetic polymers are particularly advantageous as their chemical and mechanical properties can be easily tailored to a specific application. This work characterizes polymer scaffolds derived from the cyclic acetal monomer 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD). Both porous scaffolds and bilayer scaffolds based upon the EHD monomer were fabricated, and the resulting scaffolds' degradation and mechanical properties were studied. The results showed that by modifying the architecture of an EH scaffold, either by adding a porous network or a poly(ethylene glycol) (PEG) coating, the degradation and Young's modulus of the biomaterial can be significant altered. However, results also indicated that these architectural modifications can be accomplished without a significant loss in the flexural strength of the scaffold. Therefore, we suggest that porous EH scaffolds, and particularly porous EH-PEG bilayers, may be especially useful in dynamic tissue environments due to their advantageous architectural and mechanical properties. PMID:21442727

  1. Thermoforming techniques for manufacturing porous scaffolds for application in 3D cell cultivation.

    PubMed

    Borowiec, Justyna; Hampl, Jörg; Gebinoga, Michael; Elsarnagawy, Tarek; Elnakady, Yasser A; Fouad, Hassan; Almajhadi, Fahd; Fernekorn, Uta; Weise, Frank; Singh, Sukhdeep; Elsarnagawy, Dief; Schober, Andreas

    2015-04-01

    Within the scientific community, there is an increasing demand to apply advanced cell cultivation substrates with increased physiological functionalities for studying spatially defined cellular interactions. Porous polymeric scaffolds are utilized for mimicking an organ-like structure or engineering complex tissues and have become a key element for three-dimensional (3D) cell cultivation in the meantime. As a consequence, efficient 3D scaffold fabrication methods play an important role in modern biotechnology. Here, we present a novel thermoforming procedure for manufacturing porous 3D scaffolds from permeable materials. We address the issue of precise thermoforming of porous polymer foils by using multilayer polymer thermoforming technology. This technology offers a new method for structuring porous polymer foils that are otherwise available for non-porous polymers only. We successfully manufactured 3D scaffolds from solvent casted and phase separated polylactic acid (PLA) foils and investigated their biocompatibility and basic cellular performance. The HepG2 cell culture in PLA scaffold has shown enhanced albumin secretion rate in comparison to a previously reported polycarbonate based scaffold with similar geometry. PMID:25686978

  2. Development of a porous PLGA-based scaffold for mastoid air cell regeneration

    PubMed Central

    Gould, Toby W. A.; Birchall, John P.; Mallick, Ali S.; Alliston, Tamara; Lustig, Lawrence R.; Shakesheff, Kevin M.

    2015-01-01

    Objective To develop a porous, biodegradable scaffold for mastoid air cell regeneration. Study Design In vitro development of a temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) (PLGA/PEG) scaffold tailored for this application. Methods Human mastoid bone microstructure and porosity was investigated using micro-computed tomography. PLGA/PEG-alginate scaffolds were developed and scaffold porosity was assessed. Human bone marrow mesenchymal stem cells (hBM-MSCs) were cultured on the scaffolds in vitro. Scaffolds were loaded with ciprofloxacin and release of ciprofloxacin over time in vitro was assessed. Results Porosity of human mastoid bone was measured at 83% with an average pore size of 1.3mm. PLGA/PEG-alginate scaffold porosity ranged from 43–78% depending on the alginate bead content. hBM-MSCs proliferate on the scaffolds in vitro, and release of ciprofloxacin from the scaffolds was demonstrated over 7–10 weeks. Conclusion The PLGA/PEG-alginate scaffolds developed in this study demonstrate similar structural features to human mastoid bone, support cell growth and display sustained antibiotic release. These scaffolds may be of potential clinical use in mastoid air cell regeneration. Further in vivo studies to assess the suitability of PLGA/PEG-alginate scaffolds for this application are required. PMID:23670365

  3. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment.

    PubMed

    Poursamar, S Ali; Hatami, Javad; Lehner, Alexander N; da Silva, Cláudia L; Ferreira, Frederico Castelo; Antunes, A P M

    2015-03-01

    The current study presents an effective and simple strategy to obtain stable porous scaffolds from gelatin via a gas foaming method. The technique exploits the intrinsic foaming ability of gelatin in the presence of CO2 to obtain a porous structure stabilised with glutaraldehyde. The produced scaffolds were characterised using physical and mechanical characterisation methods. The results showed that gas foaming may allow the tailoring of the 3-dimensional structure of the scaffolds with an interconnected porous structure. To assess the effectiveness of the preparation method in mitigating the potential cytotoxicity risk of using glutaraldehyde as a crosslinker, direct and in-direct cytotoxicity assays were performed at different concentrations of glutaraldehyde. The results indicate the potential of the gas foaming method, in the preparation of viable tissue engineering scaffolds. PMID:25579897

  4. Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification.

    PubMed

    Jeong, Claire G; Zhang, Huina; Hollister, Scott J

    2012-08-01

    As articular cartilage is avascular, and mature chondrocytes do not proliferate, cartilage lesions have a limited capacity for regeneration after severe damage. The treatment of such damage has been challenging due to the limited availability of autologous healthy cartilage and lengthy and expensive cell isolation and expansion procedures. Hence, the use of bone morphogenetic protein-2 (BMP-2), a potent regulator of chondrogenic expression, has received considerable attention in cartilage and osteochondral tissue engineering. However, the exact role of BMP-2 in cartilage repair has been postulated to promote both cartilage formation and subsequent cartilage degradation through hypertrophy and endochondral ossification. Furthermore, it is likely that the manner in which BMP-2 is presented to chondrocytes will influence the physiologic pathway (repair vs. degeneration). This study investigates the relative influence of BMP-2 on cartilage matrix and potential subsequent bone matrix production using primary chondrocytes seeded on designed 3D polycaprolactone (PCL) scaffolds with chemically conjugated BMP-2. The results show that chemically conjugated BMP-2 PCL scaffolds can promote significantly greater cartilage regeneration from seeded chondrocytes both in vitro and in vivo compared with untreated scaffolds. Furthermore, our results demonstrate that the conjugated BMP-2 does not particularly accelerate endochondral ossification even in a readily permissible and highly vascular in vivo environment compared with untreated PCL scaffolds. This study not only reveals the potential use of the BMP-2 conjugation delivery method for enhanced cartilage tissue formation but also gives new insights for the effects of conjugated BMP-2 on cartilage regeneration and osteochondral ossification. PMID:22615065

  5. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.

    PubMed

    Uswatta, Suren P; Okeke, Israel U; Jayasuriya, Ambalangodage C

    2016-12-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33mm (n=25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93mm (n=25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores <10 and 2μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93MPa. Standardize UCS values were 79.98MPa and 357MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p<0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p<0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro studies. 2% n

  6. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration

    NASA Astrophysics Data System (ADS)

    Cheng, Meng-Qi; Wahafu, Tuerhongjiang; Jiang, Guo-Feng; Liu, Wei; Qiao, Yu-Qin; Peng, Xiao-Chun; Cheng, Tao; Zhang, Xian-Long; He, Guo; Liu, Xuan-Yong

    2016-04-01

    The traditional production methods of porous magnesium scaffolds are difficult to accurately control the pore morphologies and simultaneously obtain appropriate mechanical properties. In this work, two open-porous magnesium scaffolds with different pore size but in the nearly same porosity are successfully fabricated with high-purity Mg ingots through the titanium wire space holder (TWSH) method. The porosity and pore size can be easily, precisely and individually controlled, as well as the mechanical properties also can be regulated to be within the range of human cancellous bone by changing the orientation of pores without sacrifice the requisite porous structures. In vitro cell tests indicate that the scaffolds have good cytocompatibility and osteoblastic differentiation properties. In vivo findings demonstrate that both scaffolds exhibit acceptable inflammatory responses and can be almost fully degraded and replaced by newly formed bone. More importantly, under the same porosity, the scaffolds with larger pore size can promote early vascularization and up-regulate collagen type 1 and OPN expression, leading to higher bone mass and more mature bone formation. In conclusion, a new method is introduced to develop an open-porous magnesium scaffold with controllable microstructures and mechanical properties, which has great potential clinical application for bone reconstruction in the future.

  7. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration

    PubMed Central

    Cheng, Meng-qi; Wahafu, Tuerhongjiang; Jiang, Guo-feng; Liu, Wei; Qiao, Yu-qin; Peng, Xiao-chun; Cheng, Tao; Zhang, Xian-long; He, Guo; Liu, Xuan-yong

    2016-01-01

    The traditional production methods of porous magnesium scaffolds are difficult to accurately control the pore morphologies and simultaneously obtain appropriate mechanical properties. In this work, two open-porous magnesium scaffolds with different pore size but in the nearly same porosity are successfully fabricated with high-purity Mg ingots through the titanium wire space holder (TWSH) method. The porosity and pore size can be easily, precisely and individually controlled, as well as the mechanical properties also can be regulated to be within the range of human cancellous bone by changing the orientation of pores without sacrifice the requisite porous structures. In vitro cell tests indicate that the scaffolds have good cytocompatibility and osteoblastic differentiation properties. In vivo findings demonstrate that both scaffolds exhibit acceptable inflammatory responses and can be almost fully degraded and replaced by newly formed bone. More importantly, under the same porosity, the scaffolds with larger pore size can promote early vascularization and up-regulate collagen type 1 and OPN expression, leading to higher bone mass and more mature bone formation. In conclusion, a new method is introduced to develop an open-porous magnesium scaffold with controllable microstructures and mechanical properties, which has great potential clinical application for bone reconstruction in the future. PMID:27071777

  8. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine

    PubMed Central

    Pan, Zhen; Ding, Jiandong

    2012-01-01

    Porous scaffolds fabricated from biocompatible and biodegradable polymers play vital roles in tissue engineering and regenerative medicine. Among various scaffold matrix materials, poly(lactide-co-glycolide) (PLGA) is a very popular and an important biodegradable polyester owing to its tunable degradation rates, good mechanical properties and processibility, etc. This review highlights the progress on PLGA scaffolds. In the latest decade, some facile fabrication approaches at room temperature were put forward; more appropriate pore structures were designed and achieved; the mechanical properties were investigated both for dry and wet scaffolds; a long time biodegradation of the PLGA scaffold was observed and a three-stage model was established; even the effects of pore size and porosity on in vitro biodegradation were revealed; the PLGA scaffolds have also been implanted into animals, and some tissues have been regenerated in vivo after loading cells including stem cells. PMID:23741612

  9. Fabrication of Porous α-TCP/Gellan Gum Scaffold for Bone Tissue Engineering.

    PubMed

    Wen, Jian; Kim, Ill Yong; Kikuta, Koichi; Ohtsuki, Chikara

    2016-03-01

    α-tricalcium phosphate (α-TCP, α-Ca3(PO4)2) receives great attention for bone repairing due to its biodegradability and capability of transformation to human bone's main inorganic components, hydroxyapatite (HAp). α-TCP porous scaffold is easily procurable by sintering of the low-temperature polymorph of TCP, β-TCR Still, porous body of α-TCP is too brittle to being handled and shaped, limiting its clinical application as implant materials. To improve mechanical properties of α-TCP porous scaffold, the present study focused on coating of a type of polysaccharides on α-TCP scaffolds. Gellan gum was chosen as the polysaccharide for coating because of its biodegradability as well as the potential acting as substrate for HAp deposition during hydration of α-TCP after exposure to body fluid. After coating of gellan gum on α-TCP scaffolds with porosity of 75 vol%, the compressive strength increased from 0.45 MPa to around 2.00 MPa. Among the coated scaffold, the maximum compressive strength, 3.97 MPa, was obtained on the scaffold with porosity of 63 vol%. Improvement of mechanical properties of α-TCP/gellan gum composites was achieved to show easy handling performance for a bone substitute for tissue repairing. The dissolving rate of the coated scaffolds was also controlled by adjusting the concentration of GG solutions. PMID:27455764

  10. Porous bioactive scaffold of aliphatic polyurethane and hydroxyapatite for tissue regeneration.

    PubMed

    Wang, Li; Li, Yubao; Zuo, Yi; Zhang, Li; Zou, Qin; Cheng, Lin; Jiang, Hong

    2009-04-01

    In this study, a new hydroxyapatite (HA)/polyurethane (PU) composite porous scaffold was developed by in situ polymerization. Aliphatic isophorone diisocyanate as a nontoxic and safe agent was adopted to produce the rigid segment in polyurethane polymerization. Hydroxyapatite powder was compounded in a PU polymer matrix during the polymeric process. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized by FTIR, XRD, DSC and SEM. The results show that the isophorone diisocyanate can react mildly with hydroxyl (-OH) groups of castor oil and a mild foaming action caused by the release of CO2 gas occurred simultaneously in the reactive process, thus producing a uniform porous structure of HA/PU scaffold. The HA/PU composite scaffold with a high HA content of about 60 wt% has a porosity of more than 78% and a pore size from 100 microm to 800 microm. The HA/PU scaffold exhibited good cytocompatibility estimated by co-culturing the scaffold with MG63 cells through MTT test. The porous composite scaffold has good homogenization and a perfect three-dimensional structure for cell migration and bone tissue ingrowth, and should have good prospects for bone tissue regeneration. PMID:19208942

  11. A Novel Porous Scaffold Fabrication Technique for Epithelial and Endothelial Tissue Engineering

    PubMed Central

    McHugh, Kevin J.; Tao, Sarah L.; Saint-Geniez, Magali

    2014-01-01

    Porous scaffolds have the ability to minimize transport barriers for both two- (2D) and three-dimensional tissue engineering. However, current porous scaffolds may be non-ideal for 2D tissues such as epithelium due to inherent fabrication-based characteristics. While 2D tissues require porosity to support molecular transport, pores must be small enough to prevent cell migration into the scaffold in order to avoid non-epithelial tissue architecture and compromised function. Though electrospun meshes are the most popular porous scaffolds used today, their heterogeneous pore size and intense topography may be poorly-suited for epithelium. Porous scaffolds produced using other methods have similar unavoidable limitations, frequently involving insufficient pore resolution and control, which make them incompatible with 2D tissues. In addition, many of these techniques require an entirely new round of process development in order to change material or pore size. Herein we describe “pore casting,” a fabrication method that produces flat scaffolds with deterministic pore shape, size, and location that can be easily altered to accommodate new materials or pore dimensions. As proof-of-concept, pore-cast poly(ε-caprolactone) (PCL) scaffolds were fabricated and compared to electrospun PCL in vitro using canine kidney epithelium, human colon epithelium, and human umbilical vein endothelium. All cell types demonstrated improved morphology and function on pore-cast scaffolds, likely due to reduced topography and universally small pore size. These results suggest that pore casting is an attractive option for creating 2D tissue engineering scaffolds, especially when the application may benefit from well-controlled pore size or architecture. PMID:23625319

  12. Micro-computed tomography based computational fluid dynamics for the determination of shear stresses in scaffolds within a perfusion bioreactor.

    PubMed

    Zermatten, Emilie; Vetsch, Jolanda Rita; Ruffoni, Davide; Hofmann, Sandra; Müller, Ralph; Steinfeld, Aldo

    2014-05-01

    Perfusion bioreactors are known to exert shear stresses on cultured cells, leading to cell differentiation and enhanced extracellular matrix deposition on scaffolds. The influence of the scaffold's porous microstructure is investigated for a polycaprolactone (PCL) scaffold with a regular microarchitecture and a silk fibroin (SF) scaffold with an irregular network of interconnected pores. Their complex 3D geometries are imaged by micro-computed tomography and used in direct pore-level simulations of the entire scaffold-bioreactor system to numerically solve the governing mass and momentum conservation equations for fluid flow through porous media. The velocity field and wall shear stress distribution are determined for both scaffolds. The PCL scaffold exhibited an asymmetric distribution with peak and plateau, while the SF scaffold exhibited a homogenous distribution and conditioned the flow more efficiently than the PCL scaffold. The methodology guides the design and optimization of the scaffold geometry. PMID:24492950

  13. Integrating sol-gel with cold plasmas modified porous polycaprolactone membranes for the drug-release of silver-sulfadiazine and ketoprofen

    NASA Astrophysics Data System (ADS)

    Mangindaan, Dave; Chen, Chao-Ting; Wang, Meng-Jiy

    2012-12-01

    A controlled release system composed of surface modified porous polycaprolactone (PCL) membranes combined with a layer of tetraorthosilicate (TEOS)-chitosan sol-gel was reported in this study. PCL is a hydrophobic, semi-crystalline, and biodegradable polymer with a relatively slow degradation rate. The drugs chosen for release experiments were silver-sulfadiazine (AgSD) and ketoprofen which were impregnated in the TEOS-chitosan sol-gel. The surface modification was achieved by O2 plasma and the surfaces were characterized by water contact angle (WCA) measurements, atomic force microscope (AFM), scanning electron microscope and electron spectroscopy for chemical analysis (ESCA). The results showed that the release of AgSD on O2 plasma treated porous PCL membranes was prolonged when compared with the pristine sample. On the contrary, the release rate of ketoprofen revealed no significant difference on pristine and plasma treated PCL membranes. The prepared PCL membranes showed good biocompatibility for the wound dressing biomaterial applications.

  14. Three-Dimensional Porous Biodegradable Polymeric Scaffolds Fabricated with Biodegradable Hydrogel Porogens

    PubMed Central

    Kim, Jinku; Yaszemski, Michael J.

    2009-01-01

    We have developed a new fabrication technique to create three-dimensional (3D) porous poly(ε-caprolactone fumarate) (PCLF) scaffolds using hydrogel microparticle porogens, as an alternative to overcome certain limitations of traditional scaffold fabrication techniques such as a salt leaching method. Both natural hydrogel, gelatin, and synthetic hydrogel, poly(ethylene glycol) sebacic acid diacrylate, were used as porogens to fabricate 3D porous PCLF scaffolds. Hydrogel microparticles were prepared by a single emulsion technique with the particle size in the range of 100–500 μm after equilibrium in water. The pore size distribution, porosity, pore interconnectivity, and spatial pore heterogeneity of the 3D PCLF scaffolds were assessed using micro-computed tomography and imaging analysis. Scaffolds fabricated with the hydrogel porogens had higher porosity and pore interconnectivity as well as more homogeneous spatial pore distribution, compared to the scaffolds made from the salt leaching process. Compressive moduli of the scaffolds were also measured and showed that lower porosity yielded greater modulus of the scaffolds. Overall, the new fabrication technology using hydrogel porogens may be beneficial for certain tissue engineering applications. PMID:19216632

  15. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    NASA Astrophysics Data System (ADS)

    Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

    2010-12-01

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  16. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency.

    PubMed

    Zhou, Xue-Hua; Wei, Dai-Xu; Ye, Hai-Mu; Zhang, Xiaocan; Meng, Xiaoyu; Zhou, Qiong

    2016-10-01

    Hydrophilic porous polymer scaffolds have shown great application in drug controlled release, while their mechanical properties and release efficiency still need further improvement. In the current study, the porous scaffolds of polyvinyl alcohol (PVA) prepared by quenching in liquid nitrogen and freeze drying method from different original concentration aqueous solutions were fabricated. Among different PVA scaffolds, the scaffold stemming from 18wt.% PVA aqueous solution exhibited the best mechanical properties, 10.5 and 1.54MPa tensile strengths for the dry and hydrogel states respectively. The inner morphology of such PVA scaffold was unidirectional honeycomb-like structure with average microchannel section of 0.5μm, and the scaffold showed porosity of 71% and rather low ciprofloxacin (Cip) release efficiency of 54.5%. Then poly(ethylene glycol) (PEG) was incorporated to enhance the Cip release efficiency. The release efficiency reached 89.3% after introducing 10wt.% PEG, and the mechanical properties of scaffold decreased slightly. Various characterization methods demonstrated that, adding PEG could help to enlarge the microchannel, create extra holes on the channel walls, weaken the interaction between PVA chains and Cip, and miniaturize the crystal size of Cip. All these effects benefit the dissolution and diffusion of Cip from scaffold, increasing its release capability. Moreover, based on biocompatible material composition, PVA/PEG scaffold is a non-cytotoxicity and have been verified that it can promote cell growth. And PVA/PEG scaffolds loaded with Cip can completely inhibit the growth of microorganism because of Cip sustaining release. The PVA scaffold would have a good potential application in tissue engineering, demanding high strength and well drug release capability. PMID:27287128

  17. Porous poly(para-phenylene) scaffolds for load-bearing orthopedic applications.

    PubMed

    DiRienzo, Amy L; Yakacki, Christopher M; Frensemeier, Mareike; Schneider, Andreas S; Safranski, David L; Hoyt, Anthony J; Frick, Carl P

    2014-02-01

    The focus of this study was to fabricate and investigate the mechanical behavior of porous poly(para-phenylene) (PPP) for potential use as a load-bearing orthopedic biomaterial. PPPs are known to have exceptional mechanical properties due to their aromatic backbone; however, the manufacturing and properties of PPP porous structures have not been previously investigated. Tailored porous structures with either small (150-250µm) or large (420-500µm) pore sizes were manufactured using a powder-sintering/salt-leaching technique. Porosities were systematically varied using 50 to 90vol%. Micro-computed tomography (µCT) and scanning electron microscopy (SEM) were used to verify an open-cell structure and investigate pore morphology of the scaffolds. Uniaxial mechanical behavior of solid and porous PPP samples was characterized through tensile and compressive testing. Both modulus and strength decreased with increasing porosity and matched well with foam theory. Porous scaffolds showed a significant decrease in strain-to-failure (<4%) under tensile loading and experienced linear elasticity, plastic deformation, and densification under compressive loading. Over the size ranges tested, pore size did not significantly influence the mechanical behavior of the scaffolds on a consistent basis. These results are discussed in regards to use of porous PPP for orthopedic applications and a prototype porous interbody fusion cage is presented. PMID:24374261

  18. Label-free magnetic resonance imaging to locate live cells in three-dimensional porous scaffolds

    PubMed Central

    Abarrategi, A.; Fernandez-Valle, M. E.; Desmet, T.; Castejón, D.; Civantos, A.; Moreno-Vicente, C.; Ramos, V.; Sanz-Casado, J. V.; Martínez-Vázquez, F. J.; Dubruel, P.; Miranda, P.; López-Lacomba, J. L.

    2012-01-01

    Porous scaffolds are widely tested materials used for various purposes in tissue engineering. A critical feature of a porous scaffold is its ability to allow cell migration and growth on its inner surface. Up to now, there has not been a method to locate live cells deep inside a material, or in an entire structure, using real-time imaging and a non-destructive technique. Herein, we seek to demonstrate the feasibility of the magnetic resonance imaging (MRI) technique as a method to detect and locate in vitro non-labelled live cells in an entire porous material. Our results show that the use of optimized MRI parameters (4.7 T; repetition time = 3000 ms; echo time = 20 ms; resolution 39 × 39 µm) makes it possible to obtain images of the scaffold structure and to locate live non-labelled cells in the entire material, with a signal intensity higher than that obtained in the culture medium. In the current study, cells are visualized and located in different kinds of porous scaffolds. Moreover, further development of this MRI method might be useful in several three-dimensional biomaterial tests such as cell distribution studies, routine qualitative testing methods and in situ monitoring of cells inside scaffolds. PMID:22442095

  19. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.

    PubMed

    Senatov, F S; Niaza, K V; Zadorozhnyy, M Yu; Maksimkin, A V; Kaloshkin, S D; Estrin, Y Z

    2016-04-01

    In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700μm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME. PMID:26710259

  20. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Dong, Zhihong; Li, Yubao; Zou, Qin

    2009-04-01

    Porous scaffold containing 30 wt% nano-hydroxyapatite (n-HA) and 70 wt% polyurethane (PU) from castor oil was prepared by a foaming method and investigated by X-ray diffraction (XRD), Fourier transform infrared absorption (FTIR), scanning electron microscopy (SEM) techniques. The results show that n-HA particles disperse homogeneously in the PU matrix. The porous scaffold has not only macropores of 100-800 μm in size but also a lot of micropores on the walls of macropores. The porosity and compressive strength of scaffold are 80% and 271 kPa, respectively. After soaking in simulated body fluid (SBF), hydrolysis and deposition partly occur on the scaffold. The biological evaluation in vitro and in vivo shows that the n-HA/PU scaffold is non-cytotoxic and degradable. The porous structure provides a good microenvironment for cell adherence, growth and proliferation. The n-HA/PU composite scaffold can be satisfied with the basic requirement for tissue engineering, and has the potential to be applied in repair and substitute of human menisci of the knee-joint and articular cartilage.

  1. [Preparation of elastic porous cell scaffold fabricated with combined polydimethylsiloxane (PDMS) and hydroxyapatite (HA)].

    PubMed

    Yang, Yang; Lan, Ding; Huang, Yan; Li, Yanming; Wang, Yuren; Sun, Lianwen; Fan, Yubo

    2014-06-01

    Polydimethylsiloxane (PDMS) and hydroxyapatite (HA) were combined in our laboratory to fabricate an elastic porous cell scaffold with pore-forming agent, and then the scaffold was used as culture media for rat bone marrow derived mesenchymal stem cells (rBMSCs). Different porous materials (square and circular in shape) were prepared by different pore-forming agents (NaCl or paraffin spheres) with adjustable porosity (62%-76%). The HA crystals grew on the wall of hole when the material was exposed to SBF solutions, showing its biocompatibility and ability to support the cells to attach on the materials. PMID:25219247

  2. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    PubMed

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering. PMID:26592544

  3. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K.

    PubMed

    Muthukumar, Thangavelu; Aravinthan, Adithan; Sharmila, Judith; Kim, Nam Soo; Kim, Jong-Hoon

    2016-11-01

    In this study, suitable scaffold materials for bone tissue engineering were successfully prepared using fish scale collagen, hydroxyapatite, chitosan, and beta-tricalcium phosphate. Porous composite scaffolds were prepared by freeze drying method. The Korean traditional medicinal ginseng compound K, a therapeutic agent for the treatment of osteoporosis that reduces inflammation and enhances production of bone morphogenetic protein-2, was incorporated into the composite scaffold. The scaffold was characterized for pore size, swelling, density, degradation, mineralization, cell viability and attachment, and its morphological features were examined using scanning electron microscopy. This characterization and in vitro analysis showed that the prepared scaffold was biocompatible and supported the growth of MG-63 cells, and therefore has potential as an alternative approach for bone regeneration. PMID:27516305

  4. Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration.

    PubMed

    Li, Guicai; Zhang, Luzhong; Wang, Caiping; Zhao, Xueying; Zhu, Changlai; Zheng, Yanhong; Wang, Yaling; Zhao, Yahong; Yang, Yumin

    2014-01-30

    The aim of this study was to evaluate the feasibility of using 3-aminopropyltriethoxysilane (APTE) silanization treatment for modification and biocompatibility of lyophilized chitosan porous scaffolds. The process is beneficial for biomaterial development due to its low toxicity and simplicity. The silanization treatment with low APTE concentration showed no significant influence on the morphology of chitosan scaffolds, while a skin-like surface was observed for the silanized scaffolds treated with high APTE concentration. The porosity and surface amino densities were increased after silanization whereas the swelling ratio was reduced, and the degradation ratio in PBS and anti-acid degradation properties of the silanized chitosan scaffolds were significantly improved. The in vitro Schwann cells culture demonstrated that the silanized scaffolds with 8% APTE could obviously facilitate the attachment and proliferation of Schwann cells, indicating great potential for the application in peripheral nerve regeneration. PMID:24299831

  5. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds.

    PubMed

    Jones, Gemma L; Walton, Robin; Czernuszka, Jan; Griffiths, Sarah L; El Haj, Alicia J; Cartmell, Sarah H

    2010-09-15

    There is a need in tissue-engineering for 3D scaffolds that mimic the natural extracellular matrix of bone to enhance cell adhesion, proliferation, and differentiation. The scaffold is also required to be degradable. A highly porous scaffold has been developed to incorporate two of the extracellular components found in bone-collagen and hydroxyapatite (HA). The scaffold's collagen component is an afibrillar monomeric type I atelocollagen extracted from foetal calf's skin. This provided a novel environment for the inclusion of HA powder. Five hundred thousand primary human osteoblasts were seeded onto 4 mm cubed scaffolds that varied in ratio of HA to collagen. Weight ratios of 1:99, 25:75, 50:50, and 75:25 hydroxyapatite:collagen (HA:Collagen) were analysed. The scaffolds plus cells were cultured for 21 days. DNA assays and live/dead viability staining demonstrated that all of the scaffolds supported cell proliferation and viability. An alkaline phosphatase assay showed similar osteoblast phenotype maintenance on all of the 3D scaffolds analysed at 21 days. MicroCT analysis demonstrated an increase in total sample volume (correlating to increase in unmineralised matrix production). An even distribution of HA throughout the collagen matrix was observed using this technique. Also at 3 weeks, reductions in the percentage of the mineralised phase of the constructs were seen. These results indicate that each of the ratios of HA/collagen scaffolds have great potential for bone tissue engineering. PMID:20694991

  6. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds.

    PubMed

    Costantini, Marco; Colosi, Cristina; Mozetic, Pamela; Jaroszewicz, Jakub; Tosato, Alessia; Rainer, Alberto; Trombetta, Marcella; Święszkowski, Wojciech; Dentini, Mariella; Barbetta, Andrea

    2016-05-01

    In the design of scaffolds for tissue engineering applications, morphological parameters such as pore size, shape, and interconnectivity, as well as transport properties, should always be tailored in view of their clinical application. In this work, we demonstrate that a regular and ordered porous texture is fundamental to achieve an even cell distribution within the scaffold under perfusion seeding. To prove our hypothesis, two sets of alginate scaffolds were fabricated using two different technological approaches of the same method: gas-in-liquid foam templating. In the first one, foam was obtained by insufflating argon in a solution of alginate and a surfactant under stirring. In the second one, foam was generated inside a flow-focusing microfluidic device under highly controlled and reproducible conditions. As a result, in the former case the derived scaffold (GF) was characterized by polydispersed pores and interconnects, while in the latter (μFL), the porous structure was highly regular both with respect to the spatial arrangement of pores and interconnects and their monodispersity. Cell seeding within perfusion bioreactors of the two scaffolds revealed that cell population inside μFL scaffolds was quantitatively higher than in GF. Furthermore, seeding efficiency data for μFL samples were characterized by a lower standard deviation, indicating higher reproducibility among replicates. Finally, these results were validated by simulation of local flow velocity (CFD) inside the scaffolds proving that μFL was around one order of magnitude more permeable than GF. PMID:26952471

  7. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release.

    PubMed

    Kim, Hae-Won; Knowles, Jonathan C; Kim, Hyoun-Ee

    2005-03-01

    The purpose of this study is to improve hydroxyapatite (HA) porous scaffolds via coating with biological polymer-HA hybrids for use as wound healing and tissue regeneration. Highly porous HA scaffolds, fabricated by a polyurethane foam reticulate method, were coated with hybrid coating solution, consisting of poly(epsilon-caprolactone) (PCL), HA powders, and the antibiotic Vancomycin. The PCL to HA ratio was fixed at 1.5 and the drug amounts were varied [drug/(PCL + HA) = 0.02 and 0.04]. For the purpose of comparison, bare HA scaffold without the hybrid coating layer was also loaded with Vancomycin via an immersion-adsorption method. The hybrid coating structure and morphology were observed with Fourier transformed infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The effects of the hybrid coating on the compressive mechanical properties and the in vitro drug release of the scaffolds were investigated in comparison with bare HA scaffold. The PCL-HA hybrid coating altered the scaffold pore structure slightly, resulting in thicker stems and reduced porosity. With the hybrid coating, the HA scaffold responded to an applied compressive stress more effectively without showing a brittle failure. This was attributed to the shielding and covering of the framework surface by the coating layer. The encapsulated drugs within the coated scaffold was released in a highly sustained manner as compared to the rapid release of drugs directly adsorbed on the pure HA scaffold. These findings suggest that the coated HA scaffolds expand their applicability in hard tissue regeneration and wound healing substitutes delivering bioactive molecules. PMID:15744609

  8. Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering.

    PubMed

    Shao, Zhenxing; Zhang, Xin; Pi, Yanbin; Yin, Ling; Li, La; Chen, Haifeng; Zhou, Chunyan; Ao, Yingfang

    2015-01-01

    Synovium-derived mesenchymal stem cells (SMSC) have been studied for over a decade since first being successfully isolated in 2001. These cells demonstrate the most promising therapeutic efficacy for musculoskeletal regeneration of the MSC family, particularly for cartilage regeneration. However, the mobilization and transfer of MSCs to defective or damaged tissues and organs in vivo with high accuracy and efficiency has been a major problem in tissue engineering (TE). In the present study, we identified a seven amino acid peptide sequence [SMSCs-affinity peptide (LTHPRWP; L7)] through phage display technology that has a high specific affinity to SMSCs. Our analysis suggested that L7 efficiently and specifically interacted with SMSCs without any species specificity. Thereafter, L7 was covalently conjugated onto both polycaprolactone (PCL) electrospun meshes and human decalcified bone scaffolds (hDBSc) to investigate its TE applications. After 24 h coculture with human SMSCs (hSMSCs), L7-conjugated PCL electrospun meshes had significantly more adherent hSMSCs than the control group, and the cells expanded well. Similar results were obtained using hDBSs. These results suggest that the novel L7 peptide sequence has a high specific affinity to SMSCs. Covalently conjugating this peptide to either artificial polymer material (PCL mesh) or natural material (hDBS) significantly enhances the adhesion of SMSCs. This method is applicable to a wide range of potential SMSC-based TE applications, particularly to cartilage regeneration, via surface modification on various type of materials. PMID:24659568

  9. Fabrication of alumina porous scaffolds with aligned oriented pores for bone tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Sarhadi, Fatemeh; Shafiee Afarani, Mahdi; Mohebbi-Kalhori, Davod; Shayesteh, Masoud

    2016-04-01

    In the present study, porous alumina scaffolds with specific orientation and anisotropic properties are fabricated for application in bone tissue repair. The scaffolds with double shape pores, tubular oriented and isotropic rounded pores, were prepared using alumina and silica as starting materials by the slip casting route. Milled polyurethane foam and silk fibers were applied as replica materials as well. The effect of fiber types and diameter and number of fibers on the microstructure and pore size was studied. Moreover, different characteristics such as porosity, density, orientation, flexural strength and compressive strength of the samples were investigated. Results showed that various fibers with different diameters and numbers led to forming the pores with different pore sizes, microstructure and consequently changes in the physical and mechanical properties. In addition, the simultaneous presence of fibers and particles led to more porous scaffolds. The oriented tiny micro-tube and rounded pores were observed in all porous ceramic scaffolds. Mechanical testing showed an anisotropy in the mechanical behaviors such that higher strengths were observed in the oriented pore direction than that of transverse. With increasing the number and diameter of silk fibers, the scaffolds with a high porosity up to 68 vol% and proper flexural strength were obtained.

  10. Porous ovalbumin scaffolds with tunable properties: a resource-efficient biodegradable material for tissue engineering applications.

    PubMed

    Luo, Baiwen; Choong, Cleo

    2015-01-01

    Natural materials are promising alternatives to synthetic materials used in tissue engineering applications as they have superior biocompatibility and promote better cell attachment and proliferation. Ovalbumin, a natural polymer found in avian egg white, is an example of a nature-derived material. Despite the availability and reported biocompatibility of ovalbumin, limited research has been carried out to investigate the efficacy of ovalbumin-based scaffolds for adipose tissue engineering applications. Hence, the current study was carried out to investigate the effect of different crosslinkers on ovalbumin scaffold properties as first step towards the development of ovalbumin-based scaffolds for adipose tissue engineering applications. In this study, highly porous three-dimensional scaffolds were fabricated by using three different crosslinkers: glutaraldehyde, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and 1,4-butanediol diglycidyl ether. Results showed that the overall scaffold properties such as morphology, pore size and mechanical properties could be modulated based on the type and concentration of crosslinkers used during the fabrication process. Subsequently, the efficacy of the different scaffolds for supporting cell proliferation was investigated. In vitro degradation was also carried on for the best scaffold based on the mechanical and cellular results. Overall, this study is a demonstration of the viability of ovalbumin-based scaffolds as cell carriers for soft tissue engineering applications. PMID:25158688

  11. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    PubMed

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications. PMID:25370308

  12. [Study on the development of Ag-nano-hydroxyapatite/polyamide66 porous scaffolds with surface mineralization].

    PubMed

    Fan, Jianbo; Chang, Shan; Dong, Mina; Huang, Di; Li, Jidong; Jiang, Dianming

    2012-12-01

    Bacterial infection after implantation of bone tissue engineering scaffolds is still a serious clinical problem. Ag-nano-hydroxyapatite/polyamide66 (Ag-nHA/PA66) antibacterial composite scaffold were prepared with phase-inversion method in this study. The scaffolds were mineralized in saturated calcium phosphate solution at 37 degrees C for 1 day. The microstructure and the newly formed nano-apatite deposition on the scaffolds before and after mineralization were observed using scanning electron microscopy (SEM). In order to investigate the release behaviors of Ag+, the Ag-nHA/PA66 scaffolds were immersed into 5 ml PBS at 37 degrees C for a different period between 3 h and 168 h before and after mineralization. Then the samples were cultured with E. coli (8099) to test the antibacterial effect of the scaffolds. The results showed that, after mineralization, Ag-nHA/PA66 porous scaffolds still possessed a good inter-connection and a new apatite layer was formed on the surface of the scaffolds. The average macropore size was 626.61 +/- 141.94 microm, the porosity was 76.89 +/- 8.21% and the compressive strength was 2.94 +/- 1.12 MPa. All these physical parameters had no significant difference from those of the un-mineralized scaffolds. The Ag+ release of the scaffolds with and without mineralization was fast within 1 day and then kept slow and stable after 1 day. The antibacterial test confirmed that after mineralization the scaffolds had good antibacterial effects on E. coli. PMID:23469542

  13. Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds.

    PubMed

    Nakamatsu, Javier; Torres, Fernando G; Troncoso, Omar P; Min-Lin, Yuan; Boccaccini, Aldo R

    2006-12-01

    Natural biodegradable polymers were processed by different techniques for the production of porous structures for tissue engineering scaffolds. Potato, corn, and sweet potato starches and chitosan, as well as blends of these, were characterized and used in the experiments. The techniques used to produce the porous structures included a novel solvent-exchange phase separation technique and the well-established thermally induced phase separation method. Characterization of the open pore structures was performed by measuring pore size distribution, density, and porosity of the samples. A wide range of pore structures ranging from 1 to 400 microm were obtained. The mechanisms of pore formation are discussed for starch and chitosan scaffolds. Pore morphology in starch scaffolds seemed to be determined by the initial freezing temperature/freezing rate, whereas in chitosan scaffolds the shape and size of pores may have been determined by the processing route used. The mechanical properties of the scaffolds were assessed by indentation tests, showing that the indentation collapse strength depends on the pore geometry and the material type. Bioactivity and degradation of the potential scaffolds were assessed by immersion in simulated body fluid. PMID:17154462

  14. Evaluation of 3D nano-macro porous bioactive glass scaffold for hard tissue engineering.

    PubMed

    Wang, S; Falk, M M; Rashad, A; Saad, M M; Marques, A C; Almeida, R M; Marei, M K; Jain, H

    2011-05-01

    Recently, nano-macro dual-porous, three-dimensional (3D) glass structures were developed for use as bioscaffolds for hard tissue regeneration, but there have been concerns regarding the interconnectivity and homogeneity of nanopores in the scaffolds, as well as the cytotoxicity of the environment deep inside due to limited fluid access. Therefore, mercury porosimetry, nitrogen absorption, and TEM have been used to characterize nanopore network of the scaffolds. In parallel, viability of MG 63 human osteosarcoma cells seeded on scaffold surface was investigated by fluorescence, confocal and electron microscopy methods. The results show that cells attach, migrate and penetrate inside the glass scaffold with high proliferation and viability rate. Additionally, scaffolds were implanted under the skin of a male New Zealand rabbit for in vivo animal test. Initial observations show the formation of new tissue with blood vessels and collagen fibers deep inside the implanted scaffolds with no obvious inflammatory reaction. Thus, the new nano-macro dual-porous glass structure could be a promising bioscaffold for use in regenerative medicine and tissue engineering for bone regeneration. PMID:21445655

  15. Bilayer porous scaffold based on poly-(ɛ-caprolactone) nanofibrous membrane and gelatin sponge for favoring cell proliferation

    NASA Astrophysics Data System (ADS)

    Zhou, Zhihua; Zhou, Yang; Chen, Yiwang; Nie, Huarong; Wang, Yang; Li, Fan; Zheng, Yan

    2011-12-01

    Electrospun poly-(ɛ-caprolactone) (PCL) nanofibers has been widely used in the medical prosthesis. However, poor hydrophilicity and the lack of natural recognition sites for covalent cell-recognition signal molecules to promote cell attachment have limited its utility as tissue scaffolds. In this study, Bilayer porous scaffolds based on PCL electrospun membranes and gelatin (GE) sponges were fabricated through soft hydrolysis of PCL electrospun followed by grafting gelatin onto the fiber surface, through crosslinking and freeze drying treatment of additional gelatin coat and grafted gelatin surface. GE sponges were stably anchored on PCL membrane surface with the aid of grafted GE molecules. The morphologies of bilayer porous scaffolds were observed through SEM. The contact angle of the scaffolds was 0°, the mechanical properties of scaffolds were measured by tensile test, Young's moduli of PCL scaffolds before and after hydrolysis are 66-77.3 MPa and 62.3-75.4 MPa, respectively. Thus, the bilayer porous scaffolds showed excellent hydrophilic surface and desirable mechanical strength due to the soft hydrolysis and GE coat. The cell culture results showed that the adipose derived mesenchymal stem cells did more favor to adhere and grow on the bilayer porous scaffolds than on PCL electrospun membranes. The better cell affinity of the final bilayer scaffolds not only attributed to the surface chemistry but also the introduction of bilayer porous structure.

  16. Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer.

    PubMed

    Kim, Sung Won; Jung, Hyun-Do; Kang, Min-Ho; Kim, Hyoun-Ee; Koh, Young-Hag; Estrin, Yuri

    2013-07-01

    This paper reports a new approach to fabricating biocompatible porous titanium with controlled pore structure and net-shape. The method is based on using sacrificial Mg particles as space holders to produce compacts that are mechanically stable and machinable. Using magnesium granules and Ti powder, Ti/Mg compacts with transverse rupture strength (~85 MPa) sufficient for machining were fabricated by warm compaction, and a complex-shape Ti scaffold was eventually produced by removal of Mg granules from the net-shape compact. The pores with the average size of 132-262 μm were well distributed and interconnected. Due to anisotropy and alignment of the pores the compressive strength varied with the direction of compression. In the case of pores aligned with the direction of compression, the compressive strength values (59-280 MPa) high enough for applications in load bearing implants were achieved. To verify the possibility of controlled net-shape, conventional machining process was performed on Ti/Mg compact. Compact with screw shape and porous Ti scaffold with hemispherical cup shape were fabricated by the results. Finally, it was demonstrated by cell tests using MC3T3-E1 cell line that the porous Ti scaffolds fabricated by this technique are biocompatible. PMID:23623100

  17. Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering

    PubMed Central

    Lai, Jui-Yang; Li, Ya-Ting; Cho, Ching-Hsien; Yu, Ting-Chun

    2012-01-01

    Recent studies reflect the importance of using naturally occurring biopolymers as three-dimensional corneal keratocyte scaffolds and suggest that the porous structure of gelatin materials may play an important role in controlling nutrient uptake. In the current study, the authors further consider the application of carbodiimide cross-linked porous gelatin as an alternative to collagen for corneal stromal tissue engineering. The authors developed corneal keratocyte scaffolds by nanoscale modification of porous gelatin materials with chondroitin sulfate (CS) using carbodiimide chemistry. Scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy showed that the amount of covalently incorporated polysaccharide was significantly increased when the CS concentration was increased from 0% to 1.25% (w/v). In addition, as demonstrated by dimethylmethylene blue assays, the CS content in these samples was in the range of 0.078–0.149 nmol per 10 mg scaffold. When compared with their counterparts without CS treatment, various CS-modified porous gelatin membranes exhibited higher levels of water content, light transmittance, and amount of permeated nutrients but possessed lower Young’s modulus and resistance against protease digestion. The hydrophilic and mechanical properties of scaffolds modified with 0.25% CS were comparable with those of native corneas. The samples from this group were biocompatible with the rabbit corneal keratocytes and showed enhanced proliferative and biosynthetic capacity of cultured cells. In summary, the authors found that the nanoscale-level modification has influence on the characteristics and cell-material interactions of CS-containing gelatin hydrogels. Porous membranes with a CS content of 0.112 ± 0.003 nmol per 10 mg scaffold may hold potential for use in corneal stromal tissue engineering. PMID:22403490

  18. Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering.

    PubMed

    Lai, Jui-Yang; Li, Ya-Ting; Cho, Ching-Hsien; Yu, Ting-Chun

    2012-01-01

    Recent studies reflect the importance of using naturally occurring biopolymers as three-dimensional corneal keratocyte scaffolds and suggest that the porous structure of gelatin materials may play an important role in controlling nutrient uptake. In the current study, the authors further consider the application of carbodiimide cross-linked porous gelatin as an alternative to collagen for corneal stromal tissue engineering. The authors developed corneal keratocyte scaffolds by nanoscale modification of porous gelatin materials with chondroitin sulfate (CS) using carbodiimide chemistry. Scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy showed that the amount of covalently incorporated polysaccharide was significantly increased when the CS concentration was increased from 0% to 1.25% (w/v). In addition, as demonstrated by dimethylmethylene blue assays, the CS content in these samples was in the range of 0.078-0.149 nmol per 10 mg scaffold. When compared with their counterparts without CS treatment, various CS-modified porous gelatin membranes exhibited higher levels of water content, light transmittance, and amount of permeated nutrients but possessed lower Young's modulus and resistance against protease digestion. The hydrophilic and mechanical properties of scaffolds modified with 0.25% CS were comparable with those of native corneas. The samples from this group were biocompatible with the rabbit corneal keratocytes and showed enhanced proliferative and biosynthetic capacity of cultured cells. In summary, the authors found that the nanoscale-level modification has influence on the characteristics and cell-material interactions of CS-containing gelatin hydrogels. Porous membranes with a CS content of 0.112 ± 0.003 nmol per 10 mg scaffold may hold potential for use in corneal stromal tissue engineering. PMID:22403490

  19. Influence of the laser assisted fabricated 3D porous scaffolds from bioceramoplasts of micron and nano sizes on culture of MMSC

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I.; Volchkov, S.

    2013-11-01

    The objective of the investigation was to test the biocompatibility of 3D porous biopolymer matrices (tissue-cellular scaffolds), made of biocompatible and bioresorbable polymers (polycarbonate, polyetheretherketone /PEEK/, polycaprolactone), including the materials with biocompatible oxide ceramics additive (TiO2, Al2O3, ZrO2 and hydroxyapatite) of micron and nano sizes, for tissue-engineering purposes. The porous samples were prepared via a layer-by-layer SLS method. The surface microstructures and their roughness were analyzed by the optical microscopy equipped with the cell analysis software. The cellular morphology, proliferative activity and adhesion of the polymeric and ceramopolymeric matrices were the subjects for comparison. The study showed that all the tested materials posessed biocompatible properties. The experimentally estimated cell duplication speed per day turned out to be maximal for polycarbonate (0.279 duplications per day) and for PEEK + Al2O3 = 3:1 group (0.30 dupl/day) against 0.387 dupl/day for the reference sample and 0.270 dupl/day for the group of cells placed close to the pure titanium samples.

  20. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction.

    PubMed

    Brown, Andrew; Zaky, Samer; Ray, Herbert; Sfeir, Charles

    2015-01-01

    Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices. PMID:25234156

  1. Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations.

    PubMed

    Buckley, Conor Timothy; O'Kelly, Kevin Unai

    2010-05-01

    Tissue-engineering scaffold-based strategies have suffered from limited cell depth viability when cultured in vitro, with viable cells existing within the outer periphery of the fluid-scaffold interface. This is primarily believed to be due to the lack of nutrient delivery into and waste removal from the inner regions of the scaffold construct. This work develops a hydroxyapatite trimodal porous scaffold architecture (i.e., a scaffold providing a discrete domain for cell occupancy and a separate domain for nutrient delivery) through a freeze drying process. Unidirectional channels (500 microm diameter) were incorporated through CNC machining with total combined apparent porosities of 85.1% +/- 0.22%. Effective diffusion coefficients for the bimodal phase (consisting of micro- and meso-pores, without channels) were also determined (7.9 x 10(-10) m(2) s(-1)). Trimodal scaffolds also demonstrated enhanced permeability values (approximately 18-fold increase) compared with bimodal scaffold architectures. In vitro experiments were used to assess initial seeding efficiency and distribution as well as cell viability. The presence of unidirectional channels significantly enhanced initial cell seeding distribution throughout the scaffold depth, while maintaining relatively high seeding efficiencies (67.7% +/- 2.2% for trimodal, 79.1% +/- 2.1% for bimodal scaffolds). Numerical models demonstrated the effectiveness and efficacy of incorporating channels to increase the core oxygen concentration, with the accuracy of these models improved by using experimentally measured cellular oxygen consumption rates and effective diffusion coefficients. The presence of channels had a positive influence in minimizing the concentration gradients compared with bimodal scaffolds for the same cell density distributions. PMID:20166121

  2. Biodegradable CSMA/PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue Engineering.

    PubMed

    Liao, JinFeng; Qu, Ying; Chu, BingYang; Zhang, XiaoNing; Qian, ZhiYong

    2015-01-01

    Owing to the limited repair capacity of articular cartilage, it is essential to develop tissue-engineered cartilage for patients suffering from joint disease and trauma. Herein, we prepared a novel hybrid scaffold composed of methacrylated chondroitin sulfate (CSMA), poly(ethylene glycol) methyl ether-ε-caprolactone-acryloyl chloride (MPEG-PCL-AC, PECA was used as abbreviation for MPEG-PCL-AC) and graphene oxide (GO) and evaluated its potential application in cartilage tissue engineering. To mimic the natural extracellular matrix (ECM) of cartilage, the scaffold had an adequate pore size, porosity, swelling ability, compression modulus and conductivity. Cartilage cells contacted with the scaffold remained viable and showed growth potential. Furthermore, CSMA/PECA/GO scaffold was biocompatible and had a favorable degradation rate. In the cartilage tissue repair of rabbit, Micro-CT and histology observation showed the group of CSMA/PECA/GO scaffold with cellular supplementation had better chondrocyte morphology, integration, continuous subchondral bone, and much thicker newly formed cartilage compared with scaffold group and control group. Our results show that the CSMA/PECA/GO hybrid porous scaffold can be applied in articular cartilage tissue engineering and may have great potential to in other types of tissue engineering applications. PMID:25961959

  3. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    PubMed Central

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  4. Biodegradable CSMA/PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue Engineering

    PubMed Central

    Liao, JinFeng; Qu, Ying; Chu, BingYang; Zhang, XiaoNing; Qian, ZhiYong

    2015-01-01

    Owing to the limited repair capacity of articular cartilage, it is essential to develop tissue-engineered cartilage for patients suffering from joint disease and trauma. Herein, we prepared a novel hybrid scaffold composed of methacrylated chondroitin sulfate (CSMA), poly(ethylene glycol) methyl ether-ε-caprolactone-acryloyl chloride (MPEG-PCL-AC, PECA was used as abbreviation for MPEG-PCL-AC) and graphene oxide (GO) and evaluated its potential application in cartilage tissue engineering. To mimic the natural extracellular matrix (ECM) of cartilage, the scaffold had an adequate pore size, porosity, swelling ability, compression modulus and conductivity. Cartilage cells contacted with the scaffold remained viable and showed growth potential. Furthermore, CSMA/PECA/GO scaffold was biocompatible and had a favorable degradation rate. In the cartilage tissue repair of rabbit, Micro-CT and histology observation showed the group of CSMA/PECA/GO scaffold with cellular supplementation had better chondrocyte morphology, integration, continuous subchondral bone, and much thicker newly formed cartilage compared with scaffold group and control group. Our results show that the CSMA/PECA/GO hybrid porous scaffold can be applied in articular cartilage tissue engineering and may have great potential to in other types of tissue engineering applications. PMID:25961959

  5. Microwave-assisted synthesis of porous chitosan-modified montmorillonite-hydroxyapatite composite scaffolds.

    PubMed

    Kar, Sumanta; Kaur, Tejinder; Thirugnanam, A

    2016-01-01

    In this study, a porous chitosan-organically modified montmorillonite-hydroxyapatite (CS-OM-HA) composite scaffold was developed by combining microwave irradiation and gas foaming method. Hydroxyapatite (HA) particles of size ∼ 65 nm were synthesized and characterized by X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The prepared composite scaffolds were characterized using ATR-FTIR, XRD, mercury intrusion porosimeter (MIP) and scanning electron microscopy (SEM) studies. The synergistic effect of HA and OM on the mechanical and in vitro biological properties (swelling, degradation, protein adsorption and bioactivity) of the composite scaffolds were evaluated. Swelling, degradation, mechanical property, bioactivity and protein adsorption studies of CS-OM-HA composite scaffolds have shown desirable results in comparison with the pure CS and CS-OM composite scaffolds. CS-OM-HA composite scaffolds were also found to be non-cytotoxic to MG 63 osteoblast cell lines. From the study, it can be concluded that the novel CS-OM-HA composite scaffold with improved mechanical and in vitro biological properties has wide potential in non-load bearing bone tissue engineering applications. PMID:26505953

  6. pH-responsive drug release from functionalized electrospun poly(caprolactone) scaffolds under simulated in vivo environment.

    PubMed

    Jassal, Manisha; Boominathan, Vijay P; Ferreira, Tracie; Sengupta, Sukalyan; Bhowmick, Sankha

    2016-09-01

    The difference in the tumor environment from the normal healthy tissue can be therapeutically exploited to develop new strategies for controlled and site-specific drug delivery. In the present study, a continuous flow system is designed to represent the in vivo environment of a tumor tissue and drug release is studied at different pH that represents normal tissue pH, tumor tissue pH, and stomach pH. The results obtained from these experiments were translated to a human embryonic kidney cell culture system and the effect of drug released from these functionalized PCL scaffolds on cell viability was studied. A significant decrease in cell viability was observed with the doxorubicin hydrochloride concentration that would be released at acidic pH, either present as a result of tumor extracellular environment or could be achieved via fabrication of a composite scaffold with a polyvinyl alcohol hydrogel containing acid. In the end, a study using zebrafish as an animal model is also undertaken in order to study the drug release from the scaffolds in vivo. PMID:27316576

  7. PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering

    NASA Astrophysics Data System (ADS)

    Lu, Hongxu; Oh, Hwan Hee; Kawazoe, Naoki; Yamagishi, Kozo; Chen, Guoping

    2012-12-01

    In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA-collagen and PLLA-gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.

  8. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. PMID:27612756

  9. Porous Hydroxyapatite Bioceramic Scaffolds for Drug Delivery and Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Loca, Dagnija; Locs, Janis; Salma, Kristine; Gulbis, Juris; Salma, Ilze; Berzina-Cimdina, Liga

    2011-10-01

    The conventional methods of supplying a patient with pharmacologic active substances suffer from being very poorly selective, so that damage can occurs to the healthy tissues and organs, different from the intended target. In addition, high drug doses can be required to achieve the desired effect. An alternative approach is based on the use of implantable delivery tools, able to release the active substance in a controlled way. In the current research local drug delivery devices containing 8mg of gentamicin sulphate were prepared using custom developed vacuum impregnation technique. In vitro dissolution tests showed that gentamicin release was sustained for 12h. In order to decrease gentamicin release rate, biopolymer coatings were applied and coating structure investigated. The results showed that gentamicin release can be sustained for more than 70h for poly(epsilon-caprolactone) coated calcium phosphate scaffolds. From poly lactic acid and polyvinyl alcohol coated scaffolds gentamicin was released within 20h and 50h, respectively.

  10. Simple method to generate and fabricate stochastic porous scaffolds.

    PubMed

    Yang, Nan; Gao, Lilan; Zhou, Kuntao

    2015-11-01

    Considerable effort has been made to generate regular porous structures (RPSs) using function-based methods, although little effort has been made for constructing stochastic porous structures (SPSs) using the same methods. In this short communication, we propose a straightforward method for SPS construction that is simple in terms of methodology and the operations used. Using our method, we can obtain a SPS with functionally graded, heterogeneous and interconnected pores, target pore size and porosity distributions, which are useful for applications in tissue engineering. The resulting SPS models can be directly fabricated using additive manufacturing (AM) techniques. PMID:26249613

  11. An animal experimental study of porous magnesium scaffold degradation and osteogenesis

    PubMed Central

    Liu, Y.J.; Yang, Z.Y.; Tan, L.L.; Li, H.; Zhang, Y.Z.

    2014-01-01

    Our objective was to observe the biodegradable and osteogenic properties of magnesium scaffolding under in vivo conditions. Twelve 6-month-old male New Zealand white rabbits were randomly divided into two groups. The chosen operation site was the femoral condyle on the right side. The experimental group was implanted with porous magnesium scaffolds, while the control group was implanted with hydroxyapatite scaffolds. X-ray and blood tests, which included serum magnesium, alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were performed serially at 1, 2, and 3 weeks, and 1, 2, and 3 months. All rabbits were killed 3 months postoperatively, and the heart, kidney, spleen, and liver were analyzed with hematoxylin and eosin (HE) staining. The bone samples were subjected to microcomputed tomography scanning (micro-CT) and hard tissue biopsy. SPSS 13.0 (USA) was used for data analysis, and values of P<0.05 were considered to be significant. Bubbles appeared in the X-ray of the experimental group after 2 weeks, whereas there was no gas in the control group. There were no statistical differences for the serum magnesium concentrations, ALT, BUN, and CREA between the two groups (P>0.05). All HE-stained slices were normal, which suggested good biocompatibility of the scaffold. Micro-CT showed that magnesium scaffolds degraded mainly from the outside to inside, and new bone was ingrown following the degradation of magnesium scaffolds. The hydroxyapatite scaffold was not degraded and had fewer osteoblasts scattered on its surface. There was a significant difference in the new bone formation and scaffold bioabsorption between the two groups (9.29±1.27 vs 1.40±0.49 and 7.80±0.50 vs 0.00±0.00 mm3, respectively; P<0.05). The magnesium scaffold performed well in degradation and osteogenesis, and is a promising material for orthopedics. PMID:25098717

  12. Improving the Cell Distribution in Collagen-Coated Poly-Caprolactone Knittings

    PubMed Central

    Sun, Weilun; Tiemessen, Dorien M.; Sloff, Marije; Lammers, Rianne J.; de Mulder, Eric L.W.; Hilborn, Jöns; Gupta, Bhuvanesh; Feitz, Wout F.J.; Daamen, Willeke F.; van Kuppevelt, Toin H.; Geutjes, Paul J.

    2012-01-01

    Adequate cellular in-growth into biomaterials is one of the fundamental requirements of scaffolds used in regenerative medicine. Type I collagen is the most commonly used material for soft tissue engineering, because it is nonimmunogenic and a highly porous network for cellular support can be produced. However, in general, adequate cell in-growth and cell seeding has been suboptimal. In this study we prepared collagen scaffolds of different collagen densities and investigated the cellular distribution. We also prepared a hybrid polymer–collagen scaffold to achieve an optimal cellular distribution as well as sufficient mechanical strength. Collagen scaffolds [ranging from 0.3% to 0.8% (w/v)] with and without a mechanically stable polymer knitting [poly-caprolactone (PCL)] were prepared. The porous structure of collagen scaffolds was characterized using scanning electron microscopy and hematoxylin-eosin staining. The mechanical strength of hybrid scaffolds (collagen with or without PCL) was determined using tensile strength analysis. Cellular in-growth and interconnectivity were evaluated using fluorescent bead distribution and human bladder smooth muscle cells and human urothelium seeding. The lower density collagen scaffolds showed remarkably deeper cellular penetration and by combining it with PCL knitting the tensile strength was enhanced. This study indicated that a hybrid scaffold prepared from 0.4% collagen strengthened with knitting achieved the best cellular distribution. PMID:22480276

  13. Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds

    PubMed Central

    Sims-Mourtada, Jennifer; Niamat, Rohina A; Samuel, Shani; Eskridge, Chris; Kmiec, Eric B

    2014-01-01

    A small population of highly tumorigenic breast cancer cells has recently been identified. These cells, known as breast-cancer stem-like cells (BCSC), express markers similar to mammary stem cells, and are highly resistant to chemotherapy. Currently, study of BCSC is hampered by the inability to propagate these cells in tissue culture without inducing differentiation. Recently, it was reported that proliferation and differentiation can be modified by culturing cells on electrospun nanofibers. Here, we sought to characterize the chemoresistance and stem-like properties of breast cancer cell lines grown on nanofiber scaffolds. Cells cultured on three-dimensional templates of electrospun poly(ε-caprolactone)-chitosan nanofibers showed increases in mammary stem cell markers and in sphere-forming ability compared with cells cultured on polystyrene culture dishes. There was no increase in proliferation of stem cell populations, indicating that culture on nanofibers may inhibit differentiation of BCSC. The increase in stemness was accompanied by increases in resistance to docetaxel and doxorubicin. These data indicate that BCSC populations are enriched in cells cultured on electrospun poly(ε-caprolactone)-chitosan nanofibers, scaffolds that may provide a useful system to study BCSC and their response to anticancer drug treatment. PMID:24570583

  14. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder

    PubMed Central

    Smith, Ian O; McCabe, Laura R; Baumann, Melissa J

    2006-01-01

    Porous bone tissue engineering scaffolds were fabricated using both nano hydroxyapatite (nano HA) powder (20 nm average particle size) and micro HA powder (10 μm average particle size), resulting in sintered scaffolds of 59 vol% porosity and 8.6±1.9 μm average grain size and 72 vol% porosity and 588±55 nm average grain size, respectively. Scanning electron microscopy was used to measure both the grain size and pore size. MC3T3-E1 osteoblast (OB) attachment and proliferation on both nano HA and micro HA porous scaffolds were quantified. As expected, OB cell number was greater on nano HA scaffolds compared with similarly processed micro HA scaffolds 5 days after seeding, while OB attachment did not appear greater on the nano HA scaffolds (p<0.05). PMID:17722535

  15. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications.

    PubMed

    Tian, Meng; Chen, Feng; Song, Wei; Song, Yancheng; Chen, Yuanwei; Wan, Changxiu; Yu, Xixun; Zhang, Xiaohua

    2009-07-01

    The purpose of this study was to investigate in vivo biocompatibility and osteogenesis as well as degradability of the porous strontium-doped calcium polyphosphate (SCPP) scaffolds as a biomaterial for bone substitute applications. The evaluation was performed on a rabbit model over a period of 16 weeks by histology combined with image analysis, X-ray microradiography and immunohistochemistry methods. The histological and X-ray microradiographic results showed that the SCPP scaffold exhibited good biocompatibility and extensive osteoconductivity with host bone. Moreover, a significant more bone formation was observed in the SCPP group compared with that in the CPP group, especially at the initial stage after implantation. New bone volumes (NBVs) of the SCPP group determined at week 4, 8 and 16 were 14, 27 and 45%, respectively. Accordingly, NBVs of the CPP group were 10, 19 and 40%. Immunohistochemical results revealed that both the expression of collagen type I and bone morphogenetic proteins in the SCPP group were higher than that in the CPP group, which might be associated with the release of strontium ions during the implantation. In addition, during 16 weeks implantation the SCPP scaffold exhibited similar degradability with the CPP scaffold in vivo. Both scaffolds showed the greatest degradation rate for the first 4 weeks, and then the degradation rate gradually decreased. The results presented in this study demonstrated that SCPP scaffold can be considered as a biocompatible material, making it attractive for bone substitute application purposes. PMID:19267259

  16. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies.

    PubMed

    Veronesi, Francesca; Giavaresi, Gianluca; Guarino, Vincenzo; Raucci, Maria Grazia; Sandri, Monica; Tampieri, Anna; Ambrosio, Luigi; Fini, Milena

    2015-09-01

    Tissue engineering (TE) represents a valid alternative to traditional surgical therapies for the management of bone defects that do not regenerate spontaneously. Scaffolds, one of the most important component of TE strategy, should be biocompatible, bioactive, osteoconductive, and osteoinductive. The aim of this study was to evaluate the biological properties and bone regeneration ability of a porous poly(ɛ-caprolactone) (PCL) scaffold, incorporating MgCO3 -doped hydroxyapatite particles, uncoated (PCL_MgCHA) or coated by apatite-like crystals via biomimetic treatment (PCL_MgCHAB). It was observed that both scaffolds are not cytotoxic and, even if cell viability was similar on both scaffolds, PCL_MgCHAB showed higher alkaline phosphatase and collagen I (COLL I) production at day 7. PCL_MgCHA induced more tumor necrosis factor-α release than PCL_MgCHAB, while osteocalcin was produced less by both scaffolds up to 7 days and no significant differences were observed for transforming growth factor-β synthesis. The percentage of new bone trabeculae growth in wide defects carried out in rabbit femoral distal epiphyses was significantly higher in PCL_MgCHAB in comparison with PCL_MgCHA at 4 weeks and even more at 12 weeks after implantation. This study highlighted the role of a biomimetic composite scaffold in bone regeneration and lays the foundations for its future employment in the clinical practice. PMID:25689266

  17. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation.

    PubMed

    Li, Xiang; Wang, Lin; Yu, Xiaoming; Feng, Yafei; Wang, Chengtao; Yang, Ke; Su, Daniel

    2013-07-01

    Porous tantalum (Ta), produced via chemical vapor deposition (CVD) of commercially pure Ta onto a vitreous carbon, is currently available for use in orthopedic applications. However, the relatively high manufacturing cost and the incapability to produce customized implant using medical image data have limited its application to gain widespread acceptance. In this study, Ta film was deposited on porous Ti6Al4V scaffolds using CVD technique. Digital microscopy and scanning electron microscopy indicated that the Ta coating evenly covered the entire scaffold structure. X-ray diffraction analysis showed that the coating consisted of α and β phases of Ta. Goat mesenchymal stem cells were seeded and cultured on the Ti6Al4V scaffolds with and without coating. The tetrazolium-based colorimetric assay exhibited better cell adhesion and proliferation on Ta-coated scaffolds compared with uncoated scaffolds. The porous scaffolds were subsequently implanted in goats for 12weeks. Histological analysis revealed similar bone formation around the periphery of the coated and uncoated implants, but bone ingrowth is better within the Ta-coated scaffolds. To demonstrate the ability of producing custom implant for clinical applications via this technology, we designed and fabricated a porous Ti6Al4V scaffold with segmental mandibular shape derived from patient computerized tomography data. PMID:23623123

  18. Metallizing porous scaffolds as an alternative fabrication method for solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Ruiz-Trejo, Enrique; Atkinson, Alan; Brandon, Nigel P.

    2015-04-01

    A combination of electroless and electrolytic techniques is used to incorporate nickel into a porous Ce0.9Gd0.1O1.90 scaffold. First a porous backbone was screen printed into a YSZ electrolyte using an ink that contains sacrificial pore formers. Once sintered, the scaffold was coated with silver using Tollens' reaction followed by electrodeposition of nickel in a Watts bath. At high temperatures the silver forms droplets enabling direct contact between the gadolinia-doped ceria and nickel. Using impedance spectroscopy analysis in a symmetrical cell a total area specific resistance of 1 Ωcm2 at 700 °C in 97% H2 with 3% H2O was found, indicating the potential of this fabrication method for scaling up.

  19. Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds.

    PubMed

    Bi, Lianxiang; Zobell, Brett; Liu, Xin; Rahaman, Mohamed N; Bonewald, Lynda F

    2014-09-01

    The repair of structural bone defects such as segmental defects in the long bones of the limbs is a challenging clinical problem. In this study, the capacity of silicate (13-93) and borate (13-93B3) bioactive glass scaffolds (porosity=47-50%) to heal critical-size segmental defects in rat femurs was evaluated and compared with autografts. Defects were implanted with 13-93 and 13-93B3 scaffolds with a grid-like microstructure (compressive strength=86 MPa and 40 MPa, respectively), 13-93B3 scaffolds with an oriented microstructure (compressive strength=32 MPa) and autografts using intramedullary fixation. Twelve weeks post-implantation, the defects were harvested and evaluated using histomorphometric analysis. The percentage of new bone in the defects implanted with the three groups of glass scaffolds (25-28%) and the total von Kossa-positive area (32-38%) were not significantly different from the autografts (new bone=38%; von Kossa-positive area=40%) (p>0.05). New blood vessel area in the defects implanted with the glass scaffolds (4-8%) and the autografts (5%) showed no significant difference among the four groups. New cartilage formed in the 13-93 grid-like scaffolds (18%) was significantly higher than in 13-93B3 grid-like scaffolds (8%) and in the autografts (8%) (p=0.02). The results indicate that these strong porous bioactive glass scaffolds are promising synthetic implants for structural bone repair. PMID:25063184

  20. Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

    PubMed

    Bharatham, B Hemabarathy; Abu Bakar, Md Zuki; Perimal, Enoch Kumar; Yusof, Loqman Mohamed; Hamid, Muhajir

    2014-01-01

    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects. PMID:25110655

  1. Development and Characterization of Novel Porous 3D Alginate-Cockle Shell Powder Nanobiocomposite Bone Scaffold

    PubMed Central

    Bharatham, B. Hemabarathy; Abu Bakar, Md. Zuki; Perimal, Enoch Kumar; Yusof, Loqman Mohamed; Hamid, Muhajir

    2014-01-01

    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects. PMID:25110655

  2. Bottom-up topography assembly into 3D porous scaffold to mediate cell activities.

    PubMed

    Cheng, Delin; Hou, Jie; Hao, Lijing; Cao, Xiaodong; Gao, Huichang; Fu, Xiaoling; Wang, Yingjun

    2016-08-01

    Native cells live in a three-dimensional (3D) extracellular matrix (ECM) capable of regulating cell activities through various physical and chemical factors. Designed topographies have been well proven to trigger significant difference in cell behaviours. However, present topographies are almost all constructed on two-dimensional (2D) substrates like discs and films, which are far from features like 3D and porosity required in application like bone repair. Here we bottom-up assembled poly(lactic-co-glycolic acid)/calcium carbonate (PLGA/CC) microspheres with superficial porous topography intactly into a 3D porous scaffold. Because the scaffold was obtained through a mild technique, the bioactivity of released BMP-2 was well retained. Mouse bone marrow mesenchymal stem cells (mMSCs) were cultured on produced scaffolds having different 3D topographies. It turned out that osteogenic differentiation of mMSCs did respond to the 3D topographies, while proliferation didn't. Gene expression of αv and β1 integrins revealed that adhesion was supposed to be the underlying mechanism for osteogenic response. The study provides insight into enhancing function of practical scaffolds by elaborate topography design. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1056-1063, 2016. PMID:26013977

  3. Fabrication of porous, drug-releasing, biodegradable, polymer scaffolds for sustained drug release.

    PubMed

    Uttarwar, Mayur; Aswath, Pranesh

    2008-10-01

    Two different approaches were used to fabricate porous scaffolds, and their in vitro drug releasing characteristics were examined. In the first method, a poly(L-lactic acid) (PLLA) solution and poly(vinyl alcohol) (PVA) + acetaminophen solution was homogenized. The emulsion was then blended with a PLLA solution in chloroform. The resultant emulsion was freeze-dried to form porous scaffolds. Various combinations were obtained by varying homogenizer speed and blender speed, and by varying the concentration of PVA and acetaminophen solutions. The in vitro drug-release study was performed for 6 days in a phosphate buffer. The influence of structure, porosity, and drug concentration of the scaffolds on drug-release rate was examined using design of experiments. In the second approach, scaffolds were prepared in layered constructs, with either a three-layered or five-layered structure. The PVA + acetaminophen solution was blended with PLLA solution using a blender. The drug-release study was performed for 19 days. The effect of drug concentration, blender speed, and the thickness of the layers on drug-release rate was examined. PMID:18437710

  4. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    PubMed

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. PMID:23255164

  5. Fibrin-Loaded Porous Poly(Ethylene Glycol) Hydrogels as Scaffold Materials for Vascularized Tissue Formation

    PubMed Central

    Jiang, Bin; Waller, Thomas M.; Larson, Jeffery C.; Appel, Alyssa A.

    2013-01-01

    Vascular network formation within biomaterial scaffolds is essential for the generation of properly functioning engineered tissues. In this study, a method is described for generating composite hydrogels in which porous poly(ethylene glycol) (PEG) hydrogels serve as scaffolds for mechanical and structural support, and fibrin is loaded within the pores to induce vascularized tissue formation. Porous PEG hydrogels were generated by a salt leaching technique with 100–150-μm pore size and thrombin (Tb) preloaded within the scaffold. Fibrinogen (Fg) was loaded into pores with varying concentrations and polymerized into fibrin due to the presence of Tb, with loading efficiencies ranging from 79.9% to 82.4%. Fibrin was distributed throughout the entire porous hydrogels, lasted for greater than 20 days, and increased hydrogel mechanical stiffness. A rodent subcutaneous implant model was used to evaluate the influence of fibrin loading on in vivo response. At weeks 1, 2, and 3, all hydrogels had significant tissue invasion, but no difference in the depth of invasion was found with the Fg concentration. Hydrogels with fibrin loading induced more vascularization, with a significantly higher vascular density at 20 mg/mL (week 1) and 40 mg/mL (weeks 2 and 3) Fg concentration compared to hydrogels without fibrin. In conclusion, we have developed a composite hydrogel that supports rapid vascularized tissue ingrowth, and thus holds great potential for tissue engineering applications. PMID:23003671

  6. Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds.

    PubMed

    Liu, Haixia; Wang, Ran; Chu, Henry K; Sun, Dong

    2015-09-01

    A novel biodegradable and conductive composite consisting of magnesium (Mg), polypyrrole-block-ploycaprolactone (PPy-PCL), and poly(lactic-co-glycolic acid) (PLGA) is synthesized in a core-shell-skeleton manner for tissue engineering applications. Mg particles in the composite are first coated with a conductive nanostructured PPy-PCL layer for corrosion resistance via the UV-induced photopolymerization method. PLGA matrix is then added to tailor the biodegradability of the resultant composite. Composites with different composition ratios are examined through experiments, and their material properties are characterized. The in vitro experiments on culture of 293FT-GFP cells show that the composites are suitable for cell growth and culture. Biodegradability of the composite is also evaluated. By adding PLGA matrix to the composite, the degrading time of the composite can last for more than eight weeks, hence providing a longer period for tissue formation as compared to Mg composites or alloys. The findings of this research will offer a new opportunity to utilize a conductive, nanostructured-coated Mg/PLGA composite as the scaffold material for implants and tissue regeneration. PMID:25690806

  7. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering.

    PubMed

    Zhu, Yinglan; Zhu, Ruiqiao; Ma, Juan; Weng, Zhiqiang; Wang, Yang; Shi, Xiaolei; Li, Yicai; Yan, Xiaodong; Dong, Zhen; Xu, Jinke; Tang, Chengzhong; Jin, Lei

    2015-09-01

    The selection of scaffold materials and the optimization of scaffold morphological and mechanical properties are critical for successful bone tissue engineering. We fabricated porous scaffolds of nano-sized zirconia using a replication technique. The study aimed to explore the relationship between porosity, pore size, mechanical strength, cell adhesion, and cell proliferation in the zirconia scaffolds. Macro- and micro-structures and compressive strength were comparatively tested. Beagle bone marrow stromal cells were seeded onto the scaffolds to evaluate cell seeding efficiency and cell proliferation profile over 14 d of incubation. The zirconia scaffolds presented a complex porous structure with good interconnectivity of pores. By increasing the sinter cycles, the porosity and pore size of the scaffolds decreased, with mean values ranging from 92.7-68.0% and 830-577 μm, respectively, accompanied by increased compressive strengths of 0.6-4.4 MPa. Cell seeding efficiency and cell proliferation over the first 7 d of incubation increased when the porosity decreased, with cell viability highest in the scaffold with a porosity of 75.2%. After 7 d of incubation, the cell proliferation increased when the porosity increased, highest in the scaffolds with a porosity of 92.7%. These results showed that the zirconia scaffold with a porosity of 75.2% possesses favorable mechanical and biological properties for future applications in bone tissue engineering. PMID:26391576

  8. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering.

    PubMed

    Hwang, Patrick T J; Murdock, Kyle; Alexander, Grant C; Salaam, Amanee D; Ng, Joshua I; Lim, Dong-Jin; Dean, Derrick; Jun, Ho-Wook

    2016-04-01

    Electrospinning has been widely used to fabricate scaffolds imitating the structure of natural extracellular matrix (ECM). However, conventional electrospinning produces tightly compacted nanofiber layers with only small superficial pores and a lack of bioactivity, which limit the usefulness of electrospinning in biomedical applications. Thus, a porous poly(ε-caprolactone) (PCL)/gelatin composite electrospun scaffold with crater-like structures was developed. Porous crater-like structures were created on the scaffold by a gas foaming/salt leaching process; this unique fiber structure had more large pore areas and higher porosity than the conventional electrospun fiber network. Various ratios of PCL/gelatin (concentration ratios: 100/0, 75/25, and 50/50) composite electrospun scaffolds with and without crater-like structures were characterized by their microstructures, surface chemistry, degradation, mechanical properties, and ability to facilitate cell growth and infiltration. The combination of PCL and gelatin endowed the scaffold with both structural stability of PCL and bioactivity of gelatin. All ratios of scaffolds with crater-like structures showed fairly similar surface chemistry, degradation rates, and mechanical properties to equivalent scaffolds without crater-like structures; however, craterized scaffolds displayed higher human mesenchymal stem cell (hMSC) proliferation and infiltration throughout the scaffolds after 7-day culture. Therefore, these results demonstrated that PCL/gelatin composite electrospun scaffolds with crater-like structures can provide a structurally and biochemically improved three-dimensional ECM-mimicking microenvironment. PMID:26567028

  9. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold.

    PubMed

    Wang, Hai; Wu, Gui; Zhang, Jing; Zhou, Kui; Yin, Bo; Su, Xinlin; Qiu, Guixing; Yang, Guang; Zhang, Xianglin; Zhou, Gang; Wu, Zhihong

    2016-05-01

    Recently, 3D printing as effective technology has been highlighted in the biomedical field. Previously, a porous hydroxyapatite (HA) scaffold with the biocompatibility and osteoconductivity has been developed by this method. However, its osteoinductivity is limited. The main purpose of this study was to improve it by the introduction of recombinant human bone morphogenetic protein-2 (rhBMP-2). This scaffold was developed by coating rhBMP-2-delivery microspheres with collagen. These synthesized scaffolds were characterized by Scanning Electron Microscopy (SEM), a delivery test in vitro, cell culture, and the experiments in vivo by a Micro-computed tomography (μCT) scan and histological evaluation of VanGieson staining. SEM results indicated the surface of scaffolds were more fit for the adhesion of hMSCs to coat collagen/rhBMP-2 microspheres. Biphasic release of rhBMP-2 could continue for more than 21 days, and keep its osteoinductivity to induce osteogenic differentiation of hMSCs in vitro. In addition, the experiments in vivo showed that the scaffold had a good bone regeneration capacity. These findings demonstrate that the HA/Collagen/Chitosan Microspheres system can simultaneously achieve localized long-term controlled release of rhBMP-2 and bone regeneration, which provides a promising route for improving the treatment of bone defects. PMID:26896655

  10. Fabrication of porous hydroxyapatite scaffolds as artificial bone preform and its biocompatibility evaluation.

    PubMed

    Jang, Dong-Woo; Franco, Rose Ann; Sarkar, Swapan Kumar; Lee, Byong-Taek

    2014-01-01

    In this study, a novel porous hydroxyapatite scaffold was designed and fabricated to imitate natural bone through a multipass extrusion process. The conceptual design manifested unidirectional microchannels at the exterior part of the scaffold to facilitate rapid biomineralization and a central canal that houses the bone marrow. External and internal fissures were minimized during microwave sintering at 1,100 °C. No deformation was noted, and a mechanically stable scaffold was fabricated. Detailed microstructure of the fabricated artificial bone was examined by scanning electron microscope and X-ray diffractometer, and material properties like compressive strength were evaluated. The initial biocompatibility was examined by the cell proliferation of MG-63 osteoblast-like cells using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Preliminary in vivo investigation in a rabbit model after 4 weeks and 8 weeks of implantation showed full osteointegration of the scaffold with the native tissue, and formation of bone tissue within the pore network, as examined by microcomputed tomography analyses and histological staining. Osteon-like bone microarchitecture was observed along the unidirectional channel with microblood vessels. These confirm a biomimetic regeneration model in the implanted bone scaffold, which can be used as an artificial alternative for damaged bone. PMID:24399056

  11. Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine

    PubMed Central

    Shimojo, Andréa Arruda Martins; Perez, Amanda Gomes Marcelino; Galdames, Sofia Elisa Moraga; Brissac, Isabela Cambraia de Souza; Santana, Maria Helena Andrade

    2015-01-01

    This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (−20, −80, or −196°C) and lyophilization of chitosan solutions (1, 2, or 3% w/v). The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v) chitosan and a −20°C freezing temperature, while −196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days. PMID:25821851

  12. Exogenous phytoestrogenic molecule icaritin incorporated into a porous scaffold for enhancing bone defect repair.

    PubMed

    Wang, Xin-Luan; Xie, Xin-Hui; Zhang, Ge; Chen, Shi-Hui; Yao, Dong; He, Kai; Wang, Xiao-Hong; Yao, Xin-Sheng; Leng, Yang; Fung, Kwok-Pui; Leung, Kwok-Sui; Qin, Ling

    2013-01-01

    This study was designed to develop a bioactive scaffold to enhance bone defect repair in steroid-associated osteonecrosis (SAON). Icaritin, a metabolite of the herb Epimedium, has been identified as an angiogenic and osteogenic phytomolecule. Icaritin was homogenized into poly lactic-co-glycolic acid/tricalcium phosphate (PLGA/TCP) to form an icaritin-releasing porous composite scaffold (PLGA/TCP/icaritin) by fine-spinning technology. In vitro, high performance liquid chromatography was used to determine the release of icaritin during degradation of PLGA/TCP/icaritin. The osteogenic effects of PLGA/TCP/icaritin were evaluated using rat bone marrow mesenchymal stem cells (BMSCs). In vivo, the osteogenic effect of PLGA/TCP/icaritin was determined within a bone tunnel after core decompression in SAON rabbits and angiography within scaffolds was examined in rabbit muscle pouch model. In vitro study confirmed the sustainable release of icaritin from PLGA/TCP/icaritin with the bioactive scaffold promoting the proliferation and osteoblastic differentiation of rat BMSCs. In vivo study showed that PLGA/TCP/icaritin significantly promoted new bone formation within the bone defect after core decompression in SAON rabbits and enhanced neovascularization in the rabbit muscle pouch experiment. In conclusion, PLGA/TCP/icaritin is an innovative local delivery system that demonstrates sustainable release of osteogenic phytomolecule icaritin enhancing bone repair in an SAON rabbit model. The supplement of scaffold materials with bioactive phytomolecule(s) might improve treatment efficiency in challenging orthopedic conditions. PMID:22807243

  13. Three-Dimensional Porous Gelapin-Simvastatin Scaffolds Promoted Bone Defect Healing in Rabbits.

    PubMed

    Moshiri, Ali; Shahrezaee, Mostafa; Shekarchi, Babak; Oryan, Ahmad; Azma, Kamran

    2015-06-01

    Treatment of large bone defects (LBDs) is technically demanding. Tissue engineering is an option. A bioactive graft may be produced by combining tissue scaffolds and healing promotive factors in order to accelerate bone repair. We investigated the role of Simvastatin (Sim)-embedded porous Gelapin (Gel) scaffold on experimental bone healing. At first, the effectiveness of different concentrations of Gel and Sim powders was investigated in an experimentally induced femoral hole model in rabbits (n = 6) for 30 days. Then bone bioactive grafts were produced by combination of the effective concentrations of Gel, Sim, and Genipin. The bioimplants were subcutaneously tested in a rabbit model (n = 9) to determine their biocompatibility and biodegradability for 10-30 days. Finally, a large radial bone defect model was produced in rabbits (n = 20), and the bioimplants were inserted in the defects. The untreated and autograft-treated bone defects were served as controls. The animals were euthanized after 30 and 60 days of bone injury. The bone samples were evaluated by radiography, three-dimensional CT scan, bone densitometry, histopathology, and nano-indentation. At a concentration of 5 mg/hole, Sim closed the femoral bone holes after 30 days, while in the defect, autograft, and Gel groups, the holes were open. Both the Gel and Gel-Sim scaffolds were biocompatible and biodegradable. Subcutaneously, the Gel-Sim scaffold was replaced with the newly regenerated ectopic bone after 30 days. After implantation of the Gel-Sim scaffold in the radial bone defects, the scaffold was completely replaced with new woven bone after 30 days which was then matured and remodeled into a cortical bone after 60 days. Sixty days after bone injury, the Gel-Sim-treated defects had significantly higher bone volume, matrix mineralization, elastic modulus, and contact hardness when compared to the controls. The Gel-Sim scaffold may be a suitable option in managing LBDs. PMID:25804980

  14. Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology.

    PubMed

    Chen, Hongjie; Wang, Chunli; Zhu, Xiangdong; Zhang, Kai; Fan, Yujiang; Zhang, Xingdong

    2014-10-01

    Microporosity plays a key role in bioactivity and osteoinductivity of a biomaterial scaffold. A simple new approach to fabricating load-bearing porous titanium (Ti) scaffolds with uniform porous structure, highly controllable pore size and excellent biocompatibility was developed in the present study. This method was based on stack sintering of microporous Ti spheres produced with centrifugal granulation of commercial Ti powders. Macropores (180.0-341.8 μm) and micropores (6.1-11.8 μm) of the scaffolds were dependent on the sizes of the Ti spheres and the Ti powders, respectively. The compressive strength of the scaffolds (83.4-108.9 MPa) was high enough for the repair of load-bearing bone defects. Besides, the abundant micropores occurred on the rough and convex surface of the Ti spheres in the scaffolds were more favorable for adsorption of serum proteins, and thus promoted the growth of mesenchymal stem cells (MSCs). PMID:25175203

  15. Conductive porous scaffolds as potential neural interface materials.

    SciTech Connect

    Hedberg-Dirk, Elizabeth L.; Cicotte, Kirsten N.; Buerger, Stephen P.; Reece, Gregory; Dirk, Shawn M.; Lin, Patrick P.

    2011-11-01

    Our overall intent is to develop improved prosthetic devices with the use of nerve interfaces through which transected nerves may grow, such that small groups of nerve fibers come into close contact with electrode sites, each of which is connected to electronics external to the interface. These interfaces must be physically structured to allow nerve fibers to grow through them, either by being porous or by including specific channels for the axons. They must be mechanically compatible with nerves such that they promote growth and do not harm the nervous system, and biocompatible to promote nerve fiber growth and to allow close integration with biological tissue. They must exhibit selective and structured conductivity to allow the connection of electrode sites with external circuitry, and electrical properties must be tuned to enable the transmission of neural signals. Finally, the interfaces must be capable of being physically connected to external circuitry, e.g. through attached wires. We have utilized electrospinning as a tool to create conductive, porous networks of non-woven biocompatible fibers in order to meet the materials requirements for the neural interface. The biocompatible fibers were based on the known biocompatible material poly(dimethyl siloxane) (PDMS) as well as a newer biomaterial developed in our laboratories, poly(butylene fumarate) (PBF). Both of the polymers cannot be electrospun using conventional electrospinning techniques due to their low glass transition temperatures, so in situ crosslinking methodologies were developed to facilitate micro- and nano-fiber formation during electrospinning. The conductivity of the electrospun fiber mats was controlled by controlling the loading with multi-walled carbon nanotubes (MWNTs). Fabrication, electrical and materials characterization will be discussed along with initial in vivo experimental results.

  16. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation.

    PubMed

    Yassin, Mohammed A; Leknes, Knut N; Sun, Yang; Lie, Stein A; Finne-Wistrand, Anna; Mustafa, Kamal

    2016-08-01

    Poly(l-lactide-co-ɛ-caprolactone) (poly(LLA-co-CL)) has been blended with Tween 80 to tune the material properties and optimize cell-material interactions. Accordingly, the aims of this study were fourfold: to evaluate the effect of low concentrations of Tween 80 on the surface microstructure of 3D poly(LLA-co-CL) porous scaffolds: to determine the effect of different concentrations of Tween 80 on proliferation of bone marrow stromal cells (BMSCs) in vitro under dynamic cell culture at 7 and 21 days; to assess the influence of Tween 80 on the degradation rate of poly(LLA-co-CL) at 7 and 21 days; and in a subcutaneous rat model, to evaluate the effect on bone formation of porous scaffolds modified with 3% Tween 80 at 2 and 8 weeks. Blending 3% (w/w) Tween 80 with poly(LLA-co-CL) improves the surface wettability (p < 0.001). Poly(LLA-co-CL)/3% Tween 80 shows significantly increased cellular proliferation at days 7 and 21 (p < 0.001). Moreover, the presence of Tween 80 facilitates the degradation of poly(LLA-co-CL). Two weeks post-implantation, the poly(LLA-co-CL)/3% Tween 80 scaffolds exhibit significant mRNA expression of Runx2 (p = 0.004). After 8 weeks, poly(LLA-co-CL)/3% Tween 80 scaffolds show significantly increased de novo bone formation, demonstrated by μ-CT (p = 0.0133) and confirmed histologically. It can be concluded that blending 3% (w/w) Tween 80 with poly (LLA-co-CL) improves the hydrophilicity and osteogenic potential of the scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2049-2059, 2016. PMID:27086867

  17. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity

    PubMed Central

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  18. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    PubMed

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  19. Preparation of a porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue engineering.

    PubMed

    Baheiraei, Nafiseh; Yeganeh, Hamid; Ai, Jafar; Gharibi, Reza; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Vahdat, Sadaf; Baharvand, Hossein

    2015-10-01

    A novel biodegradable electroactive polyurethane containing aniline pentamer (AP) was blended with polycaprolactone (PCL). The prepared blend (PB) and PCL were further fabricated in to scaffolds using a mixture of poly(ethylene glycol) and salt particles in a double porogen particulate leaching and compression molding methodology. Scaffolds held open and interconnected pores having pore size ranging from several μm to 150 µm. PB scaffolds had compression modulus and strength of 4.1 and 1.3 MPa, respectively. The conductivity of the scaffold was measured as 10(-5) ± 0.09 S .cm(-1) and preserved for at least 100 h post fabrication. Scaffolds supported neonatal cardiomyocytes adhesion and growth with PB showing more extensive effect on the expression of the cardiac genes involved in muscle contraction and relaxation (troponin-T) and cytoskeleton alignment (actinin-4). Our results highlight the potential of incorporation of AP as an electroactive moiety for induction of cardiomyocyte proliferation and repair of damaged heart tissue. PMID:25765879

  20. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.

    PubMed

    Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min

    2016-03-01

    One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations. PMID:26773669

  1. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology

    PubMed Central

    Zeng, Shuguang; Liu, Lei; Shi, Yong; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfeng

    2015-01-01

    Bone tissue engineering is a powerful tool to treat bone defects caused by trauma, infection, tumors and other factors. Both silk fibroin (SF) and chitosan (CS) are non-toxic and have good biocompatibility, but are poor biological scaffolds when used alone. In this study, the microscopic structure and related properties of SF/CS composite scaffolds with different component ratios were examined. The scaffold material most suitable for osteoblast growth was determined, and these results offer an experimental basis for the future reconstruction of bone defects. First, via freeze-drying and chemical crosslinking methods, SF/CS composites with different component ratios were prepared and their structure was characterized. Changes in the internal structure of the SF and CS mixture were observed, confirming that the mutual modification between the two components was complete and stable. The internal structure of the composite material was porous and three-dimensional with a porosity above 90%. We next studied the pore size, swelling ratio, water absorption ratio, degradation and in vitro cell proliferation. For the 40% SF-60% CS group, the pore size of the scaffold was suitable for the growth of osteoblasts, and the rate of degradation was steady. This favors the early adhesion, growth and proliferation of MG-63 cells. In addition to good biocompatibility and satisfactory cell affinity, this material promotes the secretion of extracellular matrix materials by osteoblasts. Thus, 40% SF-60% CS is a good material for bone tissue engineering. PMID:26083846

  2. Porous bioactive scaffolds: characterization and biological performance in a model of tibial bone defect in rats.

    PubMed

    Kido, Hueliton Wilian; Tim, Carla Roberta; Bossini, Paulo Sérgio; Parizotto, Nivaldo Antônio; de Castro, Cynthia Aparecida; Crovace, Murilo Camuri; Rodrigues, Ana Candida Martins; Zanotto, Edgar Dutra; Peitl Filho, Oscar; de Freitas Anibal, Fernanda; Rennó, Ana Claudia Muniz

    2015-02-01

    The aim of this study was to evaluate the effects of highly porous Biosilicate(®) scaffolds on bone healing in a tibial bone defect model in rats by means of histological evaluation (histopathological and immunohistochemistry analysis) of the bone callus and the systemic inflammatory response (immunoenzymatic assay). Eighty Wistar rats (12 weeks-old, weighing±300 g) were randomly divided into 2 groups (n=10 per experimental group, per time point): control group and Biosilicate® group (BG). Each group was euthanized 3, 7, 14 and 21 days post-surgery. Histological findings revealed a similar inflammatory response in both experimental groups, 3 and 7 days post-surgery. During the experimental periods (3-21 days post-surgery), it was observed that the biomaterial degradation, mainly in the periphery region, provided the development of the newly formed bone into the scaffolds. Immunohistochemistry analysis demonstrated that the Biosilicate® scaffolds stimulated cyclooxygenase-2, vascular endothelial growth factor and runt-related transcription factor 2 expression. Furthermore, in the immunoenzymatic assay, BG presented no difference in the level of tumor necrosis factor alpha in all experimental periods. Still, BG showed a higher level of interleukin 4 after 14 days post-implantation and a lower level of interleukin 10 in 21 days post-surgery. Our results demonstrated that Biosilicate® scaffolds can contribute for bone formation through a suitable architecture and by stimulating the synthesis of markers related to the bone repair. PMID:25631271

  3. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.

    PubMed

    Cox, Sophie C; Thornby, John A; Gibbons, Gregory J; Williams, Mark A; Mallick, Kajal K

    2015-02-01

    A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT). PMID:25492194

  4. Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep.

    PubMed

    Wieding, Jan; Lindner, Tobias; Bergschmidt, Philipp; Bader, Rainer

    2015-04-01

    Open-porous titanium scaffolds for large segmental bone defects offer advantages like early weight-bearing and limited risk of implant failure. The objective of this experimental study was to determine the biomechanical behavior of novel open-porous titanium scaffolds with mechanical-adapted properties in vivo. Two types of the custom-made, open-porous scaffolds made of Ti6Al4V (Young's modulus: 6-8 GPa and different pore sizes) were implanted into a 20 mm segmental defect in the mid-diaphysis of the metatarsus of sheep, and were stabilized with an osteosynthesis plate. After 12 and 24 weeks postoperatively, torsional testing was performed on the implanted bone and compared to the contralateral non-treated side. Maximum torque, maximum angle, torsional stiffness, fracture energy, shear modulus and shear stress were investigated. Furthermore, bone mineral density (BMD) of the newly formed bone was determined. Mechanical loading capabilities for both scaffolds were similar and about 50% after 12 weeks (e.g., max. torque of approximately 20 Nm). A further increase after 24 weeks was found for most of the investigated parameters. Results for torsional stiffness and shear modulus as well as bone formation depended on the type of scaffold. Increased BMD after 24 weeks was found for one scaffold type but remained constant for the other one. The present data showed the capability of mechanically adapted open-porous titanium scaffolds to function as bone scaffolds for large segmental defects and the influence of the scaffold's stiffness. A further increase in the biomechanical stability can be assumed for longer observation periods of greater than six months. PMID:25678114

  5. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration.

    PubMed

    Zhang, Wenjie; Wray, Lindsay S; Rnjak-Kovacina, Jelena; Xu, Ling; Zou, Duohong; Wang, Shaoyi; Zhang, Maolin; Dong, Jiachen; Li, Guanglong; Kaplan, David L; Jiang, Xinquan

    2015-07-01

    Despite the promise for stem cell-based tissue engineering for regenerative therapy, slow and insufficient vascularization of large tissue constructs negatively impacts the survival and function of these transplanted cells. A combination of channeled porous silk scaffolds and prevascularization with endothelial cells was investigated to test the ability of this tissue engineering strategy to support rapid and extensive vascularization process. We report that hollow channels promote in vitro prevascularization by facilitating endothelial cell growth, VEGF secretion, and capillary-like tube formation. When implanted in vivo, the pre-established vascular networks in the hollow channel scaffolds anastomose with host vessels and exhibit accelerated vascular infiltration throughout the whole tissue construct, which provides timely and sufficient nutrients to ensure the survival of the transplanted stem cells. This tissue engineering strategy can promote the effective application of stem cell-based regeneration to improve future clinical applications. PMID:25934280

  6. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds.

    PubMed

    Kim, Young-Hee; Anirban, Jyoti M; Song, Ho-Yeon; Seo, Hyung-Seok; Lee, Byong-Taek

    2011-02-01

    Both tricalcium phosphate (TCP) and alumina have been extensively studied and shown to have high biocompatibility. Tricalcium phosphate has improved biodegradability and a higher solubility than hydroxyapatite. In contrast, alumina (Al(2)O(3)) is almost completely inert at physiological conditions and has been used as a biomaterial due to its wear resistance, high surface finish, and excellent hardness. Thus, the combination of these two implants would result in greater biocompatibility and phenotype maintenance. A polyurethane (PU) foam replica method was employed in this study to coat TCP on an alumina scaffold. The TCP-coated alumina scaffold was then sintered to generate a porous surface morphology. The pore sizes obtained using this approach ranged between 100-600 µm, which is ideal for cellular proliferation. The cytotoxicity, cellular proliferation, differentiation, and ECM deposition on the coated scaffold resulted in longer-term viability of osteogenic markers compared to the non-coated scaffold. Moreover, the osteogenic properties of porous TCP-coated Al(2)O(3) scaffolds were reported in this study using rabbit models. The TCP/Al(2)O( 3) scaffold and control Al(2)O(3) scaffolds were implanted in the rabbit femur. The bone tissue response was analyzed with micro-computed tomography (micro CT) at 12 and 24 weeks after implantation. The porous scaffolds exhibited favorable hard and soft tissue responses at both time points. At 24 weeks, a three-fold increase in bone tissue ingrowth was observed in defects containing TCP-coated Al(2)O(3) scaffolds compared to control Al(2)O(3) scaffolds. PMID:20207781

  7. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    PubMed

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-01

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds. PMID:25522214

  8. Fabrication and Dynamic Mechanical Analysis of Hydroxyapatite Nanoparticle/Gelatin Porous Scaffolds

    NASA Astrophysics Data System (ADS)

    Ghossein, Hicham

    The application of engineered biomaterial scaffolds for hard tissue repair critically depends on the scaffold's internal architecture at various length scales. The pore size, shape, surface morphology, and pore connectivity are among the most important factors that affect the scaffold's mechanical properties and biointegration. Reported in this thesis are the results of the investigation of porous constructs fabricated by a freeze-drying process from synthetic nanosized hydroxyapatite / gelatin (nanoHA/Gel) dispersions with different nanoHA/Gel ratios (nanoHA loading was varied from 0 to 50 % by weight). The fabricated scaffolds had porosity up to 90% with pore size in the range of 100 - 500 im, and good distribution of HA nanoparticles within the gelatin matrix. Such porosity is considered to be close to optimal to promote a good cell adhesion in the potential applications of prepared constructs. The fabricated scaffolds have been investigated using X-ray diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and Dynamic Mechanical Analysis (DMA). Dynamic mechanical analysis of as-fabricated scaffolds revealed that the scaffolds achieved maximum bending and tensile moduli up to 1.28 GPa and 1.5 GPa, respectively, when nanoHA loading was around 30 % by weight. The bending modulus increases by a factor of 1.6, while the Tension modulus increased by a factor of 0.8 after the cross-linking of polymer. Higher nanoHA loading above 50 % by weight results in bending modulus of about 700 MPa and Tension modulus of about 200 MPa only. However, the cross-linking still enhanced the bending up to 1 GPa while it did not affect much the Tension modulus in 50% nanoHA/gelatin constructs. It has been shown that the cross-linking with glutaraldehyde solution improves the morphological structure of the scaffolds, while there was no apparent effect of the cross-linking on the chemical changes in both organic and inorganic content during the processing. The results of this

  9. Pd nanoparticles formation inside porous polymeric scaffolds followed by in situ XANES/SAXS

    NASA Astrophysics Data System (ADS)

    Longo, A.; Lamberti, C.; Agostini, G.; Borfecchia, E.; Lazzarini, A.; Liu, W.; Giannici, F.; Portale, G.; Groppo, E.

    2016-05-01

    Simultaneous time-resolved SAXS and XANES techniques were employed to follow in situ the formation of Pd nanoparticles from palladium acetate precursor in two porous polymeric supports: polystyrene (PS) and poly(4-vinyl-pyridine) (P4VP). In this study we have investigated the effect of the use of different reducing agents (H2 and CO) from the gas phase. These results, in conjunction with data obtained by diffuse reflectance IR (DRIFT) spectroscopy and TEM measurements, allowed us to unravel the different roles played by gaseous H2 and CO in the formation of the Pd nanoparticles for both PS and P4VP hosting scaffolds.

  10. Strategies for the chemical analysis of highly porous bone scaffolds using secondary ion mass spectrometry.

    PubMed

    Wang, Daming; Poologasundarampillai, Gowsihan; van den Bergh, Wouter; Chater, Richard J; Kasuga, Toshihiro; Jones, Julian R; McPhail, David S

    2014-02-01

    Understanding the distribution of critical elements (e.g. silicon and calcium) within silica-based bone scaffolds synthesized by different methods is central to the optimization of these materials. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to determine this information due to its very high surface sensitivity and its ability to map all the elements and compounds in the periodic table with high spatial resolution. The SIMS image data can also be combined with depth profiles to construct three-dimensional chemical maps. However, the scaffolds have interconnected pore networks, which are very challenging structures for the SIMS technique. To overcome this problem two experimental methodologies have been developed. The first method involved the use of the focused ion beam technique to obtain clear images of the regions of interest and subsequently mark them by introducing fiducial marks; the samples were then analysed using the ToF-SIMS technique to yield the chemical analyses of the regions of interest. The second method involved impregnating the pores using a suitable reagent so that a flat surface could be achieved, and this was followed by secondary ion mapping and 3D chemical imaging with ToF-SIMS. The samples used in this work were sol-gel 70S30C foam and electrospun fibres and calcium-containing silica/gelatin hybrid scaffolds. The results demonstrate the feasibility of both these experimental methodologies and indicate that these methods can provide an opportunity to compare various artificial bone scaffolds, which will be of help in improving scaffold synthesis and processing routes. The techniques are also transferable to many other types of porous material. PMID:24457328

  11. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering.

    PubMed

    Long, Teng; Yang, Jun; Shi, Shan-Shan; Guo, Ya-Ping; Ke, Qin-Fei; Zhu, Zhen-An

    2015-10-01

    An ideal scaffold for bone tissue engineering should have interconnected porous structure, good biocompatibility, and mechanical properties well-matched with natural bones. Collagen is the key component in the extracellular matrix (ECM) of natural bones, and plays an important role in bone regeneration. The biological activity of collagen has promoted it to be an advantageous biomaterial for bone tissue engineering; however, the mechanical properties of these scaffolds are insufficient and the porous structures are not stable in the wet state. An effective strategy to solve this problem is to fabricate a hybrid scaffold of biologically derived and synthetic material, which have the necessary bioactivity and mechanical stability needed for bone synthesis. In this work, a three-dimensional macroporous bone scaffold based on collagen (CO) fiber and bioglass (BG) is fabricated by a slurry-dipping technique, and its relevant mechanical and biological properties are evaluated. The CO/BG scaffold is interconnected with a porosity of 81 ± 4.6% and pore size of 40-200 μm. Compared with CO scaffold, water absorption value of CO/BG scaffold decreases greatly from 889% to 52%, which significantly alleviates the swelling behavior of collagen and improves the stability of scaffold structure. The CO/BG scaffold has a compression strength of 5.8 ± 1.6 MPa and an elastic modulus of 0.35 ± 0.01 Gpa, which are well-matched with the mechanical properties of trabecular bones. In vitro cell assays demonstrate that the CO/BG scaffold has good biocompatibility to facilitate the spreading and proliferation of human bone marrow stromal cells. Hence, the CO/BG scaffold is promising for bone tissue engineering application. PMID:25430707

  12. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture.

    PubMed

    Cuadros, Teresa R; Erices, Alejandro A; Aguilera, José M

    2015-06-01

    Hydrophilic polysaccharides can be used to prepare porous matrices with a range of possible applications. One such application involves acting as scaffolds for cell culture. A new homogeneous and highly porous biopolymeric porous matrix (BPM) of calcium alginate/gelatin was produced by following a simple process. The key to this process was the selection of the porogen (aerated gelatin). The preparation technique comprises the following steps: incorporating the porogen into the solution of alginate (3%), molding, cross-linking the alginate in 1.41% CaCl2 (maximum gel strength; Cuadros et al., 2012. Carbohydr. Polym. 89, 1198-1206), molding, leaching and lyophilization. Cylinders of BPM were shown to have a relative density of 0.0274 ± 0.002, porosity of 97.26 ± 0.18%, an average internal pore size of 204 ± 58 µm and enhanced mechanical properties, while imbibing more than 11 times their dry weight in water. In vitro cell culture testing within BPM using mesenchymal stem cells was demonstrated by MTT assays and expression of alkaline phosphatase. The BPM provided a suitable microenvironment for seeding, adhesion, proliferation and osteogenic differentiation of cells. The preparation technique and resulting porous matrix represent potential tools for future study and further applications. PMID:25661688

  13. Stress-strain analysis of porous scaffolds made from titanium alloys synthesized via SLS method

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I.

    2009-09-01

    A layer-by-layer selective laser sintering (SLS) technology seems to be greatly promising for solving the plastic surgery problems, particularly those pertaining to the facial reconstruction. Made from titanium-based alloys (titanium or nitinol, i.e. NiTi-intermetallic phase), the porous scaffolds for cranioplasty are an efficient tool for rectifying the face defects and for the dental orthopedic surgery. The progress in the oral surgery and teeth implantation is caused by the problem of an osteointegration on the one hand, and by achievements of the implant synthesis techniques, on the other hand. An important problem thereby is a profound study of the stress-strain behavior of porous implants under the masticatory load or pressure. In the present study the ways for the optimization of the porous implant structural and strength properties as the function of the laser synthesis parameters are described. The finite element approach (ANSYS) was used here for a complex dowel description and numerical simulations. In order to evaluate the processes in the porous implant under the external loading, a CAD 3D model was built for different internal and external configurations of the implant and/or initial shape of powdered particles. The stress-strain dependences were calculated that displayed the irregularity of the stress distribution by the implant volume in the bone tissue. Most of the values are concentrated in places of object contact.

  14. Cell growth on pore-graded biomimetic TiO2 bone scaffolds.

    PubMed

    Müller, Benjamin; Reseland, Janne Elin; Haugen, Håvard Jostein; Tiainen, Hanna

    2015-04-01

    In order to prevent soft tissue down-growth into osseous defect areas, membranes are used when placing bone graft materials. These membranes still show shortcomings in their performance and applications. In the current study, we choose an approach to integrate micro-porous surface structures into a macro-porous scaffold. Low porous surfaces were fabricated by dip-coatings. Four different material compositions (titanium dioxide, polycaprolactone, polycaprolactone/water, polycaprolactone/β-tricalcium phosphate) were characterised in terms of their appearance, architecture, topographical features and cell response. Titanium dioxide surfaces exhibited rougher and more complex textures, resulting in the highest number of osteosarcoma cells and distinct morphologies in terms of cell spreading. Polycaprolactone-based surfaces showed a smoother topography and enhanced microporosity, but the effect on secretion of the bone markers sclerostin and interleukin-6 from human osteoblasts was lower compared to secretion from cells cultured on titanium dioxide. β-Tricalcium phosphate modification of polycaprolactone did not show any significant improvement regarding cell-material interaction. Nevertheless, surfaces show potential in the mechanical blockage of epithelial and soft tissue cells and may still permit sufficient nutrient transport. PMID:25394623

  15. Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration

    PubMed Central

    Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.

    2011-01-01

    The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 μm and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. PMID:21745606

  16. Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case.

    PubMed

    Schuckert, Karl-Heinz; Jopp, Stefan; Teoh, Swee-Hin

    2009-03-01

    This publication describes the clinical case of a 71-year-old female patient. Using polycaprolactone (PCL) scaffold, platelet-rich plasma (PRP) and recombinant human bone morphogenetic protein-2 (rhBMP-2), a critical-sized defect in the anterior mandible was regenerated using de novo-grown bone. A bacterial infection had caused a periimplantitis in two dental implants leading to a large destruction in the anterior mandible. Both implants were removed under antibiotic prophylaxis. A PCL scaffold was prepared especially for this clinical case. In a second procedure with antibiotic prophylaxis, the bony defect was reopened. The PCL scaffold was fitted and charged with PRP and rhBMP-2 (1.2 mg). After complication-free wound healing, the radiological control demonstrated de novo-grown bone in the anterior mandible 6 months postoperatively. Dental implants were inserted in a third operation. A bone biopsy of the newly grown bone, as well as of the bordering local bone, was taken and histologically examined. The bone samples were identical and presented vital laminar bone. PMID:18767969

  17. A comparison study of different physical treatments on cartilage matrix derived porous scaffolds for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Moradi, Ali; Pramanik, Sumit; Ataollahi, Forough; Khalil, Alizan Abdul; Kamarul, Tunku; Pingguan-Murphy, Belinda

    2014-12-01

    Native cartilage matrix derived (CMD) scaffolds from various animal and human sources have drawn attention in cartilage tissue engineering due to the demonstrable presence of bioactive components. Different chemical and physical treatments have been employed to enhance the micro-architecture of CMD scaffolds. In this study we have assessed the typical effects of physical cross-linking methods, namely ultraviolet (UV) light, dehydrothermal (DHT) treatment, and combinations of them on bovine articular CMD porous scaffolds with three different matrix concentrations (5%, 15% and 30%) to assess the relative strengths of each treatment. Our findings suggest that UV and UV-DHT treatments on 15% CMD scaffolds can yield architecturally optimal scaffolds for cartilage tissue engineering.

  18. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    PubMed

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load. PMID:25596860

  19. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter

    2016-06-01

    Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50–170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation.

  20. Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration

    PubMed Central

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Pabari, Ritesh; Daly, Jacqueline; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2015-01-01

    Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1–34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3–4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. Both in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds. PMID:26343649

  1. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration.

    PubMed

    Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter

    2016-01-01

    Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50-170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation. PMID:27340110

  2. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration

    PubMed Central

    Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter

    2016-01-01

    Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50–170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation. PMID:27340110

  3. Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration.

    PubMed

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Pabari, Ritesh; Daly, Jacqueline; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2015-01-01

    Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1-34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3-4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds. PMID:26343649

  4. Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds.

    PubMed

    Schyrr, Bastien; Pasche, Stéphanie; Voirin, Guy; Weder, Christoph; Simon, Yoan C; Foster, E Johan

    2014-08-13

    Cellulose nanocrystals (CNCs), which offer a high aspect ratio, large specific surface area, and large number of reactive surface groups, are well suited for the facile immobilization of high density biological probes. We here report functional high surface area scaffolds based on cellulose nanocrystals (CNCs) and poly(vinyl alcohol) (PVA) and demonstrate that this platform is useful for fluorescence-based sensing schemes. Porous CNC/PVA nanocomposite films with a thickness of 25-70 nm were deposited on glass substrates by dip-coating with an aqueous mixture of the CNCs and PVA, and the porous nanostructure was fixated by heat treatment. In a subsequent step, a portion of the scaffold's hydroxyl surface groups was reacted with 2-(acryloxy)ethyl (3-isocyanato-4-methylphenyl)carbamate to permit the immobilization of thiolated fluorescein-substituted lysine, which was used as a first sensing motif, via nucleophile-based thiol-ene Michael addition. The resulting sensor films exhibit a nearly instantaneous and pronounced change of their fluorescence emission intensity in response to changes in pH. The approach was further extended to the detection of protease activity by immobilizing a Förster-type resonance energy transfer chromophore pair via a labile peptide sequence to the scaffold. This sensing scheme is based on the degradation of the protein linker in the presence of appropriate enzymes, which separate the chromophores and causes a turn-on of the originally quenched fluorescence. Using a standard benchtop spectrometer to monitor the increase in fluorescence intensity, trypsin was detected at a concentration of 250 μg/mL, i.e., in a concentration that is typical for abnormal proteolytic activity in wound fluids. PMID:24955644

  5. In vitro and in vivo evaluation of porous TiNi-based alloy as a scaffold for cell tissue engineering.

    PubMed

    Kokorev, Oleg V; Hodorenko, Valentina N; Chekalkin, Timofey L; Kim, Ji-Soon; Kang, Seung-Baik; Dambaev, Georgiy Ts; Gunther, Victor E

    2016-01-01

    This study aims to look into the applicability of a porous TiNi-based shape memory alloy (SMA) scaffold as an incubator for bone marrow mesenchymal cells, hepatocytes, and pancreatic islet cells. The porous TiNi-based SMA used was fabricated using a self-propagating high-temperature synthesis (SHS) technique, in which scaffold blocks measuring 4 × 4 × 10 mm were prepared. In vitro tests were done using mesenchymal stem cells (MSC) isolated from mature bone marrow of CBA/j inbred mice, and cultured in 3 different culture media - Control medium, Osteogenic medium, and Chondrogenic medium. Hepatocytes and islet cells were isolated from the livers and pancreatic glands of Wistar rats respectively, seeded on porous TiNi-based SMA scaffolds, and cultured. The scaffolds were then implanted into the abdominal cavity of Wistar rats and later harvested, at days 7, 14, 21, and 28, post-implantation. SEM imaging was performed with pre-implanted scaffolds at day 0 and harvested scaffolds at days 7, 14, 21, and 28, post-implantation. Based on weight increase percentages, the in vitro study revealed that the osteogenic group showed a 2-fold increase, and the chondrogenic group showed a 1.33-fold increase, compared to the control group. The in vivo study, on the other hand, showed that from day 7 post-implantation, the cellular in-growth gradually invaded the inner porous structure from the periphery towards the center, and at day-28 post-implantation, all pores were closed and completely filled with cells and the extracellular matrix. The results show that porous TiNi-based SMA is a unique biocompatible incubator for cell cultures and can be successfully used for tissue bioengineering and artificial organs. PMID:25613028

  6. Bone regeneration in strong porous bioactive glass (13–93) scaffolds with an oriented microstructure implanted in rat calvarial defects

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

    2012-01-01

    There is a need for synthetic bone graft substitutes to repair large bone defects resulting from trauma, malignancy, and congenital diseases. Bioactive glass has attractive properties as a scaffold material but factors that influence its ability to regenerate bone in vivo are not well understood. In the present work, the ability of strong porous scaffolds of 13–93 bioactive glass with an oriented microstructure to regenerate bone was evaluated in vivo using a rat calvarial defect model. Scaffolds with an oriented microstructure of columnar pores (porosity = 50%; pore diameter = 50–150 µm) showed mostly osteoconductive bone regeneration, and new bone formation, normalized to the available pore area (volume) of the scaffolds, increased from 37% at 12 weeks to 55% at 24 weeks. Scaffolds of the same glass with a trabecular microstructure (porosity = 80%; pore width = 100–500 µm), used as the positive control, showed bone regeneration in the pores of 25% and 46% at 12 and 24 weeks, respectively. The brittle mechanical response of the as-fabricated scaffolds changed markedly to an elasto-plastic response in vivo at both implantation times. These results indicate that both groups of 13–93 bioactive glass scaffolds could potentially be used to repair large bone defects, but scaffolds with the oriented microstructure could also be considered for the repair of loaded bone. PMID:22922251

  7. An endothelial cultured condition medium embedded porous PLGA scaffold for the enhancement of mouse embryonic stem cell differentiation.

    PubMed

    Li, Ching-Wen; Pan, Wei-Ting; Ju, Jyh-Cherng; Wang, Gou-Jen

    2016-01-01

    In this study, we have developed a microporous poly(lactic-co-glycolic acid) (PLGA) scaffold that combines a continuous release property and a three-dimensional (3D) scaffolding technique for the precise and efficient formation of endothelial cell lineage from embryonic stem cells (ESCs). Eight PLGA scaffolds (14.29%, 16.67%, 20% and 25% concentrations of PLGA solutions) mixed with two crystal sizes of sodium chloride (NaCl) were fabricated by leaching. Then, vascular endothelial cell conditioned medium (ECCM) mixed with gelatin was embedded into the scaffold for culturing of mouse embryonic stem cells (mESCs). The 14.29% PLGA scaffolds fabricated using non-ground NaCl particles (NG-PLGA) and the 25% PLGA containing scaffolds fabricated using ground NaCl particles (G-PLGA) possessed minimum and maximum moisture content and bovine serum albumin (BSA) content properties, respectively. These two groups of scaffolds were used for future experiments in this study. Cell culture results demonstrated that the proposed porous scaffolds without growth factors were sufficient to induce mouse ESCs to differentiate into endothelial-like cells in the early culture stages, and combined with embedded ECCM could provide a long-term inducing system for ESC differentiation. PMID:27068738

  8. The effect of collagen-chitosan porous scaffold thickness on dermal regeneration in a one-stage grafting procedure.

    PubMed

    Haifei, Shi; Xingang, Wang; Shoucheng, Wu; Zhengwei, Mao; Chuangang, You; Chunmao, Han

    2014-01-01

    Dermal substitutes are used as dermal regeneration templates to reduce scar formation and improve wound healing. Unlike autografts, dermal substitutes lack normal vascular networks. The increased distance required for diffusion of oxygen and nutrients to the autograft following interpositioning of the substitute dramatically affects graft survival. To evaluate the effect of collagen-chitosan scaffold thickness on dermal regeneration, single-layer collagen-chitosan porous scaffolds of 0.5-, 1- and 2-mm thicknesses were fabricated and used to treat full-thickness wounds in a one-stage grafting procedure in a rat model. Skin-graft viability, wound contraction, histological changes, and wound tensile strength were evaluated. The results indicated that the distance for the diffusion of oxygen and nutrients to the autograft in the 2-mm-thick scaffold provided less support for graft take, which resulted in graft necrosis, extensive inflammatory reaction, marked foreign-body reaction (FBR), rapid scaffold degradation, and abnormal collagen deposition and remodeling. In contrast, the thinner scaffolds, especially of that 0.5-mm thickness, promoted earlier angiogenesis, ensuring skin-graft viability with a mild FBR, and ordered fibroblast infiltration and better collagen remodeling. It can be concluded that collagen-chitosan porous scaffolds with a thickness of <1mm are more suitable for dermal regeneration and can be used as dermal templates for treatment of dermal defects using a one-stage grafting procedure. PMID:24076783

  9. Development of porous alginate-based scaffolds covalently cross-linked through a peroxidase-catalyzed reaction.

    PubMed

    Sakai, Shinji; Kawakami, Koei

    2011-01-01

    Porous scaffolds are important in tissue engineering. We developed porous scaffolds from the hydrogels of an alginate derivative bearing phenolic hydroxyl groups. The hydrogels were prepared using horseradish peroxidase (HRP) to catalyze the cross-linking between the phenolic hydroxyl groups. A porous structure with a pore size of approx. 200 μm was developed through simultaneous water-extraction and ionic cross-linking by calcium ions by soaking frozen hydrogels in the mixture of ethanol and CaCl2 solution at -20°C. Due to the existence of the covalent cross-links developed through the enzymatic reaction, the porous form had a higher stability from a loss of cross-linked calcium ions than that obtained from non-modified sodium alginate (Na-Alg). The porous specimen developed from the hydrogel obtained with 10 U/ml HRP and 10 mM H2O2 showed about 1.5-times greater repulsion forces than those detected for the porous specimen obtained from Na-Alg toward compressions. No harmful effects of the enzymatically cross-linked specimens were detected on the growth and morphology of the entrapped cells: cells in the enzymatically cross-linked specimens showed almost the same growth profile and morphology with those in the porous specimen obtained from Na-Alg. PMID:21144141

  10. Development of porous HAp and β-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system.

    PubMed

    Kundu, B; Lemos, A; Soundrapandian, C; Sen, P S; Datta, S; Ferreira, J M F; Basu, D

    2010-11-01

    The inability to maintain high concentrations of antibiotic at the site of infection for an extended period of time along with dead space management is still the driving challenge in treatment of osteomyelitis. Porous bioactive ceramics such as hydroxyapatite (HAp) and beta-tri calcium phosphate (β-TCP) were some of the alternatives to be used as local drug delivery system. However, high porosity and high interconnectivity of pores in the scaffolds play a pivotal role in the drug release and bone resorption. Ceftriaxone is a cephalosporin that has lost its clinical popularity. But has recently been reported to exhibit better bactericidal activity in vitro and reduced probability of resistance development, in combination with sulbactam, a β-lactamase inhibitor. In this article, a novel approach of forming HAp and pure β-TCP based porous scaffolds by applying together starch consolidation with foaming method was used. For the purpose, pure HAp and β-TCP were prepared in the laboratory and after thorough characterization (including XRD, FTIR, particle size distribution, etc.) the powders were used for scaffold fabrication. The ability of these scaffolds to release drugs suitably for osteomyelitis was studied in vitro. The results of the study indicated that HAp exhibited better drug release profile than β-TCP when drug was used alone indicating the high influence of the carrier material. However, this restriction got relaxed when a bilayered scaffold was formed using chitosan along with the drug. SEM studies along with EDAX on the drug-chitosan bilayered scaffold showed closest apposition of this combination to the calcium phosphate surface. PMID:20644982

  11. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

    PubMed

    Hu, Yang; Ma, Shanshan; Yang, Zhuohong; Zhou, Wuyi; Du, Zhengshan; Huang, Jian; Yi, Huan; Wang, Chaoyang

    2016-04-01

    In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of d-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications. PMID:26774574

  12. Collagen-poly(dialdehyde) guar gum based porous 3D scaffolds immobilized with growth factor for tissue engineering applications.

    PubMed

    Ragothaman, Murali; Palanisamy, Thanikaivelan; Kalirajan, Cheirmadurai

    2014-12-19

    Here we report the preparation of collagen-poly(dialdehyde) guar gum based hybrid functionalized scaffolds covalently immobilized with platelet derived growth factor - BB for tissue engineering applications. Poly(dialdehyde) guar gum was synthesized from selective oxidation of guar gum using sodium periodate. The synthesized poly(dialdehyde) guar gum not only promotes crosslinking of collagen but also immobilizes the platelet derived growth factor through imine bonds. The covalent crosslinking formed in collagen improves thermal, swelling and biodegradation properties of the hybrid scaffolds. The prepared hybrid scaffolds show 3D interconnected honeycomb porous structure when viewed under a microscope. The release of immobilized platelet derived growth factor was seen up to 13th day of incubation thereby proving its sustained delivery. The developed hybrid scaffold leads to a quantum increase in NIH 3T3 fibroblast cell density and proliferation thereby demonstrating its potential for tissue engineering applications. PMID:25263907

  13. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology.

    PubMed

    Fromstein, Joanna D; Zandstra, Peter W; Alperin, Cecilia; Rockwood, Danielle; Rabolt, John F; Woodhouse, Kimberly A

    2008-03-01

    A successful regenerative therapy to treat damage incurred after an ischemic event in the heart will require an integrated approach including methods for appropriate revascularization of the infarct site, mechanical recovery of damaged tissue, and electrophysiological coupling with native cells. Cardiomyocytes are the ideal cell type for heart regeneration because of their inherent electrical and physiological properties, and cardiomyocytes derived from embryonic stem cells (ESCs) represent an attractive option for tissue-engineering therapies. An important step in developing tissue engineering-based approaches to cardiac cell therapy is understanding how scaffold architecture affects cell behavior. In this work, we generated large numbers of ESC-derived cardiomyocytes in bioreactors and seeded them on porous, 3-dimensional scaffolds prepared using 2 different techniques: electrospinning and thermally induced phase separation (TIPS). The effect of material macro-architecture on the adhesion, viability, and morphology of the seeded cells was determined. On the electrospun scaffolds, cells were elongated in shape, a morphology typical of cultured ESC-derived cardiomyocytes, whereas on scaffolds fabricated using TIPS, the cells retained a rounded morphology. Despite these gross phenotypic and physiological differences, sarcomeric myosin and connexin 43 expression was evident, and contracting cells were observed on both scaffold types, suggesting that morphological changes induced by material macrostructure do not directly correlate to functional differences. PMID:18333789

  14. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation.

    PubMed

    Ghanbar, Hanif; Luo, C J; Bakhshi, Poonam; Day, Richard; Edirisinghe, Mohan

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150-300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. PMID:23623059

  15. Solute Transport in Cyclically Deformed Porous Tissue Scaffolds with Controlled Pore Cross-Sectional Geometries

    PubMed Central

    Op Den Buijs, Jorn; Lu, Lichun; Jorgensen, Steven M.; Dragomir-Daescu, Dan; Yaszemski, Michael J.

    2009-01-01

    The objective of this study was to investigate the influence of pore geometry on the transport rate and depth after repetitive mechanical deformation of porous scaffolds for tissue engineering applications. Flexible cubic imaging phantoms with pores in the shape of a circular cylinder, elliptic cylinder, and spheroid were fabricated from a biodegradable polymer blend using a combined 3D printing and injection molding technique. The specimens were immersed in fluid and loaded with a solution of a radiopaque solute. The solute distribution was quantified by recording 20 μm pixel-resolution images in an X-ray microimaging scanner at selected time points after intervals of dynamic straining with a mean strain of 8.6 ± 1.6% at 1.0 Hz. The results show that application of cyclic strain significantly increases the rate and depth of solute transport, as compared to diffusive transport alone, for all pore shapes. In addition, pore shape, pore size, and the orientation of the pore cross-sectional asymmetry with respect to the direction of strain greatly influence solute transport. Thus, pore geometry can be tailored to increase transport rates and depths in cyclically deformed scaffolds, which is of utmost importance when thick, metabolically functional tissues are to be engineered. PMID:19196145

  16. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    NASA Astrophysics Data System (ADS)

    Sevostyanova, V. V.; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  17. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    SciTech Connect

    Sevostyanova, V. V. Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  18. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application.

    PubMed

    Vishwanath, Varshini; Pramanik, Krishna; Biswas, Amit

    2016-05-01

    Silk fibroin/chitosan blend has been reported to be an attractive biomaterial that provides a 3D porous structure with controllable pore size and mechanical property suitable for tissue engineering applications. However, there is no systematic study for optimizing the ratio of silk fibroin (SF) and chitosan (CS) which seems to influence the scaffold property to a great extent. The present research, therefore, investigates the effect of blend ratio of SF and CS on scaffold property and establishes the optimum value of blend ratio. Among the various blends, the scaffolds with blend ratio of SF/CS (80:20) were found to be superior. The scaffold possesses pore size in the range 71-210 μm and porosity of 82.2 ± 1.3%. The compressive strength of the scaffold was measured as 190 ± 0.2 kPa. The cell supportive property of the scaffold in terms of cell attachment, cell viability, and proliferation was confirmed by cell culture study using mesenchymal stem cells derived from umbilical cord blood. Furthermore, the assessment of glycosaminoglycan secretion on the scaffolds indicates its potentiality toward cartilage tissue regeneration. PMID:26830046

  19. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.

    PubMed

    Li, Jin Lan; Cai, Yan Li; Guo, Yi Lin; Fuh, Jerry Ying Hsi; Sun, Jie; Hong, Geok Soon; Lam, Ruey Na; Wong, Yoke San; Wang, Wilson; Tay, Bee Yen; Thian, Eng San

    2014-05-01

    Biodegradable polymeric scaffolds have been widely used in tissue engineering as a platform for cell proliferation and subsequent tissue regeneration. Conventional microextrusion methods for three-dimensional (3D) scaffold fabrication were limited by their low resolution. Electrospinning, a form of electrohydrodynamic (EHD) printing, is an attractive method due to its capability of fabricating high-resolution scaffolds at the nanometer/micrometer scale level. However, the scaffold was composed of randomly orientated filaments which could not guide the cells in a specific direction. Furthermore, the pores of the electrospun scaffold were small, thus preventing cell infiltration. In this study, an alternative EHD jet printing (E-jetting) technique has been developed and employed to fabricate 3D polycaprolactone (PCL) scaffolds with desired filament orientation and pore size. The effect of PCL solution concentration was evaluated. Results showed that solidified filaments were achieved at concentration >70% (w/v). Uniform filaments of diameter 20 μm were produced via the E-jetting technique, and X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopic analyses revealed that there was no physicochemical changes toward PCL. Scaffold with a pore size of 450 μm and porosity level of 92%, was achieved. A preliminary in vitro study illustrated that live chondrocytes were attaching on the outer and inner surfaces of collagen-coated E-jetted PCL scaffolds. E-jetted scaffolds increased chondrocytes extracellular matrix secretion, and newly formed matrices from chondrocytes contributed significantly to the mechanical strength of the scaffolds. All these results suggested that E-jetting is an alternative scaffold fabrication technique, which has the capability to construct 3D scaffolds with aligned filaments and large pore sizes for tissue engineering applications. PMID:24155124

  20. Preparation and Reinforcement of Dual‐Porous Biocompatible Cellulose Scaffolds for Tissue Engineering

    PubMed Central

    Pircher, Nicole; Fischhuber, David; Carbajal, Leticia; Strauß, Christine; Nedelec, Jean‐Marie; Kasper, Cornelia; Rosenau, Thomas

    2015-01-01

    1 Biocompatible cellulose‐based aerogels composed of nanoporous struts, which embed interconnected voids of controlled micron‐size, have been prepared employing temporary templates of fused porogens, reinforcement by interpenetrating PMMA networks and supercritical carbon dioxide drying. Different combinations of cellulose solvent (Ca(SCN)2/H2O/LiCl or [EMIm][OAc]/DMSO) and anti‐solvent (EtOH), porogen type (paraffin wax or PMMA spheres) and porogen size (various fractions in the range of 100–500 μm) as well as intensity of PMMA reinforcement have been investigated to tailor the materials for cell scaffolding applications. All aerogels exhibited an open and dual porosity (micronporosity >100 μm and nanoporosity extending to the low micrometer range). Mechanical properties of the dual‐porous aerogels under compressive stress were considerably improved by introduction of interpenetrating PMMA networks. The effect of the reinforcing polymer on attachment, spreading, and proliferation of NIH 3T3 fibroblast cells, cultivated on selected dual‐porous aerogels to pre‐evaluate their biocompatibility was similarly positive. PMID:26941565

  1. Data on bone marrow stem cells delivery using porous polymer scaffold

    PubMed Central

    Geesala, Ramasatyaveni; Bar, Nimai; Dhoke, Neha R.; Basak, Pratyay; Das, Amitava

    2015-01-01

    Low bioavailability and/or survival at the injury site of transplanted stem cells necessitate its delivery using a biocompatible, biodegradable cell delivery vehicle. In this dataset, we report the application of a porous biocompatible, biodegradable polymer network that successfully delivers bone marrow stem cells (BMSCs) at the wound site of a murine excisional splint wound model. In this data article, we are providing the additional data of the reference article “Porous polymer scaffold for on-site delivery of stem cells – protects from oxidative stress and potentiates wound tissue repair” (Ramasatyaveni et al., 2016) [1]. This data consists of the characterization of bone marrow stem cells (BMSCs) showing the pluripotency and stem cell-specific surface markers. Image analysis of the cellular penetration into PEG–PU polymer network and the mechanism via enzymatic activation of MMP-2 and MMP-13 are reported. In addition, we provide a comparison of various routes of transplantation-mediated BMSCs engraftment in the murine model using bone marrow transplantation chimeras. Furthermore, we included in this dataset the engraftment of BMSCs expressing Sca-1+Lin−CD133+CD90.2+ in post-surgery day 10. PMID:26862563

  2. Nanostructured Porous Silicon: The Winding Road from Photonics to Cell Scaffolds – A Review

    PubMed Central

    Hernández-Montelongo, Jacobo; Muñoz-Noval, Alvaro; García-Ruíz, Josefa Predestinación; Torres-Costa, Vicente; Martín-Palma, Raul J.; Manso-Silván, Miguel

    2015-01-01

    For over 20 years, nanostructured porous silicon (nanoPS) has found a vast number of applications in the broad fields of photonics and optoelectronics, triggered by the discovery of its photoluminescent behavior in 1990. Besides, its biocompatibility, biodegradability, and bioresorbability make porous silicon (PSi) an appealing biomaterial. These properties are largely a consequence of its particular susceptibility to oxidation, leading to the formation of silicon oxide, which is readily dissolved by body fluids. This paper reviews the evolution of the applications of PSi and nanoPS from photonics through biophotonics, to their use as cell scaffolds, whether as an implantable substitute biomaterial, mainly for bony and ophthalmological tissues, or as an in vitro cell conditioning support, especially for pluripotent cells. For any of these applications, PSi/nanoPS can be used directly after synthesis from Si wafers, upon appropriate surface modification processes, or as a composite biomaterial. Unedited studies of fluorescently active PSi structures for cell culture are brought to evidence the margin for new developments. PMID:26029688

  3. Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds.

    PubMed

    Tiainen, Hanna; Eder, Georg; Nilsen, Ola; Haugen, Håvard J

    2012-08-01

    This study aimed at the investigation of the effect of zirconium dioxide (ZrO2) addition on the mechanical properties of titanium dioxide (TiO2) bone scaffolds. The highly biocompatible TiO2 has been identified as a promising material for bone scaffolds, whereas the more bioinert ZrO2 is known for its excellent mechanical properties. Ultra-porous TiO2 scaffolds (>89% porosity) were produced using polymer sponge replication with 0-40 wt.% of the TiO2 raw material substituted with ZrO2. Microstructure, chemical composition, and pore architectural features of the prepared ceramic foams were characterised and related to their mechanical strength. Addition of 1 wt.% of ZrO2 led to 16% increase in the mean compressive strength without significant changes in the pore architectural parameters of TiO2 scaffolds. Further ZrO2 additions resulted in reduction of compressive strength in comparison to containing no ZrO2. The appearance of zirconium titanate (ZrTiO4) phase was found to hinder the densification of the ceramic material during sintering resulting in poor intergranular connections and thus significantly reducing the compressive strength of the highly porous ceramic foam scaffolds. PMID:24364936

  4. Modeling the fluid-dynamics and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure.

    PubMed

    Ferroni, Marco; Giusti, Serena; Nascimento, Diana; Silva, Ana; Boschetti, Federica; Ahluwalia, Arti

    2016-08-01

    The architecture and dynamic physical environment of tissues can be recreated in-vitro by combining 3D porous scaffolds and bioreactors able to apply controlled mechanical stimuli on cells. In such systems, the entity of the stimuli and the distribution of nutrients within the engineered construct depend on the micro-structure of the scaffolds. In this work, we present a new approach for optimizing computational fluid-dynamics (CFD) models for the investigation of fluid-induced forces generated by cyclic squeeze pressure within a porous construct, coupled with oxygen consumption of cardiomyocytes. A 2D axial symmetric macro-scaled model of a squeeze pressure bioreactor chamber was used as starting point for generating time dependent pressure profiles. Subsequently the fluid movement generated by the pressure fields was coupled with a complete 3D micro-scaled model of a porous protein cryogel. Oxygen transport and consumption inside the scaffold was evaluated considering a homogeneous distribution of cardiomyocytes throughout the structure, as confirmed by preliminary cell culture experiments. The results show that a 3D description of the system, coupling a porous geometry and time dependent pressure driven flow with fluid-structure-interaction provides an accurate and meaningful description of the microenvironment in terms of shear stress and oxygen distribution than simple stationary 2D models. PMID:27189671

  5. Design and application of chitosan/biphasic calcium phosphate porous scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Sendemir-Urkmez, Aylin

    For the restoration of maxillofacial bone tissue, design of novel tissue engineering scaffolds capable of inducing bone remodeling through the delivery of mesenchymal stem cells (MSCs) and an angiogenic growth factor, directly at the site of the defect was investigated in order to replace autogenous cancellous bone grafts with synthetic materials. Porous, three dimensional scaffolds were fabricated by a freeze drying method. In culture media, biphasic calcium phosphate particles within chitosan produced a surface reprecipitate of a composition similar to natural apatite that led to a uniform distribution of cells and mineralized ECM through chemotaxis. Further, the reprecipitation regulated the differentiation pathway and phenotype commitment of stem cells by altering the initial cell attachment morphology and actin cytoskeleton organization. In order to induce neovascularization after implantation, constructs were designed to be loaded with gelatin microspheres that delivered basic fibroblast growth factor (bFGF), a potent angiogenic factor. In vitro proliferation tests performed on fibroblastic cells showed no detectible loss of bFGF activity when delivered through enzymatic degradation of gelatin. Laser scanning confocal microscopy was used to demonstrate that gelatin microspheres can be injected evenly into cell-scaffold constructs owing to the spongy characteristics of the scaffold. To examine the binding interactions of bFGF with surface bound gelatin, a label free biosensor system, Biomolecular INteraction Detection sensor (BIND) was used. Results confirm that the principal interaction that takes place between bFGF and gelatin is electrostatic. Cell loaded tissue engineered constructs were produced in vitro at clinically relevant sizes and implanted with and without bFGF into a porcine mandibular defect model. Tissue engineered constructs facilitated the healing of mandibular defects only if combined with delivery of bFGF via gelatin microspheres. b

  6. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  7. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  8. Biomimetic hybrid porous scaffolds immobilized with platelet derived growth factor-BB promote cellularization and vascularization in tissue engineering.

    PubMed

    Murali, Ragothaman; Ponrasu, Thangavel; Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy

    2016-02-01

    Development of hybrid scaffolds with synergistic combination of growth factor is a promising approach to promote early in vivo wound repair and tissue regeneration. Here, we show the rapid wound healing in Wistar albino rats using biomimetic collagen-poly(dialdehyde) guar gum based hybrid porous scaffolds covalently immobilized with platelet derived growth factor-BB. The immobilized platelet derived growth factor in the hybrid scaffolds not only enhance the total protein, collagen, hexosamine, and uronic acid contents in the granulation tissue but also provide stronger tissues. The wound closure analysis reveal that the complete epithelialization period is 15.4 ± 0.9 days for collagen-poly(dialdehyde) guar gum-platelet derived growth factor hybrid scaffolds, whereas it is significantly higher for control, collagen, collagen- poly(dialdehyde) guar gum and povidine-iodine treated groups. Further, the histological evaluation shows that the immobilized platelet derived growth factor in the hybrid scaffolds induced a more robust cellular and vascular response in the implanted site. Hence, we demonstrate that the collagen-poly(dialdehyde) guar gum hybrid scaffolds loaded with platelet derived growth factor stimulates chemotactic effects in the implanted site to promote rapid tissue regeneration and wound repair without the assistance of antibacterial agents. PMID:26414915

  9. Constitution and in vivo test of micro-porous tubular scaffold for esophageal tissue engineering.

    PubMed

    Hou, Lei; Jin, Jiachang; Lv, Jingjing; Chen, Ling; Zhu, Yabin; Liu, Xingyu

    2015-11-01

    Current clinical techniques in treating long-gap esophageal defects often lead to complications and high morbidity. Aiming at long-gap synthetic esophageal substitute, we had synthesized a biodegradable copolymer, poly(L-lactide-co-caprolactone) (PLLC), with low glass transition temperature. In this work, we developed a tubular PLLC porous scaffold using a self-designed tubular mold and thermal induced phase separation (TIPS) method. In order to enhance the interaction between tissue and scaffold, fibrin, a natural fibrous protein derived from blood fibrinogen, was coated on the scaffold circumferential surface. The fibrin density was measured to be 1.23 ± 0.04 mg/cm(2). Primary epithelial cell culture demonstrated the improved in vitro biocompatibility. In animal study with partial scaffold implantation, in situ mucosa regeneration was observed along the degradation of the scaffold. These indicate that fibrin incorporated PLLC scaffold can greatly improve epithelial regeneration in esophagus repair, therefore serve as a good candidate for long-term evaluation of post-implantation at excision site. PMID:26208515

  10. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    PubMed

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-01

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  <  0.05). Comparisons of smooth muscle content and endothelia density among the three groups revealed a significant increase at each time point (p  <  0.05). Our results demonstrated that 3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction. PMID:26358641

  11. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    PubMed

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior. PMID:25913609

  12. Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds

    PubMed Central

    Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803

  13. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.

    PubMed

    Rong, Zi-Jie; Yang, Lian-Jun; Cai, Bao-Ta; Zhu, Li-Xin; Cao, Yan-Lin; Wu, Guo-Feng; Zhang, Zan-Jie

    2016-05-01

    To develop adriamycin (ADM)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a porous nano-hydroxyapatite/collagen scaffold (ADM-PLGA-NHAC). To provide novel strategies for future treatment of osteosarcoma, the properties of the scaffold, including its in vitro extended-release properties, the inhibition effects of ADM-PLGA-NHAC on the osteosarcoma MG63 cells, and its bone repair capacity, were investigated in vivo and in vitro. The PLGA copolymer was utilized as a drug carrier to deliver ADM-PLGA nanoparticles (ADM-PLGA-NP). Porous nano-hydroxyapatite and collagen were used to materials to produce the porous nano-hydroxyapatite/collagen scaffold (NHAC), into which the ADM-PLGA-NP was loaded. The performance of the drug-carrying scaffold was assessed using multiple techniques, including scanning electron microscopy and in vitro extended release. The antineoplastic activities of scaffold extracts on the human osteosarcoma MG63 cell line were evaluated in vitro using the cell counting kit-8 (CCK8) method and live-dead cell staining. The bone repair ability of the scaffold was assessed based on the establishment of a femoral condyle defect model in rabbits. ADM-PLGA-NHAC and NHAC were implanted into the rat muscle bag for immune response experiments. A tumor-bearing nude mice model was created, and the TUNEL and HE staining results were observed under optical microscopy to evaluate the antineoplastic activity and toxic side effects of the scaffold. The composite scaffold demonstrated extraordinary extended-release properties, and its extracts also exhibited significant inhibition of the growth of osteosarcoma MG63 cells. In the bone repair experiment, no significant difference was observed between ADM-PLGA-NHAC and NHAC by itself. In the immune response experiments, ADM-PLGA-NHAC exhibited remarkable biocompatibility. The in vivo antitumor experiment revealed that the implantation of ADM-PLGA-NHAC in the tumor resulted in a improved antineoplastic

  14. Synthesis of polymer/inorganic nanocomposite films using highly porous inorganic scaffolds

    NASA Astrophysics Data System (ADS)

    Zhang, Huanjun; Popp, Matthias; Hartwig, Andreas; Mädler, Lutz

    2012-03-01

    Polymeric/inorganic nanocomposite films have been fabricated through a combination of flame-spray-pyrolysis (FSP) made inorganic scaffold and surface initiated polymerization of cyanoacrylate. The highly porous structure of pristine SnO2 films allows the uptake of cyanoacrylate and the polymerization is surface initiated by the water adsorbed onto the SnO2 surface. Scanning electron microscopy study reveals a nonlinear increase in the composite particle size and the film thickness with polymerization time. The structural change is rather homogeneous throughout the whole layer. The composite is formed mainly by an increase of the particle size and not by just filling the existing pores. High-resolution transmission electron microscopy imaging shows SnO2 nanoparticles embedded in the polymeric matrix, constituting the nanocomposite material. Thermogravimetric analysis indicates that the porosity of the nanocomposite films decreases from 98% to 75%, resulting in a significant enhancement of the hardness of the films. DC conductivity measurements conducted in situ on the nanocomposite layer suggest a gradual increase in the layer resistance, pointing to a loss of connectivity between the SnO2 primary particles as the polymerization proceeds.Polymeric/inorganic nanocomposite films have been fabricated through a combination of flame-spray-pyrolysis (FSP) made inorganic scaffold and surface initiated polymerization of cyanoacrylate. The highly porous structure of pristine SnO2 films allows the uptake of cyanoacrylate and the polymerization is surface initiated by the water adsorbed onto the SnO2 surface. Scanning electron microscopy study reveals a nonlinear increase in the composite particle size and the film thickness with polymerization time. The structural change is rather homogeneous throughout the whole layer. The composite is formed mainly by an increase of the particle size and not by just filling the existing pores. High-resolution transmission electron

  15. Magnetic resonance functional nano-hydroxyapatite incorporated poly(caprolactone) composite scaffolds for in situ monitoring of bone tissue regeneration by MRI.

    PubMed

    Ganesh, Nitya; Ashokan, Anusha; Rajeshkannan, Ramiah; Chennazhi, Krishnaprasad; Koyakutty, Manzoor; Nair, Shantikumar V

    2014-10-01

    In this study, we have reported the incorporation of a multi-modal contrast agent based on hydroxyapatite nanocrystals, within a poly(caprolactone)(PCL) nanofibrous scaffold by electrospinning. The multifunctional hydroxyapatite nanoparticles (MF-nHAp) showed simultaneous contrast enhancement for three major molecular imaging techniques. In this article, the magnetic resonance (MR) contrast enhancement ability of the MF-nHAp was exploited for the purpose of potentially monitoring as well as for influencing tissue regeneration. These MF-nHAp containing PCL scaffolds were engineered in order to enhance the osteogenic potential as well as its MR functionality for their application in bone tissue engineering. The nano-composite scaffolds along with pristine PCL were evaluated physico-chemically and biologically in vitro, in the presence of human mesenchymal stem cells (hMSCs). The incorporation of 30-40 nm sized MF-nHAp within the nanofibers showed a substantial increase in scaffold strength, protein adsorption, proliferation, and osteogenic differentiation of hMSCs along with enhanced MR functionality. This preliminary study was performed to eventually exploit the MR contrast imaging capability of MF-nHAp in nanofibrous scaffolds for real-time imaging of the changes in the tissue engineered construct. PMID:24785187

  16. Magnetic Resonance Functional Nano-Hydroxyapatite Incorporated Poly(Caprolactone) Composite Scaffolds for In Situ Monitoring of Bone Tissue Regeneration by MRI

    PubMed Central

    Ganesh, Nitya; Ashokan, Anusha; Rajeshkannan, Ramiah; Chennazhi, Krishnaprasad; Koyakutty, Manzoor

    2014-01-01

    In this study, we have reported the incorporation of a multi-modal contrast agent based on hydroxyapatite nanocrystals, within a poly(caprolactone)(PCL) nanofibrous scaffold by electrospinning. The multifunctional hydroxyapatite nanoparticles (MF-nHAp) showed simultaneous contrast enhancement for three major molecular imaging techniques. In this article, the magnetic resonance (MR) contrast enhancement ability of the MF-nHAp was exploited for the purpose of potentially monitoring as well as for influencing tissue regeneration. These MF-nHAp containing PCL scaffolds were engineered in order to enhance the osteogenic potential as well as its MR functionality for their application in bone tissue engineering. The nano-composite scaffolds along with pristine PCL were evaluated physico-chemically and biologically in vitro, in the presence of human mesenchymal stem cells (hMSCs). The incorporation of 30–40 nm sized MF-nHAp within the nanofibers showed a substantial increase in scaffold strength, protein adsorption, proliferation, and osteogenic differentiation of hMSCs along with enhanced MR functionality. This preliminary study was performed to eventually exploit the MR contrast imaging capability of MF-nHAp in nanofibrous scaffolds for real-time imaging of the changes in the tissue engineered construct. PMID:24785187

  17. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.

    PubMed

    Fuoco, Tiziana; Finne-Wistrand, Anna; Pappalardo, Daniela

    2016-04-11

    Biodegradable aliphatic polyesters such as poly(lactide) and poly(ε-caprolactone), largely used in tissue engineering applications, lack suitable functional groups and biological cues to enable interactions with cells. Because of the ubiquity of thiol groups in the biological environment and the pliability of thiol chemistry, we aimed to design and synthesize poly(ester) chains bearing pendant thiol-protected groups. To achieve this, 3-methyl-6-(tritylthiomethyl)-1,4-dioxane-2,5-dione, a lactide-type monomer possessing a pendant thiol-protected group, was synthesized. This molecule, when used as a monomer in controlled ring-opening polymerization in combination with lactide and ε-caprolactone, appeared to be a convenient "building block" for the preparation of functionalized aliphatic copolyesters, which were easily modified further. A polymeric sample bearing pyridyl disulfide groups, able to bind a cysteine-containing peptide, was efficiently obtained from a two-step modification reaction. Porous scaffolds were then prepared by blending this latter copolymer sample with poly(l-lactide-co-ε-caprolactone) followed by salt leaching. A further disulfide exchange reaction performed in aqueous medium formed porous scaffolds with covalently linked arginine-glycine-aspartic acid sequences. The scaffolds were characterized by thermal and mechanical tests, and scanning electron microscopy surface images revealed a highly porous morphology. Moreover, a cytotoxicity test indicated good cell viability. PMID:26915640

  18. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.

    PubMed

    Ke, Dongxu; Dernell, William; Bandyopadhyay, Amit; Bose, Susmita

    2015-11-01

    Tricalcium phosphate (TCP) is a bioceramic that is widely used in orthopedic and dental applications. TCP structures show excellent biocompatibility as well as biodegradability. In this study, porous β-TCP scaffolds were prepared by thermal decomposition of naphthalene. Scaffolds with 57.64% ± 3.54% density and a maximum pore size around 100 μm were fabricated via removing 30% naphthalene at 1150°C. The compressive strength for these scaffolds was 32.85 ± 1.41 MPa. Furthermore, by mixing 1 wt % SrO and 0.5 wt % SiO2 , pore interconnectivity improved, but the compressive strength decreased to 22.40 ± 2.70 MPa. However, after addition of polycaprolactone coating layers, the compressive strength of doped scaffolds increased to 29.57 ± 3.77 MPa. Porous scaffolds were implanted in rabbit femur defects to evaluate their biological property. The addition of dopants triggered osteoinduction by enhancing osteoid formation, osteocalcin expression, and bone regeneration, especially at the interface of the scaffold and host bone. This study showed processing flexibility to make interconnected porous scaffolds with different pore size and volume fraction porosity, while maintaining high compressive mechanical strength and excellent bioactivity. Results show that SrO/SiO2 -doped porous TCP scaffolds have excellent potential to be used in bone tissue engineering applications. PMID:25504889

  19. Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials.

    PubMed

    Cooke, Shelley L; Whittington, Abby R

    2016-03-01

    Biomedical polymers are exposed in vivo to ionizing radiation as implants, coatings and bystander materials. High levels of ionizing radiation (e.g. X-ray and gamma) have been reported to cause degradation and/or cross-linking in many polymers. This pilot study sought to determine causes of failure, by investigating how therapeutic radiation affects two different porous polymeric scaffolds: polycaprolactone (PCL) and polyurethane (PU). PCL is a bioresorbable material used in biomedical devices (e.g., dentistry, internal fixation devices and targeted drug delivery capsules). PU is commonly used in medical applications (e.g., coatings for pacemakers, tissue expanders, catheter tubing and wound dressings). PU was specifically fabricated to be a non-degradable polymer in this study. Porous scaffolds, fabricated using solvent casting and/or salt leeching techniques, were placed in phosphate buffered saline (PBS, pH=7.4) and exposed to typical cancer radiotherapy. A total dose of 50 Gy was broken into 25 doses over an eleven-week period. Collected PBS was tested for polymer leachants and degradation products using Gas Chromatography Mass Spectroscopy (GC-MS), results revealed no analyzable leachants from either polymer. Scaffolds were characterized using Environmental Scanning Electron Microscopy, Size-exclusion chromatography (SEC), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR). No gross visual changes were observed in either polymer, however PU exhibited microstructure changes after irradiation. Increased number average molecular weight and weight average molecular weight in PCL and PU were observed after irradiation, indicating crosslinking. PU displayed an increase in intrinsic viscosity that further confirms increased crosslinking. PCL and PU showed decreases in crystallinity after irradiation, and PU crystallinity shifted from long-range-order hard segments to short-range-order hard segments after irradiation. Results

  20. In situ controlled release of rhBMP-2 in gelatin-coated 3D porous poly(ε-caprolactone) scaffolds for homogeneous bone tissue formation.

    PubMed

    Zhang, Qingchun; Tan, Ke; Zhang, Yan; Ye, Zhaoyang; Tan, Wen-Song; Lang, Meidong

    2014-01-13

    In tissue engineering, incorporation of bone morphogenetic protein-2 (BMP-2) into biomaterial scaffolds is an attractive strategy to stimulate bone repair. However, suboptimal release of BMP-2 remains a great concern, which may cause unfavorable bone formation as well as severe inflammation. In this study, genipin-cross-linked gelatin entrapped with recombinant human BMP-2 (rhBMP-2) was exploited to decorate the interior surface of three-dimensional porous poly(ε-caprolactone) (PCL) scaffolds. With gelatin-coating, PCL scaffolds demonstrated enhanced water uptake and improved compressive moduli. Intriguingly, a unique release profile of rhBMP-2 composed of a transient burst release followed by a sustained release was achieved in coated scaffolds. These coated scaffolds well supported growth and osteogenesis of human mesenchymal stem cells (hMSCs) in vitro, indicating the retaining of rhBMP-2 bioactivity. When hMSCs-seeded scaffolds were implanted subcutaneously in nude mice for 4 weeks, better bone formation was observed in gelatin/rhBMP-2-coated scaffolds. Specifically, the spatial distribution of newly formed bone was more uniform in gelatin-coated scaffolds than in uncoated scaffolds, which displayed preferential bone formation at the periphery. These results collectively demonstrated that gelatin-coating of porous PCL scaffolds is a promising approach for delivering rhBMP-2 to stimulate improved bone regeneration. PMID:24266740

  1. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.

    PubMed

    Luo, Zuyuan; Yang, Yue; Deng, Yi; Sun, Yuhua; Yang, Hongtao; Wei, Shicheng

    2016-07-01

    Good bioactivity and osteogenesis of three-dimensional porous alginate scaffolds (PAS) are critical for bone tissue engineering. In this work, alginate and bone-forming peptide-1 (BFP-1), derived from bone morphogenetic protein-7 (BMP-7), have been combined together (without carbodiimide chemistry treatment) to develop peptide-incorporated PAS (p-PAS) for promoting bone repairing ability. The mechanical properties and SEM images show no difference between pure PAS and p-PAS. The release kinetics of the labeled peptide with 6-carboxy tetramethyl rhodamine from the PAS matrix suggests that the peptide is released in a relatively sustained manner. In the cell experiment, p-PAS show higher cell adhesion, spreading, proliferation and alkaline phosphatase (ALP) activity than the pristine PAS group, indicating that the BFP-1 released from p-PAS could significantly promote the aggregation and differentiation of osteoblasts, especially at 10μg/mL of trapped peptide concentration (p-PAS-10). Furthermore, p-PAS-10 was implanted into Beagle calvarial defects and bone regeneration was analyzed after 4 weeks. New bone formation was assessed by calcein and Masson's trichrome staining. The data reveal that p-PAS group exhibits significantly enhanced oseto-regenerative capability in vivo. The peptide-modified PAS with promoted bioactivity and osteogenic differentiation in vitro as well as bone formation ability in vivo could be promising tissue engineering materials for repairing and regeneration of bone defects. PMID:27022863

  2. MgCHA particles dispersion in porous PCL scaffolds: in vitro mineralization and in vivo bone formation.

    PubMed

    Guarino, Vincenzo; Scaglione, Silvia; Sandri, Monica; Alvarez-Perez, Marco A; Tampieri, Anna; Quarto, Rodolfo; Ambrosio, Luigi

    2014-04-01

    In this work, we focus on the in vitro and in vivo response of composite scaffolds obtained by incorporating Mg,CO3 -doped hydroxyapatite (HA) particles in poly(ε-caprolactone) (PCL) porous matrices. After a complete analysis of chemical and physical properties of synthesized particles (i.e. SEM/EDS, DSC, XRD and FTIR), we demonstrate that the Mg,CO3 doping influences the surface wettability with implications upon cell-material interaction and new bone formation mechanisms. In particular, ion substitution in apatite crystals positively influences the early in vitro cellular response of human mesenchymal stem cells (hMSCs), i.e. adhesion and proliferation, and promotes an extensive mineralization of the scaffold in osteogenic medium, thus conforming to a more faithful reproduction of the native bone environment than undoped HA particles, used as control in PCL matrices. Furthermore, we demonstrate that Mg,CO3 -doped HA in PCL scaffolds support the in vivo cellular response by inducing neo-bone formation as early as 2 months post-implantation, and abundant mature bone tissue at the sixth month, with a lamellar structure and completely formed bone marrow. Together, these results indicate that Mg(2+) and CO3 (2-) ion substitution in HA particles enhances the scaffold properties, providing the right chemical signals to combine with morphological requirements (i.e. pore size, shape and interconnectivity) to drive osteogenic response in scaffold-aided bone regeneration. PMID:22730225

  3. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Freeze-Gelled Chitosan/Nano β-Tricalcium Phosphate Porous Scaffolds Crosslinked with Genipin

    PubMed Central

    Siddiqui, Nadeem; Pramanik, Krishna; Jabbari, Esmaiel

    2015-01-01

    The objective of this work was to investigate material properties and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in genipin (GN) crosslinked chitosan/nano β-tricalcium phosphate (CS/nano β-TCP) scaffolds, and compare the results with tripolyphosphate (TPP) crosslinked scaffolds. Porous crosslinked CS/nano β-TCP scaffolds were produced by freeze-gelation using GN (CBG scaffold) and TPP (CBT scaffold) as crosslinkers. The prepared CBT and CBG scaffolds were characterized with respect to porosity, pore size, water content, wettability, compressive strength, mass loss, and osteogenic differentiation of hMSCs. All scaffolds displayed interconnected honeycomb-like microstructures. There was a significant difference between the average pore size, porosity, contact angle, and percent swelling of CBT and CBG scaffolds. The average pore size of CBG scaffolds was higher than CBT, the porosity of CBG was lower than CBT, the water contact angle of CBG was higher than CBT, and the percent swelling of CBG was lower than CBT. At a given crosslinker concentration, there was not a significant difference in compressive modulus and mass loss of CBG and CBT scaffolds. Metabolic activity of hMSCs seeded in CBG scaffolds was slightly higher than CBT. Furthermore, CBG scaffolds displayed slightly higher extent of mineralization after 21 days incubation in osteogenic medium compared to CBT. PMID:26046270

  4. Construction of Mesenchymal Stem Cell–Containing Collagen Gel with a Macrochanneled Polycaprolactone Scaffold and the Flow Perfusion Culturing for Bone Tissue Engineering

    PubMed Central

    Yu, Hye-Sun; Won, Jong-Eun; Jin, Guang-Zhen

    2012-01-01

    Abstract A novel bone tissue-engineering construct was developed by using poly(ɛ-caprolactone) (PCL)-macrochanneled scaffolds combined with stem cell-seeded collagen hydrogels and then applying flow perfusion culture. Rat mesenchymal stem cells (MSCs) were loaded into collagen hydrogels, which were then combined with macrochanneled PCL scaffolds. Collagen hydrogels were demonstrated to provide favorable growth environments for MSCs and to foster proliferation. Cell number determination identified retention of substantially fewer (50–60%) cells when they were seeded directly onto macrochanneled PCL than of cells engineered within collagen hydrogels. Additionally, the cells actively proliferated within the combined scaffold for up to 7 days. MSC-loaded collagen–PCL scaffolds were subsequently cultured under flow perfusion to promote proliferation and osteogenic differentiation. Cells proliferated to levels significantly higher in flow perfusion culture than that under static conditions during 21 days. A quantitative polymerase chain reaction (QPCR) assay revealed significant alterations in the transcription of bone-related genes such as osteopontin (OPN), osteocalcin (OCN), and bone sialoprotein (BSP), such as 8-, 2.5-, and 3-fold induction, respectively, after 10 days of flow perfusion relative to those in static culture. OPN and OCN protein levels, as determined by Western blot, increased under flow perfusion. Cellular mineralization was significantly enhanced by the flow perfusion during 21 and 28 days. Analyses of mechanosensitive gene expression induced by flow perfusion shear stress revealed significant upregulation of c-fos and cyclooxygenase-2 (COX-2) during the initial culture period (3–5 days), suggesting that osteogenic stimulation was possible as a result of mechanical force-driven transduction. These results provide valuable information for the design of a new bone tissue-engineering system by combining stem cell-loaded collagen hydrogels with

  5. Evaluation of Polycaprolactone Scaffold with Basic Fibroblast Growth Factor and Fibroblasts in an Athymic Rat Model for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Wu, Ben; Petrigliano, Frank A.; McAllister, David R.

    2015-01-01

    Anterior cruciate ligament (ACL) rupture is a common ligamentous injury often necessitating surgery. Current surgical treatment options include ligament reconstruction with autograft or allograft, which have their inherent limitations. Thus, there is interest in a tissue-engineered substitute for use in ACL regeneration. However, there have been relatively few in vivo studies to date. In this study, an athymic rat model of ACL reconstruction was used to evaluate electrospun polycaprolactone (PCL) grafts, with and without the addition of basic fibroblast growth factor (bFGF) and human foreskin fibroblasts. We examined the regenerative potential of tissue-engineered ACL grafts using histology, immunohistochemistry, and mechanical testing up to 16 weeks postoperatively. Histology showed infiltration of the grafts with cells, and immunohistochemistry demonstrated aligned collagen deposition with minimal inflammatory reaction. Mechanical testing of the grafts demonstrated significantly higher mechanical properties than immediately postimplantation. Acellular grafts loaded with bFGF achieved 58.8% of the stiffness and 40.7% of the peak load of healthy native ACL. Grafts without bFGF achieved 31.3% of the stiffness and 28.2% of the peak load of healthy native ACL. In this in vivo rodent model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regenerative potential of our electrospun PCL ligament graft. PMID:25744933

  6. Evaluation of polycaprolactone scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction.

    PubMed

    Leong, Natalie Luanne; Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Wu, Ben; Petrigliano, Frank A; McAllister, David R

    2015-06-01

    Anterior cruciate ligament (ACL) rupture is a common ligamentous injury often necessitating surgery. Current surgical treatment options include ligament reconstruction with autograft or allograft, which have their inherent limitations. Thus, there is interest in a tissue-engineered substitute for use in ACL regeneration. However, there have been relatively few in vivo studies to date. In this study, an athymic rat model of ACL reconstruction was used to evaluate electrospun polycaprolactone (PCL) grafts, with and without the addition of basic fibroblast growth factor (bFGF) and human foreskin fibroblasts. We examined the regenerative potential of tissue-engineered ACL grafts using histology, immunohistochemistry, and mechanical testing up to 16 weeks postoperatively. Histology showed infiltration of the grafts with cells, and immunohistochemistry demonstrated aligned collagen deposition with minimal inflammatory reaction. Mechanical testing of the grafts demonstrated significantly higher mechanical properties than immediately postimplantation. Acellular grafts loaded with bFGF achieved 58.8% of the stiffness and 40.7% of the peak load of healthy native ACL. Grafts without bFGF achieved 31.3% of the stiffness and 28.2% of the peak load of healthy native ACL. In this in vivo rodent model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regenerative potential of our electrospun PCL ligament graft. PMID:25744933

  7. Interleukin-10 conjugated electrospun polycaprolactone (PCL) nanofibre scaffolds for promoting alternatively activated (M2) macrophages around the peripheral nerve in vivo.

    PubMed

    Potas, Jason R; Haque, Farhia; Maclean, Francesca L; Nisbet, David R

    2015-05-01

    Macrophages play a key role in tissue regeneration following peripheral nerve injury by preparing the surrounding parenchyma for regeneration, however, they can be damaging if the response is excessive. Interleukin 10 (IL-10) is a cytokine that promotes macrophages toward an anti-inflammatory/wound healing state (M2 phenotype). The bioactive half-life of IL-10 is dependent on the cellular microenvironment and ranges from minutes to hours in vivo. Our objective was to extend the in vivo bioavailability and bioactivity of IL-10 by attaching the protein onto nanofibrous scaffolds and demonstrating increased expression levels of M2 macrophages when placed around healthy intact peripheral nerves. IL-10 was adsorbed and covalently bound to electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffolds. In vivo bioavailability and bioactivity of IL-10 was confirmed by wrapping IL-10 conjugated nanofibres around the sciatic nerves of Wistar rats and quantifying M2 macrophages immunohistochemically double labelled with ED1 and either arginase 1 or CD206. IL-10 remained immobilised to PCL scaffolds for more than 120 days when stored in phosphate buffered saline at room temperature and for up to 14d ays when implanted around the sciatic nerve. IL-10 conjugated nanofibres successfully induced macrophage polarisation towards the M2 activated state within the scaffold material as well as the adjacent tissue surrounding the nerve. PCL biofunctionalised nanofibres are useful for manipulating the cellular microenvironment. Materials such as these could potentially lead to new therapeutic strategies for nervous tissue injuries as well as provide novel investigative tools for biological research. PMID:25837415

  8. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering.

    PubMed

    Jonnalagadda, John B; Rivero, Iris V

    2014-12-01

    The aim of this research is to develop a parametric investigation of the fabrication of poly(e-caprolactone) (PCL)/poly(glycolic acid) (PGA) scaffolds to decipher the influence of cryomilling time on the scaffolds' resultant physical, morphological and mechanical characteristics. Scaffolds were fabricated via solid-state cryomilling to prepare a homogeneous blend along with conventional compression molding and porogen leaching yielding interconnected porous scaffolds. PCL/PGA scaffolds fabricated through this technique demonstrated high porosity at all cryomilling times. Morphological analysis revealed a co-continuous interconnected pore network. While mean pore size decreased, water uptake and compressive properties increased with increasing cryomilling times. Porous scaffolds cryomilled for 12min exhibited a mean pore size within the optimal range for tissue engineering and chondrocyte ingrowth. And the compressive modulus of scaffolds cryomilled for 12, 30 and 60min matched the compressive modulus of human articular cartilage. In addition, scaffolds exhibited water uptake, a key requirement in tissue engineering. A 60 day in vitro degradation study revealed mass loss starting from day 10 and increasing through day 60, while notable reduction in compressive properties was observed. The results indicated that cryomilling times affected the resultant properties of PCL/PGA scaffolds and will be interesting candidates for articular cartilage tissue engineering. PMID:25194523

  9. Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution.

    PubMed

    Gorczyca, Grzegorz; Tylingo, Robert; Szweda, Piotr; Augustin, Ewa; Sadowska, Maria; Milewski, Sławomir

    2014-02-15

    Novel porous scaffolds composed of chitosan, collagen and gelatin were prepared by the multistep procedure involving final freeze-drying and characterized. To eliminate the need for residual acid removal from the material after drying, carbon dioxide saturation process was used for chitosan blend formulation. The use of CO2 for chitosan dissolution made the scaffold preparation process more reproducible and economically sustainable. Genipin was applied to stabilize the structure of the scaffolds and those crosslinked at a level of 7.3% exhibited a homogenous porous structure (33.1%), high swelling capacity (27.6g/g for wound exudate like medium; 62.5 g/g for water), and were stable under cyclic compression. The values of other investigated parameters: dissolution degree (30%), lysozyme-induced degradation (5% after 168 h), good antioxidant properties (DPPH, ABTS, Fe(2+) assays) and especially very low in vitro cytotoxicity against fibroblasts (103%, MTT assay), were highly advantageous for possible biomedical applications of the novel materials. PMID:24507362

  10. Ingrowth of Human Mesenchymal Stem Cells into Porous Silk Particle Reinforced Silk Composite Scaffolds: An In Vitro Study

    PubMed Central

    Rockwood, Danielle N.; Gil, Eun Seok; Park, Sang-Hyug; Kluge, Jonathan A.; Grayson, Warren; Bhumiratana, Sarindr; Rajkhowa, Rangam; Wang, Xungai; Kim, Sung Jun; Vunjak-Novakovic, Gordana; Kaplan, David L

    2010-01-01

    Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous 3D silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (nonreinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to six weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microCT (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1 and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for nonreinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes. PMID:20656075

  11. Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy.

    PubMed

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-04-01

    Molecular interactions in hydroxyapatite (HAP) polymer composites have been studied using photoacoustic spectroscopy. HAP is mineralized by wet precipitation under two conditions: first is in the absence of polyacrylic acid (PAAc) (ex-situ HAP) and second in the presence of PAAc (in-situ HAP). Porous and solid composites of ex-situ and in-situ HAP with polycaprolactone (PCL) have also been made to evaluate their applicability as bone scaffolds. Photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy studies indicate that both in-situ and ex-situ HAP have HPO4 (2-) in their structure, which leads to Ca2+ deficiency. During crystallization of in-situ HAP, PAAc dissociates to form carboxylate ions, which binds to calcium ions and act as suitable site for nucleation for HAP crystallization. PA-FTIR spectra of porous and solid composites indicate that porous composites adsorb more water, which is hydrogen bonded with carbonyl of PCL. Mechanical tests on solid samples indicate that ex-situ HAP/PCL composites have higher elastic modulus than in-situ HAP/PCL composites. However, in case of porous composites, in-situ HAP/PCL composites are found to have higher elastic modulus. In-situ HAP is chemically and structurally different from ex-situ HAP. This modified HAP causes variation in microstructure of porous composite and hence alteration of its load transfer mechanisms and hence mechanical properties. PMID:16355408

  12. Novel biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications

    PubMed Central

    Liu, Xifeng; Miller, A. Lee; Waletzki, Brian E.; Yaszemski, Michael J.

    2015-01-01

    Scaffolds with intrinsically interconnected porous structures are highly desirable in tissue engineering and regenerative medicine. In this study, three-dimensional polymer scaffolds with highly interconnected porous structures were fabricated by thermally induced phase separation of novel synthesized biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) in a dioxane/water binary system. Defined porous scaffolds were achieved by optimizing conditions to attain interconnected porous structures. The effect of phase separation parameters on scaffold morphology were investigated, including polymer concentration (1, 3, 5, 7, and 9%), quench time (1, 4, and 8 min), dioxane/water ratio (83/17, 85/15, and 87/13 wt/wt), and freeze temperature (−20, −80, and −196 °C). Interesting pore morphologies were created by adjusting these processing parameters, e.g., flower-shaped (5%; 85/15; 1 min; −80 °C), spherulite-like (5%; 85/15; 8 min; −80 °C), and bead-like (5%; 87/13; 1 min; −80 °C) morphology. Modulation of phase separation conditions also resulted in remarkable differences in scaffold porosities (81% to 91%) and thermal properties. Furthermore, scaffolds with varied mechanic strengths, degradation rates, and protein adsorption capabilities could be fabricated using the phase separation method. In summary, this work provides an effective route to generate multi-dimensional porous scaffolds that can be applied to a variety of hydrophobic polymers and copolymers. The generated scaffolds could potentially be useful for various tissue engineering applications including bone tissue engineering. PMID:26989483

  13. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-β3 supplementation and oxygen culture conditions.

    PubMed

    Guillaume, Olivier; Daly, Andrew; Lennon, Kerri; Gansau, Jennifer; Buckley, Shane F; Buckley, Conor T

    2014-05-01

    Disc herniation as a result of degenerative or traumatic injury is believed to be the primary instigator of low back pain. At present there is a lack of viable treatment options to repair damaged annulus fibrosus (AF) tissue. Developing alternative strategies to fill and repair ruptured AF tissue is a key challenge. In this work we developed a porous alginate scaffold with shape-memory properties which can be delivered using minimally invasive approaches and recover its original geometry once hydrated. Covalently cross-linked alginate hydrogels were created using carbodiimide chemistry, followed by a freeze-drying step to impart porosity and create porous scaffolds. Results showed that porous alginate scaffolds exhibited shape-memory recovery and mechanical behaviour that could be modulated depending on the cross-linker concentrations. The scaffold can be repeatedly compressed and expanded, which provides the potential to deliver the biomaterial directly to the damaged area of the AF tissue. In vitro experiments demonstrated that scaffolds were cytocompatible and supported cell seeding, penetration and proliferation under intervertebral-disc-like microenvironmental conditions (low glucose media and low oxygen concentration). Extracellular matrix (ECM) was secreted by AF cells with TGF-β3 stimulation and after 21days had filled the porous scaffold network. This biological matrix was rich in sulfated glycosaminoglycan and collagen type I, which are the main compounds of native AF tissue. Successful ECM deposition was also confirmed by the increase in the peak stress of the scaffold. However, the immaturity of the matrix network after only 21days of in vitro culture was not sufficient to attain native AF tissue mechanical properties. The ability to deliver porous scaffolds using minimal invasive approaches that can potentially promote the regeneration of AF defects provides an exciting new avenue for disc repair. PMID:24380722

  14. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography

    PubMed Central

    Gauvin, Robert; Chen, Ying-Chieh; Lee, Jin Woo; Soman, Pranav; Zorlutuna, Pinar; Nichol, Jason W.; Bae, Hojae; Chen, Shaochen; Khademhosseini, Ali

    2013-01-01

    The success of tissue engineering will rely on the ability to generate complex, cell seeded three-dimensional (3D) structures. Therefore, methods that can be used to precisely engineer the architecture and topography of scaffolding materials will represent a critical aspect of functional tissue engineering. Previous approaches for 3D scaffold fabrication based on top-down and process driven methods are often not adequate to produce complex structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. The proposed projection stereolithography (PSL) platform can be used to design intricate 3D tissue scaffolds that can be engineered to mimic the microarchitecture of tissues, based on computer aided design (CAD). The PSL system was developed, programmed and optimized to fabricate 3D scaffolds using gelatin methacrylate (GelMA). Variation of the structure and prepolymer concentration enabled tailoring the mechanical properties of the scaffolds. A dynamic cell seeding method was utilized to improve the coverage of the scaffold throughout its thickness. The results demonstrated that the interconnectivity of pores allowed for uniform human umbilical vein endothelial cells (HUVECs) distribution and proliferation in the scaffolds, leading to high cell density and confluency at the end of the culture period. Moreover, immunohistochemistry results showed that cells seeded on the scaffold maintained their endothelial phenotype, demonstrating the biological functionality of the microfabricated GelMA scaffolds. PMID:22365811

  15. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography.

    PubMed

    Gauvin, Robert; Chen, Ying-Chieh; Lee, Jin Woo; Soman, Pranav; Zorlutuna, Pinar; Nichol, Jason W; Bae, Hojae; Chen, Shaochen; Khademhosseini, Ali

    2012-05-01

    The success of tissue engineering will rely on the ability to generate complex, cell seeded three-dimensional (3D) structures. Therefore, methods that can be used to precisely engineer the architecture and topography of scaffolding materials will represent a critical aspect of functional tissue engineering. Previous approaches for 3D scaffold fabrication based on top-down and process driven methods are often not adequate to produce complex structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. The proposed projection stereolithography (PSL) platform can be used to design intricate 3D tissue scaffolds that can be engineered to mimic the microarchitecture of tissues, based on computer aided design (CAD). The PSL system was developed, programmed and optimized to fabricate 3D scaffolds using gelatin methacrylate (GelMA). Variation of the structure and prepolymer concentration enabled tailoring the mechanical properties of the scaffolds. A dynamic cell seeding method was utilized to improve the coverage of the scaffold throughout its thickness. The results demonstrated that the interconnectivity of pores allowed for uniform human umbilical vein endothelial cells (HUVECs) distribution and proliferation in the scaffolds, leading to high cell density and confluency at the end of the culture period. Moreover, immunohistochemistry results showed that cells seeded on the scaffold maintained their endothelial phenotype, demonstrating the biological functionality of the microfabricated GelMA scaffolds. PMID:22365811

  16. The generation of biomolecular patterns in highly porous collagen-GAG scaffolds using direct photolithography

    PubMed Central

    Martin, Teresa A.; Caliari, Steven R.; Williford, Paul D.; Harley, Brendan A.; Bailey, Ryan C.

    2014-01-01

    The extracellular matrix (ECM) is a complex organization of structural proteins found within tissues and organs. Heterogeneous tissues with spatially and temporally modulated properties play an important role in organism physiology. Here we present a benzophenone (BP) based direct, photolithographic approach to spatially pattern solution phase biomolecules within collagen-GAG (CG) scaffolds and demonstrate creation of a wide range of patterns composed of multiple biomolecular species in a manner independent from scaffold fabrication steps. We demonstrate the ability to immobilize biomolecules at surface densities of up to 1000 ligands per square micron on the scaffold strut surface and to depths limited by the penetration depth of the excitation source into the scaffold structure. Importantly, while BP photopatterning does further crosslink the CG scaffold, evidenced by increased mechanical properties and collagen crystallinity, it does not affect scaffold microstructural or compositional properties or negatively influence cell adhesion, viability, or proliferation. We show that covalently photoimmobilized fibronectin within a CG scaffold significantly increases the speed of MC3T3-E1 cell attachment relative to the bare CG scaffold or non-specifically adsorbed fibronectin, suggesting that this approach can be used to improve scaffold bioactivity. Our findings, on the whole, establish the use of direct, BP photolithography as a methodology for covalently incorporating activity-improving biochemical cues within 3D collagen biomaterial scaffolds with spatial control over biomolecular deposition. PMID:21397322

  17. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.

    PubMed

    Huang, Jianghong; Xiong, Jianyi; Liu, Jianquan; Zhu, Weimin; Chen, Jielin; Duan, Li; Zhang, Jufeng; Wang, Daping

    2015-01-01

    To determine the optimal ratio of nano-hydroxyapatite (n-HA) to polylactic acid (PLLA) in the novel three-dimensional porous PLLA/n-HA composite scaffolds, low-temperature rapid prototyping technology was employed to fabricate the composite materials with different n-HA contents. Mechanical properties and degradation behaviors of the composites were examined, and the scaffold microstructure and n-HA dispersion were observed by scanning electron microscope (SEM). Mechanical tests demonstrated that the tensile strength of the composite material gradually decreased with an increase in n-HA content. When the n-HA content reached 20 wt%, the bending strength of the composite material peaked at 138.5 MPa. SEM images demonstrated that the optimal content of n-HA was 20 wt% as the largest interconnected pore size that can be seen, with a porosity as high as 80%. In vitro degradation experiments demonstrated that the pH value of the material containing solution gradually decreased in a time-dependent manner, with a simultaneous weakening of the mechanical properties. In vitro study using rat osteoblast cells showed that the composite scaffolds were biocompatible; the 20 wt% n-HA scaffold offered particular improvement to rat osteoblast cell adhesion and proliferation compared to other compositions. It was therefore concluded that 20 wt% n-HA is the optimal nano-hydroxyapatite (n-HA) to polylactic acid (PLLA) ratio, with promise for bone tissue engineering. PMID:26405972

  18. In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres.

    PubMed

    Bobe, K; Willbold, E; Morgenthal, I; Andersen, O; Studnitzky, T; Nellesen, J; Tillmann, W; Vogt, C; Vano, K; Witte, F

    2013-11-01

    A cytocompatible and biocompatible, degradable, open-porous, mechanically adaptable metal scaffold made of magnesium alloy W4 melt-extracted short fibres was fabricated by liquid phase sintering. Cylindrical samples (3×5 mm) of sintered W4 short fibres were evaluated under in vitro (L929, HOB, eudiometer, weight loss) and in vivo conditions (rabbits: 6 and 12 weeks). The in vitro corrosion environment (e.g., temperature, flow, composition of corrosion solution, exposure time) significantly influenced the corrosion rates of W4 scaffolds compared with corrosion in vivo. Corrosion rates under cell culture conditions for 72 h varied from 1.05 to 3.43 mm y(-1) depending on the media composition. Corrosion rates measured in eudiometric systems for 24 h were ~24-27 times higher (3.88-4.43 mm y(-1)) than corrosion in vivo after 6 weeks (0.16 mm y(-1)). Moreover, it was found that the cell culture media composition significantly influences the ionic composition of the extract by selectively dissolving ions from W4 samples or their corrosion products. A pilot in vivo study for 6 and 12 weeks demonstrated active bone remodelling, no foreign body reaction and no clinical observation of gas formation during W4 scaffold implantation. Long-term in vivo studies need to be conducted to prove complete degradation of the W4 scaffold and total replacement by the host tissue. PMID:23542554

  19. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.

    PubMed

    Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum

    2016-07-01

    Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. PMID:26999521

  20. Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications.

    PubMed

    Ji, Chengdong; Shi, Jeffrey

    2013-10-01

    The aim of this study was to demonstrate the feasibility of using a steam autoclave process for sterilization and simultaneously thermal-crosslinking of lyophilized chitosan scaffolds. This process is of great interest in biomaterial development due to its simplicity and low toxicity. The steam autoclave process had no significant effect on the average pore diameter (~70 μm) and overall porosity (>80%) of the resultant chitosan scaffolds, while the sterilized scaffolds possessed more homogenous pore size distribution. The sterilized chitosan scaffolds exhibited an enhanced compressive modulus (109.8 kPa) and comparable equilibrium swelling ratio (23.3). The resultant chitosan scaffolds could be used directly for in vitro cell culture without extra sterilization. The data of in vitro studies demonstrated that the scaffolds facilitated cell attachment and proliferation, indicating great potential for soft tissue engineering applications. PMID:23910277

  1. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery.

    PubMed

    Abbah, Sunny A; Lam, Christopher X L; Hutmacher, Dietmar W; Goh, James C H; Wong, Hee-Kit

    2009-10-01

    A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL-TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL-TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL-TCP + 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL-TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion. PMID:19540586

  2. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.

    PubMed

    Zong, Chen; Qian, Xiaodan; Tang, Zihua; Hu, Qinghong; Chen, Jiarong; Gao, Changyou; Tang, Ruikang; Tong, Xiangmin; Wang, Jinfu

    2014-06-01

    Copolymer composite scaffolds and bioceramic/polymer composite scaffolds are two representative forms of composite scaffolds used for bone tissue engineering. Studies to compare biocompatibility and bone-repairing effects between these two scaffolds are significant for selecting or improving the scaffold for clinical application. We prepared two porous scaffolds comprising poly-lactic-acid/poly-glycolic-acid (PLGA) and poly-lactic-acid/nano-hydroxyapatite (nHAP/PLA) respectively, and examined their biocompatibility with human bone marrow-derived mesenchymal stem cells (hMSCs) through evaluating adhesion, proliferation and osteogenic differentiation potentials of hMSCs in the scaffold. Then, the PLGA scaffold with hMSCs (PM construct) and the nHAP/PLA scaffold with hMSCs (HPM construct) were transplanted into the rat calvarial defect areas to compare their effects on the bone reconstruction. The results showed that the nHAP/PLA scaffold was in favor of adhesion, matrix deposition and osteogenic differentiation of hMSCs. For in vivo transplantation, both HPM and PM constructs led to mineralization and osteogenesis in the defect area of rat. However, the area grafted with PM construct showed a better formation of mature bone than that with HPM construct. In addition, the evaluation of in vitro and in vivo degradation indicated that the degradation rate of nHAP/PLA scaffold was much lower than that of PLGA scaffold. It is inferred that the lower degradation of nHAP/PLA scaffold should result in its inferior bone reconstruction in rat calvaria. Therefore, the preparation of an ideal composite scaffold for bone tissue engineering should be taken into account of the balance between its biocompatibility, degradation rate, osteoconductivity and mechanical property. PMID:24749403

  3. Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering.

    PubMed

    Yang, Nan; Tian, Yanling; Zhang, Dawei

    2015-11-01

    Heterogeneous porous scaffolds have important applications in biomedical engineering, as they can mimic the structures of natural tissues to achieve the corresponding properties. Here, we introduce a new and easy to implement real function based method for constructing complex, heterogeneous porous structures, including hybrid structures, stochastic structures, functionally gradient structures, and multi-scale structures, or their combinations (e.g., hybrid multi-scale structures). Based on micro-CT data, a femur-mimetic structure with gradient morphology was constructed using our method and fabricated using stereolithography. Results showed that our method could generate gradient porosity or gradient specific surfaces and be sufficiently flexible for use with micro-CT data and additive manufacturing (AM) techniques. PMID:26320819

  4. A Porous Tissue Engineering Scaffold Selectively Degraded by Cell-Generated Reactive Oxygen Species

    PubMed Central

    Martin, John R.; Gupta, Mukesh K.; Page, Jonathan M.; Yu, Fang; Davidson, Jeffrey M.; Guelcher, Scott A.

    2014-01-01

    Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous

  5. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    SciTech Connect

    Goudouri, O.M.; Theodosoglou, E.; Kontonasaki, E.; Will, J.; Chrissafis, K.; Koidis, P.; Paraskevopoulos, K.M.; Boccaccini, A.R.

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis of an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.

  6. Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL–PEG–PCL composite

    PubMed Central

    Hou, Jun; Fan, Donghui; Zhao, Lingming; Yu, Baoqin; Su, Jiacan; Wei, Jie; Shin, Jung-Woog

    2016-01-01

    Biocomposite scaffolds were fabricated by incorporation of nanobredigite (n-BD) into the polymer of poly(ε-caprolactone)–poly(ethyleneglycol)–poly(ε-caprolactone) (PCL–PEG–PCL). The results revealed that the addition of n-BD into PCL–PEG–PCL significantly improved water absorption, compressive strength, and degradability of the scaffolds of n-BD/PCL–PEG–PCL composite (n-BPC) compared with PCL–PEG–PCL scaffolds alone. In addition, the proliferation and alkaline phosphatase activity of MG63 cells cultured on n-BPC scaffolds were obviously higher than that cultured on PCL–PEG–PCL scaffolds. Moreover, the results of the histological evaluation from the animal model revealed that the n-BPC scaffolds significantly improved new bone formation compared with the PCL–PEG–PCL scaffolds, indicating good osteogenesis. The n-BPC scaffolds with good biocompatibility could stimulate cell proliferation, differentiation, and bone tissue regeneration and would be an excellent candidate for bone defect repair. PMID:27555774

  7. Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration.

    PubMed

    Lih, Eugene; Park, Ki Wan; Chun, So Young; Kim, Hyuncheol; Kwon, Tae Gyun; Joung, Yoon Ki; Han, Dong Keun

    2016-08-24

    Chronic kidney disease is now recognized as a major health problem, but current therapies including dialysis and renal replacement have many limitations. Consequently, biodegradable scaffolds to help repairing injured tissue are emerging as a promising approach in the field of kidney tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) is a useful biomedical material, but its insufficient biocompatibility caused a reduction in cell behavior and function. In this work, we developed the kidney-derived extracellular matrix (ECM) incorporated PLGA scaffolds as a cell supporting material for kidney tissue regeneration. Biomimetic PLGA scaffolds (PLGA/ECM) with different ECM concentrations were prepared by an ice particle leaching method, and their physicochemical and mechanical properties were characterized through various analyses. The proliferation of renal cortical epithelial cells on the PLGA/ECM scaffolds increased with an increase in ECM concentrations (0.2, 1, 5, and 10%) in scaffolds. The PLGA scaffold containing 10% of ECM has been shown to be an effective matrix for the repair and reconstitution of glomerulus and blood vessels in partially nephrectomized mice in vivo, compared with only PLGA control. These results suggest that not only can the tissue-engineering techniques be an effective alternative method for treatment of kidney diseases, but also the ECM incorporated PLGA scaffolds could be promising materials for biomedical applications including tissue engineered scaffolds and biodegradable implants. PMID:27456613

  8. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    PubMed Central

    Chen, Muwan; Le, Dang QS; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody

    2012-01-01

    Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug. PMID:22904634

  9. In vivo acute and humoral response to three-dimensional porous soy protein scaffolds.

    PubMed

    Chien, Karen B; Aguado, Brian A; Bryce, Paul J; Shah, Ramille N

    2013-11-01

    Increasing interest in using soy biomaterials for tissue engineering applications has prompted investigation into the in vivo biocompatibility of soy implants. In this study, the biocompatibility of soy protein scaffolds fabricated using freeze-drying and 3-D printing was assessed using a subcutaneous implant model in BALB/c mice. The main objectives of this study were: (1) to compare soy protein with bovine collagen, a well-characterized natural protein implant, by implanting scaffolds of the same protein weight, and (2) to observe the effects of soy scaffold microstructure and amount of protein loading, which also alters the degradation properties, on the acute and humoral immune responses towards soy. Results showed that freeze-dried soy scaffolds fully degraded after 14 days, whereas collagen scaffolds (of the same protein weight) remained intact for 56 days. Furthermore, Masson's trichrome staining showed little evidence of damage or fibrosis at the soy implant site. Scaffolds of higher soy protein content, however, were still present after 56 days. H&E staining revealed that macrophage infiltration was hindered in the denser bioplotted soy scaffolds, causing slower degradation. Analysis of soy-specific antibodies in mouse serum after implantation revealed levels of IgG1 that correlated with higher scaffold weight and protein density. However, no soy-specific IgE was detected, indicating the absence of an allergic response to the soy implants. These results demonstrate that soy protein could be an acceptable biocompatible implant for tissue regeneration, and that scaffold porosity, soy protein density and scaffold degradation rate significantly affect the acute and humoral immune response. PMID:23851173

  10. Preparation of tissue engineering porous scaffold with poly(lactic acid) and polyethylene glycol solution blend by solvent-casting/particulate-leaching

    NASA Astrophysics Data System (ADS)

    Huang, Ran; Zhu, Xiaomin; Zhao, Tingting; Wan, Ajun

    2014-12-01

    Polyethylene glycol/poly(lactic acid) solution blend is employed as the raw materials to prepare porous scaffold of potential usage in tissue engineering. The solution blend can be naturally introduced in the classical solvent casting/particular leaching technique in porous matrix preparation. The PEG presence is to modify the degradation behavior of scaffolds to fit particular requirements in tissue engineering. The porous matrix of PEG/PLA with various weight ratios are made with pores size ˜ 250 μ m. The SEM characterizations have been done to investigate the porous morphology of products, the results indicate that though with the clear semi-miscibility feature of PEG/PLA blends, the macro-structure is not significantly affected by the PEG content percentage. The degradation results show an enhanced weight loss rate with the presence of PEG as expected.

  11. An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores.

    PubMed

    Vaquette, Cédryck; Frochot, Céline; Rahouadj, Rachid; Wang, Xiong

    2008-07-01

    Scaffolding is an essential issue in tissue engineering and scaffolds should answer certain essential criteria: biocompatibility, high porosity, and important pore interconnectivity to facilitate cell migration and fluid diffusion. In this work, a modified solvent casting-particulate leaching out method is presented to produce scaffolds with spherical and interconnected pores. Sugar particles (200-300 microm and 300-500 microm) were poured through a horizontal Meker burner flame and collected below the flame. While crossing the high temperature zone, the particles melted and adopted a spherical shape. Spherical particles were compressed in plastic mold. Then, poly-L-lactic acid solution was cast in the sugar assembly. After solvent evaporation, the sugar was removed by immersing the structure into distilled water for 3 days. The obtained scaffolds presented highly spherical interconnected pores, with interconnection pathways from 10 to 100 mum. Pore interconnection was obtained without any additional step. Compression tests were carried out to evaluate the scaffold mechanical performances. Moreover, rabbit bone marrow mesenchymal stem cells were found to adhere and to proliferate in vitro in the scaffold over 21 days. This technique produced scaffold with highly spherical and interconnected pores without the use of additional organic solvents to leach out the porogen. PMID:18098188

  12. Accurate Fabrication of Hydroxyapatite Bone Models with Porous Scaffold Structures by Using Stereolithography

    NASA Astrophysics Data System (ADS)

    Maeda, Chiaki; Tasaki, Satoko; Kirihara, Soshu

    2011-05-01

    Computer graphic models of bioscaffolds with four-coordinate lattice structures of solid rods in artificial bones were designed by using a computer aided design. The scaffold models composed of acryl resin with hydroxyapatite particles at 45vol. % were fabricated by using stereolithography of a computer aided manufacturing. After dewaxing and sintering heat treatment processes, the ceramics scaffold models with four-coordinate lattices and fine hydroxyapatite microstructures were obtained successfully. By using a computer aided analysis, it was found that bio-fluids could flow extensively inside the sintered scaffolds. This result shows that the lattice structures will realize appropriate bio-fluid circulations and promote regenerations of new bones.

  13. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.

    PubMed

    Rouholamin, Davood; van Grunsven, William; Reilly, Gwendolen C; Smith, Patrick J

    2016-08-01

    A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes. PMID:27226064

  14. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    PubMed

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. PMID:25746239

  15. Development of a synthetic bone scaffold using porous hydroxyapatite for bone repair.

    PubMed

    Mustaffa, R; Besar, I; Andanastuti, M

    2008-07-01

    In this study, porous hydroxyapatite (HA) samples were fabricated via sponge techniques with the aid of sago as part of the binder mixture. Development processes for the production of porous bone graft substitutes are studied using polyurethane sponge. To obtain the optimum amount of binder for successful fabrication of porous HA were done. Initially, porous HA powder was synthesized using calcium hydroxide and orthorphosphoric acid. Meanwhile, sago was mixed with PVA in a certain ratio to be used as binder for preparing the porous HA. After a series of investigative tests were conducted to characterize the sintered samples, the use of the sago and polymeric mixture was found to successfully aid the fabrication of porous HA samples. In this investigation, comparison of physical and mechanical characteristics between samples prepared using difference techniques was made. PMID:19025001

  16. Use of Clotted Human Plasma and Aprotinin in Skin Tissue Engineering: A Novel Approach to Engineering Composite Skin on a Porous Scaffold.

    PubMed

    Paul, Michelle; Kaur, Pritinder; Herson, Marisa; Cheshire, Perdita; Cleland, Heather; Akbarzadeh, Shiva

    2015-10-01

    Tissue-engineered composite skin is a promising therapy for the treatment of chronic and acute wounds, including burns. Providing the wound bed with a dermal scaffold populated by autologous dermal and epidermal cellular components can further entice host cell infiltration and vascularization to achieve permanent wound closure in a single stage. However, the high porosity and the lack of a supportive basement membrane in most commercially available dermal scaffolds hinders organized keratinocyte proliferation and stratification in vitro and may delay re-epithelization in vivo. The objective of this study was to develop a method to enable the in vitro production of a human skin equivalent (HSE) that included a porous scaffold and dermal and epidermal cells expanded ex vivo, with the potential to be used for definitive treatment of skin defects in a single procedure. A collagen-glycosaminoglycan dermal scaffold (Integra(®)) was populated with adult fibroblasts. A near-normal skin architecture was achieved by the addition of coagulated human plasma to the fibroblast-populated scaffold before seeding cultured keratinocytes. This resulted in reducing scaffold pore size and improving contact surfaces. Skin architecture and basement membrane formation was further improved by the addition of aprotinin (a serine protease inhibitor) to the culture media to inhibit premature clot digestion. Histological assessment of the novel HSE revealed expression of keratin 14 and keratin 10 similar to native skin, with a multilayered neoepidermis morphologically comparable to human skin. Furthermore, deposition of collagen IV and laminin-511 were detected by immunofluorescence, indicating the formation of a continuous basement membrane at the dermal-epidermal junction. The proposed method was efficient in producing an in vitro near native HSE using the chosen off-the-shelf porous scaffold (Integra). The same principles and promising outcomes should be applicable to other biodegradable

  17. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.

    PubMed

    Landi, Elena; Valentini, Federica; Tampieri, Anna

    2008-11-01

    A cryogenic process, including freeze-casting and drying has been performed to obtain hydroxyapatite (HA) scaffolds (approx. diameter 10 mm, height 20 mm) with completely lamellar morphology due to preferentially aligned channel-like pores. Changing the process parameters that influence the cold transmission efficiency from the bottom to the top of the poured HA slurry, lamellar ice crystals with different thickness grew throughout the samples. After sintering, scaffolds with porosity features nearly resembling the ice ones were obtained. The interconnection of pores and the ability of the scaffolds to be rapidly penetrated by synthetic body fluid has been proven. Biohybrid HA/gel composites were prepared, infiltrating HA lamellar scaffolds (45-55 vol.% of porosity) with a 10wt.% solution of gelatine. Colouring genipine was used to cross-link gelatine and clearly show the distribution of the protein in the composite. The compressive mechanical properties of lamellar scaffolds improved with the addition of gelatine: the strength increased up to 5-6 times, while the elastic modulus and strain approximately doubled. The effectiveness of the cross-linkage has been preliminarily verified following scaffold degradation in synthetic body fluid. PMID:18579459

  18. Functionally graded beta-TCP/PCL nanocomposite scaffolds: in vitro evaluation with human fetal osteoblast cells for bone tissue engineering.

    PubMed

    Ozkan, Seher; Kalyon, Dilhan M; Yu, Xiaojun

    2010-03-01

    The engineering of biomimetic tissue relies on the ability to develop biodegradable scaffolds with functionally graded physical and chemical properties. In this study, a twin-screw-extrusion/spiral winding (TSESW) process was developed to enable the radial grading of porous scaffolds (discrete and continuous gradations) that were composed of polycaprolactone (PCL), beta-tricalciumphosphate (beta-TCP) nanoparticles, and salt porogens. Scaffolds with interconnected porosity, exhibiting myriad radial porosity, pore-size distributions, and beta-TCP nanoparticle concentration could be obtained. The results of the characterization of their compressive properties and in vitro cell proliferation studies using human fetal osteoblast cells suggest the promising nature of such scaffolds. The significant degree of freedom offered by the TSESW process should be an additional enabler in the quest toward the mimicry of the complex elegance of the native tissues. PMID:19296543

  19. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds.

    PubMed

    Qiu, Kai; Zhao, Xiao Jun; Wan, Chang Xiu; Zhao, Chang Sheng; Chen, Yuan Wei

    2006-03-01

    Preparation, characterization and cellular biocompatibility study of a series of calcium polyphosphate containing 0-100 mol% of Ca2+ replaced by Sr2+ were reported. The osteoblastic ROS17/2.8 cell line was used and seeded on the strontium-doped calcium polyphosphate (SCPP) scaffolds to estimate its optimal dose and to study its potential to support the growth of osteoblastic cells for bone tissue engineering. The effects of SCPP on cells' proliferation and differentiation were evaluated by MTT and ALP activity assay. The results showed that porous SCPP did not exert cytotoxic effect on the cells. In addition, the proliferation and differentiation of the growth of ROS17/2.8 cells on the SCPP containing a low dose of strontium showed a higher level compared to the control, and the SCPP containing 1% strontium was optimal according to the results of MTT and ALP activity assay. The cells on the porous SCPP formed a continuous layer on the outer and inner surface observed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The bunchy collagens were excreted from the cells and the calcium granules wrapped by collagens were sedimentated on the surface of cells. The results suggested that the biodegradable SCPP could stimulate the proliferation and differentiation of ROS17/2.8 cells in vitro after addition of proper dose of strontium. The porous SCPP may be a promising material for the bone tissue engineering. PMID:16143392

  20. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways

    PubMed Central

    Xiao, Xin; Wang, Wei; Liu, Dong; Zhang, Haoqiang; Gao, Peng; Geng, Lei; Yuan, Yulin; Lu, Jianxi; Wang, Zhen

    2015-01-01

    The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization. PMID:25797242

  1. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Wang, Wei; Liu, Dong; Zhang, Haoqiang; Gao, Peng; Geng, Lei; Yuan, Yulin; Lu, Jianxi; Wang, Zhen

    2015-03-01

    The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.

  2. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation.

    PubMed

    Salerno, Aurelio; Guarino, Vincenzo; Oliviero, Olimpia; Ambrosio, Luigi; Domingo, Concepción

    2016-06-01

    In this study, the design and fabrication of porous scaffolds, made of blends of polylactic-co-caprolactone (PLC) and polylactic acid (PLA) polymers, for tissue engineering applications is reported. The scaffolds are prepared by means of a bio-safe thermally induced phase separation (TIPS) approach with or without the addition of NaCl particles used as particulate porogen. The scaffolds are characterized to assess their crystalline structure, morphology and mechanical properties, and the texture of the pores and the pore size distribution. Moreover, in vitro human mesenchymal stem cells (hMSCs) culture tests have been carried out to demonstrate the biocompatibility of the scaffolds. The results of this study demonstrate that all of the scaffold materials processed by means of TIPS process are semi-crystalline. Furthermore, the blend composition affected polymer crystallization and, in turn, the nano and macro-structural properties of the scaffolds. Indeed, neat PLC and neat PLA crystallize into globular and randomly arranged sub micro-size scale fibrous conformations, respectively. Concomitantly, the addition of NaCl particles during the fabrication route allows for the creation of an interconnected network of large pores inside the primary structure while resulted in a significant decrease of scaffolds mechanical response. Finally, the results of cell culture tests demonstrate that both the micro and macro-structure of the scaffold affect the in vitro hMSCs adhesion and proliferation. PMID:27040246

  3. Computer-Aided Designed, 3-Dimensionally Printed Porous Tissue Bioscaffolds For Craniofacial Soft Tissue Reconstruction

    PubMed Central

    Zopf, David A.; Mitsak, Anna G.; Flanagan, Colleen L.; Wheeler, Matthew; Green, Glenn E.; Hollister, Scott J.

    2016-01-01

    Objectives To determine the potential of integrated image-based Computer Aided Design (CAD) and 3D printing approach to engineer scaffolds for head and neck cartilaginous reconstruction for auricular and nasal reconstruction. Study Design Proof of concept revealing novel methods for bioscaffold production with in vitro and in vivo animal data. Setting Multidisciplinary effort encompassing two academic institutions. Subjects and Methods DICOM CT images are segmented and utilized in image-based computer aided design to create porous, anatomic structures. Bioresorbable, polycaprolactone scaffolds with spherical and random porous architecture are produced using a laser-based 3D printing process. Subcutaneous in vivo implantation of auricular and nasal scaffolds was performed in a porcine model. Auricular scaffolds were seeded with chondrogenic growth factors in a hyaluronic acid/collagen hydrogel and cultured in vitro over 2 months duration. Results Auricular and nasal constructs with several microporous architectures were rapidly manufactured with high fidelity to human patient anatomy. Subcutaneous in vivo implantation of auricular and nasal scaffolds resulted in excellent appearance and complete soft tissue ingrowth. Histologic analysis of in vitro scaffolds demonstrated native appearing cartilaginous growth respecting the boundaries of the scaffold. Conclusions Integrated image-based computer-aided design (CAD) and 3D printing processes generated patient-specific nasal and auricular scaffolds that supported cartilage regeneration. PMID:25281749

  4. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering.

    PubMed

    Warnke, Patrick H; Douglas, Timothy; Wollny, Patrick; Sherry, Eugene; Steiner, Martin; Galonska, Sebastian; Becker, Stephan T; Springer, Ingo N; Wiltfang, Jörg; Sivananthan, Sureshan

    2009-06-01

    Selective laser melting (SLM), a method used in the nuclear, space, and racing industries, allows the creation of customized titanium alloy scaffolds with highly defined external shape and internal structure using rapid prototyping as supporting external structures within which bone tissue can grow. Human osteoblasts were cultured on SLM-produced Ti6Al4V mesh scaffolds to demonstrate biocompatibility using scanning electron microscopy (SEM), fluorescence microscopy after cell vitality staining, and common biocompatibility tests (lactate dihydrogenase (LDH), 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 5-bromo-2-deoxyuridine (BrdU), and water soluble tetrazolium (WST)). Cell occlusion of pores of different widths (0.45-1.2 mm) was evaluated. Scaffolds were tested for resistance to compressive force. SEM investigations showed osteoblasts with well-spread morphology and multiple contact points. Cell vitality staining and biocompatibility tests confirmed osteoblast vitality and proliferation on the scaffolds. Pore overgrowth increased during 6 weeks' culture at pore widths of 0.45 and 0.5 mm, and in the course of 3 weeks for pore widths of 0.55, 0.6, and 0.7 mm. No pore occlusion was observed on pores of width 0.9-1.2 mm. Porosity and maximum compressive load at failure increased and decreased with increasing pore width, respectively. In summary, the scaffolds are biocompatible, and pore width influences pore overgrowth, resistance to compressive force, and porosity. PMID:19072196

  5. Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs

    PubMed Central

    Costa, Pedro F.; Dias, Ana F.; Reis, Rui L.

    2012-01-01

    The aim of this work was to study the effect of cryopreservation over the functionality of tissue-engineered constructs, analyzing the survival and viability of cells seeded, cultured, and cryopreserved onto 3D scaffolds. Further, it also evaluated the effect of cryopreservation over the properties of the scaffold material itself since these are critical for the engineering of most tissues and in particular, tissues such as bone. For this purpose, porous scaffolds, namely fiber meshes based on a starch and poly(caprolactone) blend were seeded with goat bone marrow stem cells (GBMSCs) and cryopreserved for 7 days. Discs of the same material seeded with GBMSCs were also used as controls. After this period, these samples were analyzed and compared to samples collected before the cryopreservation process. The obtained results demonstrate that it is possible to maintain cell viability and scaffolds properties upon cryopreservation of tissue-engineered constructs based on starch scaffolds and goat bone marrow mesenchymal cells using standard cryopreservation methods. In addition, the outcomes of this study suggest that the greater porosity and interconnectivity of scaffolds favor the retention of cellular content and cellular viability during cryopreservation processes, when compared with nonporous discs. These findings indicate that it might be possible to prepare off-the-shelf engineered tissue substitutes and preserve them to be immediately available upon request for patients' needs. PMID:22676448

  6. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.

    PubMed

    Kramschuster, Adam; Turng, Lih-Sheng

    2010-02-01

    In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed. PMID:19957359

  7. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer.

    PubMed

    Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin

    2015-10-12

    Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa. PMID:26347946

  8. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    PubMed

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  9. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium.

    PubMed

    Calejo, Maria Teresa; Ilmarinen, Tanja; Jongprasitkul, Hatai; Skottman, Heli; Kellomäki, Minna

    2016-07-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in developed countries, characterised by the degeneration of the retinal pigment epithelium (RPE), a pigmented cell monolayer that closely interacts with the photoreceptors. RPE transplantation is thus considered a very promising therapeutic option to treat this disease. In this work, porous honeycomb-like films are for the first time investigated as scaffold materials for human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE). By changing the conditions during film preparation, it was possible to produce films with homogeneous pore distribution and adequate pore size (∼3-5 µm), that is large enough to ensure high permeability but small enough to enable cell adherence and spreading. A brief dip-coating procedure with collagen type IV enabled the homogeneous adsorption of the protein to the walls and bottom of pores, increasing the hydrophilicity of the surface. hESC-RPE adhered and proliferated on all the collagen-coated materials, regardless of small differences in pore size. The differentiation of hESC-RPE was confirmed by the detection of specific RPE protein markers. These results suggest that the porous honeycomb films can be promising candidates for hESC-RPE tissue engineering, importantly enabling the free flow of ions and molecules across the material. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1646-1656, 2016. PMID:26914698

  10. Preparation of nano/macroporous polycaprolactone microspheres for an injectable cell delivery system using room temperature ionic liquid and camphene.

    PubMed

    Kim, Seong Yeol; Hwang, Ji-Young; Shin, Ueon Sang

    2016-03-01

    The nano/macroporous polycaprolactone (PCL) microspheres with cell active surfaces were developed as an injectable cell delivery system. Room temperature ionic liquid (RTIL) and camphene were used as a liquid mold and a porogen, respectively. Various-sized spheres of 244-601μm with pores of various size and shape of 0.02-100μm, were formed depending on the camphene/RTIL ratio (0.8-2.6). To give cell activity, the surface of porous microspheres were further modified with nerve growth factors (NGF) containing gelatin to give a thin NGF/gelatin layer, to which the neural progenitor cells (PC-12) attached and extended their neurites on to the surface layers of the microspheres. The developed microspheres may be potentially applicable as a neuronal cell delivery scaffold for neuron tissue engineering. PMID:26641560

  11. Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds.

    PubMed

    Parmar, Paresh A; St-Pierre, Jean-Philippe; Chow, Lesley W; Puetzer, Jennifer L; Stoichevska, Violet; Peng, Yong Y; Werkmeister, Jerome A; Ramshaw, John A M; Stevens, Molly M

    2016-07-01

    Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as "blank slate" collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications. PMID:27219220

  12. Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold In Vitro.

    PubMed

    Chen, Muwan; Le, Dang Q S; Kjems, Jørgen; Bünger, Cody; Lysdahl, Helle

    2015-01-01

    Bone tissue engineering requires a well-designed scaffold that can be biodegradable, biocompatible, and support the stem cells to osteogenic differentiation. Porous polycaprolactone (PCL) scaffold prepared by fused deposition modeling is an attractive biomaterial that has been used in clinic. However, PCL scaffolds lack biological function and osteoinductivity. In this study, we functionalized the PCL scaffolds by embedding them with a matrix of hyaluronic acid/β-tricalcium phosphate (HA/TCP). Human mesenchymal stem cells (MSCs) were cultured on scaffolds with and without coating to investigate proliferation and osteogenic differentiation. The DNA amount was significantly higher in the HA/TCP-coated scaffold on day 21. At the gene expression level, HA/TCP coating significantly increased the expression of ALP and COLI on day 4. These data correlated with the ALP activity peaking on day 7 in the HA/TCP-coated scaffold. Scanning electron microscope and histological analysis revealed that the cell matrix and calcium deposition were distributed more uniformly in the coated scaffolds compared to scaffolds without coating. In conclusion, the HA/TCP coating improved cellular proliferation, osteogenic differentiation, and uniform distribution of the cellular matrix in vitro. The HA/TCP-PCL scaffold holds great promise to accommodate human bone marrow-derived MSCs for bone reconstruction purposes, which warrants future in vivo studies. PMID:26487981

  13. Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold In Vitro

    PubMed Central

    Chen, Muwan; Le, Dang Q.S.; Kjems, Jørgen; Bünger, Cody; Lysdahl, Helle

    2015-01-01

    Abstract Bone tissue engineering requires a well-designed scaffold that can be biodegradable, biocompatible, and support the stem cells to osteogenic differentiation. Porous polycaprolactone (PCL) scaffold prepared by fused deposition modeling is an attractive biomaterial that has been used in clinic. However, PCL scaffolds lack biological function and osteoinductivity. In this study, we functionalized the PCL scaffolds by embedding them with a matrix of hyaluronic acid/β-tricalcium phosphate (HA/TCP). Human mesenchymal stem cells (MSCs) were cultured on scaffolds with and without coating to investigate proliferation and osteogenic differentiation. The DNA amount was significantly higher in the HA/TCP-coated scaffold on day 21. At the gene expression level, HA/TCP coating significantly increased the expression of ALP and COLI on day 4. These data correlated with the ALP activity peaking on day 7 in the HA/TCP-coated scaffold. Scanning electron microscope and histological analysis revealed that the cell matrix and calcium deposition were distributed more uniformly in the coated scaffolds compared to scaffolds without coating. In conclusion, the HA/TCP coating improved cellular proliferation, osteogenic differentiation, and uniform distribution of the cellular matrix in vitro. The HA/TCP-PCL scaffold holds great promise to accommodate human bone marrow-derived MSCs for bone reconstruction purposes, which warrants future in vivo studies. PMID:26487981

  14. Fabrication of porous electrospun nanofibres

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Feng, Y.; Huang, Z.-M.; Ramakrishna, S.; Lim, C. T.

    2006-02-01

    Immiscible biopolymers of gelatin (Gt) and polycaprolactone (PCL) were first electrospun into a biomimicking composite fibre of Gt/PCL. Based on a phase separation study of the electrospun fibres, a leaching method was employed to generate 3D porous nanofibres by selectively removing the water soluble component of gelatin in a 37 °C aqueous solution of phosphate buffered saline. It was found that leaching treatment gave rise to a unique nanotopography containing grooves, ridges and elliptical pores on the surface as well as inside of the resultant individual nanofibres. Brunauer-Emmett-Teller (BET) area measurement indicated that the formed 3D porous fibres also brought in a pronounced increase of the surface area of fibres. The BET surface area of the porous fibres was observed to be about 2.4 times that of the precursor fibres, up to 15.84 m2 g-1 at its relatively large size of 800 nm diameter. The 3D porous fibres herein prepared could have considerable value for uses in developing highly integrated cell-scaffold tissue complexes and other industrial applications.

  15. Biomimetic nanoclay scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  16. Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells.

    PubMed

    Li, Guicai; Zhao, Xueying; Zhao, Weixin; Zhang, Luzhong; Wang, Caiping; Jiang, Maorong; Gu, Xiaosong; Yang, Yumin

    2014-10-01

    Chitosan is found to promote the regeneration of peripheral nerve system in our previous studies, whereas the regeneration speed is not satisfied with clinical request. Micropatterning could promote cell orientation and growth, however, the effect of porous chitosan micropatterning on nerve regeneration is rarely reported. In this study, the porous chitosan micropatterning with surface ridge/groove and inner porosity structure was fabricated using a combination of micromodeling and lyophilization method. The morphology and stability of the prepared chitosan micropatterning were evaluated, the regulation of Schwann cells behavior by chitosan micropatterning was evaluated. The results showed that the chitosan micropatterning displayed stripe-like structure with a clear and complete edge. The micropatterning with 30/30 μm was more stable than 20/20 μm sample. Schwann cells on chitosan micropatterning showed orientation adhesion and began to grow along a certain direction after culture for 2 h, and displayed the minimal orientation angle and the largest length/width ratio on 30/30 μm micropatterning after further culture for 3 d and 5 d, indicating the most obvious cell orientation. Moreover, the secretion of nerve growth factor (NGF) demonstrated that the micropatterned chitosan had no negative influence on the physiological function of Schwann cells. Thus, the results indicate that the porous chitosan micropatterning can regulate Schwann cell growth well, which may have potential application in nerve regeneration. The study provides an important basis for constructing porous nerve conduit with micropatterning structure in the inner wall. PMID:25002265

  17. MgF2-coated porous magnesium/alumina scaffolds with improved strength, corrosion resistance, and biological performance for biomedical applications.

    PubMed

    Kang, Min-Ho; Jang, Tae-Sik; Kim, Sung Won; Park, Hui-Sun; Song, Juha; Kim, Hyoun-Ee; Jung, Kyung-Hwan; Jung, Hyun-Do

    2016-05-01

    Porous magnesium (Mg) has recently emerged as a promising biodegradable alternative to biometal for bone ingrowth; however, its low mechanical properties and high corrosion rate in biological environments remain problematic. In this study, porous magnesium was implemented in a scaffold that closely mimics the mechanical properties of human bones with a controlled degradation rate and shows good biocompatibility to match the regeneration rate of bone tissue at the affected site. The alumina-reinforced Mg scaffold was produced by spark plasma sintering and coated with magnesium fluoride (MgF2) using a hydrofluoric acid solution to regulate the corrosion rate under physiological conditions. Sodium chloride granules (NaCl), acting as space holders, were leached out to achieve porous samples (60%) presenting an average pore size of 240 μm with complete pore interconnectivity. When the alumina content increased from 0 to 5 vol%, compressive strength and stiffness rose considerably from 9.5 to 13.8 MPa and from 0.24 to 0.40 GPa, respectively. Moreover, the biological response evaluated by in vitro cell test and blood test of the MgF2-coated porous Mg composite was enhanced with better corrosion resistance compared with that of uncoated counterparts. Consequently, MgF2-coated porous Mg/alumina composites may be applied in load-bearing biodegradable implants. PMID:26952467

  18. Influence of interfacial oxide on the optical properties of single layer CdTe/CdS quantum dots in porous silicon scaffolds

    NASA Astrophysics Data System (ADS)

    Gaur, Girija; Koktysh, Dmitry S.; Fleetwood, Daniel M.; Weller, Robert A.; Reed, Robert A.; Weiss, Sharon M.

    2015-08-01

    Using a combination of continuous wave and time-resolved spectroscopy, we study the effects of interfacial conditions on the radiative lifetimes and photoluminescence intensities of sub-monolayer colloidal CdTe/CdS quantum dots (QDs) embedded in a three-dimensional porous silicon (PSi) scaffold. The PSi matrix was thermally oxidized under different conditions to change the interfacial oxide thickness. QDs embedded in a PSi matrix with ˜0.4 nm of interfacial oxide exhibited reduced photoluminescence intensity and nearly five times shorter radiative lifetimes (˜16 ns) compared to QDs immobilized within completely oxidized, porous silica (PSiO2) frameworks (˜78 ns). The exponential dependence of QD lifetime on interfacial oxide thickness in the PSi scaffolds suggests charge transfer plays an important role in the exciton dynamics.

  19. Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant.

    PubMed

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K

    2016-05-01

    A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. PMID:26952416

  20. Influence of interfacial oxide on the optical properties of single layer CdTe/CdS quantum dots in porous silicon scaffolds

    SciTech Connect

    Gaur, Girija; Fleetwood, Daniel M.; Weller, Robert A.; Reed, Robert A.; Weiss, Sharon M.; Koktysh, Dmitry S.

    2015-08-10

    Using a combination of continuous wave and time-resolved spectroscopy, we study the effects of interfacial conditions on the radiative lifetimes and photoluminescence intensities of sub-monolayer colloidal CdTe/CdS quantum dots (QDs) embedded in a three-dimensional porous silicon (PSi) scaffold. The PSi matrix was thermally oxidized under different conditions to change the interfacial oxide thickness. QDs embedded in a PSi matrix with ∼0.4 nm of interfacial oxide exhibited reduced photoluminescence intensity and nearly five times shorter radiative lifetimes (∼16 ns) compared to QDs immobilized within completely oxidized, porous silica (PSiO{sub 2}) frameworks (∼78 ns). The exponential dependence of QD lifetime on interfacial oxide thickness in the PSi scaffolds suggests charge transfer plays an important role in the exciton dynamics.

  1. Electrospun Starch-Polycaprolactone Nanofiber-Based Constructs for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    In the field of biomaterials starch-based polymers have been widely studied for several different applications, including scaffolds for tissue engineering. Recently, electrospinning has been gaining interest as a promising method to manufacture highly porous 3D structures. Such structures provide a high surface area for cell attachment and proliferation, being adequate for several uses in tissue engineering. The aim of the current work is to develop nanofiber-based constructs from starch-polycaprolactone (SPCL 30/70 wt%) blends by means of electrospinning and to study the effect of different solvents. Solutions of 5-15 wt% either in acetic acid or chloroform were electrospun to aluminum foil. The voltage used was 30 kV and the counter-electrode distance was 25 cm. The microstructure of the obtained constructs was characterized by using scanning electron microscopy (SEM). It was possible to obtain highly porous 3D scaffolds with a typical nanofiber-mesh structure by using electrospinning from different SPCL-solvent solutions. Electrospinning was most successful when using higher concentrations (15 wt%). With lower concentrations the process was not very feasible and at a concentration of 5 wt% it was not possible to obtain fibers. The diameter of the fibers obtained was 130-180 nm. SEM analysis revealed the presence of particles which are assumed to be starch. The particles were interconnected by the nanofibers. It is possible to produce highly porous nanofiber-based constructs from SPCL by using electrospinning. Such constructs may have applications in tissue engineering of different tissues, such as bone, skin and cartilage.

  2. Comparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect

    PubMed Central

    Bagher, Zohreh; Rajaei, Farzad; Shokrgozar, Mohammadali

    2012-01-01

    Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (n = 9) were divided into 3 groups. Osteoblast cells were originally isolated from rabbit iliac crest and cultured in DMEM/F12. After creating a critical-sized defect (2 × 3 cm) in rabbit tibia bone, the defect was filled with an implant of HA/TCP with osteoblasts and xenograft in the hole of left (as control) and right tibia, respectively. The new bone formation and the development of bone union within the defect were evaluated by x-ray images and eosine and hematoxylin staining at 4, 8, and 12 weeks post-operation. Results: The bone partially formed in both groups was filled with osteoblast cultured on porous implants at 4 weeks. Over time, progressive bone regeneration was observed inside the pores. Moreover, a progressive vascular ingrowth and progressive integration with the host bone were obvious in xenograft when compared to HA/β-TCP. A good integration between the xenograft implants and the bone was observed radiographically and confirmed by histological section. Conclusion: The result showed that the bone defect can be repaired using both synthetic and xenograft implants. However, the xenograft showed a better osteointegration as compared to HA/β-TCP scaffold. PMID:22562028

  3. Challenges for nerve repair using chitosan-siloxane hybrid porous scaffolds.

    PubMed

    Shirosaki, Yuki; Hayakawa, Satoshi; Osaka, Akiyoshi; Lopes, Maria A; Santos, José D; Geuna, Stefano; Mauricio, Ana C

    2014-01-01

    The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration. PMID:25054129

  4. Nano SiO2 and MgO Improve the Properties of Porous β-TCP Scaffolds via Advanced Manufacturing Technology

    PubMed Central

    Gao, Chengde; Wei, Pingpin; Feng, Pei; Xiao, Tao; Shuai, Cijun; Peng, Shuping

    2015-01-01

    Nano SiO2 and MgO particles were incorporated into β-tricalcium phosphate (β-TCP) scaffolds to improve the mechanical and biological properties. The porous cylindrical β-TCP scaffolds doped with 0.5 wt % SiO2, 1.0 wt % MgO, 0.5 wt % SiO2 + 1.0 wt % MgO were fabricated via selective laser sintering respectively and undoped β-TCP scaffold was also prepared as control. The phase composition and mechanical strength of the scaffolds were evaluated. X-ray diffraction analysis indicated that the phase transformation from β-TCP to α-TCP was inhibited after the addition of MgO. The compressive strength of scaffold was improved from 3.12 ± 0.36 MPa (β-TCP) to 5.74 ± 0.62 MPa (β-TCP/SiO2), 9.02 ± 0.55 MPa (β-TCP/MgO) and 10.43 ± 0.28 MPa (β-TCP/SiO2/MgO), respectively. The weight loss and apatite-forming ability of the scaffolds were evaluated by soaking them in simulated body fluid. The results demonstrated that both SiO2 and MgO dopings slowed down the degradation rate and improved the bioactivity of β-TCP scaffolds. In vitro cell culture studies indicated that SiO2 and MgO dopings facilitated cell attachment and proliferation. Combined addition of SiO2 and MgO were found optimal in enhancing both the mechanical and biological properties of β-TCP scaffold. PMID:25815597

  5. A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton: Preparation, in vitro degradability and biocompatibility.

    PubMed

    He, Jin; He, Feng-Li; Li, Da-Wei; Liu, Ya-Li; Yin, Da-Chuan

    2016-06-01

    A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton was prepared for the first time by electrodeposition. The microstructure of the scaffold was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury porosimetry. Mechanical property, in vitro degradability and biocompatibility were tested by tensile test, immersion and a cytotoxicity test. The results showed that the scaffolds exhibited a cellular structure that is similar to that of cancellous bone and had a considerably large specific surface area. The skeleton of the scaffolds showed a double-layer structure that was composed of a hollow Fe skeleton wrapped in a thin layer of Fe-W alloy. The tensile strength and the apparent density are close to that of cancellous bone. It was also found that the different surface microstructures showed different effects on in vitro degradability and biocompatibility. In the immersion test, the corrosion rate decreased gradually as the immersion time increased. In the cytotoxicity test, the extraction medium of the pure Fe scaffold showed the lowest cell viability, followed by that of 1.5FeW as a close second. The extraction media of FeW, Fe1.5W and Fe2W were similar, and their cell viability was far above that of the Fe and 1.5FeW scaffolds. The structural style of the scaffolds presented in this paper is potentially useful and applicable to developing degradable scaffolds with a tailored corrosion rate. PMID:26970820

  6. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Dogan, Fatih; Bal, B Sonny

    2008-07-01

    Freeze casting of aqueous suspensions on a cold substrate was investigated as a method for preparing hydroxyapatite (HA) scaffolds with unidirectional porosity. In the present paper, we report on the ability to manipulate the microstructure of freeze-cast constructs by controlling the processing parameters. Constructs prepared from aqueous suspensions (5-20 volume percent particles) on a steel substrate at -20 degrees C had a lamellar-type microstructure, consisting of plate-like HA and unidirectional pores oriented in the direction of freezing. Sintering for 3 h at 1350 degrees C produced constructs with dense HA lamellas, porosity of approximately 50%, and inter-lamellar pore widths of 5-30 microm. The thickness of the HA lamellas decreased but the width of the pores increased with decreasing particle concentration. Decreasing the substrate temperature from -20 degrees C to -196 degrees C produced a finer lamellar microstructure. The use of water-glycerol mixtures (20 wt % glycerol) as the solvent in the suspension resulted in the production of finer pores (1-10 microm) and a larger number of dendritic growth connecting the HA lamellas. On the other hand, the use of water-dioxane mixtures (60 wt % dioxane) produced a cellular-type microstructure with larger pores (90-110 microm). The ability to produce a uniaxial microstructure and its manipulation by controlling the processing parameters indicate the potential of the present freeze casting route for the production of scaffolds for bone tissue engineering applications. PMID:18098195

  7. Simulation of Cell Seeding Within a Three-Dimensional Porous Scaffold: A Fluid-Particle Analysis

    PubMed Central

    Olivares, Andy L.

    2012-01-01

    Cell seeding is a critical step in tissue engineering. A high number of cells evenly distributed in scaffolds after seeding are associated with a more functional tissue culture. Furthermore, high cell densities have shown the possibility to reduce culture time or increase the formation of tissue. Experimentally, it is difficult to predict the cell-seeding process. In this study, a new methodology to simulate the cell-seeding process under perfusion conditions is proposed. The cells are treated as spherical particles dragged by the fluid media, where the physical parameters are computed through a Lagrangian formulation. The methodology proposed enables to define the kinetics of cell seeding continuously over time. An exponential relationship was found to optimize the seeding time and the number of cells seeded in the scaffold. The cell distribution and cell efficiency predicted using this methodology were similar to the experimental results of Melchels et al. One of the main advantages of this method is to be able to determine the three-dimensional position of all the seeded cells and to, therefore, better know the initial conditions for further cell proliferation and differentiation studies. This study opens up the field of numerical predictions related to the interactions between biomaterials, cells, and dynamics media. PMID:22372887

  8. Graphene Oxide-Copper Nanocomposite-Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hif-1α.

    PubMed

    Zhang, Wenjie; Chang, Qing; Xu, Ling; Li, Guanglong; Yang, Guangzheng; Ding, Xun; Wang, Xiansong; Cui, Daxiang; Jiang, Xinquan

    2016-06-01

    Graphene has been studied for its in vitro osteoinductive capacity. However, the in vivo bone repair effects of graphene-based scaffolds remain unknown. The aqueous soluble graphene oxide-copper nanocomposites (GO-Cu) are fabricated, which are used to coat porous calcium phosphate (CaP) scaffolds for vascularized bone regeneration. The GO-Cu nanocomposites, containing crystallized CuO/Cu2 O nanoparticles of ≈30 nm diameters, distribute uniformly on the surfaces of the porous scaffolds and maintain a long-term release of Cu ions. In vitro, the GO-Cu coating enhances the adhesion and osteogenic differentiation of rat bone marrow stem cells (BMSCs). It is also found that by activating the Erk1/2 signaling pathway, the GO-Cu nanocomposites upregulate the expression of Hif-1α in BMSCs, resulting in the secretion of VEGF and BMP-2 proteins. When transplanted into rat with critical-sized calvarial defects, the GO-Cu-coated calcium phosphate cement (CPC) scaffolds (CPC/GO-Cu) significantly promote angiogenesis and osteogenesis. Moreover, it is observed via histological sections that the GO-Cu nanocomposites are phagocytosed by multinucleated giant cells. The results suggest that GO-Cu nanocomposite coatings can be utilized as an attractive strategy for vascularized bone regeneration. PMID:26945787

  9. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration

    PubMed Central

    Yin, Bo; Ma, Pei; Chen, Jun; Wang, Hai; Wu, Gui; Li, Bo; Li, Qiang; Huang, Zhifeng; Qiu, Guixing; Wu, Zhihong

    2016-01-01

    Porous titanium is a kind of promising material for bone substitution, while its bio-inert property results in demand of modifications to improve the osteointegration capacity. In this study, gelatin (Gel) and nano-hydroxyapatite (nHA) were used to construct 3D micro-scaffolds in the pores of porous titanium in the ratios of Gel:nHA = 1:0, Gel:nHA = 1:1, and Gel:nHA = 1:3, respectively. Cell attachment and proliferation, and gene and protein expression levels of osteogenic markers were evaluated in MC3T3-E1 cells, followed by bone regeneration assessment in a rabbit radius defect model. All hybrid scaffolds with different composition ratio were found to have significant promotional effects in cell adhesion, proliferation and differentiation, in which the group with Gel:nHA = 1:1 showed the best performance in vitro, as well as the most bone regeneration volume in vivo. This 3D micro-scaffolds modification may be an innovative method for porous titanium ornamentation and shows potential application values in clinic. PMID:27092492

  10. Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells.

    PubMed

    Sahoo, Sanjeeb K; Panda, Amulya K; Labhasetwar, Vinod

    2005-01-01

    We have designed and evaluated biodegradable porous polymeric microparticles as a scaffold for cell growth. The hypothesis was that microparticles with optimized composition and properties would have better cell adhesion and hence cell growth into a tissue-like structure. Solvent-evaporation method was modified using sucrose as an additive to form large porous microparticles of poly(D,L-lactic-co-glycolic) (PLGA) and polylactide (PLA) polymers. Microparticles containing hydrophilic polymers (poly(vinyl alcohol) and chitosan) incorporated in their internal matrix structure were also formulated. Different formulations of microparticles were evaluated for physical properties, cell adhesion, and cell growth in culture. PLA microparticles containing poly(vinyl alcohol) (PVA) in the matrix structure (PLA-PVA) and treated with serum prior to cell seeding demonstrated better cell adhesion and cell growth than other formulations of microparticles. Cells were seen to grow into clumps, engulfing microparticles completely with time, and forming a 3-D tissue-like structure. Cell density of 1.5 x 10(6) cells per mg of microparticles was achieved in 9 days of culture, which was a 7-fold increase from the initial seeding cell density. The mechanism of better cell growth on PLA-PVA microparticles appears to be due to the PVA associated with the internal matrix structure of microparticles. These microparticles demonstrated better wetting in culture and also cell adhesion. In addition to tissue engineering applications, microparticles with cancer cells grown into a tissue-like structure in vitro can be potentially used as a model system for preclinical evaluation of the cytotoxic effect of anticancer agents. PMID:15762686

  11. Precision Extruding Deposition for Freeform Fabrication of PCL and PCL-HA Tissue Scaffolds

    NASA Astrophysics Data System (ADS)

    Shor, L.; Yildirim, E. D.; Güçeri, S.; Sun, W.

    Computer-aided tissue engineering approach was used to develop a novel Precision Extrusion Deposition (PED) process to directly fabricate Polycaprolactone (PCL) and composite PCL/Hydroxyapatite (PCL-HA) tissue scaffolds. The process optimization was carried out to fabricate both PCL and PCL-HA (25% concentration by weight of HA) with a controlled pore size and internal pore structure of the 0°/90° pattern. Two groups of scaffolds having 60 and 70% porosity and with pore sizes of 450 and 750 microns, respectively, were evaluated for their morphology and compressive properties using Scanning Electron Microscopy (SEM) and mechanical testing. The surface modification with plasma was conducted on PCL scaffold to increase the cellular attachment and proliferation. Our results suggested that inclusion of HA significantly increased the compressive modulus from 59 to 84 MPa for 60% porous scaffolds and from 30 to 76 MPa for 70% porous scaffolds. In vitro cell-scaffolds interaction study was carried out using primary fetal bovine osteoblasts to assess the feasibility of scaffolds for bone tissue engineering application. In addition, the results in surface hydrophilicity and roughness show that plasma surface modification can increase the hydrophilicity while introducing the nano-scale surface roughness on PCL surface. The cell proliferation and differentiation were calculated by Alamar Blue assay and by determining alkaline phosphatase activity. The osteoblasts were able to migrate and proliferate over the cultured time for both PCL as well as PCL-HA scaffolds. Our study demonstrated the viability of the PED process to the fabricate PCL and PCL-HA composite scaffolds having necessary mechanical property, structural integrity, controlled pore size and pore interconnectivity desired for bone tissue engineering.

  12. Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices

    NASA Astrophysics Data System (ADS)

    Starly, Binil

    Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.

  13. Platelet-rich plasma gel composited with nondegradable porous polyurethane scaffolds as a potential auricular cartilage alternative.

    PubMed

    Wang, Zhongshan; Qin, Haiyan; Feng, Zhihong; Zhao, Yimin

    2016-02-01

    Total auricular reconstruction is still a challenge, and autologous cartilage transplant is the main therapy so far. Tissue engineering provides a promising method for auricular cartilage reconstruction. However, although degradable framework demonstrated excellent initial cosmetic details, it is difficult to maintain the auricular contour over time and the metabolites tended to be harmful to human body. In this study, biocompatible and safe nondegradable elastic polyurethane was used to make porous scaffold in specific details by rapid prototyping technology. Platelet-rich plasma contains fibrin and abundant autologous growth factors, which was used as cell carriers for in vitro expanded cells. When crosslinking polyurethane framework, platelet-rich plasma and cells together, we successfully made polyurethane/platelet-rich plasma/cell composites, and implanted them into dorsal subcutaneous space of nude mice. The results showed that this method resulted in more even cell distribution and higher cell density, promoted chondrocyte proliferation, induced higher level expressions of aggrecan and type II collagen gene, increased content of newly developed glycosaminoglycans, and produced high-quality cartilaginous tissue. This kind of cartilage tissue engineering approach may be a potential promising alternative for external ear reconstruction. PMID:26359295

  14. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.

    PubMed

    Roohani-Esfahani, Seyed-Iman; Nouri-Khorasani, Saied; Lu, Zufu; Appleyard, Richard; Zreiqat, Hala

    2010-07-01

    We developed a composite biphasic calcium phosphate (BCP) scaffold by coating a nanocomposite layer, consisting of hydroxyapatite (HA) nanoparticles and polycaprolactone (PCL), over the surface of BCP. The effects of HA particle size and shape in the coating layer on the mechanical and biological properties of the BCP scaffold were examined. Micro-computerized tomography studies showed that the prepared scaffolds were highly porous (approximately 91%) with large pore size (400-700 microm) and an interconnected porous network of approximately 100%. The HA nanoparticle (needle shape)-composite coated scaffolds displayed the highest compressive strength (2.1 +/- 0.17 MPa), compared to pure HA/beta-TCP (0.1 +/- 0.05 MPa) and to the micron HA - composite coated scaffolds (0.29 +/- 0.07 MPa). These needle shaped scaffolds also showed enhanced elasticity and similar stress-strain profile to natural bone. Needle shaped coated HA/PCL particles induced the differentiation of primary human bone derived cells, with significant upregulation of osteogenic gene expression (Runx2, collagen type I, osteocalcin and bone sialoprotein) and alkaline phosphatase activity compared to other groups. These properties are essential for enhancing bone ingrowth in load-bearing applications. The developed composite scaffolds possessed superior physical, mechanical, elastic and biological properties rendering them potentially useful for bone tissue regeneration. PMID:20398935

  15. Evaluation of a new press-fit in situ setting composite porous scaffold for cancellous bone repair: towards a "surgeon-friendly" bone filler?

    PubMed

    Peroglio, M; Gremillard, L; Eglin, D; Lezuo, P; Alini, M; Chevalier, J

    2010-09-01

    In this study, a composite porous material obtained by coating a poly(ester urethane) foam with a calcium phosphate cement is proposed as novel cancellous bone filler with easy handling, in situ hardening and press-fitting properties. The coating can be applied to the foam in the surgical theater, allowing refinement of scaffold shape to the needs of the ongoing surgery. An innovative experiment was developed in order to determine the setting curve of the composite scaffold as well as the time of manipulation available to the surgeon without risk of material damage. This composite material is soft and can be press-fit in a cavity without damaging the scaffold in the first 5 min after coating application. The composite scaffold hardens quickly (22 min) and, once the cement has set, its compressive strength and fracture energy are increased by over an order of magnitude as compared to the initial poly(ester urethane) foam. This set of interesting properties makes calcium phosphate cement-coated elastomeric scaffolds a new promising strategy for cancellous bone filling. PMID:20230921

  16. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    PubMed

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process. PMID:26061385

  17. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds.

    PubMed

    Bellucci, D; Sola, A; Cannillo, V

    2013-05-01

    Recently several attempts have been made to combine calcium phosphates, such as β-tricalcium phosphate (β-TCP) and, most of all, hydroxyapatite (HA), with bioactive glasses of different composition, in order to develop composites with improved biological and mechanical performance. Unfortunately, the production of such systems usually implies a high-temperature treatment (up to 1300 °C), which may result in several drawbacks, including crystallization of the original glass, decomposition of the calcium phosphate phase and/or reactions between the constituent phases, with non-trivial consequences in terms of microstructure, bioactivity and mechanical properties of the final samples. In the present contribution, novel binary composites have been obtained by sintering a bioactive glass, characterized by a low tendency to crystallize, with the addition of HA or β-TCP as the second phase. In particular, the composites have been treated at a relatively low temperature (818 °C and 830 °C, depending on the sample), thus preserving the amorphous structure of the glass and minimizing the interaction between the constituent phases. The effects of the glass composition, calcium phosphate nature and processing conditions on the composite microstructure, mechanical properties and in vitro bioactivity have been systematically discussed. To conclude, a feasibility study to obtain scaffolds for bone tissue regeneration has been proposed. PMID:23498242

  18. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    PubMed

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds. PMID:26608377

  19. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. PMID:27252227

  20. Repair of osteochondral defects with adipose stem cells and a dual growth factor-releasing scaffold in rabbits.

    PubMed

    Im, Gun-Il; Lee, Jin Ho

    2010-02-01

    The purpose of this work was to evaluate the in vivo effectiveness of a TGF-beta(2) and bone morphogenetic protein (BMP)-7-immobilized porous polycaprolactone (PCL)/F127 scaffold to enhance the healing of cartilage defect. An osteochondral defect was created on the patellar groove of the right distal femur of 12 rabbits and managed by one of the following methods: filling it with the scaffold only (Group I); the scaffold seeded with adipose stem cells (ASCs) (Group II); a TGF-beta(2) and BMP-7-immobilized scaffold (Group III); and a TGF-beta(2) and BMP-7-immobilized scaffold seeded with ASCs (Group IV). Each group had three rabbits. Nine weeks after the implantation, the implanted scaffolds were filled with yellowish, dense tissue, and had distinct margins with adjacent normal cartilage. The histological findings showed infiltration of foreign-body giant cells and blood vessel, more prominently in Groups III and IV. The presence of growth factor significantly increased the ICRS Macroscopic Score (p = 0.045) while the presence of ASC did not. The ICRS Visual Histological Score was not significantly affected by the presence of either growth factors or ASCs, showing similar values in all groups. In conclusion, the use of TGF-beta(2) and BMP-7-immobilized PCL/F127 scaffolds improved gross appearances of the osteochondral defects while not actually leading to better histological results and induced a greater degree of foreign body reaction. PMID:19957354

  1. In vivo vascularization of anisotropic channeled porous polylactide-based capsules for islet transplantation: the effects of scaffold architecture and implantation site.

    PubMed

    Kasoju, N; Kubies, D; Fábryová, E; Kříž, J; Kumorek, M M; Sticová, E; Rypáček, F

    2015-01-01

    The replacement of pancreatic islets for the possible treatment of type 1 diabetes is limited by the extremely high oxygen demand of the islets. To this end, here we hypothesize to create a novel extra-hepatic highly-vascularized bioartificial cavity using a porous scaffold as a template and using the host body as a living bioreactor for subsequent islet transplantation. Polylactide-based capsular-shaped anisotropic channeled porous scaffolds were prepared by following the unidirectional thermally-induced phase separation technique, and were implanted under the skin and in the greater omentum of Brown Norway rats. Polyamide mesh-based isotropic regular porous capsules were used as the controls. After 4weeks, the implants were excised and analyzed by histology. The hematoxylin and eosin, as well as Masson's trichrome staining, revealed a) low or no infiltration of giant inflammatory cells in the implant, b) minor but insignificant fibrosis around the implant, c) guided infiltration of host cells in the test capsule in contrast to random cell infiltration in the control capsule, and d) relatively superior cell infiltration in the capsules implanted in the greater omentum than in the capsules implanted under the skin. Furthermore, the anti-CD31 immunohistochemistry staining revealed numerous vessels at the implant site, but mostly on the external surface of the capsules. Taken together, the current study, the first of its kind, is a significant step-forward towards engineering a bioartificial microenvironment for the transplantation of islets. PMID:26447597

  2. Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus.

    PubMed

    Spaans, C J; Belgraver, V W; Rienstra, O; de Groot, J H; Veth, R P; Pennings, A J

    2000-12-01

    New porous polyurethane urea and polyurethane amide scaffolds for meniscal reconstruction have been developed in a solvent-free process. As soft segments, copolymers of 50/50 L-lactide/epsilon-caprolactone have been used. After terminating the soft segment with diisocyanates, chain extension was performed with adipic acid and water. Reaction between the isocyanate groups and adipic acid or water provides carbon dioxide and results in a porous polymer. Extra hydroxyl-terminated prepolymer was added in order to regulate the amount of carbon dioxide formed in the foaming reaction. Furthermore, salt crystals ranging in size from 150 to 355 microm were added in order to induce macroporosity. The pore size was regulated by addition of surfactant and by the use of ultrasonic waves. The resulting porous polymer scaffolds exhibit good mechanical properties like a high-compression modulus of 150 kPa. Chain extension with adipic acid results in better mechanical properties due to better defined hard segments. This results from the lower nucleophilicity of carboxylic acids compared to water and alcohols. By adjusting the reaction conditions, materials in which macropores are interconnected by micropores can be obtained. On degradation only non-toxic products will be released; importantly, the materials were obtained by a simple, reproducible and solvent-free procedure. PMID:11055293

  3. Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Qiao, Minna; Gao, Hongjie; Hu, Bin; Tan, Hua; Zhou, Xiaobo; Li, Chang Ming

    2016-08-01

    Herein, we have developed a novel approach to investigate the mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model, experimental optimization of key parameters and experimental data validation of the predictive power of the model. The advantages of this study are that the impact of mechanical stimulation on bone regeneration in a porous biodegradable CaP scaffold is considered, experimental design is used to investigate the optimal combination of growth factors loaded on the porous biodegradable CaP scaffold to promote bone regeneration and the training, testing and analysis of the model are carried out by using experimental data, a data-mining algorithm and related sensitivity analysis. The results reveal that mechanical stimulation has a great impact on bone regeneration in a porous biodegradable CaP scaffold and the optimal combination of growth factors that are encapsulated in nanospheres and loaded into porous biodegradable CaP scaffolds layer-by-layer can effectively promote bone regeneration. Furthermore, the model is robust and able to predict the development of bone regeneration under specified conditions.

  4. Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation.

    PubMed

    Zhang, Le; Qiao, Minna; Gao, Hongjie; Hu, Bin; Tan, Hua; Zhou, Xiaobo; Li, Chang Ming

    2016-08-21

    Herein, we have developed a novel approach to investigate the mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model, experimental optimization of key parameters and experimental data validation of the predictive power of the model. The advantages of this study are that the impact of mechanical stimulation on bone regeneration in a porous biodegradable CaP scaffold is considered, experimental design is used to investigate the optimal combination of growth factors loaded on the porous biodegradable CaP scaffold to promote bone regeneration and the training, testing and analysis of the model are carried out by using experimental data, a data-mining algorithm and related sensitivity analysis. The results reveal that mechanical stimulation has a great impact on bone regeneration in a porous biodegradable CaP scaffold and the optimal combination of growth factors that are encapsulated in nanospheres and loaded into porous biodegradable CaP scaffolds layer-by-layer can effectively promote bone regeneration. Furthermore, the model is robust and able to predict the development of bone regeneration under specified conditions. PMID:27460959

  5. Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors.

    PubMed

    de Peppo, G M; Palmquist, A; Borchardt, P; Lennerås, M; Hyllner, J; Snis, A; Lausmaa, J; Thomsen, P; Karlsson, C

    2012-01-01

    Commercially-pure titanium (cp-Ti) and the titanium-aluminum-vanadium alloy (Ti6Al4V) are widely used as reconstructive implants for skeletal engineering applications, due to their good mechanical properties, biocompatibility and ability to integrate with the surrounding bone. Electron beam melting technology (EBM) allows the fabrication of customized implants with tailored mechanical properties and high potential in the clinical practice. In order to augment the interaction with the biological tissue, stem cells have recently been combined with metallic scaffolds for skeletal engineering applications. We previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold a great potential to provide a homogeneous and unlimited supply of cells for bone engineering applications. This study demonstrates the effect of EBM-fabricated cp-Ti and Ti6Al4V porous scaffolds on hES-MPs behavior, in terms of cell attachment, growth and osteogenic differentiation. Displaying different chemical composition but similar surface properties, EBM-fabricated cp-Ti and Ti6Al4V scaffolds supported cell attachment and growth, and did not seem to alter the expression of genes involved in osteogenic differentiation and affect the alkaline phosphatase activity. In conclusion, interfacing hES-MPs to EBM-fabricated scaffolds may represent an interesting strategy for design of third-generation biomaterials, with the potential to promote implant integration in clinical conditions characterized by poor bone quality. PMID:22262956

  6. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds

    PubMed Central

    Pagliari, Stefania; Tirella, Annalisa; Ahluwalia, Arti; Duim, Sjoerd; Goumans, Marie-Josè; Aoyagi, Takao; Forte, Giancarlo

    2014-01-01

    The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D) cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs) are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs) are stimulated in vitro to obtain their commitment toward the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment. PMID:24917827

  7. Use of two-step grafting to fabricate dual-functional films and site-specific functionalized scaffolds.

    PubMed

    Luk, Jing Zhong; Cork, Jorja; Cooper-White, Justin; Grøndahl, Lisbeth

    2015-02-10

    Polycaprolactone (PCL) is a widely utilized bioresorbable polymer in tissue engineering applications. However, the absence of intrinsic functional groups in the polymer backbone necessitates the incorporation of functional chemistries to enable the further addition of bioactive molecules to PCL-based surfaces and scaffolds. The current study aimed to incorporate two different functional groups, amine and carboxylate, first on two-dimensional (2D) spin-coated PCL films and, thereafter, throughout all surfaces within three-dimensional (3D) porous PCL-based scaffolds, produced using the thermally induced phase separation (TIPS) method, but in a spatially separated manner. Specifically, gamma irradiation induced grafting of acrylic acid (AA) and 2-aminoethyl methacrylate hydrochloride (AEMA) onto PCL was performed in selected solvents and the resulting substrates were characterized using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements to determine the surface free energy. Results demonstrated that stepwise graft copolymerization of AEMA and AA allows the fabrication of dual-functional surfaces, with chemistry depending on the order of grafting of the two monomers. In addition, 3D scaffolds could be decorated exclusively with carboxylate groups in the interior, while the outer surface displayed dual-functionality. This simple surface modification methodology, with the ability to create spatially separated surface functional groups throughout 3D porous scaffolds post their fabrication, has the potential to be applied to many current and future scaffold systems being investigated in the field of tissue engineering. PMID:25598325

  8. Preparation and mechanical characterization of polycaprolactone/graphene oxide biocomposite nanofibers

    NASA Astrophysics Data System (ADS)

    Lopresti, Francesco; Maio, Andrea; Botta, Luigi; Scaffaro, Roberto

    2016-05-01

    Biocomposite nanofiber scaffolds of polycaprolactone (PCL) filled with graphene oxide (GO) were prepared using electrospinning technology. Morphological and mechanical properties of the scaffolds were characterized in dry and wet environment. The results showed that the successful incorporation of GO nanosheets into PCL polymer nanofibers improved their mechanical properties. Furthermore it was demonstrated the higher performance achieved when GO is filled at low concentration in the nanofibers.

  9. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.

    PubMed

    Jonnalagadda, John B; Rivero, Iris V; Dertien, Janet S

    2015-01-01

    In this study, poly(e-caprolactone)/polyglycolic acid (PCL/PGA) scaffolds for repairing articular cartilage were fabricated via solid-state cryomilling along with compression molding and porogen leaching. Four distinct scaffolds were fabricated using this approach by four independent cryomilling times. These scaffolds were assessed for their suitability to promote articular cartilage regeneration with in vitro chondrocyte cell culture studies. The scaffolds were characterized for pore size, porosity, swelling ratio, compressive, and thermal properties. Cryomilling time proved to significantly affect the physical, mechanical, and morphological properties of the scaffolds. In vitro bovine chondrocyte culture was performed dynamically for 1, 7, 14, 28, and 35 days. Chondrocyte viability and adhesion were tested using MTT assay and scanning electron microscopy micrographs. Glycosaminoglycan (GAG) and DNA assays were performed to investigate the extracellular matrix (ECM) formation and cell proliferation, respectively. PCL/PGA scaffolds demonstrated high porosity for all scaffold types. Morphological analysis and poly(ethylene oxide) continuity demonstrated the existence of a co-continuous network of interconnected pores with pore sizes appropriate for tissue engineering and chondrocyte ingrowth. While mean pore size decreased, water uptake and compressive properties increased with increasing cryomilling times. Compressive modulus of 12, 30, and 60 min scaffolds matched the compressive modulus of human articular cartilage. Viable cells increased besides increase in cell proliferation and ECM formation with progress in culture period. Chondrocytes exhibited spherical morphology on all scaffold types. The pore size of the scaffold affected chondrocyte adhesion, proliferation, and GAG secretion. The results indicated that the 12 min scaffolds delivered promising results for applications in articular cartilage repair. PMID:25671317

  10. Culture & differentiation of mesenchymal stem cell into osteoblast on degradable biomedical composite scaffold: In vitro study

    PubMed Central

    Jain, Krishan G.; Mohanty, Sujata; Ray, Alok R.; Malhotra, Rajesh; Airan, Balram

    2015-01-01

    Background & objectives: There is a significant bone tissue loss in patients from diseases and traumatic injury. The current autograft transplantation gold standard treatment has drawbacks, namely donor site morbidity and limited supply. The field of tissue engineering has emerged with a goal to provide alternative sources for transplantations to bridge this gap between the need and lack of bone graft. The aim of this study was to prepare biocomposite scaffolds based on chitosan (CHT), polycaprolactone (PCL) and hydroxyapatite (HAP) by freeze drying method and to assess the role of scaffolds in spatial organization, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro, in order to achieve bone graft substitutes with improved physical-chemical and biological properties. Methods: Pure chitosan (100CHT) and composites (40CHT/HAP, 30CHT/HAP/PCL and 25CHT/HAP/PCL scaffolds containing 40, 30, 25 parts per hundred resin (phr) filler, respectively) in acetic acid were freeze dried and the porous foams were studied for physicochemical and in vitro biological properties. Results: Scanning electron microscope (SEM) images of the scaffolds showed porous microstructure (20-300 μm) with uniform pore distribution in all compositions. Materials were tested under compressive load in wet condition (using phosphate buffered saline at pH 7.4). The in vitro studies showed that all the scaffold compositions supported mesenchymal stem cell attachment, proliferation and differentiation as visible from SEM images, [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay, alkaline phosphatase (ALP) assay and quantitative reverse transcription (qRT)-PCR. Interpretation & conclusions: Scaffold composition 25CHT/HAP/PCL showed better biomechanical and osteoinductive properties as evident by mechanical test and alkaline phosphatase activity and osteoblast specific gene expression studies. This study suggests that this novel

  11. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  12. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications.

    PubMed

    Xie, Hui; Wang, Zhenxing; Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai; Chen, Zhichao; Zhang, WenJie

    2016-01-01

    One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs) has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL) constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering. PMID:27231660

  13. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications

    PubMed Central

    Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai

    2016-01-01

    One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs) has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL) constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering. PMID:27231660

  14. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication.

    PubMed

    Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia

    2016-10-01

    Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. PMID:27093435

  15. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P.; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  16. Design and Functional Testing of a Multichamber Perfusion Platform for Three-Dimensional Scaffolds

    PubMed Central

    Soncini, Monica; Cantini, Marco; Ferrario, Giulio; Fiore, Gianfranco B.

    2013-01-01

    Perfusion culture systems are widely used in tissue engineering applications for enhancing cell culture viability in the core of three-dimensional scaffolds. In this work, we present a multichamber confined-flow perfusion system, designed to provide a straightforward platform for three-dimensional dynamic cell cultures. The device comprises 6 culture chambers allowing independent and simultaneous experiments in controlled conditions. Each chamber consists of three parts: a housing, a deformable scaffold-holder cartridge, and a 7 mL reservoir, which couples water-tightly with the housing compressing the cartridge. Short-term dynamic cell seeding experiments were carried out with MC3T3-E1 cells seeded into polycaprolactone porous scaffolds. Preliminary results revealed that the application of flow perfusion through the scaffold favored the penetration of the cells to its interior, producing a more homogeneous distribution of cells with respect to dropwise or injection seeding methods. The culture chamber layout was conceived with the aim of simplifying the user operations under laminar flow hood and minimizing the risks for contamination during handling and operation. Furthermore, a compact size, a small number of components, and the use of bayonet couplings ensured a simple, fast, and sterility-promoting assembling. Finally, preliminary in vitro tests proved the efficacy of the system in enhancing cell seeding efficiency, opening the way for further studies addressing long-term scaffold colonization. PMID:24453787

  17. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  18. A Degradable, Thermo-sensitive Poly(N-isopropyl acrylamide)-Based Scaffold with Controlled Porosity for Tissue Engineering Applications

    PubMed Central

    Galperin, Anna; Long, Thomas J.; Ratner, Buddy D.

    2010-01-01

    We have developed a thermoresponsive poly(N-isopropyl acrylamide)-based scaffold with degradability and controlled porosity. Biodegradable poly(N-isopropyl acrylamide) hydrogels were synthesized by photo-copolymerization of N-isopropylacrylamide with 2-methylene-1,3-dioxepane and polycaprolactone dimethacrylate. The hydrogels’ phase transition temperature, swelling and viscoelastic properties, as well as hydrolytic degradability at 25 and 37°C, were explored. A sphere-templating technique was applied to fabricate hydrogel scaffolds with controllable pore size and a highly interconnected porous structure. The scaffold pore diameter change as a function of temperature was evaluated and, as expected, pores decreased in diameter when the temperature was raised to 37°C. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test results suggested neither the scaffolds nor their degradation products were cytotoxic to NIH3T3 cells. Scaffolds with 55±5 μm pore diameter were loaded with NIH3T3 cells and then were warmed to 37°C entrapping cells in pores approximately 39 μm in diameter, a size range we have found to be optimal for angiogenesis and biointegration. Cells showed uniform infiltration and an elongated morphology after 7 days of culture. Due to the controlled monodisperse pore diameter, highly interconnected architecture, fully degradable chemistry and thermoresponsive properties, the polyNIPAM-based scaffolds developed here are attractive for applications in tissue engineering. PMID:20836521

  19. MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects

    PubMed Central

    WANG, ZHENLIN; ZHANG, DAWEI; HU, ZHIQIANG; CHENG, JIWEI; ZHUO, CHUANMENG; FANG, XIANCONG; XING, YONGMING

    2015-01-01

    Tissue-engineered bone substitutes are frequently used to repair bone defects. Adipose-derived stem cells (ASCs) are a promising source of cells for repairing bone tissue, however, insufficient osteogenic potency remains the main obstacle for their application. The present study aimed to enhance the osteogenic potency of ASCs by transfection of microRNA (miR)-26a, a novel osteogenic and angiogenic promoting miRNA. An inverted fluorescence microscope was used to observe transfection efficiency, while a scanning electron microscope was used to detect morphological alterations. Cell proliferation was monitored continuously for 7 days using a Cell Counting kit-8 assay. Osteogenic differentiation was determined by reverse transcription quantitative polymerase chain reaction, alkaline phosphatase (ALP) staining, collagen secretion and extracellular matrix (ECM) mineralization. ASCs were incorporated with a porous hydroxyapatite (HA) scaffold to create a novel tissue-engineered bone substitute and inserted into the critical tibia defect of rats. New bone formation was evaluated by hematoxylin and eosin and Masson's trichrome staining. The results demonstrated that miR-26a was successfully delivered into the cytoplasm, while the morphology and proliferation of ASCs were not significantly altered. Osteogenic-associated genes were markedly upregulated and ALP production, collagen secretion and ECM mineralization were all increased following transfection of miR-26a. Histological evaluation demonstrated that the modified cells accompanied with a porous HA scaffold markedly promoted new bone formation within the defective area. In conclusion, miR-26a transfection significantly improved the osteogenic potency of ASCs suggesting that modified ASCs incorporated with a HA scaffold may be used as a potential bone substitute. PMID:25997460

  20. Physical and Biological Modification of Polycaprolactone Electrospun Nanofiber by Panax Ginseng Extract for Bone Tissue Engineering Application.

    PubMed

    Pajoumshariati, Seyedramin; Yavari, Seyedeh Kimia; Shokrgozar, Mohammad Ali

    2016-05-01

    Medicinal plants as a therapeutic agent with osteogenic properties can enhance fracture-healing process. In this study, the osteo-inductive potential of Asian Panax Ginseng root extract within electrospun polycaprolactone (PCL) based nanofibers has been investigated. Scanning electron microscopy images revealed that all nanofibers were highly porous and beadles with average diameter ranging from 250 to 650 nm. The incorporation of ginseng extract improved the physical characteristics (i.e., hydrophilicity) of PCL nanofibers, as well as the mechanical properties. Although ginseng extract increased the degradation rate of pure PCL nanofibers, the porous structure and morphology of fibers did not change significantly after 42 days. It was found that nanofibrous scaffolds containing ginseng extract had higher proliferation (up to ~1.5 fold) compared to the pristine PCL. The qRT-PCR analysis demonstrated the addition of ginseng extract into PCL nanofibers induced significant expression of osteogenic genes (Osteocalcin, Runx-2 and Col-1) in MSCs in a concentration dependent manner. Moreover, higher calcium content, alkaline phosphatase activity and higher mineralization of MSCs were observed compared to the pristine PCL fibers. Our results indicated the promising potential of ginseng extract as an additive to enhance osteo-inductivity, mechanical and physical properties of PCL nanofibers for bone tissue engineering application. PMID:26429789

  1. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking.

    PubMed

    Park, Si-Nae; Park, Jong-Chul; Kim, Hea Ok; Song, Min Jung; Suh, Hwal

    2002-02-01

    In order to develop a scaffolding material for tissue regeneration, porous matrices containing collagen and hyaluronic acid were fabricated by freeze drying at -20 degrees C, -70 degrees C or -196 degrees C. The fabricated porous membranes were cross-linked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in a range of 1-100 mM concentrations for enhancing mechanical stability of the composite matrix. Scanning electron microscope (SEM) views of the matrices demonstrated that the matrices obtained before cross-linking process had interconnected pores with mean diameters of 40, 90 or 230 microm and porosity of 58-66% according to the freezing temperature, and also the porous structures after cross-linking process were retained. The swelling test and IR spectroscopic measurement of different cross-linked membranes were carried out as a measure of the extent of cross-linking. The swelling behavior of cross-linked membranes showed no significant differences as cross-linking degree increased. FT-IR spectra showed the increase of the intensity of the absorbencies at amide bonds (1655, 1546, 1458 cm(-1)) compared to that of CH bond (2930 cm(-1)). In enzymatic degradation test, EDC treated membranes showed significant enhancement of the resistance to collagenase activity in comparison with 0.625% glutaraldehyde treated membranes. In cytotoxicity test using L929 fibroblastic cells, the EDC-cross-linked membranes demonstrated no significant toxicity. PMID:11791924

  2. Porous and strong bioactive glass (13–93) scaffolds prepared by unidirectional freezing of camphene-based suspensions

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang; Tomsia, Antoni P.

    2011-01-01

    Scaffolds of 13–93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt %) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1–7 °C/min) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure, and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C/min (porosity = 50 ± 4%; average pore diameter = 100 μm), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. PMID:21855661

  3. Biotin-avidin mediates the binding of adipose-derived stem cells to a porous β-tricalcium phosphate scaffold: Mandibular regeneration

    PubMed Central

    FENG, ZIHAO; LIU, JIAQI; SHEN, CONGCONG; LU, NANHANG; ZHANG, YONG; YANG, YANWEN; QI, FAZHI

    2016-01-01

    The present study aimed to investigate the properties of a promising bone scaffold for bone repair, which consisted of a novel composite of adipose-derived stem cells (ADSCs) attached to a porous β-tricalcium phosphate (β-TCP) scaffold with platelet-rich plasma (PRP). The β-TCP powder was synthesized and its composition was determined using X-ray diffraction and Fourier transform infrared spectroscopy. The surface morphology and microstructure of the fabricated porous β-TCP scaffold samples were analyzed using light and scanning electron microscopy, and their porosity and compressive strength were also evaluated. In addition, the viability of rabbit ADSCs incubated with various concentrations of the β-TCP extraction fluid was analyzed. The rate of attachment and the morphology of biotinylated ADSCs (Bio-ADSCs) on avidin-coated β-TCP (Avi-β-TCP), and untreated ADSCs on β-TCP, were compared. Furthermore, in vivo bone-forming abilities were determined following the implantation of group 1 (Bio-ADSCs/Avi-β-TCP) and group 2 (Bio-ADSCs/Avi-β-TCP/PRP) constructs using computed tomography, and histological osteocalcin (OCN) and alkaline phosphatase (ALP) expression analyses in a rabbit model of mandibulofacial defects. The β-TCP scaffold exhibited a high porosity (71.26±0.28%), suitable pore size, and good mechanical strength (7.93±0.06 MPa). Following incubation with β-TCP for 72 h, 100% of viable ADSCs remained. The avidin-biotin binding system significantly increased the initial attachment rate of Bio-ADSCs to Avi-β-TCP in the first hour (P<0.01). Following the addition of PRP, group 2 exhibited a bony-union and mandibular body shape, newly formed bone and increased expression levels of OCN and ALP in the mandibulofacial defect area, as compared with group 1 (P<0.05). The results of the present study suggested that the novel Bio-ADSCs/Avi-β-TCP/PRP composite may have potential application in bone repair and bone tissue engineering. PMID:26997987

  4. Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds.

    PubMed

    Huang, Jie; Lin, Yu Wan; Fu, Xiao Wei; Best, Serena M; Brooks, Roger A; Rushton, Neil; Bonfield, William

    2007-11-01

    Nano-sized hydroxyapatite (nanoHA) reinforced composites, mimicking natural bone, were produced. Examination by transmission electron microscopy revealed that the nanoHA particles had a rod-like morphology, 20-30 nm in width and 50-80 nm in length. The phase composition of hydroxyapatite was confirmed by X-ray diffraction. The nanoHA particles were incorporated into poly-2-hydroxyethylmethacrylate (PHEMA)/polycaprolactone (PCL) matrix to make new nanocomposites: nanoHA-PHEMA/PCL. Porous nanocomposite scaffolds were then produced using a porogen leaching method. The interconnectivity of the porous structure of the scaffolds was revealed by non-destructive X-ray microtomography. Porosity of 84% was achieved and pore sizes were approximately around 300-400 microm. An in vitro study found that the nanocomposites were bioactive as indicated by the formation of a bone-like apatite layer after immersion in simulated body fluid. Furthermore, the nanocomposites were able to support the growth and proliferation of primary human osteoblast (HOB) cells. HOB cells developed a well organized actin cytoskeletal protein on the nanocomposite surface. The results demonstrate the potential of the nanocomposite scaffolds for tissue engineering applications for bone repair. PMID:17891551

  5. 3D interconnected porous HA scaffolds with SiO2 additions: effect of SiO2 content and macropore size on the viability of human osteoblast cells.

    PubMed

    Nikom, Jaru; Charoonpatrapong-Panyayong, Kanokwan; Kedjarune-Leggat, Ureporn; Stevens, Ron; Kosachan, Nudthakarn; Jaroenworaluck, Angkhana

    2013-08-01

    3D interconnected porous scaffolds of HA and HA with various additions of SiO2 were fabricated using a polymeric template technique, to make bioceramic scaffolds consisting of macrostructures of the interconnected macropores. Three different sizes of the polyurethane template were used in the fabrication process to form different size interconnected macropores, to study the effect of pore size on human osteoblast cell viability. The template used allowed fabrication of scaffolds with pore sizes of 45, 60, and 75 ppi, respectively. Scanning microscopy was used extensively to observe the microstructure of the sintered samples and the characteristics of cells growing on the HA surfaces of the interconnected macropores. It has been clearly demonstrated that the SiO2 addition has influenced both the phase transformation of HA to TCP (β-TCP and α-TCP) and also affected the human osteoblast cell viability grown on these scaffolds. PMID:23355495

  6. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage.

    PubMed

    Filipowska, Joanna; Reilly, Gwendolen C; Osyczka, Anna M

    2016-08-01

    Perfusing culture media through porous cell-seeded scaffolds is now a common approach within many tissue engineering strategies. Human bone-marrow derived mesenchymal stem cells (hBMSC) are a clinically valuable source of osteoprogenitors that respond to mechanical stimuli. However, the optimal mechanical conditions for their osteogenic stimulation in vitro have not been defined. Whereas the effects of short durations of media fluid flow have been studied in monolayers of osteoblastic cells, in 3D culture continuous or repeated perfusion is usually applied. Here, we investigated whether a short, single perfusion session applied to hBMSCs cultured in 3D would enhance their osteogenesis in vitro. We cultured hBMSCs on gelatine-coated, porous polyurethane scaffolds with osteogenic supplements and stimulated them with a single 2-h session of unidirectional, steady, 2.5 mL/min media perfusion, at either early or late stages of culture in 3D. Some cells were pre-treated in monolayer with osteogenic supplements to advance cell differentiation, followed by 3D culture also with the osteogenic supplements. We report that this single, short session of media perfusion can markedly enhance the expression of bone-related transcription and growth factors, and matrix components, by hBMSCs but that it is more effective when cells reach the pre-osteoblast or osteoblast differentiation stage. These findings could aid in the optimization of 3D culture protocols for efficient bone tissue engineering. Biotechnol. Bioeng. 2016;113: 1814-1824. © 2016 Wiley Periodicals, Inc. PMID:26806539

  7. Mesenchymal stem cells associated with porous chitosan-gelatin scaffold: a potential strategy for alveolar bone regeneration.

    PubMed

    Miranda, Suzana C C C; Silva, Gerluza A B; Mendes, Renato M; Abreu, Fernando Antônio M; Caliari, Marcelo V; Alves, José B; Goes, Alfredo M

    2012-10-01

    Tissue engineering has emerged as a novel treatment for replacement of lost bone tissue. This study evaluated the effects of a chitosan-gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMMSCs) in the healing process of tooth sockets in rats. BMMSCs isolated from transgenic rats expressing enhanced green fluorescent protein (eGFP) were expanded and seeded on a chitosan-gelatin scaffold. These constructs were cultured for three days and characterized by scanning electronic microscopy (SEM) and energy dispersion spectroscopy (EDS). Receptor rats received the implant in the left sockets, after upper first-molar extraction. Right alveoli served as control. Animals were sacrificed at days 5, 21, and 35 post-graft for examination. Morphometry demonstrated increased bone mineralization after 21 and 35 days in transplanted sockets. Migration, differentiation, and fate of eGFP-labeled BMMSCs were monitored by immunohistochemistry. Tartrate-resistant acid phosphatase staining (TRAP) was carried out at 21 days, to identify the involvement of osteoclastic cells in the scaffold resorption. The biomaterial was resorbed by TRAP-negative giant cells in a typical foreign body reaction. Immunohistochemical findings showed that BMMSCs contributed to bone, epithelial, and vascular repair. Together, results indicate that BMMSCs loaded in the chitosan-gelatin scaffold is a strategy for tissue development in bone engineering. PMID:22623117

  8. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds.

    PubMed

    Mehr, Nima Ghavidel; Li, Xian; Chen, Gaoping; Favis, Basil D; Hoemann, Caroline D

    2015-07-01

    Poly(epsilon-caprolactone) (PCL) is a hydrophobic bioplastic under development for bone tissue engineering applications. Limited information is available on the role of internal geometry and cell-surface attachment on osseous integration potential. We tested the hypothesis that human bone marrow mesenchymal stem cells (MSCs) deposit more mineral inside porous 3D PCL scaffolds with fully interconnected 84 or 141 µm pores, when the surfaces are coated with chitosan via Layer-by-Layer (LbL)-deposited polyelectrolytes. Freshly trypsinized MSCs were seeded on PCL 3D cylinders using a novel static cold seeding method in 2% serum to optimally populate all depths of the scaffold discs, followed by 10 days of culture in proliferation medium and 21 additional days in osteogenic medium. MSCs were observed by SEM and histology to spread faster and to proliferate more on chitosan-coated pore surfaces. Most pores, with or without chitosan, became filled by collagen networks sparsely populated with fibroblast-like cells. After 21 days of culture in osteogenic medium, sporadic matrix mineralization was detected histologically and by micro-CT in highly cellular surface layers that enveloped all scaffolds and in cell aggregates in 141 µm pores near the edges. LbL-chitosan promoted punctate mineral deposition on the surfaces of 84 µm pores (p < 0.05 vs. PCL-only) but not the 141 µm pores. This study revealed that LbL-chitosan coatings are sufficient to promote MSC attachment to PCL but only enhance mineral formation in 84 µm pores, suggesting a potential inhibitory role for MSC-derived fibroblasts in osteoblast terminal differentiation. PMID:25504184

  9. Microwave sintering and in vitro study of defect-free stable porous multilayered HAp-ZrO2 artificial bone scaffold

    NASA Astrophysics Data System (ADS)

    Jang, Dong-Woo; Nguyen, Thi-Hiep; Sarkar, Swapan Kumar; Lee, Byong-Taek

    2012-06-01

    Continuously porous hydroxyapatite (HAp)/t-ZrO2 composites containing concentric laminated frames and microchanneled bodies were fabricated by an extrusion process. To investigate the mechanical properties of HAp/t-ZrO2 composites, the porous composites were sintered at different temperatures using a microwave furnace. The microstructure was designed to imitate that of natural bone, particularly small bone, with both cortical and spongy bone sections. Each microchannel was separated by alternating lamina of HAp, HAp-(t-ZrO2) and t-ZrO2. HAp and ZrO2 phases existed on the surface of the microchannel and the core zone to increase the biocompatibility and mechanical properties of the HAp-ZrO2 artificial bone. The sintering behavior was evaluated and the optimum sintering temperature was found to be 1400 °C, which produced a stable scaffold. The material characteristics, such as the microstructure, crystal structure and compressive strength, were evaluated in detail for different sintering temperatures. A detailed in vitro study was carried out using MTT assay, western blot analysis, gene expression by polymerase chain reaction and laser confocal image analysis of cell proliferation. The results confirmed that HAp-ZrO2 performs as an artificial bone, showing excellent cell growth, attachment and proliferation behavior using osteoblast-like MG63 cells.

  10. Synthesis of composite gelatin-hyaluronic acid-alginate porous scaffold and evaluation for in vitro stem cell growth and in vivo tissue integration.

    PubMed

    Singh, Deepti; Tripathi, Anuj; Zo, Sunmi; Singh, Dolly; Han, Sung Soo

    2014-04-01

    Engineering three-dimensional (3-D) porous scaffolds with precise bio-functional properties is one of the most important issues in tissue engineering. In the present study, a three-dimensional gelatin-hyaluronic acid-alginate (GHA) polymeric composite was synthesized by freeze-drying, which was followed by ionic crosslinking using CaCl2, and evaluated for its suitability in bone tissue engineering applications. The obtained matrix showed high porosity (85%), an interconnected pore morphology and a rapid swelling behavior. The rheological analysis of GHA showed a viscoelastic characteristic, which suggested a high load bearing capacity without fractural deformation. The influence of the GHA matrix on cell growth and on modulating the differentiation ability of mesenchymal stem cells was evaluated by different biochemical and immunostaining assays. The monitoring of cells over a period of four weeks showed increased cellular proliferation and osteogenic differentiation without external growth factors, compared with control (supplemented with osteogenic differentiation medium). The in vivo matrix implantation showed higher matrix-tissue integration and cell infiltration as the duration of the implant increased. These results suggest that a porous GHA matrix with suitable mechanical integrity and tissue compatibility is a promising substrate for the osteogenic differentiation of stem cells for bone tissue engineering applications. PMID:24572494

  11. Functionalized ultra-porous titania nanofiber membranes as nuclear waste separation and sequestration scaffolds for nuclear fuels recycle.

    SciTech Connect

    Liu, Haiqing; Bell, Nelson Simmons; Cipiti, Benjamin B.; Lewis, Tom Goslee,; Sava, Dorina Florentina; Nenoff, Tina Maria

    2012-09-01

    Advanced nuclear fuel cycle concept is interested in reducing separations to a simplified, one-step process if possible. This will benefit from the development of a one-step universal getter and sequestration material so as a simplified, universal waste form was proposed in this project. We have developed a technique combining a modified sol-gel chemistry and electrospinning for producing ultra-porous ceramic nanofiber membranes with controllable diameters and porous structures as the separation/sequestration materials. These ceramic nanofiber materials have been determined to have high porosity, permeability, loading capacity, and stability in extreme conditions. These porous fiber membranes were functionalized with silver nanoparticles and nanocrystal metal organic frameworks (MOFs) to introduce specific sites to capture gas species that are released during spent nuclear fuel reprocessing. Encapsulation into a durable waste form of ceramic composition was also demonstrated.

  12. High tibial osteotomy using polycaprolactone-tricalcium phosphate polymer wedge in a micro pig model.

    PubMed

    Lim, H-C; Bae, J-H; Song, H-R; Teoh, S H; Kim, H-K; Kum, D-H

    2011-01-01

    Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination. Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy. PMID:21196556

  13. Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit.

    PubMed

    Qu, Dan; Li, Jihua; Li, Yubao; Khadka, Ashish; Zuo, Yi; Wang, Hang; Liu, Yiming; Cheng, Lin

    2011-01-01

    In this work, the novel poly vinyl alcohol/gelatin-nano-hydroxyapatite/polyamide6 (PVA-n-HA/PA6) bilayered scaffold with biomimetic properties for articular cartilage and subchondral bone is developed. Furthermore, when these osteochondral scaffolds were seeded with induced bone mesenchymal stem cells (BMSCs) and implanted at ectopic sites, showed the potential for an engineered cartilage tissue and the corresponding subchondral bone. BMSCs were expanded in vitro and induced to chondrogenic or osteogenic potential by culturing in suitable media for 14 days. Subsequently, these induced cells were seeded into PVA-n-HA/PA6 separately, and the constructs were implanted into the rabbit muscle pouch for upto 12 weeks. Ectopic neocartilage formation in the PVA layer and reconstitution of the subchondral bone which remained confined within the n-HA/PA6 layer with the alteration of the cellular phenotype were identified with Masson's trichrome stain. Simultaneously, the RT-PCR results confirmed the expression of specific extracellular matrix (ECM) markers for cartilaginous tissue, such as collagen type II (Col-II), or alternatively, markers for osteoid tissue, such as collagen type I (Col-I) at the corresponding layers. During ectopic implantation, the underlying subchondral bone layer was completely integrated with the cartilage layer. The result from the ectopic osteochondral scaffolds implantation suggests that PVA-n-HA/PA6 with induced BMSCs is a possible substitute with potential in cartilage repair strategies. PMID:20967773

  14. 3D Porous Calcium-Alginate Scaffolds Cell Culture System Improved Human Osteoblast Cell Clusters for Cell Therapy

    PubMed Central

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects. PMID:25825603

  15. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering.

    PubMed

    Yan, Haoran; Liu, Xia; Zhu, Minghua; Luo, Guilin; Sun, Tao; Peng, Qiang; Zeng, Yi; Chen, Taijun; Wang, Yingying; Liu, Keliang; Feng, Bo; Weng, Jie; Wang, Jianxin

    2016-01-01

    In this study, a multilayer coating technology would be adopted to prepare a porous composite scaffold and the growth factor release and ultrasound techniques were introduced into bone tissue engineering to finally solve the problems of vascularization and bone formation in the scaffold whilst the designed multilayer composite with gradient degradation characteristics in the space was used to match the new bone growth process better. The results of animal experiments showed that the use of low intensity pulsed ultrasound (LIPUS) combined with growth factors demonstrated excellent capabilities and advantages in both vascularization and new bone formation in bone tissue engineering. The degradation of the used scaffold materials could match new bone formation very well. The results also showed that only RGD-promoted cell adhesion was insufficient to satisfy the needs of new bone formation while growth factors and LIPUS stimulation were the key factors in new bone formation. PMID:26282063

  16. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization.

    PubMed

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-01

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid-liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50-250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986

  17. Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting

    NASA Astrophysics Data System (ADS)

    Wei, Chuang; Dong, Jingyan

    2013-02-01

    This paper presents the direct three-dimensional (3D) fabrication of polymer scaffolds with sub-10 µm structures using electrohydrodynamic jet (EHD-jet) plotting of melted thermoplastic polymers. Traditional extrusion-based fabrication approaches of 3D periodic porous structures are very limited in their resolution, due to the excessive pressure requirement for extruding highly viscous thermoplastic polymers. EHD-jet printing has become a high-resolution alternative to other forms of nozzle deposition-based fabrication approaches by generating micro-scale liquid droplets or a fine jet through the application of a large electrical voltage between the nozzle and the substrate. In this study, we successfully apply EHD-jet plotting technology with melted biodegradable polymer (polycaprolactone, or PCL) for the fabrication of 2D patterns and 3D periodic porous scaffold structures in potential tissue engineering applications. Process conditions (e.g. electrical voltage, pressure, plotting speed) have been thoroughly investigated to achieve reliable jet printing of fine filaments. We have demonstrated for the first time that the EHD-jet plotting process is capable of the fabrication of 3D periodic structures with sub-10 µm resolution, which has great potential in advanced biomedical applications, such as cell alignment and guidance.

  18. On the mechanical properties of PLC-bioactive glass scaffolds fabricated via BioExtrusion.

    PubMed

    Fiedler, T; Videira, A C; Bártolo, P; Strauch, M; Murch, G E; Ferreira, J M F

    2015-12-01

    This paper addresses the mechanical characterization of polycaprolactone (PCL)-bioglass (FastOs®BG) composites and scaffolds intended for use in tissue engineering. Tissue engineering scaffolds support the self-healing mechanism of the human body and promote the regrowth of damaged tissue. These implants can dissolve after successful tissue regeneration minimising the immune reaction and the need for revision surgery. However, their mechanical properties should match surrounding tissue in order to avoid strain concentration and possible separation at the interface. Therefore, an extensive experimental testing programme of this advanced material using uni-axial compressive testing was conducted. Tests were performed at low strain rates corresponding to quasi-static loading conditions. The initial elastic gradient, plateau stress and densification strain were obtained. Tested specimens varied according to their average density and material composition. In total, four groups of solid and robocast porous PCL samples containing 0, 20, 30, and 35% bioglass, respectively were tested. The addition of bioglass was found to slightly decrease the initial elastic gradient and the plateau stress of the biomaterial scaffolds. PMID:26354266

  19. ECM inspired coating of embroidered 3D scaffolds enhances calvaria bone regeneration.

    PubMed

    Rentsch, C; Rentsch, B; Heinemann, S; Bernhardt, R; Bischoff, B; Förster, Y; Scharnweber, D; Rammelt, S

    2014-01-01

    Resorbable polymeric implants and surface coatings are an emerging technology to treat bone defects and increase bone formation. This approach is of special interest in anatomical regions like the calvaria since adults lose the capacity to heal large calvarial defects. The present study assesses the potential of extracellular matrix inspired, embroidered polycaprolactone-co-lactide (PCL) scaffolds for the treatment of 13 mm full thickness calvarial bone defects in rabbits. Moreover the influence of a collagen/chondroitin sulfate (coll I/cs) coating of PCL scaffolds was evaluated. Defect areas filled with autologous bone and empty defects served as reference. The healing process was monitored over 6 months by combining a novel ultrasonographic method, radiographic imaging, biomechanical testing, and histology. The PCL coll I/cs treated group reached 68% new bone volume compared to the autologous group (100%) and the biomechanical stability of the defect area was similar to that of the gold standard. Histological investigations revealed a significantly more homogenous bone distribution over the whole defect area in the PCL coll I/cs group compared to the noncoated group. The bioactive, coll I/cs coated, highly porous, 3-dimensional PCL scaffold acted as a guide rail for new skull bone formation along and into the implant. PMID:25013767

  20. ECM Inspired Coating of Embroidered 3D Scaffolds Enhances Calvaria Bone Regeneration

    PubMed Central

    Rentsch, C.; Rentsch, B.; Heinemann, S.; Bernhardt, R.; Bischoff, B.; Förster, Y.; Scharnweber, D.; Rammelt, S.

    2014-01-01

    Resorbable polymeric implants and surface coatings are an emerging technology to treat bone defects and increase bone formation. This approach is of special interest in anatomical regions like the calvaria since adults lose the capacity to heal large calvarial defects. The present study assesses the potential of extracellular matrix inspired, embroidered polycaprolactone-co-lactide (PCL) scaffolds for the treatment of 13 mm full thickness calvarial bone defects in rabbits. Moreover the influence of a collagen/chondroitin sulfate (coll I/cs) coating of PCL scaffolds was evaluated. Defect areas filled with autologous bone and empty defects served as reference. The healing process was monitored over 6 months by combining a novel ultrasonographic method, radiographic imaging, biomechanical testing, and histology. The PCL coll I/cs treated group reached 68% new bone volume compared to the autologous group (100%) and the biomechanical stability of the defect area was similar to that of the gold standard. Histological investigations revealed a significantly more homogenous bone distribution over the whole defect area in the PCL coll I/cs group compared to the noncoated group. The bioactive, coll I/cs coated, highly porous, 3-dimensional PCL scaffold acted as a guide rail for new skull bone formation along and into the implant. PMID:25013767

  1. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    PubMed

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016. PMID:26482196

  2. Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells.

    PubMed

    Mali, Sawanta S; Shim, Chang Su; Hong, Chang Kook

    2015-01-01

    Development of ternary metal oxide (TMO) based electron transporting layer (ETL) for perovskite solar cell open a new approaches toward efficient a unique strategy for solid state dye-sensitized solar cells (ssDSSCs). In the present investigation, highly porous zinc tin oxide (Zn2SnO4) scaffold nanofibers has been synthesized by electrospinning technique and successfully used for methyl ammonium lead halide (CH3NH3PbI3) perovskite sensitized solid state solar cells. The fabricated optimized perovskite solar cell devices exhibited 7.38% power conversion efficiency (PCE) with open circuit voltage (VOC) 0.986 V, current density (JSC) = 12.68 mAcm(-2) and fill factor (FF) 0.59 under AM 1.5 G sunlight (100 mWcm(-2)) which is higher than Zn2SnO4 nanoparticle (η = 2.52%) based perovskite solar cells. This improvement is achieved due to high porosity of Zn2SnO4 nanofibers and high crystallinity of the nanofibers synthesized at 700 °C. These results are remarkably higher than reported perovskite solar cells based on such type of ternary metal oxide ETLs. PMID:26094863

  3. Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells

    PubMed Central

    Mali, Sawanta S.; Su Shim, Chang; Kook Hong, Chang

    2015-01-01

    Development of ternary metal oxide (TMO) based electron transporting layer (ETL) for perovskite solar cell open a new approaches toward efficient a unique strategy for solid state dye-sensitized solar cells (ssDSSCs). In the present investigation, highly porous zinc tin oxide (Zn2SnO4) scaffold nanofibers has been synthesized by electrospinning technique and successfully used for methyl ammonium lead halide (CH3NH3PbI3) perovskite sensitized solid state solar cells. The fabricated optimized perovskite solar cell devices exhibited 7.38% power conversion efficiency (PCE) with open circuit voltage (VOC) 0.986 V, current density (JSC) = 12.68 mAcm-2 and fill factor (FF) 0.59 under AM 1.5 G sunlight (100 mWcm−2) which is higher than Zn2SnO4 nanoparticle (η = 2.52%) based perovskite solar cells. This improvement is achieved due to high porosity of Zn2SnO4 nanofibers and high crystallinity of the nanofibers synthesized at 700 °C. These results are remarkably higher than reported perovskite solar cells based on such type of ternary metal oxide ETLs. PMID:26094863

  4. Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Mali, Sawanta S.; Su Shim, Chang; Kook Hong, Chang

    2015-06-01

    Development of ternary metal oxide (TMO) based electron transporting layer (ETL) for perovskite solar cell open a new approaches toward efficient a unique strategy for solid state dye-sensitized solar cells (ssDSSCs). In the present investigation, highly porous zinc tin oxide (Zn2SnO4) scaffold nanofibers has been synthesized by electrospinning technique and successfully used for methyl ammonium lead halide (CH3NH3PbI3) perovskite sensitized solid state solar cells. The fabricated optimized perovskite solar cell devices exhibited 7.38% power conversion efficiency (PCE) with open circuit voltage (VOC) 0.986 V, current density (JSC) = 12.68 mAcm-2 and fill factor (FF) 0.59 under AM 1.5 G sunlight (100 mWcm-2) which is higher than Zn2SnO4 nanoparticle (η = 2.52%) based perovskite solar cells. This improvement is achieved due to high porosity of Zn2SnO4 nanofibers and high crystallinity of the nanofibers synthesized at 700 °C. These results are remarkably higher than reported perovskite solar cells based on such type of ternary metal oxide ETLs.

  5. Effects of scaffold architecture on cranial bone healing.

    PubMed

    Berner, A; Woodruff, M A; Lam, C X F; Arafat, M T; Saifzadeh, S; Steck, R; Ren, J; Nerlich, M; Ekaputra, A K; Gibson, I; Hutmacher, D W

    2014-04-01

    In the present study, polycaprolactone-tricalcium phosphate (PCL/TCP) scaffolds with two different fibre laydown patterns, which were coated with hydroxyapatite and gelatine, were used as an approach for optimizing bone regeneration in a critical-sized calvarial defect. After 12 weeks, bone regeneration was quantified using microcomputed tomography (micro-CT) analysis, biomechanical testing, and histological evaluation. Notably, the experimental groups with coated scaffolds showed lower bone formation and lower biomechanical properties within the defect compared to the uncoated scaffolds. Surprisingly, the different laydown pattern of the fibres resulted in different bone formation and biomechanical properties: the 0°/60°/120° scaffolds revealed lower bone formation and biomechanical properties compared to the 0°/90° scaffolds in all the experimental groups. Therefore, future bone regeneration strategies utilizing scaffolds should consider scaffold architecture as an important factor during the scaffold optimization stages in order to move closer to a clinical application. PMID:24183512

  6. Porous graphene oxide nanostructure as an excellent scaffold for label-free electrochemical biosensor: Detection of cardiac troponin I.

    PubMed

    Kazemi, Sayed Habib; Ghodsi, Elham; Abdollahi, Siamak; Nadri, Samad

    2016-12-01

    Herein, we report the fabrication of a novel label-free impedimetric biosensor employing porous graphene oxide (PrGO) nanostructures for the specific detection of cardiac troponin-I (cTnI) to establish the myocardial infarction (MI). This nano-immunosensor demonstrates an outstanding selectivity and high sensitivity towards the human-cTnI analyte. An excellent detection limit of 0.07ngmL(-1) and dynamic linear range of 0.1-10ngmL(-1) were calculated for anti-cTnI/PrGO/GC. Finally, this biosensor was employed to check the concentration of the MI biomarker in real clinical samples and the results are in good agreement with standard enzyme-linked fluorescence assay (ELFA) method. PMID:27612734

  7. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application.

    PubMed

    Pan, Lanlan; Pei, Xibo; He, Rui; Wan, Qianbing; Wang, Jian

    2012-05-01

    In this study, the multiwall carbon nanotubes (MWNTs)/polycaprolactone composite scaffolds were fabricated by the solution evaporation technique. The morphology, phase composition and the mechanical properties of the composite scaffolds were characterized and the cellular bioactivity of the scaffolds was assessed by using rat bone-marrow-derived stroma cells (BMSCs). The attachment, proliferation and differentiation of the BMSCs on the composite scaffolds were analyzed by scanning electron microscopy (SEM), 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) nuclear staining and fluorescein diacetate (FDA) and propidium iodide (PI) live/dead staining, methylthiazol tetrazolium (MTT) assay and alkaline phosphatase (ALP) activity assay, respectively. Results showed that mechanical properties of the composite scaffolds were improved with the addition of MWNTs (0.25-2 wt%). BMSCs on the composite scaffolds differentiated down the osteogenic lineage and expressed high levels of bone marker ALP. The scaffolds with low concentration (0.5 wt%) of MWNTs can enhance the proliferation and differentiation of the BMSCs more than that with higher concentration of MWNTs. It is concluded that MWNTs/PCL composite scaffolds have the potential for bone tissue engineering and the relatively low concentration of MWNTs (0.5 wt%) is preferred. PMID:22305638

  8. Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces.

    PubMed

    Tamjid, Elnaz; Simchi, Arash; Dunlop, John W C; Fratzl, Peter; Bagheri, Reza; Vossoughi, Manouchehr

    2013-10-01

    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were also used to reveal the effect of particle size on the cell behavior. Observation of tissue growth and enzyme activity on two-dimensional (2D) films and three-dimensional (3D) scaffolds showed effects of nanoparticle inclusion and of surface curvature on the cellular adhesion, proliferation, and kinetics of preosteoblastic cells (MC3T3-E1) tissue growth into the pore channels. It was found that the presence of nanoparticles in the substrate impaired cellular adhesion and proliferation in 3D structures. Evaluation of alkaline phosphate activity showed that the presence of the hard particles affects differentiation of the cells on 2D films. Notwithstanding, the effect of particles on cell differentiation was not as strong as that seen by the curvature of the substrate. We observed different effects of nanofeatures on 2D structures with those of 3D scaffolds, which influence the cell proliferation and differentiation for non-load-bearing applications in bone regenerative medicine. PMID:23463703

  9. Development and characterization of a family of shape memory, biocompatible, degradable, porous (co)-polyurethanes via sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Lippincott, Hugh Walker

    In support of the goal of a tissue engineering scaffold that is moldable, biodegradable and has shape-memory, this work explored the space of polyurethane sol-gel formulations and solvents to create a biocompatible, porous xerogel with potential to be such a porous scaffold. The work has resulted in both a process and a sol-gel formulation to effectively create a family of degradable, biocompatible, shape memory, porous, block copolyurethane xerogels from polycaprolactone and castor oil. Formulations of the sol-gel family of potential scaffolds were characterized for their biocompatibility, hydrolytic degradability, porosity, and shape memory. Of the scaffolds tested in this fashion, the most successful supported the attachment and growth of 3T3 fibroblast cells at 72% of the rate of attachment and growth in the standard tissue culture plastic Petri dishes. A method was developed and explained that selects the solvent for creation of a porous xerogel by controlling the phase separation of the polymerizing polyurethane from the reaction solution. This method uses standard polymer solvent swelling and extraction test data. Solvent solutions plotted in the 3-D space of Hansen solubility parameters were used to select solvents that produced porous xerogels from two different polyurethane sol-gel formulations. The process effectively combines a set of methods that search the sol-gel formulation spaces for both shape-memory and porosity. Easily produced dense xerogels from trial sol-gel formulations are sufficient for DSC and initial DMA shape-memory test data, as well as standard solvent swelling and extraction test data to support the search for shape memory and the computation of rankings to select solvent(s) that is most likely to produce a porous xerogel. Accelerated degradation tests on the dense xerogels also produced results useful to guide further testing of the sol-gel formulations. Standard shape-memory research testing only characterizes the free return to

  10. Evaluating Molecular Interactions in Polycaprolactone-Biomineralized Hydroxyapatite Nanocomposites using Steered Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Anurag; Payne, Scott; Katti, Kalpana S.; Katti, Dinesh R.

    2015-04-01

    An experimental and modeling study of a complex nanoclay-based polymeric scaffold system is presented here. A representative molecular model of polymeric nanocomposite scaffold system for bone tissue engineering applications was developed. Polymeric scaffolds were synthesized using organically modified montmorillonite clay (OMMT) with biomineralized hydroxyapatite and polycaprolactone (OMMT-HAP-PCL). The OMMT-HAP-PCL representative model was constructed and validated using transmission electron microscopy, x-ray diffraction and material density results. We observed strong molecular interactions between OMMT, hydroxyapatite (HAP) and polycaprolactone (PCL) in the OMMT-HAP-PCL system. Attractive and repulsive interactions between PCL and different constituents of OMMT and HAP indicate influence of OMMT-HAP on PCL. Polymeric scaffolds were found to have improved nanomechanical properties as compared to pristine PCL due to the introduction of OMMT-HAP. Stress-strain response for the representative OMMT-HAP-PCL model was evaluated using constant force steered molecular dynamics (SMD) simulations. Two distinct stress-strain responses observed in the system indicate a two-phase nanomechanical behavior of OMMT-HAP-PCL obtained at low and high applied stresses. The results obtained from the MD and SMD simulations provide quantitative understanding of molecular interactions between different constituents of OMMT, HAP and PCL and mechanical response in the OMMT-HAP-PCL system.

  11. ERK Signals: Scaffolding Scaffolds?

    PubMed Central

    Casar, Berta; Crespo, Piero

    2016-01-01

    ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement. PMID:27303664

  12. Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: an X-ray computed microtomography study.

    PubMed

    Papadimitropoulos, A; Mastrogiacomo, M; Peyrin, F; Molinari, E; Komlev, V S; Rustichelli, F; Cancedda, R

    2007-09-01

    Resorbable ceramic scaffolds based on Silicon stabilized tricalcium phosphate (Si-TCP) were seeded with bone marrow stromal cells (BMSC) and ectopically implanted for 2, 4, and 6 months in immunodeficient mice. Qualitative and quantitative evaluation of the scaffold material was performed by X-ray synchrotron radiation computed microtomography (microCT) with a spatial resolution lower than 5 microm. Unique to these experiments was that microCT data were first collected on the scaffolds before implantation and then on the same scaffolds after they were seeded with BMSC, implanted in the mice and rescued after different times. Volume fraction, mean thickness and thickness distribution were evaluated for both new bone and scaffold phases as a function of the implantation time. New bone thickness increased from week 8 to week 16. Data for the implanted scaffolds were compared with those derived from the analysis of the same scaffolds prior to implantation and with data derived from 100% hydroxyapatite (HA) scaffold treated and analyzed in the same way. At variance with findings with the 100% HA scaffolds a significant variation in the density of the different Si-TCP scaffold regions in the pre- and post-implantation samples was observed. In particular a post-implantation decrease in the density of the scaffolds, together with major changes in the scaffold phase composition, was noticeable in areas adjacent to newly formed bone. Histology confirmed a better integration between new bone and scaffold in the Si-TCP composites in comparison to 100% HA composites where new bone and scaffold phases remained well distinct. PMID:17657771

  13. Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method.

    PubMed

    Fereshteh, Zeinab; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R

    2016-11-01

    A novel type of drug-delivery scaffold based on poly(ε-caprolactone) (PCL) and zein blends was prepared by improved unidirectional freeze-drying. Scaffolds with tube-like pore structure and high porosity, up to 89%, were obtained by adjusting the concentration of the PCL and zein solutions. Characters of the prepared scaffolds, such as microstructural, porosity, and compressive strength, were evaluated. The hydrophilicity and the degradability of the composite films were investigated in contact with phosphate buffer saline (PBS). It was found that the presence of zein accelerates the degradation rate of the scaffolds in the period time of investigation (28days). The results showed an acceptable way for controlling the in vitro degradation behavior of PCL composite scaffolds by adapting the concentration of zein. In vitro protein release and degradation results revealed that the absolute weight loss of the PCL/zein scaffolds exhibited an increasing trend by increasing the amount of zein concentration in the scaffolds. The drug delivery capability of the scaffolds was tested using tetracycline hydrochloride (TCH). Sustained release of the drug was obtained, and it was found that the proportion of zein in the scaffold had a great impact on the drug release kinetics. The results demonstrated the potential of the PCL/zein biocomposite scaffolds as a suitable candidate in tissue engineering strategies for bone defect treatment. PMID:27524061

  14. A Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications.

    PubMed

    Suntornnond, Ratima; An, Jia; Tijore, Ajay; Leong, Kah Fai; Chua, Chee Kai; Tan, Lay Poh

    2016-01-01

    In tissue engineering, there is limited availability of a simple, fast and solvent-free process for fabricating micro-porous thin membrane scaffolds. This paper presents the first report of a novel surface suspension melt technique to fabricate a micro-porous thin membrane scaffolds without using any organic solvent. Briefly, a layer of polycaprolactone (PCL) particles is directly spread on top of water in the form of a suspension. After that, with the use of heat, the powder layer is transformed into a melted layer, and following cooling, a thin membrane is obtained. Two different sizes of PCL powder particles (100 µm and 500 µm) are used. Results show that membranes made from 100 µm powders have lower thickness, smaller pore size, smoother surface, higher value of stiffness but lower ultimate tensile load compared to membranes made from 500 µm powder. C2C12 cell culture results indicate that the membrane supports cell growth and differentiation. Thus, this novel membrane generation method holds great promise for tissue engineering. PMID:27007364

  15. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility.

    PubMed

    Du, Yingying; Liu, Haoming; Shuang, Jiaqi; Wang, Jianglin; Ma, Jun; Zhang, Shengmin

    2015-11-01

    Fabrication of bulk biomaterials with controlled structures and excellent properties is increasingly important in tissue engineering, but remains a major challenge in the current stage. Herein we used selective laser sintering (SLS) to construct a series of three-dimensional (3D) bone scaffolds with uniform multi-scaled porosity, moderate mechanical properties as well as good biocompatibility. As starting architectural units for SLS, the pure microspheres of polycaprolactone (PCL) and the composite microspheres of PCL and hydroxyapatite (HA) were firstly synthesized via a modified solvent evaporation method, respectively. Our findings showed that the as-prepared microspheres exhibited the uniform size and monodispersity. Moreover, the microsphere-based 3D scaffolds generated by SLS technique showed a multi-scaled porous structure, and adequate mechanical features. Both in vitro and in vivo evaluations further demonstrated that the resultant SLS-derived scaffolds can not only manipulate multiple stem cell behaviors including promoting cell adhesion, supporting cell proliferation and inducing cell differentiation in vitro, but also showed an excellent histocompatibility and induced the vascularization of newly formed tissue in vivo. Consequently, our current study suggests a feasible and effective protocol for fabricating new biomimetic bone biomaterials via SLS technique, also paves a new way for other bulk biomaterials. PMID:26241919

  16. In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds.

    PubMed

    Yan, L-P; Oliveira, J M; Oliveira, A L; Reis, R L

    2015-05-01

    This study evaluates the biological performance of salt-leached macro/microporous silk scaffolds (S16) and silk-nano calcium phosphate scaffolds (SC16), both deriving from a 16 wt % aqueous SF solution. Enzymatic degradation results showed that the silk-based scaffolds presented desirable biostability, and the incorporation of calcium phosphate further improved the scaffolds' biostability. Human adipose tissue derived stromal cells (hASCs) were cultured onto the scaffolds in vitro. The Alamar blue assay and DNA content revealed that both scaffolds were non-cytotoxic and can support the viability and proliferation of the hASCs. Scanning electron microscopy observation demonstrated that the microporous structure was beneficial for the cell adhesion while the macroporous structure favored the cell migration and proliferation. The histological analysis displayed abundant extracellular matrix formed inside the scaffolds, leading to the significant increase of scaffolds' modulus. These results revealed that S16 and SC16 could be promising alternatives for cartilage and bone tissue engineering scaffolding applications, respectively. PMID:25164158

  17. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.

    PubMed

    Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G; Yu, Xiaojun

    2014-01-01

    For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs) were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP) activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP), osteonectin (ON), osteocalcin (OC), and type I collagen (Col-1) were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic ratios

  18. Polymer-Ceramic Spiral Structured Scaffolds for Bone Tissue Engineering: Effect of Hydroxyapatite Composition on Human Fetal Osteoblasts

    PubMed Central

    Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G.; Yu, Xiaojun

    2014-01-01

    For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs) were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP) activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP), osteonectin (ON), osteocalcin (OC), and type I collagen (Col-1) were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic ratios

  19. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.

    PubMed

    Wang, Chen; Lin, Kaili; Chang, Jiang; Sun, Jiao

    2013-01-01

    As a potential bioactive material, β-calcium silicate (β-CS) has attracted particular attention in the field of bone regeneration. In this study, porous β-CS/Poly-D,L-Lactide-Glycolide (PDLGA) composite scaffolds were developed with the goals of controlling the degradation rate and improving the mechanical and biological properties. The compressive strength and toughness were significantly enhanced by PDLGA modification of porous β-CS ceramic scaffolds. The effects of the ionic extract from β-CS/PDLGA composite scaffolds on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs), proliferation of human umbilical vein endothelial cells (HUVECs) and the related mechanisms were investigated. It was shown that bioactive ions from β-CS/PDLGA scaffolds could enhance cell viability, alkaline phosphatase (ALP) activity, calcium mineral deposition, and mRNA expression levels of osteoblast-related genes of rBMSCs without addition of extra osteogenic reagents. The activation in AMP-activated protein kinase (AMPK), extracellular signal-related kinases (ERK) 1/2 and RUNX-2 were observed in rBMSCs cultured in the extract of β-CS/PDLGA, and these effects could be blocked by AMPK inhibitor Compound C. The extracts of β-CS/PDLGA composites stimulated HUVECs proliferation that was associated with phosphorylation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) as well as an increase in nitric oxide (NO) production and secretion of vascular endothelial growth factor (VEGF). The inductions were abolished by the addition of phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. The composite scaffolds were implanted in critical sized rabbit femur defects (6 × 10 mm) for 4, 12 and 20 weeks with β-tricalcium phosphate (β-TCP) as controls. Sequential histological evaluations and radiographs revealed that β-CS/PDLGA dramatically stimulated new bone formation and angiogenesis. The biodegradation rate of the

  20. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.

    PubMed

    Wang, Xu; Gu, Zhipeng; Jiang, Bo; Li, Li; Yu, Xixun

    2016-04-01

    For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization. PMID:26870855